path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
17109150/cell_15 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from torchvision import datasets, models, transforms
model = models.resnet152(pretrained=True)
for param in model.parameters():
param.requires_grad = False
print(model) | code |
17109150/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
labels = pd.read_csv('../input/train.csv')
labels.head()
print(type(labels)) | code |
17109150/cell_14 | [
"text_plain_output_1.png"
] | from PIL import Image
from io import BytesIO
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import torch
train_on_gpu = torch.cuda.is_available()
labels = pd.read_csv('../input/train.csv')
data_dir = '../input'
train_dir = data_dir + '/train'
test_dir = data_dir + '/test'
pil2tensor = transforms.ToTensor()
tensor2pil = transforms.ToPILImage()
pil_image = Image.open(train_dir + '/0a750c2e8.jpg')
rgb_image = pil2tensor(pil_image)
def plot_image(tensor):
pass
from io import BytesIO
import IPython.display
r_image = rgb_image[0]
g_image = rgb_image[1]
b_image = rgb_image[2]
def show_grayscale_image(tensor):
f = BytesIO()
a = np.uint8(tensor.mul(255).numpy())
Image.fromarray(a).save(f, 'png')
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
train_data = transforms.Compose([transforms.Resize(256), transforms.RandomResizedCrop(224), transforms.RandomRotation(25), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0), transforms.RandomAffine(degrees=4, translate=None, scale=None, shear=None, resample=False, fillcolor=0), transforms.ToTensor(), transforms.Normalize(mean, std)])
test_data = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean, std)])
def encode_labels(y):
values = np.array(y)
label_encoder = LabelEncoder()
integer_encoded = label_encoder.fit_transform(values)
onehot_encoder = OneHotEncoder(sparse=False)
integer_encoded = integer_encoded.reshape(len(integer_encoded), 1)
onehot_encoded = onehot_encoder.fit_transform(integer_encoded)
y = onehot_encoded
return (y, label_encoder)
y, label_encoder = encode_labels(labels['Id'])
image_datasets = dict()
image_datasets['train'] = WhaleTailDataset(image_folder=train_dir, data_type='train', df=labels, transform=train_data, y=y)
image_datasets['test'] = WhaleTailDataset(image_folder=test_dir, data_type='test', transform=test_data)
train_size = 512
test_size = 32
num_workers = 0
dataloaders = dict()
dataloaders['train'] = torch.utils.data.DataLoader(image_datasets['train'], batch_size=train_size, num_workers=num_workers)
dataloaders['test'] = torch.utils.data.DataLoader(image_datasets['test'], batch_size=test_size, num_workers=num_workers)
dataiter = iter(dataloaders['train'])
images, labels = dataiter.next()
print('Batch shape: ', images.size()) | code |
33104188/cell_13 | [
"text_html_output_1.png"
] | from math import sqrt
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import StratifiedKFold
import lightgbm as lgb
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('/kaggle/input/electrical-consumption/train_6BJx641.csv')
test = pd.read_csv('/kaggle/input/electrical-consumption/test_pavJagI.csv')
train['datetime'] = pd.to_datetime(train['datetime'])
test['datetime'] = pd.to_datetime(test['datetime'])
def booleancon(x):
if x == True:
return 1
else:
return 0
def var2(x):
if x == 'A':
return 1
elif x == 'B':
return 2
else:
return 3
def time_pr(train):
train = add_datepart(train, 'datetime', drop=True, time=True)
train['datetimeIs_month_end'] = train['datetimeIs_month_end'].apply(booleancon)
train['datetimeIs_month_start'] = train['datetimeIs_month_start'].apply(booleancon)
train['datetimeIs_quarter_start'] = train['datetimeIs_quarter_start'].apply(booleancon)
train['datetimeIs_quarter_end'] = train['datetimeIs_quarter_end'].apply(booleancon)
train['datetimeIs_year_start'] = train['datetimeIs_quarter_start'].apply(booleancon)
train['datetimeIs_year_end'] = train['datetimeIs_quarter_end'].apply(booleancon)
train['var2'] = train['var2'].apply(var2)
return train
pd.set_option('display.max_columns', 1000)
pd.set_option('display.max_rows', 1000)
pd.set_option('display.max_colwidth', 199)
train = time_pr(train)
test = time_pr(test)
col = []
for i in train.columns:
if i != 'electricity_consumption' and i != 'ID' and (i != 'datetime'):
col.append(i)
X = train[col].values
Y = train['electricity_consumption'].values
import concurrent.futures
import lightgbm as lgb
import numpy as np
from sklearn.model_selection._split import KFold
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, classification_report, confusion_matrix
kf = StratifiedKFold(n_splits=10, random_state=None, shuffle=True)
index = []
for train_index, test_index in kf.split(X, Y):
index.append([train_index, test_index])
def model(train_index, test_index, XX, YY):
X_train, X_test = (XX[train_index], XX[test_index])
Y_train, Y_test = (YY[train_index], YY[test_index])
d_train = lgb.Dataset(X_train, label=Y_train)
params = {}
params['application'] = 'root_mean_squared_error'
params['num_boost_round'] = 800
params['learning_rate'] = 0.01
params['boosting_type'] = 'gbdt'
params['metric'] = 'rmse'
params['sub_feature'] = 0.833
params['num_leaves'] = 207
params['min_split_gain'] = 0.05
params['min_child_weight'] = 27
params['max_depth'] = -1
params['num_threads'] = 10
params['max_bin'] = 50
params['lambda_l2'] = 0.1
params['lambda_l1'] = 0.3
params['feature_fraction'] = 0.833
params['bagging_fraction'] = 0.979
clf = lgb.train(params, d_train, 1000)
pred = clf.predict(X_test)
from sklearn.metrics import mean_squared_error
from math import sqrt
rmae = sqrt(mean_squared_error(pred, Y_test))
return rmae
with concurrent.futures.ThreadPoolExecutor() as executor:
future1 = executor.submit(model, index[0][0], index[0][1], X, Y)
return_value1 = future1.result()
future2 = executor.submit(model, index[1][0], index[1][1], X, Y)
return_value2 = future2.result()
future3 = executor.submit(model, index[2][0], index[2][1], X, Y)
return_value3 = future3.result()
future4 = executor.submit(model, index[3][0], index[3][1], X, Y)
return_value4 = future4.result()
future5 = executor.submit(model, index[4][0], index[4][1], X, Y)
return_value5 = future5.result()
future6 = executor.submit(model, index[5][0], index[5][1], X, Y)
return_value6 = future6.result()
future7 = executor.submit(model, index[6][0], index[6][1], X, Y)
return_value7 = future7.result()
future8 = executor.submit(model, index[7][0], index[7][1], X, Y)
return_value8 = future8.result()
future9 = executor.submit(model, index[8][0], index[8][1], X, Y)
return_value9 = future9.result()
future10 = executor.submit(model, index[9][0], index[9][1], X, Y)
return_value10 = future10.result()
rmae = [return_value1, return_value2, return_value3, return_value4, return_value5, return_value6, return_value7, return_value8, return_value9, return_value10]
d_train = lgb.Dataset(X, label=Y)
params = {}
params['application'] = 'root_mean_squared_error'
params['num_boost_round'] = 800
params['learning_rate'] = 0.01
params['boosting_type'] = 'gbdt'
params['metric'] = 'rmse'
params['sub_feature'] = 0.833
params['num_leaves'] = 207
params['min_split_gain'] = 0.05
params['min_child_weight'] = 27
params['max_depth'] = -1
params['num_threads'] = 10
params['max_bin'] = 50
params['lambda_l2'] = 0.1
params['lambda_l1'] = 0.3
params['feature_fraction'] = 0.833
params['bagging_fraction'] = 0.979
clf = lgb.train(params, d_train, 1000) | code |
33104188/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('/kaggle/input/electrical-consumption/train_6BJx641.csv')
test = pd.read_csv('/kaggle/input/electrical-consumption/test_pavJagI.csv')
train.head() | code |
33104188/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
33104188/cell_18 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('/kaggle/input/electrical-consumption/train_6BJx641.csv')
test = pd.read_csv('/kaggle/input/electrical-consumption/test_pavJagI.csv')
train['datetime'] = pd.to_datetime(train['datetime'])
test['datetime'] = pd.to_datetime(test['datetime'])
def booleancon(x):
if x == True:
return 1
else:
return 0
def var2(x):
if x == 'A':
return 1
elif x == 'B':
return 2
else:
return 3
def time_pr(train):
train = add_datepart(train, 'datetime', drop=True, time=True)
train['datetimeIs_month_end'] = train['datetimeIs_month_end'].apply(booleancon)
train['datetimeIs_month_start'] = train['datetimeIs_month_start'].apply(booleancon)
train['datetimeIs_quarter_start'] = train['datetimeIs_quarter_start'].apply(booleancon)
train['datetimeIs_quarter_end'] = train['datetimeIs_quarter_end'].apply(booleancon)
train['datetimeIs_year_start'] = train['datetimeIs_quarter_start'].apply(booleancon)
train['datetimeIs_year_end'] = train['datetimeIs_quarter_end'].apply(booleancon)
train['var2'] = train['var2'].apply(var2)
return train
pd.set_option('display.max_columns', 1000)
pd.set_option('display.max_rows', 1000)
pd.set_option('display.max_colwidth', 199)
train = time_pr(train)
test = time_pr(test)
col = []
for i in train.columns:
if i != 'electricity_consumption' and i != 'ID' and (i != 'datetime'):
col.append(i)
col | code |
33104188/cell_8 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('/kaggle/input/electrical-consumption/train_6BJx641.csv')
test = pd.read_csv('/kaggle/input/electrical-consumption/test_pavJagI.csv')
train['datetime'] = pd.to_datetime(train['datetime'])
test['datetime'] = pd.to_datetime(test['datetime'])
def booleancon(x):
if x == True:
return 1
else:
return 0
def var2(x):
if x == 'A':
return 1
elif x == 'B':
return 2
else:
return 3
def time_pr(train):
train = add_datepart(train, 'datetime', drop=True, time=True)
train['datetimeIs_month_end'] = train['datetimeIs_month_end'].apply(booleancon)
train['datetimeIs_month_start'] = train['datetimeIs_month_start'].apply(booleancon)
train['datetimeIs_quarter_start'] = train['datetimeIs_quarter_start'].apply(booleancon)
train['datetimeIs_quarter_end'] = train['datetimeIs_quarter_end'].apply(booleancon)
train['datetimeIs_year_start'] = train['datetimeIs_quarter_start'].apply(booleancon)
train['datetimeIs_year_end'] = train['datetimeIs_quarter_end'].apply(booleancon)
train['var2'] = train['var2'].apply(var2)
return train
pd.set_option('display.max_columns', 1000)
pd.set_option('display.max_rows', 1000)
pd.set_option('display.max_colwidth', 199)
train = time_pr(train)
test = time_pr(test)
train | code |
33104188/cell_12 | [
"text_html_output_1.png"
] | from math import sqrt
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import StratifiedKFold
import lightgbm as lgb
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train = pd.read_csv('/kaggle/input/electrical-consumption/train_6BJx641.csv')
test = pd.read_csv('/kaggle/input/electrical-consumption/test_pavJagI.csv')
train['datetime'] = pd.to_datetime(train['datetime'])
test['datetime'] = pd.to_datetime(test['datetime'])
def booleancon(x):
if x == True:
return 1
else:
return 0
def var2(x):
if x == 'A':
return 1
elif x == 'B':
return 2
else:
return 3
def time_pr(train):
train = add_datepart(train, 'datetime', drop=True, time=True)
train['datetimeIs_month_end'] = train['datetimeIs_month_end'].apply(booleancon)
train['datetimeIs_month_start'] = train['datetimeIs_month_start'].apply(booleancon)
train['datetimeIs_quarter_start'] = train['datetimeIs_quarter_start'].apply(booleancon)
train['datetimeIs_quarter_end'] = train['datetimeIs_quarter_end'].apply(booleancon)
train['datetimeIs_year_start'] = train['datetimeIs_quarter_start'].apply(booleancon)
train['datetimeIs_year_end'] = train['datetimeIs_quarter_end'].apply(booleancon)
train['var2'] = train['var2'].apply(var2)
return train
pd.set_option('display.max_columns', 1000)
pd.set_option('display.max_rows', 1000)
pd.set_option('display.max_colwidth', 199)
train = time_pr(train)
test = time_pr(test)
col = []
for i in train.columns:
if i != 'electricity_consumption' and i != 'ID' and (i != 'datetime'):
col.append(i)
X = train[col].values
Y = train['electricity_consumption'].values
import concurrent.futures
import lightgbm as lgb
import numpy as np
from sklearn.model_selection._split import KFold
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, classification_report, confusion_matrix
kf = StratifiedKFold(n_splits=10, random_state=None, shuffle=True)
index = []
for train_index, test_index in kf.split(X, Y):
index.append([train_index, test_index])
def model(train_index, test_index, XX, YY):
X_train, X_test = (XX[train_index], XX[test_index])
Y_train, Y_test = (YY[train_index], YY[test_index])
d_train = lgb.Dataset(X_train, label=Y_train)
params = {}
params['application'] = 'root_mean_squared_error'
params['num_boost_round'] = 800
params['learning_rate'] = 0.01
params['boosting_type'] = 'gbdt'
params['metric'] = 'rmse'
params['sub_feature'] = 0.833
params['num_leaves'] = 207
params['min_split_gain'] = 0.05
params['min_child_weight'] = 27
params['max_depth'] = -1
params['num_threads'] = 10
params['max_bin'] = 50
params['lambda_l2'] = 0.1
params['lambda_l1'] = 0.3
params['feature_fraction'] = 0.833
params['bagging_fraction'] = 0.979
clf = lgb.train(params, d_train, 1000)
pred = clf.predict(X_test)
from sklearn.metrics import mean_squared_error
from math import sqrt
rmae = sqrt(mean_squared_error(pred, Y_test))
return rmae
with concurrent.futures.ThreadPoolExecutor() as executor:
future1 = executor.submit(model, index[0][0], index[0][1], X, Y)
return_value1 = future1.result()
future2 = executor.submit(model, index[1][0], index[1][1], X, Y)
return_value2 = future2.result()
future3 = executor.submit(model, index[2][0], index[2][1], X, Y)
return_value3 = future3.result()
future4 = executor.submit(model, index[3][0], index[3][1], X, Y)
return_value4 = future4.result()
future5 = executor.submit(model, index[4][0], index[4][1], X, Y)
return_value5 = future5.result()
future6 = executor.submit(model, index[5][0], index[5][1], X, Y)
return_value6 = future6.result()
future7 = executor.submit(model, index[6][0], index[6][1], X, Y)
return_value7 = future7.result()
future8 = executor.submit(model, index[7][0], index[7][1], X, Y)
return_value8 = future8.result()
future9 = executor.submit(model, index[8][0], index[8][1], X, Y)
return_value9 = future9.result()
future10 = executor.submit(model, index[9][0], index[9][1], X, Y)
return_value10 = future10.result()
rmae = [return_value1, return_value2, return_value3, return_value4, return_value5, return_value6, return_value7, return_value8, return_value9, return_value10]
print(sum(rmae) / len(rmae)) | code |
74067618/cell_9 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
netflix = pd.read_csv('../input/tcs-share/TCS.NS (1).csv')
netflix = netflix[['Date', 'Close']]
netflix.index = pd.DatetimeIndex(netflix['Date'])
netflix.drop(['Date'], axis=1, inplace=True)
netflix = netflix.asfreq('d')
netflix.index
netflix = netflix.fillna(method='ffill')
netflix.head() | code |
74067618/cell_4 | [
"text_html_output_1.png"
] | !pip install pycaret-ts-alpha | code |
74067618/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
netflix = pd.read_csv('../input/tcs-share/TCS.NS (1).csv')
netflix = netflix[['Date', 'Close']]
netflix.index = pd.DatetimeIndex(netflix['Date'])
netflix.drop(['Date'], axis=1, inplace=True)
netflix.head() | code |
74067618/cell_2 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd
netflix = pd.read_csv('../input/tcs-share/TCS.NS (1).csv')
netflix = netflix[['Date', 'Close']]
netflix.head() | code |
74067618/cell_11 | [
"text_plain_output_1.png"
] | from sktime.utils.plotting import plot_series
import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd
netflix = pd.read_csv('../input/tcs-share/TCS.NS (1).csv')
netflix = netflix[['Date', 'Close']]
netflix.index = pd.DatetimeIndex(netflix['Date'])
netflix.drop(['Date'], axis=1, inplace=True)
netflix = netflix.asfreq('d')
netflix.index
netflix = netflix.fillna(method='ffill')
data = netflix.Close
data
import matplotlib.pyplot as plt
_ = plot_series(data)
plt.xticks(rotation=90)
plt.grid() | code |
74067618/cell_1 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd
netflix = pd.read_csv('../input/tcs-share/TCS.NS (1).csv')
netflix.head() | code |
74067618/cell_7 | [
"image_output_1.png"
] | import pandas as pd
import pandas as pd
netflix = pd.read_csv('../input/tcs-share/TCS.NS (1).csv')
netflix = netflix[['Date', 'Close']]
netflix.index = pd.DatetimeIndex(netflix['Date'])
netflix.drop(['Date'], axis=1, inplace=True)
netflix = netflix.asfreq('d')
netflix.index | code |
74067618/cell_8 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
netflix = pd.read_csv('../input/tcs-share/TCS.NS (1).csv')
netflix = netflix[['Date', 'Close']]
netflix.index = pd.DatetimeIndex(netflix['Date'])
netflix.drop(['Date'], axis=1, inplace=True)
netflix = netflix.asfreq('d')
netflix.index
netflix.head() | code |
74067618/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
netflix = pd.read_csv('../input/tcs-share/TCS.NS (1).csv')
netflix = netflix[['Date', 'Close']]
netflix.info() | code |
74067618/cell_10 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd
netflix = pd.read_csv('../input/tcs-share/TCS.NS (1).csv')
netflix = netflix[['Date', 'Close']]
netflix.index = pd.DatetimeIndex(netflix['Date'])
netflix.drop(['Date'], axis=1, inplace=True)
netflix = netflix.asfreq('d')
netflix.index
netflix = netflix.fillna(method='ffill')
data = netflix.Close
data | code |
74067618/cell_12 | [
"text_plain_output_1.png"
] | from pycaret.internal.pycaret_experiment import TimeSeriesExperiment
import pandas as pd
import pandas as pd
netflix = pd.read_csv('../input/tcs-share/TCS.NS (1).csv')
netflix = netflix[['Date', 'Close']]
netflix.index = pd.DatetimeIndex(netflix['Date'])
netflix.drop(['Date'], axis=1, inplace=True)
netflix = netflix.asfreq('d')
netflix.index
netflix = netflix.fillna(method='ffill')
data = netflix.Close
data
exp = TimeSeriesExperiment()
exp.setup(data=data, session_id=42, fh=365) | code |
74067618/cell_5 | [
"text_html_output_1.png"
] | from pycaret.internal.pycaret_experiment import TimeSeriesExperiment
from sktime.utils.plotting import plot_series | code |
18140030/cell_13 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader
import matplotlib.image as Image
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.image as Image
import os
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
data_dir = '../input'
train_dir = data_dir + '/train/train'
test_dir = data_dir + '/test/test'
labels = pd.read_csv(data_dir + '/train.csv')
train, valid = train_test_split(labels, stratify=labels.has_cactus, test_size=0.2)
num_epochs = 25
num_classes = 2
batch_size = 128
learning_rate = 0.0001
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
device
class cactData(Dataset):
def __init__(self, split_data, data_root='./', transform=None):
super().__init__()
self.df = split_data.values
self.data_root = data_root
self.transform = transform
def __len__(self):
return len(self.df)
def __getitem__(self, index):
img_name, label = self.df[index]
img_path = os.path.join(self.data_root, img_name)
image = Image.imread(img_path)
if self.transform is not None:
image = self.transform(image)
return (image, label)
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
train_transf = transforms.Compose([transforms.ToPILImage(), transforms.ToTensor()])
valid_transf = transforms.Compose([transforms.ToPILImage(), transforms.ToTensor()])
train_data = cactData(train, train_dir, train_transf)
valid_data = cactData(valid, train_dir, valid_transf)
train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True, num_workers=0)
valid_loader = DataLoader(dataset=valid_data, batch_size=batch_size // 2, shuffle=False, num_workers=0)
class CactCNN(nn.Module):
def __init__(self):
super(CactCNN, self).__init__()
self.conv1 = nn.Sequential(nn.Conv2d(3, 32, 4, 2, 0), nn.BatchNorm2d(32), nn.ReLU())
self.conv2 = nn.Sequential(nn.Conv2d(32, 64, 3, 2, 0), nn.BatchNorm2d(64), nn.ReLU())
self.conv3 = nn.Sequential(nn.Conv2d(64, 128, 3, 2, 0), nn.BatchNorm2d(128), nn.ReLU())
self.conv4 = nn.Sequential(nn.Conv2d(128, 256, 3, 2, 0), nn.BatchNorm2d(256), nn.ReLU())
self.fc = nn.Sequential(nn.Linear(256 * 1 * 1, 1024), nn.ReLU(), nn.Dropout(p=0.2), nn.Linear(1024, 2))
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = x.view(x.shape[0], -1)
x = self.fc(x)
return x
model = CactCNN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
out = model(images)
loss = criterion(out, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Epoch: {}/{}, Loss: {}'.format(epoch + 1, num_epochs, loss.item())) | code |
18140030/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data_dir = '../input'
train_dir = data_dir + '/train/train'
test_dir = data_dir + '/test/test'
labels = pd.read_csv(data_dir + '/train.csv')
balance = labels['has_cactus'].value_counts()
balance | code |
18140030/cell_6 | [
"text_plain_output_1.png"
] | import torch
num_epochs = 25
num_classes = 2
batch_size = 128
learning_rate = 0.0001
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
device | code |
18140030/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.image as Image
import os
print(os.listdir('../input'))
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms | code |
18140030/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data_dir = '../input'
train_dir = data_dir + '/train/train'
test_dir = data_dir + '/test/test'
labels = pd.read_csv(data_dir + '/train.csv')
labels.head() | code |
18140030/cell_14 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader
import matplotlib.image as Image
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.image as Image
import os
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
data_dir = '../input'
train_dir = data_dir + '/train/train'
test_dir = data_dir + '/test/test'
labels = pd.read_csv(data_dir + '/train.csv')
train, valid = train_test_split(labels, stratify=labels.has_cactus, test_size=0.2)
num_epochs = 25
num_classes = 2
batch_size = 128
learning_rate = 0.0001
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
device
class cactData(Dataset):
def __init__(self, split_data, data_root='./', transform=None):
super().__init__()
self.df = split_data.values
self.data_root = data_root
self.transform = transform
def __len__(self):
return len(self.df)
def __getitem__(self, index):
img_name, label = self.df[index]
img_path = os.path.join(self.data_root, img_name)
image = Image.imread(img_path)
if self.transform is not None:
image = self.transform(image)
return (image, label)
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
train_transf = transforms.Compose([transforms.ToPILImage(), transforms.ToTensor()])
valid_transf = transforms.Compose([transforms.ToPILImage(), transforms.ToTensor()])
train_data = cactData(train, train_dir, train_transf)
valid_data = cactData(valid, train_dir, valid_transf)
train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True, num_workers=0)
valid_loader = DataLoader(dataset=valid_data, batch_size=batch_size // 2, shuffle=False, num_workers=0)
class CactCNN(nn.Module):
def __init__(self):
super(CactCNN, self).__init__()
self.conv1 = nn.Sequential(nn.Conv2d(3, 32, 4, 2, 0), nn.BatchNorm2d(32), nn.ReLU())
self.conv2 = nn.Sequential(nn.Conv2d(32, 64, 3, 2, 0), nn.BatchNorm2d(64), nn.ReLU())
self.conv3 = nn.Sequential(nn.Conv2d(64, 128, 3, 2, 0), nn.BatchNorm2d(128), nn.ReLU())
self.conv4 = nn.Sequential(nn.Conv2d(128, 256, 3, 2, 0), nn.BatchNorm2d(256), nn.ReLU())
self.fc = nn.Sequential(nn.Linear(256 * 1 * 1, 1024), nn.ReLU(), nn.Dropout(p=0.2), nn.Linear(1024, 2))
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = x.view(x.shape[0], -1)
x = self.fc(x)
return x
model = CactCNN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
out = model(images)
loss = criterion(out, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in valid_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy: {} %'.format(100 * correct / total)) | code |
18140030/cell_12 | [
"text_html_output_1.png"
] | from torch.utils.data import Dataset, DataLoader
import matplotlib.image as Image
import os
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.image as Image
import os
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms as transforms
num_epochs = 25
num_classes = 2
batch_size = 128
learning_rate = 0.0001
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
device
class cactData(Dataset):
def __init__(self, split_data, data_root='./', transform=None):
super().__init__()
self.df = split_data.values
self.data_root = data_root
self.transform = transform
def __len__(self):
return len(self.df)
def __getitem__(self, index):
img_name, label = self.df[index]
img_path = os.path.join(self.data_root, img_name)
image = Image.imread(img_path)
if self.transform is not None:
image = self.transform(image)
return (image, label)
class CactCNN(nn.Module):
def __init__(self):
super(CactCNN, self).__init__()
self.conv1 = nn.Sequential(nn.Conv2d(3, 32, 4, 2, 0), nn.BatchNorm2d(32), nn.ReLU())
self.conv2 = nn.Sequential(nn.Conv2d(32, 64, 3, 2, 0), nn.BatchNorm2d(64), nn.ReLU())
self.conv3 = nn.Sequential(nn.Conv2d(64, 128, 3, 2, 0), nn.BatchNorm2d(128), nn.ReLU())
self.conv4 = nn.Sequential(nn.Conv2d(128, 256, 3, 2, 0), nn.BatchNorm2d(256), nn.ReLU())
self.fc = nn.Sequential(nn.Linear(256 * 1 * 1, 1024), nn.ReLU(), nn.Dropout(p=0.2), nn.Linear(1024, 2))
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = x.view(x.shape[0], -1)
x = self.fc(x)
return x
model = CactCNN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
print(device) | code |
122256475/cell_13 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
path = '/kaggle/input/data/'
file = path + 'BBox_List_2017.csv'
Bbox = pd.read_csv(file)
Bbox = Bbox.drop(columns=['Unnamed: 6', 'Unnamed: 7', 'Unnamed: 8'])
Bbox
Bbox.rename(columns={'Finding Label': 'Diagnosis'}, inplace=True)
path = '/kaggle/input/data/'
file = path + 'Data_Entry_2017.csv'
Data_entry = pd.read_csv(file)
Data_entry = Data_entry.drop(columns=['Unnamed: 11'])
Data_entry
Data_entry.rename(columns={'Finding Labels': 'Specific Diagnosis'}, inplace=True)
chart = sns.countplot(x = "Diagnosis", data = Bbox)
labels = chart.get_xticklabels()
chart.set_xticklabels(labels, rotation = 45, horizontalalignment='right')
sns.pairplot(Data_entry) | code |
122256475/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
path = '/kaggle/input/data/'
file = path + 'BBox_List_2017.csv'
Bbox = pd.read_csv(file)
Bbox = Bbox.drop(columns=['Unnamed: 6', 'Unnamed: 7', 'Unnamed: 8'])
Bbox
path = '/kaggle/input/data/'
file = path + 'Data_Entry_2017.csv'
Data_entry = pd.read_csv(file)
Data_entry = Data_entry.drop(columns=['Unnamed: 11'])
Data_entry | code |
122256475/cell_6 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
path = '/kaggle/input/data/'
file = path + 'BBox_List_2017.csv'
Bbox = pd.read_csv(file)
Bbox = Bbox.drop(columns=['Unnamed: 6', 'Unnamed: 7', 'Unnamed: 8'])
Bbox
Bbox.rename(columns={'Finding Label': 'Diagnosis'}, inplace=True)
chart = sns.countplot(x='Diagnosis', data=Bbox)
labels = chart.get_xticklabels()
chart.set_xticklabels(labels, rotation=45, horizontalalignment='right') | code |
122256475/cell_2 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
path = '/kaggle/input/data/'
file = path + 'BBox_List_2017.csv'
print(file)
Bbox = pd.read_csv(file)
Bbox = Bbox.drop(columns=['Unnamed: 6', 'Unnamed: 7', 'Unnamed: 8'])
Bbox | code |
122256475/cell_11 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
path = '/kaggle/input/data/'
file = path + 'BBox_List_2017.csv'
Bbox = pd.read_csv(file)
Bbox = Bbox.drop(columns=['Unnamed: 6', 'Unnamed: 7', 'Unnamed: 8'])
Bbox
Bbox.rename(columns={'Finding Label': 'Diagnosis'}, inplace=True)
path = '/kaggle/input/data/'
file = path + 'Data_Entry_2017.csv'
Data_entry = pd.read_csv(file)
Data_entry = Data_entry.drop(columns=['Unnamed: 11'])
Data_entry
Data_entry.rename(columns={'Finding Labels': 'Specific Diagnosis'}, inplace=True)
chart = sns.countplot(x = "Diagnosis", data = Bbox)
labels = chart.get_xticklabels()
chart.set_xticklabels(labels, rotation = 45, horizontalalignment='right')
sns.violinplot(x='Patient Gender', y='Patient Age', data=Data_entry) | code |
122256475/cell_7 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
path = '/kaggle/input/data/'
file = path + 'BBox_List_2017.csv'
Bbox = pd.read_csv(file)
Bbox = Bbox.drop(columns=['Unnamed: 6', 'Unnamed: 7', 'Unnamed: 8'])
Bbox
Bbox.rename(columns={'Finding Label': 'Diagnosis'}, inplace=True)
path = '/kaggle/input/data/'
file = path + 'Data_Entry_2017.csv'
Data_entry = pd.read_csv(file)
Data_entry = Data_entry.drop(columns=['Unnamed: 11'])
Data_entry
Data_entry.rename(columns={'Finding Labels': 'Specific Diagnosis'}, inplace=True)
chart = sns.countplot(x = "Diagnosis", data = Bbox)
labels = chart.get_xticklabels()
chart.set_xticklabels(labels, rotation = 45, horizontalalignment='right')
sns.violinplot(x='Patient Gender', y='Patient Age', data=Data_entry) | code |
122256475/cell_8 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
path = '/kaggle/input/data/'
file = path + 'BBox_List_2017.csv'
Bbox = pd.read_csv(file)
Bbox = Bbox.drop(columns=['Unnamed: 6', 'Unnamed: 7', 'Unnamed: 8'])
Bbox
path = '/kaggle/input/data/'
file = path + 'Data_Entry_2017.csv'
Data_entry = pd.read_csv(file)
Data_entry = Data_entry.drop(columns=['Unnamed: 11'])
Data_entry
Data_entry.rename(columns={'Finding Labels': 'Specific Diagnosis'}, inplace=True)
Data_entry[Data_entry['Patient Age'] > 120] | code |
122256475/cell_3 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
path = '/kaggle/input/data/'
file = path + 'BBox_List_2017.csv'
Bbox = pd.read_csv(file)
Bbox = Bbox.drop(columns=['Unnamed: 6', 'Unnamed: 7', 'Unnamed: 8'])
Bbox
Bbox.rename(columns={'Finding Label': 'Diagnosis'}, inplace=True)
Bbox.head(5) | code |
122256475/cell_10 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
path = '/kaggle/input/data/'
file = path + 'BBox_List_2017.csv'
Bbox = pd.read_csv(file)
Bbox = Bbox.drop(columns=['Unnamed: 6', 'Unnamed: 7', 'Unnamed: 8'])
Bbox
path = '/kaggle/input/data/'
file = path + 'Data_Entry_2017.csv'
Data_entry = pd.read_csv(file)
Data_entry = Data_entry.drop(columns=['Unnamed: 11'])
Data_entry
Data_entry.rename(columns={'Finding Labels': 'Specific Diagnosis'}, inplace=True)
Data_entry[Data_entry['Patient Age'] > 120] | code |
122256475/cell_12 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
path = '/kaggle/input/data/'
file = path + 'BBox_List_2017.csv'
Bbox = pd.read_csv(file)
Bbox = Bbox.drop(columns=['Unnamed: 6', 'Unnamed: 7', 'Unnamed: 8'])
Bbox
Bbox.rename(columns={'Finding Label': 'Diagnosis'}, inplace=True)
path = '/kaggle/input/data/'
file = path + 'Data_Entry_2017.csv'
Data_entry = pd.read_csv(file)
Data_entry = Data_entry.drop(columns=['Unnamed: 11'])
Data_entry
Data_entry.rename(columns={'Finding Labels': 'Specific Diagnosis'}, inplace=True)
chart = sns.countplot(x = "Diagnosis", data = Bbox)
labels = chart.get_xticklabels()
chart.set_xticklabels(labels, rotation = 45, horizontalalignment='right')
sns.pairplot(Bbox) | code |
122256475/cell_5 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
path = '/kaggle/input/data/'
file = path + 'BBox_List_2017.csv'
Bbox = pd.read_csv(file)
Bbox = Bbox.drop(columns=['Unnamed: 6', 'Unnamed: 7', 'Unnamed: 8'])
Bbox
path = '/kaggle/input/data/'
file = path + 'Data_Entry_2017.csv'
Data_entry = pd.read_csv(file)
Data_entry = Data_entry.drop(columns=['Unnamed: 11'])
Data_entry
Data_entry.rename(columns={'Finding Labels': 'Specific Diagnosis'}, inplace=True)
Data_entry.head(5) | code |
89142178/cell_4 | [
"text_plain_output_3.png",
"text_plain_output_2.png",
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
articles = pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/articles.csv')
customers = pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/customers.csv')
train_data = pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/transactions_train.csv')
print(customers['FN'].unique())
print(customers['Active'].unique())
print(customers['club_member_status'].unique())
print(customers['fashion_news_frequency'].unique())
print(customers['age'].unique()) | code |
89142178/cell_2 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
articles = pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/articles.csv')
customers = pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/customers.csv')
train_data = pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/transactions_train.csv')
print('Articles:')
print(articles.shape)
print(articles.keys())
print(articles.head())
print('')
print('Customers:')
print(customers.head())
print(customers.shape)
print(customers.keys())
print('')
print('Train_data:')
print(train_data.shape)
print(train_data.keys())
print(train_data.head())
print('') | code |
89142178/cell_3 | [
"text_plain_output_4.png",
"text_plain_output_3.png",
"text_plain_output_2.png",
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
articles = pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/articles.csv')
customers = pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/customers.csv')
train_data = pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/transactions_train.csv')
print('Articles:')
print(articles.isnull().sum())
print('')
print('Customers:')
print(customers.isnull().sum())
print('')
print('Train_data:')
print(train_data.isnull().sum()) | code |
89142178/cell_5 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
articles = pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/articles.csv')
customers = pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/customers.csv')
train_data = pd.read_csv('../input/h-and-m-personalized-fashion-recommendations/transactions_train.csv')
customers_clean = customers
customers_clean['FN'].fillna(0, inplace=True)
customers_clean['FN'].fillna(0, inplace=True)
customers_clean[customers_clean['fashion_news_frequency'] == 'NONE'] = 'None'
customers_age_compare = customers_clean.dropna(subset=['age'])
customers_age_compare = customers_age_compare[customers_age_compare['age'] != 'None']
print(customers_age_compare['age'].unique())
print('')
print(customers_clean['FN'].unique())
print(customers_clean['Active'].unique())
print(customers_clean['club_member_status'].unique())
print(customers_clean['fashion_news_frequency'].unique())
print(customers_clean['age'].unique())
print('')
print(customers_clean.head()) | code |
128042254/cell_21 | [
"text_html_output_1.png"
] | from sklearn.ensemble import GradientBoostingRegressor, VotingRegressor
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv')
df.isnull().sum()
df.isnull().sum()
def model(model, x_train, y_train, x_test, y_test):
mod = model
mod_fit = mod.fit(x_train, y_train)
y_pred = mod_fit.predict(x_test)
df_model = pd.DataFrame({'Test': y_test, 'Predict': y_pred})
model(GradientBoostingRegressor(), X_train, y_train, X_test, y_test) | code |
128042254/cell_9 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv')
df.isnull().sum()
df.isnull().sum() | code |
128042254/cell_20 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LassoCV, RidgeCV, LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv')
df.isnull().sum()
df.isnull().sum()
def model(model, x_train, y_train, x_test, y_test):
mod = model
mod_fit = mod.fit(x_train, y_train)
y_pred = mod_fit.predict(x_test)
df_model = pd.DataFrame({'Test': y_test, 'Predict': y_pred})
model(LinearRegression(), X_train, y_train, X_test, y_test) | code |
128042254/cell_6 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv')
df.info() | code |
128042254/cell_11 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
df = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv')
df.isnull().sum()
df.isnull().sum()
plt.figure(figsize=(16, 16))
sns.heatmap(df.corr(), annot=True, fmt='.1f') | code |
128042254/cell_1 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, RepeatedKFold
from sklearn.ensemble import GradientBoostingRegressor, VotingRegressor
from sklearn.linear_model import LassoCV, RidgeCV, LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
sns.set(rc={'figure.figsize': [10, 10]}, font_scale=1.2)
import warnings
warnings.filterwarnings('ignore') | code |
128042254/cell_7 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv')
df.isnull().sum() | code |
128042254/cell_3 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv')
df | code |
128042254/cell_14 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
df = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv')
df.isnull().sum()
df.isnull().sum()
df.columns | code |
128042254/cell_22 | [
"image_output_1.png"
] | from sklearn.linear_model import LassoCV, RidgeCV, LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from sklearn.model_selection import train_test_split, RepeatedKFold
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
df = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv')
df.isnull().sum()
df.isnull().sum()
def model(model, x_train, y_train, x_test, y_test):
mod = model
mod_fit = mod.fit(x_train, y_train)
y_pred = mod_fit.predict(x_test)
df_model = pd.DataFrame({'Test': y_test, 'Predict': y_pred})
model(LassoCV(alphas=np.arange(0, 1, 0.01), cv=RepeatedKFold(n_splits=10, n_repeats=3, random_state=1), n_jobs=-1), X_train, y_train, X_test, y_test) | code |
128042254/cell_10 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv')
df.isnull().sum()
df.isnull().sum()
df.describe() | code |
128042254/cell_12 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
df = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv')
df.isnull().sum()
df.isnull().sum()
sns.barplot(df) | code |
128042254/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv')
for col in df.columns:
print(col + '\n------')
print(df[col].value_counts())
print('---------------------') | code |
73069551/cell_19 | [
"text_plain_output_1.png"
] | from sklearn import datasets
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
import plotly.express as px
class CustomLinearRegression:
def __init__(self, learning_rate=0.1, n_iters=100, regularization=None, regularization_alpha=0.1):
self.lr = learning_rate
self.n_iters = n_iters
self.weights = None
self.bias = None
self.regularization = regularization
self.regularization_alpha = regularization_alpha
def fit(self, X, y):
n_samples, n_features = X.shape
self.weights = np.zeros(n_features)
self.bias = 0
for _ in range(self.n_iters):
y_predicted = self.predict(X)
dw = (X.T * (y_predicted - y)).T.mean(axis=0)
db = (y_predicted - y).mean(axis=0)
if self.regularization == 'L1':
if self.weights.any() != 0:
dw += self.regularization_alpha * (self.weights / np.absolute(self.weights))
elif self.regularization == 'L2':
dw += self.regularization_alpha * (2 * self.weights)
self.weights -= self.lr * dw
self.bias -= self.lr * db
def predict(self, X):
return X @ self.weights + self.bias
X, y = datasets.load_diabetes(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
df = pd.DataFrame(columns=['Number of iterations', 'MSE', 'Regularization', 'Average Weights'])
for n_iters in range(1, 51):
model = CustomLinearRegression(n_iters=n_iters, regularization=None)
model.fit(X_train, y_train)
MSE = mean_squared_error(y_test, model.predict(X_test))
average_weights = model.weights.mean()
df = df.append({'Number of iterations': n_iters, 'MSE': MSE, 'Regularization': 'No', 'Average Weights': average_weights}, ignore_index=True)
model = CustomLinearRegression(n_iters=n_iters, regularization='L1', regularization_alpha=1)
model.fit(X_train, y_train)
MSE = mean_squared_error(y_test, model.predict(X_test))
average_weights = model.weights.mean()
df = df.append({'Number of iterations': n_iters, 'MSE': MSE, 'Regularization': 'L1, alpha: 0.1', 'Average Weights': average_weights}, ignore_index=True)
model = CustomLinearRegression(n_iters=n_iters, regularization='L2', regularization_alpha=1)
model.fit(X_train, y_train)
MSE = mean_squared_error(y_test, model.predict(X_test))
average_weights = model.weights.mean()
df = df.append({'Number of iterations': n_iters, 'MSE': MSE, 'Regularization': 'L2, alpha: 0.1', 'Average Weights': average_weights}, ignore_index=True)
model = CustomLinearRegression(n_iters=n_iters, regularization='L2', regularization_alpha=11)
model.fit(X_train, y_train)
MSE = mean_squared_error(y_test, model.predict(X_test))
average_weights = model.weights.mean()
df = df.append({'Number of iterations': n_iters, 'MSE': MSE, 'Regularization': 'L2, alpha: 11', 'Average Weights': average_weights}, ignore_index=True)
average_weight = round(model.weights[1:].mean(), 2)
fig = px.line(df, x='Number of iterations', y='MSE', color='Regularization', title='Linear Regression models with regularization VS without regularization')
X, y = datasets.load_diabetes(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
model = CustomLinearRegression(n_iters=10000)
model.fit(X_train, y_train)
MSE = mean_squared_error(y_test, model.predict(X_test))
print('MSE for our model: {}'.format(MSE))
model = LinearRegression()
model.fit(X_train, y_train)
MSE = mean_squared_error(y_test, model.predict(X_test))
print('MSE for Sklearn model: {}'.format(MSE)) | code |
73069551/cell_15 | [
"text_html_output_2.png"
] | from sklearn.metrics import mean_squared_error
import pandas as pd
import plotly.express as px
df = pd.DataFrame(columns=['Number of iterations', 'MSE', 'Regularization', 'Average Weights'])
for n_iters in range(1, 51):
model = CustomLinearRegression(n_iters=n_iters, regularization=None)
model.fit(X_train, y_train)
MSE = mean_squared_error(y_test, model.predict(X_test))
average_weights = model.weights.mean()
df = df.append({'Number of iterations': n_iters, 'MSE': MSE, 'Regularization': 'No', 'Average Weights': average_weights}, ignore_index=True)
model = CustomLinearRegression(n_iters=n_iters, regularization='L1', regularization_alpha=1)
model.fit(X_train, y_train)
MSE = mean_squared_error(y_test, model.predict(X_test))
average_weights = model.weights.mean()
df = df.append({'Number of iterations': n_iters, 'MSE': MSE, 'Regularization': 'L1, alpha: 0.1', 'Average Weights': average_weights}, ignore_index=True)
model = CustomLinearRegression(n_iters=n_iters, regularization='L2', regularization_alpha=1)
model.fit(X_train, y_train)
MSE = mean_squared_error(y_test, model.predict(X_test))
average_weights = model.weights.mean()
df = df.append({'Number of iterations': n_iters, 'MSE': MSE, 'Regularization': 'L2, alpha: 0.1', 'Average Weights': average_weights}, ignore_index=True)
model = CustomLinearRegression(n_iters=n_iters, regularization='L2', regularization_alpha=11)
model.fit(X_train, y_train)
MSE = mean_squared_error(y_test, model.predict(X_test))
average_weights = model.weights.mean()
df = df.append({'Number of iterations': n_iters, 'MSE': MSE, 'Regularization': 'L2, alpha: 11', 'Average Weights': average_weights}, ignore_index=True)
average_weight = round(model.weights[1:].mean(), 2)
fig = px.line(df, x='Number of iterations', y='MSE', color='Regularization', title='Linear Regression models with regularization VS without regularization')
fig.show() | code |
73069551/cell_17 | [
"text_html_output_1.png"
] | from sklearn.metrics import mean_squared_error
import pandas as pd
import plotly.express as px
df = pd.DataFrame(columns=['Number of iterations', 'MSE', 'Regularization', 'Average Weights'])
for n_iters in range(1, 51):
model = CustomLinearRegression(n_iters=n_iters, regularization=None)
model.fit(X_train, y_train)
MSE = mean_squared_error(y_test, model.predict(X_test))
average_weights = model.weights.mean()
df = df.append({'Number of iterations': n_iters, 'MSE': MSE, 'Regularization': 'No', 'Average Weights': average_weights}, ignore_index=True)
model = CustomLinearRegression(n_iters=n_iters, regularization='L1', regularization_alpha=1)
model.fit(X_train, y_train)
MSE = mean_squared_error(y_test, model.predict(X_test))
average_weights = model.weights.mean()
df = df.append({'Number of iterations': n_iters, 'MSE': MSE, 'Regularization': 'L1, alpha: 0.1', 'Average Weights': average_weights}, ignore_index=True)
model = CustomLinearRegression(n_iters=n_iters, regularization='L2', regularization_alpha=1)
model.fit(X_train, y_train)
MSE = mean_squared_error(y_test, model.predict(X_test))
average_weights = model.weights.mean()
df = df.append({'Number of iterations': n_iters, 'MSE': MSE, 'Regularization': 'L2, alpha: 0.1', 'Average Weights': average_weights}, ignore_index=True)
model = CustomLinearRegression(n_iters=n_iters, regularization='L2', regularization_alpha=11)
model.fit(X_train, y_train)
MSE = mean_squared_error(y_test, model.predict(X_test))
average_weights = model.weights.mean()
df = df.append({'Number of iterations': n_iters, 'MSE': MSE, 'Regularization': 'L2, alpha: 11', 'Average Weights': average_weights}, ignore_index=True)
average_weight = round(model.weights[1:].mean(), 2)
fig = px.line(df, x='Number of iterations', y='MSE', color='Regularization', title='Linear Regression models with regularization VS without regularization')
df.tail(4) | code |
72117495/cell_18 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from functools import partial
from sklearn.feature_selection import f_regression, f_classif
from sklearn.preprocessing import OneHotEncoder
import pandas as pd
train = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
data_x = train.loc[:, [col for col in train.columns if col not in ['Survived']]]
data_y = train.loc[:, ['Survived']]
test_x = test.loc[:, [col for col in train.columns if col not in ['Survived']]]
all_cols = list(data_x.columns)
# Exploratory Data Analysis
# Col-wise
univ_numeric = train_x.describe().T
numeric_cols = univ_numeric.index.to_list()
cat_cols = [col for col in all_cols if col not in numeric_cols]
univ_numeric['missing_perc'] = 1 - univ_numeric['count'] / train_x.shape[0]
univ_numeric['cov'] = univ_numeric['std'] / univ_numeric['mean']
univ_numeric['skew'] = train_x.loc[:, numeric_cols].apply(func=lambda x: x.skew(), axis=0)
univ_numeric['kurtosis'] = train_x.loc[:, numeric_cols].apply(func=lambda x: x.kurtosis(), axis=0)
def return_outlier(ser, threshold=3, return_mask=False):
not_missing = ~pd.isna(ser)
z = (ser - ser.mean()) / ser.std()
out_mask = z.apply(lambda x: not -threshold < x < +threshold)
if not return_mask:
out_mask = out_mask * not_missing
out_mask.sum() / not_missing.sum()
return out_mask.sum() / not_missing.sum()
else:
return out_mask
univ_numeric['outlier_perc'] = train_x.loc[:, numeric_cols].apply(func=return_outlier, axis=0)
out_mask = train_x.loc[:, numeric_cols].apply(func=partial(return_outlier, return_mask=True), axis=0)
univ_categorical = train_x.loc[:, cat_cols].describe().T
univ_categorical['missing_perc'] = 1 - univ_categorical['count'] / train_x.shape[0]
univ_categorical['mode_freq_perc'] = univ_categorical['freq'] / univ_categorical['count']
def profile_importance_numeric(ser):
non_missing_mask = ~pd.isna(ser)
freg = f_regression(X=ser.loc[non_missing_mask].values.reshape(-1, 1), y=train_y.loc[non_missing_mask].values.ravel(), center=True)
return freg[1][0]
def profile_importance_categorical(ser):
non_missing_mask = ~pd.isna(ser)
x = OneHotEncoder().fit_transform(ser.loc[non_missing_mask].values.reshape(-1, 1))
y = train_y.loc[non_missing_mask].values.ravel()
freg = f_classif(X=x, y=y)
return freg[1][0]
bivariate_importance_numeric = {col: profile_importance_numeric(train_x[col]) for col in numeric_cols}
bivariate_importance_categorical = {col: profile_importance_categorical(train_x[col]) for col in cat_cols}
correlation = train_x.corr()
def numeric_categorical(cat, num):
non_missing_cat = ~pd.isna(cat)
non_missing_num = ~pd.isna(num)
non_missing_mask = non_missing_cat * non_missing_num
x = OneHotEncoder(sparse=False).fit_transform(cat.loc[non_missing_mask].values.reshape(-1, 1))
y = num.loc[non_missing_mask].values.ravel()
freg = f_classif(X=x, y=y)
return freg[1][0]
bivariate_importance_categorical_xxs = pd.DataFrame({cat_col: [numeric_categorical(cat=train_x[cat_col], num=train_x[numeric_col]) for numeric_col in numeric_cols] for cat_col in cat_cols}, index=numeric_cols)
bivariate_importance_categorical_xxs | code |
72117495/cell_15 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from functools import partial
from sklearn.feature_selection import f_regression, f_classif
from sklearn.preprocessing import OneHotEncoder
import pandas as pd
train = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
data_x = train.loc[:, [col for col in train.columns if col not in ['Survived']]]
data_y = train.loc[:, ['Survived']]
test_x = test.loc[:, [col for col in train.columns if col not in ['Survived']]]
all_cols = list(data_x.columns)
# Exploratory Data Analysis
# Col-wise
univ_numeric = train_x.describe().T
numeric_cols = univ_numeric.index.to_list()
cat_cols = [col for col in all_cols if col not in numeric_cols]
univ_numeric['missing_perc'] = 1 - univ_numeric['count'] / train_x.shape[0]
univ_numeric['cov'] = univ_numeric['std'] / univ_numeric['mean']
univ_numeric['skew'] = train_x.loc[:, numeric_cols].apply(func=lambda x: x.skew(), axis=0)
univ_numeric['kurtosis'] = train_x.loc[:, numeric_cols].apply(func=lambda x: x.kurtosis(), axis=0)
def return_outlier(ser, threshold=3, return_mask=False):
not_missing = ~pd.isna(ser)
z = (ser - ser.mean()) / ser.std()
out_mask = z.apply(lambda x: not -threshold < x < +threshold)
if not return_mask:
out_mask = out_mask * not_missing
out_mask.sum() / not_missing.sum()
return out_mask.sum() / not_missing.sum()
else:
return out_mask
univ_numeric['outlier_perc'] = train_x.loc[:, numeric_cols].apply(func=return_outlier, axis=0)
out_mask = train_x.loc[:, numeric_cols].apply(func=partial(return_outlier, return_mask=True), axis=0)
univ_categorical = train_x.loc[:, cat_cols].describe().T
univ_categorical['missing_perc'] = 1 - univ_categorical['count'] / train_x.shape[0]
univ_categorical['mode_freq_perc'] = univ_categorical['freq'] / univ_categorical['count']
def profile_importance_numeric(ser):
non_missing_mask = ~pd.isna(ser)
freg = f_regression(X=ser.loc[non_missing_mask].values.reshape(-1, 1), y=train_y.loc[non_missing_mask].values.ravel(), center=True)
return freg[1][0]
def profile_importance_categorical(ser):
non_missing_mask = ~pd.isna(ser)
x = OneHotEncoder().fit_transform(ser.loc[non_missing_mask].values.reshape(-1, 1))
y = train_y.loc[non_missing_mask].values.ravel()
freg = f_classif(X=x, y=y)
return freg[1][0]
bivariate_importance_numeric = {col: profile_importance_numeric(train_x[col]) for col in numeric_cols}
bivariate_importance_categorical = {col: profile_importance_categorical(train_x[col]) for col in cat_cols}
bivariate_importance_categorical | code |
72117495/cell_17 | [
"text_plain_output_1.png"
] | from functools import partial
from sklearn.feature_selection import f_regression, f_classif
from sklearn.preprocessing import OneHotEncoder
import pandas as pd
train = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
data_x = train.loc[:, [col for col in train.columns if col not in ['Survived']]]
data_y = train.loc[:, ['Survived']]
test_x = test.loc[:, [col for col in train.columns if col not in ['Survived']]]
all_cols = list(data_x.columns)
# Exploratory Data Analysis
# Col-wise
univ_numeric = train_x.describe().T
numeric_cols = univ_numeric.index.to_list()
cat_cols = [col for col in all_cols if col not in numeric_cols]
univ_numeric['missing_perc'] = 1 - univ_numeric['count'] / train_x.shape[0]
univ_numeric['cov'] = univ_numeric['std'] / univ_numeric['mean']
univ_numeric['skew'] = train_x.loc[:, numeric_cols].apply(func=lambda x: x.skew(), axis=0)
univ_numeric['kurtosis'] = train_x.loc[:, numeric_cols].apply(func=lambda x: x.kurtosis(), axis=0)
def return_outlier(ser, threshold=3, return_mask=False):
not_missing = ~pd.isna(ser)
z = (ser - ser.mean()) / ser.std()
out_mask = z.apply(lambda x: not -threshold < x < +threshold)
if not return_mask:
out_mask = out_mask * not_missing
out_mask.sum() / not_missing.sum()
return out_mask.sum() / not_missing.sum()
else:
return out_mask
univ_numeric['outlier_perc'] = train_x.loc[:, numeric_cols].apply(func=return_outlier, axis=0)
out_mask = train_x.loc[:, numeric_cols].apply(func=partial(return_outlier, return_mask=True), axis=0)
univ_categorical = train_x.loc[:, cat_cols].describe().T
univ_categorical['missing_perc'] = 1 - univ_categorical['count'] / train_x.shape[0]
univ_categorical['mode_freq_perc'] = univ_categorical['freq'] / univ_categorical['count']
def profile_importance_numeric(ser):
non_missing_mask = ~pd.isna(ser)
freg = f_regression(X=ser.loc[non_missing_mask].values.reshape(-1, 1), y=train_y.loc[non_missing_mask].values.ravel(), center=True)
return freg[1][0]
def profile_importance_categorical(ser):
non_missing_mask = ~pd.isna(ser)
x = OneHotEncoder().fit_transform(ser.loc[non_missing_mask].values.reshape(-1, 1))
y = train_y.loc[non_missing_mask].values.ravel()
freg = f_classif(X=x, y=y)
return freg[1][0]
bivariate_importance_numeric = {col: profile_importance_numeric(train_x[col]) for col in numeric_cols}
bivariate_importance_categorical = {col: profile_importance_categorical(train_x[col]) for col in cat_cols}
correlation = train_x.corr()
def numeric_categorical(cat, num):
non_missing_cat = ~pd.isna(cat)
non_missing_num = ~pd.isna(num)
non_missing_mask = non_missing_cat * non_missing_num
x = OneHotEncoder(sparse=False).fit_transform(cat.loc[non_missing_mask].values.reshape(-1, 1))
y = num.loc[non_missing_mask].values.ravel()
freg = f_classif(X=x, y=y)
return freg[1][0]
bivariate_importance_categorical_xxs = pd.DataFrame({cat_col: [numeric_categorical(cat=train_x[cat_col], num=train_x[numeric_col]) for numeric_col in numeric_cols] for cat_col in cat_cols}, index=numeric_cols) | code |
72117495/cell_12 | [
"text_plain_output_1.png"
] | from functools import partial
import pandas as pd
train = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
data_x = train.loc[:, [col for col in train.columns if col not in ['Survived']]]
data_y = train.loc[:, ['Survived']]
test_x = test.loc[:, [col for col in train.columns if col not in ['Survived']]]
all_cols = list(data_x.columns)
# Exploratory Data Analysis
# Col-wise
univ_numeric = train_x.describe().T
numeric_cols = univ_numeric.index.to_list()
cat_cols = [col for col in all_cols if col not in numeric_cols]
univ_numeric['missing_perc'] = 1 - univ_numeric['count'] / train_x.shape[0]
univ_numeric['cov'] = univ_numeric['std'] / univ_numeric['mean']
univ_numeric['skew'] = train_x.loc[:, numeric_cols].apply(func=lambda x: x.skew(), axis=0)
univ_numeric['kurtosis'] = train_x.loc[:, numeric_cols].apply(func=lambda x: x.kurtosis(), axis=0)
def return_outlier(ser, threshold=3, return_mask=False):
not_missing = ~pd.isna(ser)
z = (ser - ser.mean()) / ser.std()
out_mask = z.apply(lambda x: not -threshold < x < +threshold)
if not return_mask:
out_mask = out_mask * not_missing
out_mask.sum() / not_missing.sum()
return out_mask.sum() / not_missing.sum()
else:
return out_mask
univ_numeric['outlier_perc'] = train_x.loc[:, numeric_cols].apply(func=return_outlier, axis=0)
out_mask = train_x.loc[:, numeric_cols].apply(func=partial(return_outlier, return_mask=True), axis=0) | code |
72117495/cell_5 | [
"text_html_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/titanic/train.csv')
test = pd.read_csv('../input/titanic/test.csv')
data_x = train.loc[:, [col for col in train.columns if col not in ['Survived']]]
data_y = train.loc[:, ['Survived']]
test_x = test.loc[:, [col for col in train.columns if col not in ['Survived']]]
data_x.info() | code |
129007856/cell_9 | [
"text_plain_output_1.png"
] | from tensorflow.keras.layers import Input, Embedding, Dot, Flatten, Dense, Dropout
from tensorflow.keras.models import Model
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
data = pd.read_csv('/kaggle/input/flicktime/rating.csv')
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Input, Embedding, Dot, Flatten, Dense, Dropout
from tensorflow.keras.models import Model
n_users = data.userId.nunique()
n_movies = data.movieId.nunique()
user_ids = data.userId.astype('category').cat.codes.values
movie_ids = data.movieId.astype('category').cat.codes.values
ratings = data.rating.values
user_item_matrix = np.zeros((n_users, n_movies))
for i in range(len(ratings)):
user_item_matrix[user_ids[i], movie_ids[i]] = ratings[i]
embedding_size = 64
user_input = Input(shape=(1,))
user_embed = Embedding(n_users, embedding_size)(user_input)
user_embed = Flatten()(user_embed)
movie_input = Input(shape=(1,))
movie_embed = Embedding(n_movies, embedding_size)(movie_input)
movie_embed = Flatten()(movie_embed)
dot_product = Dot(axes=1)([user_embed, movie_embed])
dense1 = Dense(64, activation='relu')(dot_product)
dropout1 = Dropout(0.2)(dense1)
dense2 = Dense(32, activation='relu')(dropout1)
dropout2 = Dropout(0.2)(dense2)
output = Dense(1)(dropout2)
model = Model(inputs=[user_input, movie_input], outputs=output)
model.compile(loss='mse', optimizer='adam')
user_ids_test = np.random.choice(n_users, 10)
movie_ids_test = np.random.choice(n_movies, 10)
predictions = model.predict([user_ids_test, movie_ids_test]).flatten()
print(predictions) | code |
129007856/cell_4 | [
"text_plain_output_1.png"
] | history = model.fit([user_ids, movie_ids], ratings, batch_size=128, epochs=5, validation_split=0.2) | code |
129007856/cell_6 | [
"text_plain_output_1.png"
] | import gc
import gc
gc.collect() | code |
129007856/cell_11 | [
"text_plain_output_1.png"
] | from tensorflow.keras.layers import Input, Embedding, Dot, Flatten, Dense, Dropout
from tensorflow.keras.models import Model
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
import pickle
data = pd.read_csv('/kaggle/input/flicktime/rating.csv')
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Input, Embedding, Dot, Flatten, Dense, Dropout
from tensorflow.keras.models import Model
n_users = data.userId.nunique()
n_movies = data.movieId.nunique()
user_ids = data.userId.astype('category').cat.codes.values
movie_ids = data.movieId.astype('category').cat.codes.values
ratings = data.rating.values
user_item_matrix = np.zeros((n_users, n_movies))
for i in range(len(ratings)):
user_item_matrix[user_ids[i], movie_ids[i]] = ratings[i]
embedding_size = 64
user_input = Input(shape=(1,))
user_embed = Embedding(n_users, embedding_size)(user_input)
user_embed = Flatten()(user_embed)
movie_input = Input(shape=(1,))
movie_embed = Embedding(n_movies, embedding_size)(movie_input)
movie_embed = Flatten()(movie_embed)
dot_product = Dot(axes=1)([user_embed, movie_embed])
dense1 = Dense(64, activation='relu')(dot_product)
dropout1 = Dropout(0.2)(dense1)
dense2 = Dense(32, activation='relu')(dropout1)
dropout2 = Dropout(0.2)(dense2)
output = Dense(1)(dropout2)
model = Model(inputs=[user_input, movie_input], outputs=output)
model.compile(loss='mse', optimizer='adam')
user_ids_test = np.random.choice(n_users, 10)
movie_ids_test = np.random.choice(n_movies, 10)
predictions = model.predict([user_ids_test, movie_ids_test]).flatten()
import pickle
pickle.dump(model, open('model_rating.pkl', 'wb')) | code |
129007856/cell_7 | [
"image_output_1.png"
] | import ctypes
import ctypes
libc = ctypes.CDLL('libc.so.6')
libc.malloc_trim(0) | code |
129007856/cell_3 | [
"text_plain_output_1.png"
] | from tensorflow.keras.layers import Input, Embedding, Dot, Flatten, Dense, Dropout
from tensorflow.keras.models import Model
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
data = pd.read_csv('/kaggle/input/flicktime/rating.csv')
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Input, Embedding, Dot, Flatten, Dense, Dropout
from tensorflow.keras.models import Model
n_users = data.userId.nunique()
n_movies = data.movieId.nunique()
user_ids = data.userId.astype('category').cat.codes.values
movie_ids = data.movieId.astype('category').cat.codes.values
ratings = data.rating.values
user_item_matrix = np.zeros((n_users, n_movies))
for i in range(len(ratings)):
user_item_matrix[user_ids[i], movie_ids[i]] = ratings[i]
embedding_size = 64
user_input = Input(shape=(1,))
user_embed = Embedding(n_users, embedding_size)(user_input)
user_embed = Flatten()(user_embed)
movie_input = Input(shape=(1,))
movie_embed = Embedding(n_movies, embedding_size)(movie_input)
movie_embed = Flatten()(movie_embed)
dot_product = Dot(axes=1)([user_embed, movie_embed])
dense1 = Dense(64, activation='relu')(dot_product)
dropout1 = Dropout(0.2)(dense1)
dense2 = Dense(32, activation='relu')(dropout1)
dropout2 = Dropout(0.2)(dense2)
output = Dense(1)(dropout2)
model = Model(inputs=[user_input, movie_input], outputs=output)
model.compile(loss='mse', optimizer='adam') | code |
129007856/cell_10 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
plt.plot(history.history['loss'], label='train_loss')
plt.plot(history.history['val_loss'], label='val_loss')
plt.title('Model Learning Curve')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show() | code |
49117653/cell_42 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3 = df3[df3['occur_hour'].apply(lambda x: str(x).isnumeric())]
keys = df1.columns
df1 = df1.dropna(subset=keys).reset_index(drop=True)
df2 = df2.dropna(subset=keys).reset_index(drop=True)
df3 = df3.dropna(subset=keys).reset_index(drop=True)
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df.to_csv('df.csv', index=False)
df = df.astype({'occur_year': 'int32', 'occur_month': 'int32', 'occur_day': 'int32', 'occur_hour': 'int32', 'rpt_year': 'int32', 'rpt_month': 'int32', 'rpt_day': 'int32'})
df['rpt_day'].nunique() | code |
49117653/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv') | code |
49117653/cell_55 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3 = df3[df3['occur_hour'].apply(lambda x: str(x).isnumeric())]
keys = df1.columns
df1 = df1.dropna(subset=keys).reset_index(drop=True)
df2 = df2.dropna(subset=keys).reset_index(drop=True)
df3 = df3.dropna(subset=keys).reset_index(drop=True)
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df.to_csv('df.csv', index=False)
df = df.astype({'occur_year': 'int32', 'occur_month': 'int32', 'occur_day': 'int32', 'occur_hour': 'int32', 'rpt_year': 'int32', 'rpt_month': 'int32', 'rpt_day': 'int32'})
r_hours = df.groupby('occur_hour').count()
r_hours
r_months = df.groupby('occur_month').count()
r_months
r_neighbors = df.groupby('neighborhood').count()
r_neighbors
rn = r_neighbors['offense_id'].reset_index()
rn
rn = rn.sort_values(by=['offense_id'], ascending=False)
rn = rn.head(15)
rn | code |
49117653/cell_6 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 | code |
49117653/cell_40 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3 = df3[df3['occur_hour'].apply(lambda x: str(x).isnumeric())]
keys = df1.columns
df1 = df1.dropna(subset=keys).reset_index(drop=True)
df2 = df2.dropna(subset=keys).reset_index(drop=True)
df3 = df3.dropna(subset=keys).reset_index(drop=True)
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df.to_csv('df.csv', index=False)
df = df.astype({'occur_year': 'int32', 'occur_month': 'int32', 'occur_day': 'int32', 'occur_hour': 'int32', 'rpt_year': 'int32', 'rpt_month': 'int32', 'rpt_day': 'int32'})
df['rpt_year'].nunique() | code |
49117653/cell_39 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3 = df3[df3['occur_hour'].apply(lambda x: str(x).isnumeric())]
keys = df1.columns
df1 = df1.dropna(subset=keys).reset_index(drop=True)
df2 = df2.dropna(subset=keys).reset_index(drop=True)
df3 = df3.dropna(subset=keys).reset_index(drop=True)
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df.to_csv('df.csv', index=False)
df = df.astype({'occur_year': 'int32', 'occur_month': 'int32', 'occur_day': 'int32', 'occur_hour': 'int32', 'rpt_year': 'int32', 'rpt_month': 'int32', 'rpt_day': 'int32'})
df['occur_hour'].nunique() | code |
49117653/cell_48 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3 = df3[df3['occur_hour'].apply(lambda x: str(x).isnumeric())]
keys = df1.columns
df1 = df1.dropna(subset=keys).reset_index(drop=True)
df2 = df2.dropna(subset=keys).reset_index(drop=True)
df3 = df3.dropna(subset=keys).reset_index(drop=True)
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df.to_csv('df.csv', index=False)
df = df.astype({'occur_year': 'int32', 'occur_month': 'int32', 'occur_day': 'int32', 'occur_hour': 'int32', 'rpt_year': 'int32', 'rpt_month': 'int32', 'rpt_day': 'int32'})
r_hours = df.groupby('occur_hour').count()
r_hours
rh = r_hours['offense_id'].reset_index()
plt.plot(rh['occur_hour'], rh['offense_id'], 'b-.')
plt.title('# of Crime Occurred Over Hours')
plt.xlabel('Hours')
plt.ylabel('# of Crime')
plt.xticks(rh['occur_hour'], size=11)
plt.yticks(size=11)
plt.show() | code |
49117653/cell_41 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3 = df3[df3['occur_hour'].apply(lambda x: str(x).isnumeric())]
keys = df1.columns
df1 = df1.dropna(subset=keys).reset_index(drop=True)
df2 = df2.dropna(subset=keys).reset_index(drop=True)
df3 = df3.dropna(subset=keys).reset_index(drop=True)
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df.to_csv('df.csv', index=False)
df = df.astype({'occur_year': 'int32', 'occur_month': 'int32', 'occur_day': 'int32', 'occur_hour': 'int32', 'rpt_year': 'int32', 'rpt_month': 'int32', 'rpt_day': 'int32'})
df['rpt_month'].nunique() | code |
49117653/cell_2 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import folium
from folium.plugins import MarkerCluster
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
49117653/cell_50 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3 = df3[df3['occur_hour'].apply(lambda x: str(x).isnumeric())]
keys = df1.columns
df1 = df1.dropna(subset=keys).reset_index(drop=True)
df2 = df2.dropna(subset=keys).reset_index(drop=True)
df3 = df3.dropna(subset=keys).reset_index(drop=True)
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df.to_csv('df.csv', index=False)
df = df.astype({'occur_year': 'int32', 'occur_month': 'int32', 'occur_day': 'int32', 'occur_hour': 'int32', 'rpt_year': 'int32', 'rpt_month': 'int32', 'rpt_day': 'int32'})
r_hours = df.groupby('occur_hour').count()
r_hours
r_months = df.groupby('occur_month').count()
r_months
rm = r_months['offense_id'].reset_index()
rm | code |
49117653/cell_52 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3 = df3[df3['occur_hour'].apply(lambda x: str(x).isnumeric())]
keys = df1.columns
df1 = df1.dropna(subset=keys).reset_index(drop=True)
df2 = df2.dropna(subset=keys).reset_index(drop=True)
df3 = df3.dropna(subset=keys).reset_index(drop=True)
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df.to_csv('df.csv', index=False)
df = df.astype({'occur_year': 'int32', 'occur_month': 'int32', 'occur_day': 'int32', 'occur_hour': 'int32', 'rpt_year': 'int32', 'rpt_month': 'int32', 'rpt_day': 'int32'})
r_hours = df.groupby('occur_hour').count()
r_hours
r_months = df.groupby('occur_month').count()
r_months
r_neighbors = df.groupby('neighborhood').count()
r_neighbors | code |
49117653/cell_7 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df2 | code |
49117653/cell_45 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3 = df3[df3['occur_hour'].apply(lambda x: str(x).isnumeric())]
keys = df1.columns
df1 = df1.dropna(subset=keys).reset_index(drop=True)
df2 = df2.dropna(subset=keys).reset_index(drop=True)
df3 = df3.dropna(subset=keys).reset_index(drop=True)
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df.to_csv('df.csv', index=False)
df = df.astype({'occur_year': 'int32', 'occur_month': 'int32', 'occur_day': 'int32', 'occur_hour': 'int32', 'rpt_year': 'int32', 'rpt_month': 'int32', 'rpt_day': 'int32'})
r_hours = df.groupby('occur_hour').count()
r_hours | code |
49117653/cell_49 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3 = df3[df3['occur_hour'].apply(lambda x: str(x).isnumeric())]
keys = df1.columns
df1 = df1.dropna(subset=keys).reset_index(drop=True)
df2 = df2.dropna(subset=keys).reset_index(drop=True)
df3 = df3.dropna(subset=keys).reset_index(drop=True)
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df.to_csv('df.csv', index=False)
df = df.astype({'occur_year': 'int32', 'occur_month': 'int32', 'occur_day': 'int32', 'occur_hour': 'int32', 'rpt_year': 'int32', 'rpt_month': 'int32', 'rpt_day': 'int32'})
r_hours = df.groupby('occur_hour').count()
r_hours
r_months = df.groupby('occur_month').count()
r_months | code |
49117653/cell_18 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3['occur_time'].value_counts() | code |
49117653/cell_32 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3 = df3[df3['occur_hour'].apply(lambda x: str(x).isnumeric())]
keys = df1.columns
df1 = df1.dropna(subset=keys).reset_index(drop=True)
df2 = df2.dropna(subset=keys).reset_index(drop=True)
df3 = df3.dropna(subset=keys).reset_index(drop=True)
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df.to_csv('df.csv', index=False)
df.info() | code |
49117653/cell_51 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3 = df3[df3['occur_hour'].apply(lambda x: str(x).isnumeric())]
keys = df1.columns
df1 = df1.dropna(subset=keys).reset_index(drop=True)
df2 = df2.dropna(subset=keys).reset_index(drop=True)
df3 = df3.dropna(subset=keys).reset_index(drop=True)
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df.to_csv('df.csv', index=False)
df = df.astype({'occur_year': 'int32', 'occur_month': 'int32', 'occur_day': 'int32', 'occur_hour': 'int32', 'rpt_year': 'int32', 'rpt_month': 'int32', 'rpt_day': 'int32'})
r_hours = df.groupby('occur_hour').count()
r_hours
rh = r_hours['offense_id'].reset_index()
plt.xticks(rh['occur_hour'], size=11)
plt.yticks(size=11)
r_months = df.groupby('occur_month').count()
r_months
rm = r_months['offense_id'].reset_index()
rm
plt.plot(rm['occur_month'], rm['offense_id'], 'b--')
plt.title('# of Crime Occurred Over Months')
plt.xlabel('Months')
plt.ylabel('# of Crime')
plt.xticks(rm['occur_month'], size=11)
plt.yticks(size=11)
plt.show() | code |
49117653/cell_8 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df3 | code |
49117653/cell_38 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3 = df3[df3['occur_hour'].apply(lambda x: str(x).isnumeric())]
keys = df1.columns
df1 = df1.dropna(subset=keys).reset_index(drop=True)
df2 = df2.dropna(subset=keys).reset_index(drop=True)
df3 = df3.dropna(subset=keys).reset_index(drop=True)
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df.to_csv('df.csv', index=False)
df = df.astype({'occur_year': 'int32', 'occur_month': 'int32', 'occur_day': 'int32', 'occur_hour': 'int32', 'rpt_year': 'int32', 'rpt_month': 'int32', 'rpt_day': 'int32'})
df['occur_day'].nunique() | code |
49117653/cell_47 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3 = df3[df3['occur_hour'].apply(lambda x: str(x).isnumeric())]
keys = df1.columns
df1 = df1.dropna(subset=keys).reset_index(drop=True)
df2 = df2.dropna(subset=keys).reset_index(drop=True)
df3 = df3.dropna(subset=keys).reset_index(drop=True)
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df.to_csv('df.csv', index=False)
df = df.astype({'occur_year': 'int32', 'occur_month': 'int32', 'occur_day': 'int32', 'occur_hour': 'int32', 'rpt_year': 'int32', 'rpt_month': 'int32', 'rpt_day': 'int32'})
r_hours = df.groupby('occur_hour').count()
r_hours
rh = r_hours['offense_id'].reset_index()
rh | code |
49117653/cell_35 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3 = df3[df3['occur_hour'].apply(lambda x: str(x).isnumeric())]
keys = df1.columns
df1 = df1.dropna(subset=keys).reset_index(drop=True)
df2 = df2.dropna(subset=keys).reset_index(drop=True)
df3 = df3.dropna(subset=keys).reset_index(drop=True)
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df.to_csv('df.csv', index=False)
df = df.astype({'occur_year': 'int32', 'occur_month': 'int32', 'occur_day': 'int32', 'occur_hour': 'int32', 'rpt_year': 'int32', 'rpt_month': 'int32', 'rpt_day': 'int32'})
df['occur_year'].value_counts() | code |
49117653/cell_43 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3 = df3[df3['occur_hour'].apply(lambda x: str(x).isnumeric())]
keys = df1.columns
df1 = df1.dropna(subset=keys).reset_index(drop=True)
df2 = df2.dropna(subset=keys).reset_index(drop=True)
df3 = df3.dropna(subset=keys).reset_index(drop=True)
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df.to_csv('df.csv', index=False)
df = df.astype({'occur_year': 'int32', 'occur_month': 'int32', 'occur_day': 'int32', 'occur_hour': 'int32', 'rpt_year': 'int32', 'rpt_month': 'int32', 'rpt_day': 'int32'})
df['neighborhood'].value_counts() | code |
49117653/cell_53 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3 = df3[df3['occur_hour'].apply(lambda x: str(x).isnumeric())]
keys = df1.columns
df1 = df1.dropna(subset=keys).reset_index(drop=True)
df2 = df2.dropna(subset=keys).reset_index(drop=True)
df3 = df3.dropna(subset=keys).reset_index(drop=True)
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df.to_csv('df.csv', index=False)
df = df.astype({'occur_year': 'int32', 'occur_month': 'int32', 'occur_day': 'int32', 'occur_hour': 'int32', 'rpt_year': 'int32', 'rpt_month': 'int32', 'rpt_day': 'int32'})
r_hours = df.groupby('occur_hour').count()
r_hours
r_months = df.groupby('occur_month').count()
r_months
r_neighbors = df.groupby('neighborhood').count()
r_neighbors
rn = r_neighbors['offense_id'].reset_index()
rn | code |
49117653/cell_27 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3 = df3[df3['occur_hour'].apply(lambda x: str(x).isnumeric())]
keys = df1.columns
df1 = df1.dropna(subset=keys).reset_index(drop=True)
df2 = df2.dropna(subset=keys).reset_index(drop=True)
df3 = df3.dropna(subset=keys).reset_index(drop=True)
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df | code |
49117653/cell_37 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df1 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020-OldRMS-09292020 (Corrected 11_25_20)/COBRA-2020-OldRMS-09292020.csv')
df2 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2020 (Updated 12_10_2020)/COBRA-2020.csv')
df3 = pd.read_csv('../input/atlanta-crime-data2020/COBRA-2009-2019 (Updated 1_9_2020)/COBRA-2009-2019.csv')
df1 = df1.drop(columns=['apartment_office_prefix', 'apartment_number', 'watch', 'location_type', 'UCR_Number'])
df2 = df2.drop(columns=['ibr_code'])
df3 = df3.drop(columns=['Apartment Office Prefix', 'Apartment Number', 'Shift Occurence', 'Location Type', 'UCR #', 'IBR Code'])
df3.columns = df1.columns
df3 = df3[df3['occur_time'].apply(lambda x: str(x).isdecimal())]
df3 = df3[df3['occur_hour'].apply(lambda x: str(x).isnumeric())]
keys = df1.columns
df1 = df1.dropna(subset=keys).reset_index(drop=True)
df2 = df2.dropna(subset=keys).reset_index(drop=True)
df3 = df3.dropna(subset=keys).reset_index(drop=True)
df = pd.concat([df1, df2, df3]).reset_index(drop=True)
df.to_csv('df.csv', index=False)
df = df.astype({'occur_year': 'int32', 'occur_month': 'int32', 'occur_day': 'int32', 'occur_hour': 'int32', 'rpt_year': 'int32', 'rpt_month': 'int32', 'rpt_day': 'int32'})
df['occur_month'].nunique() | code |
73082264/cell_9 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/broadband-customers-base-churn-analysis/bbs_cust_base_scfy_20200210.csv')
df = data.copy()
df
df.drop('Unnamed: 19', axis=1, inplace=True)
df.churn.replace('N', '0', inplace=True)
df.churn.replace('Y', '1', inplace=True)
df.current_mth_churn.replace('N', '0', inplace=True)
df.current_mth_churn.replace('Y', '1', inplace=True)
df.churn = df.churn.astype(int)
df.current_mth_churn = df.churn.astype(int)
df.describe().T | code |
73082264/cell_6 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/broadband-customers-base-churn-analysis/bbs_cust_base_scfy_20200210.csv')
df = data.copy()
df
df.drop('Unnamed: 19', axis=1, inplace=True)
df.info() | code |
73082264/cell_19 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/broadband-customers-base-churn-analysis/bbs_cust_base_scfy_20200210.csv')
df = data.copy()
df
df.drop('Unnamed: 19', axis=1, inplace=True)
df.churn.replace('N', '0', inplace=True)
df.churn.replace('Y', '1', inplace=True)
df.current_mth_churn.replace('N', '0', inplace=True)
df.current_mth_churn.replace('Y', '1', inplace=True)
df.churn = df.churn.astype(int)
df.current_mth_churn = df.churn.astype(int)
df.describe().T
def summary(df):
Types = df.dtypes
Counts = df.apply(lambda x: x.count())
Uniques = df.apply(lambda x: x.unique().shape[0])
Nulls = df.apply(lambda x: x.isnull().sum())
cols = ['Types', 'Counts', 'Uniques', 'Nulls']
str = pd.concat([Types, Counts, Uniques, Nulls], axis=1, sort=True)
str.columns = cols
summary(df)
col = df.columns.to_list()
catcol = [_ for _ in col if df[_].nunique() < 30]
termination_reasion_code = df.term_reas_code.unique()
termination_reasion_code_description = df.term_reas_desc.unique()
termination_reasion = dict(zip(termination_reasion_code, termination_reasion_code_description))
termination_reasion
df.drop(columns=['bill_cycl', 'serv_type', 'serv_code', 'term_reas_desc'], inplace=True)
miss = df.isnull().sum().sort_values(ascending=False)
miss_per = miss / len(df) * 100
pd.DataFrame({'Missing_Records': miss, 'Percentage of Missing_Data': miss_per.values}) | code |
73082264/cell_1 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import missingno as msno
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
import warnings
warnings.filterwarnings('ignore')
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.