path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
74040768/cell_11
[ "text_html_output_1.png" ]
import pandas as pd path = '../input/pizza-price-prediction/pizza_v1.csv' df = pd.read_csv(path) df.info()
code
74040768/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/pizza-price-prediction/pizza_v1.csv' df = pd.read_csv(path) df.info()
code
74040768/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/pizza-price-prediction/pizza_v1.csv' df = pd.read_csv(path) df.info()
code
74040768/cell_43
[ "text_plain_output_1.png" ]
from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error from sklearn.neighbors import KNeighborsRegressor from sklearn.tree import DecisionTreeRegressor import numpy as np def run_model(model, X_train, X_test, y_train, y_test): model.fit(X_train, y_train) y_pred = model.predict(X_test) train_accuracy = model.score(X_train, y_train) test_accuracy = model.score(X_test, y_test) rmse = np.sqrt(mean_squared_error(y_test, y_pred)) k_values = [1, 5, 10] for n in k_values: model = KNeighborsRegressor(n_neighbors=n) run_model(model, X_train, X_test, y_train, y_test) model = DecisionTreeRegressor() run_model(model, X_train, X_test, y_train, y_test) trees = [10, 50, 100, 200, 500] for n in trees: model = RandomForestRegressor(n_estimators=n) run_model(model, X_train, X_test, y_train, y_test) model = GradientBoostingRegressor() run_model(model, X_train, X_test, y_train, y_test)
code
74040768/cell_14
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.neighbors import KNeighborsRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.metrics import mean_squared_error path = '../input/pizza-price-prediction/pizza_v1.csv' df = pd.read_csv(path) plt.figure(figsize=(10, 6)) sns.swarmplot(x='size', y='price_rupiah', data=df) plt.show()
code
74040768/cell_36
[ "text_html_output_1.png" ]
from sklearn.metrics import mean_squared_error from sklearn.neighbors import KNeighborsRegressor from sklearn.tree import DecisionTreeRegressor import numpy as np def run_model(model, X_train, X_test, y_train, y_test): model.fit(X_train, y_train) y_pred = model.predict(X_test) train_accuracy = model.score(X_train, y_train) test_accuracy = model.score(X_test, y_test) rmse = np.sqrt(mean_squared_error(y_test, y_pred)) k_values = [1, 5, 10] for n in k_values: model = KNeighborsRegressor(n_neighbors=n) run_model(model, X_train, X_test, y_train, y_test) model = DecisionTreeRegressor() run_model(model, X_train, X_test, y_train, y_test)
code
90108018/cell_4
[ "text_plain_output_1.png" ]
cmd="./DeepFaceLab/main.py train --training-data-src-dir ./data_src/aligned --training-data-dst-dir ./data_dst/aligned --model-dir ./model --model SAEHD " cmd+=" --pretraining-data-dir ./pretrain --saving-time 15 --silent-start " !python $cmd
code
88075619/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
x = [[2], [5], [7], [8]] x x_transpose = np.array(x).T.tolist() x_transpose
code
88075619/cell_4
[ "text_plain_output_1.png" ]
A = [[1, 3, 21, 2, 0], [50, 5, -9, 0, 0], [54, -7, 11, 10, 0]] A
code
88075619/cell_7
[ "text_plain_output_1.png" ]
x = [[2], [5], [7], [8]] x
code
88075619/cell_5
[ "text_plain_output_1.png" ]
A = [[1, 3, 21, 2, 0], [50, 5, -9, 0, 0], [54, -7, 11, 10, 0]] A A = [[1, 3], [50, 5], [54, -7], [2, 4]] A
code
122256157/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/hotel-reservations-classification-dataset/Hotel Reservations.csv') df.head()
code
122256157/cell_34
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from xgboost import XGBClassifier dt = DecisionTreeClassifier() dt.fit(X_train, y_train) y_pred = dt.predict(X_test) f1_score(y_test, y_pred) rf = RandomForestClassifier() rf.fit(X_train, y_train) y_pred = rf.predict(X_test) f1_score(y_test, y_pred) lr = LogisticRegression() lr.fit(X_train, y_train) y_pred = lr.predict(X_test) f1_score(y_test, y_pred) xgb = XGBClassifier() xgb.fit(X_train, y_train) y_pred = xgb.predict(X_test) f1_score(y_test, y_pred) knn = KNeighborsClassifier() knn.fit(X_train, y_train) y_pred = knn.predict(X_test) f1_score(y_test, y_pred) nb = GaussianNB() nb.fit(X_train, y_train) y_pred = nb.predict(X_test) f1_score(y_test, y_pred)
code
122256157/cell_30
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score from sklearn.tree import DecisionTreeClassifier from xgboost import XGBClassifier dt = DecisionTreeClassifier() dt.fit(X_train, y_train) y_pred = dt.predict(X_test) f1_score(y_test, y_pred) rf = RandomForestClassifier() rf.fit(X_train, y_train) y_pred = rf.predict(X_test) f1_score(y_test, y_pred) lr = LogisticRegression() lr.fit(X_train, y_train) y_pred = lr.predict(X_test) f1_score(y_test, y_pred) xgb = XGBClassifier() xgb.fit(X_train, y_train) y_pred = xgb.predict(X_test) f1_score(y_test, y_pred)
code
122256157/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
from imblearn.over_sampling import SMOTE from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/hotel-reservations-classification-dataset/Hotel Reservations.csv') df = df.drop('Booking_ID', axis=1) features = ['no_of_adults', 'no_of_children', 'no_of_weekend_nights', 'no_of_week_nights', 'type_of_meal_plan', 'required_car_parking_space', 'room_type_reserved', 'lead_time', 'arrival_year', 'arrival_month', 'arrival_date', 'market_segment_type', 'repeated_guest', 'no_of_previous_cancellations', 'no_of_previous_bookings_not_canceled', 'avg_price_per_room', 'no_of_special_requests'] target = 'booking_status' le = LabelEncoder() for col in df.columns: if df[col].dtype == 'object': df[col] = le.fit_transform(df[col]) for col in df.columns: df[col] = pd.to_numeric(df[col], downcast='unsigned') plt.gcf().set_size_inches(20, 20) sm = SMOTE(random_state=42) X, y = sm.fit_resample(df[features], df[target]) sns.countplot(y)
code
122256157/cell_40
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from sklearn.metrics import f1_score from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neural_network import MLPClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from xgboost import XGBClassifier dt = DecisionTreeClassifier() dt.fit(X_train, y_train) y_pred = dt.predict(X_test) f1_score(y_test, y_pred) rf = RandomForestClassifier() rf.fit(X_train, y_train) y_pred = rf.predict(X_test) f1_score(y_test, y_pred) lr = LogisticRegression() lr.fit(X_train, y_train) y_pred = lr.predict(X_test) f1_score(y_test, y_pred) xgb = XGBClassifier() xgb.fit(X_train, y_train) y_pred = xgb.predict(X_test) f1_score(y_test, y_pred) knn = KNeighborsClassifier() knn.fit(X_train, y_train) y_pred = knn.predict(X_test) f1_score(y_test, y_pred) nb = GaussianNB() nb.fit(X_train, y_train) y_pred = nb.predict(X_test) f1_score(y_test, y_pred) svm = SVC() svm.fit(X_train, y_train) y_pred = svm.predict(X_test) f1_score(y_test, y_pred) nn = MLPClassifier() nn.fit(X_train, y_train) y_pred = nn.predict(X_test) f1_score(y_test, y_pred) y_pred = rf.predict(X_test) from sklearn.metrics import classification_report print(classification_report(y_test, y_pred))
code
122256157/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import f1_score from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier() dt.fit(X_train, y_train) y_pred = dt.predict(X_test) f1_score(y_test, y_pred) rf = RandomForestClassifier() rf.fit(X_train, y_train) y_pred = rf.predict(X_test) f1_score(y_test, y_pred)
code
122256157/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/hotel-reservations-classification-dataset/Hotel Reservations.csv') df = df.drop('Booking_ID', axis=1) features = ['no_of_adults', 'no_of_children', 'no_of_weekend_nights', 'no_of_week_nights', 'type_of_meal_plan', 'required_car_parking_space', 'room_type_reserved', 'lead_time', 'arrival_year', 'arrival_month', 'arrival_date', 'market_segment_type', 'repeated_guest', 'no_of_previous_cancellations', 'no_of_previous_bookings_not_canceled', 'avg_price_per_room', 'no_of_special_requests'] target = 'booking_status' df.info()
code
122256157/cell_32
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from xgboost import XGBClassifier dt = DecisionTreeClassifier() dt.fit(X_train, y_train) y_pred = dt.predict(X_test) f1_score(y_test, y_pred) rf = RandomForestClassifier() rf.fit(X_train, y_train) y_pred = rf.predict(X_test) f1_score(y_test, y_pred) lr = LogisticRegression() lr.fit(X_train, y_train) y_pred = lr.predict(X_test) f1_score(y_test, y_pred) xgb = XGBClassifier() xgb.fit(X_train, y_train) y_pred = xgb.predict(X_test) f1_score(y_test, y_pred) knn = KNeighborsClassifier() knn.fit(X_train, y_train) y_pred = knn.predict(X_test) f1_score(y_test, y_pred)
code
122256157/cell_28
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier() dt.fit(X_train, y_train) y_pred = dt.predict(X_test) f1_score(y_test, y_pred) rf = RandomForestClassifier() rf.fit(X_train, y_train) y_pred = rf.predict(X_test) f1_score(y_test, y_pred) lr = LogisticRegression() lr.fit(X_train, y_train) y_pred = lr.predict(X_test) f1_score(y_test, y_pred)
code
122256157/cell_15
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/hotel-reservations-classification-dataset/Hotel Reservations.csv') df = df.drop('Booking_ID', axis=1) features = ['no_of_adults', 'no_of_children', 'no_of_weekend_nights', 'no_of_week_nights', 'type_of_meal_plan', 'required_car_parking_space', 'room_type_reserved', 'lead_time', 'arrival_year', 'arrival_month', 'arrival_date', 'market_segment_type', 'repeated_guest', 'no_of_previous_cancellations', 'no_of_previous_bookings_not_canceled', 'avg_price_per_room', 'no_of_special_requests'] target = 'booking_status' le = LabelEncoder() for col in df.columns: if df[col].dtype == 'object': df[col] = le.fit_transform(df[col]) for col in df.columns: df[col] = pd.to_numeric(df[col], downcast='unsigned') sns.countplot(x=target, data=df)
code
122256157/cell_38
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neural_network import MLPClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from xgboost import XGBClassifier dt = DecisionTreeClassifier() dt.fit(X_train, y_train) y_pred = dt.predict(X_test) f1_score(y_test, y_pred) rf = RandomForestClassifier() rf.fit(X_train, y_train) y_pred = rf.predict(X_test) f1_score(y_test, y_pred) lr = LogisticRegression() lr.fit(X_train, y_train) y_pred = lr.predict(X_test) f1_score(y_test, y_pred) xgb = XGBClassifier() xgb.fit(X_train, y_train) y_pred = xgb.predict(X_test) f1_score(y_test, y_pred) knn = KNeighborsClassifier() knn.fit(X_train, y_train) y_pred = knn.predict(X_test) f1_score(y_test, y_pred) nb = GaussianNB() nb.fit(X_train, y_train) y_pred = nb.predict(X_test) f1_score(y_test, y_pred) svm = SVC() svm.fit(X_train, y_train) y_pred = svm.predict(X_test) f1_score(y_test, y_pred) nn = MLPClassifier() nn.fit(X_train, y_train) y_pred = nn.predict(X_test) f1_score(y_test, y_pred)
code
122256157/cell_17
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/hotel-reservations-classification-dataset/Hotel Reservations.csv') df = df.drop('Booking_ID', axis=1) features = ['no_of_adults', 'no_of_children', 'no_of_weekend_nights', 'no_of_week_nights', 'type_of_meal_plan', 'required_car_parking_space', 'room_type_reserved', 'lead_time', 'arrival_year', 'arrival_month', 'arrival_date', 'market_segment_type', 'repeated_guest', 'no_of_previous_cancellations', 'no_of_previous_bookings_not_canceled', 'avg_price_per_room', 'no_of_special_requests'] target = 'booking_status' le = LabelEncoder() for col in df.columns: if df[col].dtype == 'object': df[col] = le.fit_transform(df[col]) for col in df.columns: df[col] = pd.to_numeric(df[col], downcast='unsigned') sns.heatmap(df.corr(), annot=True) plt.gcf().set_size_inches(20, 20)
code
122256157/cell_24
[ "image_output_1.png" ]
from sklearn.metrics import f1_score from sklearn.tree import DecisionTreeClassifier dt = DecisionTreeClassifier() dt.fit(X_train, y_train) y_pred = dt.predict(X_test) f1_score(y_test, y_pred)
code
122256157/cell_10
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd df = pd.read_csv('/kaggle/input/hotel-reservations-classification-dataset/Hotel Reservations.csv') df = df.drop('Booking_ID', axis=1) features = ['no_of_adults', 'no_of_children', 'no_of_weekend_nights', 'no_of_week_nights', 'type_of_meal_plan', 'required_car_parking_space', 'room_type_reserved', 'lead_time', 'arrival_year', 'arrival_month', 'arrival_date', 'market_segment_type', 'repeated_guest', 'no_of_previous_cancellations', 'no_of_previous_bookings_not_canceled', 'avg_price_per_room', 'no_of_special_requests'] target = 'booking_status' le = LabelEncoder() for col in df.columns: if df[col].dtype == 'object': df[col] = le.fit_transform(df[col]) df.head()
code
122256157/cell_12
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd df = pd.read_csv('/kaggle/input/hotel-reservations-classification-dataset/Hotel Reservations.csv') df = df.drop('Booking_ID', axis=1) features = ['no_of_adults', 'no_of_children', 'no_of_weekend_nights', 'no_of_week_nights', 'type_of_meal_plan', 'required_car_parking_space', 'room_type_reserved', 'lead_time', 'arrival_year', 'arrival_month', 'arrival_date', 'market_segment_type', 'repeated_guest', 'no_of_previous_cancellations', 'no_of_previous_bookings_not_canceled', 'avg_price_per_room', 'no_of_special_requests'] target = 'booking_status' le = LabelEncoder() for col in df.columns: if df[col].dtype == 'object': df[col] = le.fit_transform(df[col]) for col in df.columns: df[col] = pd.to_numeric(df[col], downcast='unsigned') df.info()
code
122256157/cell_36
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from xgboost import XGBClassifier dt = DecisionTreeClassifier() dt.fit(X_train, y_train) y_pred = dt.predict(X_test) f1_score(y_test, y_pred) rf = RandomForestClassifier() rf.fit(X_train, y_train) y_pred = rf.predict(X_test) f1_score(y_test, y_pred) lr = LogisticRegression() lr.fit(X_train, y_train) y_pred = lr.predict(X_test) f1_score(y_test, y_pred) xgb = XGBClassifier() xgb.fit(X_train, y_train) y_pred = xgb.predict(X_test) f1_score(y_test, y_pred) knn = KNeighborsClassifier() knn.fit(X_train, y_train) y_pred = knn.predict(X_test) f1_score(y_test, y_pred) nb = GaussianNB() nb.fit(X_train, y_train) y_pred = nb.predict(X_test) f1_score(y_test, y_pred) svm = SVC() svm.fit(X_train, y_train) y_pred = svm.predict(X_test) f1_score(y_test, y_pred)
code
333377/cell_9
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn data = pd.read_csv('../input/Iris.csv') import seaborn # Calculate correlation coefficient cols = ['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm'] cm = np.corrcoef(data[cols].values.T) heatmap = seaborn.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 15}, yticklabels=cols, xticklabels=cols) seaborn.set(style='dark') seaborn.reset_orig() seaborn.pairplot(data.drop('Id', axis=1), hue='Species', size=2.2, diag_kind='kde')
code
333377/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/Iris.csv') data.plot(kind='scatter', x='SepalLengthCm', y='SepalWidthCm')
code
333377/cell_6
[ "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn data = pd.read_csv('../input/Iris.csv') import seaborn cols = ['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm'] cm = np.corrcoef(data[cols].values.T) heatmap = seaborn.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 15}, yticklabels=cols, xticklabels=cols)
code
333377/cell_2
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/Iris.csv') data.head()
code
333377/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
333377/cell_7
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn data = pd.read_csv('../input/Iris.csv') import seaborn # Calculate correlation coefficient cols = ['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm'] cm = np.corrcoef(data[cols].values.T) heatmap = seaborn.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 15}, yticklabels=cols, xticklabels=cols) seaborn.pairplot(data.drop('Id', axis=1), hue='Species', size=2.2, diag_kind='kde')
code
333377/cell_8
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn data = pd.read_csv('../input/Iris.csv') import seaborn # Calculate correlation coefficient cols = ['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm'] cm = np.corrcoef(data[cols].values.T) heatmap = seaborn.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 15}, yticklabels=cols, xticklabels=cols) seaborn.set(style='dark') seaborn.pairplot(data.drop('Id', axis=1), hue='Species', size=2.2, diag_kind='kde')
code
333377/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn data = pd.read_csv('../input/Iris.csv') import seaborn seaborn.pairplot(data.drop('Id', axis=1), hue='Species', size=2)
code
73087587/cell_42
[ "text_html_output_1.png" ]
import pandas as pd pd.set_option('display.max_columns', 50) pd.set_option('display.max_rows', 50) train = pd.read_csv('/kaggle/input/marketing-dsg/train.csv') test = pd.read_csv('/kaggle/input/marketing-dsg/test.csv') train_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/train_prior_order.csv') test_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/test_prior_order.csv') products = pd.read_csv('/kaggle/input/marketing-dsg/products.csv') departments = pd.read_csv('/kaggle/input/marketing-dsg/departments.csv') sample_submission = pd.read_csv('/kaggle/input/marketing-dsg/sample_submission.csv') prior_order = train_prior_order.append(test_prior_order) prior_order.shape prior_order = pd.merge(prior_order, products, on='product_id', how='left') prior_order = pd.merge(prior_order, departments, on='department_id', how='left') prior_order_unique = prior_order.drop_duplicates('order_id') product_count = prior_order.groupby('product_id').count()[['order_id']].reset_index().rename(columns={'order_id': 'product_count'}) product_count.sort_values('product_count', ascending=False, inplace=True) product_count = pd.merge(product_count, products, on='product_id', how='left') product_count = pd.merge(product_count, departments, on='department_id', how='left') product_reorder = prior_order.groupby('product_id').mean()[['reordered']].reset_index() product_reorder.sort_values('reordered', ascending=False, inplace=True) product_reorder = pd.merge(product_reorder, products, on='product_id', how='left') product_reorder = pd.merge(product_reorder, departments, on='department_id', how='left') user_reorder = prior_order.groupby('user_id').mean()[['reordered']].reset_index() user_reorder.sort_values('reordered', ascending=False, inplace=True) prior_order.query('user_id == 26489')
code
73087587/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd pd.set_option('display.max_columns', 50) pd.set_option('display.max_rows', 50) train = pd.read_csv('/kaggle/input/marketing-dsg/train.csv') test = pd.read_csv('/kaggle/input/marketing-dsg/test.csv') train_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/train_prior_order.csv') test_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/test_prior_order.csv') products = pd.read_csv('/kaggle/input/marketing-dsg/products.csv') departments = pd.read_csv('/kaggle/input/marketing-dsg/departments.csv') sample_submission = pd.read_csv('/kaggle/input/marketing-dsg/sample_submission.csv') prior_order = train_prior_order.append(test_prior_order) prior_order.shape prior_order = pd.merge(prior_order, products, on='product_id', how='left') prior_order = pd.merge(prior_order, departments, on='department_id', how='left') prior_order_unique = prior_order.drop_duplicates('order_id') product_count = prior_order.groupby('product_id').count()[['order_id']].reset_index().rename(columns={'order_id': 'product_count'}) product_count.sort_values('product_count', ascending=False, inplace=True) product_count = pd.merge(product_count, products, on='product_id', how='left') product_count = pd.merge(product_count, departments, on='department_id', how='left') product_count.head(10)
code
73087587/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns pd.set_option('display.max_columns', 50) pd.set_option('display.max_rows', 50) train = pd.read_csv('/kaggle/input/marketing-dsg/train.csv') test = pd.read_csv('/kaggle/input/marketing-dsg/test.csv') train_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/train_prior_order.csv') test_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/test_prior_order.csv') products = pd.read_csv('/kaggle/input/marketing-dsg/products.csv') departments = pd.read_csv('/kaggle/input/marketing-dsg/departments.csv') sample_submission = pd.read_csv('/kaggle/input/marketing-dsg/sample_submission.csv') prior_order = train_prior_order.append(test_prior_order) prior_order.shape prior_order = pd.merge(prior_order, products, on='product_id', how='left') prior_order = pd.merge(prior_order, departments, on='department_id', how='left') prior_order_unique = prior_order.drop_duplicates('order_id') product_count = prior_order.groupby('product_id').count()[['order_id']].reset_index().rename(columns={'order_id': 'product_count'}) product_count.sort_values('product_count', ascending=False, inplace=True) product_count = pd.merge(product_count, products, on='product_id', how='left') product_count = pd.merge(product_count, departments, on='department_id', how='left') sns.barplot(x='product_count', y='product_name', data=product_count.head(10))
code
73087587/cell_33
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd pd.set_option('display.max_columns', 50) pd.set_option('display.max_rows', 50) train = pd.read_csv('/kaggle/input/marketing-dsg/train.csv') test = pd.read_csv('/kaggle/input/marketing-dsg/test.csv') train_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/train_prior_order.csv') test_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/test_prior_order.csv') products = pd.read_csv('/kaggle/input/marketing-dsg/products.csv') departments = pd.read_csv('/kaggle/input/marketing-dsg/departments.csv') sample_submission = pd.read_csv('/kaggle/input/marketing-dsg/sample_submission.csv') prior_order = train_prior_order.append(test_prior_order) prior_order.shape prior_order = pd.merge(prior_order, products, on='product_id', how='left') prior_order = pd.merge(prior_order, departments, on='department_id', how='left') prior_order_unique = prior_order.drop_duplicates('order_id') prior_order_unique['days_since_prior_order'].describe()
code
73087587/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', 50) pd.set_option('display.max_rows', 50) train = pd.read_csv('/kaggle/input/marketing-dsg/train.csv') test = pd.read_csv('/kaggle/input/marketing-dsg/test.csv') train_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/train_prior_order.csv') test_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/test_prior_order.csv') products = pd.read_csv('/kaggle/input/marketing-dsg/products.csv') departments = pd.read_csv('/kaggle/input/marketing-dsg/departments.csv') sample_submission = pd.read_csv('/kaggle/input/marketing-dsg/sample_submission.csv') prior_order = train_prior_order.append(test_prior_order) prior_order.shape prior_order = pd.merge(prior_order, products, on='product_id', how='left') prior_order = pd.merge(prior_order, departments, on='department_id', how='left') prior_order_unique = prior_order.drop_duplicates('order_id') product_count = prior_order.groupby('product_id').count()[['order_id']].reset_index().rename(columns={'order_id': 'product_count'}) product_count.sort_values('product_count', ascending=False, inplace=True) product_count = pd.merge(product_count, products, on='product_id', how='left') product_count = pd.merge(product_count, departments, on='department_id', how='left') plt.figure(figsize=(20, 5)) sns.countplot(x='order_hour_of_day', data=prior_order_unique)
code
73087587/cell_26
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns pd.set_option('display.max_columns', 50) pd.set_option('display.max_rows', 50) train = pd.read_csv('/kaggle/input/marketing-dsg/train.csv') test = pd.read_csv('/kaggle/input/marketing-dsg/test.csv') train_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/train_prior_order.csv') test_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/test_prior_order.csv') products = pd.read_csv('/kaggle/input/marketing-dsg/products.csv') departments = pd.read_csv('/kaggle/input/marketing-dsg/departments.csv') sample_submission = pd.read_csv('/kaggle/input/marketing-dsg/sample_submission.csv') prior_order = train_prior_order.append(test_prior_order) prior_order.shape prior_order = pd.merge(prior_order, products, on='product_id', how='left') prior_order = pd.merge(prior_order, departments, on='department_id', how='left') prior_order_unique = prior_order.drop_duplicates('order_id') product_count = prior_order.groupby('product_id').count()[['order_id']].reset_index().rename(columns={'order_id': 'product_count'}) product_count.sort_values('product_count', ascending=False, inplace=True) product_count = pd.merge(product_count, products, on='product_id', how='left') product_count = pd.merge(product_count, departments, on='department_id', how='left') sns.countplot(x='order_dow', data=prior_order_unique)
code
73087587/cell_41
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd pd.set_option('display.max_columns', 50) pd.set_option('display.max_rows', 50) train = pd.read_csv('/kaggle/input/marketing-dsg/train.csv') test = pd.read_csv('/kaggle/input/marketing-dsg/test.csv') train_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/train_prior_order.csv') test_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/test_prior_order.csv') products = pd.read_csv('/kaggle/input/marketing-dsg/products.csv') departments = pd.read_csv('/kaggle/input/marketing-dsg/departments.csv') sample_submission = pd.read_csv('/kaggle/input/marketing-dsg/sample_submission.csv') prior_order = train_prior_order.append(test_prior_order) prior_order.shape prior_order = pd.merge(prior_order, products, on='product_id', how='left') prior_order = pd.merge(prior_order, departments, on='department_id', how='left') prior_order_unique = prior_order.drop_duplicates('order_id') product_count = prior_order.groupby('product_id').count()[['order_id']].reset_index().rename(columns={'order_id': 'product_count'}) product_count.sort_values('product_count', ascending=False, inplace=True) product_count = pd.merge(product_count, products, on='product_id', how='left') product_count = pd.merge(product_count, departments, on='department_id', how='left') product_reorder = prior_order.groupby('product_id').mean()[['reordered']].reset_index() product_reorder.sort_values('reordered', ascending=False, inplace=True) product_reorder = pd.merge(product_reorder, products, on='product_id', how='left') product_reorder = pd.merge(product_reorder, departments, on='department_id', how='left') user_reorder = prior_order.groupby('user_id').mean()[['reordered']].reset_index() user_reorder.sort_values('reordered', ascending=False, inplace=True) user_reorder.head(5)
code
73087587/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', 50) pd.set_option('display.max_rows', 50) train = pd.read_csv('/kaggle/input/marketing-dsg/train.csv') test = pd.read_csv('/kaggle/input/marketing-dsg/test.csv') train_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/train_prior_order.csv') test_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/test_prior_order.csv') products = pd.read_csv('/kaggle/input/marketing-dsg/products.csv') departments = pd.read_csv('/kaggle/input/marketing-dsg/departments.csv') sample_submission = pd.read_csv('/kaggle/input/marketing-dsg/sample_submission.csv') prior_order = train_prior_order.append(test_prior_order) prior_order.shape prior_order = pd.merge(prior_order, products, on='product_id', how='left') prior_order = pd.merge(prior_order, departments, on='department_id', how='left') prior_order_unique = prior_order.drop_duplicates('order_id') product_count = prior_order.groupby('product_id').count()[['order_id']].reset_index().rename(columns={'order_id': 'product_count'}) product_count.sort_values('product_count', ascending=False, inplace=True) product_count = pd.merge(product_count, products, on='product_id', how='left') product_count = pd.merge(product_count, departments, on='department_id', how='left') plt.figure(figsize=(20, 5)) sns.distplot(prior_order_unique['days_since_prior_order'], kde=False, bins=30, color='blue')
code
73087587/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd pd.set_option('display.max_columns', 50) pd.set_option('display.max_rows', 50) train = pd.read_csv('/kaggle/input/marketing-dsg/train.csv') test = pd.read_csv('/kaggle/input/marketing-dsg/test.csv') train_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/train_prior_order.csv') test_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/test_prior_order.csv') products = pd.read_csv('/kaggle/input/marketing-dsg/products.csv') departments = pd.read_csv('/kaggle/input/marketing-dsg/departments.csv') sample_submission = pd.read_csv('/kaggle/input/marketing-dsg/sample_submission.csv') print('【train】', train.shape) display(train.head()) print('【test】', test.shape) display(test.head()) print('【train_prior_order】', train_prior_order.shape) display(train_prior_order.head()) print('【test_prior_order】', test_prior_order.shape) display(test_prior_order.head()) print('【products】', products.shape) display(products.head()) print('【departments】', departments.shape) display(departments.head())
code
73087587/cell_38
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns pd.set_option('display.max_columns', 50) pd.set_option('display.max_rows', 50) train = pd.read_csv('/kaggle/input/marketing-dsg/train.csv') test = pd.read_csv('/kaggle/input/marketing-dsg/test.csv') train_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/train_prior_order.csv') test_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/test_prior_order.csv') products = pd.read_csv('/kaggle/input/marketing-dsg/products.csv') departments = pd.read_csv('/kaggle/input/marketing-dsg/departments.csv') sample_submission = pd.read_csv('/kaggle/input/marketing-dsg/sample_submission.csv') prior_order = train_prior_order.append(test_prior_order) prior_order.shape prior_order = pd.merge(prior_order, products, on='product_id', how='left') prior_order = pd.merge(prior_order, departments, on='department_id', how='left') prior_order_unique = prior_order.drop_duplicates('order_id') product_count = prior_order.groupby('product_id').count()[['order_id']].reset_index().rename(columns={'order_id': 'product_count'}) product_count.sort_values('product_count', ascending=False, inplace=True) product_count = pd.merge(product_count, products, on='product_id', how='left') product_count = pd.merge(product_count, departments, on='department_id', how='left') product_reorder = prior_order.groupby('product_id').mean()[['reordered']].reset_index() product_reorder.sort_values('reordered', ascending=False, inplace=True) product_reorder = pd.merge(product_reorder, products, on='product_id', how='left') product_reorder = pd.merge(product_reorder, departments, on='department_id', how='left') sns.barplot(x='reordered', y='product_name', data=product_reorder.head(10))
code
73087587/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import warnings import numpy as np import pandas as pd import gc from tqdm.notebook import tqdm from sklearn.model_selection import GroupKFold from sklearn.metrics import roc_auc_score from sklearn.metrics import f1_score import lightgbm as lgb import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore')
code
73087587/cell_17
[ "text_plain_output_5.png", "text_html_output_4.png", "text_html_output_6.png", "text_plain_output_4.png", "text_html_output_2.png", "text_html_output_5.png", "text_plain_output_6.png", "text_plain_output_3.png", "text_html_output_1.png", "text_plain_output_2.png", "text_plain_output_1.png", "text_html_output_3.png" ]
import pandas as pd import seaborn as sns pd.set_option('display.max_columns', 50) pd.set_option('display.max_rows', 50) train = pd.read_csv('/kaggle/input/marketing-dsg/train.csv') test = pd.read_csv('/kaggle/input/marketing-dsg/test.csv') train_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/train_prior_order.csv') test_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/test_prior_order.csv') products = pd.read_csv('/kaggle/input/marketing-dsg/products.csv') departments = pd.read_csv('/kaggle/input/marketing-dsg/departments.csv') sample_submission = pd.read_csv('/kaggle/input/marketing-dsg/sample_submission.csv') prior_order = train_prior_order.append(test_prior_order) prior_order.shape prior_order = pd.merge(prior_order, products, on='product_id', how='left') prior_order = pd.merge(prior_order, departments, on='department_id', how='left') prior_order_unique = prior_order.drop_duplicates('order_id') sns.countplot(x='reordered', data=prior_order)
code
73087587/cell_37
[ "text_plain_output_1.png" ]
import pandas as pd pd.set_option('display.max_columns', 50) pd.set_option('display.max_rows', 50) train = pd.read_csv('/kaggle/input/marketing-dsg/train.csv') test = pd.read_csv('/kaggle/input/marketing-dsg/test.csv') train_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/train_prior_order.csv') test_prior_order = pd.read_csv('/kaggle/input/marketing-dsg/test_prior_order.csv') products = pd.read_csv('/kaggle/input/marketing-dsg/products.csv') departments = pd.read_csv('/kaggle/input/marketing-dsg/departments.csv') sample_submission = pd.read_csv('/kaggle/input/marketing-dsg/sample_submission.csv') prior_order = train_prior_order.append(test_prior_order) prior_order.shape prior_order = pd.merge(prior_order, products, on='product_id', how='left') prior_order = pd.merge(prior_order, departments, on='department_id', how='left') prior_order_unique = prior_order.drop_duplicates('order_id') product_count = prior_order.groupby('product_id').count()[['order_id']].reset_index().rename(columns={'order_id': 'product_count'}) product_count.sort_values('product_count', ascending=False, inplace=True) product_count = pd.merge(product_count, products, on='product_id', how='left') product_count = pd.merge(product_count, departments, on='department_id', how='left') product_reorder = prior_order.groupby('product_id').mean()[['reordered']].reset_index() product_reorder.sort_values('reordered', ascending=False, inplace=True) product_reorder = pd.merge(product_reorder, products, on='product_id', how='left') product_reorder = pd.merge(product_reorder, departments, on='department_id', how='left') product_reorder.head(10)
code
16137891/cell_21
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/googleplaystore.csv') df.isnull().sum() df = df.dropna(axis=0) df.drop_duplicates('App', inplace=True) plt.style.use('_classic_test') plt.xticks(rotation=90) plt.style.use('seaborn-white') plt.style.use('seaborn-white') plt.figure(figsize=(10, 8)) sns.boxplot(x='Category', y='Rating', palette='rainbow', data=df) plt.xticks(rotation=90)
code
16137891/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/googleplaystore.csv') df.isnull().sum() df = df.dropna(axis=0) df.drop_duplicates('App', inplace=True) plt.style.use('_classic_test') plt.figure(figsize=(10, 8)) sns.countplot(df['Installs']) plt.xticks(rotation=90)
code
16137891/cell_25
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df.isnull().sum() df = df.dropna(axis=0) df.drop_duplicates('App', inplace=True) costlier = df.sort_values(by='Price', ascending=False)[['App', 'Price']].head(20) costlier
code
16137891/cell_4
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df.head()
code
16137891/cell_23
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/googleplaystore.csv') df.isnull().sum() df = df.dropna(axis=0) df.drop_duplicates('App', inplace=True) plt.style.use('_classic_test') plt.xticks(rotation=90) plt.style.use('seaborn-white') plt.style.use('seaborn-white') plt.xticks(rotation=90) plt.figure(figsize=(20, 10)) sns.boxplot(x='Genres', y='Rating', palette='hsv', data=df) plt.xticks(rotation=90)
code
16137891/cell_33
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df.isnull().sum() df = df.dropna(axis=0) df.drop_duplicates('App', inplace=True) costlier = df.sort_values(by="Price", ascending=False)[["App", "Price"]].head(20) costlier apps = df[df['Reviews'] >= 200] # Top 10 Apps top_apps = apps.sort_values(by=["Rating", "Reviews", "Installs"], ascending=False)[["App", "Rating", "Reviews"]].head(10) top_apps apps.sort_values(by='Reviews', ascending=False)[['App', 'Reviews', 'Rating']].head(15)
code
16137891/cell_20
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df.isnull().sum() df = df.dropna(axis=0) df.drop_duplicates('App', inplace=True) df[['Category', 'Rating']].groupby('Category', as_index=False).mean().sort_values('Rating', ascending=False).head(10)
code
16137891/cell_6
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df.isnull().sum() df.info()
code
16137891/cell_29
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df.isnull().sum() df = df.dropna(axis=0) df.drop_duplicates('App', inplace=True) costlier = df.sort_values(by="Price", ascending=False)[["App", "Price"]].head(20) costlier apps = df[df['Reviews'] >= 200] top_apps = apps.sort_values(by=['Rating', 'Reviews', 'Installs'], ascending=False)[['App', 'Rating', 'Reviews']].head(10) top_apps
code
16137891/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df.isnull().sum() df = df.dropna(axis=0) df.drop_duplicates('App', inplace=True) print('Various Categories:\n') print(df['Category'].value_counts()) print('\nVarious Genres:\n') print(df['Genres'].value_counts())
code
16137891/cell_18
[ "image_output_1.png" ]
import pandas as pd import plotly.graph_objs as go import plotly.offline as py df = pd.read_csv('../input/googleplaystore.csv') df.isnull().sum() df = df.dropna(axis=0) df.drop_duplicates('App', inplace=True) def pie_plot(cnt, colors, text): labels = list(cnt.index) values = list(cnt.values) trace = go.Pie(labels=labels, values=values, hoverinfo='value+percent', title=text, textinfo='label', hole=.4, textposition='inside', marker=dict(colors = colors, ), ) return trace types = df["Type"].value_counts() trace = pie_plot(types, ['#09efef', '#b70333'], "Results") py.iplot([trace], filename='Type') content = df['Content Rating'].value_counts() trace = pie_plot(content, ['yellow', 'cyan', 'purple', 'red'], 'Content') py.iplot([trace], filename='Content')
code
16137891/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd import plotly.graph_objs as go import plotly.offline as py df = pd.read_csv('../input/googleplaystore.csv') df.isnull().sum() df = df.dropna(axis=0) df.drop_duplicates('App', inplace=True) def pie_plot(cnt, colors, text): labels = list(cnt.index) values = list(cnt.values) trace = go.Pie(labels=labels, values=values, hoverinfo='value+percent', title=text, textinfo='label', hole=0.4, textposition='inside', marker=dict(colors=colors)) return trace types = df['Type'].value_counts() trace = pie_plot(types, ['#09efef', '#b70333'], 'Results') py.iplot([trace], filename='Type')
code
16137891/cell_3
[ "image_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import plotly.offline as py import plotly.graph_objs as go from plotly import tools py.init_notebook_mode(connected=True) import warnings warnings.filterwarnings('ignore') import os print(os.listdir('../input'))
code
16137891/cell_31
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df.isnull().sum() df = df.dropna(axis=0) df.drop_duplicates('App', inplace=True) costlier = df.sort_values(by="Price", ascending=False)[["App", "Price"]].head(20) costlier apps = df[df['Reviews'] >= 200] # Top 10 Apps top_apps = apps.sort_values(by=["Rating", "Reviews", "Installs"], ascending=False)[["App", "Rating", "Reviews"]].head(10) top_apps apps.sort_values(by='Installs', ascending=False)[['App', 'Installs', 'Rating']].head(15)
code
16137891/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/googleplaystore.csv') df.isnull().sum() df = df.dropna(axis=0) df.drop_duplicates('App', inplace=True) plt.style.use('_classic_test') plt.xticks(rotation=90) plt.style.use('seaborn-white') sns.pairplot(df)
code
16137891/cell_22
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df.isnull().sum() df = df.dropna(axis=0) df.drop_duplicates('App', inplace=True) df[['Genres', 'Rating']].groupby('Genres', as_index=False).mean().sort_values('Rating', ascending=False).head(10)
code
16137891/cell_27
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df.isnull().sum() df = df.dropna(axis=0) df.drop_duplicates('App', inplace=True) costlier = df.sort_values(by="Price", ascending=False)[["App", "Price"]].head(20) costlier apps = df[df['Reviews'] >= 200] apps.head()
code
16137891/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df.isnull().sum() df = df.dropna(axis=0) df.drop_duplicates('App', inplace=True) plt.style.use('_classic_test') plt.figure(figsize=(10, 8)) plt.hist(df['Rating'], bins=100)
code
16137891/cell_5
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/googleplaystore.csv') df.isnull().sum()
code
73087852/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv').head(5) train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') train.columns train.isna().sum().sum() cont = train[['cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13']] cont.corr().style.background_gradient(cmap='coolwarm').set_precision(5)
code
73087852/cell_25
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import random seed = 42 random.seed(seed) np.random.seed(seed) pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv').head(5) train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') train.columns train.isna().sum().sum() cat = train[['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9']] ohe = OneHotEncoder().fit_transform(cat).toarray() cont = train[['cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13']] cont.corr().style.background_gradient(cmap='coolwarm').set_precision(5) cont_array = cont.to_numpy() cont_array.shape target = train['target'] target X = np.hstack((ohe, cont_array)) X.shape y = target.to_numpy() y.shape X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=seed, test_size=0.2) (X_train.shape, y_train.shape, X_test.shape, y_test.shape) from sklearn.preprocessing import StandardScaler ss = StandardScaler() X_train = ss.fit_transform(X_train) X_test = ss.transform(X_test) test_size = 0.2 df = train[train.columns[1:]] test_bound = int(df.shape[0] * (1 - test_size)) train_df = df[:test_bound] test_df = df[test_bound:] X_train = train_df[train_df.columns[:-1]] y_train = train_df['target'] X_test = test_df[test_df.columns[:-1]] y_test = test_df['target'] (X_train.shape, y_train.shape, X_test.shape, y_test.shape)
code
73087852/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv').head(5) train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') train.head(10)
code
73087852/cell_23
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import random seed = 42 random.seed(seed) np.random.seed(seed) pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv').head(5) train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') train.columns train.isna().sum().sum() cat = train[['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9']] ohe = OneHotEncoder().fit_transform(cat).toarray() cont = train[['cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13']] cont.corr().style.background_gradient(cmap='coolwarm').set_precision(5) cont_array = cont.to_numpy() cont_array.shape target = train['target'] target X = np.hstack((ohe, cont_array)) X.shape y = target.to_numpy() y.shape X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=seed, test_size=0.2) (X_train.shape, y_train.shape, X_test.shape, y_test.shape) from sklearn.preprocessing import StandardScaler ss = StandardScaler() X_train = ss.fit_transform(X_train) X_test = ss.transform(X_test) from sklearn.metrics import mean_squared_error def rmse(y_true, y_pred): return mean_squared_error(y_true=y_true, y_pred=y_pred) ** 0.5 from sklearn.linear_model import LinearRegression linreg = LinearRegression() linreg.fit(X_train, y_train) pred = linreg.predict(X_test) rmse(y_test, pred)
code
73087852/cell_30
[ "text_plain_output_1.png" ]
from catboost import CatBoostRegressor from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import random seed = 42 random.seed(seed) np.random.seed(seed) pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv').head(5) train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') train.columns train.isna().sum().sum() cat = train[['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9']] ohe = OneHotEncoder().fit_transform(cat).toarray() cont = train[['cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13']] cont.corr().style.background_gradient(cmap='coolwarm').set_precision(5) cont_array = cont.to_numpy() cont_array.shape target = train['target'] target X = np.hstack((ohe, cont_array)) X.shape y = target.to_numpy() y.shape X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=seed, test_size=0.2) (X_train.shape, y_train.shape, X_test.shape, y_test.shape) from sklearn.preprocessing import StandardScaler ss = StandardScaler() X_train = ss.fit_transform(X_train) X_test = ss.transform(X_test) from sklearn.metrics import mean_squared_error def rmse(y_true, y_pred): return mean_squared_error(y_true=y_true, y_pred=y_pred) ** 0.5 from sklearn.linear_model import LinearRegression linreg = LinearRegression() linreg.fit(X_train, y_train) pred = linreg.predict(X_test) rmse(y_test, pred) test_size = 0.2 df = train[train.columns[1:]] test_bound = int(df.shape[0] * (1 - test_size)) train_df = df[:test_bound] test_df = df[test_bound:] X_train = train_df[train_df.columns[:-1]] y_train = train_df['target'] X_test = test_df[test_df.columns[:-1]] y_test = test_df['target'] (X_train.shape, y_train.shape, X_test.shape, y_test.shape) params = {'depth': 7, 'iterations': 111, 'learning_rate': 0.07, 'l2_leaf_reg': 0.36} model = CatBoostRegressor(**params, random_state=seed, cat_features=['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9'], loss_function='RMSE') model.fit(train.drop(columns=['id', 'target']), train['target'], verbose=False) pred = model.predict(X_test) rmse(y_test, pred)
code
73087852/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv').head(5) train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') test.head(10)
code
73087852/cell_29
[ "text_plain_output_1.png" ]
params = {'depth': 7, 'iterations': 111, 'learning_rate': 0.07, 'l2_leaf_reg': 0.36} params
code
73087852/cell_19
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import random seed = 42 random.seed(seed) np.random.seed(seed) pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv').head(5) train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') train.columns train.isna().sum().sum() cat = train[['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9']] ohe = OneHotEncoder().fit_transform(cat).toarray() cont = train[['cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13']] cont.corr().style.background_gradient(cmap='coolwarm').set_precision(5) cont_array = cont.to_numpy() cont_array.shape target = train['target'] target X = np.hstack((ohe, cont_array)) X.shape y = target.to_numpy() y.shape X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=seed, test_size=0.2) (X_train.shape, y_train.shape, X_test.shape, y_test.shape)
code
73087852/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
73087852/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv').head(5) train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') train.columns train.isna().sum().sum()
code
73087852/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv').head(5) train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') test.isna().sum().sum()
code
73087852/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv').head(5) train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') train.columns train.isna().sum().sum() target = train['target'] target
code
73087852/cell_16
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random import random seed = 42 random.seed(seed) np.random.seed(seed) pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv').head(5) train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') train.columns train.isna().sum().sum() cat = train[['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9']] ohe = OneHotEncoder().fit_transform(cat).toarray() cont = train[['cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13']] cont.corr().style.background_gradient(cmap='coolwarm').set_precision(5) cont_array = cont.to_numpy() cont_array.shape X = np.hstack((ohe, cont_array)) X.shape
code
73087852/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv').head(5)
code
73087852/cell_17
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv').head(5) train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') train.columns train.isna().sum().sum() target = train['target'] target y = target.to_numpy() y.shape
code
73087852/cell_14
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv').head(5) train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') train.columns train.isna().sum().sum() cont = train[['cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13']] cont.corr().style.background_gradient(cmap='coolwarm').set_precision(5) cont_array = cont.to_numpy() cont_array.shape
code
73087852/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv').head(5) train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') train.columns train.isna().sum().sum() cat = train[['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9']] cat.head(5)
code
73087852/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv').head(5) train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') train.columns train.isna().sum().sum() cont = train[['cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13']] cont.head(5)
code
73087852/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv').head(5) train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') train.columns
code
90111149/cell_4
[ "text_html_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.getcwd())
code
90111149/cell_2
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np import numpy as np # linear algebra import numpy as np # linear algebra import math import random import pickle import itertools import numpy as np import pandas as pd from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, label_ranking_average_precision_score, label_ranking_loss, coverage_error from sklearn.utils import shuffle from scipy.signal import resample import matplotlib.pyplot as plt np.random.seed(42) import pickle from sklearn.preprocessing import OneHotEncoder from keras.models import Model from keras.layers import Input, Dense, Conv1D, MaxPooling1D, Softmax, Add, Flatten, Activation from keras import backend as K from keras.optimizers import Adam from keras.callbacks import LearningRateScheduler, ModelCheckpoint import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.metrics import f1_score from sklearn.metrics import confusion_matrix import math import random import pickle import itertools import numpy as np import pandas as pd import matplotlib.pyplot as plt np.random.seed(42) import tensorflow as tf import tensorflow.keras as keras
code
90111149/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
from scipy.signal import resample from sklearn.preprocessing import MinMaxScaler from sklearn.utils import resample import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mit_test_data = pd.read_csv('../input/heartbeat/mitbih_test.csv', header=None) mit_train_data = pd.read_csv('../input/heartbeat/mitbih_train.csv', header=None) from sklearn.utils import resample df_1 = mit_train_data[mit_train_data[187] == 1] df_2 = mit_train_data[mit_train_data[187] == 2] df_3 = mit_train_data[mit_train_data[187] == 3] df_4 = mit_train_data[mit_train_data[187] == 4] df_0 = mit_train_data[mit_train_data[187] == 0].sample(n=20000, random_state=42) df_1_upsample = resample(df_1, replace=True, n_samples=20000, random_state=123) df_2_upsample = resample(df_2, replace=True, n_samples=20000, random_state=124) df_3_upsample = resample(df_3, replace=True, n_samples=20000, random_state=125) df_4_upsample = resample(df_4, replace=True, n_samples=20000, random_state=126) train_df = pd.concat([df_0, df_1_upsample, df_2_upsample, df_3_upsample, df_4_upsample]) df_11 = mit_test_data[mit_train_data[187] == 1] df_22 = mit_test_data[mit_train_data[187] == 2] df_33 = mit_test_data[mit_train_data[187] == 3] df_44 = mit_test_data[mit_train_data[187] == 4] df_00 = mit_test_data[mit_train_data[187] == 0].sample(n=20000, random_state=42) df_11_upsample = resample(df_1, replace=True, n_samples=20000, random_state=123) df_22_upsample = resample(df_2, replace=True, n_samples=20000, random_state=124) df_33_upsample = resample(df_3, replace=True, n_samples=20000, random_state=125) df_44_upsample = resample(df_4, replace=True, n_samples=20000, random_state=126) test_df = pd.concat([df_00, df_11_upsample, df_22_upsample, df_33_upsample, df_44_upsample]) equilibre = train_df[187].value_counts() test = pd.read_csv('../input/heartbeat/mitbih_test.csv', header=None) test = test.iloc[0, 0:len(test.T) - 1] test = pd.DataFrame(test) from sklearn.preprocessing import MinMaxScaler values = test.values scaler = MinMaxScaler(feature_range=(0, 1)) scaler = scaler.fit(values) normalized = scaler.transform(values) normalized = pd.DataFrame(normalized) normalized
code
90111149/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
90111149/cell_7
[ "text_plain_output_1.png" ]
from scipy.signal import resample from sklearn.utils import resample import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mit_test_data = pd.read_csv('../input/heartbeat/mitbih_test.csv', header=None) mit_train_data = pd.read_csv('../input/heartbeat/mitbih_train.csv', header=None) from sklearn.utils import resample df_1 = mit_train_data[mit_train_data[187] == 1] df_2 = mit_train_data[mit_train_data[187] == 2] df_3 = mit_train_data[mit_train_data[187] == 3] df_4 = mit_train_data[mit_train_data[187] == 4] df_0 = mit_train_data[mit_train_data[187] == 0].sample(n=20000, random_state=42) df_1_upsample = resample(df_1, replace=True, n_samples=20000, random_state=123) df_2_upsample = resample(df_2, replace=True, n_samples=20000, random_state=124) df_3_upsample = resample(df_3, replace=True, n_samples=20000, random_state=125) df_4_upsample = resample(df_4, replace=True, n_samples=20000, random_state=126) train_df = pd.concat([df_0, df_1_upsample, df_2_upsample, df_3_upsample, df_4_upsample]) df_11 = mit_test_data[mit_train_data[187] == 1] df_22 = mit_test_data[mit_train_data[187] == 2] df_33 = mit_test_data[mit_train_data[187] == 3] df_44 = mit_test_data[mit_train_data[187] == 4] df_00 = mit_test_data[mit_train_data[187] == 0].sample(n=20000, random_state=42) df_11_upsample = resample(df_1, replace=True, n_samples=20000, random_state=123) df_22_upsample = resample(df_2, replace=True, n_samples=20000, random_state=124) df_33_upsample = resample(df_3, replace=True, n_samples=20000, random_state=125) df_44_upsample = resample(df_4, replace=True, n_samples=20000, random_state=126) test_df = pd.concat([df_00, df_11_upsample, df_22_upsample, df_33_upsample, df_44_upsample]) equilibre = train_df[187].value_counts() print(equilibre)
code
90111149/cell_8
[ "text_plain_output_1.png" ]
from scipy.signal import resample from sklearn.utils import resample import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mit_test_data = pd.read_csv('../input/heartbeat/mitbih_test.csv', header=None) mit_train_data = pd.read_csv('../input/heartbeat/mitbih_train.csv', header=None) from sklearn.utils import resample df_1 = mit_train_data[mit_train_data[187] == 1] df_2 = mit_train_data[mit_train_data[187] == 2] df_3 = mit_train_data[mit_train_data[187] == 3] df_4 = mit_train_data[mit_train_data[187] == 4] df_0 = mit_train_data[mit_train_data[187] == 0].sample(n=20000, random_state=42) df_1_upsample = resample(df_1, replace=True, n_samples=20000, random_state=123) df_2_upsample = resample(df_2, replace=True, n_samples=20000, random_state=124) df_3_upsample = resample(df_3, replace=True, n_samples=20000, random_state=125) df_4_upsample = resample(df_4, replace=True, n_samples=20000, random_state=126) train_df = pd.concat([df_0, df_1_upsample, df_2_upsample, df_3_upsample, df_4_upsample]) df_11 = mit_test_data[mit_train_data[187] == 1] df_22 = mit_test_data[mit_train_data[187] == 2] df_33 = mit_test_data[mit_train_data[187] == 3] df_44 = mit_test_data[mit_train_data[187] == 4] df_00 = mit_test_data[mit_train_data[187] == 0].sample(n=20000, random_state=42) df_11_upsample = resample(df_1, replace=True, n_samples=20000, random_state=123) df_22_upsample = resample(df_2, replace=True, n_samples=20000, random_state=124) df_33_upsample = resample(df_3, replace=True, n_samples=20000, random_state=125) df_44_upsample = resample(df_4, replace=True, n_samples=20000, random_state=126) test_df = pd.concat([df_00, df_11_upsample, df_22_upsample, df_33_upsample, df_44_upsample]) equilibre = train_df[187].value_counts() print('ALL Train data') print('Type\tCount') print(mit_train_data[187].value_counts()) print('-------------------------') print('ALL Test data') print('Type\tCount') print(mit_test_data[187].value_counts()) print('ALL Balanced Train data') print('Type\tCount') print(train_df[187].value_counts()) print('-------------------------') print('ALL Balanced Test data') print('Type\tCount') print(train_df[187].value_counts())
code
90111149/cell_14
[ "text_plain_output_1.png" ]
from keras.utils import to_categorical from scipy.signal import resample from sklearn.utils import resample import pandas as pd import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mit_test_data = pd.read_csv('../input/heartbeat/mitbih_test.csv', header=None) mit_train_data = pd.read_csv('../input/heartbeat/mitbih_train.csv', header=None) from sklearn.utils import resample df_1 = mit_train_data[mit_train_data[187] == 1] df_2 = mit_train_data[mit_train_data[187] == 2] df_3 = mit_train_data[mit_train_data[187] == 3] df_4 = mit_train_data[mit_train_data[187] == 4] df_0 = mit_train_data[mit_train_data[187] == 0].sample(n=20000, random_state=42) df_1_upsample = resample(df_1, replace=True, n_samples=20000, random_state=123) df_2_upsample = resample(df_2, replace=True, n_samples=20000, random_state=124) df_3_upsample = resample(df_3, replace=True, n_samples=20000, random_state=125) df_4_upsample = resample(df_4, replace=True, n_samples=20000, random_state=126) train_df = pd.concat([df_0, df_1_upsample, df_2_upsample, df_3_upsample, df_4_upsample]) df_11 = mit_test_data[mit_train_data[187] == 1] df_22 = mit_test_data[mit_train_data[187] == 2] df_33 = mit_test_data[mit_train_data[187] == 3] df_44 = mit_test_data[mit_train_data[187] == 4] df_00 = mit_test_data[mit_train_data[187] == 0].sample(n=20000, random_state=42) df_11_upsample = resample(df_1, replace=True, n_samples=20000, random_state=123) df_22_upsample = resample(df_2, replace=True, n_samples=20000, random_state=124) df_33_upsample = resample(df_3, replace=True, n_samples=20000, random_state=125) df_44_upsample = resample(df_4, replace=True, n_samples=20000, random_state=126) test_df = pd.concat([df_00, df_11_upsample, df_22_upsample, df_33_upsample, df_44_upsample]) equilibre = train_df[187].value_counts() from keras.utils import to_categorical print('--- X ---') X = train_df.loc[:, mit_train_data.columns != 187] print(X.head()) print(X.info()) print('--- Y ---') y = train_df.loc[:, mit_train_data.columns == 187] y = to_categorical(y) print('--- testX ---') testX = test_df.loc[:, mit_test_data.columns != 187] print(testX.head()) print(testX.info()) print('--- testy ---') testy = test_df.loc[:, mit_test_data.columns == 187] testy = to_categorical(testy)
code
2028270/cell_21
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import seaborn as sns wine_df = pd.read_csv('../input/winemag-data_first150k.csv') wine_df.drop('region_1', axis=1, inplace=True) wine_df.drop('region_2', axis=1, inplace=True) wine_df.drop('description', axis=1, inplace=True) wine_df.drop('designation', axis=1, inplace=True) red_df = wine_df[(wine_df['cheaper'] == 'yes') & (wine_df['quality'] == 'yes') & (wine_df['reds'] == 'yes')] red_df['variety'].value_counts().plot(kind='bar')
code
2028270/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd wine_df = pd.read_csv('../input/winemag-data_first150k.csv') wine_df.head()
code
2028270/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns wine_df = pd.read_csv('../input/winemag-data_first150k.csv') wine_df.drop('region_1', axis=1, inplace=True) wine_df.drop('region_2', axis=1, inplace=True) wine_df.drop('description', axis=1, inplace=True) wine_df.drop('designation', axis=1, inplace=True) red_df = wine_df[(wine_df['cheaper'] == 'yes') & (wine_df['quality'] == 'yes') & (wine_df['reds'] == 'yes')] red_df['country'].value_counts().plot(kind='bar')
code
2028270/cell_6
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns wine_df = pd.read_csv('../input/winemag-data_first150k.csv') sns.heatmap(wine_df.isnull(), yticklabels=False, cbar=False, cmap='viridis')
code
2028270/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns wine_df = pd.read_csv('../input/winemag-data_first150k.csv') wine_df.drop('region_1', axis=1, inplace=True) wine_df.drop('region_2', axis=1, inplace=True) wine_df.drop('description', axis=1, inplace=True) wine_df.drop('designation', axis=1, inplace=True) wine_df.head()
code
2028270/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns wine_df = pd.read_csv('../input/winemag-data_first150k.csv') wine_df.drop('region_1', axis=1, inplace=True) wine_df.drop('region_2', axis=1, inplace=True) wine_df.drop('description', axis=1, inplace=True) wine_df.drop('designation', axis=1, inplace=True) red_df = wine_df[(wine_df['cheaper'] == 'yes') & (wine_df['quality'] == 'yes') & (wine_df['reds'] == 'yes')] red_df.head()
code
2028270/cell_15
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns wine_df = pd.read_csv('../input/winemag-data_first150k.csv') wine_df.drop('region_1', axis=1, inplace=True) wine_df.drop('region_2', axis=1, inplace=True) wine_df.drop('description', axis=1, inplace=True) wine_df.drop('designation', axis=1, inplace=True) newdf = wine_df[(wine_df['cheaper'] == 'yes') & (wine_df['quality'] == 'yes')] sns.countplot(x='country', data=newdf)
code