path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
16161701/cell_13
[ "text_plain_output_1.png" ]
from collections import Counter from sklearn.metrics import accuracy_score import numpy as np import numpy as np # linear algebra def predict(x_train, y_train, x_test, k): distances = [] targets = [] for i in range(len(x_train)): distance = np.sqrt(np.sum(np.square(x_test - x_train.values[i, :]))) distances.append([distance, i]) distances = sorted(distances) for i in range(k): index = distances[i][1] targets.append(y_train.values[index]) return Counter(targets).most_common(1)[0][0] def train(x_train, y_train): return def kNearestNeighbor(x_train, y_train, x_test, predictions, k): train(x_train, y_train) for i in range(len(x_test)): predictions.append(predict(x_train, y_train, x_test.values[i, :], k)) predictions = [] from sklearn.metrics import accuracy_score kNearestNeighbor(x_train, y_train, x_test, predictions, 9) predictions = np.asarray(predictions) accuracy = accuracy_score(y_test, predictions) print('accuracy score is :', accuracy * 100, '%')
code
16161701/cell_20
[ "text_plain_output_1.png" ]
from collections import Counter from math import sqrt from sklearn import neighbors from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra def predict(x_train, y_train, x_test, k): distances = [] targets = [] for i in range(len(x_train)): distance = np.sqrt(np.sum(np.square(x_test - x_train.values[i, :]))) distances.append([distance, i]) distances = sorted(distances) for i in range(k): index = distances[i][1] targets.append(y_train.values[index]) return Counter(targets).most_common(1)[0][0] def train(x_train, y_train): return def kNearestNeighbor(x_train, y_train, x_test, predictions, k): train(x_train, y_train) for i in range(len(x_test)): predictions.append(predict(x_train, y_train, x_test.values[i, :], k)) predictions = [] from sklearn.metrics import accuracy_score kNearestNeighbor(x_train, y_train, x_test, predictions, 9) predictions = np.asarray(predictions) accuracy = accuracy_score(y_test, predictions) rmse_values = [] for k in range(20): k = k + 1 model = neighbors.KNeighborsRegressor(n_neighbors=k) model.fit(x_train, y_train) pred = model.predict(x_test) error = sqrt(mean_squared_error(y_test, pred)) rmse_values.append(error) import matplotlib.pyplot as plt plt.xlabel('Value of K') plt.ylabel('RMSE') plt.plot(range(20), rmse_values) plt.show()
code
16161701/cell_29
[ "text_plain_output_1.png" ]
from collections import Counter from math import sqrt from sklearn import neighbors from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra def predict(x_train, y_train, x_test, k): distances = [] targets = [] for i in range(len(x_train)): distance = np.sqrt(np.sum(np.square(x_test - x_train.values[i, :]))) distances.append([distance, i]) distances = sorted(distances) for i in range(k): index = distances[i][1] targets.append(y_train.values[index]) return Counter(targets).most_common(1)[0][0] def train(x_train, y_train): return def kNearestNeighbor(x_train, y_train, x_test, predictions, k): train(x_train, y_train) for i in range(len(x_test)): predictions.append(predict(x_train, y_train, x_test.values[i, :], k)) predictions = [] from sklearn.metrics import accuracy_score kNearestNeighbor(x_train, y_train, x_test, predictions, 9) predictions = np.asarray(predictions) accuracy = accuracy_score(y_test, predictions) rmse_values = [] for k in range(20): k = k + 1 model = neighbors.KNeighborsRegressor(n_neighbors=k) model.fit(x_train, y_train) pred = model.predict(x_test) error = sqrt(mean_squared_error(y_test, pred)) rmse_values.append(error) import matplotlib.pyplot as plt predict = model.predict(x_test) import seaborn as sns plt.scatter(x_test, predict) plt.xlabel('Sepal Length') plt.ylabel('Petal Length')
code
16161701/cell_11
[ "text_plain_output_1.png" ]
from collections import Counter from sklearn.metrics import accuracy_score import numpy as np import numpy as np # linear algebra def predict(x_train, y_train, x_test, k): distances = [] targets = [] for i in range(len(x_train)): distance = np.sqrt(np.sum(np.square(x_test - x_train.values[i, :]))) distances.append([distance, i]) distances = sorted(distances) for i in range(k): index = distances[i][1] targets.append(y_train.values[index]) return Counter(targets).most_common(1)[0][0] def train(x_train, y_train): return def kNearestNeighbor(x_train, y_train, x_test, predictions, k): train(x_train, y_train) for i in range(len(x_test)): predictions.append(predict(x_train, y_train, x_test.values[i, :], k)) predictions = [] from sklearn.metrics import accuracy_score kNearestNeighbor(x_train, y_train, x_test, predictions, 9) predictions = np.asarray(predictions) accuracy = accuracy_score(y_test, predictions) for i in range(len(x_test)): print('Flower with sepal length', x_test.iloc[i], ':') print('belongs to the kingdom', predictions[i])
code
16161701/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
16161701/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
from collections import Counter from math import sqrt from sklearn import neighbors from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import numpy as np import math import operator df = pd.read_csv('../input/Iris.csv') df.shape from collections import Counter from sklearn.model_selection import train_test_split x = df[['SepalLengthCm']] y = df['Species'] x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.33) len(y_train) def predict(x_train, y_train, x_test, k): distances = [] targets = [] for i in range(len(x_train)): distance = np.sqrt(np.sum(np.square(x_test - x_train.values[i, :]))) distances.append([distance, i]) distances = sorted(distances) for i in range(k): index = distances[i][1] targets.append(y_train.values[index]) return Counter(targets).most_common(1)[0][0] def train(x_train, y_train): return def kNearestNeighbor(x_train, y_train, x_test, predictions, k): train(x_train, y_train) for i in range(len(x_test)): predictions.append(predict(x_train, y_train, x_test.values[i, :], k)) predictions = [] from sklearn.metrics import accuracy_score kNearestNeighbor(x_train, y_train, x_test, predictions, 9) predictions = np.asarray(predictions) accuracy = accuracy_score(y_test, predictions) from sklearn.model_selection import train_test_split x = df[['SepalLengthCm']] y = df['PetalLengthCm'] x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.33) len(y_train) rmse_values = [] for k in range(20): k = k + 1 model = neighbors.KNeighborsRegressor(n_neighbors=k) model.fit(x_train, y_train) pred = model.predict(x_test) error = sqrt(mean_squared_error(y_test, pred)) rmse_values.append(error) import matplotlib.pyplot as plt predict = model.predict(x_test) import seaborn as sns K = [] for x in range(1, 21): j = 1 / x K.append(j) plt.plot(rmse_values, K) plt.xlabel('1/K') plt.ylabel('RMSE Values')
code
16161701/cell_28
[ "image_output_1.png" ]
from collections import Counter from math import sqrt from sklearn import neighbors from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error import numpy as np import numpy as np # linear algebra def predict(x_train, y_train, x_test, k): distances = [] targets = [] for i in range(len(x_train)): distance = np.sqrt(np.sum(np.square(x_test - x_train.values[i, :]))) distances.append([distance, i]) distances = sorted(distances) for i in range(k): index = distances[i][1] targets.append(y_train.values[index]) return Counter(targets).most_common(1)[0][0] def train(x_train, y_train): return def kNearestNeighbor(x_train, y_train, x_test, predictions, k): train(x_train, y_train) for i in range(len(x_test)): predictions.append(predict(x_train, y_train, x_test.values[i, :], k)) predictions = [] from sklearn.metrics import accuracy_score kNearestNeighbor(x_train, y_train, x_test, predictions, 9) predictions = np.asarray(predictions) accuracy = accuracy_score(y_test, predictions) rmse_values = [] for k in range(20): k = k + 1 model = neighbors.KNeighborsRegressor(n_neighbors=k) model.fit(x_train, y_train) pred = model.predict(x_test) error = sqrt(mean_squared_error(y_test, pred)) rmse_values.append(error) predict = model.predict(x_test) for i in range(len(predict)): print('For sepal length:', x_test.values[i]) print('The coressponding petal length in centimeters is:', predict[i])
code
16161701/cell_15
[ "text_plain_output_1.png" ]
from collections import Counter from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import numpy as np import math import operator df = pd.read_csv('../input/Iris.csv') df.shape from collections import Counter from sklearn.model_selection import train_test_split x = df[['SepalLengthCm']] y = df['Species'] x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.33) len(y_train) def predict(x_train, y_train, x_test, k): distances = [] targets = [] for i in range(len(x_train)): distance = np.sqrt(np.sum(np.square(x_test - x_train.values[i, :]))) distances.append([distance, i]) distances = sorted(distances) for i in range(k): index = distances[i][1] targets.append(y_train.values[index]) return Counter(targets).most_common(1)[0][0] from sklearn.model_selection import train_test_split x = df[['SepalLengthCm']] y = df['PetalLengthCm'] x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.33) len(y_train)
code
16161701/cell_16
[ "text_plain_output_1.png" ]
from collections import Counter from math import sqrt from sklearn import neighbors from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error import numpy as np import numpy as np # linear algebra def predict(x_train, y_train, x_test, k): distances = [] targets = [] for i in range(len(x_train)): distance = np.sqrt(np.sum(np.square(x_test - x_train.values[i, :]))) distances.append([distance, i]) distances = sorted(distances) for i in range(k): index = distances[i][1] targets.append(y_train.values[index]) return Counter(targets).most_common(1)[0][0] def train(x_train, y_train): return def kNearestNeighbor(x_train, y_train, x_test, predictions, k): train(x_train, y_train) for i in range(len(x_test)): predictions.append(predict(x_train, y_train, x_test.values[i, :], k)) predictions = [] from sklearn.metrics import accuracy_score kNearestNeighbor(x_train, y_train, x_test, predictions, 9) predictions = np.asarray(predictions) accuracy = accuracy_score(y_test, predictions) rmse_values = [] for k in range(20): k = k + 1 model = neighbors.KNeighborsRegressor(n_neighbors=k) model.fit(x_train, y_train) pred = model.predict(x_test) error = sqrt(mean_squared_error(y_test, pred)) rmse_values.append(error) print('RMSE value for k= ', k, 'is:', error)
code
16161701/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import numpy as np import math import operator df = pd.read_csv('../input/Iris.csv') print(df.head()) df.shape from collections import Counter
code
16161701/cell_17
[ "text_plain_output_1.png" ]
from collections import Counter from math import sqrt from sklearn import neighbors from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error import numpy as np import numpy as np # linear algebra def predict(x_train, y_train, x_test, k): distances = [] targets = [] for i in range(len(x_train)): distance = np.sqrt(np.sum(np.square(x_test - x_train.values[i, :]))) distances.append([distance, i]) distances = sorted(distances) for i in range(k): index = distances[i][1] targets.append(y_train.values[index]) return Counter(targets).most_common(1)[0][0] def train(x_train, y_train): return def kNearestNeighbor(x_train, y_train, x_test, predictions, k): train(x_train, y_train) for i in range(len(x_test)): predictions.append(predict(x_train, y_train, x_test.values[i, :], k)) predictions = [] from sklearn.metrics import accuracy_score kNearestNeighbor(x_train, y_train, x_test, predictions, 9) predictions = np.asarray(predictions) accuracy = accuracy_score(y_test, predictions) rmse_values = [] for k in range(20): k = k + 1 model = neighbors.KNeighborsRegressor(n_neighbors=k) model.fit(x_train, y_train) pred = model.predict(x_test) error = sqrt(mean_squared_error(y_test, pred)) rmse_values.append(error) min(rmse_values)
code
16161701/cell_24
[ "text_plain_output_1.png" ]
from collections import Counter from math import sqrt from sklearn import neighbors from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error import numpy as np import numpy as np # linear algebra def predict(x_train, y_train, x_test, k): distances = [] targets = [] for i in range(len(x_train)): distance = np.sqrt(np.sum(np.square(x_test - x_train.values[i, :]))) distances.append([distance, i]) distances = sorted(distances) for i in range(k): index = distances[i][1] targets.append(y_train.values[index]) return Counter(targets).most_common(1)[0][0] def train(x_train, y_train): return def kNearestNeighbor(x_train, y_train, x_test, predictions, k): train(x_train, y_train) for i in range(len(x_test)): predictions.append(predict(x_train, y_train, x_test.values[i, :], k)) predictions = [] from sklearn.metrics import accuracy_score kNearestNeighbor(x_train, y_train, x_test, predictions, 9) predictions = np.asarray(predictions) accuracy = accuracy_score(y_test, predictions) rmse_values = [] for k in range(20): k = k + 1 model = neighbors.KNeighborsRegressor(n_neighbors=k) model.fit(x_train, y_train) pred = model.predict(x_test) error = sqrt(mean_squared_error(y_test, pred)) rmse_values.append(error) predict = model.predict(x_test) len(predict)
code
16161701/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd import numpy as np import math import operator df = pd.read_csv('../input/Iris.csv') df.shape from collections import Counter from sklearn.model_selection import train_test_split x = df[['SepalLengthCm']] y = df['Species'] x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.33) len(y_train)
code
74058414/cell_21
[ "text_plain_output_1.png" ]
from collections import Counter import matplotlib.pyplot as plt import numpy as np # Code to plot a function. Borrowed from fastai library. def plot_func(f, tx=None, ty=None, title=None, min=-2, max=2, figsize=(6,4)): x = np.linspace(min,max) fig,ax = plt.subplots(figsize=figsize) ax.plot(x,f(x)) if tx is not None: ax.set_xlabel(tx) if ty is not None: ax.set_ylabel(ty) if title is not None: ax.set_title(title) red_bag = np.array(['Apple'] * 4 + ['Orange']) green_bag = np.array(['Orange'] * 9 + ['Apple']) white_bag = np.array(['Orange'] * 5 + ['Apple'] * 5) def surprise(probability): return np.log2(1 / probability) P_h = 0.9 P_t = 0.1 S_h = surprise(P_h) print(f'Surprise of heads is: {round(S_h, 2)}') S_t = surprise(P_t) print(f'Surprise of tails is: {round(S_t, 2)}')
code
74058414/cell_13
[ "text_plain_output_1.png" ]
from collections import Counter import matplotlib.pyplot as plt import numpy as np # Code to plot a function. Borrowed from fastai library. def plot_func(f, tx=None, ty=None, title=None, min=-2, max=2, figsize=(6,4)): x = np.linspace(min,max) fig,ax = plt.subplots(figsize=figsize) ax.plot(x,f(x)) if tx is not None: ax.set_xlabel(tx) if ty is not None: ax.set_ylabel(ty) if title is not None: ax.set_title(title) red_bag = np.array(['Apple'] * 4 + ['Orange']) green_bag = np.array(['Orange'] * 9 + ['Apple']) white_bag = np.array(['Orange'] * 5 + ['Apple'] * 5) green_ctr = Counter(green_bag) P_apple_green = green_ctr['Apple'] / len(green_bag) print(f'P(Apple from Green Bag) : {round(P_apple_green, 2)}') P_orange_green = green_ctr['Orange'] / len(green_bag) print(f'P(Orange from Green Bag): {round(P_orange_green, 2)}')
code
74058414/cell_25
[ "text_plain_output_1.png" ]
from collections import Counter import matplotlib.pyplot as plt import numpy as np # Code to plot a function. Borrowed from fastai library. def plot_func(f, tx=None, ty=None, title=None, min=-2, max=2, figsize=(6,4)): x = np.linspace(min,max) fig,ax = plt.subplots(figsize=figsize) ax.plot(x,f(x)) if tx is not None: ax.set_xlabel(tx) if ty is not None: ax.set_ylabel(ty) if title is not None: ax.set_title(title) red_bag = np.array(['Apple'] * 4 + ['Orange']) green_bag = np.array(['Orange'] * 9 + ['Apple']) white_bag = np.array(['Orange'] * 5 + ['Apple'] * 5) def surprise(probability): return np.log2(1 / probability) P_h = 0.9 P_t = 0.1 S_h = surprise(P_h) S_t = surprise(P_t) print(f'Surprise by using the definition: {round(surprise(P_h * P_h * P_t), 2)}') print(f'Surprise by adding up the individual values: {round(S_h + S_h + S_t, 2)} ')
code
74058414/cell_40
[ "text_plain_output_1.png" ]
from collections import Counter import matplotlib.pyplot as plt import numpy as np import pandas as pd # Code to plot a function. Borrowed from fastai library. def plot_func(f, tx=None, ty=None, title=None, min=-2, max=2, figsize=(6,4)): x = np.linspace(min,max) fig,ax = plt.subplots(figsize=figsize) ax.plot(x,f(x)) if tx is not None: ax.set_xlabel(tx) if ty is not None: ax.set_ylabel(ty) if title is not None: ax.set_title(title) red_bag = np.array(['Apple'] * 4 + ['Orange']) green_bag = np.array(['Orange'] * 9 + ['Apple']) white_bag = np.array(['Orange'] * 5 + ['Apple'] * 5) def surprise(probability): return np.log2(1 / probability) table = pd.DataFrame({'Heads': [0.15, 0.9], 'Tails': [3.32, 0.1]}, index=['S(x)', 'P(x)']) table Entropy = table.loc['P(x)', 'Heads'] * table.loc['S(x)', 'Heads'] + table.loc['P(x)', 'Tails'] * table.loc['S(x)', 'Heads'] Entropy P_e = np.array([0.9, 0.1]) S_e = np.array([0.15, 3.32]) Entropy = np.dot(P_e, S_e) Entropy def entropy(arr): ent = 0 probs = dict() ctr = Counter(arr) for e in ctr: probs[f'P_{e}'] = ctr[e] / len(arr) for p in probs: ent += -1 * probs[p] * np.log2(probs[p]) return round(ent, 2) def show_entropy(bag_type=None, bag_type_str=None): ctr = Counter(bag_type) show_entropy(bag_type=white_bag, bag_type_str='White Bag')
code
74058414/cell_29
[ "text_plain_output_1.png" ]
import pandas as pd table = pd.DataFrame({'Heads': [0.15, 0.9], 'Tails': [3.32, 0.1]}, index=['S(x)', 'P(x)']) table Entropy = table.loc['P(x)', 'Heads'] * table.loc['S(x)', 'Heads'] + table.loc['P(x)', 'Tails'] * table.loc['S(x)', 'Heads'] Entropy
code
74058414/cell_11
[ "text_plain_output_1.png" ]
from collections import Counter import matplotlib.pyplot as plt import numpy as np # Code to plot a function. Borrowed from fastai library. def plot_func(f, tx=None, ty=None, title=None, min=-2, max=2, figsize=(6,4)): x = np.linspace(min,max) fig,ax = plt.subplots(figsize=figsize) ax.plot(x,f(x)) if tx is not None: ax.set_xlabel(tx) if ty is not None: ax.set_ylabel(ty) if title is not None: ax.set_title(title) red_bag = np.array(['Apple'] * 4 + ['Orange']) green_bag = np.array(['Orange'] * 9 + ['Apple']) white_bag = np.array(['Orange'] * 5 + ['Apple'] * 5) red_ctr = Counter(red_bag) P_apple_red = red_ctr['Apple'] / len(red_bag) print(f'P(Apple from Red Bag) : {round(P_apple_red, 2)}') P_orange_red = red_ctr['Orange'] / len(red_bag) print(f'P(Orange from Red Bag): {round(P_orange_red, 2)}')
code
74058414/cell_19
[ "image_output_1.png" ]
from collections import Counter import matplotlib.pyplot as plt import numpy as np # Code to plot a function. Borrowed from fastai library. def plot_func(f, tx=None, ty=None, title=None, min=-2, max=2, figsize=(6,4)): x = np.linspace(min,max) fig,ax = plt.subplots(figsize=figsize) ax.plot(x,f(x)) if tx is not None: ax.set_xlabel(tx) if ty is not None: ax.set_ylabel(ty) if title is not None: ax.set_title(title) red_bag = np.array(['Apple'] * 4 + ['Orange']) green_bag = np.array(['Orange'] * 9 + ['Apple']) white_bag = np.array(['Orange'] * 5 + ['Apple'] * 5) def surprise(probability): return np.log2(1 / probability) plot_func(surprise, tx='Probabity', ty='Surprise', title='Surprise vs Entropy', min=0, max=1)
code
74058414/cell_28
[ "text_html_output_1.png" ]
import pandas as pd table = pd.DataFrame({'Heads': [0.15, 0.9], 'Tails': [3.32, 0.1]}, index=['S(x)', 'P(x)']) table
code
74058414/cell_15
[ "text_plain_output_1.png" ]
from collections import Counter import matplotlib.pyplot as plt import numpy as np # Code to plot a function. Borrowed from fastai library. def plot_func(f, tx=None, ty=None, title=None, min=-2, max=2, figsize=(6,4)): x = np.linspace(min,max) fig,ax = plt.subplots(figsize=figsize) ax.plot(x,f(x)) if tx is not None: ax.set_xlabel(tx) if ty is not None: ax.set_ylabel(ty) if title is not None: ax.set_title(title) red_bag = np.array(['Apple'] * 4 + ['Orange']) green_bag = np.array(['Orange'] * 9 + ['Apple']) white_bag = np.array(['Orange'] * 5 + ['Apple'] * 5) white_ctr = Counter(white_bag) P_apple_white = white_ctr['Apple'] / len(white_bag) print(f'P(Apple from White Bag) : {round(P_apple_white, 2)}') P_orange_white = white_ctr['Orange'] / len(white_bag) print(f'P(Orange from White Bag): {round(P_orange_white, 2)}')
code
74058414/cell_38
[ "text_plain_output_1.png" ]
from collections import Counter import matplotlib.pyplot as plt import numpy as np import pandas as pd # Code to plot a function. Borrowed from fastai library. def plot_func(f, tx=None, ty=None, title=None, min=-2, max=2, figsize=(6,4)): x = np.linspace(min,max) fig,ax = plt.subplots(figsize=figsize) ax.plot(x,f(x)) if tx is not None: ax.set_xlabel(tx) if ty is not None: ax.set_ylabel(ty) if title is not None: ax.set_title(title) red_bag = np.array(['Apple'] * 4 + ['Orange']) green_bag = np.array(['Orange'] * 9 + ['Apple']) white_bag = np.array(['Orange'] * 5 + ['Apple'] * 5) def surprise(probability): return np.log2(1 / probability) table = pd.DataFrame({'Heads': [0.15, 0.9], 'Tails': [3.32, 0.1]}, index=['S(x)', 'P(x)']) table Entropy = table.loc['P(x)', 'Heads'] * table.loc['S(x)', 'Heads'] + table.loc['P(x)', 'Tails'] * table.loc['S(x)', 'Heads'] Entropy P_e = np.array([0.9, 0.1]) S_e = np.array([0.15, 3.32]) Entropy = np.dot(P_e, S_e) Entropy def entropy(arr): ent = 0 probs = dict() ctr = Counter(arr) for e in ctr: probs[f'P_{e}'] = ctr[e] / len(arr) for p in probs: ent += -1 * probs[p] * np.log2(probs[p]) return round(ent, 2) def show_entropy(bag_type=None, bag_type_str=None): ctr = Counter(bag_type) show_entropy(bag_type=green_bag, bag_type_str='Green Bag')
code
74058414/cell_31
[ "text_plain_output_1.png" ]
from collections import Counter import matplotlib.pyplot as plt import numpy as np import pandas as pd # Code to plot a function. Borrowed from fastai library. def plot_func(f, tx=None, ty=None, title=None, min=-2, max=2, figsize=(6,4)): x = np.linspace(min,max) fig,ax = plt.subplots(figsize=figsize) ax.plot(x,f(x)) if tx is not None: ax.set_xlabel(tx) if ty is not None: ax.set_ylabel(ty) if title is not None: ax.set_title(title) red_bag = np.array(['Apple'] * 4 + ['Orange']) green_bag = np.array(['Orange'] * 9 + ['Apple']) white_bag = np.array(['Orange'] * 5 + ['Apple'] * 5) def surprise(probability): return np.log2(1 / probability) table = pd.DataFrame({'Heads': [0.15, 0.9], 'Tails': [3.32, 0.1]}, index=['S(x)', 'P(x)']) table Entropy = table.loc['P(x)', 'Heads'] * table.loc['S(x)', 'Heads'] + table.loc['P(x)', 'Tails'] * table.loc['S(x)', 'Heads'] Entropy P_e = np.array([0.9, 0.1]) S_e = np.array([0.15, 3.32]) Entropy = np.dot(P_e, S_e) Entropy
code
74058414/cell_10
[ "text_plain_output_1.png" ]
from collections import Counter import matplotlib.pyplot as plt import numpy as np # Code to plot a function. Borrowed from fastai library. def plot_func(f, tx=None, ty=None, title=None, min=-2, max=2, figsize=(6,4)): x = np.linspace(min,max) fig,ax = plt.subplots(figsize=figsize) ax.plot(x,f(x)) if tx is not None: ax.set_xlabel(tx) if ty is not None: ax.set_ylabel(ty) if title is not None: ax.set_title(title) red_bag = np.array(['Apple'] * 4 + ['Orange']) print(f'Red Bag conatins: {Counter(red_bag)}') green_bag = np.array(['Orange'] * 9 + ['Apple']) print(f'Green Bag conatins: {Counter(green_bag)}') white_bag = np.array(['Orange'] * 5 + ['Apple'] * 5) print(f'White Bag conatins: {Counter(white_bag)}')
code
74058414/cell_36
[ "text_plain_output_1.png" ]
from collections import Counter import matplotlib.pyplot as plt import numpy as np import pandas as pd # Code to plot a function. Borrowed from fastai library. def plot_func(f, tx=None, ty=None, title=None, min=-2, max=2, figsize=(6,4)): x = np.linspace(min,max) fig,ax = plt.subplots(figsize=figsize) ax.plot(x,f(x)) if tx is not None: ax.set_xlabel(tx) if ty is not None: ax.set_ylabel(ty) if title is not None: ax.set_title(title) red_bag = np.array(['Apple'] * 4 + ['Orange']) green_bag = np.array(['Orange'] * 9 + ['Apple']) white_bag = np.array(['Orange'] * 5 + ['Apple'] * 5) def surprise(probability): return np.log2(1 / probability) table = pd.DataFrame({'Heads': [0.15, 0.9], 'Tails': [3.32, 0.1]}, index=['S(x)', 'P(x)']) table Entropy = table.loc['P(x)', 'Heads'] * table.loc['S(x)', 'Heads'] + table.loc['P(x)', 'Tails'] * table.loc['S(x)', 'Heads'] Entropy P_e = np.array([0.9, 0.1]) S_e = np.array([0.15, 3.32]) Entropy = np.dot(P_e, S_e) Entropy def entropy(arr): ent = 0 probs = dict() ctr = Counter(arr) for e in ctr: probs[f'P_{e}'] = ctr[e] / len(arr) for p in probs: ent += -1 * probs[p] * np.log2(probs[p]) return round(ent, 2) def show_entropy(bag_type=None, bag_type_str=None): ctr = Counter(bag_type) show_entropy(bag_type=red_bag, bag_type_str='Red Bag')
code
72081821/cell_25
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df2 = pd.read_csv('/kaggle/input/titanic/train.csv') chunker = pd.read_csv('../input/titanic/train.csv', chunksize=1000) a = [1, 2, 3, 4] b = ['a', 'b', 'c', 'd'] pd.Series(dict(zip(a, b))) a = ['x', 'y', 'z'] b = [['a', 'b', 'c'], [1, 2, 3], ['o', 'p', 'q']] pd.DataFrame(dict(zip(a, b))).set_index('y')
code
72081821/cell_34
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/titanic/train.csv') df2 = pd.read_csv('/kaggle/input/titanic/train.csv') chunker = pd.read_csv('../input/titanic/train.csv', chunksize=1000) column_text = 'PassengerId => 乘客ID\n Survived => 是否幸存\n Pclass => 乘客等级(1/2/3等舱位)\n Name => 乘客姓名\n Sex => 性别\n Age => 年龄\n SibSp => 堂兄弟/妹个数\n Parch => 父母与小孩个数\n Ticket => 船票信息\n Fare => 票价\n Cabin => 客舱\n Embarked => 登船港口' column_list = [re.sub('.*=> ', '', name) for name in column_text.split('\n')] df.columns = column_list df.set_index('乘客ID', inplace=True) df.isnull() df.to_csv('train_chinese.csv') a = [1, 2, 3, 4] b = ['a', 'b', 'c', 'd'] pd.Series(dict(zip(a, b))) a = ['x', 'y', 'z'] b = [['a', 'b', 'c'], [1, 2, 3], ['o', 'p', 'q']] pd.DataFrame(dict(zip(a, b))).set_index('y') df = pd.read_csv('../input/titanic/train.csv') df_c = pd.read_csv('train_chinese.csv') (list(df.columns), list(df_c.columns)) df.Cabin test_1 = df test_1['a'] = 100 test_1.head()
code
72081821/cell_44
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/titanic/train.csv') df2 = pd.read_csv('/kaggle/input/titanic/train.csv') chunker = pd.read_csv('../input/titanic/train.csv', chunksize=1000) column_text = 'PassengerId => 乘客ID\n Survived => 是否幸存\n Pclass => 乘客等级(1/2/3等舱位)\n Name => 乘客姓名\n Sex => 性别\n Age => 年龄\n SibSp => 堂兄弟/妹个数\n Parch => 父母与小孩个数\n Ticket => 船票信息\n Fare => 票价\n Cabin => 客舱\n Embarked => 登船港口' column_list = [re.sub('.*=> ', '', name) for name in column_text.split('\n')] df.columns = column_list df.set_index('乘客ID', inplace=True) df.isnull() df.to_csv('train_chinese.csv') a = [1, 2, 3, 4] b = ['a', 'b', 'c', 'd'] pd.Series(dict(zip(a, b))) a = ['x', 'y', 'z'] b = [['a', 'b', 'c'], [1, 2, 3], ['o', 'p', 'q']] pd.DataFrame(dict(zip(a, b))).set_index('y') df = pd.read_csv('../input/titanic/train.csv') df_c = pd.read_csv('train_chinese.csv') (list(df.columns), list(df_c.columns)) df.Cabin midage = df[(df.Age > 10) & (df.Age < 50)] midage.iloc[99][['Pclass', 'Sex']] midage.iloc[[99], [2, 4]]
code
72081821/cell_6
[ "text_html_output_1.png" ]
import os import numpy as np import pandas as pd import os os.getcwd()
code
72081821/cell_29
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/titanic/train.csv') df2 = pd.read_csv('/kaggle/input/titanic/train.csv') chunker = pd.read_csv('../input/titanic/train.csv', chunksize=1000) column_text = 'PassengerId => 乘客ID\n Survived => 是否幸存\n Pclass => 乘客等级(1/2/3等舱位)\n Name => 乘客姓名\n Sex => 性别\n Age => 年龄\n SibSp => 堂兄弟/妹个数\n Parch => 父母与小孩个数\n Ticket => 船票信息\n Fare => 票价\n Cabin => 客舱\n Embarked => 登船港口' column_list = [re.sub('.*=> ', '', name) for name in column_text.split('\n')] df.columns = column_list df.set_index('乘客ID', inplace=True) df.isnull() df.to_csv('train_chinese.csv') a = [1, 2, 3, 4] b = ['a', 'b', 'c', 'd'] pd.Series(dict(zip(a, b))) a = ['x', 'y', 'z'] b = [['a', 'b', 'c'], [1, 2, 3], ['o', 'p', 'q']] pd.DataFrame(dict(zip(a, b))).set_index('y') df = pd.read_csv('../input/titanic/train.csv') df_c = pd.read_csv('train_chinese.csv') (list(df.columns), list(df_c.columns))
code
72081821/cell_39
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/titanic/train.csv') df2 = pd.read_csv('/kaggle/input/titanic/train.csv') chunker = pd.read_csv('../input/titanic/train.csv', chunksize=1000) column_text = 'PassengerId => 乘客ID\n Survived => 是否幸存\n Pclass => 乘客等级(1/2/3等舱位)\n Name => 乘客姓名\n Sex => 性别\n Age => 年龄\n SibSp => 堂兄弟/妹个数\n Parch => 父母与小孩个数\n Ticket => 船票信息\n Fare => 票价\n Cabin => 客舱\n Embarked => 登船港口' column_list = [re.sub('.*=> ', '', name) for name in column_text.split('\n')] df.columns = column_list df.set_index('乘客ID', inplace=True) df.isnull() df.to_csv('train_chinese.csv') a = [1, 2, 3, 4] b = ['a', 'b', 'c', 'd'] pd.Series(dict(zip(a, b))) a = ['x', 'y', 'z'] b = [['a', 'b', 'c'], [1, 2, 3], ['o', 'p', 'q']] pd.DataFrame(dict(zip(a, b))).set_index('y') df = pd.read_csv('../input/titanic/train.csv') df_c = pd.read_csv('train_chinese.csv') (list(df.columns), list(df_c.columns)) df.Cabin df[df.Age < 10].head()
code
72081821/cell_48
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/titanic/train.csv') df2 = pd.read_csv('/kaggle/input/titanic/train.csv') chunker = pd.read_csv('../input/titanic/train.csv', chunksize=1000) column_text = 'PassengerId => 乘客ID\n Survived => 是否幸存\n Pclass => 乘客等级(1/2/3等舱位)\n Name => 乘客姓名\n Sex => 性别\n Age => 年龄\n SibSp => 堂兄弟/妹个数\n Parch => 父母与小孩个数\n Ticket => 船票信息\n Fare => 票价\n Cabin => 客舱\n Embarked => 登船港口' column_list = [re.sub('.*=> ', '', name) for name in column_text.split('\n')] df.columns = column_list df.set_index('乘客ID', inplace=True) df.isnull() df.to_csv('train_chinese.csv') a = [1, 2, 3, 4] b = ['a', 'b', 'c', 'd'] pd.Series(dict(zip(a, b))) a = ['x', 'y', 'z'] b = [['a', 'b', 'c'], [1, 2, 3], ['o', 'p', 'q']] pd.DataFrame(dict(zip(a, b))).set_index('y') df = pd.read_csv('../input/titanic/train.csv') df_c = pd.read_csv('train_chinese.csv') (list(df.columns), list(df_c.columns)) df.Cabin midage = df[(df.Age > 10) & (df.Age < 50)] midage.iloc[99][['Pclass', 'Sex']] midage.iloc[[99], [2, 4]] midage.loc[[99], ['Pclass', 'Sex']] midage.loc[[100, 105, 108], ['Pclass', 'Name', 'Sex']]
code
72081821/cell_41
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/titanic/train.csv') df2 = pd.read_csv('/kaggle/input/titanic/train.csv') chunker = pd.read_csv('../input/titanic/train.csv', chunksize=1000) column_text = 'PassengerId => 乘客ID\n Survived => 是否幸存\n Pclass => 乘客等级(1/2/3等舱位)\n Name => 乘客姓名\n Sex => 性别\n Age => 年龄\n SibSp => 堂兄弟/妹个数\n Parch => 父母与小孩个数\n Ticket => 船票信息\n Fare => 票价\n Cabin => 客舱\n Embarked => 登船港口' column_list = [re.sub('.*=> ', '', name) for name in column_text.split('\n')] df.columns = column_list df.set_index('乘客ID', inplace=True) df.isnull() df.to_csv('train_chinese.csv') a = [1, 2, 3, 4] b = ['a', 'b', 'c', 'd'] pd.Series(dict(zip(a, b))) a = ['x', 'y', 'z'] b = [['a', 'b', 'c'], [1, 2, 3], ['o', 'p', 'q']] pd.DataFrame(dict(zip(a, b))).set_index('y') df = pd.read_csv('../input/titanic/train.csv') df_c = pd.read_csv('train_chinese.csv') (list(df.columns), list(df_c.columns)) df.Cabin midage = df[(df.Age > 10) & (df.Age < 50)] midage.head()
code
72081821/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/titanic/train.csv') column_text = 'PassengerId => 乘客ID\n Survived => 是否幸存\n Pclass => 乘客等级(1/2/3等舱位)\n Name => 乘客姓名\n Sex => 性别\n Age => 年龄\n SibSp => 堂兄弟/妹个数\n Parch => 父母与小孩个数\n Ticket => 船票信息\n Fare => 票价\n Cabin => 客舱\n Embarked => 登船港口' column_list = [re.sub('.*=> ', '', name) for name in column_text.split('\n')] df.columns = column_list df.set_index('乘客ID', inplace=True) df.isnull()
code
72081821/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
72081821/cell_7
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df2 = pd.read_csv('/kaggle/input/titanic/train.csv') df2.head()
code
72081821/cell_45
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/titanic/train.csv') df2 = pd.read_csv('/kaggle/input/titanic/train.csv') chunker = pd.read_csv('../input/titanic/train.csv', chunksize=1000) column_text = 'PassengerId => 乘客ID\n Survived => 是否幸存\n Pclass => 乘客等级(1/2/3等舱位)\n Name => 乘客姓名\n Sex => 性别\n Age => 年龄\n SibSp => 堂兄弟/妹个数\n Parch => 父母与小孩个数\n Ticket => 船票信息\n Fare => 票价\n Cabin => 客舱\n Embarked => 登船港口' column_list = [re.sub('.*=> ', '', name) for name in column_text.split('\n')] df.columns = column_list df.set_index('乘客ID', inplace=True) df.isnull() df.to_csv('train_chinese.csv') a = [1, 2, 3, 4] b = ['a', 'b', 'c', 'd'] pd.Series(dict(zip(a, b))) a = ['x', 'y', 'z'] b = [['a', 'b', 'c'], [1, 2, 3], ['o', 'p', 'q']] pd.DataFrame(dict(zip(a, b))).set_index('y') df = pd.read_csv('../input/titanic/train.csv') df_c = pd.read_csv('train_chinese.csv') (list(df.columns), list(df_c.columns)) df.Cabin midage = df[(df.Age > 10) & (df.Age < 50)] midage.iloc[99][['Pclass', 'Sex']] midage.iloc[[99], [2, 4]] midage.loc[[99], ['Pclass', 'Sex']]
code
72081821/cell_32
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/titanic/train.csv') df2 = pd.read_csv('/kaggle/input/titanic/train.csv') chunker = pd.read_csv('../input/titanic/train.csv', chunksize=1000) column_text = 'PassengerId => 乘客ID\n Survived => 是否幸存\n Pclass => 乘客等级(1/2/3等舱位)\n Name => 乘客姓名\n Sex => 性别\n Age => 年龄\n SibSp => 堂兄弟/妹个数\n Parch => 父母与小孩个数\n Ticket => 船票信息\n Fare => 票价\n Cabin => 客舱\n Embarked => 登船港口' column_list = [re.sub('.*=> ', '', name) for name in column_text.split('\n')] df.columns = column_list df.set_index('乘客ID', inplace=True) df.isnull() df.to_csv('train_chinese.csv') a = [1, 2, 3, 4] b = ['a', 'b', 'c', 'd'] pd.Series(dict(zip(a, b))) a = ['x', 'y', 'z'] b = [['a', 'b', 'c'], [1, 2, 3], ['o', 'p', 'q']] pd.DataFrame(dict(zip(a, b))).set_index('y') df = pd.read_csv('../input/titanic/train.csv') df_c = pd.read_csv('train_chinese.csv') (list(df.columns), list(df_c.columns)) df.Cabin
code
72081821/cell_16
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/titanic/train.csv') column_text = 'PassengerId => 乘客ID\n Survived => 是否幸存\n Pclass => 乘客等级(1/2/3等舱位)\n Name => 乘客姓名\n Sex => 性别\n Age => 年龄\n SibSp => 堂兄弟/妹个数\n Parch => 父母与小孩个数\n Ticket => 船票信息\n Fare => 票价\n Cabin => 客舱\n Embarked => 登船港口' column_list = [re.sub('.*=> ', '', name) for name in column_text.split('\n')] df.columns = column_list df.set_index('乘客ID', inplace=True) df.head(10)
code
72081821/cell_17
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/titanic/train.csv') column_text = 'PassengerId => 乘客ID\n Survived => 是否幸存\n Pclass => 乘客等级(1/2/3等舱位)\n Name => 乘客姓名\n Sex => 性别\n Age => 年龄\n SibSp => 堂兄弟/妹个数\n Parch => 父母与小孩个数\n Ticket => 船票信息\n Fare => 票价\n Cabin => 客舱\n Embarked => 登船港口' column_list = [re.sub('.*=> ', '', name) for name in column_text.split('\n')] df.columns = column_list df.set_index('乘客ID', inplace=True) df.tail(15)
code
72081821/cell_35
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/titanic/train.csv') df2 = pd.read_csv('/kaggle/input/titanic/train.csv') chunker = pd.read_csv('../input/titanic/train.csv', chunksize=1000) column_text = 'PassengerId => 乘客ID\n Survived => 是否幸存\n Pclass => 乘客等级(1/2/3等舱位)\n Name => 乘客姓名\n Sex => 性别\n Age => 年龄\n SibSp => 堂兄弟/妹个数\n Parch => 父母与小孩个数\n Ticket => 船票信息\n Fare => 票价\n Cabin => 客舱\n Embarked => 登船港口' column_list = [re.sub('.*=> ', '', name) for name in column_text.split('\n')] df.columns = column_list df.set_index('乘客ID', inplace=True) df.isnull() df.to_csv('train_chinese.csv') a = [1, 2, 3, 4] b = ['a', 'b', 'c', 'd'] pd.Series(dict(zip(a, b))) a = ['x', 'y', 'z'] b = [['a', 'b', 'c'], [1, 2, 3], ['o', 'p', 'q']] pd.DataFrame(dict(zip(a, b))).set_index('y') df = pd.read_csv('../input/titanic/train.csv') df_c = pd.read_csv('train_chinese.csv') (list(df.columns), list(df_c.columns)) df.Cabin test_1 = df test_1['a'] = 100 del test_1['a'] test_1.head()
code
72081821/cell_43
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/titanic/train.csv') df2 = pd.read_csv('/kaggle/input/titanic/train.csv') chunker = pd.read_csv('../input/titanic/train.csv', chunksize=1000) column_text = 'PassengerId => 乘客ID\n Survived => 是否幸存\n Pclass => 乘客等级(1/2/3等舱位)\n Name => 乘客姓名\n Sex => 性别\n Age => 年龄\n SibSp => 堂兄弟/妹个数\n Parch => 父母与小孩个数\n Ticket => 船票信息\n Fare => 票价\n Cabin => 客舱\n Embarked => 登船港口' column_list = [re.sub('.*=> ', '', name) for name in column_text.split('\n')] df.columns = column_list df.set_index('乘客ID', inplace=True) df.isnull() df.to_csv('train_chinese.csv') a = [1, 2, 3, 4] b = ['a', 'b', 'c', 'd'] pd.Series(dict(zip(a, b))) a = ['x', 'y', 'z'] b = [['a', 'b', 'c'], [1, 2, 3], ['o', 'p', 'q']] pd.DataFrame(dict(zip(a, b))).set_index('y') df = pd.read_csv('../input/titanic/train.csv') df_c = pd.read_csv('train_chinese.csv') (list(df.columns), list(df_c.columns)) df.Cabin midage = df[(df.Age > 10) & (df.Age < 50)] midage.iloc[99][['Pclass', 'Sex']]
code
72081821/cell_31
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/titanic/train.csv') df2 = pd.read_csv('/kaggle/input/titanic/train.csv') chunker = pd.read_csv('../input/titanic/train.csv', chunksize=1000) column_text = 'PassengerId => 乘客ID\n Survived => 是否幸存\n Pclass => 乘客等级(1/2/3等舱位)\n Name => 乘客姓名\n Sex => 性别\n Age => 年龄\n SibSp => 堂兄弟/妹个数\n Parch => 父母与小孩个数\n Ticket => 船票信息\n Fare => 票价\n Cabin => 客舱\n Embarked => 登船港口' column_list = [re.sub('.*=> ', '', name) for name in column_text.split('\n')] df.columns = column_list df.set_index('乘客ID', inplace=True) df.isnull() df.to_csv('train_chinese.csv') a = [1, 2, 3, 4] b = ['a', 'b', 'c', 'd'] pd.Series(dict(zip(a, b))) a = ['x', 'y', 'z'] b = [['a', 'b', 'c'], [1, 2, 3], ['o', 'p', 'q']] pd.DataFrame(dict(zip(a, b))).set_index('y') df = pd.read_csv('../input/titanic/train.csv') df_c = pd.read_csv('train_chinese.csv') (list(df.columns), list(df_c.columns)) df['Cabin']
code
72081821/cell_46
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/titanic/train.csv') df2 = pd.read_csv('/kaggle/input/titanic/train.csv') chunker = pd.read_csv('../input/titanic/train.csv', chunksize=1000) column_text = 'PassengerId => 乘客ID\n Survived => 是否幸存\n Pclass => 乘客等级(1/2/3等舱位)\n Name => 乘客姓名\n Sex => 性别\n Age => 年龄\n SibSp => 堂兄弟/妹个数\n Parch => 父母与小孩个数\n Ticket => 船票信息\n Fare => 票价\n Cabin => 客舱\n Embarked => 登船港口' column_list = [re.sub('.*=> ', '', name) for name in column_text.split('\n')] df.columns = column_list df.set_index('乘客ID', inplace=True) df.isnull() df.to_csv('train_chinese.csv') a = [1, 2, 3, 4] b = ['a', 'b', 'c', 'd'] pd.Series(dict(zip(a, b))) a = ['x', 'y', 'z'] b = [['a', 'b', 'c'], [1, 2, 3], ['o', 'p', 'q']] pd.DataFrame(dict(zip(a, b))).set_index('y') df = pd.read_csv('../input/titanic/train.csv') df_c = pd.read_csv('train_chinese.csv') (list(df.columns), list(df_c.columns)) df.Cabin midage = df[(df.Age > 10) & (df.Age < 50)] midage.iloc[99][['Pclass', 'Sex']] midage.iloc[[99], [2, 4]] midage.loc[[99], ['Pclass', 'Sex']] midage
code
72081821/cell_24
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df2 = pd.read_csv('/kaggle/input/titanic/train.csv') chunker = pd.read_csv('../input/titanic/train.csv', chunksize=1000) a = [1, 2, 3, 4] b = ['a', 'b', 'c', 'd'] pd.Series(dict(zip(a, b)))
code
72081821/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/titanic/train.csv') column_text = 'PassengerId => 乘客ID\n Survived => 是否幸存\n Pclass => 乘客等级(1/2/3等舱位)\n Name => 乘客姓名\n Sex => 性别\n Age => 年龄\n SibSp => 堂兄弟/妹个数\n Parch => 父母与小孩个数\n Ticket => 船票信息\n Fare => 票价\n Cabin => 客舱\n Embarked => 登船港口' column_list = [re.sub('.*=> ', '', name) for name in column_text.split('\n')] df.columns = column_list df.set_index('乘客ID', inplace=True) df.info()
code
72081821/cell_27
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df2 = pd.read_csv('/kaggle/input/titanic/train.csv') chunker = pd.read_csv('../input/titanic/train.csv', chunksize=1000) a = [1, 2, 3, 4] b = ['a', 'b', 'c', 'd'] pd.Series(dict(zip(a, b))) a = ['x', 'y', 'z'] b = [['a', 'b', 'c'], [1, 2, 3], ['o', 'p', 'q']] pd.DataFrame(dict(zip(a, b))).set_index('y') df = pd.read_csv('../input/titanic/train.csv') df_c = pd.read_csv('train_chinese.csv') df_c.head()
code
72081821/cell_37
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/titanic/train.csv') df2 = pd.read_csv('/kaggle/input/titanic/train.csv') chunker = pd.read_csv('../input/titanic/train.csv', chunksize=1000) column_text = 'PassengerId => 乘客ID\n Survived => 是否幸存\n Pclass => 乘客等级(1/2/3等舱位)\n Name => 乘客姓名\n Sex => 性别\n Age => 年龄\n SibSp => 堂兄弟/妹个数\n Parch => 父母与小孩个数\n Ticket => 船票信息\n Fare => 票价\n Cabin => 客舱\n Embarked => 登船港口' column_list = [re.sub('.*=> ', '', name) for name in column_text.split('\n')] df.columns = column_list df.set_index('乘客ID', inplace=True) df.isnull() df.to_csv('train_chinese.csv') a = [1, 2, 3, 4] b = ['a', 'b', 'c', 'd'] pd.Series(dict(zip(a, b))) a = ['x', 'y', 'z'] b = [['a', 'b', 'c'], [1, 2, 3], ['o', 'p', 'q']] pd.DataFrame(dict(zip(a, b))).set_index('y') df = pd.read_csv('../input/titanic/train.csv') df_c = pd.read_csv('train_chinese.csv') (list(df.columns), list(df_c.columns)) df.Cabin test_1 = df test_1['a'] = 100 del test_1['a'] test_1.drop(['PassengerId', 'Name', 'Age', 'Ticket'], axis=1) test_1.head()
code
72081821/cell_12
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re df = pd.read_csv('../input/titanic/train.csv') column_text = 'PassengerId => 乘客ID\n Survived => 是否幸存\n Pclass => 乘客等级(1/2/3等舱位)\n Name => 乘客姓名\n Sex => 性别\n Age => 年龄\n SibSp => 堂兄弟/妹个数\n Parch => 父母与小孩个数\n Ticket => 船票信息\n Fare => 票价\n Cabin => 客舱\n Embarked => 登船港口' column_list = [re.sub('.*=> ', '', name) for name in column_text.split('\n')] df.columns = column_list df.set_index('乘客ID', inplace=True) df.head()
code
72081821/cell_5
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/titanic/train.csv') df.head()
code
2024516/cell_6
[ "image_output_1.png" ]
from random import sample import matplotlib.pyplot as plt import numpy as np import pandas as pd airvisit = pd.read_csv('../input/air_visit_data.csv') ids = airvisit.air_store_id.unique() mindate = airvisit.visit_date.min() maxdate = airvisit.visit_date.max() skeleton = pd.DataFrame({}) dates = pd.date_range(mindate, maxdate, freq='D') skeleton = pd.DataFrame({}) skeleton['visit_date'] = np.ravel([pd.to_datetime(x) for x in dates] * len(ids)) skeleton['air_store_id'] = np.ravel([[x] * len(dates) for x in ids]) groupcols = ['visit_date', 'air_store_id'] subcols = ['visit_date', 'air_store_id', 'visitors'] airvisit['visit_date'] = pd.to_datetime(airvisit['visit_date']) series = pd.merge(skeleton, airvisit[subcols], on=groupcols, how='left') from random import sample samp = sample(list(ids), 10) plt.figure(figsize=(18, 3.5 * len(samp))) for idx, i in enumerate(samp): plt.subplot(len(samp), 1, idx + 1) sub = series[series.air_store_id == i].reset_index() plt.plot(sub.visitors) plt.title(i)
code
2024516/cell_1
[ "text_plain_output_1.png" ]
from datetime import datetime import numpy as np import pandas as pd import matplotlib.pyplot as plt
code
2024516/cell_8
[ "image_output_1.png" ]
from random import sample import matplotlib.pyplot as plt import numpy as np import pandas as pd airvisit = pd.read_csv('../input/air_visit_data.csv') ids = airvisit.air_store_id.unique() mindate = airvisit.visit_date.min() maxdate = airvisit.visit_date.max() skeleton = pd.DataFrame({}) dates = pd.date_range(mindate, maxdate, freq='D') skeleton = pd.DataFrame({}) skeleton['visit_date'] = np.ravel([pd.to_datetime(x) for x in dates] * len(ids)) skeleton['air_store_id'] = np.ravel([[x] * len(dates) for x in ids]) groupcols = ['visit_date', 'air_store_id'] subcols = ['visit_date', 'air_store_id', 'visitors'] airvisit['visit_date'] = pd.to_datetime(airvisit['visit_date']) series = pd.merge(skeleton, airvisit[subcols], on=groupcols, how='left') from random import sample samp = sample(list(ids), 10) for idx, i in enumerate(samp): sub = series[series.air_store_id == i].reset_index() plt.figure(figsize=(16, 4)) exs = ['air_ca1315af9e073bd1', 'air_7d65049f9d275c0d', 'air_9c6787aa03a45586'] for ex in exs: sub = series[series.air_store_id == ex].reset_index() plt.plot(sub.visitors, label=ex) plt.legend()
code
32062338/cell_4
[ "text_plain_output_1.png" ]
from copy import deepcopy from tqdm import tqdm import json import os import pandas as pd import os import json from copy import deepcopy from tqdm import tqdm import pandas as pd def format_name(author): middle_name = ' '.join(author['middle']) if author['middle']: return ' '.join([author['first'], middle_name, author['last']]) else: return ' '.join([author['first'], author['last']]) def format_affiliation(affiliation): text = [] location = affiliation.get('location') if location: text.extend(list(affiliation['location'].values())) institution = affiliation.get('institution') if institution: text = [institution] + text return ', '.join(text) def format_authors(authors, with_affiliation=False): name_ls = [] for author in authors: name = format_name(author) if with_affiliation: affiliation = format_affiliation(author['affiliation']) if affiliation: name_ls.append(f'{name} ({affiliation})') else: name_ls.append(name) else: name_ls.append(name) return ', '.join(name_ls) def format_body(body_text): texts = [(di['section'], di['text']) for di in body_text] texts_di = {di['section']: '' for di in body_text} for section, text in texts: texts_di[section] += text body = '' for section, text in texts_di.items(): body += section body += '\n\n' body += text body += '\n\n' return body def format_bib(bibs): if type(bibs) == dict: bibs = list(bibs.values()) bibs = deepcopy(bibs) formatted = [] for bib in bibs: bib['authors'] = format_authors(bib['authors'], with_affiliation=False) formatted_ls = [str(bib[k]) for k in ['title', 'authors', 'venue', 'year']] formatted.append(', '.join(formatted_ls)) return '; '.join(formatted) def load_files(dirname): filenames = os.listdir(dirname) raw_files = [] for filename in tqdm(filenames): filename = dirname + filename file = json.load(open(filename, 'rb')) raw_files.append(file) return raw_files def generate_clean_df(all_files): cleaned_files = [] for file in tqdm(all_files): features = [file['paper_id'], file['metadata']['title'], format_authors(file['metadata']['authors']), format_authors(file['metadata']['authors'], with_affiliation=True), format_body(file['abstract']) if 'abstract' in file else '', format_body(file['body_text']), format_bib(file['bib_entries'])] cleaned_files.append(features) col_names = ['paper_id', 'title', 'authors', 'affiliations', 'abstract', 'text', 'bibliography'] clean_df = pd.DataFrame(cleaned_files, columns=col_names) return clean_df json_dirs = {'biorxiv_pdf': '/kaggle/input/CORD-19-research-challenge/biorxiv_medrxiv/biorxiv_medrxiv/pdf_json/', 'comm_pdf': '/kaggle/input/CORD-19-research-challenge/comm_use_subset/comm_use_subset/pdf_json/', 'comm_pmc': '/kaggle/input/CORD-19-research-challenge/comm_use_subset/comm_use_subset/pmc_json/', 'noncomm_pdf': '/kaggle/input/CORD-19-research-challenge/noncomm_use_subset/noncomm_use_subset/pdf_json/', 'noncomm_pmc': '/kaggle/input/CORD-19-research-challenge/noncomm_use_subset/noncomm_use_subset/pmc_json/', 'custom_pdf': '/kaggle/input/CORD-19-research-challenge/custom_license/custom_license/pdf_json/', 'custom_pmc': '/kaggle/input/CORD-19-research-challenge/custom_license/custom_license/pmc_json/'} json_dfs = [] for category, json_dir in json_dirs.items(): json_files = load_files(json_dir) json_df = generate_clean_df(json_files) json_df['category'] = category json_dfs.append(json_df) df_all = pd.concat(json_dfs) print(df_all.shape)
code
32062338/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
from copy import deepcopy from tqdm import tqdm import json import os import pandas as pd import pandas as pd import os import json from copy import deepcopy from tqdm import tqdm import pandas as pd def format_name(author): middle_name = ' '.join(author['middle']) if author['middle']: return ' '.join([author['first'], middle_name, author['last']]) else: return ' '.join([author['first'], author['last']]) def format_affiliation(affiliation): text = [] location = affiliation.get('location') if location: text.extend(list(affiliation['location'].values())) institution = affiliation.get('institution') if institution: text = [institution] + text return ', '.join(text) def format_authors(authors, with_affiliation=False): name_ls = [] for author in authors: name = format_name(author) if with_affiliation: affiliation = format_affiliation(author['affiliation']) if affiliation: name_ls.append(f'{name} ({affiliation})') else: name_ls.append(name) else: name_ls.append(name) return ', '.join(name_ls) def format_body(body_text): texts = [(di['section'], di['text']) for di in body_text] texts_di = {di['section']: '' for di in body_text} for section, text in texts: texts_di[section] += text body = '' for section, text in texts_di.items(): body += section body += '\n\n' body += text body += '\n\n' return body def format_bib(bibs): if type(bibs) == dict: bibs = list(bibs.values()) bibs = deepcopy(bibs) formatted = [] for bib in bibs: bib['authors'] = format_authors(bib['authors'], with_affiliation=False) formatted_ls = [str(bib[k]) for k in ['title', 'authors', 'venue', 'year']] formatted.append(', '.join(formatted_ls)) return '; '.join(formatted) def load_files(dirname): filenames = os.listdir(dirname) raw_files = [] for filename in tqdm(filenames): filename = dirname + filename file = json.load(open(filename, 'rb')) raw_files.append(file) return raw_files def generate_clean_df(all_files): cleaned_files = [] for file in tqdm(all_files): features = [file['paper_id'], file['metadata']['title'], format_authors(file['metadata']['authors']), format_authors(file['metadata']['authors'], with_affiliation=True), format_body(file['abstract']) if 'abstract' in file else '', format_body(file['body_text']), format_bib(file['bib_entries'])] cleaned_files.append(features) col_names = ['paper_id', 'title', 'authors', 'affiliations', 'abstract', 'text', 'bibliography'] clean_df = pd.DataFrame(cleaned_files, columns=col_names) return clean_df json_dirs = {'biorxiv_pdf': '/kaggle/input/CORD-19-research-challenge/biorxiv_medrxiv/biorxiv_medrxiv/pdf_json/', 'comm_pdf': '/kaggle/input/CORD-19-research-challenge/comm_use_subset/comm_use_subset/pdf_json/', 'comm_pmc': '/kaggle/input/CORD-19-research-challenge/comm_use_subset/comm_use_subset/pmc_json/', 'noncomm_pdf': '/kaggle/input/CORD-19-research-challenge/noncomm_use_subset/noncomm_use_subset/pdf_json/', 'noncomm_pmc': '/kaggle/input/CORD-19-research-challenge/noncomm_use_subset/noncomm_use_subset/pmc_json/', 'custom_pdf': '/kaggle/input/CORD-19-research-challenge/custom_license/custom_license/pdf_json/', 'custom_pmc': '/kaggle/input/CORD-19-research-challenge/custom_license/custom_license/pmc_json/'} json_dfs = [] for category, json_dir in json_dirs.items(): json_files = load_files(json_dir) json_df = generate_clean_df(json_files) json_df['category'] = category json_dfs.append(json_df) df_all = pd.concat(json_dfs) import pandas as pd df_metadata = pd.read_csv('/kaggle/input/CORD-19-research-challenge/metadata.csv') df_metadata.head()
code
32062338/cell_8
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
code
32062338/cell_3
[ "text_html_output_1.png" ]
from copy import deepcopy from tqdm import tqdm import json import os import pandas as pd import os import json from copy import deepcopy from tqdm import tqdm import pandas as pd def format_name(author): middle_name = ' '.join(author['middle']) if author['middle']: return ' '.join([author['first'], middle_name, author['last']]) else: return ' '.join([author['first'], author['last']]) def format_affiliation(affiliation): text = [] location = affiliation.get('location') if location: text.extend(list(affiliation['location'].values())) institution = affiliation.get('institution') if institution: text = [institution] + text return ', '.join(text) def format_authors(authors, with_affiliation=False): name_ls = [] for author in authors: name = format_name(author) if with_affiliation: affiliation = format_affiliation(author['affiliation']) if affiliation: name_ls.append(f'{name} ({affiliation})') else: name_ls.append(name) else: name_ls.append(name) return ', '.join(name_ls) def format_body(body_text): texts = [(di['section'], di['text']) for di in body_text] texts_di = {di['section']: '' for di in body_text} for section, text in texts: texts_di[section] += text body = '' for section, text in texts_di.items(): body += section body += '\n\n' body += text body += '\n\n' return body def format_bib(bibs): if type(bibs) == dict: bibs = list(bibs.values()) bibs = deepcopy(bibs) formatted = [] for bib in bibs: bib['authors'] = format_authors(bib['authors'], with_affiliation=False) formatted_ls = [str(bib[k]) for k in ['title', 'authors', 'venue', 'year']] formatted.append(', '.join(formatted_ls)) return '; '.join(formatted) def load_files(dirname): filenames = os.listdir(dirname) raw_files = [] for filename in tqdm(filenames): filename = dirname + filename file = json.load(open(filename, 'rb')) raw_files.append(file) return raw_files def generate_clean_df(all_files): cleaned_files = [] for file in tqdm(all_files): features = [file['paper_id'], file['metadata']['title'], format_authors(file['metadata']['authors']), format_authors(file['metadata']['authors'], with_affiliation=True), format_body(file['abstract']) if 'abstract' in file else '', format_body(file['body_text']), format_bib(file['bib_entries'])] cleaned_files.append(features) col_names = ['paper_id', 'title', 'authors', 'affiliations', 'abstract', 'text', 'bibliography'] clean_df = pd.DataFrame(cleaned_files, columns=col_names) return clean_df json_dirs = {'biorxiv_pdf': '/kaggle/input/CORD-19-research-challenge/biorxiv_medrxiv/biorxiv_medrxiv/pdf_json/', 'comm_pdf': '/kaggle/input/CORD-19-research-challenge/comm_use_subset/comm_use_subset/pdf_json/', 'comm_pmc': '/kaggle/input/CORD-19-research-challenge/comm_use_subset/comm_use_subset/pmc_json/', 'noncomm_pdf': '/kaggle/input/CORD-19-research-challenge/noncomm_use_subset/noncomm_use_subset/pdf_json/', 'noncomm_pmc': '/kaggle/input/CORD-19-research-challenge/noncomm_use_subset/noncomm_use_subset/pmc_json/', 'custom_pdf': '/kaggle/input/CORD-19-research-challenge/custom_license/custom_license/pdf_json/', 'custom_pmc': '/kaggle/input/CORD-19-research-challenge/custom_license/custom_license/pmc_json/'} json_dfs = [] for category, json_dir in json_dirs.items(): json_files = load_files(json_dir) json_df = generate_clean_df(json_files) json_df['category'] = category json_dfs.append(json_df)
code
32062338/cell_14
[ "text_plain_output_1.png" ]
from copy import deepcopy from datetime import datetime from tqdm import tqdm import json import matplotlib.dates as mdates import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import pandas as pd import os import json from copy import deepcopy from tqdm import tqdm import pandas as pd def format_name(author): middle_name = ' '.join(author['middle']) if author['middle']: return ' '.join([author['first'], middle_name, author['last']]) else: return ' '.join([author['first'], author['last']]) def format_affiliation(affiliation): text = [] location = affiliation.get('location') if location: text.extend(list(affiliation['location'].values())) institution = affiliation.get('institution') if institution: text = [institution] + text return ', '.join(text) def format_authors(authors, with_affiliation=False): name_ls = [] for author in authors: name = format_name(author) if with_affiliation: affiliation = format_affiliation(author['affiliation']) if affiliation: name_ls.append(f'{name} ({affiliation})') else: name_ls.append(name) else: name_ls.append(name) return ', '.join(name_ls) def format_body(body_text): texts = [(di['section'], di['text']) for di in body_text] texts_di = {di['section']: '' for di in body_text} for section, text in texts: texts_di[section] += text body = '' for section, text in texts_di.items(): body += section body += '\n\n' body += text body += '\n\n' return body def format_bib(bibs): if type(bibs) == dict: bibs = list(bibs.values()) bibs = deepcopy(bibs) formatted = [] for bib in bibs: bib['authors'] = format_authors(bib['authors'], with_affiliation=False) formatted_ls = [str(bib[k]) for k in ['title', 'authors', 'venue', 'year']] formatted.append(', '.join(formatted_ls)) return '; '.join(formatted) def load_files(dirname): filenames = os.listdir(dirname) raw_files = [] for filename in tqdm(filenames): filename = dirname + filename file = json.load(open(filename, 'rb')) raw_files.append(file) return raw_files def generate_clean_df(all_files): cleaned_files = [] for file in tqdm(all_files): features = [file['paper_id'], file['metadata']['title'], format_authors(file['metadata']['authors']), format_authors(file['metadata']['authors'], with_affiliation=True), format_body(file['abstract']) if 'abstract' in file else '', format_body(file['body_text']), format_bib(file['bib_entries'])] cleaned_files.append(features) col_names = ['paper_id', 'title', 'authors', 'affiliations', 'abstract', 'text', 'bibliography'] clean_df = pd.DataFrame(cleaned_files, columns=col_names) return clean_df json_dirs = {'biorxiv_pdf': '/kaggle/input/CORD-19-research-challenge/biorxiv_medrxiv/biorxiv_medrxiv/pdf_json/', 'comm_pdf': '/kaggle/input/CORD-19-research-challenge/comm_use_subset/comm_use_subset/pdf_json/', 'comm_pmc': '/kaggle/input/CORD-19-research-challenge/comm_use_subset/comm_use_subset/pmc_json/', 'noncomm_pdf': '/kaggle/input/CORD-19-research-challenge/noncomm_use_subset/noncomm_use_subset/pdf_json/', 'noncomm_pmc': '/kaggle/input/CORD-19-research-challenge/noncomm_use_subset/noncomm_use_subset/pmc_json/', 'custom_pdf': '/kaggle/input/CORD-19-research-challenge/custom_license/custom_license/pdf_json/', 'custom_pmc': '/kaggle/input/CORD-19-research-challenge/custom_license/custom_license/pmc_json/'} json_dfs = [] for category, json_dir in json_dirs.items(): json_files = load_files(json_dir) json_df = generate_clean_df(json_files) json_df['category'] = category json_dfs.append(json_df) df_all = pd.concat(json_dfs) import pandas as pd df_metadata = pd.read_csv('/kaggle/input/CORD-19-research-challenge/metadata.csv') df_example = df_metadata.iloc[:20] dates = [datetime.strptime(d, '%Y-%m-%d') for d in list(df_example['publish_time'])] names = df_example['cord_uid'] levels = np.tile([-5, 5, -3, 3, -1, 1], int(np.ceil(len(dates) / 6)))[:len(dates)] fig, ax = plt.subplots(figsize=(8.8, 4), constrained_layout=True) ax.set(title='Matplotlib release dates') markerline, stemline, baseline = ax.stem(dates, levels, linefmt='C3-', basefmt='k-', use_line_collection=True) plt.setp(markerline, mec='k', mfc='w', zorder=3) markerline.set_ydata(np.zeros(len(dates))) vert = np.array(['top', 'bottom'])[(levels > 0).astype(int)] for d, l, r, va in zip(dates, levels, names, vert): ax.annotate(r, xy=(d, l), xytext=(-3, np.sign(l) * 3), textcoords='offset points', va=va, ha='right') ax.get_xaxis().set_major_locator(mdates.MonthLocator(interval=3)) ax.get_xaxis().set_major_formatter(mdates.DateFormatter('%b %Y')) plt.setp(ax.get_xticklabels(), rotation=30, ha='right') ax.get_yaxis().set_visible(False) for spine in ['left', 'top', 'right']: ax.spines[spine].set_visible(False) ax.margins(y=0.1) plt.show()
code
32062338/cell_5
[ "text_html_output_1.png" ]
from copy import deepcopy from tqdm import tqdm import json import os import pandas as pd import os import json from copy import deepcopy from tqdm import tqdm import pandas as pd def format_name(author): middle_name = ' '.join(author['middle']) if author['middle']: return ' '.join([author['first'], middle_name, author['last']]) else: return ' '.join([author['first'], author['last']]) def format_affiliation(affiliation): text = [] location = affiliation.get('location') if location: text.extend(list(affiliation['location'].values())) institution = affiliation.get('institution') if institution: text = [institution] + text return ', '.join(text) def format_authors(authors, with_affiliation=False): name_ls = [] for author in authors: name = format_name(author) if with_affiliation: affiliation = format_affiliation(author['affiliation']) if affiliation: name_ls.append(f'{name} ({affiliation})') else: name_ls.append(name) else: name_ls.append(name) return ', '.join(name_ls) def format_body(body_text): texts = [(di['section'], di['text']) for di in body_text] texts_di = {di['section']: '' for di in body_text} for section, text in texts: texts_di[section] += text body = '' for section, text in texts_di.items(): body += section body += '\n\n' body += text body += '\n\n' return body def format_bib(bibs): if type(bibs) == dict: bibs = list(bibs.values()) bibs = deepcopy(bibs) formatted = [] for bib in bibs: bib['authors'] = format_authors(bib['authors'], with_affiliation=False) formatted_ls = [str(bib[k]) for k in ['title', 'authors', 'venue', 'year']] formatted.append(', '.join(formatted_ls)) return '; '.join(formatted) def load_files(dirname): filenames = os.listdir(dirname) raw_files = [] for filename in tqdm(filenames): filename = dirname + filename file = json.load(open(filename, 'rb')) raw_files.append(file) return raw_files def generate_clean_df(all_files): cleaned_files = [] for file in tqdm(all_files): features = [file['paper_id'], file['metadata']['title'], format_authors(file['metadata']['authors']), format_authors(file['metadata']['authors'], with_affiliation=True), format_body(file['abstract']) if 'abstract' in file else '', format_body(file['body_text']), format_bib(file['bib_entries'])] cleaned_files.append(features) col_names = ['paper_id', 'title', 'authors', 'affiliations', 'abstract', 'text', 'bibliography'] clean_df = pd.DataFrame(cleaned_files, columns=col_names) return clean_df json_dirs = {'biorxiv_pdf': '/kaggle/input/CORD-19-research-challenge/biorxiv_medrxiv/biorxiv_medrxiv/pdf_json/', 'comm_pdf': '/kaggle/input/CORD-19-research-challenge/comm_use_subset/comm_use_subset/pdf_json/', 'comm_pmc': '/kaggle/input/CORD-19-research-challenge/comm_use_subset/comm_use_subset/pmc_json/', 'noncomm_pdf': '/kaggle/input/CORD-19-research-challenge/noncomm_use_subset/noncomm_use_subset/pdf_json/', 'noncomm_pmc': '/kaggle/input/CORD-19-research-challenge/noncomm_use_subset/noncomm_use_subset/pmc_json/', 'custom_pdf': '/kaggle/input/CORD-19-research-challenge/custom_license/custom_license/pdf_json/', 'custom_pmc': '/kaggle/input/CORD-19-research-challenge/custom_license/custom_license/pmc_json/'} json_dfs = [] for category, json_dir in json_dirs.items(): json_files = load_files(json_dir) json_df = generate_clean_df(json_files) json_df['category'] = category json_dfs.append(json_df) df_all = pd.concat(json_dfs) df_all.head()
code
2009978/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/spam.csv', encoding='latin-1') df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True) df = df.rename(columns={'v1': 'class', 'v2': 'text'}) df.head()
code
2009978/cell_6
[ "text_plain_output_1.png" ]
from nltk.tokenize import WhitespaceTokenizer from subprocess import check_output import numpy as np # linear algebra import operator import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import tensorflow as tf from sklearn.model_selection import train_test_split from subprocess import check_output import operator import nltk df = pd.read_csv('../input/spam.csv', encoding='latin-1') df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True) df = df.rename(columns={'v1': 'class', 'v2': 'text'}) from nltk.tokenize import WhitespaceTokenizer tokeniser = WhitespaceTokenizer() def tokenize(sentence): return tokeniser.tokenize(sentence) num_top_words = 1000 all_words = {} def build_words(string_in): for w in tokenize(string_in): all_words[w] = all_words.get(w, 0) + 1 for x in df['text']: build_words(x) sorted_words = sorted(all_words.items(), key=operator.itemgetter(1), reverse=True) sorted_words = list(map(lambda x: x[0], sorted_words)) sorted_words = sorted_words[:num_top_words] words_by_emails = [] def count_words_per_email(text): row = np.zeros(len(sorted_words)) for word in tokenize(text): try: row[sorted_words.index(word)] = row[sorted_words.index(word)] + 1 except ValueError: pass return row X_rows = [] for _row in df['text']: X_rows.append(count_words_per_email(_row)) X_rows = np.array(X_rows) print(X_rows.shape)
code
2009978/cell_2
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/spam.csv', encoding='latin-1') df.head()
code
2009978/cell_1
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from subprocess import check_output import numpy as np # linear algebra import numpy as np import pandas as pd import tensorflow as tf from sklearn.model_selection import train_test_split from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) np.set_printoptions(threshold=np.inf) import operator import nltk
code
104116934/cell_21
[ "text_html_output_1.png" ]
from keras.layers import Dense, LSTM from keras.models import Sequential from sklearn.preprocessing import MinMaxScaler import math import numpy as np import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) submission = pd.read_csv('/kaggle/input/gdz22-datathon/submission.csv') df = pd.read_csv('/kaggle/input/gdz22-datathon/train.csv') trafo = pd.read_csv('/kaggle/input/gdz22-datathon/trafo.csv') bulutluluk_orani = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bulutluluk Oranı.csv') bagil_nem = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bağıl Nem.csv') radyasyon = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Radyasyon.csv') sicaklik = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Sıcaklık.csv') ruzgar_yonu = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Yönü.csv') yagis = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Yağış.csv') ruzgar_hizi = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Hızı.csv') df['BAŞLAMA_TARİHİ_VE_ZAMANI'] = pd.to_datetime(df['BAŞLAMA_TARİHİ_VE_ZAMANI']) df = df.sort_values(by='BAŞLAMA_TARİHİ_VE_ZAMANI') df df = pd.merge(df, trafo, on='ŞEBEKE_UNSURU_KODU', how='left') df.columns df.groupby(['trafo_id']).sum()['KESİNTİ_SÜRESİ'] df.groupby('trafo_id').sum()['KESİNTİ_SÜRESİ'].reset_index() a = df.groupby('trafo_id').sum()['KESİNTİ_SÜRESİ'].reset_index() a.columns = ['trafo_id', 'KESİNTİ_SÜRESİ_YENİ'] a df = pd.merge(df, a, on='trafo_id') dfa = df[['Tarih', 'KESİNTİ_SÜRESİ_YENİ']].sort_values(by='Tarih') dfa df_new = dfa.groupby('Tarih').sum() import math dataset = df_new.values training_data_len = math.ceil(len(dataset) * 0.8) training_data_len from sklearn.preprocessing import MinMaxScaler sc = MinMaxScaler(feature_range=(0, 1)) scaled_data = sc.fit_transform(dataset) train_data = scaled_data[0:training_data_len, :] x_train = [] y_train = [] num = 80 for i in range(num, len(train_data)): x_train.append(train_data[i - num:i, 0]) y_train.append(train_data[i, 0]) x_train, y_train = (np.array(x_train), np.array(y_train)) x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1)) x_train.shape model = Sequential() model.add(LSTM(50, return_sequences=True, input_shape=(x_train.shape[1], 1))) model.add(LSTM(50, return_sequences=False)) model.add(Dense(25)) model.add(Dense(1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(x_train, y_train, batch_size=1, epochs=10)
code
104116934/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) submission = pd.read_csv('/kaggle/input/gdz22-datathon/submission.csv') df = pd.read_csv('/kaggle/input/gdz22-datathon/train.csv') trafo = pd.read_csv('/kaggle/input/gdz22-datathon/trafo.csv') bulutluluk_orani = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bulutluluk Oranı.csv') bagil_nem = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bağıl Nem.csv') radyasyon = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Radyasyon.csv') sicaklik = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Sıcaklık.csv') ruzgar_yonu = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Yönü.csv') yagis = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Yağış.csv') ruzgar_hizi = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Hızı.csv') df['BAŞLAMA_TARİHİ_VE_ZAMANI'] = pd.to_datetime(df['BAŞLAMA_TARİHİ_VE_ZAMANI']) df = df.sort_values(by='BAŞLAMA_TARİHİ_VE_ZAMANI') df df = pd.merge(df, trafo, on='ŞEBEKE_UNSURU_KODU', how='left') df.columns df.groupby(['trafo_id']).sum()['KESİNTİ_SÜRESİ'] df.groupby('trafo_id').sum()['KESİNTİ_SÜRESİ'].reset_index()
code
104116934/cell_25
[ "text_html_output_1.png" ]
from keras.layers import Dense, LSTM from keras.models import Sequential from sklearn.preprocessing import MinMaxScaler import math import numpy as np import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) submission = pd.read_csv('/kaggle/input/gdz22-datathon/submission.csv') df = pd.read_csv('/kaggle/input/gdz22-datathon/train.csv') trafo = pd.read_csv('/kaggle/input/gdz22-datathon/trafo.csv') bulutluluk_orani = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bulutluluk Oranı.csv') bagil_nem = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bağıl Nem.csv') radyasyon = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Radyasyon.csv') sicaklik = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Sıcaklık.csv') ruzgar_yonu = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Yönü.csv') yagis = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Yağış.csv') ruzgar_hizi = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Hızı.csv') df['BAŞLAMA_TARİHİ_VE_ZAMANI'] = pd.to_datetime(df['BAŞLAMA_TARİHİ_VE_ZAMANI']) df = df.sort_values(by='BAŞLAMA_TARİHİ_VE_ZAMANI') df df = pd.merge(df, trafo, on='ŞEBEKE_UNSURU_KODU', how='left') df.columns df.groupby(['trafo_id']).sum()['KESİNTİ_SÜRESİ'] df.groupby('trafo_id').sum()['KESİNTİ_SÜRESİ'].reset_index() a = df.groupby('trafo_id').sum()['KESİNTİ_SÜRESİ'].reset_index() a.columns = ['trafo_id', 'KESİNTİ_SÜRESİ_YENİ'] a df = pd.merge(df, a, on='trafo_id') dfa = df[['Tarih', 'KESİNTİ_SÜRESİ_YENİ']].sort_values(by='Tarih') dfa df_new = dfa.groupby('Tarih').sum() import math dataset = df_new.values training_data_len = math.ceil(len(dataset) * 0.8) training_data_len from sklearn.preprocessing import MinMaxScaler sc = MinMaxScaler(feature_range=(0, 1)) scaled_data = sc.fit_transform(dataset) train_data = scaled_data[0:training_data_len, :] x_train = [] y_train = [] num = 80 for i in range(num, len(train_data)): x_train.append(train_data[i - num:i, 0]) y_train.append(train_data[i, 0]) x_train, y_train = (np.array(x_train), np.array(y_train)) x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1)) x_train.shape model = Sequential() model.add(LSTM(50, return_sequences=True, input_shape=(x_train.shape[1], 1))) model.add(LSTM(50, return_sequences=False)) model.add(Dense(25)) model.add(Dense(1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(x_train, y_train, batch_size=1, epochs=10) test_data = scaled_data[training_data_len - num:, :] x_test = [] y_test = dataset[training_data_len:, :] for i in range(num, len(test_data)): x_test.append(test_data[i - num:i, 0]) x_test = np.array(x_test) x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1)) predictions = model.predict(x_test) predictions = sc.inverse_transform(predictions) rmse = np.sqrt(np.mean(predictions - y_test) ** 2) rmse
code
104116934/cell_4
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) submission = pd.read_csv('/kaggle/input/gdz22-datathon/submission.csv') df = pd.read_csv('/kaggle/input/gdz22-datathon/train.csv') trafo = pd.read_csv('/kaggle/input/gdz22-datathon/trafo.csv') bulutluluk_orani = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bulutluluk Oranı.csv') bagil_nem = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bağıl Nem.csv') radyasyon = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Radyasyon.csv') sicaklik = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Sıcaklık.csv') ruzgar_yonu = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Yönü.csv') yagis = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Yağış.csv') ruzgar_hizi = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Hızı.csv') df = df.sort_values(by='BAŞLAMA_TARİHİ_VE_ZAMANI') df
code
104116934/cell_20
[ "text_html_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import math import numpy as np import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) submission = pd.read_csv('/kaggle/input/gdz22-datathon/submission.csv') df = pd.read_csv('/kaggle/input/gdz22-datathon/train.csv') trafo = pd.read_csv('/kaggle/input/gdz22-datathon/trafo.csv') bulutluluk_orani = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bulutluluk Oranı.csv') bagil_nem = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bağıl Nem.csv') radyasyon = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Radyasyon.csv') sicaklik = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Sıcaklık.csv') ruzgar_yonu = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Yönü.csv') yagis = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Yağış.csv') ruzgar_hizi = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Hızı.csv') df['BAŞLAMA_TARİHİ_VE_ZAMANI'] = pd.to_datetime(df['BAŞLAMA_TARİHİ_VE_ZAMANI']) df = df.sort_values(by='BAŞLAMA_TARİHİ_VE_ZAMANI') df df = pd.merge(df, trafo, on='ŞEBEKE_UNSURU_KODU', how='left') df.columns df.groupby(['trafo_id']).sum()['KESİNTİ_SÜRESİ'] df.groupby('trafo_id').sum()['KESİNTİ_SÜRESİ'].reset_index() a = df.groupby('trafo_id').sum()['KESİNTİ_SÜRESİ'].reset_index() a.columns = ['trafo_id', 'KESİNTİ_SÜRESİ_YENİ'] a df = pd.merge(df, a, on='trafo_id') dfa = df[['Tarih', 'KESİNTİ_SÜRESİ_YENİ']].sort_values(by='Tarih') dfa df_new = dfa.groupby('Tarih').sum() import math dataset = df_new.values training_data_len = math.ceil(len(dataset) * 0.8) training_data_len from sklearn.preprocessing import MinMaxScaler sc = MinMaxScaler(feature_range=(0, 1)) scaled_data = sc.fit_transform(dataset) train_data = scaled_data[0:training_data_len, :] x_train = [] y_train = [] num = 80 for i in range(num, len(train_data)): x_train.append(train_data[i - num:i, 0]) y_train.append(train_data[i, 0]) x_train, y_train = (np.array(x_train), np.array(y_train)) x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1)) x_train.shape
code
104116934/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) submission = pd.read_csv('/kaggle/input/gdz22-datathon/submission.csv') df = pd.read_csv('/kaggle/input/gdz22-datathon/train.csv') trafo = pd.read_csv('/kaggle/input/gdz22-datathon/trafo.csv') bulutluluk_orani = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bulutluluk Oranı.csv') bagil_nem = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bağıl Nem.csv') radyasyon = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Radyasyon.csv') sicaklik = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Sıcaklık.csv') ruzgar_yonu = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Yönü.csv') yagis = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Yağış.csv') ruzgar_hizi = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Hızı.csv') df['BAŞLAMA_TARİHİ_VE_ZAMANI'] = pd.to_datetime(df['BAŞLAMA_TARİHİ_VE_ZAMANI']) df = df.sort_values(by='BAŞLAMA_TARİHİ_VE_ZAMANI') df df = pd.merge(df, trafo, on='ŞEBEKE_UNSURU_KODU', how='left') df.columns
code
104116934/cell_26
[ "image_output_1.png" ]
from keras.layers import Dense, LSTM from keras.models import Sequential from sklearn.preprocessing import MinMaxScaler import math import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import warnings import warnings submission = pd.read_csv('/kaggle/input/gdz22-datathon/submission.csv') df = pd.read_csv('/kaggle/input/gdz22-datathon/train.csv') trafo = pd.read_csv('/kaggle/input/gdz22-datathon/trafo.csv') bulutluluk_orani = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bulutluluk Oranı.csv') bagil_nem = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bağıl Nem.csv') radyasyon = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Radyasyon.csv') sicaklik = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Sıcaklık.csv') ruzgar_yonu = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Yönü.csv') yagis = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Yağış.csv') ruzgar_hizi = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Hızı.csv') df['BAŞLAMA_TARİHİ_VE_ZAMANI'] = pd.to_datetime(df['BAŞLAMA_TARİHİ_VE_ZAMANI']) df = df.sort_values(by='BAŞLAMA_TARİHİ_VE_ZAMANI') df df = pd.merge(df, trafo, on='ŞEBEKE_UNSURU_KODU', how='left') df.columns df.groupby(['trafo_id']).sum()['KESİNTİ_SÜRESİ'] df.groupby('trafo_id').sum()['KESİNTİ_SÜRESİ'].reset_index() a = df.groupby('trafo_id').sum()['KESİNTİ_SÜRESİ'].reset_index() a.columns = ['trafo_id', 'KESİNTİ_SÜRESİ_YENİ'] a df = pd.merge(df, a, on='trafo_id') dfa = df[['Tarih', 'KESİNTİ_SÜRESİ_YENİ']].sort_values(by='Tarih') dfa df_new = dfa.groupby('Tarih').sum() import warnings warnings.filterwarnings('ignore') import numpy as np import pandas as pd import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') import os from decimal import ROUND_HALF_UP, Decimal import numpy as np import pandas as pd from lightgbm import LGBMRegressor from tqdm import tqdm import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') from keras.models import Sequential from keras.layers import Dense, LSTM import math dataset = df_new.values training_data_len = math.ceil(len(dataset) * 0.8) training_data_len from sklearn.preprocessing import MinMaxScaler sc = MinMaxScaler(feature_range=(0, 1)) scaled_data = sc.fit_transform(dataset) train_data = scaled_data[0:training_data_len, :] x_train = [] y_train = [] num = 80 for i in range(num, len(train_data)): x_train.append(train_data[i - num:i, 0]) y_train.append(train_data[i, 0]) x_train, y_train = (np.array(x_train), np.array(y_train)) x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1)) x_train.shape model = Sequential() model.add(LSTM(50, return_sequences=True, input_shape=(x_train.shape[1], 1))) model.add(LSTM(50, return_sequences=False)) model.add(Dense(25)) model.add(Dense(1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(x_train, y_train, batch_size=1, epochs=10) test_data = scaled_data[training_data_len - num:, :] x_test = [] y_test = dataset[training_data_len:, :] for i in range(num, len(test_data)): x_test.append(test_data[i - num:i, 0]) x_test = np.array(x_test) x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1)) predictions = model.predict(x_test) predictions = sc.inverse_transform(predictions) col = 'KESİNTİ_SÜRESİ_YENİ' train = df_new[:training_data_len] valid = df_new[training_data_len:] valid['Predictions'] = predictions plt.figure(figsize=(20, 8)) plt.title('Kesinti süresi') plt.xlabel('Date', fontsize=28) plt.ylabel(col, fontsize=28) plt.plot(train[col]) plt.plot(valid[[col, 'Predictions']]) plt.legend(['Train', 'Val', 'Predictions'])
code
104116934/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
104116934/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) submission = pd.read_csv('/kaggle/input/gdz22-datathon/submission.csv') df = pd.read_csv('/kaggle/input/gdz22-datathon/train.csv') trafo = pd.read_csv('/kaggle/input/gdz22-datathon/trafo.csv') bulutluluk_orani = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bulutluluk Oranı.csv') bagil_nem = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bağıl Nem.csv') radyasyon = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Radyasyon.csv') sicaklik = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Sıcaklık.csv') ruzgar_yonu = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Yönü.csv') yagis = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Yağış.csv') ruzgar_hizi = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Hızı.csv') df['BAŞLAMA_TARİHİ_VE_ZAMANI'] = pd.to_datetime(df['BAŞLAMA_TARİHİ_VE_ZAMANI']) df = df.sort_values(by='BAŞLAMA_TARİHİ_VE_ZAMANI') df df = pd.merge(df, trafo, on='ŞEBEKE_UNSURU_KODU', how='left') df.columns df.groupby(['trafo_id']).sum()['KESİNTİ_SÜRESİ']
code
104116934/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import warnings import warnings submission = pd.read_csv('/kaggle/input/gdz22-datathon/submission.csv') df = pd.read_csv('/kaggle/input/gdz22-datathon/train.csv') trafo = pd.read_csv('/kaggle/input/gdz22-datathon/trafo.csv') bulutluluk_orani = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bulutluluk Oranı.csv') bagil_nem = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bağıl Nem.csv') radyasyon = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Radyasyon.csv') sicaklik = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Sıcaklık.csv') ruzgar_yonu = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Yönü.csv') yagis = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Yağış.csv') ruzgar_hizi = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Hızı.csv') df['BAŞLAMA_TARİHİ_VE_ZAMANI'] = pd.to_datetime(df['BAŞLAMA_TARİHİ_VE_ZAMANI']) df = df.sort_values(by='BAŞLAMA_TARİHİ_VE_ZAMANI') df df = pd.merge(df, trafo, on='ŞEBEKE_UNSURU_KODU', how='left') df.columns df.groupby(['trafo_id']).sum()['KESİNTİ_SÜRESİ'] df.groupby('trafo_id').sum()['KESİNTİ_SÜRESİ'].reset_index() a = df.groupby('trafo_id').sum()['KESİNTİ_SÜRESİ'].reset_index() a.columns = ['trafo_id', 'KESİNTİ_SÜRESİ_YENİ'] a df = pd.merge(df, a, on='trafo_id') dfa = df[['Tarih', 'KESİNTİ_SÜRESİ_YENİ']].sort_values(by='Tarih') dfa df_new = dfa.groupby('Tarih').sum() import warnings warnings.filterwarnings('ignore') import numpy as np import pandas as pd import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') import os from decimal import ROUND_HALF_UP, Decimal import numpy as np import pandas as pd from lightgbm import LGBMRegressor from tqdm import tqdm import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') from keras.models import Sequential from keras.layers import Dense, LSTM plt.figure(figsize=(16, 8)) plt.title('KESİNTİ_SÜRESİ tarihe göre', fontsize=18) plt.plot(df_new['KESİNTİ_SÜRESİ_YENİ']) plt.xlabel('TARİH', fontsize=18) plt.ylabel('KESİNTİ_SÜRESİ') plt.show()
code
104116934/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) submission = pd.read_csv('/kaggle/input/gdz22-datathon/submission.csv') df = pd.read_csv('/kaggle/input/gdz22-datathon/train.csv') trafo = pd.read_csv('/kaggle/input/gdz22-datathon/trafo.csv') bulutluluk_orani = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bulutluluk Oranı.csv') bagil_nem = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bağıl Nem.csv') radyasyon = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Radyasyon.csv') sicaklik = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Sıcaklık.csv') ruzgar_yonu = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Yönü.csv') yagis = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Yağış.csv') ruzgar_hizi = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Hızı.csv') df['BAŞLAMA_TARİHİ_VE_ZAMANI'] = pd.to_datetime(df['BAŞLAMA_TARİHİ_VE_ZAMANI']) print(df['BAŞLAMA_TARİHİ_VE_ZAMANI'].min()) print(df['BAŞLAMA_TARİHİ_VE_ZAMANI'].max())
code
104116934/cell_17
[ "text_html_output_1.png" ]
import math import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) submission = pd.read_csv('/kaggle/input/gdz22-datathon/submission.csv') df = pd.read_csv('/kaggle/input/gdz22-datathon/train.csv') trafo = pd.read_csv('/kaggle/input/gdz22-datathon/trafo.csv') bulutluluk_orani = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bulutluluk Oranı.csv') bagil_nem = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bağıl Nem.csv') radyasyon = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Radyasyon.csv') sicaklik = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Sıcaklık.csv') ruzgar_yonu = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Yönü.csv') yagis = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Yağış.csv') ruzgar_hizi = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Hızı.csv') df['BAŞLAMA_TARİHİ_VE_ZAMANI'] = pd.to_datetime(df['BAŞLAMA_TARİHİ_VE_ZAMANI']) df = df.sort_values(by='BAŞLAMA_TARİHİ_VE_ZAMANI') df df = pd.merge(df, trafo, on='ŞEBEKE_UNSURU_KODU', how='left') df.columns df.groupby(['trafo_id']).sum()['KESİNTİ_SÜRESİ'] df.groupby('trafo_id').sum()['KESİNTİ_SÜRESİ'].reset_index() a = df.groupby('trafo_id').sum()['KESİNTİ_SÜRESİ'].reset_index() a.columns = ['trafo_id', 'KESİNTİ_SÜRESİ_YENİ'] a df = pd.merge(df, a, on='trafo_id') dfa = df[['Tarih', 'KESİNTİ_SÜRESİ_YENİ']].sort_values(by='Tarih') dfa df_new = dfa.groupby('Tarih').sum() import math dataset = df_new.values training_data_len = math.ceil(len(dataset) * 0.8) training_data_len
code
104116934/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) submission = pd.read_csv('/kaggle/input/gdz22-datathon/submission.csv') df = pd.read_csv('/kaggle/input/gdz22-datathon/train.csv') trafo = pd.read_csv('/kaggle/input/gdz22-datathon/trafo.csv') bulutluluk_orani = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bulutluluk Oranı.csv') bagil_nem = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bağıl Nem.csv') radyasyon = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Radyasyon.csv') sicaklik = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Sıcaklık.csv') ruzgar_yonu = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Yönü.csv') yagis = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Yağış.csv') ruzgar_hizi = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Hızı.csv') df['BAŞLAMA_TARİHİ_VE_ZAMANI'] = pd.to_datetime(df['BAŞLAMA_TARİHİ_VE_ZAMANI']) df = df.sort_values(by='BAŞLAMA_TARİHİ_VE_ZAMANI') df df = pd.merge(df, trafo, on='ŞEBEKE_UNSURU_KODU', how='left') df.columns df.groupby(['trafo_id']).sum()['KESİNTİ_SÜRESİ'] df.groupby('trafo_id').sum()['KESİNTİ_SÜRESİ'].reset_index() a = df.groupby('trafo_id').sum()['KESİNTİ_SÜRESİ'].reset_index() a.columns = ['trafo_id', 'KESİNTİ_SÜRESİ_YENİ'] a df = pd.merge(df, a, on='trafo_id') dfa = df[['Tarih', 'KESİNTİ_SÜRESİ_YENİ']].sort_values(by='Tarih') dfa df_new = dfa.groupby('Tarih').sum() df_new
code
104116934/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) submission = pd.read_csv('/kaggle/input/gdz22-datathon/submission.csv') df = pd.read_csv('/kaggle/input/gdz22-datathon/train.csv') trafo = pd.read_csv('/kaggle/input/gdz22-datathon/trafo.csv') bulutluluk_orani = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bulutluluk Oranı.csv') bagil_nem = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bağıl Nem.csv') radyasyon = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Radyasyon.csv') sicaklik = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Sıcaklık.csv') ruzgar_yonu = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Yönü.csv') yagis = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Yağış.csv') ruzgar_hizi = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Hızı.csv') df['BAŞLAMA_TARİHİ_VE_ZAMANI'] = pd.to_datetime(df['BAŞLAMA_TARİHİ_VE_ZAMANI']) df = df.sort_values(by='BAŞLAMA_TARİHİ_VE_ZAMANI') df df = pd.merge(df, trafo, on='ŞEBEKE_UNSURU_KODU', how='left') df.columns df.groupby(['trafo_id']).sum()['KESİNTİ_SÜRESİ'] df.groupby('trafo_id').sum()['KESİNTİ_SÜRESİ'].reset_index() a = df.groupby('trafo_id').sum()['KESİNTİ_SÜRESİ'].reset_index() a.columns = ['trafo_id', 'KESİNTİ_SÜRESİ_YENİ'] a
code
104116934/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) submission = pd.read_csv('/kaggle/input/gdz22-datathon/submission.csv') df = pd.read_csv('/kaggle/input/gdz22-datathon/train.csv') trafo = pd.read_csv('/kaggle/input/gdz22-datathon/trafo.csv') bulutluluk_orani = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bulutluluk Oranı.csv') bagil_nem = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Bağıl Nem.csv') radyasyon = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Radyasyon.csv') sicaklik = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Sıcaklık.csv') ruzgar_yonu = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Yönü.csv') yagis = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Yağış.csv') ruzgar_hizi = pd.read_csv('/kaggle/input/gdz22-datathon/Hava Durumu/Rüzgar Hızı.csv') df['BAŞLAMA_TARİHİ_VE_ZAMANI'] = pd.to_datetime(df['BAŞLAMA_TARİHİ_VE_ZAMANI']) df = df.sort_values(by='BAŞLAMA_TARİHİ_VE_ZAMANI') df df = pd.merge(df, trafo, on='ŞEBEKE_UNSURU_KODU', how='left') df.columns df.groupby(['trafo_id']).sum()['KESİNTİ_SÜRESİ'] df.groupby('trafo_id').sum()['KESİNTİ_SÜRESİ'].reset_index() a = df.groupby('trafo_id').sum()['KESİNTİ_SÜRESİ'].reset_index() a.columns = ['trafo_id', 'KESİNTİ_SÜRESİ_YENİ'] a df = pd.merge(df, a, on='trafo_id') dfa = df[['Tarih', 'KESİNTİ_SÜRESİ_YENİ']].sort_values(by='Tarih') dfa
code
122263700/cell_21
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns traindf = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') testdf = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data_cleaner = [traindf, testdf] sns.set_style('whitegrid') plt.axis('equal') # Categorical features categorical_feats=['HomePlanet', 'CryoSleep', 'Destination', 'VIP'] # Plot categorical features fig=plt.figure(figsize=(10,16)) for i, var_name in enumerate(categorical_feats): ax=fig.add_subplot(4,1,i+1) sns.countplot(data=traindf, x=var_name, axes=ax, hue='Transported') ax.set_title(var_name) fig.tight_layout() # Improves appearance a bit plt.show() traindf.shape traindf.columns traindf['Expenses_group'] = np.nan traindf.loc[traindf['totalExpenses'] == 0, 'Expenses_group'] = 'Expenses_0' traindf.loc[(traindf['totalExpenses'] > 0) & (traindf['totalExpenses'] <= 500), 'Expenses_group'] = 'Expenses_0-500' traindf.loc[(traindf['totalExpenses'] > 500) & (traindf['totalExpenses'] <= 1000), 'Expenses_group'] = 'Expenses_500-1000' traindf.loc[(traindf['totalExpenses'] > 1000) & (traindf['totalExpenses'] <= 5000), 'Expenses_group'] = 'Expenses_1000-5000' traindf.loc[(traindf['totalExpenses'] > 5000) & (traindf['totalExpenses'] <= 500000000000), 'Expenses_group'] = 'Expenses_5000+' testdf['Expenses_group'] = np.nan testdf.loc[testdf['totalExpenses'] == 0, 'Expenses_group'] = 'Expenses_0' testdf.loc[(testdf['totalExpenses'] > 0) & (testdf['totalExpenses'] <= 500), 'Expenses_group'] = 'Expenses_0-500' testdf.loc[(testdf['totalExpenses'] > 500) & (testdf['totalExpenses'] <= 1000), 'Expenses_group'] = 'Expenses_500-1000' testdf.loc[(testdf['totalExpenses'] > 1000) & (testdf['totalExpenses'] <= 5000), 'Expenses_group'] = 'Expenses_1000-5000' testdf.loc[(testdf['totalExpenses'] > 5000) & (testdf['totalExpenses'] <= 500000000000), 'Expenses_group'] = 'Expenses_5000+' plt.figure(figsize=(10, 4)) g = sns.countplot(data=traindf, x='Expenses_group', hue='Transported', order=['Expenses_0', 'Expenses_0-500', 'Expenses_500-1000', 'Expenses_1000-5000', 'Expenses_5000+']) plt.title('Distribuição por grupo de gastos') plt.show()
code
122263700/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns traindf = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') testdf = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data_cleaner = [traindf, testdf] sns.set_style('whitegrid') plt.axis('equal') plt.figure(figsize=(10, 4)) sns.histplot(data=traindf, x='Age', hue='Transported', binwidth=1, kde=True) plt.title('Distribuição idade') plt.xlabel('Idade (anos)') plt.show()
code
122263700/cell_25
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd traindf = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') testdf = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data_cleaner = [traindf, testdf] traindf.shape traindf.columns traindf['Expenses_group'] = np.nan traindf.loc[traindf['totalExpenses'] == 0, 'Expenses_group'] = 'Expenses_0' traindf.loc[(traindf['totalExpenses'] > 0) & (traindf['totalExpenses'] <= 500), 'Expenses_group'] = 'Expenses_0-500' traindf.loc[(traindf['totalExpenses'] > 500) & (traindf['totalExpenses'] <= 1000), 'Expenses_group'] = 'Expenses_500-1000' traindf.loc[(traindf['totalExpenses'] > 1000) & (traindf['totalExpenses'] <= 5000), 'Expenses_group'] = 'Expenses_1000-5000' traindf.loc[(traindf['totalExpenses'] > 5000) & (traindf['totalExpenses'] <= 500000000000), 'Expenses_group'] = 'Expenses_5000+' testdf['Expenses_group'] = np.nan testdf.loc[testdf['totalExpenses'] == 0, 'Expenses_group'] = 'Expenses_0' testdf.loc[(testdf['totalExpenses'] > 0) & (testdf['totalExpenses'] <= 500), 'Expenses_group'] = 'Expenses_0-500' testdf.loc[(testdf['totalExpenses'] > 500) & (testdf['totalExpenses'] <= 1000), 'Expenses_group'] = 'Expenses_500-1000' testdf.loc[(testdf['totalExpenses'] > 1000) & (testdf['totalExpenses'] <= 5000), 'Expenses_group'] = 'Expenses_1000-5000' testdf.loc[(testdf['totalExpenses'] > 5000) & (testdf['totalExpenses'] <= 500000000000), 'Expenses_group'] = 'Expenses_5000+' traindf['Age_group'] = np.nan traindf.loc[traindf['Age'] <= 12, 'Age_group'] = 'Age_0-12' traindf.loc[(traindf['Age'] > 12) & (traindf['Age'] < 18), 'Age_group'] = 'Age_13-17' traindf.loc[(traindf['Age'] >= 18) & (traindf['Age'] <= 25), 'Age_group'] = 'Age_18-25' traindf.loc[(traindf['Age'] > 25) & (traindf['Age'] <= 30), 'Age_group'] = 'Age_26-30' traindf.loc[(traindf['Age'] > 30) & (traindf['Age'] <= 50), 'Age_group'] = 'Age_31-50' traindf.loc[traindf['Age'] > 50, 'Age_group'] = 'Age_51+' testdf['Age_group'] = np.nan testdf.loc[testdf['Age'] <= 12, 'Age_group'] = 'Age_0-12' testdf.loc[(testdf['Age'] > 12) & (testdf['Age'] < 18), 'Age_group'] = 'Age_13-17' testdf.loc[(testdf['Age'] >= 18) & (testdf['Age'] <= 25), 'Age_group'] = 'Age_18-25' testdf.loc[(testdf['Age'] > 25) & (testdf['Age'] <= 30), 'Age_group'] = 'Age_26-30' testdf.loc[(testdf['Age'] > 30) & (testdf['Age'] <= 50), 'Age_group'] = 'Age_31-50' testdf.loc[testdf['Age'] > 50, 'Age_group'] = 'Age_51+' traindf['Age_group'].value_counts()
code
122263700/cell_20
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd traindf = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') testdf = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data_cleaner = [traindf, testdf] traindf.shape traindf.columns traindf['Expenses_group'] = np.nan traindf.loc[traindf['totalExpenses'] == 0, 'Expenses_group'] = 'Expenses_0' traindf.loc[(traindf['totalExpenses'] > 0) & (traindf['totalExpenses'] <= 500), 'Expenses_group'] = 'Expenses_0-500' traindf.loc[(traindf['totalExpenses'] > 500) & (traindf['totalExpenses'] <= 1000), 'Expenses_group'] = 'Expenses_500-1000' traindf.loc[(traindf['totalExpenses'] > 1000) & (traindf['totalExpenses'] <= 5000), 'Expenses_group'] = 'Expenses_1000-5000' traindf.loc[(traindf['totalExpenses'] > 5000) & (traindf['totalExpenses'] <= 500000000000), 'Expenses_group'] = 'Expenses_5000+' testdf['Expenses_group'] = np.nan testdf.loc[testdf['totalExpenses'] == 0, 'Expenses_group'] = 'Expenses_0' testdf.loc[(testdf['totalExpenses'] > 0) & (testdf['totalExpenses'] <= 500), 'Expenses_group'] = 'Expenses_0-500' testdf.loc[(testdf['totalExpenses'] > 500) & (testdf['totalExpenses'] <= 1000), 'Expenses_group'] = 'Expenses_500-1000' testdf.loc[(testdf['totalExpenses'] > 1000) & (testdf['totalExpenses'] <= 5000), 'Expenses_group'] = 'Expenses_1000-5000' testdf.loc[(testdf['totalExpenses'] > 5000) & (testdf['totalExpenses'] <= 500000000000), 'Expenses_group'] = 'Expenses_5000+' traindf['Expenses_group'].value_counts()
code
122263700/cell_6
[ "text_html_output_1.png" ]
import pandas as pd traindf = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') testdf = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data_cleaner = [traindf, testdf] testdf.head()
code
122263700/cell_26
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd traindf = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') testdf = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data_cleaner = [traindf, testdf] traindf.shape traindf.columns traindf['Expenses_group'] = np.nan traindf.loc[traindf['totalExpenses'] == 0, 'Expenses_group'] = 'Expenses_0' traindf.loc[(traindf['totalExpenses'] > 0) & (traindf['totalExpenses'] <= 500), 'Expenses_group'] = 'Expenses_0-500' traindf.loc[(traindf['totalExpenses'] > 500) & (traindf['totalExpenses'] <= 1000), 'Expenses_group'] = 'Expenses_500-1000' traindf.loc[(traindf['totalExpenses'] > 1000) & (traindf['totalExpenses'] <= 5000), 'Expenses_group'] = 'Expenses_1000-5000' traindf.loc[(traindf['totalExpenses'] > 5000) & (traindf['totalExpenses'] <= 500000000000), 'Expenses_group'] = 'Expenses_5000+' testdf['Expenses_group'] = np.nan testdf.loc[testdf['totalExpenses'] == 0, 'Expenses_group'] = 'Expenses_0' testdf.loc[(testdf['totalExpenses'] > 0) & (testdf['totalExpenses'] <= 500), 'Expenses_group'] = 'Expenses_0-500' testdf.loc[(testdf['totalExpenses'] > 500) & (testdf['totalExpenses'] <= 1000), 'Expenses_group'] = 'Expenses_500-1000' testdf.loc[(testdf['totalExpenses'] > 1000) & (testdf['totalExpenses'] <= 5000), 'Expenses_group'] = 'Expenses_1000-5000' testdf.loc[(testdf['totalExpenses'] > 5000) & (testdf['totalExpenses'] <= 500000000000), 'Expenses_group'] = 'Expenses_5000+' traindf['Age_group'] = np.nan traindf.loc[traindf['Age'] <= 12, 'Age_group'] = 'Age_0-12' traindf.loc[(traindf['Age'] > 12) & (traindf['Age'] < 18), 'Age_group'] = 'Age_13-17' traindf.loc[(traindf['Age'] >= 18) & (traindf['Age'] <= 25), 'Age_group'] = 'Age_18-25' traindf.loc[(traindf['Age'] > 25) & (traindf['Age'] <= 30), 'Age_group'] = 'Age_26-30' traindf.loc[(traindf['Age'] > 30) & (traindf['Age'] <= 50), 'Age_group'] = 'Age_31-50' traindf.loc[traindf['Age'] > 50, 'Age_group'] = 'Age_51+' testdf['Age_group'] = np.nan testdf.loc[testdf['Age'] <= 12, 'Age_group'] = 'Age_0-12' testdf.loc[(testdf['Age'] > 12) & (testdf['Age'] < 18), 'Age_group'] = 'Age_13-17' testdf.loc[(testdf['Age'] >= 18) & (testdf['Age'] <= 25), 'Age_group'] = 'Age_18-25' testdf.loc[(testdf['Age'] > 25) & (testdf['Age'] <= 30), 'Age_group'] = 'Age_26-30' testdf.loc[(testdf['Age'] > 30) & (testdf['Age'] <= 50), 'Age_group'] = 'Age_31-50' testdf.loc[testdf['Age'] > 50, 'Age_group'] = 'Age_51+' traindf[['Age_group', 'Transported']].groupby(['Age_group'], as_index=False).mean().sort_values(by='Age_group', ascending=True)
code
122263700/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns traindf = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') testdf = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data_cleaner = [traindf, testdf] sns.set_style('whitegrid') plt.axis('equal') categorical_feats = ['HomePlanet', 'CryoSleep', 'Destination', 'VIP'] fig = plt.figure(figsize=(10, 16)) for i, var_name in enumerate(categorical_feats): ax = fig.add_subplot(4, 1, i + 1) sns.countplot(data=traindf, x=var_name, axes=ax, hue='Transported') ax.set_title(var_name) fig.tight_layout() plt.show()
code
122263700/cell_19
[ "image_output_1.png" ]
import numpy as np import pandas as pd traindf = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') testdf = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data_cleaner = [traindf, testdf] traindf.shape traindf.columns traindf['Expenses_group'] = np.nan traindf.loc[traindf['totalExpenses'] == 0, 'Expenses_group'] = 'Expenses_0' traindf.loc[(traindf['totalExpenses'] > 0) & (traindf['totalExpenses'] <= 500), 'Expenses_group'] = 'Expenses_0-500' traindf.loc[(traindf['totalExpenses'] > 500) & (traindf['totalExpenses'] <= 1000), 'Expenses_group'] = 'Expenses_500-1000' traindf.loc[(traindf['totalExpenses'] > 1000) & (traindf['totalExpenses'] <= 5000), 'Expenses_group'] = 'Expenses_1000-5000' traindf.loc[(traindf['totalExpenses'] > 5000) & (traindf['totalExpenses'] <= 500000000000), 'Expenses_group'] = 'Expenses_5000+' testdf['Expenses_group'] = np.nan testdf.loc[testdf['totalExpenses'] == 0, 'Expenses_group'] = 'Expenses_0' testdf.loc[(testdf['totalExpenses'] > 0) & (testdf['totalExpenses'] <= 500), 'Expenses_group'] = 'Expenses_0-500' testdf.loc[(testdf['totalExpenses'] > 500) & (testdf['totalExpenses'] <= 1000), 'Expenses_group'] = 'Expenses_500-1000' testdf.loc[(testdf['totalExpenses'] > 1000) & (testdf['totalExpenses'] <= 5000), 'Expenses_group'] = 'Expenses_1000-5000' testdf.loc[(testdf['totalExpenses'] > 5000) & (testdf['totalExpenses'] <= 500000000000), 'Expenses_group'] = 'Expenses_5000+' traindf['totalExpenses'].describe()
code
122263700/cell_18
[ "image_output_1.png" ]
import numpy as np import pandas as pd traindf = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') testdf = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data_cleaner = [traindf, testdf] traindf.shape traindf.columns traindf['Expenses_group'] = np.nan traindf.loc[traindf['totalExpenses'] == 0, 'Expenses_group'] = 'Expenses_0' traindf.loc[(traindf['totalExpenses'] > 0) & (traindf['totalExpenses'] <= 500), 'Expenses_group'] = 'Expenses_0-500' traindf.loc[(traindf['totalExpenses'] > 500) & (traindf['totalExpenses'] <= 1000), 'Expenses_group'] = 'Expenses_500-1000' traindf.loc[(traindf['totalExpenses'] > 1000) & (traindf['totalExpenses'] <= 5000), 'Expenses_group'] = 'Expenses_1000-5000' traindf.loc[(traindf['totalExpenses'] > 5000) & (traindf['totalExpenses'] <= 500000000000), 'Expenses_group'] = 'Expenses_5000+' testdf['Expenses_group'] = np.nan testdf.loc[testdf['totalExpenses'] == 0, 'Expenses_group'] = 'Expenses_0' testdf.loc[(testdf['totalExpenses'] > 0) & (testdf['totalExpenses'] <= 500), 'Expenses_group'] = 'Expenses_0-500' testdf.loc[(testdf['totalExpenses'] > 500) & (testdf['totalExpenses'] <= 1000), 'Expenses_group'] = 'Expenses_500-1000' testdf.loc[(testdf['totalExpenses'] > 1000) & (testdf['totalExpenses'] <= 5000), 'Expenses_group'] = 'Expenses_1000-5000' testdf.loc[(testdf['totalExpenses'] > 5000) & (testdf['totalExpenses'] <= 500000000000), 'Expenses_group'] = 'Expenses_5000+' print(traindf.loc[traindf.totalExpenses > 0, 'totalExpenses'].count(), traindf.loc[traindf.totalExpenses == 0, 'totalExpenses'].count())
code
122263700/cell_8
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns traindf = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') testdf = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data_cleaner = [traindf, testdf] plt.figure(figsize=(6, 6)) sns.set_style('whitegrid') plt.pie(traindf['Transported'].value_counts(), autopct='%1.1f%%', startangle=90) plt.axis('equal') plt.title('Transportado x Não transportado') plt.show()
code
122263700/cell_15
[ "image_output_1.png" ]
import pandas as pd traindf = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') testdf = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data_cleaner = [traindf, testdf] traindf.shape traindf.columns
code
122263700/cell_31
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns traindf = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') testdf = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data_cleaner = [traindf, testdf] sns.set_style('whitegrid') plt.axis('equal') # Categorical features categorical_feats=['HomePlanet', 'CryoSleep', 'Destination', 'VIP'] # Plot categorical features fig=plt.figure(figsize=(10,16)) for i, var_name in enumerate(categorical_feats): ax=fig.add_subplot(4,1,i+1) sns.countplot(data=traindf, x=var_name, axes=ax, hue='Transported') ax.set_title(var_name) fig.tight_layout() # Improves appearance a bit plt.show() traindf.shape traindf.columns traindf['Expenses_group'] = np.nan traindf.loc[traindf['totalExpenses'] == 0, 'Expenses_group'] = 'Expenses_0' traindf.loc[(traindf['totalExpenses'] > 0) & (traindf['totalExpenses'] <= 500), 'Expenses_group'] = 'Expenses_0-500' traindf.loc[(traindf['totalExpenses'] > 500) & (traindf['totalExpenses'] <= 1000), 'Expenses_group'] = 'Expenses_500-1000' traindf.loc[(traindf['totalExpenses'] > 1000) & (traindf['totalExpenses'] <= 5000), 'Expenses_group'] = 'Expenses_1000-5000' traindf.loc[(traindf['totalExpenses'] > 5000) & (traindf['totalExpenses'] <= 500000000000), 'Expenses_group'] = 'Expenses_5000+' testdf['Expenses_group'] = np.nan testdf.loc[testdf['totalExpenses'] == 0, 'Expenses_group'] = 'Expenses_0' testdf.loc[(testdf['totalExpenses'] > 0) & (testdf['totalExpenses'] <= 500), 'Expenses_group'] = 'Expenses_0-500' testdf.loc[(testdf['totalExpenses'] > 500) & (testdf['totalExpenses'] <= 1000), 'Expenses_group'] = 'Expenses_500-1000' testdf.loc[(testdf['totalExpenses'] > 1000) & (testdf['totalExpenses'] <= 5000), 'Expenses_group'] = 'Expenses_1000-5000' testdf.loc[(testdf['totalExpenses'] > 5000) & (testdf['totalExpenses'] <= 500000000000), 'Expenses_group'] = 'Expenses_5000+' plt.figure(figsize=(10,4)) g = sns.countplot(data=traindf, x='Expenses_group', hue='Transported', order=['Expenses_0','Expenses_0-500','Expenses_500-1000','Expenses_1000-5000','Expenses_5000+']) plt.title('Distribuição por grupo de gastos') plt.show() traindf['Age_group'] = np.nan traindf.loc[traindf['Age'] <= 12, 'Age_group'] = 'Age_0-12' traindf.loc[(traindf['Age'] > 12) & (traindf['Age'] < 18), 'Age_group'] = 'Age_13-17' traindf.loc[(traindf['Age'] >= 18) & (traindf['Age'] <= 25), 'Age_group'] = 'Age_18-25' traindf.loc[(traindf['Age'] > 25) & (traindf['Age'] <= 30), 'Age_group'] = 'Age_26-30' traindf.loc[(traindf['Age'] > 30) & (traindf['Age'] <= 50), 'Age_group'] = 'Age_31-50' traindf.loc[traindf['Age'] > 50, 'Age_group'] = 'Age_51+' testdf['Age_group'] = np.nan testdf.loc[testdf['Age'] <= 12, 'Age_group'] = 'Age_0-12' testdf.loc[(testdf['Age'] > 12) & (testdf['Age'] < 18), 'Age_group'] = 'Age_13-17' testdf.loc[(testdf['Age'] >= 18) & (testdf['Age'] <= 25), 'Age_group'] = 'Age_18-25' testdf.loc[(testdf['Age'] > 25) & (testdf['Age'] <= 30), 'Age_group'] = 'Age_26-30' testdf.loc[(testdf['Age'] > 30) & (testdf['Age'] <= 50), 'Age_group'] = 'Age_31-50' testdf.loc[testdf['Age'] > 50, 'Age_group'] = 'Age_51+' # Plot distribution of new features plt.figure(figsize=(10,4)) g = sns.countplot(data=traindf, x='Age_group', hue='Transported', order=['Age_0-12','Age_13-17','Age_18-25','Age_26-30','Age_31-50']) plt.title('Age group distribution') plt.show() plt.figure(figsize=(10, 4)) g = sns.countplot(data=traindf, x='GroupsSize', hue='Transported') plt.title('Distribuição por grupo') plt.show()
code
122263700/cell_24
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns traindf = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') testdf = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data_cleaner = [traindf, testdf] sns.set_style('whitegrid') plt.axis('equal') # Categorical features categorical_feats=['HomePlanet', 'CryoSleep', 'Destination', 'VIP'] # Plot categorical features fig=plt.figure(figsize=(10,16)) for i, var_name in enumerate(categorical_feats): ax=fig.add_subplot(4,1,i+1) sns.countplot(data=traindf, x=var_name, axes=ax, hue='Transported') ax.set_title(var_name) fig.tight_layout() # Improves appearance a bit plt.show() traindf.shape traindf.columns traindf['Expenses_group'] = np.nan traindf.loc[traindf['totalExpenses'] == 0, 'Expenses_group'] = 'Expenses_0' traindf.loc[(traindf['totalExpenses'] > 0) & (traindf['totalExpenses'] <= 500), 'Expenses_group'] = 'Expenses_0-500' traindf.loc[(traindf['totalExpenses'] > 500) & (traindf['totalExpenses'] <= 1000), 'Expenses_group'] = 'Expenses_500-1000' traindf.loc[(traindf['totalExpenses'] > 1000) & (traindf['totalExpenses'] <= 5000), 'Expenses_group'] = 'Expenses_1000-5000' traindf.loc[(traindf['totalExpenses'] > 5000) & (traindf['totalExpenses'] <= 500000000000), 'Expenses_group'] = 'Expenses_5000+' testdf['Expenses_group'] = np.nan testdf.loc[testdf['totalExpenses'] == 0, 'Expenses_group'] = 'Expenses_0' testdf.loc[(testdf['totalExpenses'] > 0) & (testdf['totalExpenses'] <= 500), 'Expenses_group'] = 'Expenses_0-500' testdf.loc[(testdf['totalExpenses'] > 500) & (testdf['totalExpenses'] <= 1000), 'Expenses_group'] = 'Expenses_500-1000' testdf.loc[(testdf['totalExpenses'] > 1000) & (testdf['totalExpenses'] <= 5000), 'Expenses_group'] = 'Expenses_1000-5000' testdf.loc[(testdf['totalExpenses'] > 5000) & (testdf['totalExpenses'] <= 500000000000), 'Expenses_group'] = 'Expenses_5000+' plt.figure(figsize=(10,4)) g = sns.countplot(data=traindf, x='Expenses_group', hue='Transported', order=['Expenses_0','Expenses_0-500','Expenses_500-1000','Expenses_1000-5000','Expenses_5000+']) plt.title('Distribuição por grupo de gastos') plt.show() traindf['Age_group'] = np.nan traindf.loc[traindf['Age'] <= 12, 'Age_group'] = 'Age_0-12' traindf.loc[(traindf['Age'] > 12) & (traindf['Age'] < 18), 'Age_group'] = 'Age_13-17' traindf.loc[(traindf['Age'] >= 18) & (traindf['Age'] <= 25), 'Age_group'] = 'Age_18-25' traindf.loc[(traindf['Age'] > 25) & (traindf['Age'] <= 30), 'Age_group'] = 'Age_26-30' traindf.loc[(traindf['Age'] > 30) & (traindf['Age'] <= 50), 'Age_group'] = 'Age_31-50' traindf.loc[traindf['Age'] > 50, 'Age_group'] = 'Age_51+' testdf['Age_group'] = np.nan testdf.loc[testdf['Age'] <= 12, 'Age_group'] = 'Age_0-12' testdf.loc[(testdf['Age'] > 12) & (testdf['Age'] < 18), 'Age_group'] = 'Age_13-17' testdf.loc[(testdf['Age'] >= 18) & (testdf['Age'] <= 25), 'Age_group'] = 'Age_18-25' testdf.loc[(testdf['Age'] > 25) & (testdf['Age'] <= 30), 'Age_group'] = 'Age_26-30' testdf.loc[(testdf['Age'] > 30) & (testdf['Age'] <= 50), 'Age_group'] = 'Age_31-50' testdf.loc[testdf['Age'] > 50, 'Age_group'] = 'Age_51+' plt.figure(figsize=(10, 4)) g = sns.countplot(data=traindf, x='Age_group', hue='Transported', order=['Age_0-12', 'Age_13-17', 'Age_18-25', 'Age_26-30', 'Age_31-50']) plt.title('Age group distribution') plt.show()
code
122263700/cell_14
[ "text_html_output_1.png" ]
import pandas as pd traindf = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') testdf = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data_cleaner = [traindf, testdf] traindf.shape
code
122263700/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd traindf = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv') testdf = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv') data_cleaner = [traindf, testdf] traindf.head()
code
122262215/cell_42
[ "application_vnd.jupyter.stderr_output_1.png" ]
from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB import pandas as pd import pandas as pd import re import re email = 'We are goind USA to meet on saturday or sunday on 09:30 PM or 10:00 am ok on january good ? in Cairo or Giza ?' email = email.lower() re.findall('saturday|sunday|monday|wednesday', email) re.findall('january|february', email) re.findall('\\d{1,2}:\\d{1,2} a?p?m', email) df = pd.DataFrame(columns=['text', 'label']) old_dataset = pd.read_csv('./events.csv') import re import numpy as np import pandas as pd import matplotlib.pyplot as plt from wordcloud import WordCloud from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from sklearn.feature_extraction.text import CountVectorizer wnl = WordNetLemmatizer() engstopwords = stopwords.words('english') def lemmatize_all_types(word): word = wnl.lemmatize(word, 'a') word = wnl.lemmatize(word, 'v') word = wnl.lemmatize(word, 'n') return word def clean(text): text = re.sub('https?://\\w+\\.\\w+\\.\\w+', '', text).lower() text = re.sub('[^a-zA-Z ]', '', text) text = list(map(lemmatize_all_types, text.split())) text = [word for word in text if word not in engstopwords] text = ' '.join(text) return text df = pd.read_csv('../input/emails-events/emails_events.csv') tfidf = TfidfVectorizer(max_features=10000) dtm = tfidf.fit_transform(X).toarray() words = tfidf.get_feature_names() X_dtm = pd.DataFrame(columns=words, data=dtm) model = MultinomialNB() model.fit(X_train, y_train) model.score(X_test, y_test) text = 'can we have meeting on the next week please on morning' text = clean(text) enc = tfidf.transform([text]) model.predict(enc)
code
122262215/cell_21
[ "text_plain_output_1.png" ]
from bs4 import BeautifulSoup import pandas as pd import requests ps = soup.find_all('p', {'class': 'sentence-item__text'}) df = pd.DataFrame(columns=['text', 'label']) days = 'Monday Tuesday Wednesday Thursday Friday Saturday Sunday'.lower().split() days days = 'Monday Tuesday Wednesday Thursday Friday Saturday Sunday'.lower().split() for day in days: page = requests.get('https://sentence.yourdictionary.com/saturday') soup = BeautifulSoup(page.content, 'html.parser') ps = soup.find_all('p', {'class': 'sentence-item__text'}) for p in ps: df = df.append({'text': p.text, 'label': 1}, ignore_index=True) days = 'Monday Tuesday Wednesday Thursday Friday Saturday Sunday'.lower().split() for day in days: page = requests.get('https://sentence.yourdictionary.com/' + day) soup = BeautifulSoup(page.content, 'html.parser') ps = soup.find_all('p', {'class': 'sentence-item__text'}) for p in ps: df = df.append({'text': p.text, 'label': 1}, ignore_index=True) old_dataset.columns = ['text', 'label'] old_dataset.to_csv('good_dataset.csv', index=False) months = 'January February March April May June July August September October November December'.lower().split() for month in months: page = requests.get('https://sentence.yourdictionary.com/' + month) soup = BeautifulSoup(page.content, 'html.parser') ps = soup.find_all('p', {'class': 'sentence-item__text'}) for p in ps: df = df.append({'text': p.text, 'label': 1}, ignore_index=True) for item in ['again']: page = requests.get('https://sentence.yourdictionary.com/' + item) soup = BeautifulSoup(page.content, 'html.parser') ps = soup.find_all('p', {'class': 'sentence-item__text'}) for p in ps: old_dataset = old_dataset.append({'text': p.text, 'label': 0}, ignore_index=True) old_dataset.shape
code
122262215/cell_13
[ "text_plain_output_1.png" ]
days = 'Monday Tuesday Wednesday Thursday Friday Saturday Sunday'.lower().split() days
code
122262215/cell_25
[ "text_plain_output_1.png" ]
import nltk import nltk nltk.download('omw-1.4')
code
122262215/cell_6
[ "text_plain_output_1.png" ]
import re email = 'We are goind USA to meet on saturday or sunday on 09:30 PM or 10:00 am ok on january good ? in Cairo or Giza ?' email = email.lower() re.findall('saturday|sunday|monday|wednesday', email)
code
122262215/cell_40
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.naive_bayes import MultinomialNB model = MultinomialNB() model.fit(X_train, y_train)
code