path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
105210042/cell_22 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
data.isnull().sum()
df_v = pd.DataFrame(data['symboling'].value_counts()).reset_index().rename(columns={'index': 'symboling', 'symboling': 'count'})
sns.set_palette('bright')
fuel = data['fueltype'].value_counts()
labels = fuel.index
sizes = fuel.values
plt.figure(figsize=(12, 9))
colors = sns.color_palette('Paired')
plt.pie(sizes, labels=labels, autopct='%1.1f%%', shadow=True, colors=colors, startangle=90)
plt.show() | code |
105210042/cell_10 | [
"text_html_output_1.png"
] | import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
data.isnull().sum()
sns.distplot(data['price'], kde=True) | code |
105210042/cell_27 | [
"image_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LinearRegression
Lr = LinearRegression()
Lr.fit(X_train, y_train)
Lr.score(X_test, y_test) | code |
105210042/cell_12 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
data.isnull().sum()
sns.boxplot(x='fueltype', y='price', data=data, palette='Pastel2') | code |
105210042/cell_5 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
data.isnull().sum() | code |
122258576/cell_4 | [
"text_plain_output_1.png"
] | import sys
import sys
sys.path.append('/kaggle/input/neutrinofiles')
sys.path | code |
122258576/cell_3 | [
"text_plain_output_1.png"
] | # Move software to working disk
import time
start=time.time()
!rm -r software
!scp -r /kaggle/input/graphnet-and-dependencies/software .
print(f'{time.time()-start:8.3f} copy')
# Install dependencies
!pip install /kaggle/working/software/dependencies/torch-1.11.0+cu115-cp37-cp37m-linux_x86_64.whl
!pip install /kaggle/working/software/dependencies/torch_cluster-1.6.0-cp37-cp37m-linux_x86_64.whl
!pip install /kaggle/working/software/dependencies/torch_scatter-2.0.9-cp37-cp37m-linux_x86_64.whl
!pip install /kaggle/working/software/dependencies/torch_sparse-0.6.13-cp37-cp37m-linux_x86_64.whl
!pip install /kaggle/working/software/dependencies/torch_geometric-2.0.4.tar.gz
print(f'{time.time()-start:8.3f} install') | code |
122258576/cell_5 | [
"text_plain_output_1.png"
] | import torch
import torch
import torch_geometric as geometric
import dogtrain
import dynotrain
torch.__version__ | code |
1003423/cell_4 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')
gender_submission = pd.read_csv('gender_submission.csv')
train_data.drop(['PassengerId', 'Ticket', 'Cabin', 'Name'], inplace=True, axis=1) | code |
1003423/cell_3 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')
gender_submission = pd.read_csv('gender_submission.csv') | code |
105201657/cell_21 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df = pd.read_csv('/kaggle/input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv')
df.drop('id', axis=1, inplace=True)
df.gender.value_counts()
df = df[df.gender != 'Other']
df.age.value_counts().iloc[-15:]
df = df[df.age > 18]
df.smoking_status.value_counts()
df.Residence_type.value_counts()
df[df.bmi.isna()]
df = df[df.bmi > 15]
df = df[df.bmi < 70]
corr = df.corr()
df.work_type.value_counts()
fig, ax = plt.subplots(2, 2, figsize=(12, 12))
sns.countplot(ax=ax[0, 0], data=df[df.work_type == 'Private'], x='stroke')
sns.countplot(ax=ax[0, 1], data=df[df.work_type == 'Govt_job'], x='stroke')
sns.countplot(ax=ax[1, 0], data=df[df.work_type == 'Self-employed'], x='stroke')
sns.countplot(ax=ax[1, 1], data=df[df.work_type == 'Never_worked'], x='stroke')
plt.show() | code |
105201657/cell_9 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv')
df.drop('id', axis=1, inplace=True)
df.gender.value_counts()
df = df[df.gender != 'Other']
df.describe() | code |
105201657/cell_4 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv')
df.head() | code |
105201657/cell_20 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df = pd.read_csv('/kaggle/input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv')
df.drop('id', axis=1, inplace=True)
df.gender.value_counts()
df = df[df.gender != 'Other']
df.age.value_counts().iloc[-15:]
df = df[df.age > 18]
df.smoking_status.value_counts()
df.Residence_type.value_counts()
df[df.bmi.isna()]
df = df[df.bmi > 15]
df = df[df.bmi < 70]
corr = df.corr()
df.work_type.value_counts() | code |
105201657/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv')
df.drop('id', axis=1, inplace=True)
df.gender.value_counts() | code |
105201657/cell_19 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df = pd.read_csv('/kaggle/input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv')
df.drop('id', axis=1, inplace=True)
df.gender.value_counts()
df = df[df.gender != 'Other']
df.age.value_counts().iloc[-15:]
df = df[df.age > 18]
df.smoking_status.value_counts()
df.Residence_type.value_counts()
df[df.bmi.isna()]
df = df[df.bmi > 15]
df = df[df.bmi < 70]
corr = df.corr()
sns.heatmap(corr, annot=True, linewidths=0.5)
plt.show() | code |
105201657/cell_8 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv')
df.drop('id', axis=1, inplace=True)
df.gender.value_counts()
df = df[df.gender != 'Other']
df.info() | code |
105201657/cell_15 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv')
df.drop('id', axis=1, inplace=True)
df.gender.value_counts()
df = df[df.gender != 'Other']
df.age.value_counts().iloc[-15:]
df = df[df.age > 18]
df.smoking_status.value_counts()
df.Residence_type.value_counts() | code |
105201657/cell_16 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv')
df.drop('id', axis=1, inplace=True)
df.gender.value_counts()
df = df[df.gender != 'Other']
df.age.value_counts().iloc[-15:]
df = df[df.age > 18]
df.smoking_status.value_counts()
df.Residence_type.value_counts()
df[df.bmi.isna()] | code |
105201657/cell_3 | [
"text_html_output_1.png"
] | import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use('ggplot') | code |
105201657/cell_14 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv')
df.drop('id', axis=1, inplace=True)
df.gender.value_counts()
df = df[df.gender != 'Other']
df.age.value_counts().iloc[-15:]
df = df[df.age > 18]
df.smoking_status.value_counts() | code |
105201657/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv')
df.drop('id', axis=1, inplace=True)
df.gender.value_counts()
df = df[df.gender != 'Other']
df.age.value_counts().iloc[-15:] | code |
88092710/cell_9 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | from qlib.data.dataset.handler import DataHandlerLP
from qlib.data.dataset.loader import StaticDataLoader
from sklearn.model_selection import GroupKFold
from typing import Union
import gc
import numpy as np
import pandas as pd
def read_data(path: Union[str, pd.DataFrame]='../input/train.pkl', proc_type='train'):
""" Read data and turn it into Qlib's format"""
df = pd.read_pickle(path) if isinstance(path, str) else path
if proc_type == 'test':
df['time_id'] = df['row_id'].apply(lambda x: int(x.split('_')[0]))
del test_df['row_id']
else:
assert proc_type == 'train'
df = df.set_index(['time_id', 'investment_id'])
df.columns = pd.MultiIndex.from_tuples([('label' if col == 'target' else 'feature', col) for col in df.columns])
df.index.names = ['datetime', 'instrument']
df = df.astype(np.float32)
return df
data_df = read_data('../input/ubiquant-market-prediction-half-precision-pickle/train.pkl')
dh = DataHandlerLP(data_loader=StaticDataLoader(data_df), drop_raw=True)
del data_df
del dh.data_loader
def split_kfold(idx, fold=5):
kfold = GroupKFold(n_splits=fold)
cv_index = []
for fold_id, (train_idx, valid_idx) in enumerate(kfold.split(idx, groups=idx.get_level_values('datetime'))):
all_seg = {'train': idx[train_idx], 'valid': idx[valid_idx]}
cv_index.append(all_seg)
return cv_index
idx = dh.fetch().index
cv_index = split_kfold(idx)
del idx
gc.collect() | code |
88092710/cell_7 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from qlib.data.dataset.handler import DataHandlerLP
from qlib.data.dataset.loader import StaticDataLoader
from typing import Union
import numpy as np
import pandas as pd
def read_data(path: Union[str, pd.DataFrame]='../input/train.pkl', proc_type='train'):
""" Read data and turn it into Qlib's format"""
df = pd.read_pickle(path) if isinstance(path, str) else path
if proc_type == 'test':
df['time_id'] = df['row_id'].apply(lambda x: int(x.split('_')[0]))
del test_df['row_id']
else:
assert proc_type == 'train'
df = df.set_index(['time_id', 'investment_id'])
df.columns = pd.MultiIndex.from_tuples([('label' if col == 'target' else 'feature', col) for col in df.columns])
df.index.names = ['datetime', 'instrument']
df = df.astype(np.float32)
return df
data_df = read_data('../input/ubiquant-market-prediction-half-precision-pickle/train.pkl')
dh = DataHandlerLP(data_loader=StaticDataLoader(data_df), drop_raw=True)
del data_df
del dh.data_loader | code |
88092710/cell_10 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from qlib.contrib.model.pytorch_nn import DNNModelPytorch
from qlib.data.dataset import DatasetH
from qlib.data.dataset.handler import DataHandlerLP
from qlib.data.dataset.loader import StaticDataLoader
from qlib.workflow import R
from sklearn.model_selection import GroupKFold
from typing import Union
import gc
import numpy as np
import pandas as pd
def read_data(path: Union[str, pd.DataFrame]='../input/train.pkl', proc_type='train'):
""" Read data and turn it into Qlib's format"""
df = pd.read_pickle(path) if isinstance(path, str) else path
if proc_type == 'test':
df['time_id'] = df['row_id'].apply(lambda x: int(x.split('_')[0]))
del test_df['row_id']
else:
assert proc_type == 'train'
df = df.set_index(['time_id', 'investment_id'])
df.columns = pd.MultiIndex.from_tuples([('label' if col == 'target' else 'feature', col) for col in df.columns])
df.index.names = ['datetime', 'instrument']
df = df.astype(np.float32)
return df
data_df = read_data('../input/ubiquant-market-prediction-half-precision-pickle/train.pkl')
dh = DataHandlerLP(data_loader=StaticDataLoader(data_df), drop_raw=True)
del data_df
del dh.data_loader
def split_kfold(idx, fold=5):
kfold = GroupKFold(n_splits=fold)
cv_index = []
for fold_id, (train_idx, valid_idx) in enumerate(kfold.split(idx, groups=idx.get_level_values('datetime'))):
all_seg = {'train': idx[train_idx], 'valid': idx[valid_idx]}
cv_index.append(all_seg)
return cv_index
idx = dh.fetch().index
cv_index = split_kfold(idx)
del idx
gc.collect()
R.start_exp()
kwargs = {'lr': 0.002, 'optimizer': 'adam', 'max_steps': 8000, 'batch_size': 8192, 'pt_model_kwargs': {'input_dim': 300, 'layers': (256,)}, 'scheduler': None}
R.log_params(**kwargs)
cv_models = []
for seg in cv_index:
ds = DatasetH(handler=dh, segments=seg)
m = DNNModelPytorch(**kwargs)
m.fit(ds)
cv_models.append(m)
break
R.save_objects(**{'cv_models.pkl': cv_models, 'handler.pkl': dh})
R.end_exp() | code |
88092710/cell_12 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from qlib.contrib.model.pytorch_nn import DNNModelPytorch
from qlib.data.dataset import DatasetH
from qlib.data.dataset.handler import DataHandlerLP
from qlib.data.dataset.loader import StaticDataLoader
from qlib.workflow import R
from sklearn.model_selection import GroupKFold
from typing import Union
import gc
import numpy as np
import pandas as pd
import ubiquant
def read_data(path: Union[str, pd.DataFrame]='../input/train.pkl', proc_type='train'):
""" Read data and turn it into Qlib's format"""
df = pd.read_pickle(path) if isinstance(path, str) else path
if proc_type == 'test':
df['time_id'] = df['row_id'].apply(lambda x: int(x.split('_')[0]))
del test_df['row_id']
else:
assert proc_type == 'train'
df = df.set_index(['time_id', 'investment_id'])
df.columns = pd.MultiIndex.from_tuples([('label' if col == 'target' else 'feature', col) for col in df.columns])
df.index.names = ['datetime', 'instrument']
df = df.astype(np.float32)
return df
data_df = read_data('../input/ubiquant-market-prediction-half-precision-pickle/train.pkl')
dh = DataHandlerLP(data_loader=StaticDataLoader(data_df), drop_raw=True)
del data_df
del dh.data_loader
def split_kfold(idx, fold=5):
kfold = GroupKFold(n_splits=fold)
cv_index = []
for fold_id, (train_idx, valid_idx) in enumerate(kfold.split(idx, groups=idx.get_level_values('datetime'))):
all_seg = {'train': idx[train_idx], 'valid': idx[valid_idx]}
cv_index.append(all_seg)
return cv_index
idx = dh.fetch().index
cv_index = split_kfold(idx)
del idx
gc.collect()
R.start_exp()
kwargs = {'lr': 0.002, 'optimizer': 'adam', 'max_steps': 8000, 'batch_size': 8192, 'pt_model_kwargs': {'input_dim': 300, 'layers': (256,)}, 'scheduler': None}
R.log_params(**kwargs)
cv_models = []
for seg in cv_index:
ds = DatasetH(handler=dh, segments=seg)
m = DNNModelPytorch(**kwargs)
m.fit(ds)
cv_models.append(m)
break
R.save_objects(**{'cv_models.pkl': cv_models, 'handler.pkl': dh})
R.end_exp()
import ubiquant
env = ubiquant.make_env()
iter_test = env.iter_test()
def get_avg(preds):
return sum(preds) / len(preds)
for test_df, sample_prediction_df in iter_test:
dh.data_loader = StaticDataLoader(read_data(test_df, proc_type='test'))
dh.setup_data(init_type=dh.IT_LS)
ds = DatasetH(handler=dh, segments={'test': slice(None)})
preds = []
preds_nn = []
for m in cv_models:
preds_nn.append(m.predict(ds).values)
preds.append(get_avg(preds_nn))
sample_prediction_df.loc[:, 'target'] = get_avg(preds)
env.predict(sample_prediction_df) | code |
88092710/cell_5 | [
"text_plain_output_1.png"
] | import qlib
import gc
from typing import Union
import qlib
from qlib.workflow import R
import numpy as np
import pandas as pd
from qlib.data.dataset.handler import DataHandlerLP
from qlib.data.dataset.loader import StaticDataLoader
from qlib.data.dataset import DatasetH
from qlib.contrib.model.pytorch_nn import DNNModelPytorch
from sklearn.model_selection import GroupKFold
qlib.init() | code |
16117153/cell_25 | [
"text_plain_output_1.png"
] | import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
import numpy as np
import pandas as pd
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import os
big = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
big.columns
big.shape
big.head(10).T
big.isna().sum()
big.dropna(subset=['Value'], inplace=True)
big.Value.fillna(big.Value.median(), inplace=True)
big.duplicated().sum()
big = big.drop_duplicates()
big.duplicated().sum()
big.loc[big['Value'].notnull(), 'Value'].apply(int)
big.isna().sum() | code |
16117153/cell_4 | [
"text_html_output_1.png"
] | import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
import numpy as np
import pandas as pd
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import os
big = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
big.columns
big.shape | code |
16117153/cell_30 | [
"text_plain_output_1.png"
] | import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
import numpy as np
import pandas as pd
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import os
big = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
big.columns
big.shape
big.head(10).T
big.isna().sum()
big.dropna(subset=['Value'], inplace=True)
big.Value.fillna(big.Value.median(), inplace=True)
big.duplicated().sum()
big = big.drop_duplicates()
big.duplicated().sum()
big.loc[big['Value'].notnull(), 'Value'].apply(int)
big.isna().sum()
big.drop(columns=['Methods', 'Notes'], inplace=True)
groupvalues = big.groupby('Indicator Category').sum().reset_index()
groupvalues.head() | code |
16117153/cell_20 | [
"text_html_output_1.png"
] | import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
import numpy as np
import pandas as pd
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import os
big = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
big.columns
big.shape
big.head(10).T
big.isna().sum()
big.dropna(subset=['Value'], inplace=True)
big.Value.fillna(big.Value.median(), inplace=True)
big.duplicated().sum()
big = big.drop_duplicates()
big.duplicated().sum() | code |
16117153/cell_6 | [
"text_plain_output_1.png"
] | import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
import numpy as np
import pandas as pd
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import os
big = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
big.columns
big.shape
big.info() | code |
16117153/cell_2 | [
"text_plain_output_1.png"
] | import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
import numpy as np
import pandas as pd
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import os
print(os.listdir('../input'))
big = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv') | code |
16117153/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
16117153/cell_7 | [
"text_html_output_1.png"
] | import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
import numpy as np
import pandas as pd
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import os
big = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
big.columns
big.shape
big.head(10).T | code |
16117153/cell_18 | [
"text_plain_output_1.png"
] | import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
import numpy as np
import pandas as pd
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import os
big = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
big.columns
big.shape
big.head(10).T
big.isna().sum()
big.dropna(subset=['Value'], inplace=True)
big.Value.fillna(big.Value.median(), inplace=True)
big.duplicated().sum() | code |
16117153/cell_28 | [
"text_plain_output_1.png"
] | import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
import numpy as np
import pandas as pd
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import os
big = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
big.columns
big.shape
big.head(10).T
big.isna().sum()
big.dropna(subset=['Value'], inplace=True)
big.Value.fillna(big.Value.median(), inplace=True)
big.duplicated().sum()
big = big.drop_duplicates()
big.duplicated().sum()
big.loc[big['Value'].notnull(), 'Value'].apply(int)
big.isna().sum()
big.drop(columns=['Methods', 'Notes'], inplace=True)
big['Indicator Category'].value_counts() | code |
16117153/cell_8 | [
"image_output_1.png"
] | import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
import numpy as np
import pandas as pd
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import os
big = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
big.columns
big.shape
big.head(10).T
big.tail(10) | code |
16117153/cell_3 | [
"text_plain_output_1.png"
] | import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
import numpy as np
import pandas as pd
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import os
big = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
big.columns | code |
16117153/cell_22 | [
"text_html_output_1.png"
] | import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
import numpy as np
import pandas as pd
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import os
big = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
big.columns
big.shape
big.head(10).T
big.isna().sum()
big.dropna(subset=['Value'], inplace=True)
big.Value.fillna(big.Value.median(), inplace=True)
big.duplicated().sum()
big = big.drop_duplicates()
big.duplicated().sum()
big.loc[big['Value'].notnull(), 'Value'].apply(int) | code |
16117153/cell_10 | [
"text_plain_output_1.png"
] | import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
import numpy as np
import pandas as pd
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import os
big = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
big.columns
big.shape
big.head(10).T
big.isna().sum() | code |
16117153/cell_27 | [
"text_html_output_1.png"
] | import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
import numpy as np
import pandas as pd
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import os
big = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
big.columns
big.shape
big.head(10).T
big.isna().sum()
big.dropna(subset=['Value'], inplace=True)
big.Value.fillna(big.Value.median(), inplace=True)
big.duplicated().sum()
big = big.drop_duplicates()
big.duplicated().sum()
big.loc[big['Value'].notnull(), 'Value'].apply(int)
big.isna().sum()
big.drop(columns=['Methods', 'Notes'], inplace=True)
big.head(2) | code |
16117153/cell_12 | [
"text_plain_output_1.png"
] | import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
import numpy as np
import pandas as pd
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import os
big = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
big.columns
big.shape
big.head(10).T
big.isna().sum()
big.describe(include='all') | code |
33114647/cell_13 | [
"text_html_output_1.png"
] | import numpy as np # linear algebra
import operator
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_x = pd.read_csv('/kaggle/input/iris/Iris.csv')
def euclidian_distance(row1, row2, length):
distance = 0
for x in range(length):
distance += np.square(row1[x] - row2[x])
return np.sqrt(distance)
def get_neighbors(dataset, sorted_distances, k):
neighbors = []
for x in range(k):
neighbors.append(sorted_distances[x][0])
return neighbors
def get_sorted_distances(dataset, testInstance):
distances = {}
for x in range(len(dataset)):
dist = euclidian_distance(testInstance, dataset.iloc[x], testInstance.shape[1])
distances[x] = dist[0]
sorted_distances = sorted(distances.items(), key=operator.itemgetter(1))
return sorted_distances
def get_sorted_votes(dataset, neighbors):
class_votes = {}
for x in range(len(neighbors)):
response = dataset.iloc[neighbors[x]][-1]
if response in class_votes:
class_votes[response] += 1
else:
class_votes[response] = 1
sorted_votes = sorted(class_votes.items(), key=operator.itemgetter(1), reverse=True)
return sorted_votes
def knn(dataset, testInstance, k):
sorted_distances = get_sorted_distances(dataset, testInstance)
neighbors = get_neighbors(dataset, sorted_distances, k)
sorted_votes = get_sorted_votes(dataset, neighbors)
return (sorted_votes[0][0], neighbors)
iris = train_x[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm', 'Species']]
row = pd.DataFrame([list(iris.iloc[0].to_numpy()[0:-1])])
knn(iris, row, 3) | code |
33114647/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_x = pd.read_csv('/kaggle/input/iris/Iris.csv')
train_x.head() | code |
33114647/cell_11 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_x = pd.read_csv('/kaggle/input/iris/Iris.csv')
iris = train_x[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm', 'Species']]
iris.head() | code |
33114647/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
33114647/cell_15 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
import operator
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_x = pd.read_csv('/kaggle/input/iris/Iris.csv')
def euclidian_distance(row1, row2, length):
distance = 0
for x in range(length):
distance += np.square(row1[x] - row2[x])
return np.sqrt(distance)
def get_neighbors(dataset, sorted_distances, k):
neighbors = []
for x in range(k):
neighbors.append(sorted_distances[x][0])
return neighbors
def get_sorted_distances(dataset, testInstance):
distances = {}
for x in range(len(dataset)):
dist = euclidian_distance(testInstance, dataset.iloc[x], testInstance.shape[1])
distances[x] = dist[0]
sorted_distances = sorted(distances.items(), key=operator.itemgetter(1))
return sorted_distances
def get_sorted_votes(dataset, neighbors):
class_votes = {}
for x in range(len(neighbors)):
response = dataset.iloc[neighbors[x]][-1]
if response in class_votes:
class_votes[response] += 1
else:
class_votes[response] = 1
sorted_votes = sorted(class_votes.items(), key=operator.itemgetter(1), reverse=True)
return sorted_votes
def knn(dataset, testInstance, k):
sorted_distances = get_sorted_distances(dataset, testInstance)
neighbors = get_neighbors(dataset, sorted_distances, k)
sorted_votes = get_sorted_votes(dataset, neighbors)
return (sorted_votes[0][0], neighbors)
iris = train_x[['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm', 'Species']]
row = pd.DataFrame([list(iris.iloc[0].to_numpy()[0:-1])])
result = []
for i in range(len(iris)):
row = pd.DataFrame([list(iris.iloc[i].to_numpy()[0:-1])])
result.append(knn(iris, row, 3))
result | code |
72070216/cell_21 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
data = pd.read_csv('../input/water-potability/water_potability.csv')
data.isnull().sum()[data.isnull().sum() > 0]
fig = plt.figure(figsize=(18,16))
for index,col in enumerate(data.drop('Potability',axis=1).columns):
plt.subplot(5,2,index+1)
sns.distplot(data.drop('Potability', axis=1).loc[:,col].dropna(), kde=False)
fig.tight_layout(pad=1.0)
fig = plt.figure(figsize=(14,15))
for index,col in enumerate(data.drop('Potability', axis=1).columns):
plt.subplot(5,2,index+1)
sns.boxplot(y=col, data=data.drop('Potability', axis=1).dropna())
fig.tight_layout(pad=1.0)
fig = plt.figure(figsize=(10,10))
sns.heatmap(data.corr(), annot=True, cmap='gray')
data.isnull().sum()[data.isnull().sum() > 0] | code |
72070216/cell_13 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
data = pd.read_csv('../input/water-potability/water_potability.csv')
data.isnull().sum()[data.isnull().sum() > 0]
fig = plt.figure(figsize=(18, 16))
for index, col in enumerate(data.drop('Potability', axis=1).columns):
plt.subplot(5, 2, index + 1)
sns.distplot(data.drop('Potability', axis=1).loc[:, col].dropna(), kde=False)
fig.tight_layout(pad=1.0) | code |
72070216/cell_9 | [
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/water-potability/water_potability.csv')
data.isnull().sum()[data.isnull().sum() > 0] | code |
72070216/cell_34 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
gnb = GaussianNB()
cv = cross_val_score(gnb, X_train, y_train, cv=5)
lr = LogisticRegression(max_iter=2000)
cv = cross_val_score(lr, X_train, y_train, cv=5)
knn = KNeighborsClassifier(n_neighbors=4)
cv = cross_val_score(knn, X_train, y_train, cv=5)
rf = RandomForestClassifier(random_state=42)
cv = cross_val_score(rf, X_train, y_train, cv=5)
svc = SVC(probability=True)
cv = cross_val_score(svc, X_train, y_train, cv=5)
print(cv)
print(cv.mean()) | code |
72070216/cell_30 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
gnb = GaussianNB()
cv = cross_val_score(gnb, X_train, y_train, cv=5)
print(cv)
print(cv.mean()) | code |
72070216/cell_33 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
gnb = GaussianNB()
cv = cross_val_score(gnb, X_train, y_train, cv=5)
lr = LogisticRegression(max_iter=2000)
cv = cross_val_score(lr, X_train, y_train, cv=5)
knn = KNeighborsClassifier(n_neighbors=4)
cv = cross_val_score(knn, X_train, y_train, cv=5)
rf = RandomForestClassifier(random_state=42)
cv = cross_val_score(rf, X_train, y_train, cv=5)
print(cv)
print(cv.mean()) | code |
72070216/cell_44 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
gnb = GaussianNB()
cv = cross_val_score(gnb, X_train, y_train, cv=5)
lr = LogisticRegression(max_iter=2000)
cv = cross_val_score(lr, X_train, y_train, cv=5)
knn = KNeighborsClassifier(n_neighbors=4)
cv = cross_val_score(knn, X_train, y_train, cv=5)
rf = RandomForestClassifier(random_state=42)
cv = cross_val_score(rf, X_train, y_train, cv=5)
svc = SVC(probability=True)
cv = cross_val_score(svc, X_train, y_train, cv=5)
def performance(classifier, model_name):
pass
svc = SVC(probability=True)
param_grid = tuned_parameters = [{'kernel': ['rbf'], 'gamma': [0.1, 0.5, 1, 2, 5, 10], 'C': [0.1, 1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [0.1, 1, 10, 100, 1000]}, {'kernel': ['poly'], 'degree': [2, 3, 4, 5], 'C': [0.1, 1, 10, 100, 1000]}]
clf_svc = RandomizedSearchCV(svc, param_grid, cv=5, verbose=True, n_jobs=-1)
best_clf_svc = clf_svc.fit(X_train, y_train)
performance(best_clf_svc, 'SVC') | code |
72070216/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/water-potability/water_potability.csv')
data.head() | code |
72070216/cell_40 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
gnb = GaussianNB()
cv = cross_val_score(gnb, X_train, y_train, cv=5)
lr = LogisticRegression(max_iter=2000)
cv = cross_val_score(lr, X_train, y_train, cv=5)
knn = KNeighborsClassifier(n_neighbors=4)
cv = cross_val_score(knn, X_train, y_train, cv=5)
rf = RandomForestClassifier(random_state=42)
cv = cross_val_score(rf, X_train, y_train, cv=5)
svc = SVC(probability=True)
cv = cross_val_score(svc, X_train, y_train, cv=5)
from xgboost import XGBClassifier
xgb = XGBClassifier(random_state=1)
cv = cross_val_score(xgb, X_train, y_train, cv=5)
from sklearn.ensemble import VotingClassifier
voting_clf = VotingClassifier(estimators=[('lr', lr), ('knn', knn), ('rf', rf), ('gnb', gnb), ('svc', svc), ('xgb', xgb)], voting='soft')
cv = cross_val_score(voting_clf, X_train, y_train, cv=5)
from sklearn.metrics import accuracy_score
voting_clf.fit(X_train, y_train)
y_pred_vc_soft = voting_clf.predict(X_test).astype(int)
accuracy_score(y_pred_vc_soft, y_test)
voting_clf = VotingClassifier(estimators=[('rf', rf), ('svc', svc), ('xgb', xgb)], voting='soft')
cv = cross_val_score(voting_clf, X_train, y_train, cv=5)
print(cv)
print(cv.mean()) | code |
72070216/cell_48 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
gnb = GaussianNB()
cv = cross_val_score(gnb, X_train, y_train, cv=5)
lr = LogisticRegression(max_iter=2000)
cv = cross_val_score(lr, X_train, y_train, cv=5)
knn = KNeighborsClassifier(n_neighbors=4)
cv = cross_val_score(knn, X_train, y_train, cv=5)
rf = RandomForestClassifier(random_state=42)
cv = cross_val_score(rf, X_train, y_train, cv=5)
svc = SVC(probability=True)
cv = cross_val_score(svc, X_train, y_train, cv=5)
from xgboost import XGBClassifier
xgb = XGBClassifier(random_state=1)
cv = cross_val_score(xgb, X_train, y_train, cv=5)
def performance(classifier, model_name):
pass
svc = SVC(probability=True)
param_grid = tuned_parameters = [{'kernel': ['rbf'], 'gamma': [0.1, 0.5, 1, 2, 5, 10], 'C': [0.1, 1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [0.1, 1, 10, 100, 1000]}, {'kernel': ['poly'], 'degree': [2, 3, 4, 5], 'C': [0.1, 1, 10, 100, 1000]}]
clf_svc = RandomizedSearchCV(svc, param_grid, cv=5, verbose=True, n_jobs=-1)
best_clf_svc = clf_svc.fit(X_train, y_train)
performance(best_clf_svc, 'SVC')
best_svc = best_clf_svc.best_estimator_.fit(X_train, y_train)
y_pred = best_svc.predict(X_test)
accuracy_score(y_pred, y_test)
xgb = XGBClassifier(random_state=42)
param_grid = {'n_estimators': [450, 500, 550], 'colsample_bytree': [0.75, 0.8, 0.85], 'max_depth': [None], 'reg_alpha': [1], 'reg_lambda': [2, 5, 10], 'subsample': [0.55, 0.6, 0.65], 'learning_rate': [0.5], 'gamma': [0.5, 1, 2], 'min_child_weight': [0.01], 'sampling_method': ['uniform']}
clf_xgb = RandomizedSearchCV(xgb, param_grid, cv=5, verbose=True, n_jobs=-1)
best_clf_xgb = clf_xgb.fit(X_train, y_train)
performance(best_clf_xgb, 'XGB')
best_xgb = best_clf_xgb.best_estimator_.fit(X_train, y_train)
y_pred = best_xgb.predict(X_test)
accuracy_score(y_pred, y_test) | code |
72070216/cell_11 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/water-potability/water_potability.csv')
data.isnull().sum()[data.isnull().sum() > 0]
data['Potability'].value_counts() | code |
72070216/cell_50 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_3.png",
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
gnb = GaussianNB()
cv = cross_val_score(gnb, X_train, y_train, cv=5)
lr = LogisticRegression(max_iter=2000)
cv = cross_val_score(lr, X_train, y_train, cv=5)
knn = KNeighborsClassifier(n_neighbors=4)
cv = cross_val_score(knn, X_train, y_train, cv=5)
rf = RandomForestClassifier(random_state=42)
cv = cross_val_score(rf, X_train, y_train, cv=5)
svc = SVC(probability=True)
cv = cross_val_score(svc, X_train, y_train, cv=5)
from xgboost import XGBClassifier
xgb = XGBClassifier(random_state=1)
cv = cross_val_score(xgb, X_train, y_train, cv=5)
def performance(classifier, model_name):
pass
svc = SVC(probability=True)
param_grid = tuned_parameters = [{'kernel': ['rbf'], 'gamma': [0.1, 0.5, 1, 2, 5, 10], 'C': [0.1, 1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [0.1, 1, 10, 100, 1000]}, {'kernel': ['poly'], 'degree': [2, 3, 4, 5], 'C': [0.1, 1, 10, 100, 1000]}]
clf_svc = RandomizedSearchCV(svc, param_grid, cv=5, verbose=True, n_jobs=-1)
best_clf_svc = clf_svc.fit(X_train, y_train)
performance(best_clf_svc, 'SVC')
best_svc = best_clf_svc.best_estimator_.fit(X_train, y_train)
y_pred = best_svc.predict(X_test)
accuracy_score(y_pred, y_test)
xgb = XGBClassifier(random_state=42)
param_grid = {'n_estimators': [450, 500, 550], 'colsample_bytree': [0.75, 0.8, 0.85], 'max_depth': [None], 'reg_alpha': [1], 'reg_lambda': [2, 5, 10], 'subsample': [0.55, 0.6, 0.65], 'learning_rate': [0.5], 'gamma': [0.5, 1, 2], 'min_child_weight': [0.01], 'sampling_method': ['uniform']}
clf_xgb = RandomizedSearchCV(xgb, param_grid, cv=5, verbose=True, n_jobs=-1)
best_clf_xgb = clf_xgb.fit(X_train, y_train)
performance(best_clf_xgb, 'XGB')
best_xgb = best_clf_xgb.best_estimator_.fit(X_train, y_train)
y_pred = best_xgb.predict(X_test)
accuracy_score(y_pred, y_test)
rf = RandomForestClassifier(random_state=42)
param_grid = {'n_estimators': [400, 450, 500, 550], 'criterion': ['gini', 'entropy'], 'bootstrap': [True], 'max_depth': [15, 20, 25], 'max_features': ['auto', 'sqrt', 10], 'min_samples_leaf': [2, 3], 'min_samples_split': [2, 3]}
clf_rf = RandomizedSearchCV(rf, param_grid, cv=5, verbose=True, n_jobs=-1)
best_clf_rf = clf_rf.fit(X_train, y_train)
performance(best_clf_rf, 'Random Forest')
best_rf = best_clf_rf.best_estimator_.fit(X_train, y_train)
y_pred = best_rf.predict(X_test)
accuracy_score(y_pred, y_test) | code |
72070216/cell_52 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
gnb = GaussianNB()
cv = cross_val_score(gnb, X_train, y_train, cv=5)
lr = LogisticRegression(max_iter=2000)
cv = cross_val_score(lr, X_train, y_train, cv=5)
knn = KNeighborsClassifier(n_neighbors=4)
cv = cross_val_score(knn, X_train, y_train, cv=5)
rf = RandomForestClassifier(random_state=42)
cv = cross_val_score(rf, X_train, y_train, cv=5)
svc = SVC(probability=True)
cv = cross_val_score(svc, X_train, y_train, cv=5)
from xgboost import XGBClassifier
xgb = XGBClassifier(random_state=1)
cv = cross_val_score(xgb, X_train, y_train, cv=5)
def performance(classifier, model_name):
pass
svc = SVC(probability=True)
param_grid = tuned_parameters = [{'kernel': ['rbf'], 'gamma': [0.1, 0.5, 1, 2, 5, 10], 'C': [0.1, 1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [0.1, 1, 10, 100, 1000]}, {'kernel': ['poly'], 'degree': [2, 3, 4, 5], 'C': [0.1, 1, 10, 100, 1000]}]
clf_svc = RandomizedSearchCV(svc, param_grid, cv=5, verbose=True, n_jobs=-1)
best_clf_svc = clf_svc.fit(X_train, y_train)
performance(best_clf_svc, 'SVC')
best_svc = best_clf_svc.best_estimator_.fit(X_train, y_train)
y_pred = best_svc.predict(X_test)
accuracy_score(y_pred, y_test)
xgb = XGBClassifier(random_state=42)
param_grid = {'n_estimators': [450, 500, 550], 'colsample_bytree': [0.75, 0.8, 0.85], 'max_depth': [None], 'reg_alpha': [1], 'reg_lambda': [2, 5, 10], 'subsample': [0.55, 0.6, 0.65], 'learning_rate': [0.5], 'gamma': [0.5, 1, 2], 'min_child_weight': [0.01], 'sampling_method': ['uniform']}
clf_xgb = RandomizedSearchCV(xgb, param_grid, cv=5, verbose=True, n_jobs=-1)
best_clf_xgb = clf_xgb.fit(X_train, y_train)
performance(best_clf_xgb, 'XGB')
best_xgb = best_clf_xgb.best_estimator_.fit(X_train, y_train)
y_pred = best_xgb.predict(X_test)
accuracy_score(y_pred, y_test)
rf = RandomForestClassifier(random_state=42)
param_grid = {'n_estimators': [400, 450, 500, 550], 'criterion': ['gini', 'entropy'], 'bootstrap': [True], 'max_depth': [15, 20, 25], 'max_features': ['auto', 'sqrt', 10], 'min_samples_leaf': [2, 3], 'min_samples_split': [2, 3]}
clf_rf = RandomizedSearchCV(rf, param_grid, cv=5, verbose=True, n_jobs=-1)
best_clf_rf = clf_rf.fit(X_train, y_train)
performance(best_clf_rf, 'Random Forest')
best_rf = best_clf_rf.best_estimator_.fit(X_train, y_train)
y_pred = best_rf.predict(X_test)
accuracy_score(y_pred, y_test)
model = VotingClassifier(estimators=[('SVC', best_svc), ('XGB', best_xgb), ('RF', best_rf)], voting='hard')
model.fit(X_train, y_train) | code |
72070216/cell_7 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/water-potability/water_potability.csv')
data.describe() | code |
72070216/cell_49 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_3.png",
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
gnb = GaussianNB()
cv = cross_val_score(gnb, X_train, y_train, cv=5)
lr = LogisticRegression(max_iter=2000)
cv = cross_val_score(lr, X_train, y_train, cv=5)
knn = KNeighborsClassifier(n_neighbors=4)
cv = cross_val_score(knn, X_train, y_train, cv=5)
rf = RandomForestClassifier(random_state=42)
cv = cross_val_score(rf, X_train, y_train, cv=5)
svc = SVC(probability=True)
cv = cross_val_score(svc, X_train, y_train, cv=5)
from xgboost import XGBClassifier
xgb = XGBClassifier(random_state=1)
cv = cross_val_score(xgb, X_train, y_train, cv=5)
def performance(classifier, model_name):
pass
svc = SVC(probability=True)
param_grid = tuned_parameters = [{'kernel': ['rbf'], 'gamma': [0.1, 0.5, 1, 2, 5, 10], 'C': [0.1, 1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [0.1, 1, 10, 100, 1000]}, {'kernel': ['poly'], 'degree': [2, 3, 4, 5], 'C': [0.1, 1, 10, 100, 1000]}]
clf_svc = RandomizedSearchCV(svc, param_grid, cv=5, verbose=True, n_jobs=-1)
best_clf_svc = clf_svc.fit(X_train, y_train)
performance(best_clf_svc, 'SVC')
xgb = XGBClassifier(random_state=42)
param_grid = {'n_estimators': [450, 500, 550], 'colsample_bytree': [0.75, 0.8, 0.85], 'max_depth': [None], 'reg_alpha': [1], 'reg_lambda': [2, 5, 10], 'subsample': [0.55, 0.6, 0.65], 'learning_rate': [0.5], 'gamma': [0.5, 1, 2], 'min_child_weight': [0.01], 'sampling_method': ['uniform']}
clf_xgb = RandomizedSearchCV(xgb, param_grid, cv=5, verbose=True, n_jobs=-1)
best_clf_xgb = clf_xgb.fit(X_train, y_train)
performance(best_clf_xgb, 'XGB')
rf = RandomForestClassifier(random_state=42)
param_grid = {'n_estimators': [400, 450, 500, 550], 'criterion': ['gini', 'entropy'], 'bootstrap': [True], 'max_depth': [15, 20, 25], 'max_features': ['auto', 'sqrt', 10], 'min_samples_leaf': [2, 3], 'min_samples_split': [2, 3]}
clf_rf = RandomizedSearchCV(rf, param_grid, cv=5, verbose=True, n_jobs=-1)
best_clf_rf = clf_rf.fit(X_train, y_train)
performance(best_clf_rf, 'Random Forest') | code |
72070216/cell_32 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
gnb = GaussianNB()
cv = cross_val_score(gnb, X_train, y_train, cv=5)
lr = LogisticRegression(max_iter=2000)
cv = cross_val_score(lr, X_train, y_train, cv=5)
knn = KNeighborsClassifier(n_neighbors=4)
cv = cross_val_score(knn, X_train, y_train, cv=5)
print(cv)
print(cv.mean()) | code |
72070216/cell_15 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
data = pd.read_csv('../input/water-potability/water_potability.csv')
data.isnull().sum()[data.isnull().sum() > 0]
fig = plt.figure(figsize=(18,16))
for index,col in enumerate(data.drop('Potability',axis=1).columns):
plt.subplot(5,2,index+1)
sns.distplot(data.drop('Potability', axis=1).loc[:,col].dropna(), kde=False)
fig.tight_layout(pad=1.0)
fig = plt.figure(figsize=(14, 15))
for index, col in enumerate(data.drop('Potability', axis=1).columns):
plt.subplot(5, 2, index + 1)
sns.boxplot(y=col, data=data.drop('Potability', axis=1).dropna())
fig.tight_layout(pad=1.0) | code |
72070216/cell_38 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
gnb = GaussianNB()
cv = cross_val_score(gnb, X_train, y_train, cv=5)
lr = LogisticRegression(max_iter=2000)
cv = cross_val_score(lr, X_train, y_train, cv=5)
knn = KNeighborsClassifier(n_neighbors=4)
cv = cross_val_score(knn, X_train, y_train, cv=5)
rf = RandomForestClassifier(random_state=42)
cv = cross_val_score(rf, X_train, y_train, cv=5)
svc = SVC(probability=True)
cv = cross_val_score(svc, X_train, y_train, cv=5)
from xgboost import XGBClassifier
xgb = XGBClassifier(random_state=1)
cv = cross_val_score(xgb, X_train, y_train, cv=5)
from sklearn.ensemble import VotingClassifier
voting_clf = VotingClassifier(estimators=[('lr', lr), ('knn', knn), ('rf', rf), ('gnb', gnb), ('svc', svc), ('xgb', xgb)], voting='soft')
from sklearn.metrics import accuracy_score
voting_clf.fit(X_train, y_train)
y_pred_vc_soft = voting_clf.predict(X_test).astype(int)
accuracy_score(y_pred_vc_soft, y_test) | code |
72070216/cell_47 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
gnb = GaussianNB()
cv = cross_val_score(gnb, X_train, y_train, cv=5)
lr = LogisticRegression(max_iter=2000)
cv = cross_val_score(lr, X_train, y_train, cv=5)
knn = KNeighborsClassifier(n_neighbors=4)
cv = cross_val_score(knn, X_train, y_train, cv=5)
rf = RandomForestClassifier(random_state=42)
cv = cross_val_score(rf, X_train, y_train, cv=5)
svc = SVC(probability=True)
cv = cross_val_score(svc, X_train, y_train, cv=5)
from xgboost import XGBClassifier
xgb = XGBClassifier(random_state=1)
cv = cross_val_score(xgb, X_train, y_train, cv=5)
def performance(classifier, model_name):
pass
svc = SVC(probability=True)
param_grid = tuned_parameters = [{'kernel': ['rbf'], 'gamma': [0.1, 0.5, 1, 2, 5, 10], 'C': [0.1, 1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [0.1, 1, 10, 100, 1000]}, {'kernel': ['poly'], 'degree': [2, 3, 4, 5], 'C': [0.1, 1, 10, 100, 1000]}]
clf_svc = RandomizedSearchCV(svc, param_grid, cv=5, verbose=True, n_jobs=-1)
best_clf_svc = clf_svc.fit(X_train, y_train)
performance(best_clf_svc, 'SVC')
xgb = XGBClassifier(random_state=42)
param_grid = {'n_estimators': [450, 500, 550], 'colsample_bytree': [0.75, 0.8, 0.85], 'max_depth': [None], 'reg_alpha': [1], 'reg_lambda': [2, 5, 10], 'subsample': [0.55, 0.6, 0.65], 'learning_rate': [0.5], 'gamma': [0.5, 1, 2], 'min_child_weight': [0.01], 'sampling_method': ['uniform']}
clf_xgb = RandomizedSearchCV(xgb, param_grid, cv=5, verbose=True, n_jobs=-1)
best_clf_xgb = clf_xgb.fit(X_train, y_train)
performance(best_clf_xgb, 'XGB') | code |
72070216/cell_17 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
data = pd.read_csv('../input/water-potability/water_potability.csv')
data.isnull().sum()[data.isnull().sum() > 0]
fig = plt.figure(figsize=(18,16))
for index,col in enumerate(data.drop('Potability',axis=1).columns):
plt.subplot(5,2,index+1)
sns.distplot(data.drop('Potability', axis=1).loc[:,col].dropna(), kde=False)
fig.tight_layout(pad=1.0)
fig = plt.figure(figsize=(14,15))
for index,col in enumerate(data.drop('Potability', axis=1).columns):
plt.subplot(5,2,index+1)
sns.boxplot(y=col, data=data.drop('Potability', axis=1).dropna())
fig.tight_layout(pad=1.0)
fig = plt.figure(figsize=(10, 10))
sns.heatmap(data.corr(), annot=True, cmap='gray') | code |
72070216/cell_35 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
gnb = GaussianNB()
cv = cross_val_score(gnb, X_train, y_train, cv=5)
lr = LogisticRegression(max_iter=2000)
cv = cross_val_score(lr, X_train, y_train, cv=5)
knn = KNeighborsClassifier(n_neighbors=4)
cv = cross_val_score(knn, X_train, y_train, cv=5)
rf = RandomForestClassifier(random_state=42)
cv = cross_val_score(rf, X_train, y_train, cv=5)
svc = SVC(probability=True)
cv = cross_val_score(svc, X_train, y_train, cv=5)
from xgboost import XGBClassifier
xgb = XGBClassifier(random_state=1)
cv = cross_val_score(xgb, X_train, y_train, cv=5)
print(cv)
print(cv.mean()) | code |
72070216/cell_31 | [
"image_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
gnb = GaussianNB()
cv = cross_val_score(gnb, X_train, y_train, cv=5)
lr = LogisticRegression(max_iter=2000)
cv = cross_val_score(lr, X_train, y_train, cv=5)
print(cv)
print(cv.mean()) | code |
72070216/cell_46 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
gnb = GaussianNB()
cv = cross_val_score(gnb, X_train, y_train, cv=5)
lr = LogisticRegression(max_iter=2000)
cv = cross_val_score(lr, X_train, y_train, cv=5)
knn = KNeighborsClassifier(n_neighbors=4)
cv = cross_val_score(knn, X_train, y_train, cv=5)
rf = RandomForestClassifier(random_state=42)
cv = cross_val_score(rf, X_train, y_train, cv=5)
svc = SVC(probability=True)
cv = cross_val_score(svc, X_train, y_train, cv=5)
def performance(classifier, model_name):
pass
svc = SVC(probability=True)
param_grid = tuned_parameters = [{'kernel': ['rbf'], 'gamma': [0.1, 0.5, 1, 2, 5, 10], 'C': [0.1, 1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [0.1, 1, 10, 100, 1000]}, {'kernel': ['poly'], 'degree': [2, 3, 4, 5], 'C': [0.1, 1, 10, 100, 1000]}]
clf_svc = RandomizedSearchCV(svc, param_grid, cv=5, verbose=True, n_jobs=-1)
best_clf_svc = clf_svc.fit(X_train, y_train)
performance(best_clf_svc, 'SVC')
best_svc = best_clf_svc.best_estimator_.fit(X_train, y_train)
y_pred = best_svc.predict(X_test)
accuracy_score(y_pred, y_test) | code |
72070216/cell_53 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_3.png",
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
gnb = GaussianNB()
cv = cross_val_score(gnb, X_train, y_train, cv=5)
lr = LogisticRegression(max_iter=2000)
cv = cross_val_score(lr, X_train, y_train, cv=5)
knn = KNeighborsClassifier(n_neighbors=4)
cv = cross_val_score(knn, X_train, y_train, cv=5)
rf = RandomForestClassifier(random_state=42)
cv = cross_val_score(rf, X_train, y_train, cv=5)
svc = SVC(probability=True)
cv = cross_val_score(svc, X_train, y_train, cv=5)
from xgboost import XGBClassifier
xgb = XGBClassifier(random_state=1)
cv = cross_val_score(xgb, X_train, y_train, cv=5)
def performance(classifier, model_name):
pass
svc = SVC(probability=True)
param_grid = tuned_parameters = [{'kernel': ['rbf'], 'gamma': [0.1, 0.5, 1, 2, 5, 10], 'C': [0.1, 1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [0.1, 1, 10, 100, 1000]}, {'kernel': ['poly'], 'degree': [2, 3, 4, 5], 'C': [0.1, 1, 10, 100, 1000]}]
clf_svc = RandomizedSearchCV(svc, param_grid, cv=5, verbose=True, n_jobs=-1)
best_clf_svc = clf_svc.fit(X_train, y_train)
performance(best_clf_svc, 'SVC')
best_svc = best_clf_svc.best_estimator_.fit(X_train, y_train)
y_pred = best_svc.predict(X_test)
accuracy_score(y_pred, y_test)
xgb = XGBClassifier(random_state=42)
param_grid = {'n_estimators': [450, 500, 550], 'colsample_bytree': [0.75, 0.8, 0.85], 'max_depth': [None], 'reg_alpha': [1], 'reg_lambda': [2, 5, 10], 'subsample': [0.55, 0.6, 0.65], 'learning_rate': [0.5], 'gamma': [0.5, 1, 2], 'min_child_weight': [0.01], 'sampling_method': ['uniform']}
clf_xgb = RandomizedSearchCV(xgb, param_grid, cv=5, verbose=True, n_jobs=-1)
best_clf_xgb = clf_xgb.fit(X_train, y_train)
performance(best_clf_xgb, 'XGB')
best_xgb = best_clf_xgb.best_estimator_.fit(X_train, y_train)
y_pred = best_xgb.predict(X_test)
accuracy_score(y_pred, y_test)
rf = RandomForestClassifier(random_state=42)
param_grid = {'n_estimators': [400, 450, 500, 550], 'criterion': ['gini', 'entropy'], 'bootstrap': [True], 'max_depth': [15, 20, 25], 'max_features': ['auto', 'sqrt', 10], 'min_samples_leaf': [2, 3], 'min_samples_split': [2, 3]}
clf_rf = RandomizedSearchCV(rf, param_grid, cv=5, verbose=True, n_jobs=-1)
best_clf_rf = clf_rf.fit(X_train, y_train)
performance(best_clf_rf, 'Random Forest')
best_rf = best_clf_rf.best_estimator_.fit(X_train, y_train)
y_pred = best_rf.predict(X_test)
accuracy_score(y_pred, y_test)
model = VotingClassifier(estimators=[('SVC', best_svc), ('XGB', best_xgb), ('RF', best_rf)], voting='hard')
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy_score(y_pred, y_test) | code |
72070216/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
data = pd.read_csv('../input/water-potability/water_potability.csv')
data.isnull().sum()[data.isnull().sum() > 0]
sns.countplot(data['Potability']) | code |
72070216/cell_37 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
gnb = GaussianNB()
cv = cross_val_score(gnb, X_train, y_train, cv=5)
lr = LogisticRegression(max_iter=2000)
cv = cross_val_score(lr, X_train, y_train, cv=5)
knn = KNeighborsClassifier(n_neighbors=4)
cv = cross_val_score(knn, X_train, y_train, cv=5)
rf = RandomForestClassifier(random_state=42)
cv = cross_val_score(rf, X_train, y_train, cv=5)
svc = SVC(probability=True)
cv = cross_val_score(svc, X_train, y_train, cv=5)
from xgboost import XGBClassifier
xgb = XGBClassifier(random_state=1)
cv = cross_val_score(xgb, X_train, y_train, cv=5)
from sklearn.ensemble import VotingClassifier
voting_clf = VotingClassifier(estimators=[('lr', lr), ('knn', knn), ('rf', rf), ('gnb', gnb), ('svc', svc), ('xgb', xgb)], voting='soft')
cv = cross_val_score(voting_clf, X_train, y_train, cv=5)
print(cv)
print(cv.mean()) | code |
72070216/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/water-potability/water_potability.csv')
data.info() | code |
128021914/cell_4 | [
"text_plain_output_1.png"
] | !sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys B53DC80D13EDEF05 | code |
128021914/cell_6 | [
"text_plain_output_1.png"
] | # install_path for ease of use on changing install location
# "/kaggle" is best for all in one because of big storage ( 70 GB ++ )
# "/kaggle/working" is best for saving images and quickrun ( ~20 GB )
install_path= "/kaggle"
!git clone https://github.com/lllyasviel/ControlNet-v1-1-nightly $install_path/cnet1.1
# you can add hashtag # on the controlnet model you don't use for faster downloading
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/Linaqruf/anything-v3.0/resolve/main/anything-v3-full.safetensors -d $install_path/cnet1.1/models -o anything-v3-full.safetensors
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned.ckpt -d $install_path/cnet1.1/models -o v1-5-pruned.ckpt
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11e_sd15_ip2p.pth -d $install_path/cnet1.1/models -o control_v11e_sd15_ip2p.pth
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11e_sd15_shuffle.pth -d $install_path/cnet1.1/models -o control_v11e_sd15_shuffle.pth
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11p_sd15_canny.pth -d $install_path/cnet1.1/models -o control_v11p_sd15_canny.pth
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11f1p_sd15_depth.pth -d $install_path/cnet1.1/models -o control_v11p_sd15_depth.pth
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11p_sd15_inpaint.pth -d $install_path/cnet1.1/models -o control_v11p_sd15_inpaint.pth
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11p_sd15_lineart.pth -d $install_path/cnet1.1/models -o control_v11p_sd15_lineart.pth
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11p_sd15_mlsd.pth -d $install_path/cnet1.1/models -o control_v11p_sd15_mlsd.pth
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11p_sd15_normalbae.pth -d $install_path/cnet1.1/models -o control_v11p_sd15_normalbae.pth
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11p_sd15_openpose.pth -d $install_path/cnet1.1/models -o control_v11p_sd15_openpose.pth
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11p_sd15_scribble.pth -d $install_path/cnet1.1/models -o control_v11p_sd15_scribble.pth
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11p_sd15_seg.pth -d $install_path/cnet1.1/models -o control_v11p_sd15_seg.pth
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11p_sd15_softedge.pth -d $install_path/cnet1.1/models -o control_v11p_sd15_softedge.pth
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11p_sd15s2_lineart_anime.pth -d $install_path/cnet1.1/models -o control_v11p_sd15s2_lineart_anime.pth
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11u_sd15_tile.pth -d $install_path/cnet1.1/models -o control_v11u_sd15_tile.pth
!sed -i "s/block.launch(server_name='0.0.0.0')/block.launch(server_name='0.0.0.0', share=True)/g" gradio_annotator.py
!sed -i "s/block.launch(server_name='0.0.0.0')/block.launch(server_name='0.0.0.0', share=True)/g" gradio_canny.py
!sed -i "s/block.launch(server_name='0.0.0.0')/block.launch(server_name='0.0.0.0', share=True)/g" gradio_depth.py
!sed -i "s/block.launch(server_name='0.0.0.0')/block.launch(server_name='0.0.0.0', share=True)/g" gradio_inpaint.py
!sed -i "s/block.launch(server_name='0.0.0.0')/block.launch(server_name='0.0.0.0', share=True)/g" gradio_ip2p.py
!sed -i "s/block.launch(server_name='0.0.0.0')/block.launch(server_name='0.0.0.0', share=True)/g" gradio_lineart.py
!sed -i "s/block.launch(server_name='0.0.0.0')/block.launch(server_name='0.0.0.0', share=True)/g" gradio_lineart_anime.py
!sed -i "s/block.launch(server_name='0.0.0.0')/block.launch(server_name='0.0.0.0', share=True)/g" gradio_mlsd.py
!sed -i "s/block.launch(server_name='0.0.0.0')/block.launch(server_name='0.0.0.0', share=True)/g" gradio_normalbae.py
!sed -i "s/block.launch(server_name='0.0.0.0')/block.launch(server_name='0.0.0.0', share=True)/g" gradio_openpose.py
!sed -i "s/block.launch(server_name='0.0.0.0')/block.launch(server_name='0.0.0.0', share=True)/g" gradio_scribble.py
!sed -i "s/block.launch(server_name='0.0.0.0')/block.launch(server_name='0.0.0.0', share=True)/g" gradio_scribble_interactive.py
!sed -i "s/block.launch(server_name='0.0.0.0')/block.launch(server_name='0.0.0.0', share=True)/g" gradio_seg.py
!sed -i "s/block.launch(server_name='0.0.0.0')/block.launch(server_name='0.0.0.0', share=True)/g" gradio_shuffle.py
!sed -i "s/block.launch(server_name='0.0.0.0')/block.launch(server_name='0.0.0.0', share=True)/g" gradio_softedge.py
!sed -i "s/block.launch(server_name='0.0.0.0')/block.launch(server_name='0.0.0.0', share=True)/g" gradio_tile.py | code |
128021914/cell_8 | [
"text_plain_output_1.png"
] | !python gradio_lineart_anime.py | code |
128021914/cell_3 | [
"text_plain_output_1.png"
] | !python --version | code |
128034947/cell_13 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
path = '/kaggle/input/h1bcsv/h1b.csv'
df = pd.read_csv(path)
# Counting the number of H-1B visa petitions for each case status
case_status_counts= df['CASE_STATUS'].value_counts()
# Creating a figure and axis object to plot the pie chart
fig, ax = plt.subplots(figsize=(8, 8))
# Plotting the pie chart with the case status counts and their respective percentages
plt.pie(case_status_counts, labels=case_status_counts.index, autopct='%1.1f%%', textprops={'fontsize': 8})
# Setting the title of the chart
plt.title('Petitions distributed by case statuses', y=1.1)
# Ensuring that the chart is properly displayed and not cut off
plt.tight_layout()
# Displaying the chart
plt.show()
top_employers = df['EMPLOYER_NAME'].value_counts().nlargest(20)
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']
plt.xticks(rotation=90)
top_companies = df.groupby('EMPLOYER_NAME').size().sort_values(ascending=False).head(15)
plt.barh(top_companies.index, top_companies.values, color=colors)
plt.title('Top 15 companies that filed the most visa apllication')
plt.show() | code |
128034947/cell_9 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
path = '/kaggle/input/h1bcsv/h1b.csv'
df = pd.read_csv(path)
case_status_counts = df['CASE_STATUS'].value_counts()
fig, ax = plt.subplots(figsize=(8, 8))
plt.pie(case_status_counts, labels=case_status_counts.index, autopct='%1.1f%%', textprops={'fontsize': 8})
plt.title('Petitions distributed by case statuses', y=1.1)
plt.tight_layout()
plt.show() | code |
128034947/cell_6 | [
"image_output_1.png"
] | import pandas as pd
path = '/kaggle/input/h1bcsv/h1b.csv'
df = pd.read_csv(path)
df.head(5) | code |
128034947/cell_11 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
path = '/kaggle/input/h1bcsv/h1b.csv'
df = pd.read_csv(path)
# Counting the number of H-1B visa petitions for each case status
case_status_counts= df['CASE_STATUS'].value_counts()
# Creating a figure and axis object to plot the pie chart
fig, ax = plt.subplots(figsize=(8, 8))
# Plotting the pie chart with the case status counts and their respective percentages
plt.pie(case_status_counts, labels=case_status_counts.index, autopct='%1.1f%%', textprops={'fontsize': 8})
# Setting the title of the chart
plt.title('Petitions distributed by case statuses', y=1.1)
# Ensuring that the chart is properly displayed and not cut off
plt.tight_layout()
# Displaying the chart
plt.show()
top_employers = df['EMPLOYER_NAME'].value_counts().nlargest(20)
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']
plt.bar(top_employers.index, top_employers.values, color=colors)
plt.xticks(rotation=90)
plt.title('Top employers filing the petitions')
plt.show() | code |
128034947/cell_7 | [
"image_output_1.png"
] | import pandas as pd
path = '/kaggle/input/h1bcsv/h1b.csv'
df = pd.read_csv(path)
df.info() | code |
128034947/cell_15 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
path = '/kaggle/input/h1bcsv/h1b.csv'
df = pd.read_csv(path)
# Counting the number of H-1B visa petitions for each case status
case_status_counts= df['CASE_STATUS'].value_counts()
# Creating a figure and axis object to plot the pie chart
fig, ax = plt.subplots(figsize=(8, 8))
# Plotting the pie chart with the case status counts and their respective percentages
plt.pie(case_status_counts, labels=case_status_counts.index, autopct='%1.1f%%', textprops={'fontsize': 8})
# Setting the title of the chart
plt.title('Petitions distributed by case statuses', y=1.1)
# Ensuring that the chart is properly displayed and not cut off
plt.tight_layout()
# Displaying the chart
plt.show()
top_employers = df['EMPLOYER_NAME'].value_counts().nlargest(20)
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']
plt.xticks(rotation=90)
top_companies = df.groupby('EMPLOYER_NAME').size().sort_values(ascending=False).head(15)
plt.barh(top_companies.index, top_companies.values, color=colors)
top_wage_employers = df.groupby('EMPLOYER_NAME')['PREVAILING_WAGE'].mean().nlargest(10)
plt.barh(top_wage_employers.index, top_wage_employers.values, color=colors)
plt.title('Top employers grantingmaximum prevailing wages')
plt.show() | code |
323931/cell_21 | [
"image_output_1.png"
] | import pandas as pd
import seaborn as sns
import pandas as pd
import numpy as np
import seaborn as sns
baseDir = '../input/'
people = pd.read_csv('{0}people.csv'.format(baseDir)).drop_duplicates()
act_train = pd.read_csv('{0}act_train.csv'.format(baseDir)).drop_duplicates()
act_test = pd.read_csv('{0}act_test.csv'.format(baseDir)).drop_duplicates()
unqTrain = act_train.drop(['activity_id', 'outcome'], axis=1).drop_duplicates()
unqTest = act_test.drop(['activity_id'], axis=1).drop_duplicates()
total = pd.concat([unqTrain, unqTest], axis=0)
def addPrefix(df, suffix, exclude):
for c in df.columns:
if c not in exclude:
df.rename(columns={c: suffix + c}, inplace=True)
train = pd.merge(act_train, people, on='people_id', how='left')
test = pd.merge(act_test, people, on='people_id', how='left')
trainUnique = train[~train.drop(['people_id', 'activity_id'], axis=1).duplicated()]
testUnique = test[~test.drop(['people_id', 'activity_id'], axis=1).duplicated()]
nonCategoricalColumns = ['people_id', 'activity_id', 'outcome', 'ppl_char_38', 'ppl_date', 'act_date']
valCounts = {}
def calcCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = len(df[c].value_counts())
valCounts[c] = cnt
calcCountSuffix(trainUnique, nonCategoricalColumns)
def addCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = valCounts[c]
df.rename(columns={c: c + '_cnt_' + str(cnt)}, inplace=True)
addCountSuffix(train, nonCategoricalColumns)
addCountSuffix(test, nonCategoricalColumns)
addCountSuffix(trainUnique, nonCategoricalColumns)
addCountSuffix(testUnique, nonCategoricalColumns)
def getColumnsBySuffix(df, minValue, maxValue, exclude):
return [c for c in df.columns if c not in exclude if int(c.split('_')[-1]) >= minValue and int(c.split('_')[-1]) <= maxValue]
def drawViolin(df, minCnt, maxCnt, indexFrom, indexTo, size=3.5):
g = sns.PairGrid(df, x_vars=getColumnsBySuffix(train, minCnt, maxCnt, nonCategoricalColumns)[indexFrom:indexTo], y_vars=['outcome'], aspect=0.75, size=size)
g.map(sns.violinplot, palette='pastel')
sam10k = trainUnique.sample(10000)
sam100k = trainUnique.sample(100000)
sam500k = trainUnique.sample(500000)
drawViolin(sam10k, 2, 2, 21, 26) | code |
323931/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import seaborn as sns
baseDir = '../input/'
people = pd.read_csv('{0}people.csv'.format(baseDir)).drop_duplicates()
act_train = pd.read_csv('{0}act_train.csv'.format(baseDir)).drop_duplicates()
act_test = pd.read_csv('{0}act_test.csv'.format(baseDir)).drop_duplicates()
unqTrain = act_train.drop(['activity_id', 'outcome'], axis=1).drop_duplicates()
unqTest = act_test.drop(['activity_id'], axis=1).drop_duplicates()
total = pd.concat([unqTrain, unqTest], axis=0)
def addPrefix(df, suffix, exclude):
for c in df.columns:
if c not in exclude:
df.rename(columns={c: suffix + c}, inplace=True)
train = pd.merge(act_train, people, on='people_id', how='left')
test = pd.merge(act_test, people, on='people_id', how='left')
trainUnique = train[~train.drop(['people_id', 'activity_id'], axis=1).duplicated()]
testUnique = test[~test.drop(['people_id', 'activity_id'], axis=1).duplicated()]
nonCategoricalColumns = ['people_id', 'activity_id', 'outcome', 'ppl_char_38', 'ppl_date', 'act_date']
valCounts = {}
def calcCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = len(df[c].value_counts())
valCounts[c] = cnt
calcCountSuffix(trainUnique, nonCategoricalColumns)
def addCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = valCounts[c]
df.rename(columns={c: c + '_cnt_' + str(cnt)}, inplace=True)
addCountSuffix(train, nonCategoricalColumns)
addCountSuffix(test, nonCategoricalColumns)
addCountSuffix(trainUnique, nonCategoricalColumns)
addCountSuffix(testUnique, nonCategoricalColumns) | code |
323931/cell_9 | [
"image_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import seaborn as sns
baseDir = '../input/'
people = pd.read_csv('{0}people.csv'.format(baseDir)).drop_duplicates()
act_train = pd.read_csv('{0}act_train.csv'.format(baseDir)).drop_duplicates()
act_test = pd.read_csv('{0}act_test.csv'.format(baseDir)).drop_duplicates()
unqTrain = act_train.drop(['activity_id', 'outcome'], axis=1).drop_duplicates()
unqTest = act_test.drop(['activity_id'], axis=1).drop_duplicates()
total = pd.concat([unqTrain, unqTest], axis=0)
train = pd.merge(act_train, people, on='people_id', how='left')
print(train.shape)
test = pd.merge(act_test, people, on='people_id', how='left')
print(test.shape)
print(train.columns) | code |
323931/cell_25 | [
"image_output_1.png"
] | import pandas as pd
import seaborn as sns
import pandas as pd
import numpy as np
import seaborn as sns
baseDir = '../input/'
people = pd.read_csv('{0}people.csv'.format(baseDir)).drop_duplicates()
act_train = pd.read_csv('{0}act_train.csv'.format(baseDir)).drop_duplicates()
act_test = pd.read_csv('{0}act_test.csv'.format(baseDir)).drop_duplicates()
unqTrain = act_train.drop(['activity_id', 'outcome'], axis=1).drop_duplicates()
unqTest = act_test.drop(['activity_id'], axis=1).drop_duplicates()
total = pd.concat([unqTrain, unqTest], axis=0)
def addPrefix(df, suffix, exclude):
for c in df.columns:
if c not in exclude:
df.rename(columns={c: suffix + c}, inplace=True)
train = pd.merge(act_train, people, on='people_id', how='left')
test = pd.merge(act_test, people, on='people_id', how='left')
trainUnique = train[~train.drop(['people_id', 'activity_id'], axis=1).duplicated()]
testUnique = test[~test.drop(['people_id', 'activity_id'], axis=1).duplicated()]
nonCategoricalColumns = ['people_id', 'activity_id', 'outcome', 'ppl_char_38', 'ppl_date', 'act_date']
valCounts = {}
def calcCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = len(df[c].value_counts())
valCounts[c] = cnt
calcCountSuffix(trainUnique, nonCategoricalColumns)
def addCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = valCounts[c]
df.rename(columns={c: c + '_cnt_' + str(cnt)}, inplace=True)
addCountSuffix(train, nonCategoricalColumns)
addCountSuffix(test, nonCategoricalColumns)
addCountSuffix(trainUnique, nonCategoricalColumns)
addCountSuffix(testUnique, nonCategoricalColumns)
def getColumnsBySuffix(df, minValue, maxValue, exclude):
return [c for c in df.columns if c not in exclude if int(c.split('_')[-1]) >= minValue and int(c.split('_')[-1]) <= maxValue]
def drawViolin(df, minCnt, maxCnt, indexFrom, indexTo, size=3.5):
g = sns.PairGrid(df, x_vars=getColumnsBySuffix(train, minCnt, maxCnt, nonCategoricalColumns)[indexFrom:indexTo], y_vars=['outcome'], aspect=0.75, size=size)
g.map(sns.violinplot, palette='pastel')
sam10k = trainUnique.sample(10000)
sam100k = trainUnique.sample(100000)
sam500k = trainUnique.sample(500000)
drawViolin(sam100k, 8, 8, 0, 5, 8.0) | code |
323931/cell_4 | [
"image_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import seaborn as sns
baseDir = '../input/'
people = pd.read_csv('{0}people.csv'.format(baseDir)).drop_duplicates()
act_train = pd.read_csv('{0}act_train.csv'.format(baseDir)).drop_duplicates()
act_test = pd.read_csv('{0}act_test.csv'.format(baseDir)).drop_duplicates()
print('{0} duplicate people rows'.format(people.drop('people_id', axis=1).duplicated().sum()))
print('{0} duplicate people ids'.format(people['people_id'].duplicated().sum()))
print('{0} duplicate train rows'.format(act_train.drop('activity_id', axis=1).duplicated().sum()))
print('{0} duplicate train rows with different outcome'.format(act_train.drop(['activity_id'], axis=1).drop_duplicates().drop('outcome', axis=1).duplicated().sum()))
print('{0} duplicate train activity id'.format(act_train['activity_id'].duplicated().sum()))
print('{0} duplicate test rows'.format(act_test.drop('activity_id', axis=1).duplicated().sum()))
print('{0} duplicate test activity id'.format(act_test['activity_id'].duplicated().sum())) | code |
323931/cell_23 | [
"image_output_1.png"
] | import pandas as pd
import seaborn as sns
import pandas as pd
import numpy as np
import seaborn as sns
baseDir = '../input/'
people = pd.read_csv('{0}people.csv'.format(baseDir)).drop_duplicates()
act_train = pd.read_csv('{0}act_train.csv'.format(baseDir)).drop_duplicates()
act_test = pd.read_csv('{0}act_test.csv'.format(baseDir)).drop_duplicates()
unqTrain = act_train.drop(['activity_id', 'outcome'], axis=1).drop_duplicates()
unqTest = act_test.drop(['activity_id'], axis=1).drop_duplicates()
total = pd.concat([unqTrain, unqTest], axis=0)
def addPrefix(df, suffix, exclude):
for c in df.columns:
if c not in exclude:
df.rename(columns={c: suffix + c}, inplace=True)
train = pd.merge(act_train, people, on='people_id', how='left')
test = pd.merge(act_test, people, on='people_id', how='left')
trainUnique = train[~train.drop(['people_id', 'activity_id'], axis=1).duplicated()]
testUnique = test[~test.drop(['people_id', 'activity_id'], axis=1).duplicated()]
nonCategoricalColumns = ['people_id', 'activity_id', 'outcome', 'ppl_char_38', 'ppl_date', 'act_date']
valCounts = {}
def calcCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = len(df[c].value_counts())
valCounts[c] = cnt
calcCountSuffix(trainUnique, nonCategoricalColumns)
def addCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = valCounts[c]
df.rename(columns={c: c + '_cnt_' + str(cnt)}, inplace=True)
addCountSuffix(train, nonCategoricalColumns)
addCountSuffix(test, nonCategoricalColumns)
addCountSuffix(trainUnique, nonCategoricalColumns)
addCountSuffix(testUnique, nonCategoricalColumns)
def getColumnsBySuffix(df, minValue, maxValue, exclude):
return [c for c in df.columns if c not in exclude if int(c.split('_')[-1]) >= minValue and int(c.split('_')[-1]) <= maxValue]
def drawViolin(df, minCnt, maxCnt, indexFrom, indexTo, size=3.5):
g = sns.PairGrid(df, x_vars=getColumnsBySuffix(train, minCnt, maxCnt, nonCategoricalColumns)[indexFrom:indexTo], y_vars=['outcome'], aspect=0.75, size=size)
g.map(sns.violinplot, palette='pastel')
sam10k = trainUnique.sample(10000)
sam100k = trainUnique.sample(100000)
sam500k = trainUnique.sample(500000)
drawViolin(sam100k, 3, 6, 0, 6, 8.0) | code |
323931/cell_20 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
import seaborn as sns
import pandas as pd
import numpy as np
import seaborn as sns
baseDir = '../input/'
people = pd.read_csv('{0}people.csv'.format(baseDir)).drop_duplicates()
act_train = pd.read_csv('{0}act_train.csv'.format(baseDir)).drop_duplicates()
act_test = pd.read_csv('{0}act_test.csv'.format(baseDir)).drop_duplicates()
unqTrain = act_train.drop(['activity_id', 'outcome'], axis=1).drop_duplicates()
unqTest = act_test.drop(['activity_id'], axis=1).drop_duplicates()
total = pd.concat([unqTrain, unqTest], axis=0)
def addPrefix(df, suffix, exclude):
for c in df.columns:
if c not in exclude:
df.rename(columns={c: suffix + c}, inplace=True)
train = pd.merge(act_train, people, on='people_id', how='left')
test = pd.merge(act_test, people, on='people_id', how='left')
trainUnique = train[~train.drop(['people_id', 'activity_id'], axis=1).duplicated()]
testUnique = test[~test.drop(['people_id', 'activity_id'], axis=1).duplicated()]
nonCategoricalColumns = ['people_id', 'activity_id', 'outcome', 'ppl_char_38', 'ppl_date', 'act_date']
valCounts = {}
def calcCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = len(df[c].value_counts())
valCounts[c] = cnt
calcCountSuffix(trainUnique, nonCategoricalColumns)
def addCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = valCounts[c]
df.rename(columns={c: c + '_cnt_' + str(cnt)}, inplace=True)
addCountSuffix(train, nonCategoricalColumns)
addCountSuffix(test, nonCategoricalColumns)
addCountSuffix(trainUnique, nonCategoricalColumns)
addCountSuffix(testUnique, nonCategoricalColumns)
def getColumnsBySuffix(df, minValue, maxValue, exclude):
return [c for c in df.columns if c not in exclude if int(c.split('_')[-1]) >= minValue and int(c.split('_')[-1]) <= maxValue]
def drawViolin(df, minCnt, maxCnt, indexFrom, indexTo, size=3.5):
g = sns.PairGrid(df, x_vars=getColumnsBySuffix(train, minCnt, maxCnt, nonCategoricalColumns)[indexFrom:indexTo], y_vars=['outcome'], aspect=0.75, size=size)
g.map(sns.violinplot, palette='pastel')
sam10k = trainUnique.sample(10000)
sam100k = trainUnique.sample(100000)
sam500k = trainUnique.sample(500000)
drawViolin(sam10k, 2, 2, 16, 21) | code |
323931/cell_11 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import seaborn as sns
baseDir = '../input/'
people = pd.read_csv('{0}people.csv'.format(baseDir)).drop_duplicates()
act_train = pd.read_csv('{0}act_train.csv'.format(baseDir)).drop_duplicates()
act_test = pd.read_csv('{0}act_test.csv'.format(baseDir)).drop_duplicates()
unqTrain = act_train.drop(['activity_id', 'outcome'], axis=1).drop_duplicates()
unqTest = act_test.drop(['activity_id'], axis=1).drop_duplicates()
total = pd.concat([unqTrain, unqTest], axis=0)
train = pd.merge(act_train, people, on='people_id', how='left')
test = pd.merge(act_test, people, on='people_id', how='left')
trainUnique = train[~train.drop(['people_id', 'activity_id'], axis=1).duplicated()]
print(trainUnique.shape)
testUnique = test[~test.drop(['people_id', 'activity_id'], axis=1).duplicated()]
print(testUnique.shape) | code |
323931/cell_19 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
import pandas as pd
import numpy as np
import seaborn as sns
baseDir = '../input/'
people = pd.read_csv('{0}people.csv'.format(baseDir)).drop_duplicates()
act_train = pd.read_csv('{0}act_train.csv'.format(baseDir)).drop_duplicates()
act_test = pd.read_csv('{0}act_test.csv'.format(baseDir)).drop_duplicates()
unqTrain = act_train.drop(['activity_id', 'outcome'], axis=1).drop_duplicates()
unqTest = act_test.drop(['activity_id'], axis=1).drop_duplicates()
total = pd.concat([unqTrain, unqTest], axis=0)
def addPrefix(df, suffix, exclude):
for c in df.columns:
if c not in exclude:
df.rename(columns={c: suffix + c}, inplace=True)
train = pd.merge(act_train, people, on='people_id', how='left')
test = pd.merge(act_test, people, on='people_id', how='left')
trainUnique = train[~train.drop(['people_id', 'activity_id'], axis=1).duplicated()]
testUnique = test[~test.drop(['people_id', 'activity_id'], axis=1).duplicated()]
nonCategoricalColumns = ['people_id', 'activity_id', 'outcome', 'ppl_char_38', 'ppl_date', 'act_date']
valCounts = {}
def calcCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = len(df[c].value_counts())
valCounts[c] = cnt
calcCountSuffix(trainUnique, nonCategoricalColumns)
def addCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = valCounts[c]
df.rename(columns={c: c + '_cnt_' + str(cnt)}, inplace=True)
addCountSuffix(train, nonCategoricalColumns)
addCountSuffix(test, nonCategoricalColumns)
addCountSuffix(trainUnique, nonCategoricalColumns)
addCountSuffix(testUnique, nonCategoricalColumns)
def getColumnsBySuffix(df, minValue, maxValue, exclude):
return [c for c in df.columns if c not in exclude if int(c.split('_')[-1]) >= minValue and int(c.split('_')[-1]) <= maxValue]
def drawViolin(df, minCnt, maxCnt, indexFrom, indexTo, size=3.5):
g = sns.PairGrid(df, x_vars=getColumnsBySuffix(train, minCnt, maxCnt, nonCategoricalColumns)[indexFrom:indexTo], y_vars=['outcome'], aspect=0.75, size=size)
g.map(sns.violinplot, palette='pastel')
sam10k = trainUnique.sample(10000)
sam100k = trainUnique.sample(100000)
sam500k = trainUnique.sample(500000)
drawViolin(sam10k, 2, 2, 11, 16) | code |
323931/cell_18 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
import pandas as pd
import numpy as np
import seaborn as sns
baseDir = '../input/'
people = pd.read_csv('{0}people.csv'.format(baseDir)).drop_duplicates()
act_train = pd.read_csv('{0}act_train.csv'.format(baseDir)).drop_duplicates()
act_test = pd.read_csv('{0}act_test.csv'.format(baseDir)).drop_duplicates()
unqTrain = act_train.drop(['activity_id', 'outcome'], axis=1).drop_duplicates()
unqTest = act_test.drop(['activity_id'], axis=1).drop_duplicates()
total = pd.concat([unqTrain, unqTest], axis=0)
def addPrefix(df, suffix, exclude):
for c in df.columns:
if c not in exclude:
df.rename(columns={c: suffix + c}, inplace=True)
train = pd.merge(act_train, people, on='people_id', how='left')
test = pd.merge(act_test, people, on='people_id', how='left')
trainUnique = train[~train.drop(['people_id', 'activity_id'], axis=1).duplicated()]
testUnique = test[~test.drop(['people_id', 'activity_id'], axis=1).duplicated()]
nonCategoricalColumns = ['people_id', 'activity_id', 'outcome', 'ppl_char_38', 'ppl_date', 'act_date']
valCounts = {}
def calcCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = len(df[c].value_counts())
valCounts[c] = cnt
calcCountSuffix(trainUnique, nonCategoricalColumns)
def addCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = valCounts[c]
df.rename(columns={c: c + '_cnt_' + str(cnt)}, inplace=True)
addCountSuffix(train, nonCategoricalColumns)
addCountSuffix(test, nonCategoricalColumns)
addCountSuffix(trainUnique, nonCategoricalColumns)
addCountSuffix(testUnique, nonCategoricalColumns)
def getColumnsBySuffix(df, minValue, maxValue, exclude):
return [c for c in df.columns if c not in exclude if int(c.split('_')[-1]) >= minValue and int(c.split('_')[-1]) <= maxValue]
def drawViolin(df, minCnt, maxCnt, indexFrom, indexTo, size=3.5):
g = sns.PairGrid(df, x_vars=getColumnsBySuffix(train, minCnt, maxCnt, nonCategoricalColumns)[indexFrom:indexTo], y_vars=['outcome'], aspect=0.75, size=size)
g.map(sns.violinplot, palette='pastel')
sam10k = trainUnique.sample(10000)
sam100k = trainUnique.sample(100000)
sam500k = trainUnique.sample(500000)
drawViolin(sam10k, 2, 2, 6, 11) | code |
323931/cell_3 | [
"image_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import seaborn as sns
baseDir = '../input/'
people = pd.read_csv('{0}people.csv'.format(baseDir)).drop_duplicates()
act_train = pd.read_csv('{0}act_train.csv'.format(baseDir)).drop_duplicates()
act_test = pd.read_csv('{0}act_test.csv'.format(baseDir)).drop_duplicates()
print(people.shape)
print(act_train.shape)
print(act_test.shape) | code |
323931/cell_17 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
import pandas as pd
import numpy as np
import seaborn as sns
baseDir = '../input/'
people = pd.read_csv('{0}people.csv'.format(baseDir)).drop_duplicates()
act_train = pd.read_csv('{0}act_train.csv'.format(baseDir)).drop_duplicates()
act_test = pd.read_csv('{0}act_test.csv'.format(baseDir)).drop_duplicates()
unqTrain = act_train.drop(['activity_id', 'outcome'], axis=1).drop_duplicates()
unqTest = act_test.drop(['activity_id'], axis=1).drop_duplicates()
total = pd.concat([unqTrain, unqTest], axis=0)
def addPrefix(df, suffix, exclude):
for c in df.columns:
if c not in exclude:
df.rename(columns={c: suffix + c}, inplace=True)
train = pd.merge(act_train, people, on='people_id', how='left')
test = pd.merge(act_test, people, on='people_id', how='left')
trainUnique = train[~train.drop(['people_id', 'activity_id'], axis=1).duplicated()]
testUnique = test[~test.drop(['people_id', 'activity_id'], axis=1).duplicated()]
nonCategoricalColumns = ['people_id', 'activity_id', 'outcome', 'ppl_char_38', 'ppl_date', 'act_date']
valCounts = {}
def calcCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = len(df[c].value_counts())
valCounts[c] = cnt
calcCountSuffix(trainUnique, nonCategoricalColumns)
def addCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = valCounts[c]
df.rename(columns={c: c + '_cnt_' + str(cnt)}, inplace=True)
addCountSuffix(train, nonCategoricalColumns)
addCountSuffix(test, nonCategoricalColumns)
addCountSuffix(trainUnique, nonCategoricalColumns)
addCountSuffix(testUnique, nonCategoricalColumns)
def getColumnsBySuffix(df, minValue, maxValue, exclude):
return [c for c in df.columns if c not in exclude if int(c.split('_')[-1]) >= minValue and int(c.split('_')[-1]) <= maxValue]
def drawViolin(df, minCnt, maxCnt, indexFrom, indexTo, size=3.5):
g = sns.PairGrid(df, x_vars=getColumnsBySuffix(train, minCnt, maxCnt, nonCategoricalColumns)[indexFrom:indexTo], y_vars=['outcome'], aspect=0.75, size=size)
g.map(sns.violinplot, palette='pastel')
sam10k = trainUnique.sample(10000)
sam100k = trainUnique.sample(100000)
sam500k = trainUnique.sample(500000)
drawViolin(sam10k, 2, 2, 0, 6) | code |
323931/cell_24 | [
"image_output_1.png"
] | import pandas as pd
import seaborn as sns
import pandas as pd
import numpy as np
import seaborn as sns
baseDir = '../input/'
people = pd.read_csv('{0}people.csv'.format(baseDir)).drop_duplicates()
act_train = pd.read_csv('{0}act_train.csv'.format(baseDir)).drop_duplicates()
act_test = pd.read_csv('{0}act_test.csv'.format(baseDir)).drop_duplicates()
unqTrain = act_train.drop(['activity_id', 'outcome'], axis=1).drop_duplicates()
unqTest = act_test.drop(['activity_id'], axis=1).drop_duplicates()
total = pd.concat([unqTrain, unqTest], axis=0)
def addPrefix(df, suffix, exclude):
for c in df.columns:
if c not in exclude:
df.rename(columns={c: suffix + c}, inplace=True)
train = pd.merge(act_train, people, on='people_id', how='left')
test = pd.merge(act_test, people, on='people_id', how='left')
trainUnique = train[~train.drop(['people_id', 'activity_id'], axis=1).duplicated()]
testUnique = test[~test.drop(['people_id', 'activity_id'], axis=1).duplicated()]
nonCategoricalColumns = ['people_id', 'activity_id', 'outcome', 'ppl_char_38', 'ppl_date', 'act_date']
valCounts = {}
def calcCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = len(df[c].value_counts())
valCounts[c] = cnt
calcCountSuffix(trainUnique, nonCategoricalColumns)
def addCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = valCounts[c]
df.rename(columns={c: c + '_cnt_' + str(cnt)}, inplace=True)
addCountSuffix(train, nonCategoricalColumns)
addCountSuffix(test, nonCategoricalColumns)
addCountSuffix(trainUnique, nonCategoricalColumns)
addCountSuffix(testUnique, nonCategoricalColumns)
def getColumnsBySuffix(df, minValue, maxValue, exclude):
return [c for c in df.columns if c not in exclude if int(c.split('_')[-1]) >= minValue and int(c.split('_')[-1]) <= maxValue]
def drawViolin(df, minCnt, maxCnt, indexFrom, indexTo, size=3.5):
g = sns.PairGrid(df, x_vars=getColumnsBySuffix(train, minCnt, maxCnt, nonCategoricalColumns)[indexFrom:indexTo], y_vars=['outcome'], aspect=0.75, size=size)
g.map(sns.violinplot, palette='pastel')
sam10k = trainUnique.sample(10000)
sam100k = trainUnique.sample(100000)
sam500k = trainUnique.sample(500000)
drawViolin(sam100k, 6, 7, 0, 5, 5.0) | code |
323931/cell_22 | [
"image_output_1.png"
] | import pandas as pd
import seaborn as sns
import pandas as pd
import numpy as np
import seaborn as sns
baseDir = '../input/'
people = pd.read_csv('{0}people.csv'.format(baseDir)).drop_duplicates()
act_train = pd.read_csv('{0}act_train.csv'.format(baseDir)).drop_duplicates()
act_test = pd.read_csv('{0}act_test.csv'.format(baseDir)).drop_duplicates()
unqTrain = act_train.drop(['activity_id', 'outcome'], axis=1).drop_duplicates()
unqTest = act_test.drop(['activity_id'], axis=1).drop_duplicates()
total = pd.concat([unqTrain, unqTest], axis=0)
def addPrefix(df, suffix, exclude):
for c in df.columns:
if c not in exclude:
df.rename(columns={c: suffix + c}, inplace=True)
train = pd.merge(act_train, people, on='people_id', how='left')
test = pd.merge(act_test, people, on='people_id', how='left')
trainUnique = train[~train.drop(['people_id', 'activity_id'], axis=1).duplicated()]
testUnique = test[~test.drop(['people_id', 'activity_id'], axis=1).duplicated()]
nonCategoricalColumns = ['people_id', 'activity_id', 'outcome', 'ppl_char_38', 'ppl_date', 'act_date']
valCounts = {}
def calcCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = len(df[c].value_counts())
valCounts[c] = cnt
calcCountSuffix(trainUnique, nonCategoricalColumns)
def addCountSuffix(df, exclude):
for c in df.columns:
if c not in exclude:
cnt = valCounts[c]
df.rename(columns={c: c + '_cnt_' + str(cnt)}, inplace=True)
addCountSuffix(train, nonCategoricalColumns)
addCountSuffix(test, nonCategoricalColumns)
addCountSuffix(trainUnique, nonCategoricalColumns)
addCountSuffix(testUnique, nonCategoricalColumns)
def getColumnsBySuffix(df, minValue, maxValue, exclude):
return [c for c in df.columns if c not in exclude if int(c.split('_')[-1]) >= minValue and int(c.split('_')[-1]) <= maxValue]
def drawViolin(df, minCnt, maxCnt, indexFrom, indexTo, size=3.5):
g = sns.PairGrid(df, x_vars=getColumnsBySuffix(train, minCnt, maxCnt, nonCategoricalColumns)[indexFrom:indexTo], y_vars=['outcome'], aspect=0.75, size=size)
g.map(sns.violinplot, palette='pastel')
sam10k = trainUnique.sample(10000)
sam100k = trainUnique.sample(100000)
sam500k = trainUnique.sample(500000)
drawViolin(sam10k, 2, 2, 26, 31) | code |
323931/cell_5 | [
"image_output_1.png"
] | import pandas as pd
import pandas as pd
import numpy as np
import seaborn as sns
baseDir = '../input/'
people = pd.read_csv('{0}people.csv'.format(baseDir)).drop_duplicates()
act_train = pd.read_csv('{0}act_train.csv'.format(baseDir)).drop_duplicates()
act_test = pd.read_csv('{0}act_test.csv'.format(baseDir)).drop_duplicates()
unqTrain = act_train.drop(['activity_id', 'outcome'], axis=1).drop_duplicates()
unqTest = act_test.drop(['activity_id'], axis=1).drop_duplicates()
total = pd.concat([unqTrain, unqTest], axis=0)
print('{0} rows duplicated between train and test'.format(len(total) - len(total.drop_duplicates())))
print('{0} columns diff between train and test'.format([c for c in act_train.columns if c not in act_test.columns and c != 'outcome'])) | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.