path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
334762/cell_23
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date']) act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train') act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test') positive_counts = pd.DataFrame({'positive_counts': act_train[act_train['outcome'] == 1].groupby('people_id', as_index=True).size()}).reset_index() negative_counts = pd.DataFrame({'negative_counts': act_train[act_train['outcome'] == 0].groupby('people_id', as_index=True).size()}).reset_index() hstry = positive_counts.merge(negative_counts, on='people_id', how='outer') hstry['positive_counts'] = hstry['positive_counts'].fillna('0').astype(np.int64) hstry['negative_counts'] = hstry['negative_counts'].fillna('0').astype(np.int64) hstry['profit'] = hstry['positive_counts'] - hstry['negative_counts'] hstry.sort_values(by='positive_counts', ascending=False).head(10) hstry.sort_values(by='negative_counts', ascending=False).head(10) hstry['prof_label'] = pd.to_numeric(hstry['profit'] < -5).astype(int) * 4 + pd.to_numeric(hstry['profit'].isin(range(-5, 1))).astype(int) * 3 + pd.to_numeric(hstry['profit'].isin(range(1, 6))).astype(int) * 2 + pd.to_numeric(hstry['profit'] > 5).astype(int) * 1 people2 = pd.merge(people, hstry, on='people_id', how='inner') people2['positive_counts'] = people2['positive_counts'].fillna('0').astype(np.int64) people2['negative_counts'] = people2['negative_counts'].fillna('0').astype(np.int64) people2['profit'] = people2['profit'].fillna('0').astype(np.int64) xfeats = list(people2.columns) xfeats.remove('people_id') xfeats.remove('profit') xfeats.remove('prof_label') xfeats.remove('positive_counts') xfeats.remove('negative_counts') print(xfeats) X, Y = (people2[xfeats], people2['prof_label'])
code
334762/cell_20
[ "text_html_output_1.png" ]
code
334762/cell_6
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date']) act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train') act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test') goods = act_train[act_train['outcome'] == 1] bads = act_train[act_train['outcome'] == 0] goods['date'].groupby(goods.date.dt.date).count().plot(figsize=(10, 5), label='Good') bads['date'].groupby(bads.date.dt.date).count().plot(figsize=(10, 5), c='r', label='Bad') plt.legend() plt.show()
code
334762/cell_29
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date']) act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train') act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test') positive_counts = pd.DataFrame({'positive_counts': act_train[act_train['outcome'] == 1].groupby('people_id', as_index=True).size()}).reset_index() negative_counts = pd.DataFrame({'negative_counts': act_train[act_train['outcome'] == 0].groupby('people_id', as_index=True).size()}).reset_index() hstry = positive_counts.merge(negative_counts, on='people_id', how='outer') hstry['positive_counts'] = hstry['positive_counts'].fillna('0').astype(np.int64) hstry['negative_counts'] = hstry['negative_counts'].fillna('0').astype(np.int64) hstry['profit'] = hstry['positive_counts'] - hstry['negative_counts'] hstry.sort_values(by='positive_counts', ascending=False).head(10) hstry.sort_values(by='negative_counts', ascending=False).head(10) hstry['prof_label'] = pd.to_numeric(hstry['profit'] < -5).astype(int) * 4 + pd.to_numeric(hstry['profit'].isin(range(-5, 1))).astype(int) * 3 + pd.to_numeric(hstry['profit'].isin(range(1, 6))).astype(int) * 2 + pd.to_numeric(hstry['profit'] > 5).astype(int) * 1 people2 = pd.merge(people, hstry, on='people_id', how='inner') people2['positive_counts'] = people2['positive_counts'].fillna('0').astype(np.int64) people2['negative_counts'] = people2['negative_counts'].fillna('0').astype(np.int64) people2['profit'] = people2['profit'].fillna('0').astype(np.int64) xfeats = list(people2.columns) xfeats.remove('people_id') xfeats.remove('profit') xfeats.remove('prof_label') xfeats.remove('positive_counts') xfeats.remove('negative_counts') X, Y = (people2[xfeats], people2['prof_label']) people2[['prof_label', 'pred']].sample(20)
code
334762/cell_26
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.cross_validation import train_test_split, cross_val_score from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor, AdaBoostRegressor import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date']) act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train') act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test') positive_counts = pd.DataFrame({'positive_counts': act_train[act_train['outcome'] == 1].groupby('people_id', as_index=True).size()}).reset_index() negative_counts = pd.DataFrame({'negative_counts': act_train[act_train['outcome'] == 0].groupby('people_id', as_index=True).size()}).reset_index() hstry = positive_counts.merge(negative_counts, on='people_id', how='outer') hstry['positive_counts'] = hstry['positive_counts'].fillna('0').astype(np.int64) hstry['negative_counts'] = hstry['negative_counts'].fillna('0').astype(np.int64) hstry['profit'] = hstry['positive_counts'] - hstry['negative_counts'] hstry.sort_values(by='positive_counts', ascending=False).head(10) hstry.sort_values(by='negative_counts', ascending=False).head(10) hstry['prof_label'] = pd.to_numeric(hstry['profit'] < -5).astype(int) * 4 + pd.to_numeric(hstry['profit'].isin(range(-5, 1))).astype(int) * 3 + pd.to_numeric(hstry['profit'].isin(range(1, 6))).astype(int) * 2 + pd.to_numeric(hstry['profit'] > 5).astype(int) * 1 people2 = pd.merge(people, hstry, on='people_id', how='inner') people2['positive_counts'] = people2['positive_counts'].fillna('0').astype(np.int64) people2['negative_counts'] = people2['negative_counts'].fillna('0').astype(np.int64) people2['profit'] = people2['profit'].fillna('0').astype(np.int64) xfeats = list(people2.columns) xfeats.remove('people_id') xfeats.remove('profit') xfeats.remove('prof_label') xfeats.remove('positive_counts') xfeats.remove('negative_counts') X, Y = (people2[xfeats], people2['prof_label']) X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42) clf = RandomForestRegressor(n_estimators=50) clf.fit(X_train, y_train) sortedfeats = sorted(zip(xfeats, clf.feature_importances_), key=lambda x: x[1]) newfeats = [] for i in range(1, 6): newfeats.append(sortedfeats[len(sortedfeats) - i]) newfeats = [x[0] for x in newfeats] X, Y = (people2[newfeats], people2['prof_label']) X_train2, X_test2, y_train2, y_test2 = train_test_split(X, Y, test_size=0.2, random_state=42) clf2 = RandomForestRegressor(n_estimators=100) clf2.fit(X_train2, y_train2) print(clf2.feature_importances_)
code
334762/cell_28
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_4.png", "text_plain_output_3.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.cross_validation import train_test_split, cross_val_score from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor, AdaBoostRegressor from sklearn.metrics import auc, mean_squared_error import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date']) act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train') act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test') positive_counts = pd.DataFrame({'positive_counts': act_train[act_train['outcome'] == 1].groupby('people_id', as_index=True).size()}).reset_index() negative_counts = pd.DataFrame({'negative_counts': act_train[act_train['outcome'] == 0].groupby('people_id', as_index=True).size()}).reset_index() hstry = positive_counts.merge(negative_counts, on='people_id', how='outer') hstry['positive_counts'] = hstry['positive_counts'].fillna('0').astype(np.int64) hstry['negative_counts'] = hstry['negative_counts'].fillna('0').astype(np.int64) hstry['profit'] = hstry['positive_counts'] - hstry['negative_counts'] hstry.sort_values(by='positive_counts', ascending=False).head(10) hstry.sort_values(by='negative_counts', ascending=False).head(10) hstry['prof_label'] = pd.to_numeric(hstry['profit'] < -5).astype(int) * 4 + pd.to_numeric(hstry['profit'].isin(range(-5, 1))).astype(int) * 3 + pd.to_numeric(hstry['profit'].isin(range(1, 6))).astype(int) * 2 + pd.to_numeric(hstry['profit'] > 5).astype(int) * 1 people2 = pd.merge(people, hstry, on='people_id', how='inner') people2['positive_counts'] = people2['positive_counts'].fillna('0').astype(np.int64) people2['negative_counts'] = people2['negative_counts'].fillna('0').astype(np.int64) people2['profit'] = people2['profit'].fillna('0').astype(np.int64) xfeats = list(people2.columns) xfeats.remove('people_id') xfeats.remove('profit') xfeats.remove('prof_label') xfeats.remove('positive_counts') xfeats.remove('negative_counts') X, Y = (people2[xfeats], people2['prof_label']) X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42) clf = RandomForestRegressor(n_estimators=50) clf.fit(X_train, y_train) sortedfeats = sorted(zip(xfeats, clf.feature_importances_), key=lambda x: x[1]) newfeats = [] for i in range(1, 6): newfeats.append(sortedfeats[len(sortedfeats) - i]) newfeats = [x[0] for x in newfeats] X, Y = (people2[newfeats], people2['prof_label']) X_train2, X_test2, y_train2, y_test2 = train_test_split(X, Y, test_size=0.2, random_state=42) clf2 = RandomForestRegressor(n_estimators=100) clf2.fit(X_train2, y_train2) people2['pred'] = clf.predict(people2[xfeats]) people2['pred2'] = clf2.predict(people2[newfeats])
code
334762/cell_15
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date']) act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train') act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test') goods = act_train[act_train['outcome'] == 1] bads = act_train[act_train['outcome'] == 0] goods['date'].groupby(goods.date.dt.date).count().plot(figsize=(10, 5), label='Good') bads['date'].groupby(bads.date.dt.date).count().plot(figsize=(10, 5), c='r', label='Bad') positive_counts = pd.DataFrame({'positive_counts': act_train[act_train['outcome'] == 1].groupby('people_id', as_index=True).size()}).reset_index() negative_counts = pd.DataFrame({'negative_counts': act_train[act_train['outcome'] == 0].groupby('people_id', as_index=True).size()}).reset_index() hstry = positive_counts.merge(negative_counts, on='people_id', how='outer') hstry['positive_counts'] = hstry['positive_counts'].fillna('0').astype(np.int64) hstry['negative_counts'] = hstry['negative_counts'].fillna('0').astype(np.int64) hstry['profit'] = hstry['positive_counts'] - hstry['negative_counts'] hstry.sort_values(by='positive_counts', ascending=False).head(10) hstry.sort_values(by='negative_counts', ascending=False).head(10) plt.figure() plt.hist(hstry['prof_label'], 4, range=(1, 5)) plt.show()
code
334762/cell_24
[ "image_output_11.png", "image_output_24.png", "image_output_25.png", "text_plain_output_5.png", "text_plain_output_15.png", "image_output_17.png", "text_plain_output_9.png", "image_output_14.png", "image_output_28.png", "text_plain_output_20.png", "image_output_23.png", "text_plain_output_4.png", "text_plain_output_13.png", "image_output_13.png", "image_output_5.png", "text_plain_output_14.png", "image_output_18.png", "image_output_21.png", "text_plain_output_27.png", "text_plain_output_10.png", "text_plain_output_6.png", "image_output_7.png", "text_plain_output_24.png", "text_plain_output_21.png", "text_plain_output_25.png", "image_output_20.png", "text_plain_output_18.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_22.png", "text_plain_output_7.png", "image_output_8.png", "text_plain_output_16.png", "image_output_16.png", "text_plain_output_8.png", "text_plain_output_26.png", "image_output_27.png", "image_output_6.png", "text_plain_output_23.png", "image_output_12.png", "text_plain_output_28.png", "image_output_22.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "text_plain_output_19.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "text_plain_output_17.png", "text_plain_output_11.png", "text_plain_output_12.png", "image_output_15.png", "image_output_9.png", "image_output_19.png", "image_output_26.png" ]
from sklearn.cross_validation import train_test_split, cross_val_score from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor, AdaBoostRegressor X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42) clf = RandomForestRegressor(n_estimators=50) clf.fit(X_train, y_train) print(clf.feature_importances_)
code
334762/cell_22
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor, AdaBoostRegressor from sklearn.metrics import auc, mean_squared_error from sklearn.cross_validation import train_test_split, cross_val_score
code
334762/cell_10
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date']) act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train') act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test') positive_counts = pd.DataFrame({'positive_counts': act_train[act_train['outcome'] == 1].groupby('people_id', as_index=True).size()}).reset_index() negative_counts = pd.DataFrame({'negative_counts': act_train[act_train['outcome'] == 0].groupby('people_id', as_index=True).size()}).reset_index() hstry = positive_counts.merge(negative_counts, on='people_id', how='outer') hstry['positive_counts'] = hstry['positive_counts'].fillna('0').astype(np.int64) hstry['negative_counts'] = hstry['negative_counts'].fillna('0').astype(np.int64) hstry['profit'] = hstry['positive_counts'] - hstry['negative_counts'] hstry.sort_values(by='positive_counts', ascending=False).head(10) hstry.sort_values(by='negative_counts', ascending=False).head(10)
code
334762/cell_27
[ "text_plain_output_5.png", "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_4.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
from sklearn.cross_validation import train_test_split, cross_val_score from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor, AdaBoostRegressor from sklearn.metrics import auc, mean_squared_error import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date']) act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train') act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test') positive_counts = pd.DataFrame({'positive_counts': act_train[act_train['outcome'] == 1].groupby('people_id', as_index=True).size()}).reset_index() negative_counts = pd.DataFrame({'negative_counts': act_train[act_train['outcome'] == 0].groupby('people_id', as_index=True).size()}).reset_index() hstry = positive_counts.merge(negative_counts, on='people_id', how='outer') hstry['positive_counts'] = hstry['positive_counts'].fillna('0').astype(np.int64) hstry['negative_counts'] = hstry['negative_counts'].fillna('0').astype(np.int64) hstry['profit'] = hstry['positive_counts'] - hstry['negative_counts'] hstry.sort_values(by='positive_counts', ascending=False).head(10) hstry.sort_values(by='negative_counts', ascending=False).head(10) hstry['prof_label'] = pd.to_numeric(hstry['profit'] < -5).astype(int) * 4 + pd.to_numeric(hstry['profit'].isin(range(-5, 1))).astype(int) * 3 + pd.to_numeric(hstry['profit'].isin(range(1, 6))).astype(int) * 2 + pd.to_numeric(hstry['profit'] > 5).astype(int) * 1 people2 = pd.merge(people, hstry, on='people_id', how='inner') people2['positive_counts'] = people2['positive_counts'].fillna('0').astype(np.int64) people2['negative_counts'] = people2['negative_counts'].fillna('0').astype(np.int64) people2['profit'] = people2['profit'].fillna('0').astype(np.int64) xfeats = list(people2.columns) xfeats.remove('people_id') xfeats.remove('profit') xfeats.remove('prof_label') xfeats.remove('positive_counts') xfeats.remove('negative_counts') X, Y = (people2[xfeats], people2['prof_label']) X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42) clf = RandomForestRegressor(n_estimators=50) clf.fit(X_train, y_train) sortedfeats = sorted(zip(xfeats, clf.feature_importances_), key=lambda x: x[1]) newfeats = [] for i in range(1, 6): newfeats.append(sortedfeats[len(sortedfeats) - i]) newfeats = [x[0] for x in newfeats] X, Y = (people2[newfeats], people2['prof_label']) X_train2, X_test2, y_train2, y_test2 = train_test_split(X, Y, test_size=0.2, random_state=42) clf2 = RandomForestRegressor(n_estimators=100) clf2.fit(X_train2, y_train2) print(clf.score(X_test, y_test), clf2.score(X_test2, y_test2)) print(mean_squared_error(clf.predict(X_test), y_test), mean_squared_error(clf2.predict(X_test2), y_test2))
code
334762/cell_12
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) people = pd.read_csv('../input/people.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'char_38': np.int32}, parse_dates=['date']) act_train = pd.read_csv('../input/act_train.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_test = pd.read_csv('../input/act_test.csv', dtype={'people_id': np.str, 'activity_id': np.str, 'otcome': np.int8}, parse_dates=['date']) act_train['date'].groupby(act_train.date.dt.date).count().plot(figsize=(10, 5), label='Train') act_test['date'].groupby(act_test.date.dt.date).count().plot(figsize=(10, 5), label='Test') positive_counts = pd.DataFrame({'positive_counts': act_train[act_train['outcome'] == 1].groupby('people_id', as_index=True).size()}).reset_index() negative_counts = pd.DataFrame({'negative_counts': act_train[act_train['outcome'] == 0].groupby('people_id', as_index=True).size()}).reset_index() hstry = positive_counts.merge(negative_counts, on='people_id', how='outer') hstry['positive_counts'] = hstry['positive_counts'].fillna('0').astype(np.int64) hstry['negative_counts'] = hstry['negative_counts'].fillna('0').astype(np.int64) hstry['profit'] = hstry['positive_counts'] - hstry['negative_counts'] hstry.sort_values(by='positive_counts', ascending=False).head(10) hstry.sort_values(by='negative_counts', ascending=False).head(10) hstry['profit'].describe()
code
333041/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns events = pd.read_csv('{0}events.csv'.format(DATA_PATH)).loc[:, ['timestamp', 'device_id']] events['timestamp'] = pd.to_datetime(events['timestamp']) ax = sns.distplot(events['hour']) ax.set_title('Events by hour') ax.set_xlim(xmin = 0, xmax = 24) ax.set_xlabel('Hour of day') plt.show() ax1 = sns.distplot(events['hour_recentred']) ax1.set_xlim(xmin = -2, xmax = 22) ax1.set_xlabel('Hour of day') ax1.set_title('Events by hour -- recentered') age_sex = pd.read_csv('{0}gender_age_train.csv'.format(DATA_PATH)).drop('group', axis=1) age_sex_event = age_sex.merge(events, 'inner', on='device_id').drop_duplicates().drop('device_id', axis=1) age_sex_event['bin'] = pd.cut(age_sex_event['hour_recentred'], [-2, 2, 7, 22]) ax = sns.violinplot(x="bin", y="age", data = age_sex_event) ax.set_ylim(ymin = 18, ymax = 55) ax.set_xlabel('Time of day') ax.set_title('Age distribution by time of day') ax_violin = sns.violinplot(x='bin', y='age', hue='gender', split=False, data=age_sex_event) ax_violin.set_ylim(ymin=18, ymax=55) ax_violin.set_xlabel('Time of day') ax_violin.set_title('Age distribution by time of day and gender') ax_violin.legend(bbox_to_anchor=(1.05, 1), loc=2)
code
333041/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns events = pd.read_csv('{0}events.csv'.format(DATA_PATH)).loc[:, ['timestamp', 'device_id']] events['timestamp'] = pd.to_datetime(events['timestamp']) ax = sns.distplot(events['hour']) ax.set_title('Events by hour') ax.set_xlim(xmin=0, xmax=24) ax.set_xlabel('Hour of day') plt.show()
code
333041/cell_17
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns events = pd.read_csv('{0}events.csv'.format(DATA_PATH)).loc[:, ['timestamp', 'device_id']] events['timestamp'] = pd.to_datetime(events['timestamp']) ax = sns.distplot(events['hour']) ax.set_title('Events by hour') ax.set_xlim(xmin = 0, xmax = 24) ax.set_xlabel('Hour of day') plt.show() ax1 = sns.distplot(events['hour_recentred']) ax1.set_xlim(xmin = -2, xmax = 22) ax1.set_xlabel('Hour of day') ax1.set_title('Events by hour -- recentered') age_sex = pd.read_csv('{0}gender_age_train.csv'.format(DATA_PATH)).drop('group', axis=1) age_sex_event = age_sex.merge(events, 'inner', on='device_id').drop_duplicates().drop('device_id', axis=1) age_sex_event['bin'] = pd.cut(age_sex_event['hour_recentred'], [-2, 2, 7, 22]) ax = sns.violinplot(x='bin', y='age', data=age_sex_event) ax.set_ylim(ymin=18, ymax=55) ax.set_xlabel('Time of day') ax.set_title('Age distribution by time of day')
code
333041/cell_12
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns events = pd.read_csv('{0}events.csv'.format(DATA_PATH)).loc[:, ['timestamp', 'device_id']] events['timestamp'] = pd.to_datetime(events['timestamp']) ax = sns.distplot(events['hour']) ax.set_title('Events by hour') ax.set_xlim(xmin = 0, xmax = 24) ax.set_xlabel('Hour of day') plt.show() ax1 = sns.distplot(events['hour_recentred']) ax1.set_xlim(xmin=-2, xmax=22) ax1.set_xlabel('Hour of day') ax1.set_title('Events by hour -- recentered')
code
72081461/cell_21
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_car = pd.read_csv('../input/week1-car-acceptability/car_acc_train.csv') train_car.dropna(inplace=True) test_car = pd.read_csv('../input/it2034ch1502-car-acceptability-prediction/test.csv') dev_car = pd.read_csv('../input/week1-car-acceptability/car_acc_dev_v2.csv') train_car.dropna(inplace=True) train_car.isnull().sum() train_car.dropna(inplace=True) buying_price = pd.crosstab(train_car['buying_price'], train_car['acceptability']) maintenance_price = pd.crosstab(train_car['maintenance_price'], train_car['acceptability']) number_of_doors = pd.crosstab(train_car['number_of_doors'], train_car['acceptability']) carry_capacity = pd.crosstab(train_car['carry_capacity'], train_car['acceptability']) trunk_size = pd.crosstab(train_car['trunk_size'], train_car['acceptability']) safety = pd.crosstab(train_car['safety'], train_car['acceptability']) f, ax = plt.subplots(figsize=(9, 9)) stacked = buying_price.stack().reset_index().rename(columns={0: 'value'}) sns.barplot(x=stacked['buying_price'], y=stacked['value'], hue=stacked['acceptability'])
code
72081461/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_car = pd.read_csv('../input/week1-car-acceptability/car_acc_train.csv') train_car.dropna(inplace=True) test_car = pd.read_csv('../input/it2034ch1502-car-acceptability-prediction/test.csv') dev_car = pd.read_csv('../input/week1-car-acceptability/car_acc_dev_v2.csv') dev_car.isnull().sum()
code
72081461/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_car = pd.read_csv('../input/week1-car-acceptability/car_acc_train.csv') train_car.dropna(inplace=True) test_car = pd.read_csv('../input/it2034ch1502-car-acceptability-prediction/test.csv') dev_car = pd.read_csv('../input/week1-car-acceptability/car_acc_dev_v2.csv') dev_car.head()
code
72081461/cell_4
[ "text_html_output_1.png" ]
import os import numpy as np import pandas as pd import os os.path.isfile('../input/week1-car-acceptability/car_acc_train.csv')
code
72081461/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_car = pd.read_csv('../input/week1-car-acceptability/car_acc_train.csv') train_car.dropna(inplace=True) test_car = pd.read_csv('../input/it2034ch1502-car-acceptability-prediction/test.csv') dev_car = pd.read_csv('../input/week1-car-acceptability/car_acc_dev_v2.csv') train_car.dropna(inplace=True) train_car.isnull().sum() train_car.dropna(inplace=True) buying_price = pd.crosstab(train_car['buying_price'], train_car['acceptability']) maintenance_price = pd.crosstab(train_car['maintenance_price'], train_car['acceptability']) number_of_doors = pd.crosstab(train_car['number_of_doors'], train_car['acceptability']) carry_capacity = pd.crosstab(train_car['carry_capacity'], train_car['acceptability']) trunk_size = pd.crosstab(train_car['trunk_size'], train_car['acceptability']) safety = pd.crosstab(train_car['safety'], train_car['acceptability']) maintenance_price
code
72081461/cell_30
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_car = pd.read_csv('../input/week1-car-acceptability/car_acc_train.csv') train_car.dropna(inplace=True) test_car = pd.read_csv('../input/it2034ch1502-car-acceptability-prediction/test.csv') dev_car = pd.read_csv('../input/week1-car-acceptability/car_acc_dev_v2.csv') train_car.dropna(inplace=True) train_car.isnull().sum() train_car.dropna(inplace=True) buying_price = pd.crosstab(train_car['buying_price'], train_car['acceptability']) maintenance_price = pd.crosstab(train_car['maintenance_price'], train_car['acceptability']) number_of_doors = pd.crosstab(train_car['number_of_doors'], train_car['acceptability']) carry_capacity = pd.crosstab(train_car['carry_capacity'], train_car['acceptability']) trunk_size = pd.crosstab(train_car['trunk_size'], train_car['acceptability']) safety = pd.crosstab(train_car['safety'], train_car['acceptability']) f, ax = plt.subplots(figsize=(9, 9)) stacked = buying_price.stack().reset_index().rename(columns={0:'value'}) sns.barplot(x=stacked['buying_price'], y=stacked['value'], hue=stacked['acceptability']) f, ax = plt.subplots(figsize=(9, 9)) stacked = maintenance_price.stack().reset_index().rename(columns={0:'value'}) sns.barplot(x=stacked['maintenance_price'], y=stacked['value'], hue=stacked['acceptability']) f, ax = plt.subplots(figsize=(9, 9)) stacked = number_of_doors.stack().reset_index().rename(columns={0:'value'}) sns.barplot(x=stacked['number_of_doors'], y=stacked['value'], hue=stacked['acceptability']) f, ax = plt.subplots(figsize=(9, 9)) stacked = carry_capacity.stack().reset_index().rename(columns={0: 'value'}) sns.barplot(x=stacked['carry_capacity'], y=stacked['value'], hue=stacked['acceptability'])
code
72081461/cell_33
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_car = pd.read_csv('../input/week1-car-acceptability/car_acc_train.csv') train_car.dropna(inplace=True) test_car = pd.read_csv('../input/it2034ch1502-car-acceptability-prediction/test.csv') dev_car = pd.read_csv('../input/week1-car-acceptability/car_acc_dev_v2.csv') train_car.dropna(inplace=True) train_car.isnull().sum() train_car.dropna(inplace=True) buying_price = pd.crosstab(train_car['buying_price'], train_car['acceptability']) maintenance_price = pd.crosstab(train_car['maintenance_price'], train_car['acceptability']) number_of_doors = pd.crosstab(train_car['number_of_doors'], train_car['acceptability']) carry_capacity = pd.crosstab(train_car['carry_capacity'], train_car['acceptability']) trunk_size = pd.crosstab(train_car['trunk_size'], train_car['acceptability']) safety = pd.crosstab(train_car['safety'], train_car['acceptability']) f, ax = plt.subplots(figsize=(9, 9)) stacked = buying_price.stack().reset_index().rename(columns={0:'value'}) sns.barplot(x=stacked['buying_price'], y=stacked['value'], hue=stacked['acceptability']) f, ax = plt.subplots(figsize=(9, 9)) stacked = maintenance_price.stack().reset_index().rename(columns={0:'value'}) sns.barplot(x=stacked['maintenance_price'], y=stacked['value'], hue=stacked['acceptability']) f, ax = plt.subplots(figsize=(9, 9)) stacked = number_of_doors.stack().reset_index().rename(columns={0:'value'}) sns.barplot(x=stacked['number_of_doors'], y=stacked['value'], hue=stacked['acceptability']) f, ax = plt.subplots(figsize=(9, 9)) stacked = carry_capacity.stack().reset_index().rename(columns={0:'value'}) sns.barplot(x=stacked['carry_capacity'], y=stacked['value'], hue=stacked['acceptability']) f, ax = plt.subplots(figsize=(9, 9)) stacked = trunk_size.stack().reset_index().rename(columns={0: 'value'}) sns.barplot(x=stacked['trunk_size'], y=stacked['value'], hue=stacked['acceptability'])
code
72081461/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_car = pd.read_csv('../input/week1-car-acceptability/car_acc_train.csv') train_car.dropna(inplace=True) test_car = pd.read_csv('../input/it2034ch1502-car-acceptability-prediction/test.csv') dev_car = pd.read_csv('../input/week1-car-acceptability/car_acc_dev_v2.csv') train_car.dropna(inplace=True) train_car.isnull().sum() train_car.dropna(inplace=True) buying_price = pd.crosstab(train_car['buying_price'], train_car['acceptability']) maintenance_price = pd.crosstab(train_car['maintenance_price'], train_car['acceptability']) number_of_doors = pd.crosstab(train_car['number_of_doors'], train_car['acceptability']) carry_capacity = pd.crosstab(train_car['carry_capacity'], train_car['acceptability']) trunk_size = pd.crosstab(train_car['trunk_size'], train_car['acceptability']) safety = pd.crosstab(train_car['safety'], train_car['acceptability']) buying_price
code
72081461/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_car = pd.read_csv('../input/week1-car-acceptability/car_acc_train.csv') train_car.dropna(inplace=True) test_car = pd.read_csv('../input/it2034ch1502-car-acceptability-prediction/test.csv') dev_car = pd.read_csv('../input/week1-car-acceptability/car_acc_dev_v2.csv') len(dev_car)
code
72081461/cell_29
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_car = pd.read_csv('../input/week1-car-acceptability/car_acc_train.csv') train_car.dropna(inplace=True) test_car = pd.read_csv('../input/it2034ch1502-car-acceptability-prediction/test.csv') dev_car = pd.read_csv('../input/week1-car-acceptability/car_acc_dev_v2.csv') train_car.dropna(inplace=True) train_car.isnull().sum() train_car.dropna(inplace=True) buying_price = pd.crosstab(train_car['buying_price'], train_car['acceptability']) maintenance_price = pd.crosstab(train_car['maintenance_price'], train_car['acceptability']) number_of_doors = pd.crosstab(train_car['number_of_doors'], train_car['acceptability']) carry_capacity = pd.crosstab(train_car['carry_capacity'], train_car['acceptability']) trunk_size = pd.crosstab(train_car['trunk_size'], train_car['acceptability']) safety = pd.crosstab(train_car['safety'], train_car['acceptability']) carry_capacity
code
72081461/cell_26
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_car = pd.read_csv('../input/week1-car-acceptability/car_acc_train.csv') train_car.dropna(inplace=True) test_car = pd.read_csv('../input/it2034ch1502-car-acceptability-prediction/test.csv') dev_car = pd.read_csv('../input/week1-car-acceptability/car_acc_dev_v2.csv') train_car.dropna(inplace=True) train_car.isnull().sum() train_car.dropna(inplace=True) buying_price = pd.crosstab(train_car['buying_price'], train_car['acceptability']) maintenance_price = pd.crosstab(train_car['maintenance_price'], train_car['acceptability']) number_of_doors = pd.crosstab(train_car['number_of_doors'], train_car['acceptability']) carry_capacity = pd.crosstab(train_car['carry_capacity'], train_car['acceptability']) trunk_size = pd.crosstab(train_car['trunk_size'], train_car['acceptability']) safety = pd.crosstab(train_car['safety'], train_car['acceptability']) number_of_doors
code
72081461/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
72081461/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_car = pd.read_csv('../input/week1-car-acceptability/car_acc_train.csv') train_car.dropna(inplace=True) test_car = pd.read_csv('../input/it2034ch1502-car-acceptability-prediction/test.csv') dev_car = pd.read_csv('../input/week1-car-acceptability/car_acc_dev_v2.csv') len(test_car[test_car['carry_capacity'] == '3'])
code
72081461/cell_32
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_car = pd.read_csv('../input/week1-car-acceptability/car_acc_train.csv') train_car.dropna(inplace=True) test_car = pd.read_csv('../input/it2034ch1502-car-acceptability-prediction/test.csv') dev_car = pd.read_csv('../input/week1-car-acceptability/car_acc_dev_v2.csv') train_car.dropna(inplace=True) train_car.isnull().sum() train_car.dropna(inplace=True) buying_price = pd.crosstab(train_car['buying_price'], train_car['acceptability']) maintenance_price = pd.crosstab(train_car['maintenance_price'], train_car['acceptability']) number_of_doors = pd.crosstab(train_car['number_of_doors'], train_car['acceptability']) carry_capacity = pd.crosstab(train_car['carry_capacity'], train_car['acceptability']) trunk_size = pd.crosstab(train_car['trunk_size'], train_car['acceptability']) safety = pd.crosstab(train_car['safety'], train_car['acceptability']) trunk_size
code
72081461/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_car = pd.read_csv('../input/week1-car-acceptability/car_acc_train.csv') train_car.dropna(inplace=True) test_car = pd.read_csv('../input/it2034ch1502-car-acceptability-prediction/test.csv') dev_car = pd.read_csv('../input/week1-car-acceptability/car_acc_dev_v2.csv') train_car.dropna(inplace=True) train_car.isnull().sum() train_car.dropna(inplace=True) train_car.describe()
code
72081461/cell_35
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_car = pd.read_csv('../input/week1-car-acceptability/car_acc_train.csv') train_car.dropna(inplace=True) test_car = pd.read_csv('../input/it2034ch1502-car-acceptability-prediction/test.csv') dev_car = pd.read_csv('../input/week1-car-acceptability/car_acc_dev_v2.csv') train_car.dropna(inplace=True) train_car.isnull().sum() train_car.dropna(inplace=True) buying_price = pd.crosstab(train_car['buying_price'], train_car['acceptability']) maintenance_price = pd.crosstab(train_car['maintenance_price'], train_car['acceptability']) number_of_doors = pd.crosstab(train_car['number_of_doors'], train_car['acceptability']) carry_capacity = pd.crosstab(train_car['carry_capacity'], train_car['acceptability']) trunk_size = pd.crosstab(train_car['trunk_size'], train_car['acceptability']) safety = pd.crosstab(train_car['safety'], train_car['acceptability']) safety
code
72081461/cell_24
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_car = pd.read_csv('../input/week1-car-acceptability/car_acc_train.csv') train_car.dropna(inplace=True) test_car = pd.read_csv('../input/it2034ch1502-car-acceptability-prediction/test.csv') dev_car = pd.read_csv('../input/week1-car-acceptability/car_acc_dev_v2.csv') train_car.dropna(inplace=True) train_car.isnull().sum() train_car.dropna(inplace=True) buying_price = pd.crosstab(train_car['buying_price'], train_car['acceptability']) maintenance_price = pd.crosstab(train_car['maintenance_price'], train_car['acceptability']) number_of_doors = pd.crosstab(train_car['number_of_doors'], train_car['acceptability']) carry_capacity = pd.crosstab(train_car['carry_capacity'], train_car['acceptability']) trunk_size = pd.crosstab(train_car['trunk_size'], train_car['acceptability']) safety = pd.crosstab(train_car['safety'], train_car['acceptability']) f, ax = plt.subplots(figsize=(9, 9)) stacked = buying_price.stack().reset_index().rename(columns={0:'value'}) sns.barplot(x=stacked['buying_price'], y=stacked['value'], hue=stacked['acceptability']) f, ax = plt.subplots(figsize=(9, 9)) stacked = maintenance_price.stack().reset_index().rename(columns={0: 'value'}) sns.barplot(x=stacked['maintenance_price'], y=stacked['value'], hue=stacked['acceptability'])
code
72081461/cell_14
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_car = pd.read_csv('../input/week1-car-acceptability/car_acc_train.csv') train_car.dropna(inplace=True) test_car = pd.read_csv('../input/it2034ch1502-car-acceptability-prediction/test.csv') dev_car = pd.read_csv('../input/week1-car-acceptability/car_acc_dev_v2.csv') test_car.isnull().sum()
code
72081461/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_car = pd.read_csv('../input/week1-car-acceptability/car_acc_train.csv') train_car.dropna(inplace=True) test_car = pd.read_csv('../input/it2034ch1502-car-acceptability-prediction/test.csv') dev_car = pd.read_csv('../input/week1-car-acceptability/car_acc_dev_v2.csv') train_car.dropna(inplace=True) (len(train_car), len(test_car), len(dev_car))
code
72081461/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_car = pd.read_csv('../input/week1-car-acceptability/car_acc_train.csv') train_car.dropna(inplace=True) test_car = pd.read_csv('../input/it2034ch1502-car-acceptability-prediction/test.csv') dev_car = pd.read_csv('../input/week1-car-acceptability/car_acc_dev_v2.csv') train_car.dropna(inplace=True) train_car.isnull().sum() train_car.dropna(inplace=True) buying_price = pd.crosstab(train_car['buying_price'], train_car['acceptability']) maintenance_price = pd.crosstab(train_car['maintenance_price'], train_car['acceptability']) number_of_doors = pd.crosstab(train_car['number_of_doors'], train_car['acceptability']) carry_capacity = pd.crosstab(train_car['carry_capacity'], train_car['acceptability']) trunk_size = pd.crosstab(train_car['trunk_size'], train_car['acceptability']) safety = pd.crosstab(train_car['safety'], train_car['acceptability']) f, ax = plt.subplots(figsize=(9, 9)) stacked = buying_price.stack().reset_index().rename(columns={0:'value'}) sns.barplot(x=stacked['buying_price'], y=stacked['value'], hue=stacked['acceptability']) f, ax = plt.subplots(figsize=(9, 9)) stacked = maintenance_price.stack().reset_index().rename(columns={0:'value'}) sns.barplot(x=stacked['maintenance_price'], y=stacked['value'], hue=stacked['acceptability']) f, ax = plt.subplots(figsize=(9, 9)) stacked = number_of_doors.stack().reset_index().rename(columns={0: 'value'}) sns.barplot(x=stacked['number_of_doors'], y=stacked['value'], hue=stacked['acceptability'])
code
72081461/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_car = pd.read_csv('../input/week1-car-acceptability/car_acc_train.csv') train_car.dropna(inplace=True) test_car = pd.read_csv('../input/it2034ch1502-car-acceptability-prediction/test.csv') dev_car = pd.read_csv('../input/week1-car-acceptability/car_acc_dev_v2.csv') train_car.dropna(inplace=True) train_car.isnull().sum()
code
130013615/cell_14
[ "text_plain_output_1.png" ]
from tqdm import tqdm import time import time from tqdm import tqdm with tqdm(total=200) as pbar: pbar.set_description('Processing') for i in range(20): time.sleep(0.1) pbar.update(10)
code
130013615/cell_5
[ "text_plain_output_5.png", "text_plain_output_4.png", "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
!pip install -U sentence-transformers !pip install openpyxl
code
1010388/cell_40
[ "application_vnd.jupyter.stderr_output_1.png" ]
from statsmodels.graphics.factorplots import interaction_plot from statsmodels.graphics.factorplots import interaction_plot categorical_columnss = categorical_columns + counting_columns + bounded_columns for c in categorical_columnss: if c in temporal_columns: continue num = recent_df['SalePrice'] c1 = recent_df[c] delete = [] for cc in categorical_columnss: if cc in temporal_columns or cc == c or cc in delete: continue c2 = recent_df[cc] c1_classes = len(recent_df[c]) c2_classes = len(recent_df[cc]) if c2_classes < c1_classes: temp = c1 c1 = c2 c2 = temp plt.style.use('ggplot') fig, ax = plt.subplots(figsize=(9, 6)) fig = interaction_plot(c2, c1, num, ms=12, ax=ax) plt.show() delete.append(cc)
code
49120206/cell_13
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression Reg = LinearRegression() Reg.fit(X_train, y_train)
code
49120206/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ec = pd.read_csv('../input/ecommerce-customers/Ecommerce Customers.csv') ec.info()
code
49120206/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ec = pd.read_csv('../input/ecommerce-customers/Ecommerce Customers.csv') ec.columns
code
49120206/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
49120206/cell_18
[ "text_plain_output_1.png" ]
Pred = y = m * c + b
code
49120206/cell_15
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression Reg = LinearRegression() Reg.fit(X_train, y_train) Reg.predict([[31, 11, 37, 2]]) Reg.coef_
code
49120206/cell_16
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression Reg = LinearRegression() Reg.fit(X_train, y_train) Reg.predict([[31, 11, 37, 2]]) Reg.coef_ Reg.intercept_
code
49120206/cell_17
[ "text_plain_output_1.png" ]
31 * 24.84191503 + 11 * 38.33120482 + 37 * 0.18325228 + 2 * 61.48057858 + -1007.25872361
code
49120206/cell_14
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression Reg = LinearRegression() Reg.fit(X_train, y_train) Reg.predict([[31, 11, 37, 2]])
code
49120206/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ec = pd.read_csv('../input/ecommerce-customers/Ecommerce Customers.csv') ec.head()
code
74064874/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) buildingname = 'Panther_office_Hannah' office_example = pd.DataFrame(elec_all_data[buildingname].truncate(before='2017-01-01')) meta = pd.read_csv('../input/buildingdatagenomeproject2/metadata.csv', index_col='building_id') meta.loc[buildingname] meta.loc[buildingname]['sqm'] office_example_normalized = office_example / meta.loc[buildingname]['sqm'] office_example_normalized.head()
code
74064874/cell_13
[ "text_html_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) buildingname = 'Panther_office_Hannah' office_example = pd.DataFrame(elec_all_data[buildingname].truncate(before='2017-01-01')) meta = pd.read_csv('../input/buildingdatagenomeproject2/metadata.csv', index_col='building_id') meta.head()
code
74064874/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) buildingname = 'Panther_office_Hannah' office_example = pd.DataFrame(elec_all_data[buildingname].truncate(before='2017-01-01')) office_example.info()
code
74064874/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) buildingname = 'Panther_office_Hannah' office_example = pd.DataFrame(elec_all_data[buildingname].truncate(before='2017-01-01')) meta = pd.read_csv('../input/buildingdatagenomeproject2/metadata.csv', index_col='building_id') meta.loc[buildingname] meta.loc[buildingname]['sqm'] office_example_normalized = office_example / meta.loc[buildingname]['sqm'] office_example_normalized_monthly = office_example_normalized.resample('M').sum() office_example_normalized_monthly.plot(kind='bar', figsize=(10, 4), title='Energy Consumption per Square Meter Floor Area')
code
74064874/cell_30
[ "text_html_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) buildingname = 'Panther_office_Hannah' office_example = pd.DataFrame(elec_all_data[buildingname].truncate(before='2017-01-01')) meta = pd.read_csv('../input/buildingdatagenomeproject2/metadata.csv', index_col='building_id') meta.loc[buildingname] meta.loc[buildingname]['sqm'] office_example_normalized = office_example / meta.loc[buildingname]['sqm'] meta[meta.site_id == 'Wolf'].sqm
code
74064874/cell_33
[ "text_html_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) buildingname = 'Panther_office_Hannah' office_example = pd.DataFrame(elec_all_data[buildingname].truncate(before='2017-01-01')) meta = pd.read_csv('../input/buildingdatagenomeproject2/metadata.csv', index_col='building_id') meta.loc[buildingname] meta.loc[buildingname]['sqm'] office_example_normalized = office_example / meta.loc[buildingname]['sqm'] site_example_elec_meter_data = elec_all_data.loc[:, elec_all_data.columns.str.contains('Wolf')] meta[meta.site_id == 'Wolf'].sqm site_example_elec_meter_data_normalized = site_example_elec_meter_data.div(meta[meta.site_id == 'Wolf'].sqm) site_example_elec_meter_data_normalized.info()
code
74064874/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) elec_all_data.head()
code
74064874/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) buildingname = 'Panther_office_Hannah' office_example = pd.DataFrame(elec_all_data[buildingname].truncate(before='2017-01-01')) meta = pd.read_csv('../input/buildingdatagenomeproject2/metadata.csv', index_col='building_id') meta.loc[buildingname] meta.loc[buildingname]['sqm'] office_example_normalized = office_example / meta.loc[buildingname]['sqm'] meta[meta.site_id == 'Wolf'].head()
code
74064874/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) site_example_elec_meter_data = elec_all_data.loc[:, elec_all_data.columns.str.contains('Wolf')] site_example_elec_meter_data.head()
code
74064874/cell_19
[ "text_html_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) buildingname = 'Panther_office_Hannah' office_example = pd.DataFrame(elec_all_data[buildingname].truncate(before='2017-01-01')) office_example.head()
code
74064874/cell_32
[ "text_plain_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) buildingname = 'Panther_office_Hannah' office_example = pd.DataFrame(elec_all_data[buildingname].truncate(before='2017-01-01')) meta = pd.read_csv('../input/buildingdatagenomeproject2/metadata.csv', index_col='building_id') meta.loc[buildingname] meta.loc[buildingname]['sqm'] office_example_normalized = office_example / meta.loc[buildingname]['sqm'] site_example_elec_meter_data = elec_all_data.loc[:, elec_all_data.columns.str.contains('Wolf')] meta[meta.site_id == 'Wolf'].sqm site_example_elec_meter_data_normalized = site_example_elec_meter_data.div(meta[meta.site_id == 'Wolf'].sqm) site_example_elec_meter_data_normalized.head()
code
74064874/cell_28
[ "text_html_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) buildingname = 'Panther_office_Hannah' office_example = pd.DataFrame(elec_all_data[buildingname].truncate(before='2017-01-01')) meta = pd.read_csv('../input/buildingdatagenomeproject2/metadata.csv', index_col='building_id') meta.loc[buildingname] meta.loc[buildingname]['sqm'] office_example_normalized = office_example / meta.loc[buildingname]['sqm'] meta.head()
code
74064874/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) buildingname = 'Panther_office_Hannah' office_example = pd.DataFrame(elec_all_data[buildingname].truncate(before='2017-01-01')) office_example.head()
code
74064874/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) buildingname = 'Panther_office_Hannah' office_example = pd.DataFrame(elec_all_data[buildingname].truncate(before='2017-01-01')) meta = pd.read_csv('../input/buildingdatagenomeproject2/metadata.csv', index_col='building_id') meta.loc[buildingname]
code
74064874/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) buildingname = 'Panther_office_Hannah' office_example = pd.DataFrame(elec_all_data[buildingname].truncate(before='2017-01-01')) meta = pd.read_csv('../input/buildingdatagenomeproject2/metadata.csv', index_col='building_id') meta.loc[buildingname] meta.loc[buildingname]['sqm']
code
74064874/cell_35
[ "text_html_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) buildingname = 'Panther_office_Hannah' office_example = pd.DataFrame(elec_all_data[buildingname].truncate(before='2017-01-01')) meta = pd.read_csv('../input/buildingdatagenomeproject2/metadata.csv', index_col='building_id') meta.loc[buildingname] meta.loc[buildingname]['sqm'] office_example_normalized = office_example / meta.loc[buildingname]['sqm'] site_example_elec_meter_data = elec_all_data.loc[:, elec_all_data.columns.str.contains('Wolf')] meta[meta.site_id == 'Wolf'].sqm site_example_elec_meter_data_normalized = site_example_elec_meter_data.div(meta[meta.site_id == 'Wolf'].sqm) site_example_elec_meter_data.sort_index(axis=1).iloc[:, -10:].sum().plot(kind='bar', figsize=(10, 5))
code
74064874/cell_14
[ "text_html_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) buildingname = 'Panther_office_Hannah' office_example = pd.DataFrame(elec_all_data[buildingname].truncate(before='2017-01-01')) meta = pd.read_csv('../input/buildingdatagenomeproject2/metadata.csv', index_col='building_id') meta.info()
code
74064874/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) buildingname = 'Panther_office_Hannah' office_example = pd.DataFrame(elec_all_data[buildingname].truncate(before='2017-01-01')) office_example.plot(figsize=(15, 6))
code
74064874/cell_27
[ "text_html_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) site_example_elec_meter_data = elec_all_data.loc[:, elec_all_data.columns.str.contains('Wolf')] site_example_elec_meter_data.info()
code
74064874/cell_37
[ "text_plain_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) buildingname = 'Panther_office_Hannah' office_example = pd.DataFrame(elec_all_data[buildingname].truncate(before='2017-01-01')) meta = pd.read_csv('../input/buildingdatagenomeproject2/metadata.csv', index_col='building_id') meta.loc[buildingname] meta.loc[buildingname]['sqm'] office_example_normalized = office_example / meta.loc[buildingname]['sqm'] site_example_elec_meter_data = elec_all_data.loc[:, elec_all_data.columns.str.contains('Wolf')] meta[meta.site_id == 'Wolf'].sqm site_example_elec_meter_data_normalized = site_example_elec_meter_data.div(meta[meta.site_id == 'Wolf'].sqm) site_example_elec_meter_data_normalized.sort_index(axis=1).iloc[:, -10:].sum().plot(kind='bar', figsize=(10, 5))
code
74064874/cell_5
[ "text_html_output_1.png" ]
import pandas as pd elec_all_data = pd.read_csv('../input/buildingdatagenomeproject2/electricity_cleaned.csv', index_col='timestamp', parse_dates=True) elec_all_data.info()
code
18157974/cell_21
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/pick_time_warehouse_train.csv') df.shape df.columns df.shape def remove_outlier(df_in, col_name): q1 = df_in[col_name].quantile(0.25) q3 = df_in[col_name].quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)] return df_out def remove_outlier_cat(df_in, group): q1 = group.quantile(0.25) q3 = group.quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(group > fence_low) & (group < fence_high)] return df_out for i in range(10): df = remove_outlier(df, 'Pick_Time') df.isnull().sum() fig, ax = plt.subplots(figsize=(15,15)) sns.heatmap(df.corr(),annot=True, linewidths=.5,ax=ax) for i in np.unique(df['Actual_Quantity']): remove_outlier_cat(df, df.groupby(['Actual_Quantity', i])) df.columns sns.countplot(df['total_quantity_of_items_in_container'])
code
18157974/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/pick_time_warehouse_train.csv') df.shape df.columns df.shape def remove_outlier(df_in, col_name): q1 = df_in[col_name].quantile(0.25) q3 = df_in[col_name].quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)] return df_out def remove_outlier_cat(df_in, group): q1 = group.quantile(0.25) q3 = group.quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(group > fence_low) & (group < fence_high)] return df_out for i in range(10): df = remove_outlier(df, 'Pick_Time') df.isnull().sum()
code
18157974/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/pick_time_warehouse_train.csv') df.shape df.columns
code
18157974/cell_30
[ "text_plain_output_1.png" ]
from catboost import CatBoostRegressor from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import numpy as np import pandas as pd import seaborn as sns import warnings df = pd.read_csv('../input/pick_time_warehouse_train.csv') df.shape df.columns df.shape def remove_outlier(df_in, col_name): q1 = df_in[col_name].quantile(0.25) q3 = df_in[col_name].quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)] return df_out def remove_outlier_cat(df_in, group): q1 = group.quantile(0.25) q3 = group.quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(group > fence_low) & (group < fence_high)] return df_out for i in range(10): df = remove_outlier(df, 'Pick_Time') df.isnull().sum() fig, ax = plt.subplots(figsize=(15,15)) sns.heatmap(df.corr(),annot=True, linewidths=.5,ax=ax) for i in np.unique(df['Actual_Quantity']): remove_outlier_cat(df, df.groupby(['Actual_Quantity', i])) df.columns hr = [] minutes = [] seconds = [] for i in range(len(df['Start_Time_of_Picking'])): hr.append(int(df.iloc[i]['Start_Time_of_Picking'].split(':')[0])) a, b = df.iloc[i]['Start_Time_of_Picking'].split(':')[1].split('.') minutes.append(int(a)) seconds.append(int(b)) df = pd.concat([df, pd.get_dummies(df['SKU'], drop_first=True, prefix=1)], axis=1, sort=False) df = pd.concat([df, pd.get_dummies(df['User'], drop_first=True, prefix=2)], axis=1, sort=False) df = pd.concat([df, pd.get_dummies(df['number_of_container_conveyor'], drop_first=True, prefix=3)], axis=1, sort=False) df = pd.concat([df, pd.get_dummies(df['last_station_served_by_user'], drop_first=True, prefix=3)], axis=1, sort=False) df = df.drop(['SKU', 'User', 'number_of_container_conveyor', 'last_station_served_by_user'], axis=1) target = df.Pick_Time del df['Pick_Time'] X_train, X_test, y_train, y_test = train_test_split(df, target, test_size=0.3, shuffle=False) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.svm import SVR from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import GradientBoostingRegressor from xgboost import XGBRegressor from catboost import CatBoostRegressor from sklearn.linear_model import Lasso, Ridge, BayesianRidge, ElasticNet, HuberRegressor, LinearRegression, LogisticRegression, SGDRegressor from sklearn.metrics import mean_squared_error import numpy as np import warnings import keras warnings.filterwarnings('ignore') model = CatBoostRegressor(logging_level='Silent') model.fit(X_train, y_train) predictions = model.predict(X_test) print('Lasso', np.sqrt(mean_squared_error(y_test, predictions)))
code
18157974/cell_20
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/pick_time_warehouse_train.csv') df.shape df.columns df.shape def remove_outlier(df_in, col_name): q1 = df_in[col_name].quantile(0.25) q3 = df_in[col_name].quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)] return df_out def remove_outlier_cat(df_in, group): q1 = group.quantile(0.25) q3 = group.quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(group > fence_low) & (group < fence_high)] return df_out for i in range(10): df = remove_outlier(df, 'Pick_Time') df.isnull().sum() fig, ax = plt.subplots(figsize=(15,15)) sns.heatmap(df.corr(),annot=True, linewidths=.5,ax=ax) for i in np.unique(df['Actual_Quantity']): remove_outlier_cat(df, df.groupby(['Actual_Quantity', i])) df.columns df['day'].nunique()
code
18157974/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/pick_time_warehouse_train.csv') df.shape df.columns df.shape
code
18157974/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/pick_time_warehouse_train.csv') df.shape df.columns df.shape def remove_outlier(df_in, col_name): q1 = df_in[col_name].quantile(0.25) q3 = df_in[col_name].quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)] return df_out def remove_outlier_cat(df_in, group): q1 = group.quantile(0.25) q3 = group.quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(group > fence_low) & (group < fence_high)] return df_out for i in range(10): df = remove_outlier(df, 'Pick_Time') df.isnull().sum() fig, ax = plt.subplots(figsize=(15,15)) sns.heatmap(df.corr(),annot=True, linewidths=.5,ax=ax) for i in np.unique(df['Actual_Quantity']): remove_outlier_cat(df, df.groupby(['Actual_Quantity', i])) df.columns
code
18157974/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers.core import Dense, Activation, Dropout from keras.layers import LSTM from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split import seaborn as sns from sklearn.ensemble import RandomForestClassifier from sklearn import svm from xgboost import XGBClassifier from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier from keras.callbacks import EarlyStopping import math
code
18157974/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/pick_time_warehouse_train.csv') df.shape df.columns df.shape def remove_outlier(df_in, col_name): q1 = df_in[col_name].quantile(0.25) q3 = df_in[col_name].quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)] return df_out def remove_outlier_cat(df_in, group): q1 = group.quantile(0.25) q3 = group.quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(group > fence_low) & (group < fence_high)] return df_out for i in range(10): df = remove_outlier(df, 'Pick_Time') df.isnull().sum() fig, ax = plt.subplots(figsize=(15,15)) sns.heatmap(df.corr(),annot=True, linewidths=.5,ax=ax) for i in np.unique(df['Actual_Quantity']): remove_outlier_cat(df, df.groupby(['Actual_Quantity', i])) sns.scatterplot(x='Actual_Quantity', y='Pick_Time', data=df)
code
18157974/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/pick_time_warehouse_train.csv') df.shape df.columns df.shape def remove_outlier(df_in, col_name): q1 = df_in[col_name].quantile(0.25) q3 = df_in[col_name].quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)] return df_out def remove_outlier_cat(df_in, group): q1 = group.quantile(0.25) q3 = group.quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(group > fence_low) & (group < fence_high)] return df_out for i in range(10): df = remove_outlier(df, 'Pick_Time') df.isnull().sum() fig, ax = plt.subplots(figsize=(15,15)) sns.heatmap(df.corr(),annot=True, linewidths=.5,ax=ax) for i in np.unique(df['Actual_Quantity']): remove_outlier_cat(df, df.groupby(['Actual_Quantity', i]))
code
18157974/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/pick_time_warehouse_train.csv') df.shape df.columns df.shape def remove_outlier(df_in, col_name): q1 = df_in[col_name].quantile(0.25) q3 = df_in[col_name].quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)] return df_out def remove_outlier_cat(df_in, group): q1 = group.quantile(0.25) q3 = group.quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(group > fence_low) & (group < fence_high)] return df_out for i in range(10): df = remove_outlier(df, 'Pick_Time') df.isnull().sum() fig, ax = plt.subplots(figsize=(15,15)) sns.heatmap(df.corr(),annot=True, linewidths=.5,ax=ax) for i in np.unique(df['Actual_Quantity']): remove_outlier_cat(df, df.groupby(['Actual_Quantity', i])) df
code
18157974/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/pick_time_warehouse_train.csv') df.shape
code
18157974/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/pick_time_warehouse_train.csv') df.shape df.columns df.shape def remove_outlier(df_in, col_name): q1 = df_in[col_name].quantile(0.25) q3 = df_in[col_name].quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)] return df_out def remove_outlier_cat(df_in, group): q1 = group.quantile(0.25) q3 = group.quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(group > fence_low) & (group < fence_high)] return df_out for i in range(10): df = remove_outlier(df, 'Pick_Time') df.isnull().sum() fig, ax = plt.subplots(figsize=(15,15)) sns.heatmap(df.corr(),annot=True, linewidths=.5,ax=ax) for i in np.unique(df['Actual_Quantity']): remove_outlier_cat(df, df.groupby(['Actual_Quantity', i])) sns.boxplot(x='Actual_Quantity', y='Pick_Time', data=df)
code
18157974/cell_31
[ "text_plain_output_1.png" ]
from catboost import CatBoostRegressor from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import Lasso,Ridge,BayesianRidge,ElasticNet,HuberRegressor,LinearRegression,LogisticRegression,SGDRegressor from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsRegressor from sklearn.tree import DecisionTreeRegressor from xgboost import XGBRegressor import matplotlib.pyplot as plt import numpy as np import numpy as np import pandas as pd import seaborn as sns import warnings df = pd.read_csv('../input/pick_time_warehouse_train.csv') df.shape df.columns df.shape def remove_outlier(df_in, col_name): q1 = df_in[col_name].quantile(0.25) q3 = df_in[col_name].quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)] return df_out def remove_outlier_cat(df_in, group): q1 = group.quantile(0.25) q3 = group.quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(group > fence_low) & (group < fence_high)] return df_out for i in range(10): df = remove_outlier(df, 'Pick_Time') df.isnull().sum() fig, ax = plt.subplots(figsize=(15,15)) sns.heatmap(df.corr(),annot=True, linewidths=.5,ax=ax) for i in np.unique(df['Actual_Quantity']): remove_outlier_cat(df, df.groupby(['Actual_Quantity', i])) df.columns hr = [] minutes = [] seconds = [] for i in range(len(df['Start_Time_of_Picking'])): hr.append(int(df.iloc[i]['Start_Time_of_Picking'].split(':')[0])) a, b = df.iloc[i]['Start_Time_of_Picking'].split(':')[1].split('.') minutes.append(int(a)) seconds.append(int(b)) df = pd.concat([df, pd.get_dummies(df['SKU'], drop_first=True, prefix=1)], axis=1, sort=False) df = pd.concat([df, pd.get_dummies(df['User'], drop_first=True, prefix=2)], axis=1, sort=False) df = pd.concat([df, pd.get_dummies(df['number_of_container_conveyor'], drop_first=True, prefix=3)], axis=1, sort=False) df = pd.concat([df, pd.get_dummies(df['last_station_served_by_user'], drop_first=True, prefix=3)], axis=1, sort=False) df = df.drop(['SKU', 'User', 'number_of_container_conveyor', 'last_station_served_by_user'], axis=1) target = df.Pick_Time del df['Pick_Time'] X_train, X_test, y_train, y_test = train_test_split(df, target, test_size=0.3, shuffle=False) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.svm import SVR from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import GradientBoostingRegressor from xgboost import XGBRegressor from catboost import CatBoostRegressor from sklearn.linear_model import Lasso, Ridge, BayesianRidge, ElasticNet, HuberRegressor, LinearRegression, LogisticRegression, SGDRegressor from sklearn.metrics import mean_squared_error import numpy as np import warnings import keras warnings.filterwarnings('ignore') model = CatBoostRegressor(logging_level='Silent') model.fit(X_train, y_train) predictions = model.predict(X_test) classifiers = [['DecisionTree :', DecisionTreeRegressor()], ['RandomForest :', RandomForestRegressor()], ['KNeighbours :', KNeighborsRegressor(n_neighbors=2)], ['AdaBoostClassifier :', AdaBoostRegressor()], ['GradientBoostingClassifier: ', GradientBoostingRegressor()], ['Xgboost: ', XGBRegressor()], ['CatBoost: ', CatBoostRegressor(logging_level='Silent')], ['Lasso: ', Lasso()], ['Ridge: ', Ridge()], ['BayesianRidge: ', BayesianRidge()], ['ElasticNet: ', ElasticNet()], ['HuberRegressor: ', HuberRegressor()]] print('Accuracy Results...') for name, classifier in classifiers: classifier = classifier classifier.fit(X_train, y_train) predictions = classifier.predict(X_test) print(name, np.sqrt(mean_squared_error(y_test, predictions)))
code
18157974/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/pick_time_warehouse_train.csv') df.shape df.columns df.shape def remove_outlier(df_in, col_name): q1 = df_in[col_name].quantile(0.25) q3 = df_in[col_name].quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)] return df_out def remove_outlier_cat(df_in, group): q1 = group.quantile(0.25) q3 = group.quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(group > fence_low) & (group < fence_high)] return df_out for i in range(10): df = remove_outlier(df, 'Pick_Time') df.isnull().sum() fig, ax = plt.subplots(figsize=(15,15)) sns.heatmap(df.corr(),annot=True, linewidths=.5,ax=ax) sns.boxplot(x='Actual_Quantity', y='Pick_Time', data=df)
code
18157974/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/pick_time_warehouse_train.csv') df.shape df.columns df.shape def remove_outlier(df_in, col_name): q1 = df_in[col_name].quantile(0.25) q3 = df_in[col_name].quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)] return df_out def remove_outlier_cat(df_in, group): q1 = group.quantile(0.25) q3 = group.quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(group > fence_low) & (group < fence_high)] return df_out for i in range(10): df = remove_outlier(df, 'Pick_Time') df.isnull().sum() fig, ax = plt.subplots(figsize=(15,15)) sns.heatmap(df.corr(),annot=True, linewidths=.5,ax=ax) for i in np.unique(df['Actual_Quantity']): remove_outlier_cat(df, df.groupby(['Actual_Quantity', i])) df.columns df['total_quantity_of_items_in_container'].value_counts()
code
18157974/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/pick_time_warehouse_train.csv') df.shape df.columns df.shape def remove_outlier(df_in, col_name): q1 = df_in[col_name].quantile(0.25) q3 = df_in[col_name].quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)] return df_out def remove_outlier_cat(df_in, group): q1 = group.quantile(0.25) q3 = group.quantile(0.75) iqr = q3 - q1 fence_low = q1 - 1.5 * iqr fence_high = q3 + 1.5 * iqr df_out = df_in.loc[(group > fence_low) & (group < fence_high)] return df_out for i in range(10): df = remove_outlier(df, 'Pick_Time') df.isnull().sum() fig, ax = plt.subplots(figsize=(15, 15)) sns.heatmap(df.corr(), annot=True, linewidths=0.5, ax=ax)
code
18157974/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/pick_time_warehouse_train.csv') df.shape df.columns df['Pick_Time'].plot.box(grid=True)
code
1008041/cell_1
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) from sklearn.ensemble import RandomForestClassifier df = pd.read_json('../input/train.json') df.head() df.shape()
code
1008041/cell_3
[ "text_plain_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from subprocess import check_output from sklearn.ensemble import RandomForestClassifier df = pd.read_json('../input/train.json') df.shape() df = pd.read_json('../input/train.json') df['num_feature'] = df['features'].apply(len) df['num_photos'] = df['photos'].apply(len) df['num_description_words'] = df['description'].apply(lambda x: len(x.split(' '))) interest_num = {'low': 0, 'medium': 0.5, 'high': 1} df['interest_num'] = df['interest_level'].apply(lambda x: interest_num[x]) choose_feature = ['bathrooms', 'bedroom', 'price', 'num_feature', 'num_description_words', 'interest_num'] print(df[df.isnull()])
code
74040768/cell_21
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.neighbors import KNeighborsRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.metrics import mean_squared_error path = '../input/pizza-price-prediction/pizza_v1.csv' df = pd.read_csv(path) correlation = df.corr() plt.figure(figsize=(15, 8)) sns.heatmap(correlation, cbar=True, square=True, fmt='.1f', annot=True, annot_kws={'size': 8}, cmap='YlGnBu') plt.show()
code
74040768/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/pizza-price-prediction/pizza_v1.csv' df = pd.read_csv(path) def value_counts(data): pass value_counts(df)
code
74040768/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/pizza-price-prediction/pizza_v1.csv' df = pd.read_csv(path) df.head()
code
74040768/cell_25
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.neighbors import KNeighborsRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.metrics import mean_squared_error path = '../input/pizza-price-prediction/pizza_v1.csv' df = pd.read_csv(path) correlation = df.corr() X = df.drop(['price_rupiah'], axis=1) y = df['price_rupiah'] X.head()
code
74040768/cell_30
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error import numpy as np def run_model(model, X_train, X_test, y_train, y_test): model.fit(X_train, y_train) y_pred = model.predict(X_test) train_accuracy = model.score(X_train, y_train) test_accuracy = model.score(X_test, y_test) rmse = np.sqrt(mean_squared_error(y_test, y_pred)) lr = LinearRegression() run_model(lr, X_train, X_test, y_train, y_test)
code
74040768/cell_33
[ "image_output_1.png" ]
from sklearn.metrics import mean_squared_error from sklearn.neighbors import KNeighborsRegressor import numpy as np def run_model(model, X_train, X_test, y_train, y_test): model.fit(X_train, y_train) y_pred = model.predict(X_test) train_accuracy = model.score(X_train, y_train) test_accuracy = model.score(X_test, y_test) rmse = np.sqrt(mean_squared_error(y_test, y_pred)) k_values = [1, 5, 10] for n in k_values: model = KNeighborsRegressor(n_neighbors=n) run_model(model, X_train, X_test, y_train, y_test) print() print('The Number of neighbors is : {}'.format(n)) print() print('--------------------------------') print()
code
74040768/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/pizza-price-prediction/pizza_v1.csv' df = pd.read_csv(path) df.head()
code
74040768/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/pizza-price-prediction/pizza_v1.csv' df = pd.read_csv(path) df.head()
code
74040768/cell_39
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error from sklearn.neighbors import KNeighborsRegressor from sklearn.tree import DecisionTreeRegressor import numpy as np def run_model(model, X_train, X_test, y_train, y_test): model.fit(X_train, y_train) y_pred = model.predict(X_test) train_accuracy = model.score(X_train, y_train) test_accuracy = model.score(X_test, y_test) rmse = np.sqrt(mean_squared_error(y_test, y_pred)) k_values = [1, 5, 10] for n in k_values: model = KNeighborsRegressor(n_neighbors=n) run_model(model, X_train, X_test, y_train, y_test) model = DecisionTreeRegressor() run_model(model, X_train, X_test, y_train, y_test) trees = [10, 50, 100, 200, 500] for n in trees: model = RandomForestRegressor(n_estimators=n) run_model(model, X_train, X_test, y_train, y_test) print() print('The Number of estimators is : {}'.format(n)) print() print('--------------------------------') print()
code