path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
49118983/cell_44
[ "text_plain_output_1.png" ]
import tensorflow as tf import tensorflow.keras.layers as L import tensorflow.keras.models as M FE = ['content_emb', 'user_emb', 'duration', 'prior_answer'] TARGET = 'answered_correctly' x = tr_preprocessed.loc[tr_preprocessed.answered_correctly != -1, FE].values y = tr_preprocessed.loc[tr_preprocessed.answered_correctly != -1, TARGET].values tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) tpu_strategy = tf.distribute.experimental.TPUStrategy(tpu) with tpu_strategy.scope(): def make_ann(n_in): inp = L.Input(shape=(n_in,), name='inp') d1 = L.Dense(100, activation='relu', name='d1')(inp) d2 = L.Dense(100, activation='relu', name='d2')(d1) preds = L.Dense(1, activation='sigmoid', name='preds')(d2) model = M.Model(inp, preds, name='ANN') model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) return model net = make_ann(x.shape[1]) net.fit(x, y, validation_split=0.2, batch_size=30000, epochs=1)
code
49118983/cell_40
[ "text_plain_output_1.png" ]
import tensorflow as tf tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu)
code
49118983/cell_29
[ "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os import gc import tensorflow as tf import tensorflow.keras.models as M import tensorflow.keras.layers as L import riiideducation INPUT_DIR = '/kaggle/input/riiid-test-answer-prediction/' TRAIN_FILE = os.path.join(INPUT_DIR, 'train.csv') TEST_FILE = os.path.join(INPUT_DIR, 'test.csv') QUES_FILE = os.path.join(INPUT_DIR, 'questions.csv') LEC_FILE = os.path.join(INPUT_DIR, 'lectures.csv') tr = pd.read_csv(TRAIN_FILE, usecols=[1, 2, 3, 4, 7, 8, 9], dtype={'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'}) def ds_to_pickle(ds, ds_file, pkl_file): ds.to_pickle(pkl_file) del ds return pd.read_pickle('tr.pkl') tr = ds_to_pickle(tr, TRAIN_FILE, 'tr.pkl') total_num_users = tr.user_id.unique().size unique_user_ids = list(tr.user_id.unique()) total_num_ques = tr.loc[tr.content_type_id == 0].content_id.unique().size unique_ques = list(tr.loc[tr.content_type_id == 0].content_id.unique()) num_ques_per_user = pd.DataFrame({'user_id': list(tr.loc[tr.content_type_id == 0].user_id.unique()), 'num_ques_answered': list(tr.loc[tr.content_type_id == 0].user_id.value_counts())}) num_ques_answered = num_ques_per_user.sort_values('num_ques_answered')['num_ques_answered'].to_frame(name='num_ques_answered') new_num_rows = len(tr_user_ques_gt_100.index) old_num_rows = len(tr.index) tr_user_ques_gt_100.to_pickle('tr_user_ans_gt_100_ques.pkl') tr_user_ques_gt_100.info()
code
49118983/cell_26
[ "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os import gc import tensorflow as tf import tensorflow.keras.models as M import tensorflow.keras.layers as L import riiideducation INPUT_DIR = '/kaggle/input/riiid-test-answer-prediction/' TRAIN_FILE = os.path.join(INPUT_DIR, 'train.csv') TEST_FILE = os.path.join(INPUT_DIR, 'test.csv') QUES_FILE = os.path.join(INPUT_DIR, 'questions.csv') LEC_FILE = os.path.join(INPUT_DIR, 'lectures.csv') tr = pd.read_csv(TRAIN_FILE, usecols=[1, 2, 3, 4, 7, 8, 9], dtype={'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'}) def ds_to_pickle(ds, ds_file, pkl_file): ds.to_pickle(pkl_file) del ds return pd.read_pickle('tr.pkl') tr = ds_to_pickle(tr, TRAIN_FILE, 'tr.pkl') total_num_users = tr.user_id.unique().size unique_user_ids = list(tr.user_id.unique()) total_num_ques = tr.loc[tr.content_type_id == 0].content_id.unique().size unique_ques = list(tr.loc[tr.content_type_id == 0].content_id.unique()) num_ques_per_user = pd.DataFrame({'user_id': list(tr.loc[tr.content_type_id == 0].user_id.unique()), 'num_ques_answered': list(tr.loc[tr.content_type_id == 0].user_id.value_counts())}) num_ques_answered = num_ques_per_user.sort_values('num_ques_answered')['num_ques_answered'].to_frame(name='num_ques_answered') new_num_rows = len(tr_user_ques_gt_100.index) old_num_rows = len(tr.index) print('Old rows:', old_num_rows, '\nNew rows:', new_num_rows, '\nReduced to:', new_num_rows * 100 / old_num_rows, '% of original dataset size') print("That's a 70% reduction, YAY!")
code
49118983/cell_11
[ "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os import gc import tensorflow as tf import tensorflow.keras.models as M import tensorflow.keras.layers as L import riiideducation INPUT_DIR = '/kaggle/input/riiid-test-answer-prediction/' TRAIN_FILE = os.path.join(INPUT_DIR, 'train.csv') TEST_FILE = os.path.join(INPUT_DIR, 'test.csv') QUES_FILE = os.path.join(INPUT_DIR, 'questions.csv') LEC_FILE = os.path.join(INPUT_DIR, 'lectures.csv') tr = pd.read_csv(TRAIN_FILE, usecols=[1, 2, 3, 4, 7, 8, 9], dtype={'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'}) def ds_to_pickle(ds, ds_file, pkl_file): ds.to_pickle(pkl_file) del ds return pd.read_pickle('tr.pkl') tr = ds_to_pickle(tr, TRAIN_FILE, 'tr.pkl')
code
49118983/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os import gc import tensorflow as tf import tensorflow.keras.models as M import tensorflow.keras.layers as L import riiideducation for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
49118983/cell_28
[ "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os import gc import tensorflow as tf import tensorflow.keras.models as M import tensorflow.keras.layers as L import riiideducation INPUT_DIR = '/kaggle/input/riiid-test-answer-prediction/' TRAIN_FILE = os.path.join(INPUT_DIR, 'train.csv') TEST_FILE = os.path.join(INPUT_DIR, 'test.csv') QUES_FILE = os.path.join(INPUT_DIR, 'questions.csv') LEC_FILE = os.path.join(INPUT_DIR, 'lectures.csv') tr = pd.read_csv(TRAIN_FILE, usecols=[1, 2, 3, 4, 7, 8, 9], dtype={'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'}) def ds_to_pickle(ds, ds_file, pkl_file): ds.to_pickle(pkl_file) del ds return pd.read_pickle('tr.pkl') tr = ds_to_pickle(tr, TRAIN_FILE, 'tr.pkl') total_num_users = tr.user_id.unique().size unique_user_ids = list(tr.user_id.unique()) total_num_ques = tr.loc[tr.content_type_id == 0].content_id.unique().size unique_ques = list(tr.loc[tr.content_type_id == 0].content_id.unique()) num_ques_per_user = pd.DataFrame({'user_id': list(tr.loc[tr.content_type_id == 0].user_id.unique()), 'num_ques_answered': list(tr.loc[tr.content_type_id == 0].user_id.value_counts())}) num_ques_answered = num_ques_per_user.sort_values('num_ques_answered')['num_ques_answered'].to_frame(name='num_ques_answered') new_num_rows = len(tr_user_ques_gt_100.index) old_num_rows = len(tr.index) tr.info()
code
49118983/cell_8
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os import gc import tensorflow as tf import tensorflow.keras.models as M import tensorflow.keras.layers as L import riiideducation INPUT_DIR = '/kaggle/input/riiid-test-answer-prediction/' TRAIN_FILE = os.path.join(INPUT_DIR, 'train.csv') TEST_FILE = os.path.join(INPUT_DIR, 'test.csv') QUES_FILE = os.path.join(INPUT_DIR, 'questions.csv') LEC_FILE = os.path.join(INPUT_DIR, 'lectures.csv') tr = pd.read_csv(TRAIN_FILE, usecols=[1, 2, 3, 4, 7, 8, 9], dtype={'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'}) tr.head()
code
49118983/cell_3
[ "text_plain_output_1.png" ]
import gc gc.collect()
code
49118983/cell_12
[ "text_html_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os import gc import tensorflow as tf import tensorflow.keras.models as M import tensorflow.keras.layers as L import riiideducation INPUT_DIR = '/kaggle/input/riiid-test-answer-prediction/' TRAIN_FILE = os.path.join(INPUT_DIR, 'train.csv') TEST_FILE = os.path.join(INPUT_DIR, 'test.csv') QUES_FILE = os.path.join(INPUT_DIR, 'questions.csv') LEC_FILE = os.path.join(INPUT_DIR, 'lectures.csv') tr = pd.read_csv(TRAIN_FILE, usecols=[1, 2, 3, 4, 7, 8, 9], dtype={'timestamp': 'int64', 'user_id': 'int32', 'content_id': 'int16', 'content_type_id': 'int8', 'answered_correctly': 'int8', 'prior_question_elapsed_time': 'float32', 'prior_question_had_explanation': 'boolean'}) def ds_to_pickle(ds, ds_file, pkl_file): ds.to_pickle(pkl_file) del ds return pd.read_pickle('tr.pkl') tr = ds_to_pickle(tr, TRAIN_FILE, 'tr.pkl') tr.info()
code
49118983/cell_36
[ "text_plain_output_1.png" ]
tr_preprocessed = preprocess(tr)
code
50243208/cell_13
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd item_categories = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') sales_train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv', parse_dates=['date']) sample_submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') data_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') sales_train = sales_train[sales_train.item_price < 40000] sales_train = sales_train[sales_train.item_cnt_day < 200] sales_train = sales_train[sales_train.item_cnt_day > -1] columns = ['date', 'date_block_num', 'shop_id', 'item_id', 'item_price', 'item_cnt_day'] sales_train.drop_duplicates(columns, keep='first', inplace=True) data = sales_train[['item_cnt_day', 'item_price']] x = data.iloc[:, :-1].values y = data.iloc[:, 1].values X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=1 / 3, random_state=123, shuffle=1) model = LinearRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) plt.scatter(X_train, y_train, color='red') plt.plot(X_train, model.predict(X_train), color='blue') plt.xlabel('item_cnt_day') plt.ylabel('item_price') plt.show()
code
50243208/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd item_categories = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') sales_train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv', parse_dates=['date']) sample_submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') data_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') sales_train = sales_train[sales_train.item_price < 40000] sales_train = sales_train[sales_train.item_cnt_day < 200] sales_train = sales_train[sales_train.item_cnt_day > -1] columns = ['date', 'date_block_num', 'shop_id', 'item_id', 'item_price', 'item_cnt_day'] sales_train.drop_duplicates(columns, keep='first', inplace=True) plt.figure(figsize=(10, 10)) plt.scatter(sales_train.item_cnt_day, sales_train.item_price) plt.show()
code
50243208/cell_11
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd item_categories = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') sales_train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv', parse_dates=['date']) sample_submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') data_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') sales_train = sales_train[sales_train.item_price < 40000] sales_train = sales_train[sales_train.item_cnt_day < 200] sales_train = sales_train[sales_train.item_cnt_day > -1] columns = ['date', 'date_block_num', 'shop_id', 'item_id', 'item_price', 'item_cnt_day'] sales_train.drop_duplicates(columns, keep='first', inplace=True) data = sales_train[['item_cnt_day', 'item_price']] data.info() data.head()
code
50243208/cell_1
[ "text_plain_output_1.png" ]
import os import os import numpy as np import os import matplotlib.pyplot as plt import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
50243208/cell_15
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd item_categories = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') sales_train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv', parse_dates=['date']) sample_submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') data_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') sales_train = sales_train[sales_train.item_price < 40000] sales_train = sales_train[sales_train.item_cnt_day < 200] sales_train = sales_train[sales_train.item_cnt_day > -1] columns = ['date', 'date_block_num', 'shop_id', 'item_id', 'item_price', 'item_cnt_day'] sales_train.drop_duplicates(columns, keep='first', inplace=True) data = sales_train[['item_cnt_day', 'item_price']] x = data.iloc[:, :-1].values y = data.iloc[:, 1].values X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=1 / 3, random_state=123, shuffle=1) model = LinearRegression() model.fit(X_train, y_train) y_pred = model.predict(X_test) r2_score(y_test, y_pred)
code
50243208/cell_3
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd item_categories = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') sales_train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv', parse_dates=['date']) sample_submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') data_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') sales_train.info() sales_train.head()
code
50243208/cell_5
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd item_categories = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') sales_train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv', parse_dates=['date']) sample_submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') shops = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') data_test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') plt.figure(figsize=(10, 10)) plt.scatter(sales_train.item_cnt_day, sales_train.item_price) plt.show()
code
72092168/cell_5
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd p1 = '../input/30dml-30-d-ml-xgb/submission.csv' p2 = '../input/30dml-catboost/submission.csv' p3 = '../input/30dml-catboost-xgb-folds/submission.csv' p4 = '../input/30dml-lightgbm/submission_lgb_5.csv' all_s = [] for p in [p1, p2, p3, p4]: all_s.append(pd.read_csv(p)) weights = [0.03, 0.2, 0.03, 0.74] sub = pd.concat([w * x.target for x, w in zip(all_s, weights)], axis=1).sum(axis=1) sub.name = 'target' sub = pd.concat([all_s[0]['id'], sub], axis=1) sub.to_csv('submission_ens.csv', index=False) sub.head()
code
90150886/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape data.dtypes data['price'] = data['price'].apply(lambda x: str(x).replace('$', '') if '$' in str(x) else str(x)) data['price'] = data['price'].apply(lambda x: float(x)) data.isnull().sum() data['camera'].fillna(data['camera'].mean(), inplace=True) data['selfie'].fillna(data['selfie'].median(), inplace=True) data['audio'].fillna(data['audio'].mean(), inplace=True) data['battery'].fillna(data['battery'].mean(), inplace=True) data['display'].fillna(data['display'].median(), inplace=True) data.isnull().sum() data['model'].duplicated().sum()
code
90150886/cell_25
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape data.dtypes data['price'] = data['price'].apply(lambda x: str(x).replace('$', '') if '$' in str(x) else str(x)) data['price'] = data['price'].apply(lambda x: float(x)) data.isnull().sum() data['camera'].fillna(data['camera'].mean(), inplace=True) data['selfie'].fillna(data['selfie'].median(), inplace=True) data['audio'].fillna(data['audio'].mean(), inplace=True) data['battery'].fillna(data['battery'].mean(), inplace=True) data['display'].fillna(data['display'].median(), inplace=True) data.isnull().sum() data2 = data[['price', 'camera', 'battery']] X = data2.drop(columns=['price']) y = data2['price'] y.head()
code
90150886/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape
code
90150886/cell_34
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape data.dtypes data['price'] = data['price'].apply(lambda x: str(x).replace('$', '') if '$' in str(x) else str(x)) data['price'] = data['price'].apply(lambda x: float(x)) data.isnull().sum() data['camera'].fillna(data['camera'].mean(), inplace=True) data['selfie'].fillna(data['selfie'].median(), inplace=True) data['audio'].fillna(data['audio'].mean(), inplace=True) data['battery'].fillna(data['battery'].mean(), inplace=True) data['display'].fillna(data['display'].median(), inplace=True) data.isnull().sum() data2 = data[['price', 'camera', 'battery']] X = data2.drop(columns=['price']) y = data2['price'] model = LinearRegression() model.fit(X.values, y) model.score(X.values, y) def function(x, a): f = a[2] * x * x + a[1] * x + a[0] return f def grad(x, a): g = 2 * a[2] * x + a[1] return g X = data2.drop(columns=['price']) y = data2['price'] f = function(X, y) plt.scatter(X, f) plt.plot(X, f) plt.xlabel('X') plt.ylabel('f(X)')
code
90150886/cell_30
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape data.dtypes data['price'] = data['price'].apply(lambda x: str(x).replace('$', '') if '$' in str(x) else str(x)) data['price'] = data['price'].apply(lambda x: float(x)) data.isnull().sum() data['camera'].fillna(data['camera'].mean(), inplace=True) data['selfie'].fillna(data['selfie'].median(), inplace=True) data['audio'].fillna(data['audio'].mean(), inplace=True) data['battery'].fillna(data['battery'].mean(), inplace=True) data['display'].fillna(data['display'].median(), inplace=True) data.isnull().sum() data2 = data[['price', 'camera', 'battery']] X = data2.drop(columns=['price']) y = data2['price'] model = LinearRegression() model.fit(X.values, y) model.score(X.values, y) model.intercept_ model.predict([[130.0, 80.0]])
code
90150886/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape data.dtypes data['price'] = data['price'].apply(lambda x: str(x).replace('$', '') if '$' in str(x) else str(x)) data['price'] = data['price'].apply(lambda x: float(x)) data.isnull().sum() data['camera'].fillna(data['camera'].mean(), inplace=True) data['selfie'].fillna(data['selfie'].median(), inplace=True) data['audio'].fillna(data['audio'].mean(), inplace=True) data['battery'].fillna(data['battery'].mean(), inplace=True) data['display'].fillna(data['display'].median(), inplace=True) data.isnull().sum() data2 = data[['price', 'camera', 'battery']] sns.lmplot(x='battery', y='price', data=data2, ci=None)
code
90150886/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.linear_model import LinearRegression import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape data.dtypes data['price'] = data['price'].apply(lambda x: str(x).replace('$', '') if '$' in str(x) else str(x)) data['price'] = data['price'].apply(lambda x: float(x)) data.isnull().sum() data['camera'].fillna(data['camera'].mean(), inplace=True) data['selfie'].fillna(data['selfie'].median(), inplace=True) data['audio'].fillna(data['audio'].mean(), inplace=True) data['battery'].fillna(data['battery'].mean(), inplace=True) data['display'].fillna(data['display'].median(), inplace=True) data.isnull().sum() data2 = data[['price', 'camera', 'battery']] X = data2.drop(columns=['price']) y = data2['price'] model = LinearRegression() model.fit(X.values, y) model.score(X.values, y) model.intercept_
code
90150886/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape data.dtypes data['price'] = data['price'].apply(lambda x: str(x).replace('$', '') if '$' in str(x) else str(x)) data['price'] = data['price'].apply(lambda x: float(x)) data.isnull().sum() data['camera'].fillna(data['camera'].mean(), inplace=True) data['selfie'].fillna(data['selfie'].median(), inplace=True) data['audio'].fillna(data['audio'].mean(), inplace=True) data['battery'].fillna(data['battery'].mean(), inplace=True) data['display'].fillna(data['display'].median(), inplace=True) data.isnull().sum()
code
90150886/cell_19
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape data.dtypes data['price'] = data['price'].apply(lambda x: str(x).replace('$', '') if '$' in str(x) else str(x)) data['price'] = data['price'].apply(lambda x: float(x)) data.isnull().sum() data['camera'].fillna(data['camera'].mean(), inplace=True) data['selfie'].fillna(data['selfie'].median(), inplace=True) data['audio'].fillna(data['audio'].mean(), inplace=True) data['battery'].fillna(data['battery'].mean(), inplace=True) data['display'].fillna(data['display'].median(), inplace=True) data.isnull().sum() data2 = data[['price', 'camera', 'battery']] sns.lmplot(x='camera', y='price', data=data2, ci=None)
code
90150886/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape data.dtypes data['price'] = data['price'].apply(lambda x: str(x).replace('$', '') if '$' in str(x) else str(x)) data['price'] = data['price'].apply(lambda x: float(x)) data.head()
code
90150886/cell_32
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape data.dtypes data['price'] = data['price'].apply(lambda x: str(x).replace('$', '') if '$' in str(x) else str(x)) data['price'] = data['price'].apply(lambda x: float(x)) data.isnull().sum() data['camera'].fillna(data['camera'].mean(), inplace=True) data['selfie'].fillna(data['selfie'].median(), inplace=True) data['audio'].fillna(data['audio'].mean(), inplace=True) data['battery'].fillna(data['battery'].mean(), inplace=True) data['display'].fillna(data['display'].median(), inplace=True) data.isnull().sum() data2 = data[['price', 'camera', 'battery']] X = data2.drop(columns=['price']) y = data2['price'] model = LinearRegression() model.fit(X.values, y) model.score(X.values, y) model.intercept_ model.predict([[130.0, 80.0]]) model.coef_
code
90150886/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.linear_model import LinearRegression import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape data.dtypes data['price'] = data['price'].apply(lambda x: str(x).replace('$', '') if '$' in str(x) else str(x)) data['price'] = data['price'].apply(lambda x: float(x)) data.isnull().sum() data['camera'].fillna(data['camera'].mean(), inplace=True) data['selfie'].fillna(data['selfie'].median(), inplace=True) data['audio'].fillna(data['audio'].mean(), inplace=True) data['battery'].fillna(data['battery'].mean(), inplace=True) data['display'].fillna(data['display'].median(), inplace=True) data.isnull().sum() data2 = data[['price', 'camera', 'battery']] X = data2.drop(columns=['price']) y = data2['price'] model = LinearRegression() model.fit(X.values, y) model.score(X.values, y)
code
90150886/cell_8
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape data.dtypes data['price'] = data['price'].apply(lambda x: str(x).replace('$', '') if '$' in str(x) else str(x)) data['price'] = data['price'].apply(lambda x: float(x)) data.isnull().sum()
code
90150886/cell_15
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape data.dtypes data['price'] = data['price'].apply(lambda x: str(x).replace('$', '') if '$' in str(x) else str(x)) data['price'] = data['price'].apply(lambda x: float(x)) data.isnull().sum() data['camera'].fillna(data['camera'].mean(), inplace=True) data['selfie'].fillna(data['selfie'].median(), inplace=True) data['audio'].fillna(data['audio'].mean(), inplace=True) data['battery'].fillna(data['battery'].mean(), inplace=True) data['display'].fillna(data['display'].median(), inplace=True) data.isnull().sum() plt.figure(figsize=(16, 6)) plt.title('Distribution of Mobile Prices', size=15, color='black') plt.xlabel('Price $', fontsize=15) plt.ylabel('Density', fontsize=15) sns.distplot(data['price'], color='blue') plt.xlabel('Price ($)') plt.grid(True) plt.show()
code
90150886/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.head(10)
code
90150886/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape data.dtypes data['price'] = data['price'].apply(lambda x: str(x).replace('$', '') if '$' in str(x) else str(x)) data['price'] = data['price'].apply(lambda x: float(x)) data.isnull().sum() data['camera'].fillna(data['camera'].mean(), inplace=True) data['selfie'].fillna(data['selfie'].median(), inplace=True) data['audio'].fillna(data['audio'].mean(), inplace=True) data['battery'].fillna(data['battery'].mean(), inplace=True) data['display'].fillna(data['display'].median(), inplace=True) data.isnull().sum() data2 = data[['price', 'camera', 'battery']] data2.head()
code
90150886/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape data.dtypes data['price'] = data['price'].apply(lambda x: str(x).replace('$', '') if '$' in str(x) else str(x)) data['price'] = data['price'].apply(lambda x: float(x)) data.isnull().sum() data['camera'].fillna(data['camera'].mean(), inplace=True) data['selfie'].fillna(data['selfie'].median(), inplace=True) data['audio'].fillna(data['audio'].mean(), inplace=True) data['battery'].fillna(data['battery'].mean(), inplace=True) data['display'].fillna(data['display'].median(), inplace=True) data.isnull().sum() data2 = data[['price', 'camera', 'battery']] X = data2.drop(columns=['price']) y = data2['price'] X.head()
code
90150886/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape data.dtypes data['price'] = data['price'].apply(lambda x: str(x).replace('$', '') if '$' in str(x) else str(x)) data['price'] = data['price'].apply(lambda x: float(x)) data.isnull().sum() data['camera'].fillna(data['camera'].mean(), inplace=True) data['selfie'].fillna(data['selfie'].median(), inplace=True) data['audio'].fillna(data['audio'].mean(), inplace=True) data['battery'].fillna(data['battery'].mean(), inplace=True) data['display'].fillna(data['display'].median(), inplace=True) data.head()
code
90150886/cell_27
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape data.dtypes data['price'] = data['price'].apply(lambda x: str(x).replace('$', '') if '$' in str(x) else str(x)) data['price'] = data['price'].apply(lambda x: float(x)) data.isnull().sum() data['camera'].fillna(data['camera'].mean(), inplace=True) data['selfie'].fillna(data['selfie'].median(), inplace=True) data['audio'].fillna(data['audio'].mean(), inplace=True) data['battery'].fillna(data['battery'].mean(), inplace=True) data['display'].fillna(data['display'].median(), inplace=True) data.isnull().sum() data2 = data[['price', 'camera', 'battery']] X = data2.drop(columns=['price']) y = data2['price'] model = LinearRegression() model.fit(X.values, y)
code
90150886/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape data.dtypes
code
90150886/cell_36
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('../input/mobile-phone-rating/mobile phone rating by dxo.csv', parse_dates=True) data.shape data.dtypes data['price'] = data['price'].apply(lambda x: str(x).replace('$', '') if '$' in str(x) else str(x)) data['price'] = data['price'].apply(lambda x: float(x)) data.isnull().sum() data['camera'].fillna(data['camera'].mean(), inplace=True) data['selfie'].fillna(data['selfie'].median(), inplace=True) data['audio'].fillna(data['audio'].mean(), inplace=True) data['battery'].fillna(data['battery'].mean(), inplace=True) data['display'].fillna(data['display'].median(), inplace=True) data.isnull().sum() data2 = data[['price', 'camera', 'battery']] X = data2.drop(columns=['price']) y = data2['price'] model = LinearRegression() model.fit(X.values, y) model.score(X.values, y) def function(x, a): f = a[2] * x * x + a[1] * x + a[0] return f def grad(x, a): g = 2 * a[2] * x + a[1] return g X = data2.drop(columns=['price']) y = data2['price'] f = function(X, y) x = data[['battery']] y = data['price'] plt.plot(x, y, 'r.')
code
73097219/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd def submit(model, test_features, test_ids, filename): loss_pred = model.predict(test_features) submission = pd.DataFrame({'id': test_ids, 'loss': loss_pred.reshape(-1)}) submission.to_csv(filename, index=False) train = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2021/train.csv') test = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2021/test.csv') train.head()
code
73097219/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd def submit(model, test_features, test_ids, filename): loss_pred = model.predict(test_features) submission = pd.DataFrame({'id': test_ids, 'loss': loss_pred.reshape(-1)}) submission.to_csv(filename, index=False) train = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2021/train.csv') test = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2021/test.csv') train.shape corr_score = train.corr() train.pop('id') test_ids = test.pop('id') train_mean = train.mean() train_std = train.std() train_targets_mean = train_mean.pop('loss') train_targets_std = train_std.pop('loss') train_targets, validation_targets = (train_features.pop('loss'), validation_features.pop('loss')) should_scale = True if should_scale == True: train_features = (train_features - train_mean) / train_std validation_features = (validation_features - train_mean) / train_std test_features = (test - train_mean) / train_std print(test_features.head()) print(train_features.head()) print(validation_features.head())
code
73097219/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd def submit(model, test_features, test_ids, filename): loss_pred = model.predict(test_features) submission = pd.DataFrame({'id': test_ids, 'loss': loss_pred.reshape(-1)}) submission.to_csv(filename, index=False) train = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2021/train.csv') test = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2021/test.csv') train.shape train.describe().transpose()
code
73097219/cell_28
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_squared_error from sklearn.model_selection import KFold import catboost import numpy as np import pandas as pd import time def submit(model, test_features, test_ids, filename): loss_pred = model.predict(test_features) submission = pd.DataFrame({'id': test_ids, 'loss': loss_pred.reshape(-1)}) submission.to_csv(filename, index=False) train = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2021/train.csv') test = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2021/test.csv') train.shape corr_score = train.corr() train.pop('id') test_ids = test.pop('id') train_mean = train.mean() train_std = train.std() train_targets_mean = train_mean.pop('loss') train_targets_std = train_std.pop('loss') train_targets, validation_targets = (train_features.pop('loss'), validation_features.pop('loss')) should_scale = True if should_scale == True: train_features = (train_features - train_mean) / train_std validation_features = (validation_features - train_mean) / train_std test_features = (test - train_mean) / train_std import catboost import time import sklearn from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error begin = time.time() parameters = {'depth': [6, 7, 8], 'learning_rate': [0.08, 0.1], 'iterations': [300, 350]} def train_catboost(hyperparameters, X_train, X_val, y_train, y_val): keys = hyperparameters.keys() best_index = {key: 0 for key in keys} best_cat = None best_score = 1000000000.0 for index, key in enumerate(keys): items = hyperparameters[key] best_parameter = None temp_best = 1000000000.0 for key_index, item in enumerate(items): iterations = hyperparameters['iterations'][best_index['iterations']] if key != 'iterations' else item learning_rate = hyperparameters['learning_rate'][best_index['learning_rate']] if key != 'learning_rate' else item depth = hyperparameters['depth'][best_index['depth']] if key != 'depth' else item cat = catboost.CatBoostRegressor(iterations=iterations, learning_rate=learning_rate, depth=depth) cat.fit(X_train, y_train, verbose=False) y_pred = cat.predict(X_val) score = np.sqrt(mean_squared_error(y_val, y_pred)) if score < temp_best: temp_best = score best_index[key] = key_index best_parameter = item if score < best_score: best_score = score best_cat = cat best_parameters = {'iterations': hyperparameters['iterations'][best_index['iterations']], 'learning_rate': hyperparameters['learning_rate'][best_index['learning_rate']], 'depth': hyperparameters['depth'][best_index['depth']]} return (best_cat, best_score, best_parameters) best_cat, best_score, best_parameters = train_catboost(parameters, train_features, validation_features, train_targets, validation_targets) elapsed = time.time() - begin submit(best_cat, test_features, test_ids, 'submission.csv') from sklearn.model_selection import KFold fold = 1 for train_indices, val_indices in KFold(n_splits=5, shuffle=True).split(train): print('Training with Fold %d' % fold) X_train = train.iloc[train_indices] X_val = train.iloc[val_indices] y_train = X_train.pop('loss') y_val = X_val.pop('loss') X_train = (X_train - train_mean) / train_std X_val = (X_val - train_mean) / train_std cat = catboost.CatBoostRegressor(iterations=best_parameters['iterations'], learning_rate=best_parameters['learning_rate'], depth=best_parameters['depth']) cat.fit(X_train, y_train, verbose=False) y_pred = cat.predict(X_val) score = np.sqrt(mean_squared_error(y_val, y_pred)) print('RMSE: %.2f' % score) submit(cat, test_features, test_ids, 'submission_fold%d.csv' % fold) fold += 1
code
73097219/cell_14
[ "text_html_output_1.png" ]
import pandas as pd def submit(model, test_features, test_ids, filename): loss_pred = model.predict(test_features) submission = pd.DataFrame({'id': test_ids, 'loss': loss_pred.reshape(-1)}) submission.to_csv(filename, index=False) train = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2021/train.csv') test = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2021/test.csv') train.shape corr_score = train.corr() corr_score['loss'].sort_values(ascending=False)
code
73097219/cell_10
[ "text_html_output_1.png" ]
import pandas as pd def submit(model, test_features, test_ids, filename): loss_pred = model.predict(test_features) submission = pd.DataFrame({'id': test_ids, 'loss': loss_pred.reshape(-1)}) submission.to_csv(filename, index=False) train = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2021/train.csv') test = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2021/test.csv') train.shape
code
73097219/cell_27
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_squared_error import catboost import numpy as np import pandas as pd import time def submit(model, test_features, test_ids, filename): loss_pred = model.predict(test_features) submission = pd.DataFrame({'id': test_ids, 'loss': loss_pred.reshape(-1)}) submission.to_csv(filename, index=False) train = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2021/train.csv') test = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2021/test.csv') train.shape corr_score = train.corr() train.pop('id') test_ids = test.pop('id') train_mean = train.mean() train_std = train.std() train_targets_mean = train_mean.pop('loss') train_targets_std = train_std.pop('loss') train_targets, validation_targets = (train_features.pop('loss'), validation_features.pop('loss')) should_scale = True if should_scale == True: train_features = (train_features - train_mean) / train_std validation_features = (validation_features - train_mean) / train_std test_features = (test - train_mean) / train_std import catboost import time import sklearn from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error begin = time.time() parameters = {'depth': [6, 7, 8], 'learning_rate': [0.08, 0.1], 'iterations': [300, 350]} def train_catboost(hyperparameters, X_train, X_val, y_train, y_val): keys = hyperparameters.keys() best_index = {key: 0 for key in keys} best_cat = None best_score = 1000000000.0 for index, key in enumerate(keys): print('Find best parameter for %s' % key) items = hyperparameters[key] best_parameter = None temp_best = 1000000000.0 for key_index, item in enumerate(items): iterations = hyperparameters['iterations'][best_index['iterations']] if key != 'iterations' else item learning_rate = hyperparameters['learning_rate'][best_index['learning_rate']] if key != 'learning_rate' else item depth = hyperparameters['depth'][best_index['depth']] if key != 'depth' else item print('Train with iterations: %d learning_rate: %.2f depth:%d' % (iterations, learning_rate, depth)) cat = catboost.CatBoostRegressor(iterations=iterations, learning_rate=learning_rate, depth=depth) cat.fit(X_train, y_train, verbose=False) y_pred = cat.predict(X_val) score = np.sqrt(mean_squared_error(y_val, y_pred)) print('RMSE: %.2f' % score) if score < temp_best: temp_best = score best_index[key] = key_index best_parameter = item if score < best_score: best_score = score best_cat = cat print('Best Parameter for %s: ' % key, best_parameter) best_parameters = {'iterations': hyperparameters['iterations'][best_index['iterations']], 'learning_rate': hyperparameters['learning_rate'][best_index['learning_rate']], 'depth': hyperparameters['depth'][best_index['depth']]} return (best_cat, best_score, best_parameters) best_cat, best_score, best_parameters = train_catboost(parameters, train_features, validation_features, train_targets, validation_targets) print('Best CatBoost Model: ', best_cat) print('Best MAE: ', best_score) elapsed = time.time() - begin print('Elapsed time: ', elapsed) submit(best_cat, test_features, test_ids, 'submission.csv')
code
74053599/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') test = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') test.head()
code
74053599/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') test = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') print(len(train)) print(len(test))
code
74053599/cell_11
[ "text_html_output_1.png" ]
numerical_cols = [col for col in X_train_full.columns if X_train_full[col].dtype == 'int64' or X_train_full[col].dtype == 'float64'] print(len(numerical_cols))
code
74053599/cell_19
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_absolute_error from sklearn.preprocessing import OneHotEncoder from xgboost import XGBRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') test = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') numerical_cols = [col for col in X_train_full.columns if X_train_full[col].dtype == 'int64' or X_train_full[col].dtype == 'float64'] categorical_cols_prev = [col for col in X_train_full.columns if X_train_full[col].dtype == 'object' and X_train_full[col].nunique() > 4] categorical_cols = [] for col in categorical_cols_prev: if set(list(test[col].unique())).issubset(set(list(X_train_full[col].unique()))): categorical_cols.append(col) X_train = X_train_full[numerical_cols + categorical_cols] X_valid = X_valid_full[numerical_cols + categorical_cols] X_test = test[numerical_cols + categorical_cols] from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_X_train = pd.DataFrame(encoder.fit_transform(X_train[categorical_cols])) OH_X_valid = pd.DataFrame(encoder.transform(X_valid[categorical_cols])) OH_X_test = pd.DataFrame(encoder.transform(X_test[categorical_cols])) OH_X_train.index = X_train.index OH_X_valid.index = X_valid.index OH_X_test.index = X_test.index X_train_wna = X_train.drop(categorical_cols, axis=1) X_valid_wna = X_valid.drop(categorical_cols, axis=1) X_test_wna = X_test.drop(categorical_cols, axis=1) X_train = pd.concat((X_train_wna, OH_X_train), axis=1) X_valid = pd.concat((X_valid_wna, OH_X_valid), axis=1) X_test = pd.concat((X_test_wna, OH_X_test), axis=1) from xgboost import XGBRegressor model = XGBRegressor(learning_rate=0.05, n_estimators=1000) model.fit(X_train, y_train, early_stopping_rounds=5, eval_set=[(X_valid, y_valid)], eval_metric='mae') y_val_predicted = model.predict(X_valid) from sklearn.metrics import mean_absolute_error rmse = mean_absolute_error(y_valid, y_val_predicted) rmse
code
74053599/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
74053599/cell_7
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') test = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') print(len(train.columns)) print(len(train.columns))
code
74053599/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') test = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') df_na = train.isna().sum() df_na = df_na[df_na > 0] print(len(df_na))
code
74053599/cell_15
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') test = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') numerical_cols = [col for col in X_train_full.columns if X_train_full[col].dtype == 'int64' or X_train_full[col].dtype == 'float64'] categorical_cols_prev = [col for col in X_train_full.columns if X_train_full[col].dtype == 'object' and X_train_full[col].nunique() > 4] categorical_cols = [] for col in categorical_cols_prev: if set(list(test[col].unique())).issubset(set(list(X_train_full[col].unique()))): categorical_cols.append(col) X_train = X_train_full[numerical_cols + categorical_cols] X_valid = X_valid_full[numerical_cols + categorical_cols] X_test = test[numerical_cols + categorical_cols] impute_1 = SimpleImputer(strategy='most_frequent') X_train[categorical_cols] = impute_1.fit_transform(X_train[categorical_cols]) X_valid[categorical_cols] = impute_1.transform(X_valid[categorical_cols]) X_test[categorical_cols] = impute_1.transform(X_test[categorical_cols])
code
74053599/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') test = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') train.head()
code
74053599/cell_17
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder from xgboost import XGBRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') test = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') numerical_cols = [col for col in X_train_full.columns if X_train_full[col].dtype == 'int64' or X_train_full[col].dtype == 'float64'] categorical_cols_prev = [col for col in X_train_full.columns if X_train_full[col].dtype == 'object' and X_train_full[col].nunique() > 4] categorical_cols = [] for col in categorical_cols_prev: if set(list(test[col].unique())).issubset(set(list(X_train_full[col].unique()))): categorical_cols.append(col) X_train = X_train_full[numerical_cols + categorical_cols] X_valid = X_valid_full[numerical_cols + categorical_cols] X_test = test[numerical_cols + categorical_cols] from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_X_train = pd.DataFrame(encoder.fit_transform(X_train[categorical_cols])) OH_X_valid = pd.DataFrame(encoder.transform(X_valid[categorical_cols])) OH_X_test = pd.DataFrame(encoder.transform(X_test[categorical_cols])) OH_X_train.index = X_train.index OH_X_valid.index = X_valid.index OH_X_test.index = X_test.index X_train_wna = X_train.drop(categorical_cols, axis=1) X_valid_wna = X_valid.drop(categorical_cols, axis=1) X_test_wna = X_test.drop(categorical_cols, axis=1) X_train = pd.concat((X_train_wna, OH_X_train), axis=1) X_valid = pd.concat((X_valid_wna, OH_X_valid), axis=1) X_test = pd.concat((X_test_wna, OH_X_test), axis=1) from xgboost import XGBRegressor model = XGBRegressor(learning_rate=0.05, n_estimators=1000) model.fit(X_train, y_train, early_stopping_rounds=5, eval_set=[(X_valid, y_valid)], eval_metric='mae')
code
74053599/cell_14
[ "text_html_output_1.png" ]
from sklearn.impute import SimpleImputer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') test = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') numerical_cols = [col for col in X_train_full.columns if X_train_full[col].dtype == 'int64' or X_train_full[col].dtype == 'float64'] categorical_cols_prev = [col for col in X_train_full.columns if X_train_full[col].dtype == 'object' and X_train_full[col].nunique() > 4] categorical_cols = [] for col in categorical_cols_prev: if set(list(test[col].unique())).issubset(set(list(X_train_full[col].unique()))): categorical_cols.append(col) X_train = X_train_full[numerical_cols + categorical_cols] X_valid = X_valid_full[numerical_cols + categorical_cols] X_test = test[numerical_cols + categorical_cols] from sklearn.impute import SimpleImputer impute = SimpleImputer(strategy='mean') X_train[numerical_cols] = impute.fit_transform(X_train[numerical_cols]) X_valid[numerical_cols] = impute.transform(X_valid[numerical_cols]) X_test[numerical_cols] = impute.transform(X_test[numerical_cols])
code
74053599/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') test = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') numerical_cols = [col for col in X_train_full.columns if X_train_full[col].dtype == 'int64' or X_train_full[col].dtype == 'float64'] categorical_cols_prev = [col for col in X_train_full.columns if X_train_full[col].dtype == 'object' and X_train_full[col].nunique() > 4] categorical_cols = [] for col in categorical_cols_prev: if set(list(test[col].unique())).issubset(set(list(X_train_full[col].unique()))): categorical_cols.append(col) print(len(categorical_cols))
code
74053599/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') test = pd.read_csv('/kaggle/input/home-data-for-ml-course/train.csv') train.describe()
code
74055991/cell_13
[ "image_output_1.png" ]
path = '/kaggle/input/cell-images-for-detecting-malaria/cell_images/' fields = DataBlock(blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, get_y=parent_label, splitter=RandomSplitter(valid_pct=0.2, seed=42), item_tfms=RandomResizedCrop(114, min_scale=0.5), batch_tfms=aug_transforms()) dls = fields.dataloaders(path) dls.vocab learn = cnn_learner(dls, resnet34, metrics=[error_rate, accuracy]) lrn_min, lrn_steep = learn.lr_find() learn.fine_tune(1) learn = cnn_learner(dls, resnet50, metrics=[error_rate, accuracy]) lrn_min, lrn_steep = learn.lr_find()
code
74055991/cell_9
[ "text_html_output_2.png", "text_html_output_1.png" ]
path = '/kaggle/input/cell-images-for-detecting-malaria/cell_images/' fields = DataBlock(blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, get_y=parent_label, splitter=RandomSplitter(valid_pct=0.2, seed=42), item_tfms=RandomResizedCrop(114, min_scale=0.5), batch_tfms=aug_transforms()) dls = fields.dataloaders(path) dls.vocab learn = cnn_learner(dls, resnet34, metrics=[error_rate, accuracy]) lrn_min, lrn_steep = learn.lr_find()
code
74055991/cell_6
[ "image_output_1.png" ]
path = '/kaggle/input/cell-images-for-detecting-malaria/cell_images/' fields = DataBlock(blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, get_y=parent_label, splitter=RandomSplitter(valid_pct=0.2, seed=42), item_tfms=RandomResizedCrop(114, min_scale=0.5), batch_tfms=aug_transforms()) dls = fields.dataloaders(path) dls.show_batch()
code
74055991/cell_11
[ "text_plain_output_1.png" ]
path = '/kaggle/input/cell-images-for-detecting-malaria/cell_images/' fields = DataBlock(blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, get_y=parent_label, splitter=RandomSplitter(valid_pct=0.2, seed=42), item_tfms=RandomResizedCrop(114, min_scale=0.5), batch_tfms=aug_transforms()) dls = fields.dataloaders(path) dls.vocab learn = cnn_learner(dls, resnet34, metrics=[error_rate, accuracy]) lrn_min, lrn_steep = learn.lr_find() learn.fine_tune(1) learn.show_results()
code
74055991/cell_7
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
path = '/kaggle/input/cell-images-for-detecting-malaria/cell_images/' fields = DataBlock(blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, get_y=parent_label, splitter=RandomSplitter(valid_pct=0.2, seed=42), item_tfms=RandomResizedCrop(114, min_scale=0.5), batch_tfms=aug_transforms()) dls = fields.dataloaders(path) dls.vocab
code
74055991/cell_8
[ "image_output_1.png" ]
path = '/kaggle/input/cell-images-for-detecting-malaria/cell_images/' fields = DataBlock(blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, get_y=parent_label, splitter=RandomSplitter(valid_pct=0.2, seed=42), item_tfms=RandomResizedCrop(114, min_scale=0.5), batch_tfms=aug_transforms()) dls = fields.dataloaders(path) dls.vocab learn = cnn_learner(dls, resnet34, metrics=[error_rate, accuracy])
code
74055991/cell_14
[ "text_html_output_2.png", "text_html_output_1.png" ]
path = '/kaggle/input/cell-images-for-detecting-malaria/cell_images/' fields = DataBlock(blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, get_y=parent_label, splitter=RandomSplitter(valid_pct=0.2, seed=42), item_tfms=RandomResizedCrop(114, min_scale=0.5), batch_tfms=aug_transforms()) dls = fields.dataloaders(path) dls.vocab learn = cnn_learner(dls, resnet34, metrics=[error_rate, accuracy]) lrn_min, lrn_steep = learn.lr_find() learn.fine_tune(1) learn = cnn_learner(dls, resnet50, metrics=[error_rate, accuracy]) lrn_min, lrn_steep = learn.lr_find() learn.fine_tune(1)
code
74055991/cell_10
[ "image_output_1.png" ]
path = '/kaggle/input/cell-images-for-detecting-malaria/cell_images/' fields = DataBlock(blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, get_y=parent_label, splitter=RandomSplitter(valid_pct=0.2, seed=42), item_tfms=RandomResizedCrop(114, min_scale=0.5), batch_tfms=aug_transforms()) dls = fields.dataloaders(path) dls.vocab learn = cnn_learner(dls, resnet34, metrics=[error_rate, accuracy]) lrn_min, lrn_steep = learn.lr_find() learn.fine_tune(1)
code
74055991/cell_12
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
path = '/kaggle/input/cell-images-for-detecting-malaria/cell_images/' fields = DataBlock(blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, get_y=parent_label, splitter=RandomSplitter(valid_pct=0.2, seed=42), item_tfms=RandomResizedCrop(114, min_scale=0.5), batch_tfms=aug_transforms()) dls = fields.dataloaders(path) dls.vocab learn = cnn_learner(dls, resnet50, metrics=[error_rate, accuracy])
code
90129163/cell_63
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
print(f'Mean accuracy score: {accuracy}')
code
90129163/cell_21
[ "text_plain_output_1.png" ]
sub.sample(10)
code
90129163/cell_81
[ "text_plain_output_1.png" ]
y_prob = sum(y_probs) / len(y_probs) y_prob_results = np.argmax(y_prob, axis=1) y_prob_results = y_prob_results.astype('bool') sub['Transported'] = y_prob_results sub.to_csv('submission_twenty_fold_loop_03112022.csv', index=False)
code
90129163/cell_13
[ "text_plain_output_1.png" ]
trn_data.head()
code
90129163/cell_25
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
trn_passenger_ids = set(trn_data['PassengerId'].unique()) tst_passenger_ids = set(tst_data['PassengerId'].unique()) intersection = trn_passenger_ids.intersection(tst_passenger_ids) print('Overlapped Passengers:', len(intersection))
code
90129163/cell_4
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
90129163/cell_56
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split test_size_pct = 0.01 X_train, X_valid, y_train, y_valid = train_test_split(trn_data[features], trn_data[target_feature], test_size=test_size_pct, random_state=42)
code
90129163/cell_34
[ "text_plain_output_1.png" ]
trn_relatives = trn_relatives.rename(columns={'PassengerId': 'NumRelatives'}) tst_relatives = tst_relatives.rename(columns={'PassengerId': 'NumRelatives'})
code
90129163/cell_23
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
def analyse_categ_target(df, target='Transported'): transported = df[df[target] == True].shape[0] not_transported = df[df[target] == False].shape[0] total = transported + not_transported print(f'Transported : {transported / total:.2f} %') print(f'Not Transported : {not_transported / total:.2f} %') print(f'Total Passengers: {total}') print('...')
code
90129163/cell_79
[ "text_plain_output_1.png" ]
print('Mean accuracy score:', np.array(scores).mean())
code
90129163/cell_30
[ "text_plain_output_1.png" ]
trn_data = total_billed(trn_data) tst_data = total_billed(tst_data)
code
90129163/cell_33
[ "text_plain_output_1.png" ]
trn_relatives = trn_data.groupby('FamilyName')['PassengerId'].count().reset_index() tst_relatives = tst_data.groupby('FamilyName')['PassengerId'].count().reset_index()
code
90129163/cell_44
[ "text_plain_output_1.png" ]
trn_data.head()
code
90129163/cell_20
[ "text_plain_output_1.png" ]
tst_data.isnull().sum()
code
90129163/cell_55
[ "text_plain_output_1.png" ]
features
code
90129163/cell_6
[ "text_plain_output_1.png" ]
import warnings warnings.filterwarnings('ignore')
code
90129163/cell_76
[ "text_plain_output_1.png" ]
N_SPLITS = 20 folds = StratifiedKFold(n_splits=N_SPLITS, shuffle=True)
code
90129163/cell_29
[ "text_plain_output_1.png" ]
def total_billed(df): """ Calculates total amount billed in the trip to the passenger... Args: Returns: """ df['Total_Billed'] = df['RoomService'] + df['FoodCourt'] + df['ShoppingMall'] + df['Spa'] + df['VRDeck'] return df
code
90129163/cell_39
[ "text_plain_output_1.png" ]
trn_data = route(trn_data) tst_data = route(tst_data)
code
90129163/cell_65
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt def feature_importance(clf): importances = clf.feature_importances_ i = np.argsort(importances) features = X_train.columns plt.title('Feature Importance') plt.barh(range(len(i)), importances[i], align='center') plt.yticks(range(len(i)), [features[x] for x in i]) plt.xlabel('Scale') plt.show()
code
90129163/cell_48
[ "text_html_output_1.png", "text_plain_output_1.png" ]
trn_data, tst_data = encode_categorical(trn_data, tst_data, categorical_features)
code
90129163/cell_73
[ "text_plain_output_1.png" ]
code
90129163/cell_41
[ "text_plain_output_1.png" ]
trn_data = age_groups(trn_data) tst_data = age_groups(tst_data)
code
90129163/cell_61
[ "text_plain_output_1.png" ]
cls = XGBClassifier(**param) cls.fit(X_train, y_train, eval_set=[(X_valid, y_valid)], eval_metric=['logloss'], early_stopping_rounds=128, verbose=False)
code
90129163/cell_54
[ "text_plain_output_1.png" ]
remove = ['PassengerId', 'Route', 'FirstName_Enc', 'CabinNum_Enc', 'Transported'] features = [feat for feat in trn_data.columns if feat not in remove]
code
90129163/cell_72
[ "text_plain_output_1.png" ]
code
90129163/cell_67
[ "text_plain_output_1.png" ]
preds = cls.predict(tst_data[features])
code
90129163/cell_60
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
param = {'learning_rate': 0.05, 'n_estimators': 1024, 'n_jobs': -1, 'random_state': 42, 'objective': 'binary:logistic'}
code
90129163/cell_19
[ "text_plain_output_1.png" ]
tst_data.head()
code
90129163/cell_7
[ "text_plain_output_1.png" ]
DATA_ROWS = None NROWS = 50 NCOLS = 15 BASE_PATH = '...'
code
90129163/cell_18
[ "text_html_output_1.png", "text_plain_output_1.png" ]
trn_data.isnull().sum()
code