path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
17111876/cell_26
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt plt.imshow(train_x[10][:, :, 0])
code
17111876/cell_41
[ "image_output_1.png" ]
from sklearn.metrics import confusion_matrix from tensorflow import keras import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import tensorflow as tf train_imgs = pd.read_csv('../input/train.csv') test_imgs = pd.read_csv('../input/test.csv') label_train = train_imgs['label'] label_train = keras.utils.to_categorical(label_train, num_classes=10) def CNN(n_conv): """ Build a Convolutional neural network for n_conv number of convolutional layers. n_conv: Integer. """ model = keras.Sequential() for _ in range(n_conv): model.add(keras.layers.Conv2D(64, kernel_size=2, activation=tf.nn.relu, input_shape=(28, 28, 1))) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(keras.layers.Dropout(0.2)) model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(256, kernel_regularizer=keras.regularizers.l2(0.001), activation=tf.nn.relu)) model.add(keras.layers.Dense(10, activation=tf.nn.softmax)) return model model = CNN(n_conv=3) model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.categorical_crossentropy, metrics=['accuracy']) visible = keras.layers.Input(shape=(28, 28, 1)) conv1 = keras.layers.Conv2D(32, kernel_size=4, activation='relu')(visible) pool1 = keras.layers.MaxPooling2D(pool_size=(2, 2))(conv1) flat1 = keras.layers.Flatten()(pool1) conv2 = keras.layers.Conv2D(32, kernel_size=4, activation='relu')(visible) pool2 = keras.layers.MaxPooling2D(pool_size=(2, 2))(conv2) flat2 = keras.layers.Flatten()(pool2) merge = keras.layers.concatenate([flat1, flat2]) hidden1 = keras.layers.Dense(256, activation='relu')(merge) drop = keras.layers.Dropout(0.5)(hidden1) output = keras.layers.Dense(10, activation='softmax')(drop) model = keras.Model(inputs=visible, outputs=output) model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.categorical_crossentropy, metrics=['accuracy']) earlystop = keras.callbacks.EarlyStopping(monitor='val_acc', min_delta=0.001, patience=7, mode='min') reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='val_acc', factor=0.2, patience=5, min_lr=0.001) history = model.fit(train_x, train_y, epochs=20, batch_size=200, validation_data=(test_x, test_y), verbose=1, callbacks=[reduce_lr]) #accuracy train_accuracy = history.history['acc'] validation_accuracy = history.history['val_acc'] #loss train_loss = history.history['loss'] validation_loss = history.history['val_loss'] #Epochs epoch_range = range(1,len(train_accuracy)+1) #Plot fig, ax = plt.subplots(1, 2, figsize=(12,5)) ax[0].set_title('Accuracy per Epoch') sns.lineplot(x=epoch_range,y=train_accuracy,marker='o',ax=ax[0]) sns.lineplot(x=epoch_range,y=validation_accuracy,marker='o',ax=ax[0]) ax[0].legend(['training','validation']) ax[0].set_xlabel('Epoch') ax[0].set_ylabel('Accuracy') ax[1].set_title('Loss per Epoch') sns.lineplot(x=epoch_range,y=train_loss,marker='o',ax=ax[1]) sns.lineplot(x=epoch_range,y=validation_loss,marker='o',ax=ax[1]) ax[1].legend(['training','validation']) ax[1].set_xlabel('Epoch') ax[1].set_ylabel('Loss') plt.show() from sklearn.utils.multiclass import unique_labels def plot_confusion_matrix(y_true, y_pred, classes, normalize=False, title=None, cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if not title: if normalize: title = 'Normalized confusion matrix' else: title = 'Confusion matrix, without normalization' # Compute confusion matrix cm = confusion_matrix(y_true, y_pred) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] fig, ax = plt.subplots() im = ax.imshow(cm, interpolation='nearest', cmap=cmap) ax.figure.colorbar(im, ax=ax) # We want to show all ticks... ax.set(xticks=np.arange(cm.shape[1]), yticks=np.arange(cm.shape[0]), # ... and label them with the respective list entries xticklabels=classes, yticklabels=classes, title=title, ylabel='True label', xlabel='Predicted label') # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") # Loop over data dimensions and create text annotations. fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i in range(cm.shape[0]): for j in range(cm.shape[1]): ax.text(j, i, format(cm[i, j], fmt), ha="center", va="center", color="white" if cm[i, j] > thresh else "black") fig.tight_layout() return ax Predict = model.predict(test_x) Predict_classes = np.argmax(Predict, axis=1) True_classes = np.argmax(test_y, axis=1) plot_confusion_matrix(True_classes, Predict_classes, classes=range(10), normalize=False, title='Confusion Matrix')
code
17111876/cell_11
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_imgs = pd.read_csv('../input/train.csv') test_imgs = pd.read_csv('../input/test.csv') img_train = train_imgs.drop(labels='label', axis=1) del train_imgs img_train.max().max()
code
17111876/cell_1
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from tensorflow import keras import tensorflow as tf import os print(os.listdir('../input'))
code
17111876/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
from tensorflow import keras import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf train_imgs = pd.read_csv('../input/train.csv') test_imgs = pd.read_csv('../input/test.csv') label_train = train_imgs['label'] label_train = keras.utils.to_categorical(label_train, num_classes=10) def CNN(n_conv): """ Build a Convolutional neural network for n_conv number of convolutional layers. n_conv: Integer. """ model = keras.Sequential() for _ in range(n_conv): model.add(keras.layers.Conv2D(64, kernel_size=2, activation=tf.nn.relu, input_shape=(28, 28, 1))) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(keras.layers.Dropout(0.2)) model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(256, kernel_regularizer=keras.regularizers.l2(0.001), activation=tf.nn.relu)) model.add(keras.layers.Dense(10, activation=tf.nn.softmax)) return model model = CNN(n_conv=3) model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.categorical_crossentropy, metrics=['accuracy']) visible = keras.layers.Input(shape=(28, 28, 1)) conv1 = keras.layers.Conv2D(32, kernel_size=4, activation='relu')(visible) pool1 = keras.layers.MaxPooling2D(pool_size=(2, 2))(conv1) flat1 = keras.layers.Flatten()(pool1) conv2 = keras.layers.Conv2D(32, kernel_size=4, activation='relu')(visible) pool2 = keras.layers.MaxPooling2D(pool_size=(2, 2))(conv2) flat2 = keras.layers.Flatten()(pool2) merge = keras.layers.concatenate([flat1, flat2]) hidden1 = keras.layers.Dense(256, activation='relu')(merge) drop = keras.layers.Dropout(0.5)(hidden1) output = keras.layers.Dense(10, activation='softmax')(drop) model = keras.Model(inputs=visible, outputs=output) print(model.summary()) model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.categorical_crossentropy, metrics=['accuracy'])
code
17111876/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_imgs = pd.read_csv('../input/train.csv') test_imgs = pd.read_csv('../input/test.csv') label_train = train_imgs['label'] sns.countplot(label_train)
code
17111876/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_imgs = pd.read_csv('../input/train.csv') test_imgs = pd.read_csv('../input/test.csv') img_train = train_imgs.drop(labels='label', axis=1) del train_imgs img_train.max().max() test_imgs.max().max() img_train = img_train / 255.0 test_imgs = test_imgs / 255.0 print(img_train.max().max()) print(test_imgs.max().max())
code
17111876/cell_38
[ "text_plain_output_1.png" ]
from tensorflow import keras import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import tensorflow as tf train_imgs = pd.read_csv('../input/train.csv') test_imgs = pd.read_csv('../input/test.csv') label_train = train_imgs['label'] label_train = keras.utils.to_categorical(label_train, num_classes=10) def CNN(n_conv): """ Build a Convolutional neural network for n_conv number of convolutional layers. n_conv: Integer. """ model = keras.Sequential() for _ in range(n_conv): model.add(keras.layers.Conv2D(64, kernel_size=2, activation=tf.nn.relu, input_shape=(28, 28, 1))) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(keras.layers.Dropout(0.2)) model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(256, kernel_regularizer=keras.regularizers.l2(0.001), activation=tf.nn.relu)) model.add(keras.layers.Dense(10, activation=tf.nn.softmax)) return model model = CNN(n_conv=3) model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.categorical_crossentropy, metrics=['accuracy']) visible = keras.layers.Input(shape=(28, 28, 1)) conv1 = keras.layers.Conv2D(32, kernel_size=4, activation='relu')(visible) pool1 = keras.layers.MaxPooling2D(pool_size=(2, 2))(conv1) flat1 = keras.layers.Flatten()(pool1) conv2 = keras.layers.Conv2D(32, kernel_size=4, activation='relu')(visible) pool2 = keras.layers.MaxPooling2D(pool_size=(2, 2))(conv2) flat2 = keras.layers.Flatten()(pool2) merge = keras.layers.concatenate([flat1, flat2]) hidden1 = keras.layers.Dense(256, activation='relu')(merge) drop = keras.layers.Dropout(0.5)(hidden1) output = keras.layers.Dense(10, activation='softmax')(drop) model = keras.Model(inputs=visible, outputs=output) model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.categorical_crossentropy, metrics=['accuracy']) earlystop = keras.callbacks.EarlyStopping(monitor='val_acc', min_delta=0.001, patience=7, mode='min') reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='val_acc', factor=0.2, patience=5, min_lr=0.001) history = model.fit(train_x, train_y, epochs=20, batch_size=200, validation_data=(test_x, test_y), verbose=1, callbacks=[reduce_lr]) train_accuracy = history.history['acc'] validation_accuracy = history.history['val_acc'] train_loss = history.history['loss'] validation_loss = history.history['val_loss'] epoch_range = range(1, len(train_accuracy) + 1) fig, ax = plt.subplots(1, 2, figsize=(12, 5)) ax[0].set_title('Accuracy per Epoch') sns.lineplot(x=epoch_range, y=train_accuracy, marker='o', ax=ax[0]) sns.lineplot(x=epoch_range, y=validation_accuracy, marker='o', ax=ax[0]) ax[0].legend(['training', 'validation']) ax[0].set_xlabel('Epoch') ax[0].set_ylabel('Accuracy') ax[1].set_title('Loss per Epoch') sns.lineplot(x=epoch_range, y=train_loss, marker='o', ax=ax[1]) sns.lineplot(x=epoch_range, y=validation_loss, marker='o', ax=ax[1]) ax[1].legend(['training', 'validation']) ax[1].set_xlabel('Epoch') ax[1].set_ylabel('Loss') plt.show()
code
17111876/cell_47
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_imgs = pd.read_csv('../input/train.csv') test_imgs = pd.read_csv('../input/test.csv') sub = pd.read_csv('../input/sample_submission.csv') sub.head()
code
17111876/cell_22
[ "text_plain_output_1.png" ]
from tensorflow import keras import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_imgs = pd.read_csv('../input/train.csv') test_imgs = pd.read_csv('../input/test.csv') label_train = train_imgs['label'] label_train = keras.utils.to_categorical(label_train, num_classes=10) label_train[0]
code
17111876/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_imgs = pd.read_csv('../input/train.csv') test_imgs = pd.read_csv('../input/test.csv') test_imgs.max().max()
code
17111876/cell_36
[ "text_plain_output_1.png" ]
from tensorflow import keras import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf train_imgs = pd.read_csv('../input/train.csv') test_imgs = pd.read_csv('../input/test.csv') label_train = train_imgs['label'] label_train = keras.utils.to_categorical(label_train, num_classes=10) def CNN(n_conv): """ Build a Convolutional neural network for n_conv number of convolutional layers. n_conv: Integer. """ model = keras.Sequential() for _ in range(n_conv): model.add(keras.layers.Conv2D(64, kernel_size=2, activation=tf.nn.relu, input_shape=(28, 28, 1))) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(keras.layers.Dropout(0.2)) model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(256, kernel_regularizer=keras.regularizers.l2(0.001), activation=tf.nn.relu)) model.add(keras.layers.Dense(10, activation=tf.nn.softmax)) return model model = CNN(n_conv=3) model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.categorical_crossentropy, metrics=['accuracy']) visible = keras.layers.Input(shape=(28, 28, 1)) conv1 = keras.layers.Conv2D(32, kernel_size=4, activation='relu')(visible) pool1 = keras.layers.MaxPooling2D(pool_size=(2, 2))(conv1) flat1 = keras.layers.Flatten()(pool1) conv2 = keras.layers.Conv2D(32, kernel_size=4, activation='relu')(visible) pool2 = keras.layers.MaxPooling2D(pool_size=(2, 2))(conv2) flat2 = keras.layers.Flatten()(pool2) merge = keras.layers.concatenate([flat1, flat2]) hidden1 = keras.layers.Dense(256, activation='relu')(merge) drop = keras.layers.Dropout(0.5)(hidden1) output = keras.layers.Dense(10, activation='softmax')(drop) model = keras.Model(inputs=visible, outputs=output) model.compile(optimizer=keras.optimizers.Adam(), loss=keras.losses.categorical_crossentropy, metrics=['accuracy']) earlystop = keras.callbacks.EarlyStopping(monitor='val_acc', min_delta=0.001, patience=7, mode='min') reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='val_acc', factor=0.2, patience=5, min_lr=0.001) history = model.fit(train_x, train_y, epochs=20, batch_size=200, validation_data=(test_x, test_y), verbose=1, callbacks=[reduce_lr])
code
32068525/cell_11
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') shops_data = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') sales_train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') sample_submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') item_category = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') plt.figure(figsize=(13, 10)) plt.subplot(221) plt.hist(sales_train.shop_id, bins=25) plt.xlabel('shop_id') plt.ylabel('counts') plt.title('train_data') plt.subplot(222) plt.hist(test.shop_id, bins=25) plt.ylabel('counts') plt.xlabel('shop_id') plt.title('test_data') plt.subplot(223) plt.hist(sales_train.item_id, bins=25) plt.xlabel('item_id') plt.ylabel('counts') plt.title('train_data') plt.subplot(224) plt.hist(test.item_id, bins=25) plt.ylabel('counts') plt.xlabel('item_id') plt.title('test_data') plt.show()
code
32068525/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt l = [] import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: l.append(os.path.join(dirname, filename)) l
code
32068525/cell_15
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') shops_data = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') sales_train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') sample_submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') item_category = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') sales_train = sales_train[sales_train.shop_id.isin(test.shop_id.unique())] sales_train = sales_train[sales_train.item_id.isin(test.item_id.unique())] plt.figure(figsize=(13, 5)) plt.subplot(121) plt.hist(sales_train.shop_id, color='red', label='train', density=True, alpha=0.3) plt.hist(test.shop_id, color='blue', label='test', density=True, alpha=0.3) plt.ylabel('counts') plt.xlabel('shop_id') plt.legend() plt.subplot(122) plt.hist(sales_train.item_id, color='red', label='train', density=True, alpha=0.3) plt.hist(test.item_id, color='blue', label='test', density=True, alpha=0.3) plt.ylabel('counts') plt.xlabel('item_id') plt.legend() plt.show()
code
32068525/cell_10
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) items = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/items.csv') shops_data = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/shops.csv') sales_train = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sales_train.csv') test = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/test.csv') sample_submission = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/sample_submission.csv') item_category = pd.read_csv('/kaggle/input/competitive-data-science-predict-future-sales/item_categories.csv') plt.figure(figsize=(13, 5)) plt.subplot(121) plt.scatter(sales_train.shop_id, sales_train.item_id) plt.xlabel('shop_id') plt.ylabel('item_id') plt.title('train_data') plt.subplot(122) plt.scatter(test.shop_id, test.item_id) plt.xlabel('shop_id') plt.ylabel('item_id') plt.title('test_data') plt.show()
code
34139025/cell_42
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q5b = abstracts[abstracts['abstract'].str.contains('improve access')] q5b.shape
code
34139025/cell_63
[ "text_plain_output_1.png" ]
from googlesearch import search from googlesearch import search from googlesearch import search from googlesearch import search try: from googlesearch import search except ImportError: print('Error/Not found') query4 = 'recommendations for PPE problems' for j4 in search(query4, tld='co.in', num=10, stop=10, pause=2): print(j4)
code
34139025/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q1E = abstracts[abstracts['abstract'].str.contains('risk population')] Q1E.shape
code
34139025/cell_13
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.head(2)
code
34139025/cell_25
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q2a = abstracts[abstracts['abstract'].str.contains('homeless')] Q2a.shape
code
34139025/cell_56
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q1A = abstracts[abstracts['abstract'].str.contains('communicating')] Q1A.shape Q1B = abstracts[abstracts['abstract'].str.contains('reaching out')] Q1B Q1C = abstracts[abstracts['abstract'].str.contains('contacting')] Q1C.shape Q1D = abstracts[abstracts['abstract'].str.contains('elderly')] Q1D.shape Q1D = abstracts[abstracts['abstract'].str.contains('health care workers')] Q1D.shape Q1E = abstracts[abstracts['abstract'].str.contains('risk population')] Q1E.shape Question1 = pd.concat([Q1A, Q1B, Q1C, Q1D, Q1E]) Question1.dropna(inplace=True) Question1.shape q5a = abstracts[abstracts['abstract'].str.contains('not reach')] q5a.shape q5b = abstracts[abstracts['abstract'].str.contains('improve access')] q5b.shape q5c = abstracts[abstracts['abstract'].str.contains('access to resource')] q5c.shape q5e = abstracts[abstracts['abstract'].str.contains('faulty')] q5e.shape q5f = abstracts[abstracts['abstract'].str.contains('meet demand')] q5f.shape q5g = abstracts[abstracts['abstract'].str.contains('waste')] q5g.shape Question5 = pd.concat([q5a, q5b, q5c, q5b, q5e, q5f, q5g]) Question5.dropna(inplace=True) Question5.shape StudiesDictionary = {'url': ['https://www.cdc.gov/coronavirus/2019-ncov/covid-data/serology-surveillance/index.html', 'https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30854-0/fulltext', 'https://iussp.org/fr/node/11297', 'https://www.nejm.org/doi/full/10.1056/NEJMp2006761', 'https://www.vox.com/2020/4/24/21229415/coronavirus-antibody-testing-covid-19-california-survey', 'https://www.statnews.com/2020/04/04/cdc-launches-studies-to-get-more-precise-count-of-undetected-covid-19-cases/', 'https://ourworldindata.org/coronavirus', 'https://www.360dx.com/infectious-disease/new-york-california-serology-studies-give-early-estimates-covid-19-prevalence', 'https://www.popcouncil.org/research/responding-to-the-COVID-19-pandemic', 'https://www.nature.com/articles/s41591-020-0883-7']} StudiesDF = pd.DataFrame.from_dict(StudiesDictionary) StudiesDF
code
34139025/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q1A = abstracts[abstracts['abstract'].str.contains('communicating')] Q1A.shape Q1B = abstracts[abstracts['abstract'].str.contains('reaching out')] Q1B Q1C = abstracts[abstracts['abstract'].str.contains('contacting')] Q1C.shape Q1D = abstracts[abstracts['abstract'].str.contains('elderly')] Q1D.shape Q1D = abstracts[abstracts['abstract'].str.contains('health care workers')] Q1D.shape Q1E = abstracts[abstracts['abstract'].str.contains('risk population')] Q1E.shape Question1 = pd.concat([Q1A, Q1B, Q1C, Q1D, Q1E]) Question1.dropna(inplace=True) Question1.shape Question1
code
34139025/cell_30
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q3a = abstracts[abstracts['abstract'].str.contains('nosocomial')] q3a.shape
code
34139025/cell_33
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q3d = abstracts[abstracts['abstract'].str.contains('nosocomial outbreak')] q3d.shape
code
34139025/cell_44
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q5d = abstracts[abstracts['abstract'].str.contains('outreach')] q5d.shape
code
34139025/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q1D = abstracts[abstracts['abstract'].str.contains('elderly')] Q1D.shape Q1D = abstracts[abstracts['abstract'].str.contains('health care workers')] Q1D.shape
code
34139025/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q2b = abstracts[abstracts['abstract'].str.contains('low income')] Q2b.shape
code
34139025/cell_48
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q1A = abstracts[abstracts['abstract'].str.contains('communicating')] Q1A.shape Q1B = abstracts[abstracts['abstract'].str.contains('reaching out')] Q1B Q1C = abstracts[abstracts['abstract'].str.contains('contacting')] Q1C.shape Q1D = abstracts[abstracts['abstract'].str.contains('elderly')] Q1D.shape Q1D = abstracts[abstracts['abstract'].str.contains('health care workers')] Q1D.shape Q1E = abstracts[abstracts['abstract'].str.contains('risk population')] Q1E.shape Question1 = pd.concat([Q1A, Q1B, Q1C, Q1D, Q1E]) Question1.dropna(inplace=True) Question1.shape q5a = abstracts[abstracts['abstract'].str.contains('not reach')] q5a.shape q5b = abstracts[abstracts['abstract'].str.contains('improve access')] q5b.shape q5c = abstracts[abstracts['abstract'].str.contains('access to resource')] q5c.shape q5e = abstracts[abstracts['abstract'].str.contains('faulty')] q5e.shape q5f = abstracts[abstracts['abstract'].str.contains('meet demand')] q5f.shape q5g = abstracts[abstracts['abstract'].str.contains('waste')] q5g.shape Question5 = pd.concat([q5a, q5b, q5c, q5b, q5e, q5f, q5g]) Question5.dropna(inplace=True) Question5.shape
code
34139025/cell_41
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q5a = abstracts[abstracts['abstract'].str.contains('not reach')] q5a.shape
code
34139025/cell_61
[ "text_html_output_1.png" ]
from googlesearch import search from googlesearch import search try: from googlesearch import search except ImportError: print('Error/Not found') query2 = 'recommendations for COVID 19 resources limits' for j2 in search(query2, tld='co.in', num=10, stop=10, pause=2): print(j2)
code
34139025/cell_54
[ "text_plain_output_1.png" ]
from googlesearch import search try: from googlesearch import search except ImportError: print('Error/Not found') query = 'COVID 19 population studies' for j in search(query, tld='co.in', num=10, stop=10, pause=2): print(j)
code
34139025/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q1D = abstracts[abstracts['abstract'].str.contains('elderly')] Q1D.shape
code
34139025/cell_52
[ "text_plain_output_1.png" ]
pip install beautifulsoup4
code
34139025/cell_64
[ "text_plain_output_1.png" ]
from googlesearch import search from googlesearch import search from googlesearch import search from googlesearch import search from googlesearch import search try: from googlesearch import search except ImportError: print('Error/Not found') query5 = 'recommendations for improving access to COVID 19 resources' for j5 in search(query5, tld='co.in', num=10, stop=10, pause=2): print(j5)
code
34139025/cell_45
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q5e = abstracts[abstracts['abstract'].str.contains('faulty')] q5e.shape
code
34139025/cell_18
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q1C = abstracts[abstracts['abstract'].str.contains('contacting')] Q1C.shape
code
34139025/cell_32
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q3c = abstracts[abstracts['abstract'].str.contains('hospital patients')] q3c.shape
code
34139025/cell_62
[ "text_plain_output_1.png" ]
from googlesearch import search from googlesearch import search from googlesearch import search try: from googlesearch import search except ImportError: print('Error/Not found') query3 = 'recommendations for COVID 19 testing problems' for j3 in search(query3, tld='co.in', num=10, stop=10, pause=2): print(j3)
code
34139025/cell_28
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q2d = abstracts[abstracts['abstract'].str.contains('housing')] Q2d.shape
code
34139025/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] tablesTable = t[['Question', 'Table Format']] tablesTable
code
34139025/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q1A = abstracts[abstracts['abstract'].str.contains('communicating')] Q1A.shape
code
34139025/cell_38
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q4D = abstracts[abstracts['abstract'].str.contains('methods to prevent')] q4D.shape
code
34139025/cell_47
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q5g = abstracts[abstracts['abstract'].str.contains('waste')] q5g.shape
code
34139025/cell_66
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q1A = abstracts[abstracts['abstract'].str.contains('communicating')] Q1A.shape Q1B = abstracts[abstracts['abstract'].str.contains('reaching out')] Q1B Q1C = abstracts[abstracts['abstract'].str.contains('contacting')] Q1C.shape Q1D = abstracts[abstracts['abstract'].str.contains('elderly')] Q1D.shape Q1D = abstracts[abstracts['abstract'].str.contains('health care workers')] Q1D.shape Q1E = abstracts[abstracts['abstract'].str.contains('risk population')] Q1E.shape Question1 = pd.concat([Q1A, Q1B, Q1C, Q1D, Q1E]) Question1.dropna(inplace=True) Question1.shape q5a = abstracts[abstracts['abstract'].str.contains('not reach')] q5a.shape q5b = abstracts[abstracts['abstract'].str.contains('improve access')] q5b.shape q5c = abstracts[abstracts['abstract'].str.contains('access to resource')] q5c.shape q5e = abstracts[abstracts['abstract'].str.contains('faulty')] q5e.shape q5f = abstracts[abstracts['abstract'].str.contains('meet demand')] q5f.shape q5g = abstracts[abstracts['abstract'].str.contains('waste')] q5g.shape Question5 = pd.concat([q5a, q5b, q5c, q5b, q5e, q5f, q5g]) Question5.dropna(inplace=True) Question5.shape StudiesDictionary = {'url': ['https://www.cdc.gov/coronavirus/2019-ncov/covid-data/serology-surveillance/index.html', 'https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30854-0/fulltext', 'https://iussp.org/fr/node/11297', 'https://www.nejm.org/doi/full/10.1056/NEJMp2006761', 'https://www.vox.com/2020/4/24/21229415/coronavirus-antibody-testing-covid-19-california-survey', 'https://www.statnews.com/2020/04/04/cdc-launches-studies-to-get-more-precise-count-of-undetected-covid-19-cases/', 'https://ourworldindata.org/coronavirus', 'https://www.360dx.com/infectious-disease/new-york-california-serology-studies-give-early-estimates-covid-19-prevalence', 'https://www.popcouncil.org/research/responding-to-the-COVID-19-pandemic', 'https://www.nature.com/articles/s41591-020-0883-7']} StudiesDF = pd.DataFrame.from_dict(StudiesDictionary) StudiesDF Q5RecomDictionary = {'url': ['https://www.ama-assn.org/delivering-care/public-health/covid-19-policy-recommendations-oud-pain-harm-reduction', 'https://www.statnews.com/2020/03/31/covid-19-overcoming-testing-challenges/', 'https://apps.who.int/iris/bitstream/handle/10665/331509/WHO-COVID-19-lab_testing-2020.1-eng.pdf', 'https://www.modernhealthcare.com/technology/covid-19-testing-problems-started-early-us-still-playing-behind', 'https://www.modernhealthcare.com/technology/labs-face-challenges-creating-diagnosis-testing-covid-19', 'https://www.ama-assn.org/delivering-care/public-health/covid-19-frequently-asked-questions', 'https://www.vox.com/recode/2020/4/24/21229774/coronavirus-covid-19-testing-social-distancing', 'https://www.vdh.virginia.gov/coronavirus/health-professionals/vdh-updated-guidance-on-testing-for-covid-19/', 'https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/major-challenges-remain-in-covid-19-testing', 'https://www.fda.gov/medical-devices/emergency-situations-medical-devices/faqs-testing-sars-cov-2', 'https://www.jointcommission.org/resources/news-and-multimedia/news/2020/03/statement-on-shortages-of-personal-protective-equipment-amid-covid-19-pandemic/', 'https://jamanetwork.com/journals/jama/fullarticle/2764238', 'https://www.ncbi.nlm.nih.gov/books/NBK209587/', 'https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/index.html', 'https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/burn-calculator.html', 'https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/face-masks.html', 'https://www.cdc.gov/coronavirus/2019-ncov/hcp/respirators-strategy/index.html', 'https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/eye-protection.html', 'http://www.infectioncontroltoday.com/personal-protective-equipment/addressing-challenges-ppe-non-compliance', 'https://www.healio.com/gastroenterology/practice-management/news/online/%7B331d768c-91dd-4094-a2fd-6c9b0c07627d%7D/aga-issues-covid-19-recommendations-for-ppe-use-during-gi-procedures', 'https://www.facs.org/covid-19/ppe/additional']} Q5Recomm = pd.DataFrame.from_dict(Q5RecomDictionary) Q5Recomm
code
34139025/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q1B = abstracts[abstracts['abstract'].str.contains('reaching out')] Q1B
code
34139025/cell_35
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q4A = abstracts[abstracts['abstract'].str.contains('compliance')] q4A.shape
code
34139025/cell_43
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q5c = abstracts[abstracts['abstract'].str.contains('access to resource')] q5c.shape
code
34139025/cell_31
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q3b = abstracts[abstracts['abstract'].str.contains('hospital spread')] q3b.shape
code
34139025/cell_46
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q5f = abstracts[abstracts['abstract'].str.contains('meet demand')] q5f.shape
code
34139025/cell_14
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape
code
34139025/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q1A = abstracts[abstracts['abstract'].str.contains('communicating')] Q1A.shape Q1B = abstracts[abstracts['abstract'].str.contains('reaching out')] Q1B Q1C = abstracts[abstracts['abstract'].str.contains('contacting')] Q1C.shape Q1D = abstracts[abstracts['abstract'].str.contains('elderly')] Q1D.shape Q1D = abstracts[abstracts['abstract'].str.contains('health care workers')] Q1D.shape Q1E = abstracts[abstracts['abstract'].str.contains('risk population')] Q1E.shape Question1 = pd.concat([Q1A, Q1B, Q1C, Q1D, Q1E]) Question1.dropna(inplace=True) Question1.shape
code
34139025/cell_53
[ "text_plain_output_1.png" ]
pip install google
code
34139025/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape
code
34139025/cell_27
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape Q2c = abstracts[abstracts['abstract'].str.contains('poor')] Q2c.shape
code
34139025/cell_37
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q4C = abstracts[abstracts['abstract'].str.contains('prevent spread')] q4C.shape
code
34139025/cell_12
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') journals['words'].head()
code
34139025/cell_36
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) TABLEFORMAT = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/list_of_tables_and_table_formats.csv') t = TABLEFORMAT[0:5] df1 = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv') df1.shape journals = df1[['title', 'abstract', 'publish_time', 'url', 'authors']] journals['words'] = journals.abstract.str.strip().str.split('[\\W_]+') abstracts = journals[journals.words.str.len() > 0] abstracts.to_csv('COVID19_Journal_Abrstracts.csv') abstracts.shape q4B = abstracts[abstracts['abstract'].str.contains('community spread')] q4B.shape
code
130008103/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns lung_df = pd.read_csv('/kaggle/input/lung-cancer/survey lung cancer.csv') lung_df = lung_df.dropna(how='any') lung_df['LUNG_CANCER'] = lung_df['LUNG_CANCER'].map({'NO': 0, 'YES': 1}) sns.barplot(data=lung_df, x='GENDER', y='LUNG_CANCER') plt.xlabel('Gender') plt.ylabel('Probability of Lung Cancer') plt.title('Lung Cancer Presence by Gender') plt.show()
code
130008103/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns lung_df = pd.read_csv('/kaggle/input/lung-cancer/survey lung cancer.csv') lung_df = lung_df.dropna(how='any') sns.countplot(data=lung_df, x='GENDER') plt.xlabel('Gender') plt.ylabel('Count') plt.title('Distribution of Gender') plt.show()
code
130008103/cell_1
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression import seaborn as sns import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
130008103/cell_7
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) lung_df = pd.read_csv('/kaggle/input/lung-cancer/survey lung cancer.csv') lung_df.describe() lung_df.info()
code
130008103/cell_15
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns lung_df = pd.read_csv('/kaggle/input/lung-cancer/survey lung cancer.csv') lung_df = lung_df.dropna(how='any') lung_df['LUNG_CANCER'] = lung_df['LUNG_CANCER'].map({'NO': 0, 'YES': 1}) sns.scatterplot(data=lung_df, x='AGE', y='SMOKING') plt.xlabel('Age') plt.ylabel('Smoking Status') plt.title('Age vs. Smoking Status') plt.show()
code
130008103/cell_5
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) lung_df = pd.read_csv('/kaggle/input/lung-cancer/survey lung cancer.csv') lung_df.head(5)
code
73096402/cell_13
[ "text_plain_output_1.png" ]
from itertools import product import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tmnist-typeface-mnist/TMNIST_data.csv') unique_typefaces = df.names.unique() typeface_map = {} for i in range(len(unique_typefaces)): typeface_map[unique_typefaces[i]] = i df = df.replace({'names': typeface_map}) df = df.sample(frac=1).reset_index(drop=True) training_percent = 0.7 validation_percent = 0.2 total_examples = df.shape[0] train_val_breakpoint = int(training_percent * total_examples) val_test_breakpoint = int((training_percent + validation_percent) * total_examples) train_df = df.iloc[None:train_val_breakpoint, :] val_df = df.iloc[train_val_breakpoint:val_test_breakpoint, :] test_df = df.iloc[val_test_breakpoint:None, :] typefaces_num = len(typeface_map) to_ndarr = lambda obj: np.array(list(obj)) for df_name in ('train_df', 'val_df', 'test_df'): df = eval(df_name) diff = np.setdiff1d(to_ndarr(typeface_map.values()), to_ndarr(df.names)) ndiff = len(diff) def dataframeToNumpy(df): Xdf = df.iloc[:, 2:None] ydf = df.iloc[:, 1] zdf = df.iloc[:, 0] return (np.array(Xdf), np.array(ydf), np.array(zdf)) Xtrain, ytrain, ztrain = dataframeToNumpy(train_df) Xval, yval, zval = dataframeToNumpy(val_df) Xtest, ytest, ztest = dataframeToNumpy(test_df) names = [] for p in product(['train', 'val', 'test'], ['X', 'y', 'z']): names.append(''.join([p[1], p[0]])) for name in names: print(f'Shape of {name}:', eval(name).shape)
code
73096402/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tmnist-typeface-mnist/TMNIST_data.csv') print(df.shape) df.head()
code
73096402/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tmnist-typeface-mnist/TMNIST_data.csv') unique_typefaces = df.names.unique() typeface_map = {} for i in range(len(unique_typefaces)): typeface_map[unique_typefaces[i]] = i df = df.replace({'names': typeface_map}) df.head()
code
73096402/cell_11
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tmnist-typeface-mnist/TMNIST_data.csv') unique_typefaces = df.names.unique() typeface_map = {} for i in range(len(unique_typefaces)): typeface_map[unique_typefaces[i]] = i df = df.replace({'names': typeface_map}) df = df.sample(frac=1).reset_index(drop=True) training_percent = 0.7 validation_percent = 0.2 total_examples = df.shape[0] train_val_breakpoint = int(training_percent * total_examples) val_test_breakpoint = int((training_percent + validation_percent) * total_examples) train_df = df.iloc[None:train_val_breakpoint, :] val_df = df.iloc[train_val_breakpoint:val_test_breakpoint, :] test_df = df.iloc[val_test_breakpoint:None, :] typefaces_num = len(typeface_map) to_ndarr = lambda obj: np.array(list(obj)) for df_name in ('train_df', 'val_df', 'test_df'): df = eval(df_name) diff = np.setdiff1d(to_ndarr(typeface_map.values()), to_ndarr(df.names)) ndiff = len(diff) print(ndiff)
code
73096402/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd from itertools import product from tqdm import tqdm import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
73096402/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tmnist-typeface-mnist/TMNIST_data.csv') unique_typefaces = df.names.unique() typeface_map = {} for i in range(len(unique_typefaces)): typeface_map[unique_typefaces[i]] = i df = df.replace({'names': typeface_map}) df = df.sample(frac=1).reset_index(drop=True) training_percent = 0.7 validation_percent = 0.2 total_examples = df.shape[0] train_val_breakpoint = int(training_percent * total_examples) val_test_breakpoint = int((training_percent + validation_percent) * total_examples) train_df = df.iloc[None:train_val_breakpoint, :] val_df = df.iloc[train_val_breakpoint:val_test_breakpoint, :] test_df = df.iloc[val_test_breakpoint:None, :] for z in zip(['train_df', 'val_df', 'test_df'], [train_df, val_df, test_df]): print(f'Shape of {z[0]}:', z[1].shape)
code
73096402/cell_15
[ "text_html_output_1.png" ]
from itertools import product import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tmnist-typeface-mnist/TMNIST_data.csv') unique_typefaces = df.names.unique() typeface_map = {} for i in range(len(unique_typefaces)): typeface_map[unique_typefaces[i]] = i df = df.replace({'names': typeface_map}) df = df.sample(frac=1).reset_index(drop=True) training_percent = 0.7 validation_percent = 0.2 total_examples = df.shape[0] train_val_breakpoint = int(training_percent * total_examples) val_test_breakpoint = int((training_percent + validation_percent) * total_examples) train_df = df.iloc[None:train_val_breakpoint, :] val_df = df.iloc[train_val_breakpoint:val_test_breakpoint, :] test_df = df.iloc[val_test_breakpoint:None, :] typefaces_num = len(typeface_map) to_ndarr = lambda obj: np.array(list(obj)) for df_name in ('train_df', 'val_df', 'test_df'): df = eval(df_name) diff = np.setdiff1d(to_ndarr(typeface_map.values()), to_ndarr(df.names)) ndiff = len(diff) def dataframeToNumpy(df): Xdf = df.iloc[:, 2:None] ydf = df.iloc[:, 1] zdf = df.iloc[:, 0] return (np.array(Xdf), np.array(ydf), np.array(zdf)) Xtrain, ytrain, ztrain = dataframeToNumpy(train_df) Xval, yval, zval = dataframeToNumpy(val_df) Xtest, ytest, ztest = dataframeToNumpy(test_df) names = [] for p in product(['train', 'val', 'test'], ['X', 'y', 'z']): names.append(''.join([p[1], p[0]])) img_dim = int(np.sqrt(Xtrain.shape[1])) randIdx = np.random.randint(0, X.shape[0], 100).reshape(img_dim, img_dim) fig, ax = plt.subplots(10, 10) for i in range(randIdx.shape[0]): for j in range(randIdx.shape[1]): example = X[randIdx[i, j], :] example = example.reshape((20, 20)).T ax[i, j].imshow(example, vmin=-1, vmax=1, cmap='gray') ax[i, j].set_xticks([]) ax[i, j].set_yticks([]) plt.show()
code
73096402/cell_10
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tmnist-typeface-mnist/TMNIST_data.csv') unique_typefaces = df.names.unique() typeface_map = {} for i in range(len(unique_typefaces)): typeface_map[unique_typefaces[i]] = i df = df.replace({'names': typeface_map}) df = df.sample(frac=1).reset_index(drop=True) training_percent = 0.7 validation_percent = 0.2 total_examples = df.shape[0] train_val_breakpoint = int(training_percent * total_examples) val_test_breakpoint = int((training_percent + validation_percent) * total_examples) train_df = df.iloc[None:train_val_breakpoint, :] val_df = df.iloc[train_val_breakpoint:val_test_breakpoint, :] test_df = df.iloc[val_test_breakpoint:None, :] df.head()
code
2010817/cell_4
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.describe(include='all')
code
2010817/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import tensorflow as tf
code
2010817/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = train.drop(['Cabin', 'Ticket'], axis=1) test = test.drop(['Cabin', 'Ticket'], axis=1) train.head()
code
2010817/cell_3
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.head()
code
2010817/cell_10
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = train.drop(['Cabin', 'Ticket'], axis=1) test = test.drop(['Cabin', 'Ticket'], axis=1) train['Name'] = train.Name.str.extract(' ([A-Za-z]+)\\.', expand=False) test['Name'] = test.Name.str.extract(' ([A-Za-z]+)\\.', expand=False) train.head()
code
2010817/cell_5
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') test.describe(include='all')
code
73081521/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import warnings import warnings warnings.simplefilter('ignore') import numpy as np import pandas as pd from PIL import Image, ImageFilter, ImageOps import seaborn as sns import matplotlib.pyplot as plt from tqdm import tqdm import time from contextlib import contextmanager import gc import os import cv2 from glob import glob import os import requests import io pd.set_option('display.max_rows', 200) INPUT_DIR = '../input/shigglecup-1st/DATA/' train_df = pd.read_csv(f'{INPUT_DIR}train.csv') test_df = pd.read_csv(f'{INPUT_DIR}test.csv') train_df['train_id'] = 1 test_df['train_id'] = 0 all_df = pd.concat([train_df, test_df]).reset_index(drop=True) all_df.isna().sum().T print(all_df['color_2'].nunique()) print(all_df['type_2'].nunique())
code
73081521/cell_20
[ "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import cv2 import matplotlib.pyplot as plt import os import os import pandas as pd import warnings import warnings warnings.simplefilter('ignore') import numpy as np import pandas as pd from PIL import Image, ImageFilter, ImageOps import seaborn as sns import matplotlib.pyplot as plt from tqdm import tqdm import time from contextlib import contextmanager import gc import os import cv2 from glob import glob import os import requests import io pd.set_option('display.max_rows', 200) INPUT_DIR = '../input/shigglecup-1st/DATA/' train_df = pd.read_csv(f'{INPUT_DIR}train.csv') test_df = pd.read_csv(f'{INPUT_DIR}test.csv') train_df['train_id'] = 1 test_df['train_id'] = 0 all_df = pd.concat([train_df, test_df]).reset_index(drop=True) all_df.isna().sum().T def show_images_glob(images, color, figsize=(20, 10), columns=5): for i, image in enumerate(images): if image != image: continue if not os.path.exists(image): continue img = cv2.imread(image) im_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) def show_gbc(colors): img_df = all_df[[colors]].dropna() cnt = 0 for i in range(len(img_df.dropna()[colors].unique())): if cnt > 2: break color = img_df.dropna()[colors].unique()[i] color_list = f'{INPUT_DIR}pokemon_images/' + train_df[train_df[colors] == color].reset_index(drop=True)['url_image'] if len(color_list) == 0: continue cnt += 1 poke = all_df.loc[all_df['pokemon'] == 'altaria', :] poke.T for colors in ['color_1', 'color_2', 'color_f']: color = poke[colors].values[0] color_list = f'{INPUT_DIR}pokemon_images/' + train_df[train_df[colors] == color].reset_index(drop=True)['url_image'] show_images_glob(color_list, color)
code
73081521/cell_6
[ "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd import warnings import warnings warnings.simplefilter('ignore') import numpy as np import pandas as pd from PIL import Image, ImageFilter, ImageOps import seaborn as sns import matplotlib.pyplot as plt from tqdm import tqdm import time from contextlib import contextmanager import gc import os import cv2 from glob import glob import os import requests import io pd.set_option('display.max_rows', 200) INPUT_DIR = '../input/shigglecup-1st/DATA/' train_df = pd.read_csv(f'{INPUT_DIR}train.csv') test_df = pd.read_csv(f'{INPUT_DIR}test.csv') train_df['train_id'] = 1 test_df['train_id'] = 0 all_df = pd.concat([train_df, test_df]).reset_index(drop=True) all_df.isna().sum().T
code
73081521/cell_11
[ "text_plain_output_1.png" ]
import cv2 import matplotlib.pyplot as plt import os import os import pandas as pd import warnings import warnings warnings.simplefilter('ignore') import numpy as np import pandas as pd from PIL import Image, ImageFilter, ImageOps import seaborn as sns import matplotlib.pyplot as plt from tqdm import tqdm import time from contextlib import contextmanager import gc import os import cv2 from glob import glob import os import requests import io pd.set_option('display.max_rows', 200) INPUT_DIR = '../input/shigglecup-1st/DATA/' train_df = pd.read_csv(f'{INPUT_DIR}train.csv') test_df = pd.read_csv(f'{INPUT_DIR}test.csv') train_df['train_id'] = 1 test_df['train_id'] = 0 all_df = pd.concat([train_df, test_df]).reset_index(drop=True) all_df.isna().sum().T def show_images_glob(images, color, figsize=(20, 10), columns=5): for i, image in enumerate(images): if image != image: continue if not os.path.exists(image): continue img = cv2.imread(image) im_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) def show_gbc(colors): img_df = all_df[[colors]].dropna() cnt = 0 for i in range(len(img_df.dropna()[colors].unique())): if cnt > 2: break color = img_df.dropna()[colors].unique()[i] color_list = f'{INPUT_DIR}pokemon_images/' + train_df[train_df[colors] == color].reset_index(drop=True)['url_image'] if len(color_list) == 0: continue cnt += 1 show_gbc('color_1')
code
73081521/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import warnings import warnings warnings.simplefilter('ignore') import numpy as np import pandas as pd from PIL import Image, ImageFilter, ImageOps import seaborn as sns import matplotlib.pyplot as plt from tqdm import tqdm import time from contextlib import contextmanager import gc import os import cv2 from glob import glob import os import requests import io pd.set_option('display.max_rows', 200) INPUT_DIR = '../input/shigglecup-1st/DATA/' train_df = pd.read_csv(f'{INPUT_DIR}train.csv') test_df = pd.read_csv(f'{INPUT_DIR}test.csv') train_df['train_id'] = 1 test_df['train_id'] = 0 all_df = pd.concat([train_df, test_df]).reset_index(drop=True) all_df.isna().sum().T poke = all_df.loc[all_df['pokemon'] == 'altaria', :] poke.T
code
73081521/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd import warnings import warnings warnings.simplefilter('ignore') import numpy as np import pandas as pd from PIL import Image, ImageFilter, ImageOps import seaborn as sns import matplotlib.pyplot as plt from tqdm import tqdm import time from contextlib import contextmanager import gc import os import cv2 from glob import glob import os import requests import io pd.set_option('display.max_rows', 200) INPUT_DIR = '../input/shigglecup-1st/DATA/' train_df = pd.read_csv(f'{INPUT_DIR}train.csv') test_df = pd.read_csv(f'{INPUT_DIR}test.csv') train_df['train_id'] = 1 test_df['train_id'] = 0 all_df = pd.concat([train_df, test_df]).reset_index(drop=True) all_df.isna().sum().T print(all_df['color_f'].nunique()) print((all_df['type_1'] + all_df['type_2']).nunique())
code
73081521/cell_17
[ "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import cv2 import matplotlib.pyplot as plt import os import os import pandas as pd import warnings import warnings warnings.simplefilter('ignore') import numpy as np import pandas as pd from PIL import Image, ImageFilter, ImageOps import seaborn as sns import matplotlib.pyplot as plt from tqdm import tqdm import time from contextlib import contextmanager import gc import os import cv2 from glob import glob import os import requests import io pd.set_option('display.max_rows', 200) INPUT_DIR = '../input/shigglecup-1st/DATA/' train_df = pd.read_csv(f'{INPUT_DIR}train.csv') test_df = pd.read_csv(f'{INPUT_DIR}test.csv') train_df['train_id'] = 1 test_df['train_id'] = 0 all_df = pd.concat([train_df, test_df]).reset_index(drop=True) all_df.isna().sum().T def show_images_glob(images, color, figsize=(20, 10), columns=5): for i, image in enumerate(images): if image != image: continue if not os.path.exists(image): continue img = cv2.imread(image) im_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) def show_gbc(colors): img_df = all_df[[colors]].dropna() cnt = 0 for i in range(len(img_df.dropna()[colors].unique())): if cnt > 2: break color = img_df.dropna()[colors].unique()[i] color_list = f'{INPUT_DIR}pokemon_images/' + train_df[train_df[colors] == color].reset_index(drop=True)['url_image'] if len(color_list) == 0: continue cnt += 1 show_gbc('color_f')
code
73081521/cell_14
[ "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import cv2 import matplotlib.pyplot as plt import os import os import pandas as pd import warnings import warnings warnings.simplefilter('ignore') import numpy as np import pandas as pd from PIL import Image, ImageFilter, ImageOps import seaborn as sns import matplotlib.pyplot as plt from tqdm import tqdm import time from contextlib import contextmanager import gc import os import cv2 from glob import glob import os import requests import io pd.set_option('display.max_rows', 200) INPUT_DIR = '../input/shigglecup-1st/DATA/' train_df = pd.read_csv(f'{INPUT_DIR}train.csv') test_df = pd.read_csv(f'{INPUT_DIR}test.csv') train_df['train_id'] = 1 test_df['train_id'] = 0 all_df = pd.concat([train_df, test_df]).reset_index(drop=True) all_df.isna().sum().T def show_images_glob(images, color, figsize=(20, 10), columns=5): for i, image in enumerate(images): if image != image: continue if not os.path.exists(image): continue img = cv2.imread(image) im_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) def show_gbc(colors): img_df = all_df[[colors]].dropna() cnt = 0 for i in range(len(img_df.dropna()[colors].unique())): if cnt > 2: break color = img_df.dropna()[colors].unique()[i] color_list = f'{INPUT_DIR}pokemon_images/' + train_df[train_df[colors] == color].reset_index(drop=True)['url_image'] if len(color_list) == 0: continue cnt += 1 show_gbc('color_2')
code
73081521/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd import warnings import warnings warnings.simplefilter('ignore') import numpy as np import pandas as pd from PIL import Image, ImageFilter, ImageOps import seaborn as sns import matplotlib.pyplot as plt from tqdm import tqdm import time from contextlib import contextmanager import gc import os import cv2 from glob import glob import os import requests import io pd.set_option('display.max_rows', 200) INPUT_DIR = '../input/shigglecup-1st/DATA/' train_df = pd.read_csv(f'{INPUT_DIR}train.csv') test_df = pd.read_csv(f'{INPUT_DIR}test.csv') train_df['train_id'] = 1 test_df['train_id'] = 0 all_df = pd.concat([train_df, test_df]).reset_index(drop=True) all_df.isna().sum().T print(all_df['color_1'].nunique()) print(all_df['type_1'].nunique())
code
73081521/cell_5
[ "text_html_output_1.png" ]
import pandas as pd import warnings import warnings warnings.simplefilter('ignore') import numpy as np import pandas as pd from PIL import Image, ImageFilter, ImageOps import seaborn as sns import matplotlib.pyplot as plt from tqdm import tqdm import time from contextlib import contextmanager import gc import os import cv2 from glob import glob import os import requests import io pd.set_option('display.max_rows', 200) INPUT_DIR = '../input/shigglecup-1st/DATA/' train_df = pd.read_csv(f'{INPUT_DIR}train.csv') test_df = pd.read_csv(f'{INPUT_DIR}test.csv') train_df['train_id'] = 1 test_df['train_id'] = 0 all_df = pd.concat([train_df, test_df]).reset_index(drop=True) print(train_df.shape) print(test_df.shape) print(all_df.shape)
code
325602/cell_6
[ "text_plain_output_1.png" ]
from sklearn.cross_validation import train_test_split from sklearn.ensemble import RandomForestClassifier """ Boiler-Plate/Feature-Engineering to get frame into a testable format """ used_downs = [1, 2, 3] df = df[df['down'].isin(used_downs)] valid_plays = ['Pass', 'Run', 'Sack'] df = df[df['PlayType'].isin(valid_plays)] pass_plays = ['Pass', 'Sack'] df['is_pass'] = df['PlayType'].isin(pass_plays).astype('int') df = df[['down', 'yrdline100', 'ScoreDiff', 'PosTeamScore', 'DefTeamScore', 'ydstogo', 'TimeSecs', 'ydsnet', 'is_pass', 'Drive']] X, test = train_test_split(df, test_size=0.2) y = X.pop('is_pass') test_y = test.pop('is_pass') parameters = {} clf = RandomForestClassifier(n_jobs=-1, oob_score=True, n_estimators=100, min_samples_leaf=12, max_features=0.8) clf.fit(X, y) clf.score(test, test_y)
code
325602/cell_2
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.cross_validation import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn import grid_search from sklearn.preprocessing import LabelEncoder df = pd.read_csv('../input/nflplaybyplay2015.csv', low_memory=False) df.columns
code
325602/cell_5
[ "text_plain_output_1.png" ]
from sklearn.cross_validation import train_test_split from sklearn.ensemble import RandomForestClassifier """ Boiler-Plate/Feature-Engineering to get frame into a testable format """ used_downs = [1, 2, 3] df = df[df['down'].isin(used_downs)] valid_plays = ['Pass', 'Run', 'Sack'] df = df[df['PlayType'].isin(valid_plays)] pass_plays = ['Pass', 'Sack'] df['is_pass'] = df['PlayType'].isin(pass_plays).astype('int') df = df[['down', 'yrdline100', 'ScoreDiff', 'PosTeamScore', 'DefTeamScore', 'ydstogo', 'TimeSecs', 'ydsnet', 'is_pass', 'Drive']] X, test = train_test_split(df, test_size=0.2) y = X.pop('is_pass') test_y = test.pop('is_pass') parameters = {} clf = RandomForestClassifier(n_jobs=-1, oob_score=True, n_estimators=100, min_samples_leaf=12, max_features=0.8) clf.fit(X, y)
code
32068016/cell_9
[ "text_html_output_2.png", "text_html_output_1.png" ]
from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt import numpy as np # linear algebra import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import plotly.graph_objs as go from plotly.subplots import make_subplots def RMSLE(pred, actual): return np.sqrt(np.mean(np.power(np.log(pred + 1) - np.log(actual + 1), 2))) pd.set_option('mode.chained_assignment', None) test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') train['Province_State'].fillna('', inplace=True) test['Province_State'].fillna('', inplace=True) train['Date'] = pd.to_datetime(train['Date']) test['Date'] = pd.to_datetime(test['Date']) train = train.sort_values(['Country_Region', 'Province_State', 'Date']) test = test.sort_values(['Country_Region', 'Province_State', 'Date']) train.query('Country_Region == "US"')[0:20] from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt feature_day = [1, 20, 50, 100, 200, 500, 1000] def CreateInput(data): feature = [] for day in feature_day: data.loc[:, 'Number day from ' + str(day) + ' case'] = 0 if train[(train['Country_Region'] == country) & (train['Province_State'] == province) & (train['ConfirmedCases'] < day)]['Date'].count() > 0: fromday = train[(train['Country_Region'] == country) & (train['Province_State'] == province) & (train['ConfirmedCases'] < day)]['Date'].max() else: fromday = train[(train['Country_Region'] == country) & (train['Province_State'] == province)]['Date'].min() for i in range(0, len(data)): if data['Date'].iloc[i] > fromday: day_denta = data['Date'].iloc[i] - fromday data['Number day from ' + str(day) + ' case'].iloc[i] = day_denta.days feature = feature + ['Number day from ' + str(day) + ' case'] return data[feature] pred_data_all = pd.DataFrame() for country in train['Country_Region'].unique(): for province in train[train['Country_Region'] == country]['Province_State'].unique(): df_train = train[(train['Country_Region'] == country) & (train['Province_State'] == province)] df_test = test[(test['Country_Region'] == country) & (test['Province_State'] == province)] X_train = CreateInput(df_train) y_train_confirmed = df_train['ConfirmedCases'].ravel() y_train_fatalities = df_train['Fatalities'].ravel() X_pred = CreateInput(df_test) for day in sorted(feature_day, reverse=True): feature_use = 'Number day from ' + str(day) + ' case' idx = X_train[X_train[feature_use] == 0].shape[0] if X_train[X_train[feature_use] > 0].shape[0] >= 20: break adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1) adjusted_y_train_confirmed = y_train_confirmed[idx:] adjusted_y_train_fatalities = y_train_fatalities[idx:] idx = X_pred[X_pred[feature_use] == 0].shape[0] adjusted_X_pred = X_pred[idx:][feature_use].values.reshape(-1, 1) pred_data = test[(test['Country_Region'] == country) & (test['Province_State'] == province)] max_train_date = train[(train['Country_Region'] == country) & (train['Province_State'] == province)]['Date'].max() min_test_date = pred_data['Date'].min() model = ExponentialSmoothing(adjusted_y_train_confirmed, trend='additive').fit() y_hat_confirmed = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0]) y_train_confirmed = train[(train['Country_Region'] == country) & (train['Province_State'] == province) & (train['Date'] >= min_test_date)]['ConfirmedCases'].values y_hat_confirmed = np.concatenate((y_train_confirmed, y_hat_confirmed), axis=0) model = ExponentialSmoothing(adjusted_y_train_fatalities, trend='additive').fit() y_hat_fatalities = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0]) y_train_fatalities = train[(train['Country_Region'] == country) & (train['Province_State'] == province) & (train['Date'] >= min_test_date)]['Fatalities'].values y_hat_fatalities = np.concatenate((y_train_fatalities, y_hat_fatalities), axis=0) pred_data['ConfirmedCases_hat'] = y_hat_confirmed pred_data['Fatalities_hat'] = y_hat_fatalities pred_data_all = pred_data_all.append(pred_data) df_val = pd.merge(pred_data_all, train[['Date', 'Country_Region', 'Province_State', 'ConfirmedCases', 'Fatalities']], on=['Date', 'Country_Region', 'Province_State'], how='left') df_val.loc[df_val['Fatalities_hat'] < 0, 'Fatalities_hat'] = 0 df_val.loc[df_val['ConfirmedCases_hat'] < 0, 'ConfirmedCases_hat'] = 0 df_val_1 = df_val.copy()
code
32068016/cell_6
[ "text_html_output_2.png", "text_html_output_3.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.set_option('mode.chained_assignment', None) test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') train['Province_State'].fillna('', inplace=True) test['Province_State'].fillna('', inplace=True) train['Date'] = pd.to_datetime(train['Date']) test['Date'] = pd.to_datetime(test['Date']) train = train.sort_values(['Country_Region', 'Province_State', 'Date']) test = test.sort_values(['Country_Region', 'Province_State', 'Date']) train.head()
code
32068016/cell_11
[ "text_html_output_1.png" ]
from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt import numpy as np # linear algebra import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import plotly.express as px import plotly.graph_objs as go from plotly.subplots import make_subplots def RMSLE(pred, actual): return np.sqrt(np.mean(np.power(np.log(pred + 1) - np.log(actual + 1), 2))) pd.set_option('mode.chained_assignment', None) test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') train['Province_State'].fillna('', inplace=True) test['Province_State'].fillna('', inplace=True) train['Date'] = pd.to_datetime(train['Date']) test['Date'] = pd.to_datetime(test['Date']) train = train.sort_values(['Country_Region', 'Province_State', 'Date']) test = test.sort_values(['Country_Region', 'Province_State', 'Date']) train.query('Country_Region == "US"')[0:20] from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt feature_day = [1, 20, 50, 100, 200, 500, 1000] def CreateInput(data): feature = [] for day in feature_day: data.loc[:, 'Number day from ' + str(day) + ' case'] = 0 if train[(train['Country_Region'] == country) & (train['Province_State'] == province) & (train['ConfirmedCases'] < day)]['Date'].count() > 0: fromday = train[(train['Country_Region'] == country) & (train['Province_State'] == province) & (train['ConfirmedCases'] < day)]['Date'].max() else: fromday = train[(train['Country_Region'] == country) & (train['Province_State'] == province)]['Date'].min() for i in range(0, len(data)): if data['Date'].iloc[i] > fromday: day_denta = data['Date'].iloc[i] - fromday data['Number day from ' + str(day) + ' case'].iloc[i] = day_denta.days feature = feature + ['Number day from ' + str(day) + ' case'] return data[feature] pred_data_all = pd.DataFrame() for country in train['Country_Region'].unique(): for province in train[train['Country_Region'] == country]['Province_State'].unique(): df_train = train[(train['Country_Region'] == country) & (train['Province_State'] == province)] df_test = test[(test['Country_Region'] == country) & (test['Province_State'] == province)] X_train = CreateInput(df_train) y_train_confirmed = df_train['ConfirmedCases'].ravel() y_train_fatalities = df_train['Fatalities'].ravel() X_pred = CreateInput(df_test) for day in sorted(feature_day, reverse=True): feature_use = 'Number day from ' + str(day) + ' case' idx = X_train[X_train[feature_use] == 0].shape[0] if X_train[X_train[feature_use] > 0].shape[0] >= 20: break adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1) adjusted_y_train_confirmed = y_train_confirmed[idx:] adjusted_y_train_fatalities = y_train_fatalities[idx:] idx = X_pred[X_pred[feature_use] == 0].shape[0] adjusted_X_pred = X_pred[idx:][feature_use].values.reshape(-1, 1) pred_data = test[(test['Country_Region'] == country) & (test['Province_State'] == province)] max_train_date = train[(train['Country_Region'] == country) & (train['Province_State'] == province)]['Date'].max() min_test_date = pred_data['Date'].min() model = ExponentialSmoothing(adjusted_y_train_confirmed, trend='additive').fit() y_hat_confirmed = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0]) y_train_confirmed = train[(train['Country_Region'] == country) & (train['Province_State'] == province) & (train['Date'] >= min_test_date)]['ConfirmedCases'].values y_hat_confirmed = np.concatenate((y_train_confirmed, y_hat_confirmed), axis=0) model = ExponentialSmoothing(adjusted_y_train_fatalities, trend='additive').fit() y_hat_fatalities = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0]) y_train_fatalities = train[(train['Country_Region'] == country) & (train['Province_State'] == province) & (train['Date'] >= min_test_date)]['Fatalities'].values y_hat_fatalities = np.concatenate((y_train_fatalities, y_hat_fatalities), axis=0) pred_data['ConfirmedCases_hat'] = y_hat_confirmed pred_data['Fatalities_hat'] = y_hat_fatalities pred_data_all = pred_data_all.append(pred_data) df_val = pd.merge(pred_data_all, train[['Date', 'Country_Region', 'Province_State', 'ConfirmedCases', 'Fatalities']], on=['Date', 'Country_Region', 'Province_State'], how='left') df_val.loc[df_val['Fatalities_hat'] < 0, 'Fatalities_hat'] = 0 df_val.loc[df_val['ConfirmedCases_hat'] < 0, 'ConfirmedCases_hat'] = 0 df_val_1 = df_val.copy() country = 'Finland' df_country = df_val[df_val['Country_Region'] == country].groupby(['Date', 'Country_Region']).sum().reset_index() idx = df_country[(df_country['ConfirmedCases'].isnull() == False) & (df_country['ConfirmedCases'] > 0)].shape[0] fig = px.line(df_country, x='Date', y='ConfirmedCases_hat', title='Total Cases of ' + df_country['Country_Region'].values[0]) fig = px.line(df_country, x='Date', y='Fatalities_hat', title='Total Fatalities of ' + df_country['Country_Region'].values[0]) country = 'US' df_country = df_val[df_val['Country_Region'] == country].groupby(['Date', 'Country_Region']).sum().reset_index() idx = df_country[(df_country['ConfirmedCases'].isnull() == False) & (df_country['ConfirmedCases'] > 0)].shape[0] fig = px.line(df_country, x='Date', y='ConfirmedCases_hat', title='Total Cases of ' + df_country['Country_Region'].values[0]) fig.add_scatter(x=df_country['Date'][0:idx], y=df_country['ConfirmedCases'][0:idx], mode='lines', name='Actual', showlegend=False) fig.show() fig = px.line(df_country, x='Date', y='Fatalities_hat', title='Total Fatalities of ' + df_country['Country_Region'].values[0]) fig.add_scatter(x=df_country['Date'][0:idx], y=df_country['Fatalities'][0:idx], mode='lines', name='Actual', showlegend=False) fig.show()
code
32068016/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32068016/cell_7
[ "text_html_output_2.png", "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.set_option('mode.chained_assignment', None) test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') train['Province_State'].fillna('', inplace=True) test['Province_State'].fillna('', inplace=True) train['Date'] = pd.to_datetime(train['Date']) test['Date'] = pd.to_datetime(test['Date']) train = train.sort_values(['Country_Region', 'Province_State', 'Date']) test = test.sort_values(['Country_Region', 'Province_State', 'Date']) train.query('Country_Region == "US"')[0:20]
code
32068016/cell_10
[ "text_html_output_1.png" ]
from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt import numpy as np # linear algebra import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import plotly.express as px import plotly.graph_objs as go from plotly.subplots import make_subplots def RMSLE(pred, actual): return np.sqrt(np.mean(np.power(np.log(pred + 1) - np.log(actual + 1), 2))) pd.set_option('mode.chained_assignment', None) test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') train['Province_State'].fillna('', inplace=True) test['Province_State'].fillna('', inplace=True) train['Date'] = pd.to_datetime(train['Date']) test['Date'] = pd.to_datetime(test['Date']) train = train.sort_values(['Country_Region', 'Province_State', 'Date']) test = test.sort_values(['Country_Region', 'Province_State', 'Date']) train.query('Country_Region == "US"')[0:20] from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt feature_day = [1, 20, 50, 100, 200, 500, 1000] def CreateInput(data): feature = [] for day in feature_day: data.loc[:, 'Number day from ' + str(day) + ' case'] = 0 if train[(train['Country_Region'] == country) & (train['Province_State'] == province) & (train['ConfirmedCases'] < day)]['Date'].count() > 0: fromday = train[(train['Country_Region'] == country) & (train['Province_State'] == province) & (train['ConfirmedCases'] < day)]['Date'].max() else: fromday = train[(train['Country_Region'] == country) & (train['Province_State'] == province)]['Date'].min() for i in range(0, len(data)): if data['Date'].iloc[i] > fromday: day_denta = data['Date'].iloc[i] - fromday data['Number day from ' + str(day) + ' case'].iloc[i] = day_denta.days feature = feature + ['Number day from ' + str(day) + ' case'] return data[feature] pred_data_all = pd.DataFrame() for country in train['Country_Region'].unique(): for province in train[train['Country_Region'] == country]['Province_State'].unique(): df_train = train[(train['Country_Region'] == country) & (train['Province_State'] == province)] df_test = test[(test['Country_Region'] == country) & (test['Province_State'] == province)] X_train = CreateInput(df_train) y_train_confirmed = df_train['ConfirmedCases'].ravel() y_train_fatalities = df_train['Fatalities'].ravel() X_pred = CreateInput(df_test) for day in sorted(feature_day, reverse=True): feature_use = 'Number day from ' + str(day) + ' case' idx = X_train[X_train[feature_use] == 0].shape[0] if X_train[X_train[feature_use] > 0].shape[0] >= 20: break adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1) adjusted_y_train_confirmed = y_train_confirmed[idx:] adjusted_y_train_fatalities = y_train_fatalities[idx:] idx = X_pred[X_pred[feature_use] == 0].shape[0] adjusted_X_pred = X_pred[idx:][feature_use].values.reshape(-1, 1) pred_data = test[(test['Country_Region'] == country) & (test['Province_State'] == province)] max_train_date = train[(train['Country_Region'] == country) & (train['Province_State'] == province)]['Date'].max() min_test_date = pred_data['Date'].min() model = ExponentialSmoothing(adjusted_y_train_confirmed, trend='additive').fit() y_hat_confirmed = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0]) y_train_confirmed = train[(train['Country_Region'] == country) & (train['Province_State'] == province) & (train['Date'] >= min_test_date)]['ConfirmedCases'].values y_hat_confirmed = np.concatenate((y_train_confirmed, y_hat_confirmed), axis=0) model = ExponentialSmoothing(adjusted_y_train_fatalities, trend='additive').fit() y_hat_fatalities = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0]) y_train_fatalities = train[(train['Country_Region'] == country) & (train['Province_State'] == province) & (train['Date'] >= min_test_date)]['Fatalities'].values y_hat_fatalities = np.concatenate((y_train_fatalities, y_hat_fatalities), axis=0) pred_data['ConfirmedCases_hat'] = y_hat_confirmed pred_data['Fatalities_hat'] = y_hat_fatalities pred_data_all = pred_data_all.append(pred_data) df_val = pd.merge(pred_data_all, train[['Date', 'Country_Region', 'Province_State', 'ConfirmedCases', 'Fatalities']], on=['Date', 'Country_Region', 'Province_State'], how='left') df_val.loc[df_val['Fatalities_hat'] < 0, 'Fatalities_hat'] = 0 df_val.loc[df_val['ConfirmedCases_hat'] < 0, 'ConfirmedCases_hat'] = 0 df_val_1 = df_val.copy() country = 'Finland' df_country = df_val[df_val['Country_Region'] == country].groupby(['Date', 'Country_Region']).sum().reset_index() idx = df_country[(df_country['ConfirmedCases'].isnull() == False) & (df_country['ConfirmedCases'] > 0)].shape[0] fig = px.line(df_country, x='Date', y='ConfirmedCases_hat', title='Total Cases of ' + df_country['Country_Region'].values[0]) fig.add_scatter(x=df_country['Date'][0:idx], y=df_country['ConfirmedCases'][0:idx], mode='lines', name='Actual', showlegend=False) fig.show() fig = px.line(df_country, x='Date', y='Fatalities_hat', title='Total Fatalities of ' + df_country['Country_Region'].values[0]) fig.add_scatter(x=df_country['Date'][0:idx], y=df_country['Fatalities'][0:idx], mode='lines', name='Actual', showlegend=False) fig.show()
code
334762/cell_9
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date']) act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train') act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test') positive_counts = pd.DataFrame({'positive_counts': act_train[act_train['outcome'] == 1].groupby('people_id', as_index=True).size()}).reset_index() negative_counts = pd.DataFrame({'negative_counts': act_train[act_train['outcome'] == 0].groupby('people_id', as_index=True).size()}).reset_index() hstry = positive_counts.merge(negative_counts, on='people_id', how='outer') hstry['positive_counts'] = hstry['positive_counts'].fillna('0').astype(np.int64) hstry['negative_counts'] = hstry['negative_counts'].fillna('0').astype(np.int64) hstry['profit'] = hstry['positive_counts'] - hstry['negative_counts'] hstry.sort_values(by='positive_counts', ascending=False).head(10)
code
334762/cell_25
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.cross_validation import train_test_split, cross_val_score from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor, AdaBoostRegressor import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date']) act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train') act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test') positive_counts = pd.DataFrame({'positive_counts': act_train[act_train['outcome'] == 1].groupby('people_id', as_index=True).size()}).reset_index() negative_counts = pd.DataFrame({'negative_counts': act_train[act_train['outcome'] == 0].groupby('people_id', as_index=True).size()}).reset_index() hstry = positive_counts.merge(negative_counts, on='people_id', how='outer') hstry['positive_counts'] = hstry['positive_counts'].fillna('0').astype(np.int64) hstry['negative_counts'] = hstry['negative_counts'].fillna('0').astype(np.int64) hstry['profit'] = hstry['positive_counts'] - hstry['negative_counts'] hstry.sort_values(by='positive_counts', ascending=False).head(10) hstry.sort_values(by='negative_counts', ascending=False).head(10) hstry['prof_label'] = pd.to_numeric(hstry['profit'] < -5).astype(int) * 4 + pd.to_numeric(hstry['profit'].isin(range(-5, 1))).astype(int) * 3 + pd.to_numeric(hstry['profit'].isin(range(1, 6))).astype(int) * 2 + pd.to_numeric(hstry['profit'] > 5).astype(int) * 1 people2 = pd.merge(people, hstry, on='people_id', how='inner') people2['positive_counts'] = people2['positive_counts'].fillna('0').astype(np.int64) people2['negative_counts'] = people2['negative_counts'].fillna('0').astype(np.int64) people2['profit'] = people2['profit'].fillna('0').astype(np.int64) xfeats = list(people2.columns) xfeats.remove('people_id') xfeats.remove('profit') xfeats.remove('prof_label') xfeats.remove('positive_counts') xfeats.remove('negative_counts') X, Y = (people2[xfeats], people2['prof_label']) X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42) clf = RandomForestRegressor(n_estimators=50) clf.fit(X_train, y_train) sortedfeats = sorted(zip(xfeats, clf.feature_importances_), key=lambda x: x[1]) newfeats = [] for i in range(1, 6): newfeats.append(sortedfeats[len(sortedfeats) - i]) newfeats = [x[0] for x in newfeats] print(newfeats)
code
334762/cell_4
[ "text_plain_output_5.png", "text_plain_output_9.png", "application_vnd.jupyter.stderr_output_4.png", "text_plain_output_10.png", "text_plain_output_6.png", "text_plain_output_3.png", "text_plain_output_7.png", "text_plain_output_8.png", "text_plain_output_2.png", "text_plain_output_1.png", "text_plain_output_11.png", "text_plain_output_12.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date']) act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train') act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test') plt.legend() plt.show()
code