path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
50245049/cell_21
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.feature_selection import SelectKBest, chi2 from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/mushroom-classification/mushrooms.csv') from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) f, ax = plt.subplots(1, 2, figsize = (15, 7)) df['class'].value_counts().plot.bar(ax=ax[0]) df['class'].value_counts().plot.pie(ax=ax[1], autopct = "%.2f%%"); from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) pca_2d = PCA(n_components=2) pca_3d = PCA(n_components=3) PCs_2d = pd.DataFrame(pca_2d.fit_transform(df.drop(['class'], axis=1))) PCs_3d = pd.DataFrame(pca_3d.fit_transform(df.drop(['class'], axis=1))) PCs_2d.columns = ['PC1_2d', 'PC2_2d'] PCs_3d.columns = ['PC1_3d', 'PC2_3d', 'PC3_3d'] from mpl_toolkits.mplot3d import Axes3D x = PCs_3d.iloc[:, 1] y = PCs_3d.iloc[:, 2] c = df['class'] ax.set_zlabel('PC3') x = df.drop(['class'], axis=1) y = df['class'] from sklearn.feature_selection import SelectKBest, chi2 sb = SelectKBest(chi2, k=5) X_new = sb.fit_transform(x, y) X_new.shape mask = sb.get_support() new_features = x.columns[mask] new_features
code
50245049/cell_9
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/mushroom-classification/mushrooms.csv') from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) df.hist(figsize=(15, 15))
code
50245049/cell_25
[ "text_html_output_1.png" ]
import seaborn as sns import matplotlib.pyplot as plt import numpy as np tsne_data = np.vstack((tsne_model.T, y)).T tsne_df = pd.DataFrame(data=tsne_data, columns=('Dimension 1', 'Dimension 2', 'Class')) sns.FacetGrid(tsne_df, height=8, hue='Class').map(plt.scatter, 'Dimension 1', 'Dimension 2').add_legend()
code
50245049/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/mushroom-classification/mushrooms.csv') df.head()
code
50245049/cell_6
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/mushroom-classification/mushrooms.csv') from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) df.describe()
code
50245049/cell_40
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import LabelEncoder from sklearn.tree import DecisionTreeClassifier import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/mushroom-classification/mushrooms.csv') from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) pca_2d = PCA(n_components=2) pca_3d = PCA(n_components=3) PCs_2d = pd.DataFrame(pca_2d.fit_transform(df.drop(['class'], axis=1))) PCs_3d = pd.DataFrame(pca_3d.fit_transform(df.drop(['class'], axis=1))) x = df.drop(['class'], axis=1) y = df['class'] from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier(random_state=0, max_depth=5) dt.fit(x_train, y_train) dt.score(x_train, y_train) predictions = dt.predict(x_test) from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(max_depth=5) rf.fit(x_train, y_train) rf.score(x_train, y_train) predictions = rf.predict(x_test) rf.score(x_test, y_test) df.drop(['class']) rf.feature_importances_.shape fi = pd.DataFrame({'feature': df.columns, 'importance': rf.feature_importances_}).sort_values(by='importance', ascending=False) fi = fi.reset_index() fi
code
50245049/cell_29
[ "text_plain_output_1.png" ]
from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier(random_state=0, max_depth=5) dt.fit(x_train, y_train) dt.score(x_train, y_train)
code
50245049/cell_39
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(max_depth=5) rf.fit(x_train, y_train) rf.score(x_train, y_train) predictions = rf.predict(x_test) rf.score(x_test, y_test) rf.feature_importances_.shape
code
50245049/cell_26
[ "image_output_1.png" ]
from sklearn.feature_selection import SelectKBest, chi2 from sklearn.manifold import TSNE from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/mushroom-classification/mushrooms.csv') from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) f, ax = plt.subplots(1, 2, figsize = (15, 7)) df['class'].value_counts().plot.bar(ax=ax[0]) df['class'].value_counts().plot.pie(ax=ax[1], autopct = "%.2f%%"); from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) pca_2d = PCA(n_components=2) pca_3d = PCA(n_components=3) PCs_2d = pd.DataFrame(pca_2d.fit_transform(df.drop(['class'], axis=1))) PCs_3d = pd.DataFrame(pca_3d.fit_transform(df.drop(['class'], axis=1))) PCs_2d.columns = ['PC1_2d', 'PC2_2d'] PCs_3d.columns = ['PC1_3d', 'PC2_3d', 'PC3_3d'] from mpl_toolkits.mplot3d import Axes3D x = PCs_3d.iloc[:, 1] y = PCs_3d.iloc[:, 2] c = df['class'] ax.set_zlabel('PC3') x = df.drop(['class'], axis=1) y = df['class'] from sklearn.feature_selection import SelectKBest, chi2 sb = SelectKBest(chi2, k=5) X_new = sb.fit_transform(x, y) X_new.shape mask = sb.get_support() new_features = x.columns[mask] model = TSNE(n_components=2, random_state=0) tsne_model = model.fit_transform(x) tsne_model[:, 0].T
code
50245049/cell_2
[ "image_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
50245049/cell_19
[ "image_output_1.png" ]
from sklearn.feature_selection import SelectKBest, chi2 from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/mushroom-classification/mushrooms.csv') from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) f, ax = plt.subplots(1, 2, figsize = (15, 7)) df['class'].value_counts().plot.bar(ax=ax[0]) df['class'].value_counts().plot.pie(ax=ax[1], autopct = "%.2f%%"); from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) pca_2d = PCA(n_components=2) pca_3d = PCA(n_components=3) PCs_2d = pd.DataFrame(pca_2d.fit_transform(df.drop(['class'], axis=1))) PCs_3d = pd.DataFrame(pca_3d.fit_transform(df.drop(['class'], axis=1))) PCs_2d.columns = ['PC1_2d', 'PC2_2d'] PCs_3d.columns = ['PC1_3d', 'PC2_3d', 'PC3_3d'] from mpl_toolkits.mplot3d import Axes3D x = PCs_3d.iloc[:, 1] y = PCs_3d.iloc[:, 2] c = df['class'] ax.set_zlabel('PC3') x = df.drop(['class'], axis=1) y = df['class'] from sklearn.feature_selection import SelectKBest, chi2 sb = SelectKBest(chi2, k=5) X_new = sb.fit_transform(x, y) X_new.shape
code
50245049/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import LabelEncoder from sklearn.tree import DecisionTreeClassifier import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/mushroom-classification/mushrooms.csv') from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) pca_2d = PCA(n_components=2) pca_3d = PCA(n_components=3) PCs_2d = pd.DataFrame(pca_2d.fit_transform(df.drop(['class'], axis=1))) PCs_3d = pd.DataFrame(pca_3d.fit_transform(df.drop(['class'], axis=1))) x = df.drop(['class'], axis=1) y = df['class'] from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier(random_state=0, max_depth=5) dt.fit(x_train, y_train) dt.score(x_train, y_train) predictions = dt.predict(x_test) print(dict(zip(df.columns, dt.feature_importances_)))
code
50245049/cell_28
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier(random_state=0, max_depth=5) dt.fit(x_train, y_train)
code
50245049/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/mushroom-classification/mushrooms.csv') from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) f, ax = plt.subplots(1, 2, figsize=(15, 7)) df['class'].value_counts().plot.bar(ax=ax[0]) df['class'].value_counts().plot.pie(ax=ax[1], autopct='%.2f%%')
code
50245049/cell_16
[ "text_html_output_1.png" ]
import seaborn as sns import matplotlib.pyplot as plt import numpy as np tsne_data = pd.DataFrame(PCs_3d) tsne_data['class'] = df['class'] ax2 = tsne_data.plot.scatter(x='PC1_3d', y='PC3_3d', c='class', colormap='viridis')
code
50245049/cell_38
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import LabelEncoder from sklearn.tree import DecisionTreeClassifier import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/mushroom-classification/mushrooms.csv') from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) pca_2d = PCA(n_components=2) pca_3d = PCA(n_components=3) PCs_2d = pd.DataFrame(pca_2d.fit_transform(df.drop(['class'], axis=1))) PCs_3d = pd.DataFrame(pca_3d.fit_transform(df.drop(['class'], axis=1))) x = df.drop(['class'], axis=1) y = df['class'] from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier(random_state=0, max_depth=5) dt.fit(x_train, y_train) dt.score(x_train, y_train) predictions = dt.predict(x_test) df.drop(['class'])
code
50245049/cell_17
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/mushroom-classification/mushrooms.csv') from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) f, ax = plt.subplots(1, 2, figsize = (15, 7)) df['class'].value_counts().plot.bar(ax=ax[0]) df['class'].value_counts().plot.pie(ax=ax[1], autopct = "%.2f%%"); from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) pca_2d = PCA(n_components=2) pca_3d = PCA(n_components=3) PCs_2d = pd.DataFrame(pca_2d.fit_transform(df.drop(['class'], axis=1))) PCs_3d = pd.DataFrame(pca_3d.fit_transform(df.drop(['class'], axis=1))) PCs_2d.columns = ['PC1_2d', 'PC2_2d'] PCs_3d.columns = ['PC1_3d', 'PC2_3d', 'PC3_3d'] from mpl_toolkits.mplot3d import Axes3D x = PCs_3d.iloc[:, 1] y = PCs_3d.iloc[:, 2] c = df['class'] ax.scatter(x, y, c=c, cmap='coolwarm') plt.title('First 3 Principal Components') ax.set_ylabel('PC2') ax.set_xlabel('PC1') ax.set_zlabel('PC3') plt.legend()
code
50245049/cell_35
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(max_depth=5) rf.fit(x_train, y_train) rf.score(x_train, y_train)
code
50245049/cell_31
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier(random_state=0, max_depth=5) dt.fit(x_train, y_train) dt.score(x_train, y_train) predictions = dt.predict(x_test) from sklearn.metrics import accuracy_score accuracy_score(y_test, predictions)
code
50245049/cell_10
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/mushroom-classification/mushrooms.csv') from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) sns.pairplot(data=df, hue='class')
code
50245049/cell_37
[ "text_plain_output_1.png" ]
print()
code
50245049/cell_12
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/mushroom-classification/mushrooms.csv') from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) df.head()
code
50245049/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/mushroom-classification/mushrooms.csv') from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df = df.apply(LabelEncoder().fit_transform) df.head()
code
50245049/cell_36
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(max_depth=5) rf.fit(x_train, y_train) rf.score(x_train, y_train) predictions = rf.predict(x_test) rf.score(x_test, y_test)
code
16136430/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) _data = pd.read_csv('../input/zomato.csv') data = _data.drop(columns=['url', 'address', 'phone'], axis=1) columns = data.columns splist = [] flat = [] cuisineList = data['cuisines'].dropna(axis=0, inplace=False) for i in range(0, cuisineList.count()): splist = str(data['cuisines'][i]).split(', ') for item in splist: if item not in flat: flat.append(item) flat
code
16136430/cell_2
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) _data = pd.read_csv('../input/zomato.csv') _data.head()
code
16136430/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
16136430/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) _data = pd.read_csv('../input/zomato.csv') print('Original set of columns:{}'.format(_data.columns)) data = _data.drop(columns=['url', 'address', 'phone'], axis=1) columns = data.columns print('New columns : {}'.format(columns))
code
48164526/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') pd.set_option('display.float_format', '{:.2f}'.format) df.drop(['EmployeeCount', 'EmployeeNumber', 'Over18', 'StandardHours'], axis='columns', inplace=True) categorical_col = [] for column in df.columns: if df[column].dtype == object and len(df[column].unique()) <= 50: categorical_col.append(column) df['Attrition'] = df.Attrition.astype('category').cat.codes df.Attrition.value_counts() df.hist(edgecolor='black', linewidth=1.2, figsize=(20, 20))
code
48164526/cell_9
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') pd.set_option('display.float_format', '{:.2f}'.format) df.drop(['EmployeeCount', 'EmployeeNumber', 'Over18', 'StandardHours'], axis='columns', inplace=True) categorical_col = [] for column in df.columns: if df[column].dtype == object and len(df[column].unique()) <= 50: categorical_col.append(column) print(f'{column} : {df[column].unique()}') print('====================================')
code
48164526/cell_25
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.tree import DecisionTreeClassifier import pandas as pd df = pd.read_csv('/kaggle/input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') pd.set_option('display.float_format', '{:.2f}'.format) from sklearn.metrics import accuracy_score, confusion_matrix, classification_report def print_score(clf, X_train, y_train, X_test, y_test, train=True): if train: pred = clf.predict(X_train) clf_report = pd.DataFrame(classification_report(y_train, pred, output_dict=True)) elif train == False: pred = clf.predict(X_test) clf_report = pd.DataFrame(classification_report(y_test, pred, output_dict=True)) from sklearn.tree import DecisionTreeClassifier tree_clf = DecisionTreeClassifier(random_state=42) tree_clf.fit(X_train, y_train) print_score(tree_clf, X_train, y_train, X_test, y_test, train=True) print_score(tree_clf, X_train, y_train, X_test, y_test, train=False)
code
48164526/cell_4
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') df.head()
code
48164526/cell_30
[ "text_plain_output_1.png", "image_output_1.png" ]
from IPython.display import Image from sklearn.externals.six import StringIO from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.tree import export_graphviz import matplotlib.pyplot as plt import pandas as pd import pydot import seaborn as sns df = pd.read_csv('/kaggle/input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') pd.set_option('display.float_format', '{:.2f}'.format) df.drop(['EmployeeCount', 'EmployeeNumber', 'Over18', 'StandardHours'], axis='columns', inplace=True) categorical_col = [] for column in df.columns: if df[column].dtype == object and len(df[column].unique()) <= 50: categorical_col.append(column) df['Attrition'] = df.Attrition.astype('category').cat.codes df.Attrition.value_counts() # Plotting how every feature correlate with the "target" sns.set(font_scale=1.2) plt.figure(figsize=(30, 30)) for i, column in enumerate(categorical_col, 1): plt.subplot(3, 3, i) g = sns.barplot(x=f"{column}", y='Attrition', data=df) g.set_xticklabels(g.get_xticklabels(), rotation=90) plt.ylabel('Attrition Count') plt.xlabel(f'{column}') from sklearn.model_selection import train_test_split X = df.drop('Attrition', axis=1) y = df.Attrition X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) from sklearn.metrics import accuracy_score, confusion_matrix, classification_report def print_score(clf, X_train, y_train, X_test, y_test, train=True): if train: pred = clf.predict(X_train) clf_report = pd.DataFrame(classification_report(y_train, pred, output_dict=True)) elif train == False: pred = clf.predict(X_test) clf_report = pd.DataFrame(classification_report(y_test, pred, output_dict=True)) from sklearn.tree import DecisionTreeClassifier tree_clf = DecisionTreeClassifier(random_state=42) tree_clf.fit(X_train, y_train) from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import GridSearchCV params = {'criterion': ('gini', 'entropy'), 'splitter': ('best', 'random'), 'max_depth': list(range(1, 20)), 'min_samples_split': [2, 3, 4], 'min_samples_leaf': list(range(1, 20))} tree_clf = DecisionTreeClassifier(random_state=42) tree_cv = GridSearchCV(tree_clf, params, scoring='accuracy', n_jobs=-1, verbose=1, cv=3) tree_cv.fit(X_train, y_train) best_params = tree_cv.best_params_ tree_clf = DecisionTreeClassifier(**best_params) tree_clf.fit(X_train, y_train) from IPython.display import Image from sklearn.externals.six import StringIO from sklearn.tree import export_graphviz import pydot features = list(df.columns) features.remove('Attrition') dot_data = StringIO() export_graphviz(tree_clf, out_file=dot_data, feature_names=features, filled=True) graph = pydot.graph_from_dot_data(dot_data.getvalue()) Image(graph[0].create_png())
code
48164526/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') df.info()
code
48164526/cell_29
[ "image_output_1.png" ]
from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') pd.set_option('display.float_format', '{:.2f}'.format) df.drop(['EmployeeCount', 'EmployeeNumber', 'Over18', 'StandardHours'], axis='columns', inplace=True) categorical_col = [] for column in df.columns: if df[column].dtype == object and len(df[column].unique()) <= 50: categorical_col.append(column) df['Attrition'] = df.Attrition.astype('category').cat.codes df.Attrition.value_counts() # Plotting how every feature correlate with the "target" sns.set(font_scale=1.2) plt.figure(figsize=(30, 30)) for i, column in enumerate(categorical_col, 1): plt.subplot(3, 3, i) g = sns.barplot(x=f"{column}", y='Attrition', data=df) g.set_xticklabels(g.get_xticklabels(), rotation=90) plt.ylabel('Attrition Count') plt.xlabel(f'{column}') from sklearn.model_selection import train_test_split X = df.drop('Attrition', axis=1) y = df.Attrition X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) from IPython.display import Image from sklearn.externals.six import StringIO from sklearn.tree import export_graphviz import pydot features = list(df.columns) features.remove('Attrition')
code
48164526/cell_7
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') pd.set_option('display.float_format', '{:.2f}'.format) df.describe()
code
48164526/cell_32
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix, classification_report import pandas as pd df = pd.read_csv('/kaggle/input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') pd.set_option('display.float_format', '{:.2f}'.format) from sklearn.metrics import accuracy_score, confusion_matrix, classification_report def print_score(clf, X_train, y_train, X_test, y_test, train=True): if train: pred = clf.predict(X_train) clf_report = pd.DataFrame(classification_report(y_train, pred, output_dict=True)) elif train == False: pred = clf.predict(X_test) clf_report = pd.DataFrame(classification_report(y_test, pred, output_dict=True)) from sklearn.ensemble import RandomForestClassifier rf_clf = RandomForestClassifier(n_estimators=100) rf_clf.fit(X_train, y_train) print_score(rf_clf, X_train, y_train, X_test, y_test, train=True) print_score(rf_clf, X_train, y_train, X_test, y_test, train=False)
code
48164526/cell_38
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeClassifier import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') pd.set_option('display.float_format', '{:.2f}'.format) from sklearn.metrics import accuracy_score, confusion_matrix, classification_report def print_score(clf, X_train, y_train, X_test, y_test, train=True): if train: pred = clf.predict(X_train) clf_report = pd.DataFrame(classification_report(y_train, pred, output_dict=True)) elif train == False: pred = clf.predict(X_test) clf_report = pd.DataFrame(classification_report(y_test, pred, output_dict=True)) from sklearn.tree import DecisionTreeClassifier tree_clf = DecisionTreeClassifier(random_state=42) tree_clf.fit(X_train, y_train) from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import GridSearchCV params = {'criterion': ('gini', 'entropy'), 'splitter': ('best', 'random'), 'max_depth': list(range(1, 20)), 'min_samples_split': [2, 3, 4], 'min_samples_leaf': list(range(1, 20))} tree_clf = DecisionTreeClassifier(random_state=42) tree_cv = GridSearchCV(tree_clf, params, scoring='accuracy', n_jobs=-1, verbose=1, cv=3) tree_cv.fit(X_train, y_train) best_params = tree_cv.best_params_ tree_clf = DecisionTreeClassifier(**best_params) tree_clf.fit(X_train, y_train) from sklearn.ensemble import RandomForestClassifier rf_clf = RandomForestClassifier(n_estimators=100) rf_clf.fit(X_train, y_train) from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import RandomizedSearchCV n_estimators = [int(x) for x in np.linspace(start=200, stop=2000, num=10)] max_features = ['auto', 'sqrt'] max_depth = [int(x) for x in np.linspace(10, 110, num=11)] max_depth.append(None) min_samples_split = [2, 5, 10] min_samples_leaf = [1, 2, 4] bootstrap = [True, False] random_grid = {'n_estimators': n_estimators, 'max_features': max_features, 'max_depth': max_depth, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf, 'bootstrap': bootstrap} rf_clf = RandomForestClassifier(random_state=42) rf_cv = RandomizedSearchCV(estimator=rf_clf, param_distributions=random_grid, n_iter=100, cv=3, verbose=2, random_state=42, n_jobs=-1) rf_cv.fit(X_train, y_train) rf_best_params = rf_cv.best_params_ rf_clf = RandomForestClassifier(**rf_best_params) rf_clf.fit(X_train, y_train) n_estimators = [100, 500, 1000, 1500] max_features = ['auto', 'sqrt'] max_depth = [2, 3, 5] max_depth.append(None) min_samples_split = [2, 5, 10] min_samples_leaf = [1, 2, 4, 10] bootstrap = [True, False] params_grid = {'n_estimators': n_estimators, 'max_features': max_features, 'max_depth': max_depth, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf, 'bootstrap': bootstrap} rf_clf = RandomForestClassifier(random_state=42) rf_cv = GridSearchCV(rf_clf, params_grid, scoring='accuracy', cv=3, verbose=2, n_jobs=-1) rf_cv.fit(X_train, y_train) best_params = rf_cv.best_params_ print(f'Best parameters: {best_params}') rf_clf = RandomForestClassifier(**best_params) rf_clf.fit(X_train, y_train) print_score(rf_clf, X_train, y_train, X_test, y_test, train=True) print_score(rf_clf, X_train, y_train, X_test, y_test, train=False)
code
48164526/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') pd.set_option('display.float_format', '{:.2f}'.format) df.drop(['EmployeeCount', 'EmployeeNumber', 'Over18', 'StandardHours'], axis='columns', inplace=True) categorical_col = [] for column in df.columns: if df[column].dtype == object and len(df[column].unique()) <= 50: categorical_col.append(column) df['Attrition'] = df.Attrition.astype('category').cat.codes df.Attrition.value_counts() # Plotting how every feature correlate with the "target" sns.set(font_scale=1.2) plt.figure(figsize=(30, 30)) for i, column in enumerate(categorical_col, 1): plt.subplot(3, 3, i) g = sns.barplot(x=f"{column}", y='Attrition', data=df) g.set_xticklabels(g.get_xticklabels(), rotation=90) plt.ylabel('Attrition Count') plt.xlabel(f'{column}') plt.figure(figsize=(30, 30)) sns.heatmap(df.corr(), annot=True, cmap='RdYlGn', annot_kws={'size': 15})
code
48164526/cell_35
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_4.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.model_selection import RandomizedSearchCV import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') pd.set_option('display.float_format', '{:.2f}'.format) from sklearn.metrics import accuracy_score, confusion_matrix, classification_report def print_score(clf, X_train, y_train, X_test, y_test, train=True): if train: pred = clf.predict(X_train) clf_report = pd.DataFrame(classification_report(y_train, pred, output_dict=True)) elif train == False: pred = clf.predict(X_test) clf_report = pd.DataFrame(classification_report(y_test, pred, output_dict=True)) from sklearn.ensemble import RandomForestClassifier rf_clf = RandomForestClassifier(n_estimators=100) rf_clf.fit(X_train, y_train) from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import RandomizedSearchCV n_estimators = [int(x) for x in np.linspace(start=200, stop=2000, num=10)] max_features = ['auto', 'sqrt'] max_depth = [int(x) for x in np.linspace(10, 110, num=11)] max_depth.append(None) min_samples_split = [2, 5, 10] min_samples_leaf = [1, 2, 4] bootstrap = [True, False] random_grid = {'n_estimators': n_estimators, 'max_features': max_features, 'max_depth': max_depth, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf, 'bootstrap': bootstrap} rf_clf = RandomForestClassifier(random_state=42) rf_cv = RandomizedSearchCV(estimator=rf_clf, param_distributions=random_grid, n_iter=100, cv=3, verbose=2, random_state=42, n_jobs=-1) rf_cv.fit(X_train, y_train) rf_best_params = rf_cv.best_params_ print(f'Best paramters: {rf_best_params})') rf_clf = RandomForestClassifier(**rf_best_params) rf_clf.fit(X_train, y_train) print_score(rf_clf, X_train, y_train, X_test, y_test, train=True) print_score(rf_clf, X_train, y_train, X_test, y_test, train=False)
code
48164526/cell_14
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') pd.set_option('display.float_format', '{:.2f}'.format) df.drop(['EmployeeCount', 'EmployeeNumber', 'Over18', 'StandardHours'], axis='columns', inplace=True) categorical_col = [] for column in df.columns: if df[column].dtype == object and len(df[column].unique()) <= 50: categorical_col.append(column) df['Attrition'] = df.Attrition.astype('category').cat.codes df.Attrition.value_counts() sns.set(font_scale=1.2) plt.figure(figsize=(30, 30)) for i, column in enumerate(categorical_col, 1): plt.subplot(3, 3, i) g = sns.barplot(x=f'{column}', y='Attrition', data=df) g.set_xticklabels(g.get_xticklabels(), rotation=90) plt.ylabel('Attrition Count') plt.xlabel(f'{column}')
code
48164526/cell_27
[ "image_output_1.png" ]
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.model_selection import GridSearchCV from sklearn.tree import DecisionTreeClassifier from sklearn.tree import DecisionTreeClassifier import pandas as pd df = pd.read_csv('/kaggle/input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') pd.set_option('display.float_format', '{:.2f}'.format) from sklearn.metrics import accuracy_score, confusion_matrix, classification_report def print_score(clf, X_train, y_train, X_test, y_test, train=True): if train: pred = clf.predict(X_train) clf_report = pd.DataFrame(classification_report(y_train, pred, output_dict=True)) elif train == False: pred = clf.predict(X_test) clf_report = pd.DataFrame(classification_report(y_test, pred, output_dict=True)) from sklearn.tree import DecisionTreeClassifier tree_clf = DecisionTreeClassifier(random_state=42) tree_clf.fit(X_train, y_train) from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import GridSearchCV params = {'criterion': ('gini', 'entropy'), 'splitter': ('best', 'random'), 'max_depth': list(range(1, 20)), 'min_samples_split': [2, 3, 4], 'min_samples_leaf': list(range(1, 20))} tree_clf = DecisionTreeClassifier(random_state=42) tree_cv = GridSearchCV(tree_clf, params, scoring='accuracy', n_jobs=-1, verbose=1, cv=3) tree_cv.fit(X_train, y_train) best_params = tree_cv.best_params_ print(f'Best paramters: {best_params})') tree_clf = DecisionTreeClassifier(**best_params) tree_clf.fit(X_train, y_train) print_score(tree_clf, X_train, y_train, X_test, y_test, train=True) print_score(tree_clf, X_train, y_train, X_test, y_test, train=False)
code
48164526/cell_12
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv') pd.set_option('display.float_format', '{:.2f}'.format) df.drop(['EmployeeCount', 'EmployeeNumber', 'Over18', 'StandardHours'], axis='columns', inplace=True) categorical_col = [] for column in df.columns: if df[column].dtype == object and len(df[column].unique()) <= 50: categorical_col.append(column) df['Attrition'] = df.Attrition.astype('category').cat.codes df.Attrition.value_counts()
code
1009348/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt # plotting import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # combined plotting df = pd.read_csv('../input/train.csv', index_col=0) df_test = pd.read_csv('../input/test.csv', index_col=0) df.dtypes def cond_hists(df, plot_cols, grid_col): for col in plot_cols: grid1 = sns.FacetGrid(df, col=grid_col) grid1.map(plt.hist, col, alpha=0.7) return grid_col df.Sex = df.Sex.map({'male': 0, 'female': 1}) df_test.Sex = df_test.Sex.map({'male': 0, 'female': 1}) plot_cols = ['Pclass', 'Age', 'Sex', 'Parch', 'SibSp'] df.corr()
code
1009348/cell_6
[ "image_output_5.png", "image_output_4.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv', index_col=0) df_test = pd.read_csv('../input/test.csv', index_col=0) df.head(5)
code
1009348/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv', index_col=0) df_test = pd.read_csv('../input/test.csv', index_col=0) df.dtypes
code
1009348/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv', index_col=0) df_test = pd.read_csv('../input/test.csv', index_col=0) df.dtypes df.Survived.hist()
code
1009348/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt # plotting import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # combined plotting df = pd.read_csv('../input/train.csv', index_col=0) df_test = pd.read_csv('../input/test.csv', index_col=0) df.dtypes def cond_hists(df, plot_cols, grid_col): for col in plot_cols: grid1 = sns.FacetGrid(df, col=grid_col) grid1.map(plt.hist, col, alpha=0.7) return grid_col df.Sex = df.Sex.map({'male': 0, 'female': 1}) df_test.Sex = df_test.Sex.map({'male': 0, 'female': 1}) plot_cols = ['Pclass', 'Age', 'Sex', 'Parch', 'SibSp'] cond_hists(df, plot_cols, 'Survived')
code
2004114/cell_9
[ "text_plain_output_1.png" ]
from sklearn.tree import DecisionTreeRegressor import pandas as pd import pandas as pd main_file_path = '../input/train.csv' data = pd.read_csv(main_file_path) y = data.SalePrice predicators = ['YearBuilt', 'YrSold', 'TotalBsmtSF'] X = data[predicators] from sklearn.tree import DecisionTreeRegressor housing_model = DecisionTreeRegressor() housing_model.fit(X, y) print(' making predictions for the following 5 houses:') print(X.head()) print('The prediction are') print(housing_model.predict(X.head()))
code
2004114/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd main_file_path = '../input/train.csv' data = pd.read_csv(main_file_path) print(data.columns)
code
2004114/cell_11
[ "text_html_output_1.png" ]
from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor import pandas as pd import pandas as pd main_file_path = '../input/train.csv' data = pd.read_csv(main_file_path) y = data.SalePrice predicators = ['YearBuilt', 'YrSold', 'TotalBsmtSF'] X = data[predicators] from sklearn.tree import DecisionTreeRegressor housing_model = DecisionTreeRegressor() housing_model.fit(X, y) from sklearn.metrics import mean_absolute_error predicted_Home_prices = housing_model.predict(X) mean_absolute_error(y, predicted_Home_prices) from sklearn.model_selection import train_test_split train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=0) housing_model = DecisionTreeRegressor() housing_model.fit(train_X, train_y) val_predictions = housing_model.predict(val_X) print(mean_absolute_error(val_y, val_predictions))
code
2004114/cell_19
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomForestRegressor import pandas as pd import pandas as pd import pandas as pd main_file_path = '../input/train.csv' data = pd.read_csv(main_file_path) import numpy as np import pandas as pd from sklearn.ensemble import RandomForestRegressor train = pd.read_csv('../input/train.csv') train_y = train.SalePrice predictor_cols = ['LotArea', 'OverallQual', 'YearBuilt', 'TotRmsAbvGrd'] train_X = train[predictor_cols] my_model = RandomForestRegressor() my_model.fit(train_X, train_y) test = pd.read_csv('../input/test.csv') test_X = test[predictor_cols] predict_prices = my_model.predict(test_X) print(predict_prices)
code
2004114/cell_18
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomForestRegressor import pandas as pd import pandas as pd import pandas as pd main_file_path = '../input/train.csv' data = pd.read_csv(main_file_path) import numpy as np import pandas as pd from sklearn.ensemble import RandomForestRegressor train = pd.read_csv('../input/train.csv') train_y = train.SalePrice predictor_cols = ['LotArea', 'OverallQual', 'YearBuilt', 'TotRmsAbvGrd'] train_X = train[predictor_cols] my_model = RandomForestRegressor() my_model.fit(train_X, train_y)
code
2004114/cell_8
[ "text_plain_output_1.png" ]
from sklearn.tree import DecisionTreeRegressor import pandas as pd import pandas as pd main_file_path = '../input/train.csv' data = pd.read_csv(main_file_path) y = data.SalePrice predicators = ['YearBuilt', 'YrSold', 'TotalBsmtSF'] X = data[predicators] from sklearn.tree import DecisionTreeRegressor housing_model = DecisionTreeRegressor() housing_model.fit(X, y)
code
2004114/cell_16
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_absolute_error from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error forest_model = RandomForestRegressor() forest_model.fit(train_X, train_y) predict_vals = forest_model.predict(val_X) print(mean_absolute_error(val_y, predict_vals))
code
2004114/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd main_file_path = '../input/train.csv' data = pd.read_csv(main_file_path) col_interest = ['ScreenPorch', 'MoSold'] sa = data[col_interest] sa.describe()
code
2004114/cell_14
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_absolute_error from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.metrics import mean_absolute_error from sklearn.tree import DecisionTreeRegressor def get_mae(max_leaf_nodes, predictors_train, predictors_val, targ_train, targ_val): model = DecisionTreeRegressor(max_leaf_nodes=max_leaf_nodes, random_state=0) model.fit(predictors_train, targ_train) preds_val = model.predict(predictors_val) mae = mean_absolute_error(targ_val, preds_val) return mae for max_leaf_nodes in [5, 50, 500, 5000]: my_mae = get_mae(max_leaf_nodes, train_X, val_X, train_y, val_y) print('Max leaf nodes :%d \t\t Mean Absolute Error: %d' % (max_leaf_nodes, my_mae))
code
2004114/cell_10
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_absolute_error from sklearn.tree import DecisionTreeRegressor import pandas as pd import pandas as pd main_file_path = '../input/train.csv' data = pd.read_csv(main_file_path) y = data.SalePrice predicators = ['YearBuilt', 'YrSold', 'TotalBsmtSF'] X = data[predicators] from sklearn.tree import DecisionTreeRegressor housing_model = DecisionTreeRegressor() housing_model.fit(X, y) from sklearn.metrics import mean_absolute_error predicted_Home_prices = housing_model.predict(X) mean_absolute_error(y, predicted_Home_prices)
code
73100727/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd test_data = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train_data = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) train_data.isnull().sum() train_drop_target = train_data.drop(['target'], axis=1) y = train_data['target'] train_drop_target y.head()
code
73100727/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd test_data = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train_data = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) train_data.head()
code
73100727/cell_25
[ "text_html_output_1.png" ]
from sklearn.preprocessing import OrdinalEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd test_data = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train_data = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) train_data.isnull().sum() train_drop_target = train_data.drop(['target'], axis=1) y = train_data['target'] train_drop_target cat_o = train_data.dtypes == 'object' object_cols = list(cat_o[cat_o].index) object_cols X = train_drop_target.copy() X_test = test_data.copy() ordinal_encoder = OrdinalEncoder() X[object_cols] = ordinal_encoder.fit_transform(train_drop_target[object_cols]) X_test[object_cols] = ordinal_encoder.transform(test_data[object_cols]) X.head()
code
73100727/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd test_data = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train_data = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) train_data.isnull().sum() train_drop_target = train_data.drop(['target'], axis=1) y = train_data['target'] train_drop_target
code
73100727/cell_6
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd test_data = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train_data = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) print(f' test_data : {test_data.shape}, \n train_data: {train_data.shape}')
code
73100727/cell_26
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import OrdinalEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd test_data = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train_data = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) train_data.isnull().sum() train_drop_target = train_data.drop(['target'], axis=1) y = train_data['target'] train_drop_target cat_o = train_data.dtypes == 'object' object_cols = list(cat_o[cat_o].index) object_cols X = train_drop_target.copy() X_test = test_data.copy() ordinal_encoder = OrdinalEncoder() X[object_cols] = ordinal_encoder.fit_transform(train_drop_target[object_cols]) X_test[object_cols] = ordinal_encoder.transform(test_data[object_cols]) X_test
code
73100727/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
73100727/cell_18
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd test_data = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train_data = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) train_data.isnull().sum() def print_cat_columns(dataset): cl = dataset.dtypes == 'object' cat_vars = list(cl[cl].index) print(f'\nCategorical variables Data-Set:') print(cat_vars) print_cat_columns(test_data) print_cat_columns(train_data)
code
73100727/cell_32
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error def train_the_model(m_d, n, ran): model = RandomForestRegressor(max_depth=m_d, n_estimators=n, random_state=ran, n_jobs=-1) return model ran = 0 n = 1100 m_d = 500 model = train_the_model(m_d, n, ran) predict_0 = model.predict(X_val) print(' MSE: ', mean_squared_error(y_val, predict_0, squared=False))
code
73100727/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd test_data = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train_data = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test_data.head()
code
73100727/cell_14
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd test_data = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train_data = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) train_data.isnull().sum() print(test_data.columns) print('\n', train_data.columns)
code
73100727/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd test_data = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train_data = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) train_data.isnull().sum() train_drop_target = train_data.drop(['target'], axis=1) y = train_data['target'] train_drop_target cat_o = train_data.dtypes == 'object' object_cols = list(cat_o[cat_o].index) object_cols
code
73100727/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd test_data = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train_data = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) train_data.isnull().sum()
code
2013071/cell_9
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
train_xyz
code
2013071/cell_25
[ "text_plain_output_1.png" ]
from numpy.linalg import inv import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') def get_xyz_data(filename): pos_data = [] lat_data = [] with open(filename) as f: for line in f.readlines(): x = line.split() if x[0] == 'atom': pos_data.append([np.array(x[1:4], dtype=np.float), x[4]]) elif x[0] == 'lattice_vector': lat_data.append(np.array(x[1:4], dtype=np.float)) return (pos_data, np.array(lat_data)) def length(v): return np.linalg.norm(v) def unit_vector(vector): return vector / length(vector) def angle_between(v1, v2): v1_u = unit_vector(v1) v2_u = unit_vector(v2) return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) def angle_deg_between(v1, v2): return np.degrees(angle_between(v1, v2)) def get_lattice_constants(lattice_vectors): lat_const_series = pd.Series() for i in range(3): lat_const_series['lattice_vector_' + str(i + 1) + '_ang'] = length(lattice_vectors[i]) lat_const_series['lattice_angle_alpha_degree'] = angle_deg_between(lattice_vectors[1], lattice_vectors[2]) lat_const_series['lattice_angle_beta_degree'] = angle_deg_between(lattice_vectors[2], lattice_vectors[0]) lat_const_series['lattice_angle_gamma_degree'] = angle_deg_between(lattice_vectors[0], lattice_vectors[1]) return lat_const_series A = np.transpose(train_lat) R = train_xyz[0][0] from numpy.linalg import inv B = inv(A) print('The reciprocal lattice vectors:') print(B)
code
2013071/cell_34
[ "text_plain_output_1.png" ]
from numpy.linalg import inv import networkx as nx import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') def get_xyz_data(filename): pos_data = [] lat_data = [] with open(filename) as f: for line in f.readlines(): x = line.split() if x[0] == 'atom': pos_data.append([np.array(x[1:4], dtype=np.float), x[4]]) elif x[0] == 'lattice_vector': lat_data.append(np.array(x[1:4], dtype=np.float)) return (pos_data, np.array(lat_data)) def length(v): return np.linalg.norm(v) def unit_vector(vector): return vector / length(vector) def angle_between(v1, v2): v1_u = unit_vector(v1) v2_u = unit_vector(v2) return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) def angle_deg_between(v1, v2): return np.degrees(angle_between(v1, v2)) def get_lattice_constants(lattice_vectors): lat_const_series = pd.Series() for i in range(3): lat_const_series['lattice_vector_' + str(i + 1) + '_ang'] = length(lattice_vectors[i]) lat_const_series['lattice_angle_alpha_degree'] = angle_deg_between(lattice_vectors[1], lattice_vectors[2]) lat_const_series['lattice_angle_beta_degree'] = angle_deg_between(lattice_vectors[2], lattice_vectors[0]) lat_const_series['lattice_angle_gamma_degree'] = angle_deg_between(lattice_vectors[0], lattice_vectors[1]) return lat_const_series A = np.transpose(train_lat) R = train_xyz[0][0] from numpy.linalg import inv B = inv(A) r = np.matmul(B, R) def get_distances(reduced_coords, amat): natom = len(reduced_coords) dists = np.array([np.inf] * natom ** 2).reshape(natom, natom) for i in range(natom): dists[i, i] = 0 for j in range(i): rij = reduced_coords[i][0] - reduced_coords[j][0] for l in range(-1, 2): for m in range(-1, 2): for n in range(-1, 2): r = rij + np.array([l, m, n]) dists[i, j] = min(dists[i, j], length(np.matmul(amat, r))) dists[j, i] = dists[i, j] return dists train_red = [[np.matmul(B, R), symbol] for R, symbol in train_xyz] train_dist = get_distances(train_red, A) train_dist import networkx as nx R_O = 1.35 R_Al = 0.535 R_Ga = 0.62 R_In = 0.8 R_ionic = {'O': R_O, 'Al': R_Al, 'Ga': R_Ga, 'In': R_In} def get_crytal_graph(reduced_coords, dists): natom = len(reduced_coords) G = nx.Graph() for i in range(natom): symbol_i = reduced_coords[i][1] for j in range(i): symbol_j = reduced_coords[j][1] if symbol_i == 'O' and symbol_j != 'O' or (symbol_i != 'O' and symbol_j == 'O'): node_i = symbol_i + '_' + str(i) node_j = symbol_j + '_' + str(j) R_max = (R_ionic[symbol_i] + R_ionic[symbol_j]) * 1.2 if dists[i, j] < R_max: G.add_edge(node_i, node_j) return G G = get_crytal_graph(train_red, train_dist) print(G.number_of_nodes()) print(G.number_of_edges()) natom = len(train_red) for i in range(natom): symbol_i = train_red[i][1] node_i = symbol_i + '_' + str(i) print(node_i, G.neighbors(node_i))
code
2013071/cell_30
[ "text_plain_output_1.png" ]
from numpy.linalg import inv import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') def get_xyz_data(filename): pos_data = [] lat_data = [] with open(filename) as f: for line in f.readlines(): x = line.split() if x[0] == 'atom': pos_data.append([np.array(x[1:4], dtype=np.float), x[4]]) elif x[0] == 'lattice_vector': lat_data.append(np.array(x[1:4], dtype=np.float)) return (pos_data, np.array(lat_data)) def length(v): return np.linalg.norm(v) def unit_vector(vector): return vector / length(vector) def angle_between(v1, v2): v1_u = unit_vector(v1) v2_u = unit_vector(v2) return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) def angle_deg_between(v1, v2): return np.degrees(angle_between(v1, v2)) def get_lattice_constants(lattice_vectors): lat_const_series = pd.Series() for i in range(3): lat_const_series['lattice_vector_' + str(i + 1) + '_ang'] = length(lattice_vectors[i]) lat_const_series['lattice_angle_alpha_degree'] = angle_deg_between(lattice_vectors[1], lattice_vectors[2]) lat_const_series['lattice_angle_beta_degree'] = angle_deg_between(lattice_vectors[2], lattice_vectors[0]) lat_const_series['lattice_angle_gamma_degree'] = angle_deg_between(lattice_vectors[0], lattice_vectors[1]) return lat_const_series A = np.transpose(train_lat) R = train_xyz[0][0] from numpy.linalg import inv B = inv(A) r = np.matmul(B, R) def get_distances(reduced_coords, amat): natom = len(reduced_coords) dists = np.array([np.inf] * natom ** 2).reshape(natom, natom) for i in range(natom): dists[i, i] = 0 for j in range(i): rij = reduced_coords[i][0] - reduced_coords[j][0] for l in range(-1, 2): for m in range(-1, 2): for n in range(-1, 2): r = rij + np.array([l, m, n]) dists[i, j] = min(dists[i, j], length(np.matmul(amat, r))) dists[j, i] = dists[i, j] return dists train_red = [[np.matmul(B, R), symbol] for R, symbol in train_xyz] train_dist = get_distances(train_red, A) train_dist
code
2013071/cell_20
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') lattice_columns = ['lattice_vector_1_ang', 'lattice_vector_2_ang', 'lattice_vector_3_ang', 'lattice_angle_alpha_degree', 'lattice_angle_beta_degree', 'lattice_angle_gamma_degree'] df_train.loc[0, lattice_columns] def get_xyz_data(filename): pos_data = [] lat_data = [] with open(filename) as f: for line in f.readlines(): x = line.split() if x[0] == 'atom': pos_data.append([np.array(x[1:4], dtype=np.float), x[4]]) elif x[0] == 'lattice_vector': lat_data.append(np.array(x[1:4], dtype=np.float)) return (pos_data, np.array(lat_data)) idx = df_train.id.values[0] fn = '../input/train/{}/geometry.xyz'.format(idx) train_xyz, train_lat = get_xyz_data(fn) idx = df_test.id.values[0] fn = '../input/test/{}/geometry.xyz'.format(idx) test_xyz, test_lat = get_xyz_data(fn) df_test.loc[0, lattice_columns]
code
2013071/cell_26
[ "text_plain_output_1.png" ]
from numpy.linalg import inv import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') def get_xyz_data(filename): pos_data = [] lat_data = [] with open(filename) as f: for line in f.readlines(): x = line.split() if x[0] == 'atom': pos_data.append([np.array(x[1:4], dtype=np.float), x[4]]) elif x[0] == 'lattice_vector': lat_data.append(np.array(x[1:4], dtype=np.float)) return (pos_data, np.array(lat_data)) def length(v): return np.linalg.norm(v) def unit_vector(vector): return vector / length(vector) def angle_between(v1, v2): v1_u = unit_vector(v1) v2_u = unit_vector(v2) return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) def angle_deg_between(v1, v2): return np.degrees(angle_between(v1, v2)) def get_lattice_constants(lattice_vectors): lat_const_series = pd.Series() for i in range(3): lat_const_series['lattice_vector_' + str(i + 1) + '_ang'] = length(lattice_vectors[i]) lat_const_series['lattice_angle_alpha_degree'] = angle_deg_between(lattice_vectors[1], lattice_vectors[2]) lat_const_series['lattice_angle_beta_degree'] = angle_deg_between(lattice_vectors[2], lattice_vectors[0]) lat_const_series['lattice_angle_gamma_degree'] = angle_deg_between(lattice_vectors[0], lattice_vectors[1]) return lat_const_series A = np.transpose(train_lat) R = train_xyz[0][0] from numpy.linalg import inv B = inv(A) r = np.matmul(B, R) print('The reduced coordinate vector:') print(r)
code
2013071/cell_11
[ "text_plain_output_1.png" ]
train_lat
code
2013071/cell_19
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') def get_xyz_data(filename): pos_data = [] lat_data = [] with open(filename) as f: for line in f.readlines(): x = line.split() if x[0] == 'atom': pos_data.append([np.array(x[1:4], dtype=np.float), x[4]]) elif x[0] == 'lattice_vector': lat_data.append(np.array(x[1:4], dtype=np.float)) return (pos_data, np.array(lat_data)) def length(v): return np.linalg.norm(v) def unit_vector(vector): return vector / length(vector) def angle_between(v1, v2): v1_u = unit_vector(v1) v2_u = unit_vector(v2) return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) def angle_deg_between(v1, v2): return np.degrees(angle_between(v1, v2)) def get_lattice_constants(lattice_vectors): lat_const_series = pd.Series() for i in range(3): lat_const_series['lattice_vector_' + str(i + 1) + '_ang'] = length(lattice_vectors[i]) lat_const_series['lattice_angle_alpha_degree'] = angle_deg_between(lattice_vectors[1], lattice_vectors[2]) lat_const_series['lattice_angle_beta_degree'] = angle_deg_between(lattice_vectors[2], lattice_vectors[0]) lat_const_series['lattice_angle_gamma_degree'] = angle_deg_between(lattice_vectors[0], lattice_vectors[1]) return lat_const_series get_lattice_constants(test_lat)
code
2013071/cell_18
[ "text_plain_output_1.png" ]
test_lat
code
2013071/cell_17
[ "text_plain_output_1.png" ]
test_xyz
code
2013071/cell_31
[ "text_plain_output_1.png" ]
from numpy.linalg import inv import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') def get_xyz_data(filename): pos_data = [] lat_data = [] with open(filename) as f: for line in f.readlines(): x = line.split() if x[0] == 'atom': pos_data.append([np.array(x[1:4], dtype=np.float), x[4]]) elif x[0] == 'lattice_vector': lat_data.append(np.array(x[1:4], dtype=np.float)) return (pos_data, np.array(lat_data)) def length(v): return np.linalg.norm(v) def unit_vector(vector): return vector / length(vector) def angle_between(v1, v2): v1_u = unit_vector(v1) v2_u = unit_vector(v2) return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) def angle_deg_between(v1, v2): return np.degrees(angle_between(v1, v2)) def get_lattice_constants(lattice_vectors): lat_const_series = pd.Series() for i in range(3): lat_const_series['lattice_vector_' + str(i + 1) + '_ang'] = length(lattice_vectors[i]) lat_const_series['lattice_angle_alpha_degree'] = angle_deg_between(lattice_vectors[1], lattice_vectors[2]) lat_const_series['lattice_angle_beta_degree'] = angle_deg_between(lattice_vectors[2], lattice_vectors[0]) lat_const_series['lattice_angle_gamma_degree'] = angle_deg_between(lattice_vectors[0], lattice_vectors[1]) return lat_const_series A = np.transpose(train_lat) R = train_xyz[0][0] from numpy.linalg import inv B = inv(A) r = np.matmul(B, R) def get_distances(reduced_coords, amat): natom = len(reduced_coords) dists = np.array([np.inf] * natom ** 2).reshape(natom, natom) for i in range(natom): dists[i, i] = 0 for j in range(i): rij = reduced_coords[i][0] - reduced_coords[j][0] for l in range(-1, 2): for m in range(-1, 2): for n in range(-1, 2): r = rij + np.array([l, m, n]) dists[i, j] = min(dists[i, j], length(np.matmul(amat, r))) dists[j, i] = dists[i, j] return dists train_red = [[np.matmul(B, R), symbol] for R, symbol in train_xyz] train_dist = get_distances(train_red, A) train_dist import seaborn as sns sns.heatmap(train_dist)
code
2013071/cell_24
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') def get_xyz_data(filename): pos_data = [] lat_data = [] with open(filename) as f: for line in f.readlines(): x = line.split() if x[0] == 'atom': pos_data.append([np.array(x[1:4], dtype=np.float), x[4]]) elif x[0] == 'lattice_vector': lat_data.append(np.array(x[1:4], dtype=np.float)) return (pos_data, np.array(lat_data)) def length(v): return np.linalg.norm(v) def unit_vector(vector): return vector / length(vector) def angle_between(v1, v2): v1_u = unit_vector(v1) v2_u = unit_vector(v2) return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) def angle_deg_between(v1, v2): return np.degrees(angle_between(v1, v2)) def get_lattice_constants(lattice_vectors): lat_const_series = pd.Series() for i in range(3): lat_const_series['lattice_vector_' + str(i + 1) + '_ang'] = length(lattice_vectors[i]) lat_const_series['lattice_angle_alpha_degree'] = angle_deg_between(lattice_vectors[1], lattice_vectors[2]) lat_const_series['lattice_angle_beta_degree'] = angle_deg_between(lattice_vectors[2], lattice_vectors[0]) lat_const_series['lattice_angle_gamma_degree'] = angle_deg_between(lattice_vectors[0], lattice_vectors[1]) return lat_const_series A = np.transpose(train_lat) R = train_xyz[0][0] print('The lattice vectors:') print(A) print('The position vector:') print(R)
code
2013071/cell_14
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') def get_xyz_data(filename): pos_data = [] lat_data = [] with open(filename) as f: for line in f.readlines(): x = line.split() if x[0] == 'atom': pos_data.append([np.array(x[1:4], dtype=np.float), x[4]]) elif x[0] == 'lattice_vector': lat_data.append(np.array(x[1:4], dtype=np.float)) return (pos_data, np.array(lat_data)) def length(v): return np.linalg.norm(v) def unit_vector(vector): return vector / length(vector) def angle_between(v1, v2): v1_u = unit_vector(v1) v2_u = unit_vector(v2) return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) def angle_deg_between(v1, v2): return np.degrees(angle_between(v1, v2)) def get_lattice_constants(lattice_vectors): lat_const_series = pd.Series() for i in range(3): lat_const_series['lattice_vector_' + str(i + 1) + '_ang'] = length(lattice_vectors[i]) lat_const_series['lattice_angle_alpha_degree'] = angle_deg_between(lattice_vectors[1], lattice_vectors[2]) lat_const_series['lattice_angle_beta_degree'] = angle_deg_between(lattice_vectors[2], lattice_vectors[0]) lat_const_series['lattice_angle_gamma_degree'] = angle_deg_between(lattice_vectors[0], lattice_vectors[1]) return lat_const_series get_lattice_constants(train_lat)
code
2013071/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') lattice_columns = ['lattice_vector_1_ang', 'lattice_vector_2_ang', 'lattice_vector_3_ang', 'lattice_angle_alpha_degree', 'lattice_angle_beta_degree', 'lattice_angle_gamma_degree'] df_train.loc[0, lattice_columns]
code
2013071/cell_36
[ "text_plain_output_1.png", "image_output_1.png" ]
from numpy.linalg import inv import matplotlib.pyplot as plt import networkx as nx import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('../input/train.csv') df_test = pd.read_csv('../input/test.csv') def get_xyz_data(filename): pos_data = [] lat_data = [] with open(filename) as f: for line in f.readlines(): x = line.split() if x[0] == 'atom': pos_data.append([np.array(x[1:4], dtype=np.float), x[4]]) elif x[0] == 'lattice_vector': lat_data.append(np.array(x[1:4], dtype=np.float)) return (pos_data, np.array(lat_data)) def length(v): return np.linalg.norm(v) def unit_vector(vector): return vector / length(vector) def angle_between(v1, v2): v1_u = unit_vector(v1) v2_u = unit_vector(v2) return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) def angle_deg_between(v1, v2): return np.degrees(angle_between(v1, v2)) def get_lattice_constants(lattice_vectors): lat_const_series = pd.Series() for i in range(3): lat_const_series['lattice_vector_' + str(i + 1) + '_ang'] = length(lattice_vectors[i]) lat_const_series['lattice_angle_alpha_degree'] = angle_deg_between(lattice_vectors[1], lattice_vectors[2]) lat_const_series['lattice_angle_beta_degree'] = angle_deg_between(lattice_vectors[2], lattice_vectors[0]) lat_const_series['lattice_angle_gamma_degree'] = angle_deg_between(lattice_vectors[0], lattice_vectors[1]) return lat_const_series A = np.transpose(train_lat) R = train_xyz[0][0] from numpy.linalg import inv B = inv(A) r = np.matmul(B, R) def get_distances(reduced_coords, amat): natom = len(reduced_coords) dists = np.array([np.inf] * natom ** 2).reshape(natom, natom) for i in range(natom): dists[i, i] = 0 for j in range(i): rij = reduced_coords[i][0] - reduced_coords[j][0] for l in range(-1, 2): for m in range(-1, 2): for n in range(-1, 2): r = rij + np.array([l, m, n]) dists[i, j] = min(dists[i, j], length(np.matmul(amat, r))) dists[j, i] = dists[i, j] return dists train_red = [[np.matmul(B, R), symbol] for R, symbol in train_xyz] train_dist = get_distances(train_red, A) train_dist import networkx as nx R_O = 1.35 R_Al = 0.535 R_Ga = 0.62 R_In = 0.8 R_ionic = {'O': R_O, 'Al': R_Al, 'Ga': R_Ga, 'In': R_In} def get_crytal_graph(reduced_coords, dists): natom = len(reduced_coords) G = nx.Graph() for i in range(natom): symbol_i = reduced_coords[i][1] for j in range(i): symbol_j = reduced_coords[j][1] if symbol_i == 'O' and symbol_j != 'O' or (symbol_i != 'O' and symbol_j == 'O'): node_i = symbol_i + '_' + str(i) node_j = symbol_j + '_' + str(j) R_max = (R_ionic[symbol_i] + R_ionic[symbol_j]) * 1.2 if dists[i, j] < R_max: G.add_edge(node_i, node_j) return G G = get_crytal_graph(train_red, train_dist) natom = len(train_red) for i in range(natom): symbol_i = train_red[i][1] node_i = symbol_i + '_' + str(i) import matplotlib.pyplot as plt plt.figure(figsize=(10, 10)) nx.draw_spring(G, with_labels=True, node_size=800, font_size=8)
code
90137157/cell_17
[ "text_plain_output_1.png" ]
from bs4 import BeautifulSoup from html import unescape import csv import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import csv import gc from pathlib import Path columns = ['tweetcreatedts', 'extractedts', 'userid', 'tweetid', 'text', 'language'] dataframe_collection = [] csvfile = '/kaggle/input/ukraine-russian-crisis-twitter-dataset-1-2-m-rows/UkraineCombinedTweetsDeduped_MAR14.csv.gzip' df = pd.read_csv(csvfile, compression='gzip', index_col=0, encoding='utf-8', quoting=csv.QUOTE_ALL) df = df[columns] df = df[df['language'] == 'en'] df.reset_index(drop=True, inplace=True) df.shape import re from bs4 import BeautifulSoup from html import unescape def remove_urls(x): cleaned_string = re.sub('(https|http)?:\\/\\/(\\w|\\.|\\/|\\?|\\=|\\&|\\%)*\\b', '', str(x), flags=re.MULTILINE) return cleaned_string def unescape_stuff(x): soup = BeautifulSoup(unescape(x), 'lxml') return soup.text def deEmojify(x): regrex_pattern = re.compile(pattern='[πŸ˜€-πŸ™πŸŒ€-πŸ—ΏπŸš€-\U0001f6ff\U0001f1e0-πŸ‡Ώ]+', flags=re.UNICODE) return regrex_pattern.sub('', x) def remove_symbols(x): cleaned_string = re.sub('[^a-zA-Z0-9]+', ' ', x) return cleaned_string def unify_whitespaces(x): cleaned_string = re.sub(' +', ' ', x) return cleaned_string import swifter df['text'] = df['text'].swifter.apply(remove_urls) df['text'] = df['text'].swifter.apply(unescape_stuff) df['text'] = df['text'].swifter.apply(deEmojify) df['text'] = df['text'].swifter.apply(remove_symbols) df['text'] = df['text'].swifter.apply(unify_whitespaces)
code
90137157/cell_37
[ "image_output_1.png" ]
import csv import matplotlib.pyplot as plt # for wordclouds & charts import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import csv import gc from pathlib import Path columns = ['tweetcreatedts', 'extractedts', 'userid', 'tweetid', 'text', 'language'] dataframe_collection = [] csvfile = '/kaggle/input/ukraine-russian-crisis-twitter-dataset-1-2-m-rows/UkraineCombinedTweetsDeduped_MAR14.csv.gzip' df = pd.read_csv(csvfile, compression='gzip', index_col=0, encoding='utf-8', quoting=csv.QUOTE_ALL) df = df[columns] df = df[df['language'] == 'en'] df.reset_index(drop=True, inplace=True) df.shape tweet_string_list = df['bigram_text'].tolist() tweet_string = ' '.join(tweet_string_list) from wordcloud import WordCloud wordcloud = WordCloud(width=2000, height=1334, random_state=1, background_color='black', colormap='Pastel1', max_words=75, collocations=False, normalize_plurals=False).generate(tweet_string) # create the wordcloud import matplotlib.pyplot as plt # for wordclouds & charts from matplotlib.pyplot import figure # Define a function to plot word cloud def plot_cloud(wordcloud): fig = plt.figure(figsize=(25, 17), dpi=80) plt.tight_layout(pad=0) plt.imshow(wordcloud) plt.axis("off") plt.box(False) plt.show() plt.close() #Plot plot_cloud(wordcloud) tweet_string_list = df['trigram_text'].tolist() tweet_string = ' '.join(tweet_string_list) from wordcloud import WordCloud wordcloud = WordCloud(width=2000, height=1334, random_state=1, background_color='black', colormap='Pastel1', max_words=50, collocations=False, normalize_plurals=False).generate(tweet_string) plot_cloud(wordcloud)
code
90137157/cell_5
[ "image_output_1.png" ]
import csv import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import csv import gc from pathlib import Path columns = ['tweetcreatedts', 'extractedts', 'userid', 'tweetid', 'text', 'language'] dataframe_collection = [] csvfile = '/kaggle/input/ukraine-russian-crisis-twitter-dataset-1-2-m-rows/UkraineCombinedTweetsDeduped_MAR14.csv.gzip' df = pd.read_csv(csvfile, compression='gzip', index_col=0, encoding='utf-8', quoting=csv.QUOTE_ALL) df = df[columns] df = df[df['language'] == 'en'] df.reset_index(drop=True, inplace=True) df.shape
code
128011216/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
from pandas import crosstab from pyclustering.cluster.kmeans import kmeans from sklearn.datasets import load_iris from sklearn.decomposition import PCA from sklearn.metrics import adjusted_rand_score import numpy as np iris = load_iris() X = iris['data'] y = iris['target'] pca = PCA(n_components=2) X_pca = pca.fit_transform(X) X_scaled = X_pca ax = plt.axes() cor = ['blue', 'red', 'green'] for i in range(3): idx = np.where(y == i) ax.set_aspect('equal') ax.set(title='Ground-truth') kmeans_instance = kmeans(X_scaled, initial_centers) kmeans_instance.process() centroids = np.array(kmeans_instance.get_centers()) kmeans_clusters = kmeans_instance.get_clusters() kmeans_labels = np.zeros([X.shape[0]], dtype='int64') ax = plt.axes() for i in range(3): kmeans_labels[kmeans_clusters[i]] = i ax.scatter(X_scaled[kmeans_clusters[i], 0], X_scaled[kmeans_clusters[i], 1], color=cor[i], alpha=0.5, zorder=2) ax.scatter(centroids[:, 0], centroids[:, 1], c='k', marker='*', zorder=3) ax.set_aspect('equal') ax.grid(visible=True, zorder=1) ax.set(title='K-means clustering') y_kmeans = np.zeros(150) for i in range(3): y_kmeans[kmeans_clusters[i]] = i print(crosstab(y, y_kmeans)) print('ARI={ars:.2f}'.format(ars=adjusted_rand_score(y, kmeans_labels)))
code
128011216/cell_2
[ "image_output_1.png" ]
pip install pyclustering;
code
128011216/cell_11
[ "text_plain_output_1.png" ]
from pandas import crosstab from pyclustering.cluster.kmeans import kmeans from pyclustering.cluster.kmedians import kmedians from sklearn.datasets import load_iris from sklearn.decomposition import PCA from sklearn.metrics import adjusted_rand_score import numpy as np iris = load_iris() X = iris['data'] y = iris['target'] pca = PCA(n_components=2) X_pca = pca.fit_transform(X) X_scaled = X_pca ax = plt.axes() cor = ['blue', 'red', 'green'] for i in range(3): idx = np.where(y == i) ax.set_aspect('equal') ax.set(title='Ground-truth') kmeans_instance = kmeans(X_scaled, initial_centers) kmeans_instance.process() centroids = np.array(kmeans_instance.get_centers()) kmeans_clusters = kmeans_instance.get_clusters() kmeans_labels = np.zeros([X.shape[0]], dtype='int64') ax = plt.axes() for i in range(3): kmeans_labels[kmeans_clusters[i]] = i ax.set_aspect('equal') ax.set(title='K-means clustering') y_kmeans = np.zeros(150) for i in range(3): y_kmeans[kmeans_clusters[i]] = i kmedians_instance = kmedians(X_scaled, initial_centers) kmedians_instance.process() medians = np.array(kmedians_instance.get_medians()) kmedians_clusters = kmedians_instance.get_clusters() kmedians_labels = np.zeros([X.shape[0]], dtype='int64') plt.figure() ax = plt.axes() for i in range(3): kmedians_labels[kmeans_clusters[i]] = i ax.scatter(X_scaled[kmedians_clusters[i], 0], X_scaled[kmedians_clusters[i], 1], color=cor[i], alpha=0.5, zorder=2) ax.scatter(medians[:, 0], medians[:, 1], c='k', marker='*', zorder=3) ax.set_aspect('equal') ax.grid(visible=True, zorder=1) ax.set(title='K-medians clustering') y_kmedians = np.zeros(150) for i in range(3): y_kmedians[kmedians_clusters[i]] = i crosstab(y, y_kmedians) print(crosstab(y, y_kmedians)) print('ARI={ars:.2f}'.format(ars=adjusted_rand_score(y, kmedians_labels)))
code
128011216/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.datasets import load_iris from sklearn.decomposition import PCA import numpy as np iris = load_iris() X = iris['data'] y = iris['target'] pca = PCA(n_components=2) X_pca = pca.fit_transform(X) X_scaled = X_pca ax = plt.axes() cor = ['blue', 'red', 'green'] for i in range(3): idx = np.where(y == i) ax.scatter(X_scaled[idx, 0], X_scaled[idx, 1], color=cor[i], alpha=0.5, zorder=2) ax.set_aspect('equal') ax.grid(visible=True, zorder=1) ax.set(title='Ground-truth')
code
72113568/cell_9
[ "image_output_1.png" ]
from collections import Counter import matplotlib.pyplot as plt import os import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from collections import Counter from sklearn.decomposition import PCA from sklearn.cluster import KMeans pd.set_option('display.max_columns', 500) import os df = pd.read_csv('../input/wuzzuf-jobs/Wuzzuf_Jobs.csv') fig , ax = plt.subplots (figsize = (18 , 6)) df.Title.value_counts().sort_values(ascending = False).reset_index().head(25).plot(kind = 'bar' , x = 'index' , ax = ax , alpha = 0.7 , color = 'grey' , width=0.4); ax.grid(axis = 'y' , alpha=0.6) for patch in ax.patches: bl = patch.get_xy() x = 0.5 * patch.get_width() + bl[0] y = 1.02 * patch.get_height() + bl[1] ax.text(x,y,"%d" %(patch.get_height()), ha='center' , color = '#4a4a4a', fontsize = 12, fontfamily='serif') for s in ['top', 'left', 'right']: ax.spines[s].set_visible(False) plt.ylabel('Number of posted jobs' , fontsize = 14, fontfamily='serif'); plt.xlabel('Job Titel' , fontsize = 14, fontfamily='serif'); plt.xticks(fontsize = 12 , rotation = 90 , fontfamily='serif'); plt.title('Most Job Titles Posted on Website ' ,fontsize = 16, fontfamily='serif' ); df['titel_adj'] = df.Title.apply(lambda x: 'Sales' if 'Sales' in x or 'Telesales' in x else x) df['titel_adj'] = df.titel_adj.apply(lambda x: 'Accountant' if 'Accountant' in x or 'Accounting' in x else x) df['titel_adj'] = df.titel_adj.apply(lambda x: 'Marketing' if 'Marketing' in x else x) df['titel_adj'] = df.titel_adj.apply(lambda x: 'HR' if 'HR' in x else x) df['titel_adj'] = df.titel_adj.apply(lambda x: 'Graphic designer' if 'Graphic' in x else x) df['titel_adj'] = df.titel_adj.apply(lambda x: 'Bussiness Developer' if 'Bussiness Developer' in x else x) fig , ax = plt.subplots (figsize = (18 , 5)) df.titel_adj.value_counts().sort_values(ascending = False).reset_index().head(25).plot(kind = 'bar' , x = 'index' , ax = ax, alpha = 0.7 , color = 'grey' , width=0.4); ax.grid(axis = 'y' , alpha=0.6) for patch in ax.patches: bl = patch.get_xy() x = 0.5 * patch.get_width() + bl[0] y = 1.02 * patch.get_height() + bl[1] ax.text(x,y,"%d" %(patch.get_height()), ha='center' , color = '#4a4a4a', fontsize = 12, fontfamily='serif') for s in ['top', 'left', 'right']: ax.spines[s].set_visible(False) plt.ylabel('Number of posted jobs' , fontsize = 14, fontfamily='serif'); plt.xlabel('Job Titel' , fontsize = 14, fontfamily='serif'); plt.xticks(fontsize = 12 , rotation = 90 , fontfamily='serif'); plt.title('Most Job Titles Posted on Website ' ,fontsize = 16, fontfamily='serif' ); sales_skills = Counter() df_Sales = df[df['titel_adj'] == 'Sales'].reset_index() for i in range(df_Sales.shape[0]): for j in df_Sales.Skills[i].split(', '): sales_skills[j] += 1 sales_skills = sorted(sales_skills.items(), key=lambda x: x[1], reverse=True)[0:25] x, y = zip(*sales_skills) fig, ax = plt.subplots(figsize=(18, 5)) plt.bar(x, y, alpha=0.7, color='grey', width=0.4) ax.grid(axis='y', alpha=0.6) for patch in ax.patches: bl = patch.get_xy() x = 0.5 * patch.get_width() + bl[0] y = 1.02 * patch.get_height() + bl[1] ax.text(x, y, '%d' % patch.get_height(), ha='center', color='#4a4a4a', fontsize=12, fontfamily='serif') for s in ['top', 'left', 'right']: ax.spines[s].set_visible(False) plt.ylabel("Number of skill's Occurance", fontsize=14, fontfamily='serif') plt.xlabel('Sales Skills', fontsize=14, fontfamily='serif') plt.xticks(fontsize=12, rotation=90, fontfamily='serif') plt.title('Most Important Skills for Sales ', fontsize=16, fontfamily='serif')
code
72113568/cell_4
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from collections import Counter from sklearn.decomposition import PCA from sklearn.cluster import KMeans pd.set_option('display.max_columns', 500) import os df = pd.read_csv('../input/wuzzuf-jobs/Wuzzuf_Jobs.csv') fig, ax = plt.subplots(figsize=(18, 6)) df.Title.value_counts().sort_values(ascending=False).reset_index().head(25).plot(kind='bar', x='index', ax=ax, alpha=0.7, color='grey', width=0.4) ax.grid(axis='y', alpha=0.6) for patch in ax.patches: bl = patch.get_xy() x = 0.5 * patch.get_width() + bl[0] y = 1.02 * patch.get_height() + bl[1] ax.text(x, y, '%d' % patch.get_height(), ha='center', color='#4a4a4a', fontsize=12, fontfamily='serif') for s in ['top', 'left', 'right']: ax.spines[s].set_visible(False) plt.ylabel('Number of posted jobs', fontsize=14, fontfamily='serif') plt.xlabel('Job Titel', fontsize=14, fontfamily='serif') plt.xticks(fontsize=12, rotation=90, fontfamily='serif') plt.title('Most Job Titles Posted on Website ', fontsize=16, fontfamily='serif')
code
72113568/cell_2
[ "image_output_1.png" ]
import os import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from collections import Counter from sklearn.decomposition import PCA from sklearn.cluster import KMeans pd.set_option('display.max_columns', 500) import os df = pd.read_csv('../input/wuzzuf-jobs/Wuzzuf_Jobs.csv') df.head()
code
72113568/cell_11
[ "text_html_output_1.png" ]
from collections import Counter import matplotlib.pyplot as plt import os import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from collections import Counter from sklearn.decomposition import PCA from sklearn.cluster import KMeans pd.set_option('display.max_columns', 500) import os df = pd.read_csv('../input/wuzzuf-jobs/Wuzzuf_Jobs.csv') fig , ax = plt.subplots (figsize = (18 , 6)) df.Title.value_counts().sort_values(ascending = False).reset_index().head(25).plot(kind = 'bar' , x = 'index' , ax = ax , alpha = 0.7 , color = 'grey' , width=0.4); ax.grid(axis = 'y' , alpha=0.6) for patch in ax.patches: bl = patch.get_xy() x = 0.5 * patch.get_width() + bl[0] y = 1.02 * patch.get_height() + bl[1] ax.text(x,y,"%d" %(patch.get_height()), ha='center' , color = '#4a4a4a', fontsize = 12, fontfamily='serif') for s in ['top', 'left', 'right']: ax.spines[s].set_visible(False) plt.ylabel('Number of posted jobs' , fontsize = 14, fontfamily='serif'); plt.xlabel('Job Titel' , fontsize = 14, fontfamily='serif'); plt.xticks(fontsize = 12 , rotation = 90 , fontfamily='serif'); plt.title('Most Job Titles Posted on Website ' ,fontsize = 16, fontfamily='serif' ); df['titel_adj'] = df.Title.apply(lambda x: 'Sales' if 'Sales' in x or 'Telesales' in x else x) df['titel_adj'] = df.titel_adj.apply(lambda x: 'Accountant' if 'Accountant' in x or 'Accounting' in x else x) df['titel_adj'] = df.titel_adj.apply(lambda x: 'Marketing' if 'Marketing' in x else x) df['titel_adj'] = df.titel_adj.apply(lambda x: 'HR' if 'HR' in x else x) df['titel_adj'] = df.titel_adj.apply(lambda x: 'Graphic designer' if 'Graphic' in x else x) df['titel_adj'] = df.titel_adj.apply(lambda x: 'Bussiness Developer' if 'Bussiness Developer' in x else x) fig , ax = plt.subplots (figsize = (18 , 5)) df.titel_adj.value_counts().sort_values(ascending = False).reset_index().head(25).plot(kind = 'bar' , x = 'index' , ax = ax, alpha = 0.7 , color = 'grey' , width=0.4); ax.grid(axis = 'y' , alpha=0.6) for patch in ax.patches: bl = patch.get_xy() x = 0.5 * patch.get_width() + bl[0] y = 1.02 * patch.get_height() + bl[1] ax.text(x,y,"%d" %(patch.get_height()), ha='center' , color = '#4a4a4a', fontsize = 12, fontfamily='serif') for s in ['top', 'left', 'right']: ax.spines[s].set_visible(False) plt.ylabel('Number of posted jobs' , fontsize = 14, fontfamily='serif'); plt.xlabel('Job Titel' , fontsize = 14, fontfamily='serif'); plt.xticks(fontsize = 12 , rotation = 90 , fontfamily='serif'); plt.title('Most Job Titles Posted on Website ' ,fontsize = 16, fontfamily='serif' ); sales_skills = Counter() df_Sales = df[df['titel_adj'] == 'Sales'].reset_index() for i in range(df_Sales.shape[0]): for j in df_Sales.Skills[i].split(', '): sales_skills [j] += 1 sales_skills = sorted(sales_skills.items(), key=lambda x: x[1] , reverse=True)[0:25] x, y = zip(*sales_skills) # unpack a list of pairs into two tuples fig , ax = plt.subplots (figsize = (18 , 5)) plt.bar(x, y , alpha = 0.7 , color = 'grey' , width=0.4); ax.grid(axis = 'y' , alpha=0.6) for patch in ax.patches: bl = patch.get_xy() x = 0.5 * patch.get_width() + bl[0] y = 1.02 * patch.get_height() + bl[1] ax.text(x,y,"%d" %(patch.get_height()), ha='center' , color = '#4a4a4a', fontsize = 12, fontfamily='serif') for s in ['top', 'left', 'right']: ax.spines[s].set_visible(False) plt.ylabel('Number of skill\'s Occurance' , fontsize = 14, fontfamily='serif'); plt.xlabel('Sales Skills' , fontsize = 14, fontfamily='serif'); plt.xticks(fontsize = 12 , rotation = 90 , fontfamily='serif'); plt.title('Most Important Skills for Sales ' ,fontsize = 16, fontfamily='serif' ); all_skills = Counter() for i in range(df.shape[0]): for j in df.Skills[i].split(', '): all_skills[j] += 1 all_skills = sorted(all_skills.items(), key=lambda x: x[1], reverse=True)[0:25] x, y = zip(*all_skills) fig, ax = plt.subplots(figsize=(18, 5)) plt.bar(x, y, alpha=0.7, color='grey', width=0.4) ax.grid(axis='y', alpha=0.6) for patch in ax.patches: bl = patch.get_xy() x = 0.5 * patch.get_width() + bl[0] y = 1.02 * patch.get_height() + bl[1] ax.text(x, y, '%d' % patch.get_height(), ha='center', color='#4a4a4a', fontsize=12, fontfamily='serif') for s in ['top', 'left', 'right']: ax.spines[s].set_visible(False) plt.ylabel("Number of skill's Occurance", fontsize=14, fontfamily='serif') plt.xlabel('Skills', fontsize=14, fontfamily='serif') plt.xticks(fontsize=12, rotation=90, fontfamily='serif') plt.title('Most Important Skills for All Jobs ', fontsize=16, fontfamily='serif')
code
72113568/cell_1
[ "text_plain_output_1.png" ]
import os import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from collections import Counter from sklearn.decomposition import PCA from sklearn.cluster import KMeans pd.set_option('display.max_columns', 500) import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
72113568/cell_7
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from collections import Counter from sklearn.decomposition import PCA from sklearn.cluster import KMeans pd.set_option('display.max_columns', 500) import os df = pd.read_csv('../input/wuzzuf-jobs/Wuzzuf_Jobs.csv') fig , ax = plt.subplots (figsize = (18 , 6)) df.Title.value_counts().sort_values(ascending = False).reset_index().head(25).plot(kind = 'bar' , x = 'index' , ax = ax , alpha = 0.7 , color = 'grey' , width=0.4); ax.grid(axis = 'y' , alpha=0.6) for patch in ax.patches: bl = patch.get_xy() x = 0.5 * patch.get_width() + bl[0] y = 1.02 * patch.get_height() + bl[1] ax.text(x,y,"%d" %(patch.get_height()), ha='center' , color = '#4a4a4a', fontsize = 12, fontfamily='serif') for s in ['top', 'left', 'right']: ax.spines[s].set_visible(False) plt.ylabel('Number of posted jobs' , fontsize = 14, fontfamily='serif'); plt.xlabel('Job Titel' , fontsize = 14, fontfamily='serif'); plt.xticks(fontsize = 12 , rotation = 90 , fontfamily='serif'); plt.title('Most Job Titles Posted on Website ' ,fontsize = 16, fontfamily='serif' ); df['titel_adj'] = df.Title.apply(lambda x: 'Sales' if 'Sales' in x or 'Telesales' in x else x) df['titel_adj'] = df.titel_adj.apply(lambda x: 'Accountant' if 'Accountant' in x or 'Accounting' in x else x) df['titel_adj'] = df.titel_adj.apply(lambda x: 'Marketing' if 'Marketing' in x else x) df['titel_adj'] = df.titel_adj.apply(lambda x: 'HR' if 'HR' in x else x) df['titel_adj'] = df.titel_adj.apply(lambda x: 'Graphic designer' if 'Graphic' in x else x) df['titel_adj'] = df.titel_adj.apply(lambda x: 'Bussiness Developer' if 'Bussiness Developer' in x else x) fig, ax = plt.subplots(figsize=(18, 5)) df.titel_adj.value_counts().sort_values(ascending=False).reset_index().head(25).plot(kind='bar', x='index', ax=ax, alpha=0.7, color='grey', width=0.4) ax.grid(axis='y', alpha=0.6) for patch in ax.patches: bl = patch.get_xy() x = 0.5 * patch.get_width() + bl[0] y = 1.02 * patch.get_height() + bl[1] ax.text(x, y, '%d' % patch.get_height(), ha='center', color='#4a4a4a', fontsize=12, fontfamily='serif') for s in ['top', 'left', 'right']: ax.spines[s].set_visible(False) plt.ylabel('Number of posted jobs', fontsize=14, fontfamily='serif') plt.xlabel('Job Titel', fontsize=14, fontfamily='serif') plt.xticks(fontsize=12, rotation=90, fontfamily='serif') plt.title('Most Job Titles Posted on Website ', fontsize=16, fontfamily='serif')
code
104115135/cell_42
[ "image_output_1.png" ]
from collections import Counter import feature_engine.transformation as vt import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/red-wine-quality-cortez-et-al-2009/winequality-red.csv') df.shape df.quality.unique() df.quality.value_counts(ascending=False) def diagnostic_plots(df, variable, target): pass corr = df.corr() plt.figure(figsize=(20, 9)) k = 12 #number of variables for heatmap cols = corr.nlargest(k, 'quality')['quality'].index cm = np.corrcoef(df[cols].values.T) sns.set(font_scale=1.25) hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=cols.values, xticklabels=cols.values,cmap="Blues") plt.show() df.isnull().sum() def detect_outliers(df, features): outlier_indices = [] for c in features: Q1 = np.percentile(df[c], 25) Q3 = np.percentile(df[c], 75) IQR = Q3 - Q1 outlier_step = IQR * 1.5 outlier_list_col = df[(df[c] < Q1 - outlier_step) | (df[c] > Q3 + outlier_step)].index outlier_indices.extend(outlier_list_col) outlier_indices = Counter(outlier_indices) multiple_outliers = list((i for i, v in outlier_indices.items() if v > 2)) return multiple_outliers df.loc[detect_outliers(df, df.columns[:-1])] cols = ['fixed acidity', 'volatile acidity', 'residual sugar', 'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'sulphates', 'alcohol'] lt = vt.LogTransformer(variables=cols) lt.fit(df) df = lt.transform(df) df['quality'].value_counts()
code