path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
32065703/cell_8
[ "text_html_output_1.png" ]
from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.tokenize import word_tokenize import nltk import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import string root_path = '/kaggle/input/CORD-19-research-challenge/' metadata_path = root_path + 'metadata.csv' metadata_df = pd.read_csv(metadata_path, dtype={'pubmed_id': str, 'Microsoft Academic Paper ID': str, 'doi': str}) metadata_df = metadata_df.fillna(0) metadata_df_wt_abs = metadata_df[metadata_df['abstract'] != 0] metadata_df_wt_abs.shape lemmatizer = WordNetLemmatizer() stop_words = set(stopwords.words('english') + [i for i in string.punctuation] + ['may', 'also', 'used']) key_words = [] for word in metadata_df_wt_abs['abstract']: temp = word_tokenize(word.lower()) for txt in temp: if txt not in stop_words: key_words.append(txt) freq_all = nltk.FreqDist(key_words) freq_all.plot(25, cumulative=False)
code
32065703/cell_14
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.tokenize import word_tokenize import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import string root_path = '/kaggle/input/CORD-19-research-challenge/' metadata_path = root_path + 'metadata.csv' metadata_df = pd.read_csv(metadata_path, dtype={'pubmed_id': str, 'Microsoft Academic Paper ID': str, 'doi': str}) metadata_df = metadata_df.fillna(0) metadata_df_wt_abs = metadata_df[metadata_df['abstract'] != 0] metadata_df_wt_abs.shape lemmatizer = WordNetLemmatizer() stop_words = set(stopwords.words('english') + [i for i in string.punctuation] + ['may', 'also', 'used']) key_words = [] for word in metadata_df_wt_abs['abstract']: temp = word_tokenize(word.lower()) for txt in temp: if txt not in stop_words: key_words.append(txt) def transformations(sentences): lemmatizer = WordNetLemmatizer() stop_words = set(stopwords.words('english') + [i for i in string.punctuation] + ['may', 'also', 'used']) key_words = [] for word in sentences.split(): temp = word_tokenize(word.lower()) for txt in temp: txt = lemmatizer.lemmatize(txt) if txt not in stop_words: key_words.append(txt) return key_words Label_df = pd.DataFrame(columns=['Task_text'], data=['What has been published about medical care?', ' What has been published concerning surge capacity and nursing homes?', 'What has been published concerning efforts to inform allocation of scarce resources?', 'What do we know about personal protective equipment?', 'What has been published concerning alternative methods to advise on disease management?', 'What has been published concerning processes of care?', 'What do we know about the clinical characterization and management of the virus?', 'Resources to support skilled nursing facilities and long term care facilities.', 'Mobilization of surge medical staff to address shortages in overwhelmed communities Age-adjusted mortality data for Acute Respiratory Distress Syndrome (ARDS) with/without other organ failure – particularly for viral etiologies', 'Extracorporeal membrane oxygenation (ECMO) outcomes data of COVID-19 patients Outcomes data for COVID-19 after mechanical ventilation adjusted for age.', 'Knowledge of the frequency, manifestations, and course of extrapulmonary manifestations of COVID-19, including, but not limited to, possible cardiomyopathy and cardiac arrest.', 'Application of regulatory standards (e.g., EUA, CLIA) and ability to adapt care to crisis standards of care level.', 'Approaches for encouraging and facilitating the production of elastomeric respirators, which can save thousands of N95 masks. Best telemedicine practices, barriers and faciitators, and specific actions to remove/expand them within and across state boundaries. Guidance on the simple things people can do at home to take care of sick people and manage disease. Oral medications that might potentially work.', 'Use of AI in real-time health care delivery to evaluate interventions, risk factors, and outcomes in a way that could not be done manually. Best practices and critical challenges and innovative solutions and technologies in hospital flow and organization, workforce protection, workforce allocation, community-based support resources, payment, and supply chain management to enhance capacity, efficiency, and outcomes. Efforts to define the natural history of disease to inform clinical care, public health interventions, infection prevention control, transmission, and clinical trials Efforts to develop a core clinical outcome set to maximize usability of data across a range of trials Efforts to determine adjunctive and supportive interventions that can improve the clinical outcomes of infected patients (e.g. steroids, high flow oxygen)']) Label_df['Bag_of_words'] = Label_df['Task_text'].apply(lambda x: transformations(x)) Label_df root_path = '/kaggle/input/CORD-19-research-challenge/' metadata_path = root_path + 'metadata.csv' metadata_with_pid = pd.read_csv(metadata_path, dtype={'pubmed_id': str, 'Microsoft Academic Paper ID': str, 'doi': str}) metadata_with_pid.drop_duplicates(['abstract'], inplace=True) metadata_with_pid.dropna(subset=['abstract'], inplace=True) metadata_with_pid.drop(columns=['WHO #Covidence', 'journal', 'authors', 'full_text_file', 'license']) metadata_with_pid.shape
code
32065703/cell_22
[ "text_html_output_1.png" ]
from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.tokenize import word_tokenize import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import string root_path = '/kaggle/input/CORD-19-research-challenge/' metadata_path = root_path + 'metadata.csv' metadata_df = pd.read_csv(metadata_path, dtype={'pubmed_id': str, 'Microsoft Academic Paper ID': str, 'doi': str}) metadata_df = metadata_df.fillna(0) metadata_df_wt_abs = metadata_df[metadata_df['abstract'] != 0] metadata_df_wt_abs.shape lemmatizer = WordNetLemmatizer() stop_words = set(stopwords.words('english') + [i for i in string.punctuation] + ['may', 'also', 'used']) key_words = [] for word in metadata_df_wt_abs['abstract']: temp = word_tokenize(word.lower()) for txt in temp: if txt not in stop_words: key_words.append(txt) def transformations(sentences): lemmatizer = WordNetLemmatizer() stop_words = set(stopwords.words('english') + [i for i in string.punctuation] + ['may', 'also', 'used']) key_words = [] for word in sentences.split(): temp = word_tokenize(word.lower()) for txt in temp: txt = lemmatizer.lemmatize(txt) if txt not in stop_words: key_words.append(txt) return key_words def get_breaks(content, length): data = '' words = content.split(' ') total_chars = 0 for i in range(len(words)): total_chars += len(words[i]) if total_chars > length: data = data + '<br>' + words[i] total_chars = 0 else: data = data + ' ' + words[i] return data Label_df = pd.DataFrame(columns=['Task_text'], data=['What has been published about medical care?', ' What has been published concerning surge capacity and nursing homes?', 'What has been published concerning efforts to inform allocation of scarce resources?', 'What do we know about personal protective equipment?', 'What has been published concerning alternative methods to advise on disease management?', 'What has been published concerning processes of care?', 'What do we know about the clinical characterization and management of the virus?', 'Resources to support skilled nursing facilities and long term care facilities.', 'Mobilization of surge medical staff to address shortages in overwhelmed communities Age-adjusted mortality data for Acute Respiratory Distress Syndrome (ARDS) with/without other organ failure – particularly for viral etiologies', 'Extracorporeal membrane oxygenation (ECMO) outcomes data of COVID-19 patients Outcomes data for COVID-19 after mechanical ventilation adjusted for age.', 'Knowledge of the frequency, manifestations, and course of extrapulmonary manifestations of COVID-19, including, but not limited to, possible cardiomyopathy and cardiac arrest.', 'Application of regulatory standards (e.g., EUA, CLIA) and ability to adapt care to crisis standards of care level.', 'Approaches for encouraging and facilitating the production of elastomeric respirators, which can save thousands of N95 masks. Best telemedicine practices, barriers and faciitators, and specific actions to remove/expand them within and across state boundaries. Guidance on the simple things people can do at home to take care of sick people and manage disease. Oral medications that might potentially work.', 'Use of AI in real-time health care delivery to evaluate interventions, risk factors, and outcomes in a way that could not be done manually. Best practices and critical challenges and innovative solutions and technologies in hospital flow and organization, workforce protection, workforce allocation, community-based support resources, payment, and supply chain management to enhance capacity, efficiency, and outcomes. Efforts to define the natural history of disease to inform clinical care, public health interventions, infection prevention control, transmission, and clinical trials Efforts to develop a core clinical outcome set to maximize usability of data across a range of trials Efforts to determine adjunctive and supportive interventions that can improve the clinical outcomes of infected patients (e.g. steroids, high flow oxygen)']) Label_df['Bag_of_words'] = Label_df['Task_text'].apply(lambda x: transformations(x)) Label_df root_path = '/kaggle/input/CORD-19-research-challenge/' metadata_path = root_path + 'metadata.csv' metadata_with_pid = pd.read_csv(metadata_path, dtype={'pubmed_id': str, 'Microsoft Academic Paper ID': str, 'doi': str}) metadata_with_pid.drop_duplicates(['abstract'], inplace=True) metadata_with_pid.dropna(subset=['abstract'], inplace=True) metadata_with_pid.drop(columns=['WHO #Covidence', 'journal', 'authors', 'full_text_file', 'license']) metadata_with_pid.shape for pid in range(metadata_with_pid.shape[0]): try: if metadata_with_pid.loc[pid, 'sha'] != None: metadata_with_pid.loc[pid, 'paper_id'] = metadata_with_pid.loc[pid, 'sha'] elif metadata_with_pid.loc[pid, 'pmcid'] != None: metadata_with_pid.loc[pid, 'paper_id'] = metadata_with_pid.loc[pid, 'pmcid'] except: metadata_with_pid.loc[pid, 'paper_id'] = '' metadata_with_pid metadata_with_pid.dropna(subset=['sha', 'pmcid'], how='all') metadata_with_pid[:200] dict_ = {'paper_id': [], 'doi': [], 'abstract': [], 'body_text': [], 'authors': [], 'title': [], 'journal': [], 'abstract_summary': []} for idx, entry in enumerate(all_json): try: content = FileReader(entry) except Exception as e: continue meta_data = metadata_with_pid.loc[metadata_with_pid['sha'] == content.paper_id] if len(meta_data) == 0: continue dict_['abstract'].append(content.abstract) dict_['paper_id'].append(content.paper_id) dict_['body_text'].append(content.body_text) if len(content.abstract) == 0: dict_['abstract_summary'].append('Not provided.') elif len(content.abstract.split(' ')) > 100: info = content.abstract.split(' ')[:100] summary = get_breaks(' '.join(info), 40) dict_['abstract_summary'].append(summary + '...') else: summary = get_breaks(content.abstract, 40) dict_['abstract_summary'].append(summary) meta_data = metadata_with_pid.loc[metadata_with_pid['sha'] == content.paper_id] try: authors = meta_data['authors'].values[0].split(';') if len(authors) > 2: dict_['authors'].append(get_breaks('. '.join(authors), 40)) else: dict_['authors'].append('. '.join(authors)) except Exception as e: dict_['authors'].append(meta_data['authors'].values[0]) try: title = get_breaks(meta_data['title'].values[0], 40) dict_['title'].append(title) except Exception as e: dict_['title'].append(meta_data['title'].values[0]) dict_['journal'].append(meta_data['journal'].values[0]) dict_['doi'].append(meta_data['doi'].values[0]) df_covid = pd.DataFrame(dict_, columns=['paper_id', 'doi', 'abstract', 'body_text', 'authors', 'title', 'journal', 'abstract_summary']) df_covid = pd.read_csv('/kaggle/input/cosine-df/cosine_df.csv', index_col=0) sort_by_q1 = df_covid.sort_values('Q1cosine_similarity', ascending=False) sort_by_q2 = df_covid.sort_values('Q2cosine_similarity', ascending=False) sort_by_q2.loc[:, ['paper_id', 'abstract', 'body_text', 'authors', 'title', 'journal', 'abstract_summary', 'Q2cosine_similarity']].head(n=10)
code
32065703/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) root_path = '/kaggle/input/CORD-19-research-challenge/' metadata_path = root_path + 'metadata.csv' metadata_df = pd.read_csv(metadata_path, dtype={'pubmed_id': str, 'Microsoft Academic Paper ID': str, 'doi': str}) metadata_df = metadata_df.fillna(0) metadata_df_wt_abs = metadata_df[metadata_df['abstract'] != 0] metadata_df_wt_abs.shape
code
104116798/cell_21
[ "text_plain_output_1.png" ]
f = open('../input/poetry/Kanye_West.txt') f.read() f.close() f.readline() f = open('../input/poetry/Kanye_West.txt', encoding='utf-8-sig') f.close() f.read(8) f.read(4) f.seek(0)
code
104116798/cell_25
[ "text_plain_output_1.png" ]
help(open)
code
104116798/cell_4
[ "text_plain_output_1.png" ]
f = open('../input/poetry/Kanye_West.txt') f.read()
code
104116798/cell_34
[ "text_plain_output_1.png" ]
f = open('../input/poetry/Kanye_West.txt') f.read() f.close() f.readline() f = open('../input/poetry/Kanye_West.txt', encoding='utf-8-sig') f.close() f.read(8) f.read(4) f.seek(0) f.close() f = open('text.txt', mode='w') f.write('THIS IS MY FIRST LINE') f.close() f = open('text.txt') f.close() f = open('text.txt', mode='w') f.write('This is my second line')
code
104116798/cell_44
[ "text_plain_output_1.png" ]
f = open('../input/poetry/Kanye_West.txt') f.read() f.close() f.readline() f = open('../input/poetry/Kanye_West.txt', encoding='utf-8-sig') f.close() f.read(8) f.read(4) f.seek(0) f.close() f = open('text.txt', mode='w') f.write('THIS IS MY FIRST LINE') f.close() f = open('text.txt') f.close() f = open('text.txt', mode='w') f.write('This is my second line') f.close() f = open('text.txt') f.close() f = open('text.txt', mode='a') f.write('Great') f.close() f = open('text.txt') print(f.read())
code
104116798/cell_20
[ "text_plain_output_1.png" ]
f = open('../input/poetry/Kanye_West.txt') f.read() f.close() f.readline() f = open('../input/poetry/Kanye_West.txt', encoding='utf-8-sig') f.close() f.read(8) f.read(4)
code
104116798/cell_6
[ "text_plain_output_1.png" ]
print('My name is Foofoo', end=', ') print('We are learning Python')
code
104116798/cell_48
[ "text_plain_output_1.png" ]
img = open('../input/cifar10-pngs-in-folders/cifar10/test/airplane/0001.png', mode='rb') img.readline()
code
104116798/cell_41
[ "text_plain_output_1.png" ]
f = open('../input/poetry/Kanye_West.txt') f.read() f.close() f.readline() f = open('../input/poetry/Kanye_West.txt', encoding='utf-8-sig') f.close() f.read(8) f.read(4) f.seek(0) f.close() f = open('text.txt', mode='w') f.write('THIS IS MY FIRST LINE') f.close() f = open('text.txt') f.close() f = open('text.txt', mode='w') f.write('This is my second line') f.close() f = open('text.txt') f.close() f = open('text.txt', mode='a') f.write('Great')
code
104116798/cell_19
[ "text_plain_output_1.png" ]
help(open)
code
104116798/cell_52
[ "text_plain_output_1.png" ]
img = open('../input/cifar10-pngs-in-folders/cifar10/test/airplane/0001.png', mode='rb') img.readline() store = img.read() a = open('airplane.png', mode='wb') a.write(store)
code
104116798/cell_7
[ "text_plain_output_1.png" ]
help(print)
code
104116798/cell_18
[ "text_plain_output_1.png" ]
f = open('../input/poetry/Kanye_West.txt') f.read() f.close() f.readline() f = open('../input/poetry/Kanye_West.txt', encoding='utf-8-sig') f.close() f.read(8)
code
104116798/cell_28
[ "text_plain_output_1.png" ]
f = open('../input/poetry/Kanye_West.txt') f.read() f.close() f.readline() f = open('../input/poetry/Kanye_West.txt', encoding='utf-8-sig') f.close() f.read(8) f.read(4) f.seek(0) f.close() f = open('text.txt', mode='w') f.write('THIS IS MY FIRST LINE')
code
104116798/cell_31
[ "text_plain_output_1.png" ]
f = open('../input/poetry/Kanye_West.txt') f.read() f.close() f.readline() f = open('../input/poetry/Kanye_West.txt', encoding='utf-8-sig') f.close() f.read(8) f.read(4) f.seek(0) f.close() f = open('text.txt', mode='w') f.write('THIS IS MY FIRST LINE') f.close() f = open('text.txt') print(f.read())
code
104116798/cell_14
[ "text_plain_output_1.png" ]
f = open('../input/poetry/Kanye_West.txt') f.read() f.close() f.readline()
code
104116798/cell_10
[ "text_plain_output_1.png" ]
f = open('../input/poetry/Kanye_West.txt') f.read() f.close() print(f.read())
code
104116798/cell_37
[ "text_plain_output_1.png" ]
f = open('../input/poetry/Kanye_West.txt') f.read() f.close() f.readline() f = open('../input/poetry/Kanye_West.txt', encoding='utf-8-sig') f.close() f.read(8) f.read(4) f.seek(0) f.close() f = open('text.txt', mode='w') f.write('THIS IS MY FIRST LINE') f.close() f = open('text.txt') f.close() f = open('text.txt', mode='w') f.write('This is my second line') f.close() f = open('text.txt') print(f.read())
code
104116798/cell_12
[ "text_plain_output_1.png" ]
f = open('../input/poetry/Kanye_West.txt') f.read() f.close() for i in f: print(i, end='\n')
code
130027580/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/best-movies-on-netflix/100 Best Movies on Netflix.csv') df.tail()
code
130027580/cell_6
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/best-movies-on-netflix/100 Best Movies on Netflix.csv') df.isnull().sum()
code
130027580/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns
code
130027580/cell_7
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/best-movies-on-netflix/100 Best Movies on Netflix.csv') df.isnull().sum() df.duplicated().sum()
code
130027580/cell_8
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/best-movies-on-netflix/100 Best Movies on Netflix.csv') df.isnull().sum() df.duplicated().sum() df.describe()
code
130027580/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/best-movies-on-netflix/100 Best Movies on Netflix.csv') df.head()
code
130027580/cell_10
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/best-movies-on-netflix/100 Best Movies on Netflix.csv') df.isnull().sum() df.duplicated().sum() df[['Movie Title', 'Score']].sort_values('Score', ascending=False).head(10)
code
130027580/cell_12
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/best-movies-on-netflix/100 Best Movies on Netflix.csv') df.isnull().sum() df.duplicated().sum() df[['Movie Title', 'Rank']].sort_values('Rank').head(10)
code
130027580/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/best-movies-on-netflix/100 Best Movies on Netflix.csv') df.info()
code
2028522/cell_4
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import pandas as pd def sigmoid(z): return 1.0 / (1 + np.exp(-z)) def z(theta, x): assert theta.shape[1] == 1 assert theta.shape[0] == x.shape[1] return np.dot(x, theta) def hypothesis(theta, x): return sigmoid(z(theta, x)) def cost(theta, x, y): assert x.shape[1] == theta.shape[0] assert x.shape[0] == y.shape[0] assert y.shape[1] == 1 assert theta.shape[1] == 1 h = hypothesis(theta, x) one_case = np.matmul(-y.T, np.log(h)) zero_case = np.matmul(-(1 - y).T, np.log(1 - h)) return (one_case + zero_case) / len(x) def gradient_descent(theta, x, y, learning_rate, regularization=0): regularization = theta * regularization error = hypothesis(theta, x) - y n = learning_rate / len(x) * (np.matmul(x.T, error) + regularization) return theta - n def minimize(theta, x, y, iterations, learning_rate, regularization=0): costs = [] for _ in range(iterations): theta = gradient_descent(theta, x, y, learning_rate, regularization) costs.append(cost(theta, x, y)[0][0]) return (theta, costs) mushroom_data = pd.read_csv('../input/mushrooms.csv').dropna() mushroom_x = pd.get_dummies(mushroom_data.drop('class', axis=1)) mushroom_x['bias'] = 1 mushroom_x = mushroom_x.values mushroom_y = (np.atleast_2d(mushroom_data['class']).T == 'p').astype(int) x_train, x_test, y_train, y_test = train_test_split(mushroom_x, mushroom_y, train_size=0.85, test_size=0.15) candidate = np.atleast_2d([np.random.uniform(-1, 1, 118)]).T theta, costs = minimize(candidate, x_train, y_train, 1200, 1.2, 0.5) plt.plot(range(len(costs)), costs) plt.show() print(costs[-1]) predictions = x_test.dot(theta) > 0 len(list(filter(lambda x: x[0] == x[1], np.dstack((predictions, y_test))[:, 0]))) / len(predictions)
code
1005077/cell_4
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd hr = pd.read_csv(DIR_DATA + '/HR_comma_sep.csv') hr.head()
code
1005077/cell_20
[ "text_html_output_1.png" ]
from sklearn import neighbors, svm from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier,\ from sklearn.linear_model import LogisticRegressionCV from sklearn.model_selection import cross_val_score, train_test_split,\ from sklearn.naive_bayes import MultinomialNB import matplotlib.pyplot as plt import numpy as np import pandas as pd hr = pd.read_csv(DIR_DATA + '/HR_comma_sep.csv') hr.sales = hr.sales.astype('category').cat.codes hr.salary = hr.salary.astype('category').cat.codes def predict_left(df, clf, test_size=0.2): X = df.drop(['left'], 1) y = df.left X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size) clf.fit(X_train, y_train) train_pred = clf.predict(X_train) test_pred = clf.predict(X_test) classifiers = [RandomForestClassifier(n_jobs=-1), RandomForestClassifier(criterion='entropy', n_jobs=-1), svm.SVC(), LogisticRegressionCV(n_jobs=-1), AdaBoostClassifier(), GradientBoostingClassifier(), neighbors.KNeighborsClassifier(n_jobs=-1), MultinomialNB(class_prior=[76.19, 23.81])] np.random.seed(0) for i, clf in enumerate(classifiers): predict_left(hr, clf, test_size=0.4) def cross_val_left(hr, clf, cv_folds=CV_FOLDS, drop=['left']): X = hr.drop(drop, 1) y = hr.left scores = cross_val_score(clf, X, y, cv=cv_folds, n_jobs=-1) clf = RandomForestClassifier(n_estimators=500, n_jobs=-1) X = hr.drop(['left'], 1) y = hr.left train_sizes, train_scores, valid_scores = learning_curve(clf, X, y, train_sizes=np.linspace(0.1, 1.0, 10), cv=5, n_jobs=-1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(valid_scores, axis=1) test_scores_std = np.std(valid_scores, axis=1) train_sizes = np.linspace(0.1, 1.0, 10) plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color='r') plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color='g') train_scores_mean = np.mean(train_scores, axis=1)[3:] train_scores_std = np.std(train_scores, axis=1)[3:] test_scores_mean = np.mean(valid_scores, axis=1)[3:] test_scores_std = np.std(valid_scores, axis=1)[3:] train_sizes = np.linspace(0.1, 1.0, 10)[3:] plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color='r') plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color='g') plt.plot(train_sizes, train_scores_mean, 'o-', color='r', label='Training score') plt.plot(train_sizes, test_scores_mean, 'o-', color='g', label='Cross-validation score') plt.xlabel('Training examples') plt.ylabel('Score') plt.grid() plt.legend(loc='best') plt.show()
code
1005077/cell_6
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd hr = pd.read_csv(DIR_DATA + '/HR_comma_sep.csv') print('Percent who left: {:.2f}'.format(np.sum(hr.left) / len(hr.left) * 100))
code
1005077/cell_26
[ "image_output_1.png" ]
from sklearn import neighbors, svm from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier,\ from sklearn.linear_model import LogisticRegressionCV from sklearn.model_selection import cross_val_score, train_test_split,\ from sklearn.naive_bayes import MultinomialNB import matplotlib.pyplot as plt import numpy as np import pandas as pd hr = pd.read_csv(DIR_DATA + '/HR_comma_sep.csv') hr.sales = hr.sales.astype('category').cat.codes hr.salary = hr.salary.astype('category').cat.codes def predict_left(df, clf, test_size=0.2): X = df.drop(['left'], 1) y = df.left X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size) clf.fit(X_train, y_train) train_pred = clf.predict(X_train) test_pred = clf.predict(X_test) classifiers = [RandomForestClassifier(n_jobs=-1), RandomForestClassifier(criterion='entropy', n_jobs=-1), svm.SVC(), LogisticRegressionCV(n_jobs=-1), AdaBoostClassifier(), GradientBoostingClassifier(), neighbors.KNeighborsClassifier(n_jobs=-1), MultinomialNB(class_prior=[76.19, 23.81])] np.random.seed(0) for i, clf in enumerate(classifiers): predict_left(hr, clf, test_size=0.4) def cross_val_left(hr, clf, cv_folds=CV_FOLDS, drop=['left']): X = hr.drop(drop, 1) y = hr.left scores = cross_val_score(clf, X, y, cv=cv_folds, n_jobs=-1) clf = RandomForestClassifier(n_estimators=500, n_jobs=-1) X = hr.drop(['left'], 1) y = hr.left train_sizes, train_scores, valid_scores = learning_curve(clf, X, y, train_sizes=np.linspace(0.1, 1.0, 10), cv=5, n_jobs=-1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(valid_scores, axis=1) test_scores_std = np.std(valid_scores, axis=1) train_sizes = np.linspace(0.1, 1.0, 10) plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color='r') plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color='g') train_scores_mean = np.mean(train_scores, axis=1)[3:] train_scores_std = np.std(train_scores, axis=1)[3:] test_scores_mean = np.mean(valid_scores, axis=1)[3:] test_scores_std = np.std(valid_scores, axis=1)[3:] train_sizes = np.linspace(0.1, 1.0, 10)[3:] plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color='r') plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color='g') np.random.seed(0) clf = RandomForestClassifier(n_estimators=500, n_jobs=-1) X = hr.drop(['left'], 1) y = hr.left X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) clf.fit(X_train, y_train) clf.feature_importances_ hr.corr()['left']
code
1005077/cell_18
[ "text_plain_output_1.png" ]
from sklearn import neighbors, svm from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier,\ from sklearn.linear_model import LogisticRegressionCV from sklearn.model_selection import cross_val_score, train_test_split,\ from sklearn.naive_bayes import MultinomialNB import matplotlib.pyplot as plt import numpy as np import pandas as pd hr = pd.read_csv(DIR_DATA + '/HR_comma_sep.csv') hr.sales = hr.sales.astype('category').cat.codes hr.salary = hr.salary.astype('category').cat.codes def predict_left(df, clf, test_size=0.2): X = df.drop(['left'], 1) y = df.left X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size) clf.fit(X_train, y_train) train_pred = clf.predict(X_train) test_pred = clf.predict(X_test) classifiers = [RandomForestClassifier(n_jobs=-1), RandomForestClassifier(criterion='entropy', n_jobs=-1), svm.SVC(), LogisticRegressionCV(n_jobs=-1), AdaBoostClassifier(), GradientBoostingClassifier(), neighbors.KNeighborsClassifier(n_jobs=-1), MultinomialNB(class_prior=[76.19, 23.81])] np.random.seed(0) for i, clf in enumerate(classifiers): predict_left(hr, clf, test_size=0.4) def cross_val_left(hr, clf, cv_folds=CV_FOLDS, drop=['left']): X = hr.drop(drop, 1) y = hr.left scores = cross_val_score(clf, X, y, cv=cv_folds, n_jobs=-1) clf = RandomForestClassifier(n_estimators=500, n_jobs=-1) X = hr.drop(['left'], 1) y = hr.left train_sizes, train_scores, valid_scores = learning_curve(clf, X, y, train_sizes=np.linspace(0.1, 1.0, 10), cv=5, n_jobs=-1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(valid_scores, axis=1) test_scores_std = np.std(valid_scores, axis=1) train_sizes = np.linspace(0.1, 1.0, 10) plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color='r') plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color='g') plt.plot(train_sizes, train_scores_mean, 'o-', color='r', label='Training score') plt.plot(train_sizes, test_scores_mean, 'o-', color='g', label='Cross-validation score') plt.xlabel('Training examples') plt.ylabel('Score') plt.grid() plt.legend(loc='best') plt.show()
code
1005077/cell_8
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd hr = pd.read_csv(DIR_DATA + '/HR_comma_sep.csv') hr.sales = hr.sales.astype('category').cat.codes hr.salary = hr.salary.astype('category').cat.codes hr[['sales', 'salary']].head()
code
1005077/cell_15
[ "text_html_output_1.png" ]
from sklearn import neighbors, svm from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier,\ from sklearn.linear_model import LogisticRegressionCV from sklearn.model_selection import cross_val_score, train_test_split,\ from sklearn.naive_bayes import MultinomialNB import numpy as np import pandas as pd hr = pd.read_csv(DIR_DATA + '/HR_comma_sep.csv') hr.sales = hr.sales.astype('category').cat.codes hr.salary = hr.salary.astype('category').cat.codes def predict_left(df, clf, test_size=0.2): X = df.drop(['left'], 1) y = df.left X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size) clf.fit(X_train, y_train) train_pred = clf.predict(X_train) test_pred = clf.predict(X_test) classifiers = [RandomForestClassifier(n_jobs=-1), RandomForestClassifier(criterion='entropy', n_jobs=-1), svm.SVC(), LogisticRegressionCV(n_jobs=-1), AdaBoostClassifier(), GradientBoostingClassifier(), neighbors.KNeighborsClassifier(n_jobs=-1), MultinomialNB(class_prior=[76.19, 23.81])] np.random.seed(0) for i, clf in enumerate(classifiers): predict_left(hr, clf, test_size=0.4) def cross_val_left(hr, clf, cv_folds=CV_FOLDS, drop=['left']): X = hr.drop(drop, 1) y = hr.left scores = cross_val_score(clf, X, y, cv=cv_folds, n_jobs=-1) classifiers = [RandomForestClassifier(n_estimators=500, n_jobs=-1), RandomForestClassifier(n_estimators=500, criterion='entropy', n_jobs=-1)] for i, clf in enumerate(classifiers): print('Classifier ', i) cross_val_left(hr, clf)
code
1005077/cell_24
[ "text_plain_output_1.png" ]
from sklearn import neighbors, svm from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier,\ from sklearn.linear_model import LogisticRegressionCV from sklearn.model_selection import cross_val_score, train_test_split,\ from sklearn.naive_bayes import MultinomialNB import matplotlib.pyplot as plt import numpy as np import pandas as pd hr = pd.read_csv(DIR_DATA + '/HR_comma_sep.csv') hr.sales = hr.sales.astype('category').cat.codes hr.salary = hr.salary.astype('category').cat.codes def predict_left(df, clf, test_size=0.2): X = df.drop(['left'], 1) y = df.left X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size) clf.fit(X_train, y_train) train_pred = clf.predict(X_train) test_pred = clf.predict(X_test) classifiers = [RandomForestClassifier(n_jobs=-1), RandomForestClassifier(criterion='entropy', n_jobs=-1), svm.SVC(), LogisticRegressionCV(n_jobs=-1), AdaBoostClassifier(), GradientBoostingClassifier(), neighbors.KNeighborsClassifier(n_jobs=-1), MultinomialNB(class_prior=[76.19, 23.81])] np.random.seed(0) for i, clf in enumerate(classifiers): predict_left(hr, clf, test_size=0.4) def cross_val_left(hr, clf, cv_folds=CV_FOLDS, drop=['left']): X = hr.drop(drop, 1) y = hr.left scores = cross_val_score(clf, X, y, cv=cv_folds, n_jobs=-1) classifiers = [RandomForestClassifier(n_estimators=500, n_jobs=-1), RandomForestClassifier(n_estimators=500, criterion='entropy', n_jobs=-1)] for i, clf in enumerate(classifiers): cross_val_left(hr, clf) clf = RandomForestClassifier(n_estimators=500, n_jobs=-1) X = hr.drop(['left'], 1) y = hr.left train_sizes, train_scores, valid_scores = learning_curve(clf, X, y, train_sizes=np.linspace(0.1, 1.0, 10), cv=5, n_jobs=-1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(valid_scores, axis=1) test_scores_std = np.std(valid_scores, axis=1) train_sizes = np.linspace(0.1, 1.0, 10) plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color='r') plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color='g') train_scores_mean = np.mean(train_scores, axis=1)[3:] train_scores_std = np.std(train_scores, axis=1)[3:] test_scores_mean = np.mean(valid_scores, axis=1)[3:] test_scores_std = np.std(valid_scores, axis=1)[3:] train_sizes = np.linspace(0.1, 1.0, 10)[3:] plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color='r') plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color='g') np.random.seed(0) clf = RandomForestClassifier(n_estimators=500, n_jobs=-1) X = hr.drop(['left'], 1) y = hr.left X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) clf.fit(X_train, y_train) clf.feature_importances_ drop = ['left', 'promotion_last_5years', 'Work_accident', 'sales', 'salary'] for i, clf in enumerate(classifiers): print('Classifier ', i) cross_val_left(hr, clf, drop=drop)
code
1005077/cell_22
[ "text_plain_output_1.png" ]
from sklearn import neighbors, svm from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier,\ from sklearn.linear_model import LogisticRegressionCV from sklearn.model_selection import cross_val_score, train_test_split,\ from sklearn.naive_bayes import MultinomialNB import matplotlib.pyplot as plt import numpy as np import pandas as pd hr = pd.read_csv(DIR_DATA + '/HR_comma_sep.csv') hr.sales = hr.sales.astype('category').cat.codes hr.salary = hr.salary.astype('category').cat.codes def predict_left(df, clf, test_size=0.2): X = df.drop(['left'], 1) y = df.left X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size) clf.fit(X_train, y_train) train_pred = clf.predict(X_train) test_pred = clf.predict(X_test) classifiers = [RandomForestClassifier(n_jobs=-1), RandomForestClassifier(criterion='entropy', n_jobs=-1), svm.SVC(), LogisticRegressionCV(n_jobs=-1), AdaBoostClassifier(), GradientBoostingClassifier(), neighbors.KNeighborsClassifier(n_jobs=-1), MultinomialNB(class_prior=[76.19, 23.81])] np.random.seed(0) for i, clf in enumerate(classifiers): predict_left(hr, clf, test_size=0.4) def cross_val_left(hr, clf, cv_folds=CV_FOLDS, drop=['left']): X = hr.drop(drop, 1) y = hr.left scores = cross_val_score(clf, X, y, cv=cv_folds, n_jobs=-1) clf = RandomForestClassifier(n_estimators=500, n_jobs=-1) X = hr.drop(['left'], 1) y = hr.left train_sizes, train_scores, valid_scores = learning_curve(clf, X, y, train_sizes=np.linspace(0.1, 1.0, 10), cv=5, n_jobs=-1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(valid_scores, axis=1) test_scores_std = np.std(valid_scores, axis=1) train_sizes = np.linspace(0.1, 1.0, 10) plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color='r') plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color='g') train_scores_mean = np.mean(train_scores, axis=1)[3:] train_scores_std = np.std(train_scores, axis=1)[3:] test_scores_mean = np.mean(valid_scores, axis=1)[3:] test_scores_std = np.std(valid_scores, axis=1)[3:] train_sizes = np.linspace(0.1, 1.0, 10)[3:] plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color='r') plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color='g') np.random.seed(0) clf = RandomForestClassifier(n_estimators=500, n_jobs=-1) X = hr.drop(['left'], 1) y = hr.left X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) clf.fit(X_train, y_train) print(X.columns) clf.feature_importances_
code
1005077/cell_12
[ "text_html_output_1.png" ]
from sklearn import neighbors, svm from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier,\ from sklearn.linear_model import LogisticRegressionCV from sklearn.model_selection import cross_val_score, train_test_split,\ from sklearn.naive_bayes import MultinomialNB import numpy as np import pandas as pd hr = pd.read_csv(DIR_DATA + '/HR_comma_sep.csv') hr.sales = hr.sales.astype('category').cat.codes hr.salary = hr.salary.astype('category').cat.codes def predict_left(df, clf, test_size=0.2): X = df.drop(['left'], 1) y = df.left X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size) clf.fit(X_train, y_train) train_pred = clf.predict(X_train) test_pred = clf.predict(X_test) classifiers = [RandomForestClassifier(n_jobs=-1), RandomForestClassifier(criterion='entropy', n_jobs=-1), svm.SVC(), LogisticRegressionCV(n_jobs=-1), AdaBoostClassifier(), GradientBoostingClassifier(), neighbors.KNeighborsClassifier(n_jobs=-1), MultinomialNB(class_prior=[76.19, 23.81])] np.random.seed(0) for i, clf in enumerate(classifiers): print('Classifier ', i) predict_left(hr, clf, test_size=0.4)
code
1005077/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd hr = pd.read_csv(DIR_DATA + '/HR_comma_sep.csv') hr.describe()
code
16123553/cell_42
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy.stats as ss import seaborn as sns df = pd.read_csv('../input/travel insurance.csv') df1 = df df.fillna('Not Specified', inplace=True) df.isnull().sum() df_numerical = df._get_numeric_data() df.loc[df['Duration'] < 0, 'Duration'] = 49.317 df.loc[df['Net Sales'] == 0.0, 'Commision (in value)'] = 0 def cramers_v(x, y): confusion_matrix = pd.crosstab(x, y) chi2 = ss.chi2_contingency(confusion_matrix)[0] n = confusion_matrix.sum().sum() phi2 = chi2 / n r, k = confusion_matrix.shape phi2corr = max(0, phi2 - (k - 1) * (r - 1) / (n - 1)) rcorr = r - (r - 1) ** 2 / (n - 1) kcorr = k - (k - 1) ** 2 / (n - 1) return np.sqrt(phi2corr / min(kcorr - 1, rcorr - 1)) categorical = ['Agency', 'Agency Type', 'Distribution Channel', 'Product Name', 'Destination', 'Gender', 'Claim'] cramers = pd.DataFrame({i: [cramers_v(df[i], df[j]) for j in categorical] for i in categorical}) cramers['column'] = [i for i in categorical if i not in ['memberid']] cramers.set_index('column', inplace=True) from scipy.stats import chi2_contingency class ChiSquare: def __init__(self, df): self.df = df self.p = None self.chi2 = None self.dof = None self.dfObserved = None self.dfExpected = None def _print_chisquare_result(self, colX, alpha): result = '' if self.p < alpha: result = '{0} is IMPORTANT for Prediction'.format(colX) else: result = '{0} is NOT an important predictor. (Discard {0} from model)'.format(colX) def TestIndependence(self, colX, colY, alpha=0.05): X = self.df[colX].astype(str) Y = self.df[colY].astype(str) self.dfObserved = pd.crosstab(Y, X) chi2, p, dof, expected = ss.chi2_contingency(self.dfObserved.values) self.p = p self.chi2 = chi2 self.dof = dof self.dfExpected = pd.DataFrame(expected, columns=self.dfObserved.columns, index=self.dfObserved.index) X = df.drop(['Claim'], axis=1) ct = ChiSquare(df) for c in X.columns: ct.TestIndependence(c, 'Claim')
code
16123553/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/travel insurance.csv') df1 = df df.fillna('Not Specified', inplace=True) df.isnull().sum() df_numerical = df._get_numeric_data() df['Duration'].describe()
code
16123553/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/travel insurance.csv') df1 = df df.fillna('Not Specified', inplace=True) df.isnull().sum()
code
16123553/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/travel insurance.csv') df1 = df df['Gender'].isnull().sum()
code
16123553/cell_56
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy.stats as ss import seaborn as sns df = pd.read_csv('../input/travel insurance.csv') df1 = df df.fillna('Not Specified', inplace=True) df.isnull().sum() df_numerical = df._get_numeric_data() df.loc[df['Duration'] < 0, 'Duration'] = 49.317 df.loc[df['Net Sales'] == 0.0, 'Commision (in value)'] = 0 def cramers_v(x, y): confusion_matrix = pd.crosstab(x, y) chi2 = ss.chi2_contingency(confusion_matrix)[0] n = confusion_matrix.sum().sum() phi2 = chi2 / n r, k = confusion_matrix.shape phi2corr = max(0, phi2 - (k - 1) * (r - 1) / (n - 1)) rcorr = r - (r - 1) ** 2 / (n - 1) kcorr = k - (k - 1) ** 2 / (n - 1) return np.sqrt(phi2corr / min(kcorr - 1, rcorr - 1)) categorical = ['Agency', 'Agency Type', 'Distribution Channel', 'Product Name', 'Destination', 'Gender', 'Claim'] cramers = pd.DataFrame({i: [cramers_v(df[i], df[j]) for j in categorical] for i in categorical}) cramers['column'] = [i for i in categorical if i not in ['memberid']] cramers.set_index('column', inplace=True) from scipy.stats import chi2_contingency class ChiSquare: def __init__(self, df): self.df = df self.p = None self.chi2 = None self.dof = None self.dfObserved = None self.dfExpected = None def _print_chisquare_result(self, colX, alpha): result = '' if self.p < alpha: result = '{0} is IMPORTANT for Prediction'.format(colX) else: result = '{0} is NOT an important predictor. (Discard {0} from model)'.format(colX) def TestIndependence(self, colX, colY, alpha=0.05): X = self.df[colX].astype(str) Y = self.df[colY].astype(str) self.dfObserved = pd.crosstab(Y, X) chi2, p, dof, expected = ss.chi2_contingency(self.dfObserved.values) self.p = p self.chi2 = chi2 self.dof = dof self.dfExpected = pd.DataFrame(expected, columns=self.dfObserved.columns, index=self.dfObserved.index) X = df.drop(['Claim'], axis=1) ct = ChiSquare(df) for c in X.columns: ct.TestIndependence(c, 'Claim') df.drop(columns=['Distribution Channel', 'Agency Type'], axis=1, inplace=True) y = df['Claim'] x = df x.drop(columns='Claim', axis=1, inplace=True) x_dummy = pd.get_dummies(x, columns=['Agency', 'Gender', 'Product Name', 'Destination'], drop_first=True) lr = LogisticRegression() rfe = RFE(estimator=lr, n_features_to_select=10, verbose=3) rfe.fit(x_dummy, y) rfe_df1 = rfe.fit_transform(x_dummy, y) lr_model = lr.fit(X_train, y_train) lr_pred = lr.predict(X_test) from sklearn.metrics import classification_report print(classification_report(y_test, lr_pred))
code
16123553/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import missingno import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/travel insurance.csv') df1 = df missingno.matrix(df)
code
16123553/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/travel insurance.csv') df1 = df df.head(5)
code
16123553/cell_54
[ "text_html_output_1.png" ]
from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy.stats as ss import seaborn as sns df = pd.read_csv('../input/travel insurance.csv') df1 = df df.fillna('Not Specified', inplace=True) df.isnull().sum() df_numerical = df._get_numeric_data() df.loc[df['Duration'] < 0, 'Duration'] = 49.317 df.loc[df['Net Sales'] == 0.0, 'Commision (in value)'] = 0 def cramers_v(x, y): confusion_matrix = pd.crosstab(x, y) chi2 = ss.chi2_contingency(confusion_matrix)[0] n = confusion_matrix.sum().sum() phi2 = chi2 / n r, k = confusion_matrix.shape phi2corr = max(0, phi2 - (k - 1) * (r - 1) / (n - 1)) rcorr = r - (r - 1) ** 2 / (n - 1) kcorr = k - (k - 1) ** 2 / (n - 1) return np.sqrt(phi2corr / min(kcorr - 1, rcorr - 1)) categorical = ['Agency', 'Agency Type', 'Distribution Channel', 'Product Name', 'Destination', 'Gender', 'Claim'] cramers = pd.DataFrame({i: [cramers_v(df[i], df[j]) for j in categorical] for i in categorical}) cramers['column'] = [i for i in categorical if i not in ['memberid']] cramers.set_index('column', inplace=True) from scipy.stats import chi2_contingency class ChiSquare: def __init__(self, df): self.df = df self.p = None self.chi2 = None self.dof = None self.dfObserved = None self.dfExpected = None def _print_chisquare_result(self, colX, alpha): result = '' if self.p < alpha: result = '{0} is IMPORTANT for Prediction'.format(colX) else: result = '{0} is NOT an important predictor. (Discard {0} from model)'.format(colX) def TestIndependence(self, colX, colY, alpha=0.05): X = self.df[colX].astype(str) Y = self.df[colY].astype(str) self.dfObserved = pd.crosstab(Y, X) chi2, p, dof, expected = ss.chi2_contingency(self.dfObserved.values) self.p = p self.chi2 = chi2 self.dof = dof self.dfExpected = pd.DataFrame(expected, columns=self.dfObserved.columns, index=self.dfObserved.index) X = df.drop(['Claim'], axis=1) ct = ChiSquare(df) for c in X.columns: ct.TestIndependence(c, 'Claim') df.drop(columns=['Distribution Channel', 'Agency Type'], axis=1, inplace=True) y = df['Claim'] x = df x.drop(columns='Claim', axis=1, inplace=True) x_dummy = pd.get_dummies(x, columns=['Agency', 'Gender', 'Product Name', 'Destination'], drop_first=True) lr = LogisticRegression() rfe = RFE(estimator=lr, n_features_to_select=10, verbose=3) rfe.fit(x_dummy, y) rfe_df1 = rfe.fit_transform(x_dummy, y) lr_model = lr.fit(X_train, y_train)
code
16123553/cell_60
[ "text_plain_output_1.png" ]
from sklearn.metrics import classification_report from sklearn.metrics import classification_report from sklearn.svm import LinearSVC from sklearn.svm import LinearSVC lsvc = LinearSVC() svc_model = lsvc.fit(X_train, y_train) lsvc_pred = lsvc.predict(X_test) from sklearn.metrics import classification_report print(classification_report(y_test, lsvc_pred))
code
16123553/cell_50
[ "text_plain_output_1.png" ]
from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy.stats as ss import seaborn as sns df = pd.read_csv('../input/travel insurance.csv') df1 = df df.fillna('Not Specified', inplace=True) df.isnull().sum() df_numerical = df._get_numeric_data() df.loc[df['Duration'] < 0, 'Duration'] = 49.317 df.loc[df['Net Sales'] == 0.0, 'Commision (in value)'] = 0 def cramers_v(x, y): confusion_matrix = pd.crosstab(x, y) chi2 = ss.chi2_contingency(confusion_matrix)[0] n = confusion_matrix.sum().sum() phi2 = chi2 / n r, k = confusion_matrix.shape phi2corr = max(0, phi2 - (k - 1) * (r - 1) / (n - 1)) rcorr = r - (r - 1) ** 2 / (n - 1) kcorr = k - (k - 1) ** 2 / (n - 1) return np.sqrt(phi2corr / min(kcorr - 1, rcorr - 1)) categorical = ['Agency', 'Agency Type', 'Distribution Channel', 'Product Name', 'Destination', 'Gender', 'Claim'] cramers = pd.DataFrame({i: [cramers_v(df[i], df[j]) for j in categorical] for i in categorical}) cramers['column'] = [i for i in categorical if i not in ['memberid']] cramers.set_index('column', inplace=True) from scipy.stats import chi2_contingency class ChiSquare: def __init__(self, df): self.df = df self.p = None self.chi2 = None self.dof = None self.dfObserved = None self.dfExpected = None def _print_chisquare_result(self, colX, alpha): result = '' if self.p < alpha: result = '{0} is IMPORTANT for Prediction'.format(colX) else: result = '{0} is NOT an important predictor. (Discard {0} from model)'.format(colX) def TestIndependence(self, colX, colY, alpha=0.05): X = self.df[colX].astype(str) Y = self.df[colY].astype(str) self.dfObserved = pd.crosstab(Y, X) chi2, p, dof, expected = ss.chi2_contingency(self.dfObserved.values) self.p = p self.chi2 = chi2 self.dof = dof self.dfExpected = pd.DataFrame(expected, columns=self.dfObserved.columns, index=self.dfObserved.index) X = df.drop(['Claim'], axis=1) ct = ChiSquare(df) for c in X.columns: ct.TestIndependence(c, 'Claim') df.drop(columns=['Distribution Channel', 'Agency Type'], axis=1, inplace=True) y = df['Claim'] x = df x.drop(columns='Claim', axis=1, inplace=True) x_dummy = pd.get_dummies(x, columns=['Agency', 'Gender', 'Product Name', 'Destination'], drop_first=True) lr = LogisticRegression() rfe = RFE(estimator=lr, n_features_to_select=10, verbose=3) rfe.fit(x_dummy, y) rfe_df1 = rfe.fit_transform(x_dummy, y) print('Features sorted by their rank:') print(sorted(zip(map(lambda x: round(x, 4), rfe.ranking_), x_dummy.columns)))
code
16123553/cell_52
[ "application_vnd.jupyter.stderr_output_116.png", "application_vnd.jupyter.stderr_output_74.png", "application_vnd.jupyter.stderr_output_268.png", "application_vnd.jupyter.stderr_output_362.png", "text_plain_output_673.png", "text_plain_output_445.png", "text_plain_output_201.png", "text_plain_output_261.png", "text_plain_output_565.png", "application_vnd.jupyter.stderr_output_566.png", "application_vnd.jupyter.stderr_output_578.png", "application_vnd.jupyter.stderr_output_516.png", "application_vnd.jupyter.stderr_output_672.png", "text_plain_output_521.png", "text_plain_output_205.png", "application_vnd.jupyter.stderr_output_732.png", "application_vnd.jupyter.stderr_output_222.png", "application_vnd.jupyter.stderr_output_626.png", "application_vnd.jupyter.stderr_output_96.png", "text_plain_output_693.png", "application_vnd.jupyter.stderr_output_642.png", "application_vnd.jupyter.stderr_output_640.png", "text_plain_output_511.png", "text_plain_output_271.png", "text_plain_output_475.png", "application_vnd.jupyter.stderr_output_296.png", "text_plain_output_455.png", "text_plain_output_223.png", "application_vnd.jupyter.stderr_output_110.png", "text_plain_output_715.png", "text_plain_output_579.png", "text_plain_output_629.png", "text_plain_output_287.png", "application_vnd.jupyter.stderr_output_112.png", "text_plain_output_181.png", "text_plain_output_137.png", "application_vnd.jupyter.stderr_output_400.png", "application_vnd.jupyter.stderr_output_212.png", "application_vnd.jupyter.stderr_output_700.png", "application_vnd.jupyter.stderr_output_458.png", "application_vnd.jupyter.stderr_output_634.png", "text_plain_output_139.png", "application_vnd.jupyter.stderr_output_420.png", "text_plain_output_35.png", "text_plain_output_697.png", "text_plain_output_501.png", "text_plain_output_593.png", "application_vnd.jupyter.stderr_output_24.png", "application_vnd.jupyter.stderr_output_354.png", "text_plain_output_685.png", "application_vnd.jupyter.stderr_output_16.png", "application_vnd.jupyter.stderr_output_274.png", "application_vnd.jupyter.stderr_output_610.png", "application_vnd.jupyter.stderr_output_632.png", "application_vnd.jupyter.stderr_output_368.png", "text_plain_output_449.png", "text_plain_output_117.png", "application_vnd.jupyter.stderr_output_474.png", "application_vnd.jupyter.stderr_output_258.png", "text_plain_output_367.png", "application_vnd.jupyter.stderr_output_668.png", "application_vnd.jupyter.stderr_output_622.png", "text_plain_output_395.png", "application_vnd.jupyter.stderr_output_286.png", "application_vnd.jupyter.stderr_output_426.png", "text_plain_output_617.png", "application_vnd.jupyter.stderr_output_152.png", "application_vnd.jupyter.stderr_output_156.png", "text_plain_output_307.png", "application_vnd.jupyter.stderr_output_522.png", "application_vnd.jupyter.stderr_output_710.png", "application_vnd.jupyter.stderr_output_684.png", "application_vnd.jupyter.stderr_output_70.png", "application_vnd.jupyter.stderr_output_310.png", "application_vnd.jupyter.stderr_output_554.png", "application_vnd.jupyter.stderr_output_204.png", "text_plain_output_399.png", "application_vnd.jupyter.stderr_output_284.png", "text_plain_output_671.png", "application_vnd.jupyter.stderr_output_124.png", "text_plain_output_195.png", "application_vnd.jupyter.stderr_output_498.png", "text_plain_output_471.png", "text_plain_output_219.png", "application_vnd.jupyter.stderr_output_52.png", "text_plain_output_485.png", "text_plain_output_237.png", "text_plain_output_43.png", "application_vnd.jupyter.stderr_output_172.png", "text_plain_output_187.png", "text_plain_output_309.png", "application_vnd.jupyter.stderr_output_512.png", "text_plain_output_143.png", "application_vnd.jupyter.stderr_output_348.png", "text_plain_output_37.png", "application_vnd.jupyter.stderr_output_32.png", "application_vnd.jupyter.stderr_output_246.png", "application_vnd.jupyter.stderr_output_704.png", "application_vnd.jupyter.stderr_output_502.png", "application_vnd.jupyter.stderr_output_722.png", "application_vnd.jupyter.stderr_output_176.png", "application_vnd.jupyter.stderr_output_356.png", "text_plain_output_477.png", "text_plain_output_627.png", "application_vnd.jupyter.stderr_output_506.png", "text_plain_output_613.png", "text_plain_output_147.png", "text_plain_output_443.png", "text_plain_output_327.png", "application_vnd.jupyter.stderr_output_346.png", "text_plain_output_79.png", "text_plain_output_331.png", "application_vnd.jupyter.stderr_output_382.png", "application_vnd.jupyter.stderr_output_170.png", "application_vnd.jupyter.stderr_output_132.png", "text_plain_output_5.png", "text_plain_output_75.png", "application_vnd.jupyter.stderr_output_692.png", "application_vnd.jupyter.stderr_output_540.png", "application_vnd.jupyter.stderr_output_48.png", "application_vnd.jupyter.stderr_output_236.png", "application_vnd.jupyter.stderr_output_418.png", "application_vnd.jupyter.stderr_output_636.png", "text_plain_output_167.png", "application_vnd.jupyter.stderr_output_550.png", "text_plain_output_213.png", "text_plain_output_73.png", "text_plain_output_687.png", "application_vnd.jupyter.stderr_output_378.png", "application_vnd.jupyter.stderr_output_432.png", "text_plain_output_321.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_472.png", "text_plain_output_115.png", "application_vnd.jupyter.stderr_output_504.png", "text_plain_output_407.png", "application_vnd.jupyter.stderr_output_552.png", "application_vnd.jupyter.stderr_output_694.png", "text_plain_output_355.png", "text_plain_output_15.png", "application_vnd.jupyter.stderr_output_618.png", "text_plain_output_133.png", "application_vnd.jupyter.stderr_output_392.png", "application_vnd.jupyter.stderr_output_690.png", "text_plain_output_651.png", "application_vnd.jupyter.stderr_output_666.png", "application_vnd.jupyter.stderr_output_414.png", "application_vnd.jupyter.stderr_output_436.png", "application_vnd.jupyter.stderr_output_608.png", "text_plain_output_437.png", "application_vnd.jupyter.stderr_output_146.png", "text_plain_output_699.png", "text_plain_output_387.png", "text_plain_output_555.png", "application_vnd.jupyter.stderr_output_324.png", "application_vnd.jupyter.stderr_output_528.png", "application_vnd.jupyter.stderr_output_360.png", "application_vnd.jupyter.stderr_output_484.png", "application_vnd.jupyter.stderr_output_674.png", "text_plain_output_375.png", "text_plain_output_659.png", "text_plain_output_515.png", "text_plain_output_157.png", "application_vnd.jupyter.stderr_output_190.png", "application_vnd.jupyter.stderr_output_380.png", "application_vnd.jupyter.stderr_output_270.png", "text_plain_output_317.png", "text_plain_output_251.png", "application_vnd.jupyter.stderr_output_344.png", "application_vnd.jupyter.stderr_output_18.png", "text_plain_output_423.png", "application_vnd.jupyter.stderr_output_86.png", "text_plain_output_9.png", "application_vnd.jupyter.stderr_output_334.png", "application_vnd.jupyter.stderr_output_526.png", "text_plain_output_633.png", "application_vnd.jupyter.stderr_output_38.png", "application_vnd.jupyter.stderr_output_482.png", "application_vnd.jupyter.stderr_output_568.png", "text_plain_output_325.png", "application_vnd.jupyter.stderr_output_240.png", "text_plain_output_203.png", "text_plain_output_505.png", "application_vnd.jupyter.stderr_output_272.png", "application_vnd.jupyter.stderr_output_88.png", "text_plain_output_603.png", "text_plain_output_655.png", "text_plain_output_119.png", "text_plain_output_373.png", "application_vnd.jupyter.stderr_output_148.png", "application_vnd.jupyter.stderr_output_520.png", "text_plain_output_551.png", "text_plain_output_583.png", "application_vnd.jupyter.stderr_output_58.png", "application_vnd.jupyter.stderr_output_638.png", "application_vnd.jupyter.stderr_output_66.png", "text_plain_output_131.png", "text_plain_output_343.png", "application_vnd.jupyter.stderr_output_724.png", "application_vnd.jupyter.stderr_output_718.png", "text_plain_output_123.png", "application_vnd.jupyter.stderr_output_68.png", "text_plain_output_31.png", "application_vnd.jupyter.stderr_output_106.png", "text_plain_output_379.png", "application_vnd.jupyter.stderr_output_224.png", "text_plain_output_281.png", "text_plain_output_639.png", "application_vnd.jupyter.stderr_output_4.png", "text_plain_output_557.png", "application_vnd.jupyter.stderr_output_26.png", "application_vnd.jupyter.stderr_output_178.png", "text_plain_output_273.png", "application_vnd.jupyter.stderr_output_322.png", "text_plain_output_263.png", "text_plain_output_229.png", "application_vnd.jupyter.stderr_output_384.png", "text_plain_output_111.png", "application_vnd.jupyter.stderr_output_406.png", "application_vnd.jupyter.stderr_output_620.png", "application_vnd.jupyter.stderr_output_238.png", "application_vnd.jupyter.stderr_output_564.png", "text_plain_output_669.png", "text_plain_output_461.png", "application_vnd.jupyter.stderr_output_650.png", "application_vnd.jupyter.stderr_output_450.png", "application_vnd.jupyter.stderr_output_524.png", "text_plain_output_589.png", "text_plain_output_101.png", "application_vnd.jupyter.stderr_output_490.png", "text_plain_output_169.png", "text_plain_output_531.png", "text_plain_output_161.png", "text_plain_output_489.png", "application_vnd.jupyter.stderr_output_136.png", "text_plain_output_305.png", "text_plain_output_275.png", "application_vnd.jupyter.stderr_output_6.png", "text_plain_output_725.png", "text_plain_output_301.png", "application_vnd.jupyter.stderr_output_422.png", "application_vnd.jupyter.stderr_output_162.png", "application_vnd.jupyter.stderr_output_376.png", "application_vnd.jupyter.stderr_output_676.png", "application_vnd.jupyter.stderr_output_232.png", "text_plain_output_691.png", "application_vnd.jupyter.stderr_output_260.png", "text_plain_output_467.png", "text_plain_output_221.png", "application_vnd.jupyter.stderr_output_576.png", "application_vnd.jupyter.stderr_output_134.png", "text_plain_output_155.png", "application_vnd.jupyter.stderr_output_194.png", "text_plain_output_65.png", "text_plain_output_419.png", "application_vnd.jupyter.stderr_output_302.png", "text_plain_output_215.png", "application_vnd.jupyter.stderr_output_664.png", "application_vnd.jupyter.stderr_output_546.png", "text_plain_output_189.png", "text_plain_output_415.png", "text_plain_output_637.png", "application_vnd.jupyter.stderr_output_476.png", "text_plain_output_13.png", "application_vnd.jupyter.stderr_output_478.png", "application_vnd.jupyter.stderr_output_656.png", "text_plain_output_107.png", "application_vnd.jupyter.stderr_output_336.png", "application_vnd.jupyter.stderr_output_402.png", "application_vnd.jupyter.stderr_output_542.png", "text_plain_output_567.png", "application_vnd.jupyter.stderr_output_518.png", "text_plain_output_695.png", "application_vnd.jupyter.stderr_output_316.png", "application_vnd.jupyter.stderr_output_468.png", "application_vnd.jupyter.stderr_output_662.png", "text_plain_output_417.png", "text_plain_output_707.png", "text_plain_output_545.png", "application_vnd.jupyter.stderr_output_714.png", "text_plain_output_393.png", "application_vnd.jupyter.stderr_output_570.png", "application_vnd.jupyter.stderr_output_404.png", "text_plain_output_243.png", "application_vnd.jupyter.stderr_output_330.png", "text_plain_output_611.png", "application_vnd.jupyter.stderr_output_366.png", "application_vnd.jupyter.stderr_output_278.png", "text_plain_output_45.png", "text_plain_output_599.png", "application_vnd.jupyter.stderr_output_716.png", "text_plain_output_665.png", "application_vnd.jupyter.stderr_output_174.png", "text_plain_output_257.png", "text_plain_output_405.png", "text_plain_output_353.png", "application_vnd.jupyter.stderr_output_454.png", "text_plain_output_277.png", "text_plain_output_457.png", "application_vnd.jupyter.stderr_output_510.png", "application_vnd.jupyter.stderr_output_12.png", "text_plain_output_361.png", "text_plain_output_171.png", "application_vnd.jupyter.stderr_output_720.png", "application_vnd.jupyter.stderr_output_574.png", "text_plain_output_561.png", "text_plain_output_431.png", "application_vnd.jupyter.stderr_output_644.png", "application_vnd.jupyter.stderr_output_342.png", "text_plain_output_159.png", "text_plain_output_713.png", "text_plain_output_29.png", "text_plain_output_359.png", "text_plain_output_529.png", "text_plain_output_347.png", "application_vnd.jupyter.stderr_output_82.png", "application_vnd.jupyter.stderr_output_288.png", "text_plain_output_129.png", "application_vnd.jupyter.stderr_output_358.png", "application_vnd.jupyter.stderr_output_398.png", "application_vnd.jupyter.stderr_output_388.png", "text_plain_output_349.png", "application_vnd.jupyter.stderr_output_332.png", "application_vnd.jupyter.stderr_output_72.png", "text_plain_output_483.png", "text_plain_output_363.png", "text_plain_output_289.png", "application_vnd.jupyter.stderr_output_290.png", "application_vnd.jupyter.stderr_output_586.png", "text_plain_output_255.png", "application_vnd.jupyter.stderr_output_8.png", "text_plain_output_329.png", "text_plain_output_49.png", "application_vnd.jupyter.stderr_output_308.png", "text_plain_output_63.png", "application_vnd.jupyter.stderr_output_394.png", "application_vnd.jupyter.stderr_output_580.png", "text_plain_output_27.png", "application_vnd.jupyter.stderr_output_496.png", "text_plain_output_177.png", "text_plain_output_607.png", "application_vnd.jupyter.stderr_output_306.png", "application_vnd.jupyter.stderr_output_604.png", "application_vnd.jupyter.stderr_output_424.png", "application_vnd.jupyter.stderr_output_534.png", "text_plain_output_681.png", "text_plain_output_333.png", "text_plain_output_581.png", "application_vnd.jupyter.stderr_output_592.png", "application_vnd.jupyter.stderr_output_80.png", "text_plain_output_269.png", "application_vnd.jupyter.stderr_output_300.png", "text_plain_output_503.png", "text_plain_output_735.png", "text_plain_output_153.png", "text_plain_output_57.png", "application_vnd.jupyter.stderr_output_600.png", "application_vnd.jupyter.stderr_output_728.png", "text_plain_output_469.png", "application_vnd.jupyter.stderr_output_10.png", "application_vnd.jupyter.stderr_output_396.png", "text_plain_output_357.png", "text_plain_output_21.png", "application_vnd.jupyter.stderr_output_464.png", "application_vnd.jupyter.stderr_output_220.png", "text_plain_output_47.png", "text_plain_output_623.png", "application_vnd.jupyter.stderr_output_98.png", "text_plain_output_121.png", "text_plain_output_25.png", "text_plain_output_523.png", "text_plain_output_401.png", "text_plain_output_77.png", "text_plain_output_421.png", "application_vnd.jupyter.stderr_output_34.png", "text_plain_output_535.png", "text_plain_output_527.png", "text_plain_output_183.png", "application_vnd.jupyter.stderr_output_536.png", "text_plain_output_149.png", "text_plain_output_383.png", "text_plain_output_207.png", "application_vnd.jupyter.stderr_output_444.png", "application_vnd.jupyter.stderr_output_90.png", "text_plain_output_391.png", "application_vnd.jupyter.stderr_output_538.png", "application_vnd.jupyter.stderr_output_352.png", "text_plain_output_413.png", "text_plain_output_709.png", "application_vnd.jupyter.stderr_output_584.png", "application_vnd.jupyter.stderr_output_144.png", "application_vnd.jupyter.stderr_output_140.png", "text_plain_output_663.png", "text_plain_output_87.png", "text_plain_output_3.png", "text_plain_output_217.png", "text_plain_output_657.png", "text_plain_output_427.png", "application_vnd.jupyter.stderr_output_214.png", "application_vnd.jupyter.stderr_output_44.png", "text_plain_output_141.png", "application_vnd.jupyter.stderr_output_590.png", "text_plain_output_225.png", "text_plain_output_701.png", "text_plain_output_191.png", "text_plain_output_609.png", "application_vnd.jupyter.stderr_output_320.png", "application_vnd.jupyter.stderr_output_544.png", "text_plain_output_259.png", "application_vnd.jupyter.stderr_output_440.png", "text_plain_output_447.png", "application_vnd.jupyter.stderr_output_160.png", "text_plain_output_283.png", "text_plain_output_495.png", "text_plain_output_247.png", "application_vnd.jupyter.stderr_output_42.png", "text_plain_output_113.png", "text_plain_output_371.png", "application_vnd.jupyter.stderr_output_602.png", "application_vnd.jupyter.stderr_output_298.png", "application_vnd.jupyter.stderr_output_598.png", "application_vnd.jupyter.stderr_output_192.png", "text_plain_output_479.png", "application_vnd.jupyter.stderr_output_678.png", "application_vnd.jupyter.stderr_output_702.png", "text_plain_output_81.png", "text_plain_output_69.png", "application_vnd.jupyter.stderr_output_670.png", "application_vnd.jupyter.stderr_output_84.png", "text_plain_output_667.png", "application_vnd.jupyter.stderr_output_180.png", "text_plain_output_175.png", "text_plain_output_165.png", "text_plain_output_145.png", "application_vnd.jupyter.stderr_output_230.png", "text_plain_output_125.png", "application_vnd.jupyter.stderr_output_428.png", "application_vnd.jupyter.stderr_output_314.png", "application_vnd.jupyter.stderr_output_120.png", "text_plain_output_487.png", "text_plain_output_595.png", "text_plain_output_643.png", "text_plain_output_575.png", "application_vnd.jupyter.stderr_output_558.png", "text_plain_output_197.png", "application_vnd.jupyter.stderr_output_60.png", "application_vnd.jupyter.stderr_output_648.png", "application_vnd.jupyter.stderr_output_216.png", "text_plain_output_315.png", "text_plain_output_429.png", "application_vnd.jupyter.stderr_output_372.png", "application_vnd.jupyter.stderr_output_202.png", "text_plain_output_517.png", "text_plain_output_433.png", "text_plain_output_7.png", "application_vnd.jupyter.stderr_output_184.png", "application_vnd.jupyter.stderr_output_594.png", "text_plain_output_513.png", "application_vnd.jupyter.stderr_output_390.png", "application_vnd.jupyter.stderr_output_596.png", "text_plain_output_645.png", "text_plain_output_411.png", "text_plain_output_91.png", "application_vnd.jupyter.stderr_output_688.png", "text_plain_output_245.png", "application_vnd.jupyter.stderr_output_660.png", "text_plain_output_497.png", "application_vnd.jupyter.stderr_output_514.png", "application_vnd.jupyter.stderr_output_30.png", "text_plain_output_265.png", "application_vnd.jupyter.stderr_output_416.png", "application_vnd.jupyter.stderr_output_108.png", "application_vnd.jupyter.stderr_output_62.png", "text_plain_output_435.png", "text_plain_output_689.png", "application_vnd.jupyter.stderr_output_328.png", "text_plain_output_59.png", "text_plain_output_409.png", "text_plain_output_103.png", "text_plain_output_71.png", "application_vnd.jupyter.stderr_output_470.png", "text_plain_output_539.png", "application_vnd.jupyter.stderr_output_250.png", "application_vnd.jupyter.stderr_output_686.png", "text_plain_output_211.png", "application_vnd.jupyter.stderr_output_242.png", "application_vnd.jupyter.stderr_output_654.png", "application_vnd.jupyter.stderr_output_294.png", "text_plain_output_601.png", "application_vnd.jupyter.stderr_output_588.png", "text_plain_output_541.png", "application_vnd.jupyter.stderr_output_612.png", "application_vnd.jupyter.stderr_output_130.png", "application_vnd.jupyter.stderr_output_28.png", "application_vnd.jupyter.stderr_output_364.png", "application_vnd.jupyter.stderr_output_448.png", "application_vnd.jupyter.stderr_output_658.png", "application_vnd.jupyter.stderr_output_680.png", "text_plain_output_653.png", "text_plain_output_543.png", "text_plain_output_451.png", "application_vnd.jupyter.stderr_output_256.png", "text_plain_output_109.png", "application_vnd.jupyter.stderr_output_46.png", "text_plain_output_459.png", "text_plain_output_615.png", "text_plain_output_41.png", "application_vnd.jupyter.stderr_output_206.png", "application_vnd.jupyter.stderr_output_456.png", "text_plain_output_253.png", "application_vnd.jupyter.stderr_output_234.png", "application_vnd.jupyter.stderr_output_734.png", "application_vnd.jupyter.stderr_output_312.png", "text_plain_output_723.png", "application_vnd.jupyter.stderr_output_682.png", "application_vnd.jupyter.stderr_output_630.png", "text_plain_output_291.png", "application_vnd.jupyter.stderr_output_616.png", "application_vnd.jupyter.stderr_output_606.png", "application_vnd.jupyter.stderr_output_708.png", "text_plain_output_241.png", "text_plain_output_231.png", "text_plain_output_533.png", "text_plain_output_345.png", "text_plain_output_649.png", "application_vnd.jupyter.stderr_output_252.png", "application_vnd.jupyter.stderr_output_64.png", "application_vnd.jupyter.stderr_output_76.png", "text_plain_output_209.png", "text_plain_output_185.png", "application_vnd.jupyter.stderr_output_262.png", "text_plain_output_85.png", "text_plain_output_605.png", "text_plain_output_549.png", "text_plain_output_67.png", "text_plain_output_573.png", "text_plain_output_297.png", "text_plain_output_53.png", "text_plain_output_313.png", "application_vnd.jupyter.stderr_output_480.png", "application_vnd.jupyter.stderr_output_572.png", "application_vnd.jupyter.stderr_output_386.png", "application_vnd.jupyter.stderr_output_20.png", "text_plain_output_635.png", "text_plain_output_703.png", "text_plain_output_711.png", "text_plain_output_193.png", "text_plain_output_441.png", "text_plain_output_403.png", "application_vnd.jupyter.stderr_output_338.png", "application_vnd.jupyter.stderr_output_126.png", "application_vnd.jupyter.stderr_output_560.png", "text_plain_output_23.png", "application_vnd.jupyter.stderr_output_218.png", "application_vnd.jupyter.stderr_output_446.png", "application_vnd.jupyter.stderr_output_494.png", "text_plain_output_173.png", "application_vnd.jupyter.stderr_output_36.png", "text_plain_output_683.png", "application_vnd.jupyter.stderr_output_100.png", "text_plain_output_235.png", "application_vnd.jupyter.stderr_output_430.png", "application_vnd.jupyter.stderr_output_266.png", "text_plain_output_151.png", "text_plain_output_89.png", "application_vnd.jupyter.stderr_output_22.png", "text_plain_output_299.png", "text_plain_output_51.png", "text_plain_output_677.png", "application_vnd.jupyter.stderr_output_166.png", "application_vnd.jupyter.stderr_output_508.png", "text_plain_output_525.png", "application_vnd.jupyter.stderr_output_318.png", "text_plain_output_731.png", "text_plain_output_705.png", "application_vnd.jupyter.stderr_output_292.png", "application_vnd.jupyter.stderr_output_726.png", "text_plain_output_99.png", "text_plain_output_381.png", "text_plain_output_571.png", "text_plain_output_163.png", "text_plain_output_179.png", "text_plain_output_537.png", "application_vnd.jupyter.stderr_output_408.png", "application_vnd.jupyter.stderr_output_374.png", "text_plain_output_569.png", "text_plain_output_239.png", "application_vnd.jupyter.stderr_output_186.png", "application_vnd.jupyter.stderr_output_168.png", "text_plain_output_127.png", "text_plain_output_559.png", "text_plain_output_311.png", "text_plain_output_719.png", "text_plain_output_295.png", "text_plain_output_279.png", "text_plain_output_507.png", "application_vnd.jupyter.stderr_output_56.png", "application_vnd.jupyter.stderr_output_452.png", "text_plain_output_509.png", "application_vnd.jupyter.stderr_output_104.png", "text_plain_output_337.png", "application_vnd.jupyter.stderr_output_196.png", "text_plain_output_499.png", "application_vnd.jupyter.stderr_output_50.png", "text_plain_output_563.png", "application_vnd.jupyter.stderr_output_736.png", "application_vnd.jupyter.stderr_output_114.png", "text_plain_output_97.png", "text_plain_output_729.png", "application_vnd.jupyter.stderr_output_492.png", "text_plain_output_717.png", "text_plain_output_227.png", "application_vnd.jupyter.stderr_output_226.png", "text_plain_output_453.png", "text_plain_output_1.png", "text_plain_output_33.png", "application_vnd.jupyter.stderr_output_128.png", "application_vnd.jupyter.stderr_output_150.png", "text_plain_output_631.png", "text_plain_output_39.png", "application_vnd.jupyter.stderr_output_556.png", "text_plain_output_335.png", "application_vnd.jupyter.stderr_output_142.png", "application_vnd.jupyter.stderr_output_326.png", "text_plain_output_233.png", "text_plain_output_473.png", "application_vnd.jupyter.stderr_output_304.png", "text_plain_output_385.png", "text_plain_output_55.png", "text_plain_output_293.png", "text_plain_output_199.png", "application_vnd.jupyter.stderr_output_530.png", "text_plain_output_463.png", "text_plain_output_319.png", "application_vnd.jupyter.stderr_output_138.png", "application_vnd.jupyter.stderr_output_412.png", "application_vnd.jupyter.stderr_output_548.png", "text_plain_output_93.png", "application_vnd.jupyter.stderr_output_200.png", "text_plain_output_19.png", "text_plain_output_439.png", "text_plain_output_341.png", "application_vnd.jupyter.stderr_output_280.png", "text_plain_output_105.png", "text_plain_output_465.png", "text_plain_output_491.png", "text_plain_output_679.png", "text_plain_output_641.png", "text_plain_output_249.png", "application_vnd.jupyter.stderr_output_122.png", "application_vnd.jupyter.stderr_output_488.png", "application_vnd.jupyter.stderr_output_624.png", "application_vnd.jupyter.stderr_output_94.png", "text_plain_output_619.png", "application_vnd.jupyter.stderr_output_282.png", "application_vnd.jupyter.stderr_output_730.png", "text_plain_output_17.png", "text_plain_output_323.png", "application_vnd.jupyter.stderr_output_462.png", "application_vnd.jupyter.stderr_output_652.png", "application_vnd.jupyter.stderr_output_182.png", "application_vnd.jupyter.stderr_output_158.png", "text_plain_output_597.png", "application_vnd.jupyter.stderr_output_78.png", "text_plain_output_11.png", "application_vnd.jupyter.stderr_output_698.png", "application_vnd.jupyter.stderr_output_370.png", "text_plain_output_481.png", "application_vnd.jupyter.stderr_output_276.png", "application_vnd.jupyter.stderr_output_188.png", "application_vnd.jupyter.stderr_output_696.png", "application_vnd.jupyter.stderr_output_14.png", "text_plain_output_267.png", "application_vnd.jupyter.stderr_output_562.png", "text_plain_output_553.png", "text_plain_output_425.png", "text_plain_output_591.png", "application_vnd.jupyter.stderr_output_706.png", "text_plain_output_625.png", "application_vnd.jupyter.stderr_output_350.png", "text_plain_output_577.png", "application_vnd.jupyter.stderr_output_54.png", "application_vnd.jupyter.stderr_output_118.png", "application_vnd.jupyter.stderr_output_154.png", "text_plain_output_727.png", "application_vnd.jupyter.stderr_output_438.png", "application_vnd.jupyter.stderr_output_442.png", "application_vnd.jupyter.stderr_output_198.png", "text_plain_output_519.png", "text_plain_output_733.png", "text_plain_output_721.png", "application_vnd.jupyter.stderr_output_712.png", "text_plain_output_303.png", "text_plain_output_621.png", "text_plain_output_377.png", "application_vnd.jupyter.stderr_output_460.png", "text_plain_output_95.png", "text_plain_output_339.png", "application_vnd.jupyter.stderr_output_228.png", "application_vnd.jupyter.stderr_output_614.png", "application_vnd.jupyter.stderr_output_254.png", "text_plain_output_547.png", "text_plain_output_369.png", "application_vnd.jupyter.stderr_output_582.png", "application_vnd.jupyter.stderr_output_628.png", "text_plain_output_587.png", "application_vnd.jupyter.stderr_output_466.png", "application_vnd.jupyter.stderr_output_340.png", "text_plain_output_365.png", "application_vnd.jupyter.stderr_output_208.png", "text_plain_output_61.png", "text_plain_output_585.png", "text_plain_output_83.png", "application_vnd.jupyter.stderr_output_248.png", "text_plain_output_647.png", "application_vnd.jupyter.stderr_output_210.png", "application_vnd.jupyter.stderr_output_92.png", "application_vnd.jupyter.stderr_output_164.png", "application_vnd.jupyter.stderr_output_102.png", "text_plain_output_397.png", "text_plain_output_661.png", "text_plain_output_389.png", "application_vnd.jupyter.stderr_output_410.png", "text_plain_output_351.png", "application_vnd.jupyter.stderr_output_40.png", "application_vnd.jupyter.stderr_output_532.png", "application_vnd.jupyter.stderr_output_244.png", "text_plain_output_135.png", "text_plain_output_285.png", "application_vnd.jupyter.stderr_output_264.png", "application_vnd.jupyter.stderr_output_486.png", "text_plain_output_675.png", "application_vnd.jupyter.stderr_output_646.png", "text_plain_output_493.png", "application_vnd.jupyter.stderr_output_434.png" ]
from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy.stats as ss import seaborn as sns df = pd.read_csv('../input/travel insurance.csv') df1 = df df.fillna('Not Specified', inplace=True) df.isnull().sum() df_numerical = df._get_numeric_data() df.loc[df['Duration'] < 0, 'Duration'] = 49.317 df.loc[df['Net Sales'] == 0.0, 'Commision (in value)'] = 0 def cramers_v(x, y): confusion_matrix = pd.crosstab(x, y) chi2 = ss.chi2_contingency(confusion_matrix)[0] n = confusion_matrix.sum().sum() phi2 = chi2 / n r, k = confusion_matrix.shape phi2corr = max(0, phi2 - (k - 1) * (r - 1) / (n - 1)) rcorr = r - (r - 1) ** 2 / (n - 1) kcorr = k - (k - 1) ** 2 / (n - 1) return np.sqrt(phi2corr / min(kcorr - 1, rcorr - 1)) categorical = ['Agency', 'Agency Type', 'Distribution Channel', 'Product Name', 'Destination', 'Gender', 'Claim'] cramers = pd.DataFrame({i: [cramers_v(df[i], df[j]) for j in categorical] for i in categorical}) cramers['column'] = [i for i in categorical if i not in ['memberid']] cramers.set_index('column', inplace=True) from scipy.stats import chi2_contingency class ChiSquare: def __init__(self, df): self.df = df self.p = None self.chi2 = None self.dof = None self.dfObserved = None self.dfExpected = None def _print_chisquare_result(self, colX, alpha): result = '' if self.p < alpha: result = '{0} is IMPORTANT for Prediction'.format(colX) else: result = '{0} is NOT an important predictor. (Discard {0} from model)'.format(colX) def TestIndependence(self, colX, colY, alpha=0.05): X = self.df[colX].astype(str) Y = self.df[colY].astype(str) self.dfObserved = pd.crosstab(Y, X) chi2, p, dof, expected = ss.chi2_contingency(self.dfObserved.values) self.p = p self.chi2 = chi2 self.dof = dof self.dfExpected = pd.DataFrame(expected, columns=self.dfObserved.columns, index=self.dfObserved.index) X = df.drop(['Claim'], axis=1) ct = ChiSquare(df) for c in X.columns: ct.TestIndependence(c, 'Claim') df.drop(columns=['Distribution Channel', 'Agency Type'], axis=1, inplace=True) y = df['Claim'] x = df x.drop(columns='Claim', axis=1, inplace=True) x_dummy = pd.get_dummies(x, columns=['Agency', 'Gender', 'Product Name', 'Destination'], drop_first=True) lr = LogisticRegression() rfe = RFE(estimator=lr, n_features_to_select=10, verbose=3) rfe.fit(x_dummy, y) rfe_df1 = rfe.fit_transform(x_dummy, y) X = x_dummy[['Agency_EPX', 'Agency_TST', 'Gender_Not Specified', 'Product Name_2 way Comprehensive Plan', 'Product Name_24 Protect', 'Product Name_Basic Plan', 'Product Name_Comprehensive Plan', 'Product Name_Premier Plan', 'Product Name_Travel Cruise Protect', 'Product Name_Value Plan']] X.head(5)
code
16123553/cell_64
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report from sklearn.metrics import classification_report rf = RandomForestClassifier(n_estimators=100) rf_model = rf.fit(X_train, y_train) rf_pred = rf.predict(X_test) print(classification_report(y_test, rf_pred))
code
16123553/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import missingno import matplotlib.pyplot as plt import seaborn as sns from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.feature_selection import RFE import scipy.stats as ss import os print(os.listdir('../input'))
code
16123553/cell_45
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy.stats as ss import seaborn as sns df = pd.read_csv('../input/travel insurance.csv') df1 = df df.fillna('Not Specified', inplace=True) df.isnull().sum() df_numerical = df._get_numeric_data() df.loc[df['Duration'] < 0, 'Duration'] = 49.317 df.loc[df['Net Sales'] == 0.0, 'Commision (in value)'] = 0 def cramers_v(x, y): confusion_matrix = pd.crosstab(x, y) chi2 = ss.chi2_contingency(confusion_matrix)[0] n = confusion_matrix.sum().sum() phi2 = chi2 / n r, k = confusion_matrix.shape phi2corr = max(0, phi2 - (k - 1) * (r - 1) / (n - 1)) rcorr = r - (r - 1) ** 2 / (n - 1) kcorr = k - (k - 1) ** 2 / (n - 1) return np.sqrt(phi2corr / min(kcorr - 1, rcorr - 1)) categorical = ['Agency', 'Agency Type', 'Distribution Channel', 'Product Name', 'Destination', 'Gender', 'Claim'] cramers = pd.DataFrame({i: [cramers_v(df[i], df[j]) for j in categorical] for i in categorical}) cramers['column'] = [i for i in categorical if i not in ['memberid']] cramers.set_index('column', inplace=True) from scipy.stats import chi2_contingency class ChiSquare: def __init__(self, df): self.df = df self.p = None self.chi2 = None self.dof = None self.dfObserved = None self.dfExpected = None def _print_chisquare_result(self, colX, alpha): result = '' if self.p < alpha: result = '{0} is IMPORTANT for Prediction'.format(colX) else: result = '{0} is NOT an important predictor. (Discard {0} from model)'.format(colX) def TestIndependence(self, colX, colY, alpha=0.05): X = self.df[colX].astype(str) Y = self.df[colY].astype(str) self.dfObserved = pd.crosstab(Y, X) chi2, p, dof, expected = ss.chi2_contingency(self.dfObserved.values) self.p = p self.chi2 = chi2 self.dof = dof self.dfExpected = pd.DataFrame(expected, columns=self.dfObserved.columns, index=self.dfObserved.index) X = df.drop(['Claim'], axis=1) ct = ChiSquare(df) for c in X.columns: ct.TestIndependence(c, 'Claim') df.drop(columns=['Distribution Channel', 'Agency Type'], axis=1, inplace=True) df.info()
code
16123553/cell_49
[ "text_plain_output_1.png" ]
from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy.stats as ss import seaborn as sns df = pd.read_csv('../input/travel insurance.csv') df1 = df df.fillna('Not Specified', inplace=True) df.isnull().sum() df_numerical = df._get_numeric_data() df.loc[df['Duration'] < 0, 'Duration'] = 49.317 df.loc[df['Net Sales'] == 0.0, 'Commision (in value)'] = 0 def cramers_v(x, y): confusion_matrix = pd.crosstab(x, y) chi2 = ss.chi2_contingency(confusion_matrix)[0] n = confusion_matrix.sum().sum() phi2 = chi2 / n r, k = confusion_matrix.shape phi2corr = max(0, phi2 - (k - 1) * (r - 1) / (n - 1)) rcorr = r - (r - 1) ** 2 / (n - 1) kcorr = k - (k - 1) ** 2 / (n - 1) return np.sqrt(phi2corr / min(kcorr - 1, rcorr - 1)) categorical = ['Agency', 'Agency Type', 'Distribution Channel', 'Product Name', 'Destination', 'Gender', 'Claim'] cramers = pd.DataFrame({i: [cramers_v(df[i], df[j]) for j in categorical] for i in categorical}) cramers['column'] = [i for i in categorical if i not in ['memberid']] cramers.set_index('column', inplace=True) from scipy.stats import chi2_contingency class ChiSquare: def __init__(self, df): self.df = df self.p = None self.chi2 = None self.dof = None self.dfObserved = None self.dfExpected = None def _print_chisquare_result(self, colX, alpha): result = '' if self.p < alpha: result = '{0} is IMPORTANT for Prediction'.format(colX) else: result = '{0} is NOT an important predictor. (Discard {0} from model)'.format(colX) def TestIndependence(self, colX, colY, alpha=0.05): X = self.df[colX].astype(str) Y = self.df[colY].astype(str) self.dfObserved = pd.crosstab(Y, X) chi2, p, dof, expected = ss.chi2_contingency(self.dfObserved.values) self.p = p self.chi2 = chi2 self.dof = dof self.dfExpected = pd.DataFrame(expected, columns=self.dfObserved.columns, index=self.dfObserved.index) X = df.drop(['Claim'], axis=1) ct = ChiSquare(df) for c in X.columns: ct.TestIndependence(c, 'Claim') df.drop(columns=['Distribution Channel', 'Agency Type'], axis=1, inplace=True) y = df['Claim'] x = df x.drop(columns='Claim', axis=1, inplace=True) x_dummy = pd.get_dummies(x, columns=['Agency', 'Gender', 'Product Name', 'Destination'], drop_first=True) lr = LogisticRegression() rfe = RFE(estimator=lr, n_features_to_select=10, verbose=3) rfe.fit(x_dummy, y) rfe_df1 = rfe.fit_transform(x_dummy, y)
code
16123553/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/travel insurance.csv') df1 = df df.fillna('Not Specified', inplace=True) df.isnull().sum() df_numerical = df._get_numeric_data() for i, col in enumerate(df_numerical.columns): plt.figure(i) sns.distplot(df_numerical[col])
code
16123553/cell_32
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy.stats as ss import seaborn as sns df = pd.read_csv('../input/travel insurance.csv') df1 = df df.fillna('Not Specified', inplace=True) df.isnull().sum() df_numerical = df._get_numeric_data() df.loc[df['Duration'] < 0, 'Duration'] = 49.317 df.loc[df['Net Sales'] == 0.0, 'Commision (in value)'] = 0 def cramers_v(x, y): confusion_matrix = pd.crosstab(x, y) chi2 = ss.chi2_contingency(confusion_matrix)[0] n = confusion_matrix.sum().sum() phi2 = chi2 / n r, k = confusion_matrix.shape phi2corr = max(0, phi2 - (k - 1) * (r - 1) / (n - 1)) rcorr = r - (r - 1) ** 2 / (n - 1) kcorr = k - (k - 1) ** 2 / (n - 1) return np.sqrt(phi2corr / min(kcorr - 1, rcorr - 1)) categorical = ['Agency', 'Agency Type', 'Distribution Channel', 'Product Name', 'Destination', 'Gender', 'Claim'] cramers = pd.DataFrame({i: [cramers_v(df[i], df[j]) for j in categorical] for i in categorical}) cramers['column'] = [i for i in categorical if i not in ['memberid']] cramers.set_index('column', inplace=True) plt.figure(figsize=(10, 7)) sns.heatmap(cramers, annot=True) plt.show()
code
16123553/cell_28
[ "image_output_4.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/travel insurance.csv') df1 = df df.fillna('Not Specified', inplace=True) df.isnull().sum() df_numerical = df._get_numeric_data() df.loc[df['Duration'] < 0, 'Duration'] = 49.317 df6 = df['Net Sales'] < df['Commision (in value)'] df6.sum()
code
16123553/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/travel insurance.csv') df1 = df df.fillna('Not Specified', inplace=True) df.isnull().sum() df_numerical = df._get_numeric_data() df_numerical.info()
code
16123553/cell_38
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy.stats as ss import seaborn as sns df = pd.read_csv('../input/travel insurance.csv') df1 = df df.fillna('Not Specified', inplace=True) df.isnull().sum() df_numerical = df._get_numeric_data() df.loc[df['Duration'] < 0, 'Duration'] = 49.317 df.loc[df['Net Sales'] == 0.0, 'Commision (in value)'] = 0 def cramers_v(x, y): confusion_matrix = pd.crosstab(x, y) chi2 = ss.chi2_contingency(confusion_matrix)[0] n = confusion_matrix.sum().sum() phi2 = chi2 / n r, k = confusion_matrix.shape phi2corr = max(0, phi2 - (k - 1) * (r - 1) / (n - 1)) rcorr = r - (r - 1) ** 2 / (n - 1) kcorr = k - (k - 1) ** 2 / (n - 1) return np.sqrt(phi2corr / min(kcorr - 1, rcorr - 1)) categorical = ['Agency', 'Agency Type', 'Distribution Channel', 'Product Name', 'Destination', 'Gender', 'Claim'] cramers = pd.DataFrame({i: [cramers_v(df[i], df[j]) for j in categorical] for i in categorical}) cramers['column'] = [i for i in categorical if i not in ['memberid']] cramers.set_index('column', inplace=True) test = [(df[df['Gender'] == 'Not Specified']['Claim'].value_counts() / len(df[df['Gender'] == 'Not Specified']['Claim']))[1], (df[df['Gender'] == 'M']['Claim'].value_counts() / len(df[df['Gender'] == 'M']['Claim']))[1], (df[df['Gender'] == 'F']['Claim'].value_counts() / len(df[df['Gender'] == 'F']['Claim']))[1]] test fig, axes=plt.subplots(1,3,figsize=(24,9)) sns.countplot(df[df['Gender']=='Not Specified']['Claim'],ax=axes[0]) axes[0].set(title='Distribution of claims for null gender') axes[0].text(x=1,y=30000,s=f'% of 1 class: {round(test[0],2)}',fontsize=16,weight='bold',ha='center',va='bottom',color='navy') sns.countplot(df[df['Gender']=='M']['Claim'],ax=axes[1]) axes[1].set(title='Distribution of claims for Male') axes[1].text(x=1,y=6000,s=f'% of 1 class: {round(test[1],2)}',fontsize=16,weight='bold',ha='center',va='bottom',color='navy') sns.countplot(df[df['Gender']=='F']['Claim'],ax=axes[2]) axes[2].set(title='Distribution of claims for Female') axes[2].text(x=1,y=6000,s=f'% of 1 class: {round(test[2],2)}',fontsize=16,weight='bold',ha='center',va='bottom',color='navy') plt.show() sns.countplot(df['Claim'])
code
16123553/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/travel insurance.csv') df1 = df df.info()
code
16123553/cell_35
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/travel insurance.csv') df1 = df df.fillna('Not Specified', inplace=True) df.isnull().sum() df_numerical = df._get_numeric_data() df.loc[df['Duration'] < 0, 'Duration'] = 49.317 df.loc[df['Net Sales'] == 0.0, 'Commision (in value)'] = 0 test = [(df[df['Gender'] == 'Not Specified']['Claim'].value_counts() / len(df[df['Gender'] == 'Not Specified']['Claim']))[1], (df[df['Gender'] == 'M']['Claim'].value_counts() / len(df[df['Gender'] == 'M']['Claim']))[1], (df[df['Gender'] == 'F']['Claim'].value_counts() / len(df[df['Gender'] == 'F']['Claim']))[1]] test
code
16123553/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/travel insurance.csv') df1 = df df.fillna('Not Specified', inplace=True) df.isnull().sum() df_numerical = df._get_numeric_data() df10 = df['Duration'] < 0 df10.sum()
code
16123553/cell_53
[ "text_plain_output_1.png" ]
from imblearn.over_sampling import SMOTE from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy.stats as ss import seaborn as sns df = pd.read_csv('../input/travel insurance.csv') df1 = df df.fillna('Not Specified', inplace=True) df.isnull().sum() df_numerical = df._get_numeric_data() df.loc[df['Duration'] < 0, 'Duration'] = 49.317 df.loc[df['Net Sales'] == 0.0, 'Commision (in value)'] = 0 def cramers_v(x, y): confusion_matrix = pd.crosstab(x, y) chi2 = ss.chi2_contingency(confusion_matrix)[0] n = confusion_matrix.sum().sum() phi2 = chi2 / n r, k = confusion_matrix.shape phi2corr = max(0, phi2 - (k - 1) * (r - 1) / (n - 1)) rcorr = r - (r - 1) ** 2 / (n - 1) kcorr = k - (k - 1) ** 2 / (n - 1) return np.sqrt(phi2corr / min(kcorr - 1, rcorr - 1)) categorical = ['Agency', 'Agency Type', 'Distribution Channel', 'Product Name', 'Destination', 'Gender', 'Claim'] cramers = pd.DataFrame({i: [cramers_v(df[i], df[j]) for j in categorical] for i in categorical}) cramers['column'] = [i for i in categorical if i not in ['memberid']] cramers.set_index('column', inplace=True) from scipy.stats import chi2_contingency class ChiSquare: def __init__(self, df): self.df = df self.p = None self.chi2 = None self.dof = None self.dfObserved = None self.dfExpected = None def _print_chisquare_result(self, colX, alpha): result = '' if self.p < alpha: result = '{0} is IMPORTANT for Prediction'.format(colX) else: result = '{0} is NOT an important predictor. (Discard {0} from model)'.format(colX) def TestIndependence(self, colX, colY, alpha=0.05): X = self.df[colX].astype(str) Y = self.df[colY].astype(str) self.dfObserved = pd.crosstab(Y, X) chi2, p, dof, expected = ss.chi2_contingency(self.dfObserved.values) self.p = p self.chi2 = chi2 self.dof = dof self.dfExpected = pd.DataFrame(expected, columns=self.dfObserved.columns, index=self.dfObserved.index) X = df.drop(['Claim'], axis=1) ct = ChiSquare(df) for c in X.columns: ct.TestIndependence(c, 'Claim') df.drop(columns=['Distribution Channel', 'Agency Type'], axis=1, inplace=True) y = df['Claim'] x = df x.drop(columns='Claim', axis=1, inplace=True) x_dummy = pd.get_dummies(x, columns=['Agency', 'Gender', 'Product Name', 'Destination'], drop_first=True) lr = LogisticRegression() rfe = RFE(estimator=lr, n_features_to_select=10, verbose=3) rfe.fit(x_dummy, y) rfe_df1 = rfe.fit_transform(x_dummy, y) X = x_dummy[['Agency_EPX', 'Agency_TST', 'Gender_Not Specified', 'Product Name_2 way Comprehensive Plan', 'Product Name_24 Protect', 'Product Name_Basic Plan', 'Product Name_Comprehensive Plan', 'Product Name_Premier Plan', 'Product Name_Travel Cruise Protect', 'Product Name_Value Plan']] from imblearn.over_sampling import SMOTE smote = SMOTE(random_state=7) X_ov, y_ov = smote.fit_resample(X, y) X_train, X_test, y_train, y_test = train_test_split(X_ov, y_ov, train_size=0.7, random_state=7) pd.value_counts(y_train)
code
16123553/cell_36
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy.stats as ss import seaborn as sns df = pd.read_csv('../input/travel insurance.csv') df1 = df df.fillna('Not Specified', inplace=True) df.isnull().sum() df_numerical = df._get_numeric_data() df.loc[df['Duration'] < 0, 'Duration'] = 49.317 df.loc[df['Net Sales'] == 0.0, 'Commision (in value)'] = 0 def cramers_v(x, y): confusion_matrix = pd.crosstab(x, y) chi2 = ss.chi2_contingency(confusion_matrix)[0] n = confusion_matrix.sum().sum() phi2 = chi2 / n r, k = confusion_matrix.shape phi2corr = max(0, phi2 - (k - 1) * (r - 1) / (n - 1)) rcorr = r - (r - 1) ** 2 / (n - 1) kcorr = k - (k - 1) ** 2 / (n - 1) return np.sqrt(phi2corr / min(kcorr - 1, rcorr - 1)) categorical = ['Agency', 'Agency Type', 'Distribution Channel', 'Product Name', 'Destination', 'Gender', 'Claim'] cramers = pd.DataFrame({i: [cramers_v(df[i], df[j]) for j in categorical] for i in categorical}) cramers['column'] = [i for i in categorical if i not in ['memberid']] cramers.set_index('column', inplace=True) test = [(df[df['Gender'] == 'Not Specified']['Claim'].value_counts() / len(df[df['Gender'] == 'Not Specified']['Claim']))[1], (df[df['Gender'] == 'M']['Claim'].value_counts() / len(df[df['Gender'] == 'M']['Claim']))[1], (df[df['Gender'] == 'F']['Claim'].value_counts() / len(df[df['Gender'] == 'F']['Claim']))[1]] test fig, axes = plt.subplots(1, 3, figsize=(24, 9)) sns.countplot(df[df['Gender'] == 'Not Specified']['Claim'], ax=axes[0]) axes[0].set(title='Distribution of claims for null gender') axes[0].text(x=1, y=30000, s=f'% of 1 class: {round(test[0], 2)}', fontsize=16, weight='bold', ha='center', va='bottom', color='navy') sns.countplot(df[df['Gender'] == 'M']['Claim'], ax=axes[1]) axes[1].set(title='Distribution of claims for Male') axes[1].text(x=1, y=6000, s=f'% of 1 class: {round(test[1], 2)}', fontsize=16, weight='bold', ha='center', va='bottom', color='navy') sns.countplot(df[df['Gender'] == 'F']['Claim'], ax=axes[2]) axes[2].set(title='Distribution of claims for Female') axes[2].text(x=1, y=6000, s=f'% of 1 class: {round(test[2], 2)}', fontsize=16, weight='bold', ha='center', va='bottom', color='navy') plt.show()
code
89129153/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt # pyplot plotting tool import pandas as pd # data processing import seaborn as sns # seaborn plotting tool winedf = pd.read_csv('/kaggle/input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') winedf.quality.value_counts() corr = winedf.corr() X = winedf.iloc[:, :-1] y = winedf['quality'] print(X.shape) print(y.shape)
code
89129153/cell_25
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt # pyplot plotting tool import pandas as pd # data processing import seaborn as sns # seaborn plotting tool winedf = pd.read_csv('/kaggle/input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') winedf.quality.value_counts() corr = winedf.corr() X = winedf.iloc[:, :-1] y = winedf['quality'] from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=21, test_size=0.3) scaler = StandardScaler().fit(X_train) standardized_X = scaler.transform(X_train) standardized_X_test = scaler.transform(X_test) from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(standardized_X, y_train)
code
89129153/cell_34
[ "text_plain_output_1.png" ]
from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeRegressor dtree = DecisionTreeRegressor(random_state=22) dtree.fit(X_train, y_train) print('Making predictions for the following 5 wines:') print(X_test.head()) print('The predictions are') print(dtree.predict(X_test.head()))
code
89129153/cell_44
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt # pyplot plotting tool import pandas as pd # data processing import seaborn as sns # seaborn plotting tool winedf = pd.read_csv('/kaggle/input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') winedf.quality.value_counts() corr = winedf.corr() X = winedf.iloc[:, :-1] y = winedf['quality'] from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=21, test_size=0.3) scaler = StandardScaler().fit(X_train) standardized_X = scaler.transform(X_train) standardized_X_test = scaler.transform(X_test) from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(standardized_X, y_train) y_pred = lr.predict(standardized_X_test) from sklearn.tree import DecisionTreeRegressor dtree = DecisionTreeRegressor(random_state=22) dtree.fit(X_train, y_train) def get_mae(max_leaf_nodes, X_train, X_test, y_train, y_test): model = DecisionTreeRegressor(max_leaf_nodes=max_leaf_nodes, random_state=1) model.fit(X_train, y_train) y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) return mae for max_leaf_nodes in [5, 10, 25, 50, 250, 500, 1000, 5000]: mae = get_mae(max_leaf_nodes, X_train, X_test, y_train, y_test) model_1 = RandomForestRegressor(n_estimators=50, random_state=0) model_2 = RandomForestRegressor(n_estimators=100, random_state=0) model_3 = RandomForestRegressor(n_estimators=100, criterion='mae', random_state=0) model_4 = RandomForestRegressor(n_estimators=200, min_samples_split=20, random_state=0) model_5 = RandomForestRegressor(n_estimators=100, max_depth=7, random_state=0) models = [model_1, model_2, model_3, model_4, model_5] def score_model(model, X_t=X_train, X_v=X_test, y_t=y_train, y_v=y_test): model.fit(X_t, y_t) preds = model.predict(X_v) return mean_absolute_error(y_v, preds) for i in range(0, len(models)): mae = score_model(models[i]) print('Model %d MAE: %f' % (i + 1, mae))
code
89129153/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing winedf = pd.read_csv('/kaggle/input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') winedf.head()
code
89129153/cell_29
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt # pyplot plotting tool import numpy as np # numeric python import pandas as pd # data processing import seaborn as sns # seaborn plotting tool winedf = pd.read_csv('/kaggle/input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') winedf.quality.value_counts() corr = winedf.corr() X = winedf.iloc[:, :-1] y = winedf['quality'] from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=21, test_size=0.3) scaler = StandardScaler().fit(X_train) standardized_X = scaler.transform(X_train) standardized_X_test = scaler.transform(X_test) from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(standardized_X, y_train) y_pred = lr.predict(standardized_X_test) from sklearn.model_selection import cross_val_score cv_results = cross_val_score(lr, standardized_X, y_train, cv=10) print('Cross validation results: ', cv_results) print('Mean cross validation result: ', np.mean(cv_results))
code
89129153/cell_26
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt # pyplot plotting tool import pandas as pd # data processing import seaborn as sns # seaborn plotting tool winedf = pd.read_csv('/kaggle/input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') winedf.quality.value_counts() corr = winedf.corr() X = winedf.iloc[:, :-1] y = winedf['quality'] from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=21, test_size=0.3) scaler = StandardScaler().fit(X_train) standardized_X = scaler.transform(X_train) standardized_X_test = scaler.transform(X_test) from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(standardized_X, y_train) print('R^2 is: ', lr.score(standardized_X, y_train)) print('The coefficients are: ', lr.coef_)
code
89129153/cell_41
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt # pyplot plotting tool import pandas as pd # data processing import seaborn as sns # seaborn plotting tool winedf = pd.read_csv('/kaggle/input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') winedf.quality.value_counts() corr = winedf.corr() X = winedf.iloc[:, :-1] y = winedf['quality'] from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=21, test_size=0.3) scaler = StandardScaler().fit(X_train) standardized_X = scaler.transform(X_train) standardized_X_test = scaler.transform(X_test) from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(standardized_X, y_train) y_pred = lr.predict(standardized_X_test) from sklearn.tree import DecisionTreeRegressor dtree = DecisionTreeRegressor(random_state=22) dtree.fit(X_train, y_train) def get_mae(max_leaf_nodes, X_train, X_test, y_train, y_test): model = DecisionTreeRegressor(max_leaf_nodes=max_leaf_nodes, random_state=1) model.fit(X_train, y_train) y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) return mae for max_leaf_nodes in [5, 10, 25, 50, 250, 500, 1000, 5000]: mae = get_mae(max_leaf_nodes, X_train, X_test, y_train, y_test) from sklearn.ensemble import RandomForestRegressor rforest = RandomForestRegressor(random_state=1) rforest.fit(X_train, y_train) y_pred = rforest.predict(X_test) print(mean_absolute_error(y_test, y_pred))
code
89129153/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
89129153/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt # pyplot plotting tool import pandas as pd # data processing import seaborn as sns # seaborn plotting tool winedf = pd.read_csv('/kaggle/input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') winedf.quality.value_counts() corr = winedf.corr() plt.figure(figsize=(9, 8)) sns.heatmap(corr, cmap='YlGnBu', annot=True) plt.show()
code
89129153/cell_32
[ "text_plain_output_1.png" ]
from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeRegressor dtree = DecisionTreeRegressor(random_state=22) dtree.fit(X_train, y_train)
code
89129153/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing winedf = pd.read_csv('/kaggle/input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') print('winedf shape: ', winedf.shape, '\n') print('winedf information:') print(winedf.info())
code
89129153/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing winedf = pd.read_csv('/kaggle/input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') winedf.quality.value_counts() winedf.iloc[:, 1:11].hist(figsize=(20, 10), bins=20, edgecolor='black', color='lightgreen')
code
89129153/cell_38
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt # pyplot plotting tool import pandas as pd # data processing import seaborn as sns # seaborn plotting tool winedf = pd.read_csv('/kaggle/input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') winedf.quality.value_counts() corr = winedf.corr() X = winedf.iloc[:, :-1] y = winedf['quality'] from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=21, test_size=0.3) scaler = StandardScaler().fit(X_train) standardized_X = scaler.transform(X_train) standardized_X_test = scaler.transform(X_test) from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(standardized_X, y_train) y_pred = lr.predict(standardized_X_test) from sklearn.tree import DecisionTreeRegressor dtree = DecisionTreeRegressor(random_state=22) dtree.fit(X_train, y_train) def get_mae(max_leaf_nodes, X_train, X_test, y_train, y_test): model = DecisionTreeRegressor(max_leaf_nodes=max_leaf_nodes, random_state=1) model.fit(X_train, y_train) y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) return mae for max_leaf_nodes in [5, 10, 25, 50, 250, 500, 1000, 5000]: mae = get_mae(max_leaf_nodes, X_train, X_test, y_train, y_test) print('Max leaf nodes: %d \t\t Mean Absolute Error: %.5f' % (max_leaf_nodes, mae))
code
89129153/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing winedf = pd.read_csv('/kaggle/input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') winedf.quality.value_counts() winedf['quality'].hist(align='right', bins=range(3, 9), edgecolor='black', grid=False)
code
89129153/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing winedf = pd.read_csv('/kaggle/input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') print(winedf.describe(), '\n') print('The median wine quality is: ', winedf['quality'].median())
code
89129153/cell_27
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt # pyplot plotting tool import pandas as pd # data processing import seaborn as sns # seaborn plotting tool winedf = pd.read_csv('/kaggle/input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') winedf.quality.value_counts() corr = winedf.corr() X = winedf.iloc[:, :-1] y = winedf['quality'] from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=21, test_size=0.3) scaler = StandardScaler().fit(X_train) standardized_X = scaler.transform(X_train) standardized_X_test = scaler.transform(X_test) from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(standardized_X, y_train) y_pred = lr.predict(standardized_X_test) print('R^2 for test set: ', lr.score(standardized_X_test, y_test))
code
89129153/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing winedf = pd.read_csv('/kaggle/input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') winedf.quality.value_counts()
code
89129153/cell_36
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_absolute_error from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeRegressor dtree = DecisionTreeRegressor(random_state=22) dtree.fit(X_train, y_train) from sklearn.metrics import mean_absolute_error predicted_wine_quality = dtree.predict(X_test) mean_absolute_error(y_test, predicted_wine_quality)
code
72111473/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
from pathlib import Path import matplotlib import matplotlib.pyplot as plt import numpy as np from pathlib import Path import numpy as np import cv2 import pydicom import matplotlib matplotlib.rcParams['animation.html'] = 'jshtml' import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from tqdm import tqdm def load_voxel(study_id, scan_type='FLAIR', split='train', sz=256): assert sz in (64, 128, 256) data_root = Path(f'../input/rsna-miccai-voxel-{sz}-dataset') npy_path = Path(data_root).joinpath('voxel', split, study_id, f'{scan_type}.npy') voxel = np.load(str(npy_path)) return voxel def show_animation(images: list): ''' Displays an animation from the list of images. set: matplotlib.rcParams['animation.html'] = 'jshtml' ''' fig = plt.figure(figsize=(6, 6)) plt.axis('off') im = plt.imshow(images[0], cmap='gray') def animate_func(i): im.set_array(images[i]) return [im] return matplotlib.animation.FuncAnimation(fig, animate_func, frames = len(images), interval = 20) flair_animation = show_animation(voxel) flair_animation
code
72111473/cell_2
[ "text_html_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns root_dir = '../input/rsna-miccai-voxel-64-dataset/' df = pd.read_csv('../input/training-labels/train_labels.csv') sns.countplot(data=df, x='MGMT_value') def full_ids(data): zeros = 5 - len(str(data)) if zeros > 0: prefix = ''.join(['0' for i in range(zeros)]) return prefix + str(data) df['BraTS21ID_full'] = df['BraTS21ID'].apply(full_ids) df['flair'] = df['BraTS21ID_full'].apply(lambda file_id: root_dir + 'train/' + file_id + '/FLAIR/') df['t1w'] = df['BraTS21ID_full'].apply(lambda file_id: root_dir + 'train/' + file_id + '/T1w/') df['t1wce'] = df['BraTS21ID_full'].apply(lambda file_id: root_dir + 'train/' + file_id + '/T1wCE/') df['t2w'] = df['BraTS21ID_full'].apply(lambda file_id: root_dir + 'train/' + file_id + '/T2w/') df to_exclude = [109, 123, 709] df = df[~df['BraTS21ID'].isin(to_exclude)] df = df.reset_index(drop=True) df2 = pd.read_csv('../input/exportdataframe/export_dataframe.csv') df = pd.concat([df, df2[['flair_axis', 't1w_axis', 't1wce_axis', 't2w_axis']]], axis=1, join='inner') df
code
72111473/cell_3
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns root_dir = '../input/rsna-miccai-voxel-64-dataset/' df = pd.read_csv('../input/training-labels/train_labels.csv') def full_ids(data): zeros = 5 - len(str(data)) if zeros > 0: prefix = ''.join(['0' for i in range(zeros)]) return prefix + str(data) df['BraTS21ID_full'] = df['BraTS21ID'].apply(full_ids) df['flair'] = df['BraTS21ID_full'].apply(lambda file_id: root_dir + 'train/' + file_id + '/FLAIR/') df['t1w'] = df['BraTS21ID_full'].apply(lambda file_id: root_dir + 'train/' + file_id + '/T1w/') df['t1wce'] = df['BraTS21ID_full'].apply(lambda file_id: root_dir + 'train/' + file_id + '/T1wCE/') df['t2w'] = df['BraTS21ID_full'].apply(lambda file_id: root_dir + 'train/' + file_id + '/T2w/') df to_exclude = [109, 123, 709] df = df[~df['BraTS21ID'].isin(to_exclude)] df = df.reset_index(drop=True) df2 = pd.read_csv('../input/exportdataframe/export_dataframe.csv') df = pd.concat([df, df2[['flair_axis', 't1w_axis', 't1wce_axis', 't2w_axis']]], axis=1, join='inner') df new_dataframe = df.loc[df['t1w_axis'] == 'axial'] new_dataframe = new_dataframe[['MGMT_value', 't1w', 't1w_axis']] new_dataframe
code
17109150/cell_13
[ "text_plain_output_1.png" ]
from PIL import Image from io import BytesIO from sklearn.preprocessing import LabelEncoder, OneHotEncoder from torchvision import datasets, models, transforms import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch train_on_gpu = torch.cuda.is_available() labels = pd.read_csv('../input/train.csv') data_dir = '../input' train_dir = data_dir + '/train' test_dir = data_dir + '/test' pil2tensor = transforms.ToTensor() tensor2pil = transforms.ToPILImage() pil_image = Image.open(train_dir + '/0a750c2e8.jpg') rgb_image = pil2tensor(pil_image) def plot_image(tensor): pass from io import BytesIO import IPython.display r_image = rgb_image[0] g_image = rgb_image[1] b_image = rgb_image[2] def show_grayscale_image(tensor): f = BytesIO() a = np.uint8(tensor.mul(255).numpy()) Image.fromarray(a).save(f, 'png') mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] train_data = transforms.Compose([transforms.Resize(256), transforms.RandomResizedCrop(224), transforms.RandomRotation(25), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0), transforms.RandomAffine(degrees=4, translate=None, scale=None, shear=None, resample=False, fillcolor=0), transforms.ToTensor(), transforms.Normalize(mean, std)]) test_data = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean, std)]) def encode_labels(y): values = np.array(y) label_encoder = LabelEncoder() integer_encoded = label_encoder.fit_transform(values) onehot_encoder = OneHotEncoder(sparse=False) integer_encoded = integer_encoded.reshape(len(integer_encoded), 1) onehot_encoded = onehot_encoder.fit_transform(integer_encoded) y = onehot_encoded return (y, label_encoder) y, label_encoder = encode_labels(labels['Id']) image_datasets = dict() image_datasets['train'] = WhaleTailDataset(image_folder=train_dir, data_type='train', df=labels, transform=train_data, y=y) image_datasets['test'] = WhaleTailDataset(image_folder=test_dir, data_type='test', transform=test_data) print('Number of training images: ', len(image_datasets['train'])) print('Number of test images: ', len(image_datasets['test']))
code
17109150/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from io import BytesIO from sklearn.preprocessing import LabelEncoder, OneHotEncoder from torchvision import datasets, models, transforms import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch train_on_gpu = torch.cuda.is_available() labels = pd.read_csv('../input/train.csv') data_dir = '../input' train_dir = data_dir + '/train' test_dir = data_dir + '/test' pil2tensor = transforms.ToTensor() tensor2pil = transforms.ToPILImage() pil_image = Image.open(train_dir + '/0a750c2e8.jpg') rgb_image = pil2tensor(pil_image) def plot_image(tensor): pass from io import BytesIO import IPython.display r_image = rgb_image[0] g_image = rgb_image[1] b_image = rgb_image[2] def show_grayscale_image(tensor): f = BytesIO() a = np.uint8(tensor.mul(255).numpy()) Image.fromarray(a).save(f, 'png') def encode_labels(y): values = np.array(y) label_encoder = LabelEncoder() integer_encoded = label_encoder.fit_transform(values) print(values) print(integer_encoded) onehot_encoder = OneHotEncoder(sparse=False) integer_encoded = integer_encoded.reshape(len(integer_encoded), 1) print(integer_encoded) onehot_encoded = onehot_encoder.fit_transform(integer_encoded) print(len(integer_encoded)) print(onehot_encoded) print(len(onehot_encoded[0])) y = onehot_encoded return (y, label_encoder) y, label_encoder = encode_labels(labels['Id'])
code
17109150/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) labels = pd.read_csv('../input/train.csv') num_classes = len(labels['Id'].unique()) print(num_classes)
code
17109150/cell_6
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from torchvision import datasets, models, transforms import matplotlib.pyplot as plt data_dir = '../input' train_dir = data_dir + '/train' test_dir = data_dir + '/test' pil2tensor = transforms.ToTensor() tensor2pil = transforms.ToPILImage() pil_image = Image.open(train_dir + '/0a750c2e8.jpg') rgb_image = pil2tensor(pil_image) def plot_image(tensor): plt.figure() plt.imshow(tensor.numpy().transpose(1, 2, 0)) plt.show() plot_image(rgb_image) print('Image type: ' + str(rgb_image.type())) print('Image size: ' + str(rgb_image.size()))
code
17109150/cell_2
[ "text_plain_output_1.png" ]
import torch train_on_gpu = torch.cuda.is_available() if not train_on_gpu: print('CUDA is not available. Training on CPU ...') else: print('CUDA is available! Training on GPU ...')
code
17109150/cell_11
[ "text_plain_output_1.png" ]
from PIL import Image from io import BytesIO from sklearn.preprocessing import LabelEncoder, OneHotEncoder from torchvision import datasets, models, transforms import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch train_on_gpu = torch.cuda.is_available() labels = pd.read_csv('../input/train.csv') data_dir = '../input' train_dir = data_dir + '/train' test_dir = data_dir + '/test' pil2tensor = transforms.ToTensor() tensor2pil = transforms.ToPILImage() pil_image = Image.open(train_dir + '/0a750c2e8.jpg') rgb_image = pil2tensor(pil_image) def plot_image(tensor): pass from io import BytesIO import IPython.display r_image = rgb_image[0] g_image = rgb_image[1] b_image = rgb_image[2] def show_grayscale_image(tensor): f = BytesIO() a = np.uint8(tensor.mul(255).numpy()) Image.fromarray(a).save(f, 'png') mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] train_data = transforms.Compose([transforms.Resize(256), transforms.RandomResizedCrop(224), transforms.RandomRotation(25), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0), transforms.RandomAffine(degrees=4, translate=None, scale=None, shear=None, resample=False, fillcolor=0), transforms.ToTensor(), transforms.Normalize(mean, std)]) test_data = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean, std)]) def encode_labels(y): values = np.array(y) label_encoder = LabelEncoder() integer_encoded = label_encoder.fit_transform(values) onehot_encoder = OneHotEncoder(sparse=False) integer_encoded = integer_encoded.reshape(len(integer_encoded), 1) onehot_encoded = onehot_encoder.fit_transform(integer_encoded) y = onehot_encoded return (y, label_encoder) y, label_encoder = encode_labels(labels['Id']) image_datasets = dict() image_datasets['train'] = WhaleTailDataset(image_folder=train_dir, data_type='train', df=labels, transform=train_data, y=y) image_datasets['test'] = WhaleTailDataset(image_folder=test_dir, data_type='test', transform=test_data)
code
17109150/cell_19
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from PIL import Image from io import BytesIO from sklearn.preprocessing import LabelEncoder, OneHotEncoder from torch.optim import lr_scheduler from torch.utils.data import DataLoader, Dataset from torchvision import datasets, models, transforms import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch import torch.nn as nn import torch.optim as optim train_on_gpu = torch.cuda.is_available() labels = pd.read_csv('../input/train.csv') num_classes = len(labels['Id'].unique()) data_dir = '../input' train_dir = data_dir + '/train' test_dir = data_dir + '/test' pil2tensor = transforms.ToTensor() tensor2pil = transforms.ToPILImage() pil_image = Image.open(train_dir + '/0a750c2e8.jpg') rgb_image = pil2tensor(pil_image) def plot_image(tensor): pass from io import BytesIO import IPython.display r_image = rgb_image[0] g_image = rgb_image[1] b_image = rgb_image[2] def show_grayscale_image(tensor): f = BytesIO() a = np.uint8(tensor.mul(255).numpy()) Image.fromarray(a).save(f, 'png') mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] train_data = transforms.Compose([transforms.Resize(256), transforms.RandomResizedCrop(224), transforms.RandomRotation(25), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0), transforms.RandomAffine(degrees=4, translate=None, scale=None, shear=None, resample=False, fillcolor=0), transforms.ToTensor(), transforms.Normalize(mean, std)]) test_data = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean, std)]) def encode_labels(y): values = np.array(y) label_encoder = LabelEncoder() integer_encoded = label_encoder.fit_transform(values) onehot_encoder = OneHotEncoder(sparse=False) integer_encoded = integer_encoded.reshape(len(integer_encoded), 1) onehot_encoded = onehot_encoder.fit_transform(integer_encoded) y = onehot_encoded return (y, label_encoder) y, label_encoder = encode_labels(labels['Id']) class WhaleTailDataset(Dataset): def __init__(self, image_folder, data_type='train', df=None, transform=None, y=None): self.image_folder = image_folder self.imgs_list = [img for img in os.listdir(image_folder)] self.data_type = data_type self.transform = transform self.y = y if self.data_type == 'train': self.df = df.values def __len__(self): return len(self.imgs_list) def __getitem__(self, idx): if self.data_type == 'train': img_name = os.path.join(self.image_folder, self.df[idx][0]) label = self.y[idx] elif self.data_type == 'test': img_name = os.path.join(self.image_folder, self.imgs_list[idx]) label = np.zeros((num_classes,)) img = Image.open(img_name).convert('RGB') img = self.transform(img) if self.data_type == 'train': return (img, label) elif self.data_type == 'test': return (img, label, self.imgs_list[idx]) image_datasets = dict() image_datasets['train'] = WhaleTailDataset(image_folder=train_dir, data_type='train', df=labels, transform=train_data, y=y) image_datasets['test'] = WhaleTailDataset(image_folder=test_dir, data_type='test', transform=test_data) train_size = 512 test_size = 32 num_workers = 0 dataloaders = dict() dataloaders['train'] = torch.utils.data.DataLoader(image_datasets['train'], batch_size=train_size, num_workers=num_workers) dataloaders['test'] = torch.utils.data.DataLoader(image_datasets['test'], batch_size=test_size, num_workers=num_workers) model = models.resnet152(pretrained=True) for param in model.parameters(): param.requires_grad = False classifier = nn.Sequential(nn.Linear(2048, 1024), nn.ReLU(), nn.Dropout(0.5), nn.Linear(1024, 512), nn.ReLU(), nn.Dropout(0.5), nn.Linear(512, 5005), nn.LogSoftmax(dim=1)) model.fc = classifier from torch.optim import lr_scheduler num_epochs = 6 learning_rate = 0.001 criterion = nn.BCEWithLogitsLoss() optimizer = optim.Adam(model.fc.parameters(), lr=learning_rate) scheduler = lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1) import matplotlib.pyplot as plt model = model.cuda() train_loss = [] for epoch in range(1, num_epochs + 1): for batch_i, (data, target) in tqdm(enumerate(dataloaders['train']), total=len(dataloaders['train'])): data, target = (data.cuda(), target.cuda()) optimizer.zero_grad() output = model(data) loss = criterion(output, target.float()) train_loss.append(loss.item()) loss.backward() optimizer.step() scheduler.step() sub = pd.read_csv('../input/sample_submission.csv') model.eval() for data, target, name in tqdm(dataloaders['test']): data = data.cuda() output = model(data) output = output.cpu().detach().numpy() for i, (e, n) in enumerate(list(zip(output, name))): sub.loc[sub['Image'] == n, 'Id'] = ' '.join(label_encoder.inverse_transform(e.argsort()[-5:][::-1])) sub.to_csv('submission.csv', index=False)
code
17109150/cell_7
[ "application_vnd.jupyter.stderr_output_9.png", "application_vnd.jupyter.stderr_output_7.png", "application_vnd.jupyter.stderr_output_11.png", "text_plain_output_4.png", "text_plain_output_10.png", "text_plain_output_6.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "text_plain_output_8.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png", "text_plain_output_12.png" ]
from PIL import Image from io import BytesIO from torchvision import datasets, models, transforms import matplotlib.pyplot as plt import numpy as np # linear algebra import torch train_on_gpu = torch.cuda.is_available() data_dir = '../input' train_dir = data_dir + '/train' test_dir = data_dir + '/test' pil2tensor = transforms.ToTensor() tensor2pil = transforms.ToPILImage() pil_image = Image.open(train_dir + '/0a750c2e8.jpg') rgb_image = pil2tensor(pil_image) def plot_image(tensor): pass from io import BytesIO import IPython.display r_image = rgb_image[0] g_image = rgb_image[1] b_image = rgb_image[2] def show_grayscale_image(tensor): f = BytesIO() a = np.uint8(tensor.mul(255).numpy()) Image.fromarray(a).save(f, 'png') IPython.display.display(IPython.display.Image(data=f.getvalue())) show_grayscale_image(torch.cat((r_image, g_image, b_image), 1))
code
17109150/cell_18
[ "image_output_1.png" ]
from PIL import Image from io import BytesIO from sklearn.preprocessing import LabelEncoder, OneHotEncoder from torch.optim import lr_scheduler from torch.utils.data import DataLoader, Dataset from torchvision import datasets, models, transforms import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch import torch.nn as nn import torch.optim as optim train_on_gpu = torch.cuda.is_available() labels = pd.read_csv('../input/train.csv') num_classes = len(labels['Id'].unique()) data_dir = '../input' train_dir = data_dir + '/train' test_dir = data_dir + '/test' pil2tensor = transforms.ToTensor() tensor2pil = transforms.ToPILImage() pil_image = Image.open(train_dir + '/0a750c2e8.jpg') rgb_image = pil2tensor(pil_image) def plot_image(tensor): pass from io import BytesIO import IPython.display r_image = rgb_image[0] g_image = rgb_image[1] b_image = rgb_image[2] def show_grayscale_image(tensor): f = BytesIO() a = np.uint8(tensor.mul(255).numpy()) Image.fromarray(a).save(f, 'png') mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] train_data = transforms.Compose([transforms.Resize(256), transforms.RandomResizedCrop(224), transforms.RandomRotation(25), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0), transforms.RandomAffine(degrees=4, translate=None, scale=None, shear=None, resample=False, fillcolor=0), transforms.ToTensor(), transforms.Normalize(mean, std)]) test_data = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean, std)]) def encode_labels(y): values = np.array(y) label_encoder = LabelEncoder() integer_encoded = label_encoder.fit_transform(values) onehot_encoder = OneHotEncoder(sparse=False) integer_encoded = integer_encoded.reshape(len(integer_encoded), 1) onehot_encoded = onehot_encoder.fit_transform(integer_encoded) y = onehot_encoded return (y, label_encoder) y, label_encoder = encode_labels(labels['Id']) class WhaleTailDataset(Dataset): def __init__(self, image_folder, data_type='train', df=None, transform=None, y=None): self.image_folder = image_folder self.imgs_list = [img for img in os.listdir(image_folder)] self.data_type = data_type self.transform = transform self.y = y if self.data_type == 'train': self.df = df.values def __len__(self): return len(self.imgs_list) def __getitem__(self, idx): if self.data_type == 'train': img_name = os.path.join(self.image_folder, self.df[idx][0]) label = self.y[idx] elif self.data_type == 'test': img_name = os.path.join(self.image_folder, self.imgs_list[idx]) label = np.zeros((num_classes,)) img = Image.open(img_name).convert('RGB') img = self.transform(img) if self.data_type == 'train': return (img, label) elif self.data_type == 'test': return (img, label, self.imgs_list[idx]) image_datasets = dict() image_datasets['train'] = WhaleTailDataset(image_folder=train_dir, data_type='train', df=labels, transform=train_data, y=y) image_datasets['test'] = WhaleTailDataset(image_folder=test_dir, data_type='test', transform=test_data) train_size = 512 test_size = 32 num_workers = 0 dataloaders = dict() dataloaders['train'] = torch.utils.data.DataLoader(image_datasets['train'], batch_size=train_size, num_workers=num_workers) dataloaders['test'] = torch.utils.data.DataLoader(image_datasets['test'], batch_size=test_size, num_workers=num_workers) model = models.resnet152(pretrained=True) for param in model.parameters(): param.requires_grad = False classifier = nn.Sequential(nn.Linear(2048, 1024), nn.ReLU(), nn.Dropout(0.5), nn.Linear(1024, 512), nn.ReLU(), nn.Dropout(0.5), nn.Linear(512, 5005), nn.LogSoftmax(dim=1)) model.fc = classifier from torch.optim import lr_scheduler num_epochs = 6 learning_rate = 0.001 criterion = nn.BCEWithLogitsLoss() optimizer = optim.Adam(model.fc.parameters(), lr=learning_rate) scheduler = lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1) import matplotlib.pyplot as plt model = model.cuda() train_loss = [] for epoch in range(1, num_epochs + 1): for batch_i, (data, target) in tqdm(enumerate(dataloaders['train']), total=len(dataloaders['train'])): data, target = (data.cuda(), target.cuda()) optimizer.zero_grad() output = model(data) loss = criterion(output, target.float()) train_loss.append(loss.item()) loss.backward() optimizer.step() scheduler.step() print(f'Epoch - {epoch} // Training Loss: {np.mean(train_loss):.4f}') print(train_loss) plt.figure() plt.plot(train_loss) plt.show()
code