path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
2028270/cell_16
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import seaborn as sns wine_df = pd.read_csv('../input/winemag-data_first150k.csv') wine_df.drop('region_1', axis=1, inplace=True) wine_df.drop('region_2', axis=1, inplace=True) wine_df.drop('description', axis=1, inplace=True) wine_df.drop('designation', axis=1, inplace=True) newdf = wine_df[(wine_df['cheaper'] == 'yes') & (wine_df['quality'] == 'yes')] newdf['variety'].value_counts().plot(kind='bar')
code
2028270/cell_17
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns wine_df = pd.read_csv('../input/winemag-data_first150k.csv') wine_df.drop('region_1', axis=1, inplace=True) wine_df.drop('region_2', axis=1, inplace=True) wine_df.drop('description', axis=1, inplace=True) wine_df.drop('designation', axis=1, inplace=True) wine_df['reds'] = 'no' wine_df['reds'][wine_df['variety'].str.contains('Red', case=False)] = 'yes' wine_df['reds'][wine_df['variety'].str.contains('Cabernet', case=False)] = 'yes' wine_df['reds'][wine_df['variety'].str.contains('Pinot Noir', case=False)] = 'yes' wine_df['reds'][wine_df['variety'].str.contains('Syrah', case=False)] = 'yes' wine_df['reds'][wine_df['variety'].str.contains('Malbec', case=False)] = 'yes' wine_df['reds'][wine_df['variety'].str.contains('Sangiovese', case=False)] = 'yes' wine_df['reds'][wine_df['variety'].str.contains('Merlot', case=False)] = 'yes' wine_df['reds'][wine_df['variety'].str.contains('Grenache', case=False)] = 'yes' wine_df['reds'][wine_df['variety'].str.contains('Shiraz', case=False)] = 'yes' wine_df['reds'][wine_df['variety'].str.contains('Pinotage', case=False)] = 'yes' wine_df['reds'][wine_df['variety'].str.contains('Monastrell', case=False)] = 'yes' wine_df['reds'][wine_df['variety'].str.contains('Tempranillo', case=False)] = 'yes' wine_df['reds'][wine_df['variety'].str.contains('Claret', case=False)] = 'yes' wine_df['reds'][wine_df['variety'].str.contains('Mourvèdre', case=False)] = 'yes' wine_df['reds'][wine_df['variety'].str.contains('Verdot', case=False)] = 'yes' wine_df['reds'][wine_df['variety'].str.contains('Dolcetto', case=False)] = 'yes' wine_df['reds'][wine_df['variety'].str.contains('Carmenère', case=False)] = 'yes' wine_df['reds'][wine_df['variety'].str.contains('G-S-M', case=False)] = 'yes'
code
2028270/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns wine_df = pd.read_csv('../input/winemag-data_first150k.csv') wine_df.drop('region_1', axis=1, inplace=True) wine_df.drop('region_2', axis=1, inplace=True) wine_df.drop('description', axis=1, inplace=True) wine_df.drop('designation', axis=1, inplace=True) newdf = wine_df[(wine_df['cheaper'] == 'yes') & (wine_df['quality'] == 'yes')] newdf.head()
code
2028270/cell_22
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns wine_df = pd.read_csv('../input/winemag-data_first150k.csv') wine_df.drop('region_1', axis=1, inplace=True) wine_df.drop('region_2', axis=1, inplace=True) wine_df.drop('description', axis=1, inplace=True) wine_df.drop('designation', axis=1, inplace=True) red_df = wine_df[(wine_df['cheaper'] == 'yes') & (wine_df['quality'] == 'yes') & (wine_df['reds'] == 'yes')] red_df
code
2028270/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns wine_df = pd.read_csv('../input/winemag-data_first150k.csv') wine_df.drop('region_1', axis=1, inplace=True) wine_df.drop('region_2', axis=1, inplace=True) wine_df.drop('description', axis=1, inplace=True) wine_df.drop('designation', axis=1, inplace=True) wine_df['cheaper'] = 'no' wine_df['cheaper'][wine_df['price'] < 20.0] = 'yes' wine_df['quality'] = 'no' wine_df['quality'][wine_df['points'] > 92] = 'yes'
code
2028270/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd wine_df = pd.read_csv('../input/winemag-data_first150k.csv') plt.hist(wine_df['points'], bins=15, edgecolor='white')
code
122260975/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re train_df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') test_df = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv') stop = stopwords.words('english') stemmer = PorterStemmer() def clean_text(text): processed_text = re.sub('(@\\[A-Za-z0-9]+)|([^A-Za-z \\t])|(\\w+:\\/\\/\\S+)|^rt|http.+?', '', text) processed_text = processed_text.lower() processed_text = [word for word in processed_text.split() if word not in stop] processed_text = ' '.join([stemmer.stem(word) for word in processed_text]) return processed_text def preprocessing(df): df.keyword.fillna('', inplace=True) df.location.fillna('', inplace=True) df.text = df.keyword + df.location + df.text df.text = df.text.apply(lambda text: clean_text(text)) df.drop(columns=['keyword', 'location'], inplace=True) return df train_df = preprocessing(train_df) test_df = preprocessing(test_df) test_df.head()
code
122260975/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') test_df = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv') test_df.head()
code
122260975/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import re import nltk.corpus nltk.download('stopwords') from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer from sklearn.feature_extraction.text import TfidfVectorizer import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
122260975/cell_18
[ "text_html_output_1.png" ]
from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer from sklearn.feature_extraction.text import TfidfVectorizer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re train_df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') test_df = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv') stop = stopwords.words('english') stemmer = PorterStemmer() def clean_text(text): processed_text = re.sub('(@\\[A-Za-z0-9]+)|([^A-Za-z \\t])|(\\w+:\\/\\/\\S+)|^rt|http.+?', '', text) processed_text = processed_text.lower() processed_text = [word for word in processed_text.split() if word not in stop] processed_text = ' '.join([stemmer.stem(word) for word in processed_text]) return processed_text def preprocessing(df): df.keyword.fillna('', inplace=True) df.location.fillna('', inplace=True) df.text = df.keyword + df.location + df.text df.text = df.text.apply(lambda text: clean_text(text)) df.drop(columns=['keyword', 'location'], inplace=True) return df train_df = preprocessing(train_df) test_df = preprocessing(test_df) X_train = train_df['text'] Y_train = train_df['target'] X_test = test_df['text'] X_all = pd.concat([X_train, X_test]) tfidf_vectorizer = TfidfVectorizer(max_features=15000) tfidf_vectorizer.fit(X_all) X_train = tfidf_vectorizer.transform(X_train) X_test = tfidf_vectorizer.transform(X_test) X_train = X_train.toarray() X_test = X_test.toarray() test_pred = xgb.predict(X_test) submission = pd.DataFrame({'id': test_df['id'], 'target': test_pred}) submission.to_csv('submission.csv', index=False)
code
122260975/cell_8
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re train_df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') test_df = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv') stop = stopwords.words('english') stemmer = PorterStemmer() def clean_text(text): processed_text = re.sub('(@\\[A-Za-z0-9]+)|([^A-Za-z \\t])|(\\w+:\\/\\/\\S+)|^rt|http.+?', '', text) processed_text = processed_text.lower() processed_text = [word for word in processed_text.split() if word not in stop] processed_text = ' '.join([stemmer.stem(word) for word in processed_text]) return processed_text def preprocessing(df): df.keyword.fillna('', inplace=True) df.location.fillna('', inplace=True) df.text = df.keyword + df.location + df.text df.text = df.text.apply(lambda text: clean_text(text)) df.drop(columns=['keyword', 'location'], inplace=True) return df train_df = preprocessing(train_df) test_df = preprocessing(test_df) train_df.head()
code
122260975/cell_15
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import TfidfVectorizer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re train_df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') test_df = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv') stop = stopwords.words('english') stemmer = PorterStemmer() def clean_text(text): processed_text = re.sub('(@\\[A-Za-z0-9]+)|([^A-Za-z \\t])|(\\w+:\\/\\/\\S+)|^rt|http.+?', '', text) processed_text = processed_text.lower() processed_text = [word for word in processed_text.split() if word not in stop] processed_text = ' '.join([stemmer.stem(word) for word in processed_text]) return processed_text def preprocessing(df): df.keyword.fillna('', inplace=True) df.location.fillna('', inplace=True) df.text = df.keyword + df.location + df.text df.text = df.text.apply(lambda text: clean_text(text)) df.drop(columns=['keyword', 'location'], inplace=True) return df train_df = preprocessing(train_df) test_df = preprocessing(test_df) X_train = train_df['text'] Y_train = train_df['target'] X_test = test_df['text'] X_all = pd.concat([X_train, X_test]) tfidf_vectorizer = TfidfVectorizer(max_features=15000) tfidf_vectorizer.fit(X_all) X_train = tfidf_vectorizer.transform(X_train) X_test = tfidf_vectorizer.transform(X_test) X_train = X_train.toarray() X_test = X_test.toarray() random_forest = RandomForestClassifier() random_forest.fit(X_train, Y_train)
code
122260975/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') test_df = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv') print(train_df.shape) print(test_df.shape)
code
122260975/cell_17
[ "text_html_output_1.png" ]
from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score, confusion_matrix import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re train_df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') test_df = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv') stop = stopwords.words('english') stemmer = PorterStemmer() def clean_text(text): processed_text = re.sub('(@\\[A-Za-z0-9]+)|([^A-Za-z \\t])|(\\w+:\\/\\/\\S+)|^rt|http.+?', '', text) processed_text = processed_text.lower() processed_text = [word for word in processed_text.split() if word not in stop] processed_text = ' '.join([stemmer.stem(word) for word in processed_text]) return processed_text def preprocessing(df): df.keyword.fillna('', inplace=True) df.location.fillna('', inplace=True) df.text = df.keyword + df.location + df.text df.text = df.text.apply(lambda text: clean_text(text)) df.drop(columns=['keyword', 'location'], inplace=True) return df train_df = preprocessing(train_df) test_df = preprocessing(test_df) X_train = train_df['text'] Y_train = train_df['target'] X_test = test_df['text'] X_all = pd.concat([X_train, X_test]) tfidf_vectorizer = TfidfVectorizer(max_features=15000) tfidf_vectorizer.fit(X_all) X_train = tfidf_vectorizer.transform(X_train) X_test = tfidf_vectorizer.transform(X_test) X_train = X_train.toarray() X_test = X_test.toarray() logreg = LogisticRegression(random_state=0).fit(X_train, Y_train) from sklearn.metrics import f1_score, confusion_matrix y_pred = logreg.predict(X_train) print(f1_score(y_pred, Y_train)) print(confusion_matrix(y_pred, Y_train))
code
122260975/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') test_df = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv') train_df.head()
code
17108514/cell_9
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd reviews = pd.read_csv('../input/ml-1m/ml-1m/ratings.dat', names=['userID', 'movieID', 'rating', 'time'], delimiter='::', engine='python') rts_gp = reviews.groupby(by=['rating']).agg({'userID': 'count'}).reset_index() rts_gp.columns = ['Rating', 'Count'] plt.barh(rts_gp.Rating, rts_gp.Count, color='royalblue') plt.title('Overall Count of Ratings', fontsize=15) plt.xlabel('Count', fontsize=15) plt.ylabel('Rating', fontsize=15) plt.grid(ls='dotted') plt.show()
code
17108514/cell_23
[ "text_plain_output_1.png" ]
from surprise import KNNBasic, KNNWithMeans, KNNWithZScore algoritmo = KNNBasic(k=50, sim_options={'name': 'pearson', 'user_based': True, 'verbose': True}) algoritmo.fit(trainset) uid = str(49) iid = str(2058) print('Prediction for rating: ') pred = algoritmo.predict(uid, iid, r_ui=4, verbose=True)
code
17108514/cell_29
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from surprise import KNNBasic, KNNWithMeans, KNNWithZScore from surprise import accuracy algoritmo = KNNBasic(k=50, sim_options={'name': 'pearson', 'user_based': True, 'verbose': True}) algoritmo.fit(trainset) uid = str(49) iid = str(2058) pred = algoritmo.predict(uid, iid, r_ui=4, verbose=True) test_pred = algoritmo.test(testset) accuracy.rmse(test_pred, verbose=True) print('Analisys MAE: ') accuracy.mae(test_pred, verbose=True)
code
17108514/cell_7
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd reviews = pd.read_csv('../input/ml-1m/ml-1m/ratings.dat', names=['userID', 'movieID', 'rating', 'time'], delimiter='::', engine='python') print('No. of Unique Users :', reviews.userID.nunique()) print('No. of Unique Movies :', reviews.movieID.nunique()) print('No. of Unique Ratings :', reviews.rating.nunique())
code
17108514/cell_17
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from surprise import KNNBasic, KNNWithMeans, KNNWithZScore algoritmo = KNNBasic(k=50, sim_options={'name': 'pearson', 'user_based': True, 'verbose': True}) algoritmo.fit(trainset)
code
17108514/cell_31
[ "text_plain_output_1.png" ]
from surprise import KNNBasic, KNNWithMeans, KNNWithZScore from surprise import accuracy algoritmo = KNNBasic(k=50, sim_options={'name': 'pearson', 'user_based': True, 'verbose': True}) algoritmo.fit(trainset) uid = str(49) iid = str(2058) pred = algoritmo.predict(uid, iid, r_ui=4, verbose=True) test_pred = algoritmo.test(testset) accuracy.rmse(test_pred, verbose=True) accuracy.mae(test_pred, verbose=True) algoritmo = KNNWithMeans(k=50, sim_options={'name': 'cosine', 'user_based': False, 'verbose': True}) algoritmo.fit(trainset) uid = str(49) iid = str(2058) pred = algoritmo.predict(uid, iid, r_ui=4, verbose=True) test_pred = algoritmo.test(testset) print('Deviation RMSE: ') accuracy.rmse(test_pred, verbose=True) print('Analisys MAE: ') accuracy.mae(test_pred, verbose=True)
code
17108514/cell_27
[ "image_output_1.png" ]
from surprise import KNNBasic, KNNWithMeans, KNNWithZScore from surprise import accuracy algoritmo = KNNBasic(k=50, sim_options={'name': 'pearson', 'user_based': True, 'verbose': True}) algoritmo.fit(trainset) uid = str(49) iid = str(2058) pred = algoritmo.predict(uid, iid, r_ui=4, verbose=True) test_pred = algoritmo.test(testset) print('Deviation RMSE: ') accuracy.rmse(test_pred, verbose=True)
code
17108514/cell_5
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd reviews = pd.read_csv('../input/ml-1m/ml-1m/ratings.dat', names=['userID', 'movieID', 'rating', 'time'], delimiter='::', engine='python') print('Rows:', reviews.shape[0], '; Columns:', reviews.shape[1], '\n') reviews.head()
code
104124423/cell_13
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/digit-recognizer/train.csv') test_data = pd.read_csv('../input/digit-recognizer/test.csv') / 255 print('Number of null values in training set:', train_data.isnull().sum().sum()) print('') print('Number of null values in test set:', test_data.isnull().sum().sum())
code
104124423/cell_33
[ "text_plain_output_1.png" ]
from torch.utils.data import Dataset, DataLoader import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import torch import torch.nn as nn import torch.optim as optim BATCH_SIZE = 16 LEARNING_RATE = 0.001 N_EPOCHS = 20 LAYER1_SIZE = 256 LAYER2_SIZE = 256 DROPOUT_RATE = 0.3 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device train_data = pd.read_csv('../input/digit-recognizer/train.csv') test_data = pd.read_csv('../input/digit-recognizer/test.csv') / 255 # Figure size plt.figure(figsize=(8,8)) # Subplot for i in range(9): img = np.asarray(train_data.iloc[i+180,1:].values.reshape((28,28))/255) ax=plt.subplot(3, 3, i+1) ax.grid(False) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax.title.set_text(f'{train_data.iloc[i+18,0]}') plt.imshow(img, cmap='gray') plt.show() class MNIST(Dataset): def __init__(self, subset='train'): super().__init__() self.subset = subset if self.subset == 'train': self.X = torch.from_numpy(X_train.values.astype(np.float32)) self.y = torch.from_numpy(y_train.values) elif self.subset == 'valid': self.X = torch.from_numpy(X_valid.values.astype(np.float32)) self.y = torch.from_numpy(y_valid.values) elif self.subset == 'test': self.X = torch.from_numpy(test_data.values.astype(np.float32)) else: raise Exception('subset must be train, valid or test') def __getitem__(self, index): if self.subset == 'test': return self.X[index] else: return (self.X[index], self.y[index]) def __len__(self): return self.X.shape[0] train_dataset = MNIST(subset='train') valid_dataset = MNIST(subset='valid') test_dataset = MNIST(subset='test') train_loader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True) valid_loader = DataLoader(dataset=valid_dataset, batch_size=BATCH_SIZE, shuffle=False) test_loader = DataLoader(dataset=test_dataset, batch_size=BATCH_SIZE, shuffle=False) class NeuralNet(nn.Module): def __init__(self, layer1_size=LAYER1_SIZE, layer2_size=LAYER2_SIZE, dropout_rate=DROPOUT_RATE): super().__init__() self.lin1 = nn.Linear(in_features=784, out_features=layer1_size) self.lin2 = nn.Linear(in_features=layer1_size, out_features=layer2_size) self.lin3 = nn.Linear(in_features=layer2_size, out_features=10) self.relu = nn.ReLU() self.drop = nn.Dropout(p=dropout_rate) def forward(self, x): out = self.lin1(x) out = self.relu(out) out = self.drop(out) out = self.lin2(out) out = self.relu(out) out = self.drop(out) out = self.lin3(out) return out model = NeuralNet().to(device) loss = nn.CrossEntropyLoss() optimiser = optim.Adam(params=model.parameters(), lr=LEARNING_RATE) loss_hist = [] val_loss_hist = [] for epoch in range(N_EPOCHS): loss_acc = 0 val_loss_acc = 0 train_count = 0 valid_count = 0 for imgs, labels in train_loader: imgs = imgs.to(device) labels = labels.to(device) preds = model(imgs) L = loss(preds, labels) L.backward() optimiser.step() optimiser.zero_grad() loss_acc += L.detach().item() train_count += 1 with torch.no_grad(): for val_imgs, val_labels in valid_loader: val_imgs = val_imgs.to(device) val_labels = val_labels.to(device) val_preds = model(val_imgs) val_L = loss(val_preds, val_labels) val_loss_acc += val_L.item() valid_count += 1 loss_hist.append(loss_acc / train_count) val_loss_hist.append(val_loss_acc / valid_count) plt.figure(figsize=(10, 5)) plt.plot(loss_hist, c='C0', label='loss') plt.plot(val_loss_hist, c='C1', label='val_loss') plt.title('Cross entropy loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.show()
code
104124423/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/digit-recognizer/train.csv') test_data = pd.read_csv('../input/digit-recognizer/test.csv') / 255 print(train_data.shape) train_data.head(3)
code
104124423/cell_7
[ "image_output_1.png" ]
import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device
code
104124423/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd train_data = pd.read_csv('../input/digit-recognizer/train.csv') test_data = pd.read_csv('../input/digit-recognizer/test.csv') / 255 plt.figure(figsize=(8, 8)) for i in range(9): img = np.asarray(train_data.iloc[i + 180, 1:].values.reshape((28, 28)) / 255) ax = plt.subplot(3, 3, i + 1) ax.grid(False) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax.title.set_text(f'{train_data.iloc[i + 18, 0]}') plt.imshow(img, cmap='gray') plt.show()
code
104124423/cell_17
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_data = pd.read_csv('../input/digit-recognizer/train.csv') test_data = pd.read_csv('../input/digit-recognizer/test.csv') / 255 # Figure size plt.figure(figsize=(8,8)) # Subplot for i in range(9): img = np.asarray(train_data.iloc[i+180,1:].values.reshape((28,28))/255) ax=plt.subplot(3, 3, i+1) ax.grid(False) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax.title.set_text(f'{train_data.iloc[i+18,0]}') plt.imshow(img, cmap='gray') plt.show() plt.figure(figsize=(8, 4)) sns.countplot(x='label', data=train_data) plt.title('Distribution of labels in training set')
code
104124423/cell_31
[ "text_plain_output_1.png", "image_output_1.png" ]
from torch.utils.data import Dataset, DataLoader import matplotlib.pyplot as plt import numpy as np import pandas as pd import torch import torch.nn as nn import torch.optim as optim BATCH_SIZE = 16 LEARNING_RATE = 0.001 N_EPOCHS = 20 LAYER1_SIZE = 256 LAYER2_SIZE = 256 DROPOUT_RATE = 0.3 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device train_data = pd.read_csv('../input/digit-recognizer/train.csv') test_data = pd.read_csv('../input/digit-recognizer/test.csv') / 255 # Figure size plt.figure(figsize=(8,8)) # Subplot for i in range(9): img = np.asarray(train_data.iloc[i+180,1:].values.reshape((28,28))/255) ax=plt.subplot(3, 3, i+1) ax.grid(False) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax.title.set_text(f'{train_data.iloc[i+18,0]}') plt.imshow(img, cmap='gray') plt.show() class MNIST(Dataset): def __init__(self, subset='train'): super().__init__() self.subset = subset if self.subset == 'train': self.X = torch.from_numpy(X_train.values.astype(np.float32)) self.y = torch.from_numpy(y_train.values) elif self.subset == 'valid': self.X = torch.from_numpy(X_valid.values.astype(np.float32)) self.y = torch.from_numpy(y_valid.values) elif self.subset == 'test': self.X = torch.from_numpy(test_data.values.astype(np.float32)) else: raise Exception('subset must be train, valid or test') def __getitem__(self, index): if self.subset == 'test': return self.X[index] else: return (self.X[index], self.y[index]) def __len__(self): return self.X.shape[0] train_dataset = MNIST(subset='train') valid_dataset = MNIST(subset='valid') test_dataset = MNIST(subset='test') train_loader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True) valid_loader = DataLoader(dataset=valid_dataset, batch_size=BATCH_SIZE, shuffle=False) test_loader = DataLoader(dataset=test_dataset, batch_size=BATCH_SIZE, shuffle=False) class NeuralNet(nn.Module): def __init__(self, layer1_size=LAYER1_SIZE, layer2_size=LAYER2_SIZE, dropout_rate=DROPOUT_RATE): super().__init__() self.lin1 = nn.Linear(in_features=784, out_features=layer1_size) self.lin2 = nn.Linear(in_features=layer1_size, out_features=layer2_size) self.lin3 = nn.Linear(in_features=layer2_size, out_features=10) self.relu = nn.ReLU() self.drop = nn.Dropout(p=dropout_rate) def forward(self, x): out = self.lin1(x) out = self.relu(out) out = self.drop(out) out = self.lin2(out) out = self.relu(out) out = self.drop(out) out = self.lin3(out) return out model = NeuralNet().to(device) loss = nn.CrossEntropyLoss() optimiser = optim.Adam(params=model.parameters(), lr=LEARNING_RATE) loss_hist = [] val_loss_hist = [] for epoch in range(N_EPOCHS): loss_acc = 0 val_loss_acc = 0 train_count = 0 valid_count = 0 for imgs, labels in train_loader: imgs = imgs.to(device) labels = labels.to(device) preds = model(imgs) L = loss(preds, labels) L.backward() optimiser.step() optimiser.zero_grad() loss_acc += L.detach().item() train_count += 1 with torch.no_grad(): for val_imgs, val_labels in valid_loader: val_imgs = val_imgs.to(device) val_labels = val_labels.to(device) val_preds = model(val_imgs) val_L = loss(val_preds, val_labels) val_loss_acc += val_L.item() valid_count += 1 loss_hist.append(loss_acc / train_count) val_loss_hist.append(val_loss_acc / valid_count) if (epoch + 1) % 5 == 0: print(f'Epoch {epoch + 1}/{N_EPOCHS}, loss {loss_acc / train_count:.5f}, val_loss {val_loss_acc / valid_count:.5f}')
code
104124423/cell_36
[ "image_output_1.png" ]
from torch.utils.data import Dataset, DataLoader import matplotlib.pyplot as plt import numpy as np import pandas as pd import torch import torch.nn as nn import torch.optim as optim BATCH_SIZE = 16 LEARNING_RATE = 0.001 N_EPOCHS = 20 LAYER1_SIZE = 256 LAYER2_SIZE = 256 DROPOUT_RATE = 0.3 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device train_data = pd.read_csv('../input/digit-recognizer/train.csv') test_data = pd.read_csv('../input/digit-recognizer/test.csv') / 255 # Figure size plt.figure(figsize=(8,8)) # Subplot for i in range(9): img = np.asarray(train_data.iloc[i+180,1:].values.reshape((28,28))/255) ax=plt.subplot(3, 3, i+1) ax.grid(False) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax.title.set_text(f'{train_data.iloc[i+18,0]}') plt.imshow(img, cmap='gray') plt.show() class MNIST(Dataset): def __init__(self, subset='train'): super().__init__() self.subset = subset if self.subset == 'train': self.X = torch.from_numpy(X_train.values.astype(np.float32)) self.y = torch.from_numpy(y_train.values) elif self.subset == 'valid': self.X = torch.from_numpy(X_valid.values.astype(np.float32)) self.y = torch.from_numpy(y_valid.values) elif self.subset == 'test': self.X = torch.from_numpy(test_data.values.astype(np.float32)) else: raise Exception('subset must be train, valid or test') def __getitem__(self, index): if self.subset == 'test': return self.X[index] else: return (self.X[index], self.y[index]) def __len__(self): return self.X.shape[0] train_dataset = MNIST(subset='train') valid_dataset = MNIST(subset='valid') test_dataset = MNIST(subset='test') train_loader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True) valid_loader = DataLoader(dataset=valid_dataset, batch_size=BATCH_SIZE, shuffle=False) test_loader = DataLoader(dataset=test_dataset, batch_size=BATCH_SIZE, shuffle=False) class NeuralNet(nn.Module): def __init__(self, layer1_size=LAYER1_SIZE, layer2_size=LAYER2_SIZE, dropout_rate=DROPOUT_RATE): super().__init__() self.lin1 = nn.Linear(in_features=784, out_features=layer1_size) self.lin2 = nn.Linear(in_features=layer1_size, out_features=layer2_size) self.lin3 = nn.Linear(in_features=layer2_size, out_features=10) self.relu = nn.ReLU() self.drop = nn.Dropout(p=dropout_rate) def forward(self, x): out = self.lin1(x) out = self.relu(out) out = self.drop(out) out = self.lin2(out) out = self.relu(out) out = self.drop(out) out = self.lin3(out) return out model = NeuralNet().to(device) loss = nn.CrossEntropyLoss() optimiser = optim.Adam(params=model.parameters(), lr=LEARNING_RATE) loss_hist = [] val_loss_hist = [] for epoch in range(N_EPOCHS): loss_acc = 0 val_loss_acc = 0 train_count = 0 valid_count = 0 for imgs, labels in train_loader: imgs = imgs.to(device) labels = labels.to(device) preds = model(imgs) L = loss(preds, labels) L.backward() optimiser.step() optimiser.zero_grad() loss_acc += L.detach().item() train_count += 1 with torch.no_grad(): for val_imgs, val_labels in valid_loader: val_imgs = val_imgs.to(device) val_labels = val_labels.to(device) val_preds = model(val_imgs) val_L = loss(val_preds, val_labels) val_loss_acc += val_L.item() valid_count += 1 loss_hist.append(loss_acc / train_count) val_loss_hist.append(val_loss_acc / valid_count) model.eval() with torch.no_grad(): n_correct = 0 n_samples = 0 n_class_correct = [0 for i in range(10)] n_class_sample = [0 for i in range(10)] for imgs, labels in valid_loader: imgs = imgs.to(device) labels = labels.to(device) output = model(imgs) _, preds = torch.max(output, 1) n_samples += labels.shape[0] n_correct += (preds == labels).sum().item() for i in range(BATCH_SIZE): try: label = labels[i].item() pred = preds[i].item() except: break if label == pred: n_class_correct[label] += 1 n_class_sample[label] += 1 acc = 100 * n_correct / n_samples print(f'Overall accuracy on test set: {acc:.1f} %') for i in range(10): print(f'Accuracy of {i}: {100 * n_class_correct[i] / n_class_sample[i]:.1f} %')
code
105195130/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.cluster import KMeans import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/iris-dataset/iris.data.csv') data.describe().T X = data.iloc[:, [0, 1, 2, 3]].values wcss = [] for i in range(1, 11): kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=200, n_init=10, random_state=0) kmeans.fit(X) wcss.append(kmeans.inertia_) plt.plot(range(1, 11), wcss) plt.title('THE ELBOW METHOD') plt.xlabel('Number of Clusters') plt.ylabel('wcss') plt.show()
code
105195130/cell_4
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/iris-dataset/iris.data.csv') data.describe()
code
105195130/cell_6
[ "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/iris-dataset/iris.data.csv') data.describe().T data['Iris-setosa'].unique()
code
105195130/cell_11
[ "text_html_output_1.png" ]
from sklearn.cluster import KMeans import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/iris-dataset/iris.data.csv') data.describe().T X = data.iloc[:, [0, 1, 2, 3]].values wcss = [] for i in range(1, 11): kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=200, n_init=10, random_state=0) kmeans.fit(X) wcss.append(kmeans.inertia_) kmeans = KMeans(n_clusters=3, init='k-means++', max_iter=200, n_init=10, random_state=0) y_kmeans = kmeans.fit_predict(X) plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s=100, c='red', label='Iris-setosa') plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s=100, c='green', label='Iris-versicolor') plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s=100, c='blue', label='Iris-virginica') plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=100, c='yellow', label='centroids') plt.title('K-means Iris Dataset') plt.legend()
code
105195130/cell_3
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/iris-dataset/iris.data.csv') data.head()
code
105195130/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/iris-dataset/iris.data.csv') data.describe().T
code
328019/cell_4
[ "text_plain_output_1.png" ]
import hashlib import os import pandas as pd import numpy as np import pandas as pd import os import hashlib records = [] for name in os.listdir('../input/train/'): if 'mask' in name or not name.endswith('.tif'): continue patient_id, image_id = name.strip('.tif').split('_') with open('../input/train/' + name, 'rb') as fd: md5sum = hashlib.md5(fd.read()).hexdigest() records.append({'filename': name, 'patient_id': patient_id, 'image_id': image_id, 'md5sum': md5sum}) df = pd.DataFrame.from_records(records) counts = df.groupby('md5sum')['filename'].count() duplicates = counts[counts > 1] duplicates[duplicates > 2]
code
328019/cell_3
[ "text_plain_output_1.png" ]
import hashlib import os import pandas as pd import numpy as np import pandas as pd import os import hashlib records = [] for name in os.listdir('../input/train/'): if 'mask' in name or not name.endswith('.tif'): continue patient_id, image_id = name.strip('.tif').split('_') with open('../input/train/' + name, 'rb') as fd: md5sum = hashlib.md5(fd.read()).hexdigest() records.append({'filename': name, 'patient_id': patient_id, 'image_id': image_id, 'md5sum': md5sum}) df = pd.DataFrame.from_records(records) counts = df.groupby('md5sum')['filename'].count() duplicates = counts[counts > 1] print(len(duplicates))
code
328019/cell_5
[ "text_plain_output_1.png" ]
import hashlib import os import pandas as pd import numpy as np import pandas as pd import os import hashlib records = [] for name in os.listdir('../input/train/'): if 'mask' in name or not name.endswith('.tif'): continue patient_id, image_id = name.strip('.tif').split('_') with open('../input/train/' + name, 'rb') as fd: md5sum = hashlib.md5(fd.read()).hexdigest() records.append({'filename': name, 'patient_id': patient_id, 'image_id': image_id, 'md5sum': md5sum}) df = pd.DataFrame.from_records(records) counts = df.groupby('md5sum')['filename'].count() duplicates = counts[counts > 1] for md5sum in duplicates.index: subset = df[df['md5sum'] == md5sum] if len(subset['patient_id'].value_counts()) > 1: print(subset) print('------')
code
17096995/cell_13
[ "application_vnd.jupyter.stderr_output_1.png" ]
import datetime import glob import math import numpy as np import pandas as pd station = 68241 def Datastations(station, path): allFiles = glob.glob(path + '/*.csv') list_ = [] array = ['T', 'MinT', 'MaxT', 'Precip', 'AIR_TEMP', 'AIR_TEMP_MIN', 'AIR_TEMP_MAX', 'PRCP'] for file_ in allFiles: df = pd.read_csv(file_, index_col=None, header=0) df = df[df.station_number == station] df = df.loc[df['parameter'].isin(array)] list_.append(df) frame = pd.concat(list_, ignore_index=True) return frame df1 = Datastations(station, 'refdata/obs') df2 = Datastations(station, 'refdata/BoM_ETA_20160501-20170430/obs') df1['valid_start'] = df1['valid_start'].apply(pd.to_numeric) df1['valid_end'] = df1['valid_end'].apply(pd.to_numeric) df1['valid_start'] = df1['valid_start'] + 36000 df1['valid_end'] = df1['valid_end'] + 36000 df1['valid_start'] = pd.to_datetime(df1['valid_start'], unit='s') df1['valid_end'] = pd.to_datetime(df1['valid_end'], unit='s') df2['valid_start'] = df2['valid_start'].apply(pd.to_numeric) df2['valid_end'] = df2['valid_end'].apply(pd.to_numeric) df2['valid_start'] = df2['valid_start'] + 36000 df2['valid_end'] = df2['valid_end'] + 36000 df2.loc[df2.parameter == 'AIR_TEMP', 'valid_end'] = df2['valid_end'] + 3600 df2.loc[df2.parameter == 'PRCP', 'valid_end'] = df2['valid_end'] + 3000 df2['valid_start'] = pd.to_datetime(df2['valid_start'], unit='s') df2['valid_end'] = pd.to_datetime(df2['valid_end'], unit='s') df1['T_Celsius'] = np.where(df1['parameter'] == 'T', df1['value'], '') df1['MinT_Celsius'] = np.where(df1['parameter'] == 'MinT', df1['value'], '') df1['MaxT_Celsius'] = np.where(df1['parameter'] == 'MaxT', df1['value'], '') df1['Precip_mm'] = np.where(df1['parameter'] == 'Precip', df1['value'], '') df1 = df1.drop(['area_code', 'unit', 'statistic', 'level', 'qc_valid_minutes', 'parameter', 'value', 'qc_valid_start', 'qc_valid_end'], axis=1) df1 = df1.groupby(['valid_start', 'valid_end', 'station_number'])['T_Celsius', 'MinT_Celsius', 'MaxT_Celsius', 'Precip_mm'].sum().reset_index() df2['T_Celsius'] = np.where(df2['parameter'] == 'AIR_TEMP', df2['value'], '') df2['MinT_Celsius'] = np.where(df2['parameter'] == 'AIR_TEMP_MIN', df2['value'], '') df2['MaxT_Celsius'] = np.where(df2['parameter'] == 'AIR_TEMP_MAX', df2['value'], '') df2['Precip_mm'] = np.where(df2['parameter'] == 'PRCP', df2['value'], '') df2 = df2.drop(['area_code', 'unit', 'statistic', 'level', 'qc_valid_minutes', 'parameter', 'value', 'instantaneous', 'qc_valid_minutes_start', 'qc_valid_minutes_end'], axis=1) df2 = df2.groupby(['valid_start', 'valid_end', 'station_number'])['T_Celsius', 'MinT_Celsius', 'MaxT_Celsius', 'Precip_mm'].sum().reset_index() df3 = df2.append(df1, ignore_index=True) df3 = df3.resample('60Min', on='valid_start').first().drop('valid_start', 1).reset_index() df4 = df3.drop(df3[(df3.valid_start < '2017-01-01 00:00:00') | (df3.valid_start > '2017-12-31 23:00:00')].index) df4['valid_end'] = df4['valid_start'] + datetime.timedelta(0, 3600) df4['station_number'] = station df4 = df4.replace('', np.nan, regex=True) df4['T_Celsius'] = df4['T_Celsius'].apply(pd.to_numeric) df4['MinT_Celsius'] = df4['MinT_Celsius'].apply(pd.to_numeric) df4['MaxT_Celsius'] = df4['MaxT_Celsius'].apply(pd.to_numeric) df4['Precip_mm'] = df4['Precip_mm'].apply(pd.to_numeric) def Datagap(parameter): k = 0 for i in range(len(df4)): if math.isnan(df4[parameter].values[i]): k = k + 1 if k >= 120: k = 0 else: k = 0 Datagap('T_Celsius') Datagap('MinT_Celsius') Datagap('MaxT_Celsius') Datagap('Precip_mm') def Datafilling(parameter): for i in range(len(df4)): j = 0 if math.isnan(df4[parameter].values[i]): while j < 6: j = j + 1 if math.isnan(df4[parameter].values[i - j * 24]) == False: df4[parameter].values[i] = df4[parameter].values[i - j * 24] j = 6 elif math.isnan(df4[parameter].values[i + j * 24]) == False: df4[parameter].values[i] = df4[parameter].values[i + j * 24] j = 6 Datafilling('T_Celsius') Datafilling('MinT_Celsius') Datafilling('MaxT_Celsius') Datafilling('Precip_mm') print(df4.isna().sum()) if df4.isnull().values.any(): print('Warning: datagap for a given hour > 5 days: check your data') df4 = df4.round({'T_Celsius': 1, 'MinT_Celsius': 1, 'MaxT_Celsius': 1, 'Precip_mm': 1}) df4.to_csv('csv files/dapto_test.csv', index=False)
code
17096995/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import glob import numpy as np import pandas as pd station = 68241 def Datastations(station, path): allFiles = glob.glob(path + '/*.csv') list_ = [] array = ['T', 'MinT', 'MaxT', 'Precip', 'AIR_TEMP', 'AIR_TEMP_MIN', 'AIR_TEMP_MAX', 'PRCP'] for file_ in allFiles: df = pd.read_csv(file_, index_col=None, header=0) df = df[df.station_number == station] df = df.loc[df['parameter'].isin(array)] list_.append(df) frame = pd.concat(list_, ignore_index=True) return frame df1 = Datastations(station, 'refdata/obs') df2 = Datastations(station, 'refdata/BoM_ETA_20160501-20170430/obs') df1['valid_start'] = df1['valid_start'].apply(pd.to_numeric) df1['valid_end'] = df1['valid_end'].apply(pd.to_numeric) df1['valid_start'] = df1['valid_start'] + 36000 df1['valid_end'] = df1['valid_end'] + 36000 df1['valid_start'] = pd.to_datetime(df1['valid_start'], unit='s') df1['valid_end'] = pd.to_datetime(df1['valid_end'], unit='s') df2['valid_start'] = df2['valid_start'].apply(pd.to_numeric) df2['valid_end'] = df2['valid_end'].apply(pd.to_numeric) df2['valid_start'] = df2['valid_start'] + 36000 df2['valid_end'] = df2['valid_end'] + 36000 df2.loc[df2.parameter == 'AIR_TEMP', 'valid_end'] = df2['valid_end'] + 3600 df2.loc[df2.parameter == 'PRCP', 'valid_end'] = df2['valid_end'] + 3000 df2['valid_start'] = pd.to_datetime(df2['valid_start'], unit='s') df2['valid_end'] = pd.to_datetime(df2['valid_end'], unit='s') df1['T_Celsius'] = np.where(df1['parameter'] == 'T', df1['value'], '') df1['MinT_Celsius'] = np.where(df1['parameter'] == 'MinT', df1['value'], '') df1['MaxT_Celsius'] = np.where(df1['parameter'] == 'MaxT', df1['value'], '') df1['Precip_mm'] = np.where(df1['parameter'] == 'Precip', df1['value'], '') df1 = df1.drop(['area_code', 'unit', 'statistic', 'level', 'qc_valid_minutes', 'parameter', 'value', 'qc_valid_start', 'qc_valid_end'], axis=1) df1 = df1.groupby(['valid_start', 'valid_end', 'station_number'])['T_Celsius', 'MinT_Celsius', 'MaxT_Celsius', 'Precip_mm'].sum().reset_index() print(len(df1)) print(df1.head()) df2['T_Celsius'] = np.where(df2['parameter'] == 'AIR_TEMP', df2['value'], '') df2['MinT_Celsius'] = np.where(df2['parameter'] == 'AIR_TEMP_MIN', df2['value'], '') df2['MaxT_Celsius'] = np.where(df2['parameter'] == 'AIR_TEMP_MAX', df2['value'], '') df2['Precip_mm'] = np.where(df2['parameter'] == 'PRCP', df2['value'], '') df2 = df2.drop(['area_code', 'unit', 'statistic', 'level', 'qc_valid_minutes', 'parameter', 'value', 'instantaneous', 'qc_valid_minutes_start', 'qc_valid_minutes_end'], axis=1) df2 = df2.groupby(['valid_start', 'valid_end', 'station_number'])['T_Celsius', 'MinT_Celsius', 'MaxT_Celsius', 'Precip_mm'].sum().reset_index() print(len(df2)) print(df2.head())
code
17096995/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
import datetime import glob import math import numpy as np import pandas as pd station = 68241 def Datastations(station, path): allFiles = glob.glob(path + '/*.csv') list_ = [] array = ['T', 'MinT', 'MaxT', 'Precip', 'AIR_TEMP', 'AIR_TEMP_MIN', 'AIR_TEMP_MAX', 'PRCP'] for file_ in allFiles: df = pd.read_csv(file_, index_col=None, header=0) df = df[df.station_number == station] df = df.loc[df['parameter'].isin(array)] list_.append(df) frame = pd.concat(list_, ignore_index=True) return frame df1 = Datastations(station, 'refdata/obs') df2 = Datastations(station, 'refdata/BoM_ETA_20160501-20170430/obs') df1['valid_start'] = df1['valid_start'].apply(pd.to_numeric) df1['valid_end'] = df1['valid_end'].apply(pd.to_numeric) df1['valid_start'] = df1['valid_start'] + 36000 df1['valid_end'] = df1['valid_end'] + 36000 df1['valid_start'] = pd.to_datetime(df1['valid_start'], unit='s') df1['valid_end'] = pd.to_datetime(df1['valid_end'], unit='s') df2['valid_start'] = df2['valid_start'].apply(pd.to_numeric) df2['valid_end'] = df2['valid_end'].apply(pd.to_numeric) df2['valid_start'] = df2['valid_start'] + 36000 df2['valid_end'] = df2['valid_end'] + 36000 df2.loc[df2.parameter == 'AIR_TEMP', 'valid_end'] = df2['valid_end'] + 3600 df2.loc[df2.parameter == 'PRCP', 'valid_end'] = df2['valid_end'] + 3000 df2['valid_start'] = pd.to_datetime(df2['valid_start'], unit='s') df2['valid_end'] = pd.to_datetime(df2['valid_end'], unit='s') df1['T_Celsius'] = np.where(df1['parameter'] == 'T', df1['value'], '') df1['MinT_Celsius'] = np.where(df1['parameter'] == 'MinT', df1['value'], '') df1['MaxT_Celsius'] = np.where(df1['parameter'] == 'MaxT', df1['value'], '') df1['Precip_mm'] = np.where(df1['parameter'] == 'Precip', df1['value'], '') df1 = df1.drop(['area_code', 'unit', 'statistic', 'level', 'qc_valid_minutes', 'parameter', 'value', 'qc_valid_start', 'qc_valid_end'], axis=1) df1 = df1.groupby(['valid_start', 'valid_end', 'station_number'])['T_Celsius', 'MinT_Celsius', 'MaxT_Celsius', 'Precip_mm'].sum().reset_index() df2['T_Celsius'] = np.where(df2['parameter'] == 'AIR_TEMP', df2['value'], '') df2['MinT_Celsius'] = np.where(df2['parameter'] == 'AIR_TEMP_MIN', df2['value'], '') df2['MaxT_Celsius'] = np.where(df2['parameter'] == 'AIR_TEMP_MAX', df2['value'], '') df2['Precip_mm'] = np.where(df2['parameter'] == 'PRCP', df2['value'], '') df2 = df2.drop(['area_code', 'unit', 'statistic', 'level', 'qc_valid_minutes', 'parameter', 'value', 'instantaneous', 'qc_valid_minutes_start', 'qc_valid_minutes_end'], axis=1) df2 = df2.groupby(['valid_start', 'valid_end', 'station_number'])['T_Celsius', 'MinT_Celsius', 'MaxT_Celsius', 'Precip_mm'].sum().reset_index() df3 = df2.append(df1, ignore_index=True) print(len(df3)) df3 = df3.resample('60Min', on='valid_start').first().drop('valid_start', 1).reset_index() df4 = df3.drop(df3[(df3.valid_start < '2017-01-01 00:00:00') | (df3.valid_start > '2017-12-31 23:00:00')].index) if len(df4) != 8760: print('Too many missing data, check your data') print(df4.head()) print(df4.tail()) df4['valid_end'] = df4['valid_start'] + datetime.timedelta(0, 3600) df4['station_number'] = station print(len(df4)) df4 = df4.replace('', np.nan, regex=True) print(df4.isna().sum()) df4['T_Celsius'] = df4['T_Celsius'].apply(pd.to_numeric) df4['MinT_Celsius'] = df4['MinT_Celsius'].apply(pd.to_numeric) df4['MaxT_Celsius'] = df4['MaxT_Celsius'].apply(pd.to_numeric) df4['Precip_mm'] = df4['Precip_mm'].apply(pd.to_numeric) def Datagap(parameter): k = 0 for i in range(len(df4)): if math.isnan(df4[parameter].values[i]): k = k + 1 if k >= 120: print('Warning datagap >= 5 days: check your data', parameter) k = 0 else: k = 0 Datagap('T_Celsius') Datagap('MinT_Celsius') Datagap('MaxT_Celsius') Datagap('Precip_mm')
code
17096995/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import glob import pandas as pd station = 68241 def Datastations(station, path): allFiles = glob.glob(path + '/*.csv') list_ = [] array = ['T', 'MinT', 'MaxT', 'Precip', 'AIR_TEMP', 'AIR_TEMP_MIN', 'AIR_TEMP_MAX', 'PRCP'] for file_ in allFiles: df = pd.read_csv(file_, index_col=None, header=0) df = df[df.station_number == station] df = df.loc[df['parameter'].isin(array)] list_.append(df) frame = pd.concat(list_, ignore_index=True) return frame df1 = Datastations(station, 'refdata/obs') df2 = Datastations(station, 'refdata/BoM_ETA_20160501-20170430/obs') df1['valid_start'] = df1['valid_start'].apply(pd.to_numeric) df1['valid_end'] = df1['valid_end'].apply(pd.to_numeric) df1['valid_start'] = df1['valid_start'] + 36000 df1['valid_end'] = df1['valid_end'] + 36000 df1['valid_start'] = pd.to_datetime(df1['valid_start'], unit='s') df1['valid_end'] = pd.to_datetime(df1['valid_end'], unit='s') print(df1['valid_start'].values[1], df1['valid_end'].values[1]) df2['valid_start'] = df2['valid_start'].apply(pd.to_numeric) df2['valid_end'] = df2['valid_end'].apply(pd.to_numeric) df2['valid_start'] = df2['valid_start'] + 36000 df2['valid_end'] = df2['valid_end'] + 36000 df2.loc[df2.parameter == 'AIR_TEMP', 'valid_end'] = df2['valid_end'] + 3600 df2.loc[df2.parameter == 'PRCP', 'valid_end'] = df2['valid_end'] + 3000 df2['valid_start'] = pd.to_datetime(df2['valid_start'], unit='s') df2['valid_end'] = pd.to_datetime(df2['valid_end'], unit='s') print(df2['valid_start'].values[1], df2['valid_end'].values[1])
code
17096995/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
import glob import pandas as pd station = 68241 def Datastations(station, path): allFiles = glob.glob(path + '/*.csv') list_ = [] array = ['T', 'MinT', 'MaxT', 'Precip', 'AIR_TEMP', 'AIR_TEMP_MIN', 'AIR_TEMP_MAX', 'PRCP'] for file_ in allFiles: df = pd.read_csv(file_, index_col=None, header=0) df = df[df.station_number == station] df = df.loc[df['parameter'].isin(array)] list_.append(df) frame = pd.concat(list_, ignore_index=True) return frame df1 = Datastations(station, 'refdata/obs') df2 = Datastations(station, 'refdata/BoM_ETA_20160501-20170430/obs') print(len(df1)) print(df1.head()) print(len(df2)) print(df2.head())
code
34148405/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train_dataset = pd.read_csv('../input/titanic/train.csv') df_test_dataset = pd.read_csv('../input/titanic/test.csv') df_gender_submission = pd.read_csv('../input/titanic/gender_submission.csv') df_complete_data = pd.concat([df_train_dataset, df_test_dataset]) df_complete_data.shape Med_value = df_complete_data[df_complete_data['Pclass'] == 3]['Fare'].median() df_complete_data.loc[df_complete_data['Ticket'] == '3701', ['Fare']] = Med_value df_complete_data.loc[df_complete_data['Ticket'] == '113572', ['Embarked']] = 'S' df_complete_data['Title'] = df_complete_data.Name.apply(lambda x: x.split(',')[1].split('.')[0].strip()) for i in range(len(df_complete_data)): if df_complete_data.iloc[i, df_complete_data.columns.get_loc('Sex')] == 'male' and df_complete_data.iloc[i, df_complete_data.columns.get_loc('Age')] <= 14: df_complete_data.iloc[i, df_complete_data.columns.get_loc('Title')] = 1 if df_complete_data.iloc[i, df_complete_data.columns.get_loc('Sex')] == 'female' and df_complete_data.iloc[i, df_complete_data.columns.get_loc('Age')] <= 14: df_complete_data.iloc[i, df_complete_data.columns.get_loc('Title')] = 2 if df_complete_data.iloc[i, df_complete_data.columns.get_loc('Sex')] == 'male' and df_complete_data.iloc[i, df_complete_data.columns.get_loc('Age')] > 14: df_complete_data.iloc[i, df_complete_data.columns.get_loc('Title')] = 3 if df_complete_data.iloc[i, df_complete_data.columns.get_loc('Sex')] == 'female' and df_complete_data.iloc[i, df_complete_data.columns.get_loc('Age')] > 14: df_complete_data.iloc[i, df_complete_data.columns.get_loc('Title')] = 4 df_complete_data[df_complete_data['Age'].isnull()]
code
34148405/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train_dataset = pd.read_csv('../input/titanic/train.csv') df_test_dataset = pd.read_csv('../input/titanic/test.csv') df_gender_submission = pd.read_csv('../input/titanic/gender_submission.csv') df_complete_data = pd.concat([df_train_dataset, df_test_dataset]) df_complete_data.shape df_complete_data['Fare'].isnull().sum()
code
34148405/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train_dataset = pd.read_csv('../input/titanic/train.csv') df_test_dataset = pd.read_csv('../input/titanic/test.csv') df_gender_submission = pd.read_csv('../input/titanic/gender_submission.csv') df_train_dataset.info()
code
34148405/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train_dataset = pd.read_csv('../input/titanic/train.csv') df_test_dataset = pd.read_csv('../input/titanic/test.csv') df_gender_submission = pd.read_csv('../input/titanic/gender_submission.csv') df_complete_data = pd.concat([df_train_dataset, df_test_dataset]) df_complete_data.describe()
code
34148405/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train_dataset = pd.read_csv('../input/titanic/train.csv') df_test_dataset = pd.read_csv('../input/titanic/test.csv') df_gender_submission = pd.read_csv('../input/titanic/gender_submission.csv') df_complete_data = pd.concat([df_train_dataset, df_test_dataset]) df_complete_data.shape Med_value = df_complete_data[df_complete_data['Pclass'] == 3]['Fare'].median() df_complete_data.loc[df_complete_data['Ticket'] == '3701', ['Fare']] = Med_value df_complete_data['Fare'].isnull().sum()
code
34148405/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train_dataset = pd.read_csv('../input/titanic/train.csv') df_test_dataset = pd.read_csv('../input/titanic/test.csv') df_gender_submission = pd.read_csv('../input/titanic/gender_submission.csv') df_complete_data = pd.concat([df_train_dataset, df_test_dataset]) df_complete_data.shape Med_value = df_complete_data[df_complete_data['Pclass'] == 3]['Fare'].median() df_complete_data.loc[df_complete_data['Ticket'] == '3701', ['Fare']] = Med_value df_complete_data.loc[df_complete_data['Ticket'] == '113572', ['Embarked']] = 'S' df_complete_data['Title'] = df_complete_data.Name.apply(lambda x: x.split(',')[1].split('.')[0].strip()) df_complete_data['Title'].value_counts()
code
34148405/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34148405/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train_dataset = pd.read_csv('../input/titanic/train.csv') df_test_dataset = pd.read_csv('../input/titanic/test.csv') df_gender_submission = pd.read_csv('../input/titanic/gender_submission.csv') df_complete_data = pd.concat([df_train_dataset, df_test_dataset]) df_complete_data.info()
code
34148405/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train_dataset = pd.read_csv('../input/titanic/train.csv') df_test_dataset = pd.read_csv('../input/titanic/test.csv') df_gender_submission = pd.read_csv('../input/titanic/gender_submission.csv') df_complete_data = pd.concat([df_train_dataset, df_test_dataset]) df_complete_data.shape Med_value = df_complete_data[df_complete_data['Pclass'] == 3]['Fare'].median() df_complete_data.loc[df_complete_data['Ticket'] == '3701', ['Fare']] = Med_value df_complete_data.loc[df_complete_data['Ticket'] == '113572', ['Embarked']] = 'S' df_complete_data['Title'] = df_complete_data.Name.apply(lambda x: x.split(',')[1].split('.')[0].strip()) df_complete_data['Title'].unique()
code
34148405/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train_dataset = pd.read_csv('../input/titanic/train.csv') df_test_dataset = pd.read_csv('../input/titanic/test.csv') df_gender_submission = pd.read_csv('../input/titanic/gender_submission.csv') df_complete_data = pd.concat([df_train_dataset, df_test_dataset]) df_complete_data.shape
code
34148405/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train_dataset = pd.read_csv('../input/titanic/train.csv') df_test_dataset = pd.read_csv('../input/titanic/test.csv') df_gender_submission = pd.read_csv('../input/titanic/gender_submission.csv') df_complete_data = pd.concat([df_train_dataset, df_test_dataset]) df_complete_data.shape Med_value = df_complete_data[df_complete_data['Pclass'] == 3]['Fare'].median() df_complete_data.loc[df_complete_data['Ticket'] == '3701', ['Fare']] = Med_value df_complete_data.loc[df_complete_data['Ticket'] == '113572', ['Embarked']] = 'S' df_complete_data.loc[df_complete_data['Ticket'] == '113572'].isnull().describe()
code
34148405/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train_dataset = pd.read_csv('../input/titanic/train.csv') df_test_dataset = pd.read_csv('../input/titanic/test.csv') df_gender_submission = pd.read_csv('../input/titanic/gender_submission.csv') df_complete_data = pd.concat([df_train_dataset, df_test_dataset]) df_complete_data.shape Med_value = df_complete_data[df_complete_data['Pclass'] == 3]['Fare'].median() df_complete_data.loc[df_complete_data['Ticket'] == '3701', ['Fare']] = Med_value df_complete_data.loc[df_complete_data['Ticket'] == '113572', ['Embarked']] = 'S' df_complete_data['Age'].isnull().sum()
code
34148405/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train_dataset = pd.read_csv('../input/titanic/train.csv') df_test_dataset = pd.read_csv('../input/titanic/test.csv') df_gender_submission = pd.read_csv('../input/titanic/gender_submission.csv') df_complete_data = pd.concat([df_train_dataset, df_test_dataset]) df_complete_data.shape Med_value = df_complete_data[df_complete_data['Pclass'] == 3]['Fare'].median() df_complete_data.loc[df_complete_data['Ticket'] == '3701', ['Fare']] = Med_value df_complete_data.loc[df_complete_data['Ticket'] == '113572', ['Embarked']] = 'S' df_complete_data['Ticket'].isnull().sum()
code
34148405/cell_12
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train_dataset = pd.read_csv('../input/titanic/train.csv') df_test_dataset = pd.read_csv('../input/titanic/test.csv') df_gender_submission = pd.read_csv('../input/titanic/gender_submission.csv') df_complete_data = pd.concat([df_train_dataset, df_test_dataset]) df_complete_data.shape Med_value = df_complete_data[df_complete_data['Pclass'] == 3]['Fare'].median() df_complete_data.loc[df_complete_data['Ticket'] == '3701', ['Fare']] = Med_value df_complete_data['Embarked'].isnull().sum()
code
50227807/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
import cv2 import matplotlib.image as mpimg import numpy as np import os import numpy as np import pandas as pd import zipfile from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 import random import os IMAGE_WIDTH = 128 IMAGE_HEIGHT = 128 IMAGE_SIZE = (IMAGE_WIDTH, IMAGE_HEIGHT) IMAGE_CHANNELS = 3 filenames = os.listdir('/kaggle/working/train') filenames[:5] def load_data(filenames): i = 50 X = [] y = [] for name in filenames: img = mpimg.imread(os.path.join('/kaggle/working/train', name)) X.append(cv2.resize(img, IMAGE_SIZE)) cat = name.split('.')[0] if cat == 'dog': y.append(0) else: y.append(1) i -= 1 if i <= 0: break return (X, y) def refine_data(X, y): X = np.array(X) X = X.reshape(X.shape[0], -1) X = X.T y = np.array(y) y = y.reshape((1, y.shape[0])) return (X, y) X, y = refine_data(X, y) layer_dims = [X.shape[0], 20, 7, 5, 1] def initialize_parameters(layer_dims): np.random.seed(3) parameters = {} L = len(layer_dims) for l in range(1, L): parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) * 0.01 parameters['b' + str(l)] = np.zeros((layer_dims[l], 1)) return parameters parameters = initialize_parameters(layer_dims) parameters
code
50227807/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import zipfile from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 import random import os print(os.listdir('../input/dogs-vs-cats'))
code
50227807/cell_8
[ "text_plain_output_1.png" ]
import cv2 import matplotlib.image as mpimg import matplotlib.pyplot as plt import os import random import numpy as np import pandas as pd import zipfile from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 import random import os IMAGE_WIDTH = 128 IMAGE_HEIGHT = 128 IMAGE_SIZE = (IMAGE_WIDTH, IMAGE_HEIGHT) IMAGE_CHANNELS = 3 filenames = os.listdir('/kaggle/working/train') filenames[:5] def load_data(filenames): i = 50 X = [] y = [] for name in filenames: img = mpimg.imread(os.path.join('/kaggle/working/train', name)) X.append(cv2.resize(img, IMAGE_SIZE)) cat = name.split('.')[0] if cat == 'dog': y.append(0) else: y.append(1) i -= 1 if i <= 0: break return (X, y) sample = random.choice(filenames) print(sample) plt.imshow(mpimg.imread('/kaggle/working/train/' + sample)) plt.show()
code
50227807/cell_15
[ "text_plain_output_1.png" ]
import cv2 import matplotlib.image as mpimg import numpy as np import os import numpy as np import pandas as pd import zipfile from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 import random import os IMAGE_WIDTH = 128 IMAGE_HEIGHT = 128 IMAGE_SIZE = (IMAGE_WIDTH, IMAGE_HEIGHT) IMAGE_CHANNELS = 3 filenames = os.listdir('/kaggle/working/train') filenames[:5] def load_data(filenames): i = 50 X = [] y = [] for name in filenames: img = mpimg.imread(os.path.join('/kaggle/working/train', name)) X.append(cv2.resize(img, IMAGE_SIZE)) cat = name.split('.')[0] if cat == 'dog': y.append(0) else: y.append(1) i -= 1 if i <= 0: break return (X, y) def refine_data(X, y): X = np.array(X) X = X.reshape(X.shape[0], -1) X = X.T y = np.array(y) y = y.reshape((1, y.shape[0])) return (X, y) X, y = refine_data(X, y) layer_dims = [X.shape[0], 20, 7, 5, 1] def initialize_parameters(layer_dims): np.random.seed(3) parameters = {} L = len(layer_dims) for l in range(1, L): parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) * 0.01 parameters['b' + str(l)] = np.zeros((layer_dims[l], 1)) return parameters parameters = initialize_parameters(layer_dims) parameters def linear_fwd(A, W, b): Z = np.dot(W, A) + b cache = (A, W, b) return (Z, cache) Z, cache = linear_fwd(X, parameters['W1'], parameters['b1']) Z.shape
code
50227807/cell_17
[ "text_plain_output_1.png" ]
import cv2 import matplotlib.image as mpimg import numpy as np import os import numpy as np import pandas as pd import zipfile from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 import random import os IMAGE_WIDTH = 128 IMAGE_HEIGHT = 128 IMAGE_SIZE = (IMAGE_WIDTH, IMAGE_HEIGHT) IMAGE_CHANNELS = 3 filenames = os.listdir('/kaggle/working/train') filenames[:5] def load_data(filenames): i = 50 X = [] y = [] for name in filenames: img = mpimg.imread(os.path.join('/kaggle/working/train', name)) X.append(cv2.resize(img, IMAGE_SIZE)) cat = name.split('.')[0] if cat == 'dog': y.append(0) else: y.append(1) i -= 1 if i <= 0: break return (X, y) def refine_data(X, y): X = np.array(X) X = X.reshape(X.shape[0], -1) X = X.T y = np.array(y) y = y.reshape((1, y.shape[0])) return (X, y) X, y = refine_data(X, y) layer_dims = [X.shape[0], 20, 7, 5, 1] def initialize_parameters(layer_dims): np.random.seed(3) parameters = {} L = len(layer_dims) for l in range(1, L): parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) * 0.01 parameters['b' + str(l)] = np.zeros((layer_dims[l], 1)) return parameters parameters = initialize_parameters(layer_dims) parameters def linear_fwd(A, W, b): Z = np.dot(W, A) + b cache = (A, W, b) return (Z, cache) Z, cache = linear_fwd(X, parameters['W1'], parameters['b1']) Z.shape def sigmoid(Z): A = 1 / (1 + np.exp(-Z)) cache = Z return (A, Z) def relu(Z): A = np.maximum(Z, 0) cache = Z return (A, Z) sigmoid(np.array([0, 2]))
code
50227807/cell_10
[ "text_plain_output_1.png" ]
import cv2 import matplotlib.image as mpimg import numpy as np import os import numpy as np import pandas as pd import zipfile from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 import random import os IMAGE_WIDTH = 128 IMAGE_HEIGHT = 128 IMAGE_SIZE = (IMAGE_WIDTH, IMAGE_HEIGHT) IMAGE_CHANNELS = 3 filenames = os.listdir('/kaggle/working/train') filenames[:5] def load_data(filenames): i = 50 X = [] y = [] for name in filenames: img = mpimg.imread(os.path.join('/kaggle/working/train', name)) X.append(cv2.resize(img, IMAGE_SIZE)) cat = name.split('.')[0] if cat == 'dog': y.append(0) else: y.append(1) i -= 1 if i <= 0: break return (X, y) def refine_data(X, y): X = np.array(X) X = X.reshape(X.shape[0], -1) X = X.T y = np.array(y) y = y.reshape((1, y.shape[0])) return (X, y) X, y = refine_data(X, y) print(X.shape) print(y.shape)
code
50227807/cell_5
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import zipfile from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 import random import os filenames = os.listdir('/kaggle/working/train') filenames[:5]
code
128027940/cell_6
[ "text_plain_output_1.png" ]
!python -m spacy train /kaggle/working/config.cfg --output ./spacy_output --paths.train /kaggle/input/ir-silver-data/dev_data.spacy --paths.dev /kaggle/input/ir-silver-data/test_data.spacy --gpu-id 0
code
128027940/cell_1
[ "text_plain_output_1.png" ]
!pip install spacy==3.4.4
code
128027940/cell_10
[ "text_plain_output_1.png" ]
from spacy.tokens import DocBin import spacy train_bin = DocBin().from_disk('/kaggle/input/ir-silver-data/dev_data.spacy') nlp = spacy.load('/kaggle/input/scispacy-model/en_core_sci_sm') docs = train_bin.get_docs(nlp.vocab) for doc in docs: for ent in doc.ents: print(ent, ent.label_) break
code
128027940/cell_5
[ "text_plain_output_1.png" ]
# Run in case of error ! python -m spacy debug data /kaggle/working/config.cfg --paths.train /kaggle/input/ir-silver-data/train_data.spacy --paths.dev /kaggle/input/ir-silver-data/dev_data.spacy
code
33109829/cell_9
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) calendar_df = pd.read_csv('../input/m5-forecasting-accuracy/calendar.csv', parse_dates=['date'], usecols=['date', 'd']) calendar_stv = calendar_df[:1913] sales_train_validation = pd.read_csv('../input/m5-forecasting-accuracy/sales_train_validation.csv', index_col='id') print(sales_train_validation.shape) print(10 * (1437 + 1047 + 565))
code
33109829/cell_25
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) calendar_df = pd.read_csv('../input/m5-forecasting-accuracy/calendar.csv', parse_dates=['date'], usecols=['date', 'd']) calendar_stv = calendar_df[:1913] sales_train_validation = pd.read_csv('../input/m5-forecasting-accuracy/sales_train_validation.csv', index_col='id') aggregate_state_sum = sales_train_validation.groupby(by=['state_id'], axis=0).sum() aggregate_state_sum.columns = calendar_stv['date'] agg_state_sum_trans = aggregate_state_sum.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 2 ax = agg_state_sum_trans['2015':].plot(title="Summeret salg per stat") ax.set_ylabel('Solgte enheder') plt.show() aggregate_state_mean = sales_train_validation.groupby(by=['state_id'],axis=0).mean() aggregate_state_mean.columns = calendar_stv['date'] agg_state_mean_trans = aggregate_state_mean.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 2 ax = agg_state_mean_trans['2015':].plot(title="Gennemsnitlig salg per stat") ax.set_ylabel('Solgte enheder') plt.show() aggregate_state_category = sales_train_validation.groupby(by=['state_id', 'cat_id'], axis=0).sum() aggregate_state_category.columns = calendar_stv['date'] agg_state_trans = aggregate_state_category.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 4 def plot_state_category(sales_train_validation, calendar_dates, state, category=None, start_time='2015'): sales_state_category = sales_train_validation.loc[sales_train_validation['state_id'] == state ] if category != None : sales_state_category = sales_state_category.loc[sales_state_category['cat_id'] == category] aggregate_ssc = sales_state_category.groupby(by=['dept_id'],axis=0).mean() aggregate_ssc.columns = calendar_dates['date'] agg_ssc_trans = aggregate_ssc.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [25, 15] plt.rcParams['lines.linewidth'] = 2 ax = agg_ssc_trans[start_time:].plot(title="MEANed numbers State: {}, Category: {}".format(state, category)) ax.set_ylabel('Units sold') plt.show() plot_state_category(sales_train_validation, calendar_stv, 'WI', category='FOODS', start_time='2013')
code
33109829/cell_23
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) calendar_df = pd.read_csv('../input/m5-forecasting-accuracy/calendar.csv', parse_dates=['date'], usecols=['date', 'd']) calendar_stv = calendar_df[:1913] sales_train_validation = pd.read_csv('../input/m5-forecasting-accuracy/sales_train_validation.csv', index_col='id') aggregate_state_sum = sales_train_validation.groupby(by=['state_id'], axis=0).sum() aggregate_state_sum.columns = calendar_stv['date'] agg_state_sum_trans = aggregate_state_sum.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 2 ax = agg_state_sum_trans['2015':].plot(title="Summeret salg per stat") ax.set_ylabel('Solgte enheder') plt.show() aggregate_state_mean = sales_train_validation.groupby(by=['state_id'],axis=0).mean() aggregate_state_mean.columns = calendar_stv['date'] agg_state_mean_trans = aggregate_state_mean.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 2 ax = agg_state_mean_trans['2015':].plot(title="Gennemsnitlig salg per stat") ax.set_ylabel('Solgte enheder') plt.show() aggregate_state_category = sales_train_validation.groupby(by=['state_id', 'cat_id'], axis=0).sum() aggregate_state_category.columns = calendar_stv['date'] agg_state_trans = aggregate_state_category.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 4 def plot_state_category(sales_train_validation, calendar_dates, state, category=None, start_time='2015'): sales_state_category = sales_train_validation.loc[sales_train_validation['state_id'] == state ] if category != None : sales_state_category = sales_state_category.loc[sales_state_category['cat_id'] == category] aggregate_ssc = sales_state_category.groupby(by=['dept_id'],axis=0).mean() aggregate_ssc.columns = calendar_dates['date'] agg_ssc_trans = aggregate_ssc.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [25, 15] plt.rcParams['lines.linewidth'] = 2 ax = agg_ssc_trans[start_time:].plot(title="MEANed numbers State: {}, Category: {}".format(state, category)) ax.set_ylabel('Units sold') plt.show() plot_state_category(sales_train_validation, calendar_stv, 'CA', category='FOODS', start_time='2013')
code
33109829/cell_19
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) calendar_df = pd.read_csv('../input/m5-forecasting-accuracy/calendar.csv', parse_dates=['date'], usecols=['date', 'd']) calendar_stv = calendar_df[:1913] sales_train_validation = pd.read_csv('../input/m5-forecasting-accuracy/sales_train_validation.csv', index_col='id') aggregate_state_sum = sales_train_validation.groupby(by=['state_id'], axis=0).sum() aggregate_state_sum.columns = calendar_stv['date'] agg_state_sum_trans = aggregate_state_sum.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 2 ax = agg_state_sum_trans['2015':].plot(title="Summeret salg per stat") ax.set_ylabel('Solgte enheder') plt.show() aggregate_state_mean = sales_train_validation.groupby(by=['state_id'],axis=0).mean() aggregate_state_mean.columns = calendar_stv['date'] agg_state_mean_trans = aggregate_state_mean.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 2 ax = agg_state_mean_trans['2015':].plot(title="Gennemsnitlig salg per stat") ax.set_ylabel('Solgte enheder') plt.show() aggregate_state_category = sales_train_validation.groupby(by=['state_id', 'cat_id'], axis=0).sum() aggregate_state_category.columns = calendar_stv['date'] agg_state_trans = aggregate_state_category.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 4 agg_state_trans['WI']['2015':].plot(title='WI') plt.show()
code
33109829/cell_1
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) import matplotlib.pyplot as plt
code
33109829/cell_7
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) calendar_df = pd.read_csv('../input/m5-forecasting-accuracy/calendar.csv', parse_dates=['date'], usecols=['date', 'd']) calendar_stv = calendar_df[:1913] sales_train_validation = pd.read_csv('../input/m5-forecasting-accuracy/sales_train_validation.csv', index_col='id') sales_train_validation.groupby(['store_id'])['cat_id'].value_counts().plot(kind='bar') plt.show()
code
33109829/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) calendar_df = pd.read_csv('../input/m5-forecasting-accuracy/calendar.csv', parse_dates=['date'], usecols=['date', 'd']) calendar_stv = calendar_df[:1913] sales_train_validation = pd.read_csv('../input/m5-forecasting-accuracy/sales_train_validation.csv', index_col='id') aggregate_state_sum = sales_train_validation.groupby(by=['state_id'], axis=0).sum() aggregate_state_sum.columns = calendar_stv['date'] agg_state_sum_trans = aggregate_state_sum.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 2 ax = agg_state_sum_trans['2015':].plot(title="Summeret salg per stat") ax.set_ylabel('Solgte enheder') plt.show() aggregate_state_mean = sales_train_validation.groupby(by=['state_id'],axis=0).mean() aggregate_state_mean.columns = calendar_stv['date'] agg_state_mean_trans = aggregate_state_mean.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 2 ax = agg_state_mean_trans['2015':].plot(title="Gennemsnitlig salg per stat") ax.set_ylabel('Solgte enheder') plt.show() aggregate_state_category = sales_train_validation.groupby(by=['state_id', 'cat_id'], axis=0).sum() aggregate_state_category.columns = calendar_stv['date'] agg_state_trans = aggregate_state_category.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 4 agg_state_trans['TX']['2015':].plot(title='TX') plt.show()
code
33109829/cell_28
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) calendar_df = pd.read_csv('../input/m5-forecasting-accuracy/calendar.csv', parse_dates=['date'], usecols=['date', 'd']) calendar_stv = calendar_df[:1913] sales_train_validation = pd.read_csv('../input/m5-forecasting-accuracy/sales_train_validation.csv', index_col='id') aggregate_state_sum = sales_train_validation.groupby(by=['state_id'], axis=0).sum() aggregate_state_sum.columns = calendar_stv['date'] agg_state_sum_trans = aggregate_state_sum.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 2 ax = agg_state_sum_trans['2015':].plot(title="Summeret salg per stat") ax.set_ylabel('Solgte enheder') plt.show() aggregate_state_mean = sales_train_validation.groupby(by=['state_id'],axis=0).mean() aggregate_state_mean.columns = calendar_stv['date'] agg_state_mean_trans = aggregate_state_mean.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 2 ax = agg_state_mean_trans['2015':].plot(title="Gennemsnitlig salg per stat") ax.set_ylabel('Solgte enheder') plt.show() aggregate_state_category = sales_train_validation.groupby(by=['state_id', 'cat_id'], axis=0).sum() aggregate_state_category.columns = calendar_stv['date'] agg_state_trans = aggregate_state_category.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 4 def plot_state_category(sales_train_validation, calendar_dates, state, category=None, start_time='2015'): sales_state_category = sales_train_validation.loc[sales_train_validation['state_id'] == state ] if category != None : sales_state_category = sales_state_category.loc[sales_state_category['cat_id'] == category] aggregate_ssc = sales_state_category.groupby(by=['dept_id'],axis=0).mean() aggregate_ssc.columns = calendar_dates['date'] agg_ssc_trans = aggregate_ssc.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [25, 15] plt.rcParams['lines.linewidth'] = 2 ax = agg_ssc_trans[start_time:].plot(title="MEANed numbers State: {}, Category: {}".format(state, category)) ax.set_ylabel('Units sold') plt.show() light_sales = sales_train_validation.drop(['item_id', 'dept_id', 'cat_id', 'store_id'], axis=1) light_sales = light_sales.groupby('state_id').mean() light_sales.columns = calendar_stv['date'] light_s_t = light_sales.transpose() light_s_t['14-12-2013':'31-12-2013'].plot() plt.show()
code
33109829/cell_3
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) calendar_df = pd.read_csv('../input/m5-forecasting-accuracy/calendar.csv', parse_dates=['date'], usecols=['date', 'd']) calendar_stv = calendar_df[:1913] calendar_stv.info()
code
33109829/cell_17
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) calendar_df = pd.read_csv('../input/m5-forecasting-accuracy/calendar.csv', parse_dates=['date'], usecols=['date', 'd']) calendar_stv = calendar_df[:1913] sales_train_validation = pd.read_csv('../input/m5-forecasting-accuracy/sales_train_validation.csv', index_col='id') aggregate_state_sum = sales_train_validation.groupby(by=['state_id'], axis=0).sum() aggregate_state_sum.columns = calendar_stv['date'] agg_state_sum_trans = aggregate_state_sum.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 2 ax = agg_state_sum_trans['2015':].plot(title="Summeret salg per stat") ax.set_ylabel('Solgte enheder') plt.show() aggregate_state_mean = sales_train_validation.groupby(by=['state_id'],axis=0).mean() aggregate_state_mean.columns = calendar_stv['date'] agg_state_mean_trans = aggregate_state_mean.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 2 ax = agg_state_mean_trans['2015':].plot(title="Gennemsnitlig salg per stat") ax.set_ylabel('Solgte enheder') plt.show() aggregate_state_category = sales_train_validation.groupby(by=['state_id', 'cat_id'], axis=0).sum() aggregate_state_category.columns = calendar_stv['date'] agg_state_trans = aggregate_state_category.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 4 agg_state_trans['CA']['2015':].plot(title='CA') plt.show()
code
33109829/cell_24
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) calendar_df = pd.read_csv('../input/m5-forecasting-accuracy/calendar.csv', parse_dates=['date'], usecols=['date', 'd']) calendar_stv = calendar_df[:1913] sales_train_validation = pd.read_csv('../input/m5-forecasting-accuracy/sales_train_validation.csv', index_col='id') aggregate_state_sum = sales_train_validation.groupby(by=['state_id'], axis=0).sum() aggregate_state_sum.columns = calendar_stv['date'] agg_state_sum_trans = aggregate_state_sum.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 2 ax = agg_state_sum_trans['2015':].plot(title="Summeret salg per stat") ax.set_ylabel('Solgte enheder') plt.show() aggregate_state_mean = sales_train_validation.groupby(by=['state_id'],axis=0).mean() aggregate_state_mean.columns = calendar_stv['date'] agg_state_mean_trans = aggregate_state_mean.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 2 ax = agg_state_mean_trans['2015':].plot(title="Gennemsnitlig salg per stat") ax.set_ylabel('Solgte enheder') plt.show() aggregate_state_category = sales_train_validation.groupby(by=['state_id', 'cat_id'], axis=0).sum() aggregate_state_category.columns = calendar_stv['date'] agg_state_trans = aggregate_state_category.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 4 def plot_state_category(sales_train_validation, calendar_dates, state, category=None, start_time='2015'): sales_state_category = sales_train_validation.loc[sales_train_validation['state_id'] == state ] if category != None : sales_state_category = sales_state_category.loc[sales_state_category['cat_id'] == category] aggregate_ssc = sales_state_category.groupby(by=['dept_id'],axis=0).mean() aggregate_ssc.columns = calendar_dates['date'] agg_ssc_trans = aggregate_ssc.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [25, 15] plt.rcParams['lines.linewidth'] = 2 ax = agg_ssc_trans[start_time:].plot(title="MEANed numbers State: {}, Category: {}".format(state, category)) ax.set_ylabel('Units sold') plt.show() plot_state_category(sales_train_validation, calendar_stv, 'TX', category='FOODS', start_time='2013')
code
33109829/cell_14
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) calendar_df = pd.read_csv('../input/m5-forecasting-accuracy/calendar.csv', parse_dates=['date'], usecols=['date', 'd']) calendar_stv = calendar_df[:1913] sales_train_validation = pd.read_csv('../input/m5-forecasting-accuracy/sales_train_validation.csv', index_col='id') aggregate_state_sum = sales_train_validation.groupby(by=['state_id'], axis=0).sum() aggregate_state_sum.columns = calendar_stv['date'] agg_state_sum_trans = aggregate_state_sum.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 2 ax = agg_state_sum_trans['2015':].plot(title="Summeret salg per stat") ax.set_ylabel('Solgte enheder') plt.show() aggregate_state_mean = sales_train_validation.groupby(by=['state_id'], axis=0).mean() aggregate_state_mean.columns = calendar_stv['date'] agg_state_mean_trans = aggregate_state_mean.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 2 ax = agg_state_mean_trans['2015':].plot(title='Gennemsnitlig salg per stat') ax.set_ylabel('Solgte enheder') plt.show()
code
33109829/cell_27
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) calendar_df = pd.read_csv('../input/m5-forecasting-accuracy/calendar.csv', parse_dates=['date'], usecols=['date', 'd']) calendar_stv = calendar_df[:1913] sales_train_validation = pd.read_csv('../input/m5-forecasting-accuracy/sales_train_validation.csv', index_col='id') aggregate_state_sum = sales_train_validation.groupby(by=['state_id'], axis=0).sum() aggregate_state_sum.columns = calendar_stv['date'] agg_state_sum_trans = aggregate_state_sum.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 2 ax = agg_state_sum_trans['2015':].plot(title="Summeret salg per stat") ax.set_ylabel('Solgte enheder') plt.show() aggregate_state_mean = sales_train_validation.groupby(by=['state_id'],axis=0).mean() aggregate_state_mean.columns = calendar_stv['date'] agg_state_mean_trans = aggregate_state_mean.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 2 ax = agg_state_mean_trans['2015':].plot(title="Gennemsnitlig salg per stat") ax.set_ylabel('Solgte enheder') plt.show() aggregate_state_category = sales_train_validation.groupby(by=['state_id', 'cat_id'], axis=0).sum() aggregate_state_category.columns = calendar_stv['date'] agg_state_trans = aggregate_state_category.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 4 def plot_state_category(sales_train_validation, calendar_dates, state, category=None, start_time='2015'): sales_state_category = sales_train_validation.loc[sales_train_validation['state_id'] == state ] if category != None : sales_state_category = sales_state_category.loc[sales_state_category['cat_id'] == category] aggregate_ssc = sales_state_category.groupby(by=['dept_id'],axis=0).mean() aggregate_ssc.columns = calendar_dates['date'] agg_ssc_trans = aggregate_ssc.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [25, 15] plt.rcParams['lines.linewidth'] = 2 ax = agg_ssc_trans[start_time:].plot(title="MEANed numbers State: {}, Category: {}".format(state, category)) ax.set_ylabel('Units sold') plt.show() light_sales = sales_train_validation.drop(['item_id', 'dept_id', 'cat_id', 'store_id'], axis=1) light_sales = light_sales.groupby('state_id').mean() light_sales.columns = calendar_stv['date'] light_s_t = light_sales.transpose()
code
33109829/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) calendar_df = pd.read_csv('../input/m5-forecasting-accuracy/calendar.csv', parse_dates=['date'], usecols=['date', 'd']) calendar_stv = calendar_df[:1913] sales_train_validation = pd.read_csv('../input/m5-forecasting-accuracy/sales_train_validation.csv', index_col='id') aggregate_state_sum = sales_train_validation.groupby(by=['state_id'], axis=0).sum() aggregate_state_sum.columns = calendar_stv['date'] agg_state_sum_trans = aggregate_state_sum.transpose() plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 10] plt.rcParams['lines.linewidth'] = 2 ax = agg_state_sum_trans['2015':].plot(title='Summeret salg per stat') ax.set_ylabel('Solgte enheder') plt.show()
code
33109829/cell_5
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) calendar_df = pd.read_csv('../input/m5-forecasting-accuracy/calendar.csv', parse_dates=['date'], usecols=['date', 'd']) calendar_stv = calendar_df[:1913] sales_train_validation = pd.read_csv('../input/m5-forecasting-accuracy/sales_train_validation.csv', index_col='id') sales_train_validation.head()
code
2042802/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns hr_attrition = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv', header=0) hr_attrition.columns.values ########################################################################################### # Define a common module for drawing subplots # This module will draw subplot based on the parameters # There will be mutiple subplots within the main plotting window # Defination of the parameters are- # var_Name - this is the variable name from the data file # tittle_Name - this is the Tittle name give for the plot # nrow & ncol - this is the number of subplots within the main plotting window # idx - position of subplot in the main plotting window # fz - the font size of Tittle in the main plotting window ########################################################################################## def draw_subplots(var_Name,tittle_Name,nrow=1,ncol=1,idx=1,fz=10): ax = plt.subplot(nrow,ncol,idx) ax.set_title('Distribution of '+var_Name) plt.suptitle(tittle_Name, fontsize=fz) numeric_columns = ['Age', 'MonthlyIncome', 'TotalWorkingYears'] fig,ax = plt.subplots(1,1, figsize=(10,10)) j=0 # reset the counter to plot title_Str="Plotting the density distribution of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,1,j,20) # create a 1x3 subplots for plotting distribution plots sns.distplot(hr_attrition[i]) plt.xlabel('') numeric_columns = ['Age', 'DistanceFromHome', 'TotalWorkingYears', 'YearsAtCompany', 'Education','StockOptionLevel'] fig,ax = plt.subplots(1,1, figsize=(15,15)) j=0 # reset the counter to plot title_Str="Plotting the count distributions of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,2,j,20) # create a 3x2 subplots for plotting distribution plots sns.countplot(hr_attrition[i],hue=hr_attrition["Attrition"]) plt.xlabel('') numeric_columns = ['Age', 'MonthlyIncome', 'TotalWorkingYears', 'YearsAtCompany', 'YearsInCurrentRole','YearsWithCurrManager'] fig,ax = plt.subplots(1,1, figsize=(10,10)) j=0 # reset the counter to plot title_Str="Plotting the Boxplot distribution of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,2,j,20) # create a 3x2 subplots for plotting distribution plots sns.boxplot(hr_attrition.Attrition, hr_attrition[i]) # Note the change in bottom level plt.xlabel('') numeric_columns = ['Age', 'DailyRate', 'DistanceFromHome', 'Education', 'EmployeeCount', 'EmployeeNumber', 'EnvironmentSatisfaction', 'HourlyRate', 'JobInvolvement', 'JobLevel', 'JobSatisfaction', 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked', 'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction', 'StandardHours', 'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole', 'YearsSinceLastPromotion', 'YearsWithCurrManager'] corr = hr_attrition[numeric_columns].corr() fig, ax = plt.subplots(1, 1, figsize=(20, 20)) mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True cmap = sns.diverging_palette(220, 10, as_cmap=True) sns.heatmap(corr, mask=mask, cmap=cmap, center=0, yticklabels='auto', xticklabels=False, square=True, linewidths=0.5, annot=True, fmt='.1f')
code
2042802/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns hr_attrition = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv', header=0) hr_attrition.columns.values ########################################################################################### # Define a common module for drawing subplots # This module will draw subplot based on the parameters # There will be mutiple subplots within the main plotting window # Defination of the parameters are- # var_Name - this is the variable name from the data file # tittle_Name - this is the Tittle name give for the plot # nrow & ncol - this is the number of subplots within the main plotting window # idx - position of subplot in the main plotting window # fz - the font size of Tittle in the main plotting window ########################################################################################## def draw_subplots(var_Name,tittle_Name,nrow=1,ncol=1,idx=1,fz=10): ax = plt.subplot(nrow,ncol,idx) ax.set_title('Distribution of '+var_Name) plt.suptitle(tittle_Name, fontsize=fz) numeric_columns = ['Age', 'MonthlyIncome', 'TotalWorkingYears'] fig,ax = plt.subplots(1,1, figsize=(10,10)) j=0 # reset the counter to plot title_Str="Plotting the density distribution of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,1,j,20) # create a 1x3 subplots for plotting distribution plots sns.distplot(hr_attrition[i]) plt.xlabel('') numeric_columns = ['Age', 'DistanceFromHome', 'TotalWorkingYears', 'YearsAtCompany', 'Education', 'StockOptionLevel'] fig, ax = plt.subplots(1, 1, figsize=(15, 15)) j = 0 title_Str = 'Plotting the count distributions of various numeric Features' for i in numeric_columns: j += 1 draw_subplots(i, title_Str, 3, 2, j, 20) sns.countplot(hr_attrition[i], hue=hr_attrition['Attrition']) plt.xlabel('')
code
2042802/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns hr_attrition = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv', header=0) hr_attrition.columns.values ########################################################################################### # Define a common module for drawing subplots # This module will draw subplot based on the parameters # There will be mutiple subplots within the main plotting window # Defination of the parameters are- # var_Name - this is the variable name from the data file # tittle_Name - this is the Tittle name give for the plot # nrow & ncol - this is the number of subplots within the main plotting window # idx - position of subplot in the main plotting window # fz - the font size of Tittle in the main plotting window ########################################################################################## def draw_subplots(var_Name,tittle_Name,nrow=1,ncol=1,idx=1,fz=10): ax = plt.subplot(nrow,ncol,idx) ax.set_title('Distribution of '+var_Name) plt.suptitle(tittle_Name, fontsize=fz) numeric_columns = ['Age', 'MonthlyIncome', 'TotalWorkingYears'] fig,ax = plt.subplots(1,1, figsize=(10,10)) j=0 # reset the counter to plot title_Str="Plotting the density distribution of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,1,j,20) # create a 1x3 subplots for plotting distribution plots sns.distplot(hr_attrition[i]) plt.xlabel('') numeric_columns = ['Age', 'DistanceFromHome', 'TotalWorkingYears', 'YearsAtCompany', 'Education','StockOptionLevel'] fig,ax = plt.subplots(1,1, figsize=(15,15)) j=0 # reset the counter to plot title_Str="Plotting the count distributions of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,2,j,20) # create a 3x2 subplots for plotting distribution plots sns.countplot(hr_attrition[i],hue=hr_attrition["Attrition"]) plt.xlabel('') numeric_columns = ['Age', 'MonthlyIncome', 'TotalWorkingYears', 'YearsAtCompany', 'YearsInCurrentRole','YearsWithCurrManager'] fig,ax = plt.subplots(1,1, figsize=(10,10)) j=0 # reset the counter to plot title_Str="Plotting the Boxplot distribution of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,2,j,20) # create a 3x2 subplots for plotting distribution plots sns.boxplot(hr_attrition.Attrition, hr_attrition[i]) # Note the change in bottom level plt.xlabel('') numeric_columns = ['Age','DailyRate','DistanceFromHome','Education','EmployeeCount','EmployeeNumber', 'EnvironmentSatisfaction','HourlyRate','JobInvolvement','JobLevel','JobSatisfaction', 'MonthlyIncome','MonthlyRate','NumCompaniesWorked','PercentSalaryHike','PerformanceRating', 'RelationshipSatisfaction','StandardHours','StockOptionLevel','TotalWorkingYears', 'TrainingTimesLastYear','WorkLifeBalance','YearsAtCompany','YearsInCurrentRole', 'YearsSinceLastPromotion','YearsWithCurrManager'] # Site :: http://seaborn.pydata.org/examples/many_pairwise_correlations.html # Compute the correlation matrix corr=hr_attrition[numeric_columns].corr() fig,ax = plt.subplots(1,1, figsize=(20,20)) # Generate a mask for the upper triangle mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True # Generate a custom diverging colormap cmap = sns.diverging_palette(220, 10, as_cmap=True) # Draw the heatmap with the mask and correct aspect ratio sns.heatmap(corr, mask=mask, cmap=cmap, center=0,yticklabels="auto",xticklabels=False, square=True, linewidths=.5,annot=True, fmt= '.1f') sns.factorplot(x='JobSatisfaction', y='MonthlyIncome', hue='Attrition', col='Education', col_wrap=2, kind='box', data=hr_attrition)
code
2042802/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns hr_attrition = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv', header=0) hr_attrition.columns.values ########################################################################################### # Define a common module for drawing subplots # This module will draw subplot based on the parameters # There will be mutiple subplots within the main plotting window # Defination of the parameters are- # var_Name - this is the variable name from the data file # tittle_Name - this is the Tittle name give for the plot # nrow & ncol - this is the number of subplots within the main plotting window # idx - position of subplot in the main plotting window # fz - the font size of Tittle in the main plotting window ########################################################################################## def draw_subplots(var_Name,tittle_Name,nrow=1,ncol=1,idx=1,fz=10): ax = plt.subplot(nrow,ncol,idx) ax.set_title('Distribution of '+var_Name) plt.suptitle(tittle_Name, fontsize=fz) numeric_columns = ['Age', 'MonthlyIncome', 'TotalWorkingYears'] fig,ax = plt.subplots(1,1, figsize=(10,10)) j=0 # reset the counter to plot title_Str="Plotting the density distribution of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,1,j,20) # create a 1x3 subplots for plotting distribution plots sns.distplot(hr_attrition[i]) plt.xlabel('') numeric_columns = ['Age', 'DistanceFromHome', 'TotalWorkingYears', 'YearsAtCompany', 'Education','StockOptionLevel'] fig,ax = plt.subplots(1,1, figsize=(15,15)) j=0 # reset the counter to plot title_Str="Plotting the count distributions of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,2,j,20) # create a 3x2 subplots for plotting distribution plots sns.countplot(hr_attrition[i],hue=hr_attrition["Attrition"]) plt.xlabel('') numeric_columns = ['Age', 'MonthlyIncome', 'TotalWorkingYears', 'YearsAtCompany', 'YearsInCurrentRole', 'YearsWithCurrManager'] fig, ax = plt.subplots(1, 1, figsize=(10, 10)) j = 0 title_Str = 'Plotting the Boxplot distribution of various numeric Features' for i in numeric_columns: j += 1 draw_subplots(i, title_Str, 3, 2, j, 20) sns.boxplot(hr_attrition.Attrition, hr_attrition[i]) plt.xlabel('')
code
2042802/cell_7
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns hr_attrition = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv', header=0) hr_attrition.columns.values def draw_subplots(var_Name, tittle_Name, nrow=1, ncol=1, idx=1, fz=10): ax = plt.subplot(nrow, ncol, idx) ax.set_title('Distribution of ' + var_Name) plt.suptitle(tittle_Name, fontsize=fz) numeric_columns = ['Age', 'MonthlyIncome', 'TotalWorkingYears'] fig, ax = plt.subplots(1, 1, figsize=(10, 10)) j = 0 title_Str = 'Plotting the density distribution of various numeric Features' for i in numeric_columns: j += 1 draw_subplots(i, title_Str, 3, 1, j, 20) sns.distplot(hr_attrition[i]) plt.xlabel('')
code
2042802/cell_18
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns hr_attrition = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv', header=0) hr_attrition.columns.values ########################################################################################### # Define a common module for drawing subplots # This module will draw subplot based on the parameters # There will be mutiple subplots within the main plotting window # Defination of the parameters are- # var_Name - this is the variable name from the data file # tittle_Name - this is the Tittle name give for the plot # nrow & ncol - this is the number of subplots within the main plotting window # idx - position of subplot in the main plotting window # fz - the font size of Tittle in the main plotting window ########################################################################################## def draw_subplots(var_Name,tittle_Name,nrow=1,ncol=1,idx=1,fz=10): ax = plt.subplot(nrow,ncol,idx) ax.set_title('Distribution of '+var_Name) plt.suptitle(tittle_Name, fontsize=fz) numeric_columns = ['Age', 'MonthlyIncome', 'TotalWorkingYears'] fig,ax = plt.subplots(1,1, figsize=(10,10)) j=0 # reset the counter to plot title_Str="Plotting the density distribution of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,1,j,20) # create a 1x3 subplots for plotting distribution plots sns.distplot(hr_attrition[i]) plt.xlabel('') numeric_columns = ['Age', 'DistanceFromHome', 'TotalWorkingYears', 'YearsAtCompany', 'Education','StockOptionLevel'] fig,ax = plt.subplots(1,1, figsize=(15,15)) j=0 # reset the counter to plot title_Str="Plotting the count distributions of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,2,j,20) # create a 3x2 subplots for plotting distribution plots sns.countplot(hr_attrition[i],hue=hr_attrition["Attrition"]) plt.xlabel('') numeric_columns = ['Age', 'MonthlyIncome', 'TotalWorkingYears', 'YearsAtCompany', 'YearsInCurrentRole','YearsWithCurrManager'] fig,ax = plt.subplots(1,1, figsize=(10,10)) j=0 # reset the counter to plot title_Str="Plotting the Boxplot distribution of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,2,j,20) # create a 3x2 subplots for plotting distribution plots sns.boxplot(hr_attrition.Attrition, hr_attrition[i]) # Note the change in bottom level plt.xlabel('') numeric_columns = ['Age','DailyRate','DistanceFromHome','Education','EmployeeCount','EmployeeNumber', 'EnvironmentSatisfaction','HourlyRate','JobInvolvement','JobLevel','JobSatisfaction', 'MonthlyIncome','MonthlyRate','NumCompaniesWorked','PercentSalaryHike','PerformanceRating', 'RelationshipSatisfaction','StandardHours','StockOptionLevel','TotalWorkingYears', 'TrainingTimesLastYear','WorkLifeBalance','YearsAtCompany','YearsInCurrentRole', 'YearsSinceLastPromotion','YearsWithCurrManager'] # Site :: http://seaborn.pydata.org/examples/many_pairwise_correlations.html # Compute the correlation matrix corr=hr_attrition[numeric_columns].corr() fig,ax = plt.subplots(1,1, figsize=(20,20)) # Generate a mask for the upper triangle mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True # Generate a custom diverging colormap cmap = sns.diverging_palette(220, 10, as_cmap=True) # Draw the heatmap with the mask and correct aspect ratio sns.heatmap(corr, mask=mask, cmap=cmap, center=0,yticklabels="auto",xticklabels=False, square=True, linewidths=.5,annot=True, fmt= '.1f') sns.factorplot(x='Department', y='Education', hue='Attrition', col='BusinessTravel', row='OverTime', kind='box', data=hr_attrition)
code
2042802/cell_15
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns hr_attrition = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv', header=0) hr_attrition.columns.values ########################################################################################### # Define a common module for drawing subplots # This module will draw subplot based on the parameters # There will be mutiple subplots within the main plotting window # Defination of the parameters are- # var_Name - this is the variable name from the data file # tittle_Name - this is the Tittle name give for the plot # nrow & ncol - this is the number of subplots within the main plotting window # idx - position of subplot in the main plotting window # fz - the font size of Tittle in the main plotting window ########################################################################################## def draw_subplots(var_Name,tittle_Name,nrow=1,ncol=1,idx=1,fz=10): ax = plt.subplot(nrow,ncol,idx) ax.set_title('Distribution of '+var_Name) plt.suptitle(tittle_Name, fontsize=fz) numeric_columns = ['Age', 'MonthlyIncome', 'TotalWorkingYears'] fig,ax = plt.subplots(1,1, figsize=(10,10)) j=0 # reset the counter to plot title_Str="Plotting the density distribution of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,1,j,20) # create a 1x3 subplots for plotting distribution plots sns.distplot(hr_attrition[i]) plt.xlabel('') numeric_columns = ['Age', 'DistanceFromHome', 'TotalWorkingYears', 'YearsAtCompany', 'Education','StockOptionLevel'] fig,ax = plt.subplots(1,1, figsize=(15,15)) j=0 # reset the counter to plot title_Str="Plotting the count distributions of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,2,j,20) # create a 3x2 subplots for plotting distribution plots sns.countplot(hr_attrition[i],hue=hr_attrition["Attrition"]) plt.xlabel('') numeric_columns = ['Age', 'MonthlyIncome', 'TotalWorkingYears', 'YearsAtCompany', 'YearsInCurrentRole','YearsWithCurrManager'] fig,ax = plt.subplots(1,1, figsize=(10,10)) j=0 # reset the counter to plot title_Str="Plotting the Boxplot distribution of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,2,j,20) # create a 3x2 subplots for plotting distribution plots sns.boxplot(hr_attrition.Attrition, hr_attrition[i]) # Note the change in bottom level plt.xlabel('') numeric_columns = ['Age','DailyRate','DistanceFromHome','Education','EmployeeCount','EmployeeNumber', 'EnvironmentSatisfaction','HourlyRate','JobInvolvement','JobLevel','JobSatisfaction', 'MonthlyIncome','MonthlyRate','NumCompaniesWorked','PercentSalaryHike','PerformanceRating', 'RelationshipSatisfaction','StandardHours','StockOptionLevel','TotalWorkingYears', 'TrainingTimesLastYear','WorkLifeBalance','YearsAtCompany','YearsInCurrentRole', 'YearsSinceLastPromotion','YearsWithCurrManager'] # Site :: http://seaborn.pydata.org/examples/many_pairwise_correlations.html # Compute the correlation matrix corr=hr_attrition[numeric_columns].corr() fig,ax = plt.subplots(1,1, figsize=(20,20)) # Generate a mask for the upper triangle mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True # Generate a custom diverging colormap cmap = sns.diverging_palette(220, 10, as_cmap=True) # Draw the heatmap with the mask and correct aspect ratio sns.heatmap(corr, mask=mask, cmap=cmap, center=0,yticklabels="auto",xticklabels=False, square=True, linewidths=.5,annot=True, fmt= '.1f') sns.kdeplot(hr_attrition.JobSatisfaction, hr_attrition.JobInvolvement)
code
2042802/cell_16
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns hr_attrition = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv', header=0) hr_attrition.columns.values ########################################################################################### # Define a common module for drawing subplots # This module will draw subplot based on the parameters # There will be mutiple subplots within the main plotting window # Defination of the parameters are- # var_Name - this is the variable name from the data file # tittle_Name - this is the Tittle name give for the plot # nrow & ncol - this is the number of subplots within the main plotting window # idx - position of subplot in the main plotting window # fz - the font size of Tittle in the main plotting window ########################################################################################## def draw_subplots(var_Name,tittle_Name,nrow=1,ncol=1,idx=1,fz=10): ax = plt.subplot(nrow,ncol,idx) ax.set_title('Distribution of '+var_Name) plt.suptitle(tittle_Name, fontsize=fz) numeric_columns = ['Age', 'MonthlyIncome', 'TotalWorkingYears'] fig,ax = plt.subplots(1,1, figsize=(10,10)) j=0 # reset the counter to plot title_Str="Plotting the density distribution of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,1,j,20) # create a 1x3 subplots for plotting distribution plots sns.distplot(hr_attrition[i]) plt.xlabel('') numeric_columns = ['Age', 'DistanceFromHome', 'TotalWorkingYears', 'YearsAtCompany', 'Education','StockOptionLevel'] fig,ax = plt.subplots(1,1, figsize=(15,15)) j=0 # reset the counter to plot title_Str="Plotting the count distributions of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,2,j,20) # create a 3x2 subplots for plotting distribution plots sns.countplot(hr_attrition[i],hue=hr_attrition["Attrition"]) plt.xlabel('') numeric_columns = ['Age', 'MonthlyIncome', 'TotalWorkingYears', 'YearsAtCompany', 'YearsInCurrentRole','YearsWithCurrManager'] fig,ax = plt.subplots(1,1, figsize=(10,10)) j=0 # reset the counter to plot title_Str="Plotting the Boxplot distribution of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,2,j,20) # create a 3x2 subplots for plotting distribution plots sns.boxplot(hr_attrition.Attrition, hr_attrition[i]) # Note the change in bottom level plt.xlabel('') numeric_columns = ['Age','DailyRate','DistanceFromHome','Education','EmployeeCount','EmployeeNumber', 'EnvironmentSatisfaction','HourlyRate','JobInvolvement','JobLevel','JobSatisfaction', 'MonthlyIncome','MonthlyRate','NumCompaniesWorked','PercentSalaryHike','PerformanceRating', 'RelationshipSatisfaction','StandardHours','StockOptionLevel','TotalWorkingYears', 'TrainingTimesLastYear','WorkLifeBalance','YearsAtCompany','YearsInCurrentRole', 'YearsSinceLastPromotion','YearsWithCurrManager'] # Site :: http://seaborn.pydata.org/examples/many_pairwise_correlations.html # Compute the correlation matrix corr=hr_attrition[numeric_columns].corr() fig,ax = plt.subplots(1,1, figsize=(20,20)) # Generate a mask for the upper triangle mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True # Generate a custom diverging colormap cmap = sns.diverging_palette(220, 10, as_cmap=True) # Draw the heatmap with the mask and correct aspect ratio sns.heatmap(corr, mask=mask, cmap=cmap, center=0,yticklabels="auto",xticklabels=False, square=True, linewidths=.5,annot=True, fmt= '.1f') sns.kdeplot(hr_attrition.Education, hr_attrition.EnvironmentSatisfaction)
code
2042802/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd hr_attrition = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv', header=0) hr_attrition.columns.values
code
2042802/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns hr_attrition = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv', header=0) hr_attrition.columns.values ########################################################################################### # Define a common module for drawing subplots # This module will draw subplot based on the parameters # There will be mutiple subplots within the main plotting window # Defination of the parameters are- # var_Name - this is the variable name from the data file # tittle_Name - this is the Tittle name give for the plot # nrow & ncol - this is the number of subplots within the main plotting window # idx - position of subplot in the main plotting window # fz - the font size of Tittle in the main plotting window ########################################################################################## def draw_subplots(var_Name,tittle_Name,nrow=1,ncol=1,idx=1,fz=10): ax = plt.subplot(nrow,ncol,idx) ax.set_title('Distribution of '+var_Name) plt.suptitle(tittle_Name, fontsize=fz) numeric_columns = ['Age', 'MonthlyIncome', 'TotalWorkingYears'] fig,ax = plt.subplots(1,1, figsize=(10,10)) j=0 # reset the counter to plot title_Str="Plotting the density distribution of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,1,j,20) # create a 1x3 subplots for plotting distribution plots sns.distplot(hr_attrition[i]) plt.xlabel('') numeric_columns = ['Age', 'DistanceFromHome', 'TotalWorkingYears', 'YearsAtCompany', 'Education','StockOptionLevel'] fig,ax = plt.subplots(1,1, figsize=(15,15)) j=0 # reset the counter to plot title_Str="Plotting the count distributions of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,2,j,20) # create a 3x2 subplots for plotting distribution plots sns.countplot(hr_attrition[i],hue=hr_attrition["Attrition"]) plt.xlabel('') numeric_columns = ['Age', 'MonthlyIncome', 'TotalWorkingYears', 'YearsAtCompany', 'YearsInCurrentRole','YearsWithCurrManager'] fig,ax = plt.subplots(1,1, figsize=(10,10)) j=0 # reset the counter to plot title_Str="Plotting the Boxplot distribution of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,2,j,20) # create a 3x2 subplots for plotting distribution plots sns.boxplot(hr_attrition.Attrition, hr_attrition[i]) # Note the change in bottom level plt.xlabel('') numeric_columns = ['Age','DailyRate','DistanceFromHome','Education','EmployeeCount','EmployeeNumber', 'EnvironmentSatisfaction','HourlyRate','JobInvolvement','JobLevel','JobSatisfaction', 'MonthlyIncome','MonthlyRate','NumCompaniesWorked','PercentSalaryHike','PerformanceRating', 'RelationshipSatisfaction','StandardHours','StockOptionLevel','TotalWorkingYears', 'TrainingTimesLastYear','WorkLifeBalance','YearsAtCompany','YearsInCurrentRole', 'YearsSinceLastPromotion','YearsWithCurrManager'] # Site :: http://seaborn.pydata.org/examples/many_pairwise_correlations.html # Compute the correlation matrix corr=hr_attrition[numeric_columns].corr() fig,ax = plt.subplots(1,1, figsize=(20,20)) # Generate a mask for the upper triangle mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True # Generate a custom diverging colormap cmap = sns.diverging_palette(220, 10, as_cmap=True) # Draw the heatmap with the mask and correct aspect ratio sns.heatmap(corr, mask=mask, cmap=cmap, center=0,yticklabels="auto",xticklabels=False, square=True, linewidths=.5,annot=True, fmt= '.1f') sns.factorplot(x='WorkLifeBalance', y='JobRole', hue='Attrition', col='PerformanceRating', col_wrap=2, kind='box', data=hr_attrition)
code
2042802/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns hr_attrition = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv', header=0) hr_attrition.columns.values ########################################################################################### # Define a common module for drawing subplots # This module will draw subplot based on the parameters # There will be mutiple subplots within the main plotting window # Defination of the parameters are- # var_Name - this is the variable name from the data file # tittle_Name - this is the Tittle name give for the plot # nrow & ncol - this is the number of subplots within the main plotting window # idx - position of subplot in the main plotting window # fz - the font size of Tittle in the main plotting window ########################################################################################## def draw_subplots(var_Name,tittle_Name,nrow=1,ncol=1,idx=1,fz=10): ax = plt.subplot(nrow,ncol,idx) ax.set_title('Distribution of '+var_Name) plt.suptitle(tittle_Name, fontsize=fz) numeric_columns = ['Age', 'MonthlyIncome', 'TotalWorkingYears'] fig,ax = plt.subplots(1,1, figsize=(10,10)) j=0 # reset the counter to plot title_Str="Plotting the density distribution of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,1,j,20) # create a 1x3 subplots for plotting distribution plots sns.distplot(hr_attrition[i]) plt.xlabel('') numeric_columns = ['Age', 'DistanceFromHome', 'TotalWorkingYears', 'YearsAtCompany', 'Education','StockOptionLevel'] fig,ax = plt.subplots(1,1, figsize=(15,15)) j=0 # reset the counter to plot title_Str="Plotting the count distributions of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,2,j,20) # create a 3x2 subplots for plotting distribution plots sns.countplot(hr_attrition[i],hue=hr_attrition["Attrition"]) plt.xlabel('') numeric_columns = ['Age', 'MonthlyIncome', 'TotalWorkingYears', 'YearsAtCompany', 'YearsInCurrentRole','YearsWithCurrManager'] fig,ax = plt.subplots(1,1, figsize=(10,10)) j=0 # reset the counter to plot title_Str="Plotting the Boxplot distribution of various numeric Features" for i in numeric_columns: j +=1 draw_subplots(i,title_Str,3,2,j,20) # create a 3x2 subplots for plotting distribution plots sns.boxplot(hr_attrition.Attrition, hr_attrition[i]) # Note the change in bottom level plt.xlabel('') numeric_columns = ['Age','DailyRate','DistanceFromHome','Education','EmployeeCount','EmployeeNumber', 'EnvironmentSatisfaction','HourlyRate','JobInvolvement','JobLevel','JobSatisfaction', 'MonthlyIncome','MonthlyRate','NumCompaniesWorked','PercentSalaryHike','PerformanceRating', 'RelationshipSatisfaction','StandardHours','StockOptionLevel','TotalWorkingYears', 'TrainingTimesLastYear','WorkLifeBalance','YearsAtCompany','YearsInCurrentRole', 'YearsSinceLastPromotion','YearsWithCurrManager'] # Site :: http://seaborn.pydata.org/examples/many_pairwise_correlations.html # Compute the correlation matrix corr=hr_attrition[numeric_columns].corr() fig,ax = plt.subplots(1,1, figsize=(20,20)) # Generate a mask for the upper triangle mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True # Generate a custom diverging colormap cmap = sns.diverging_palette(220, 10, as_cmap=True) # Draw the heatmap with the mask and correct aspect ratio sns.heatmap(corr, mask=mask, cmap=cmap, center=0,yticklabels="auto",xticklabels=False, square=True, linewidths=.5,annot=True, fmt= '.1f') fig, ax = plt.subplots(1, 1, figsize=(10, 10)) labels = hr_attrition['JobRole'].unique() jr_array = [] for i in range(len(labels)): jr_array.append(hr_attrition['JobRole'].value_counts()[i]) plt.pie(jr_array, labels=labels, autopct='%1.1f%%', shadow=True, startangle=90) plt.title('Job Role Pie Chart', fontsize=20) plt.show()
code
2042802/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd hr_attrition = pd.read_csv('../input/WA_Fn-UseC_-HR-Employee-Attrition.csv', header=0) hr_attrition.columns.values hr_attrition.info()
code
74067375/cell_4
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd cars = {'Brand': ['Honda Civic', 'Toyota Corolla', 'Ford Focus', 'Audi A4'], 'Price': [22000, 25000, 27000, 35000], 'Year': [2015, 2013, 2018, 2018]} df = pd.DataFrame(cars, columns=['Brand', 'Price', 'Year']) df.sort_values(by=['Brand'], inplace=True) df.head()
code
74067375/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd cars = {'Brand': ['Honda Civic', 'Toyota Corolla', 'Ford Focus', 'Audi A4'], 'Price': [22000, 25000, 27000, 35000], 'Year': [2015, 2013, 2018, 2018]} df = pd.DataFrame(cars, columns=['Brand', 'Price', 'Year']) df.sort_values(by=['Brand'], inplace=True) import pandas as pd data = {'Product': ['ABC', 'XYZ'], 'Price': ['250', '270']} df = pd.DataFrame(data) print(df) print(df.dtypes)
code
74067375/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd import pandas as pd cars = {'Brand': ['Honda Civic', 'Toyota Corolla', 'Ford Focus', 'Audi A4'], 'Price': [22000, 25000, 27000, 35000], 'Year': [2015, 2013, 2018, 2018]} df = pd.DataFrame(cars, columns=['Brand', 'Price', 'Year']) df.sort_values(by=['Brand'], inplace=True) import pandas as pd data = {'Product': ['ABC', 'XYZ'], 'Price': ['250', '270']} df = pd.DataFrame(data) df['DataFrame Column'] = df['DataFrame Column'].astype(float)
code