path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
2043738/cell_3 | [
"text_plain_output_1.png"
] | import calendar
import calendar
year = 2018
month = 1
for i in range(12):
print(calendar.month(year, month))
month += 1 | code |
32068018/cell_9 | [
"image_output_1.png"
] | import csv
import numpy as np
ROOT_PATH = '/kaggle/input/CORD-19-research-challenge/'
METADATA_PATH = f'{ROOT_PATH}/metadata.csv'
SAMPLE_SIZE = None
def create_embedding_dict(filepath, sample_size=None):
"""function to create embedding dictionary using given file"""
embedding_dict = {}
with open(filepath) as csvfile:
reader = csv.reader(csvfile, delimiter=',')
for i, row in enumerate(reader):
if i == sample_size:
break
embed = np.zeros((768,))
for idx, val in enumerate(row):
if idx > 0:
embed[idx - 1] = float(val)
embedding_dict[row[0]] = embed
return embedding_dict
embedding_dict = create_embedding_dict(f'{ROOT_PATH}/cord19_specter_embeddings_2020-04-10/cord19_specter_embeddings_2020-04-10.csv', sample_size=SAMPLE_SIZE)
embedding_mat = np.array(list(embedding_dict.values()))
(embedding_mat.shape, len(embedding_dict)) | code |
32068018/cell_29 | [
"text_plain_output_1.png"
] | from sklearn.decomposition import PCA
import csv
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import skfuzzy as fuzz
ROOT_PATH = '/kaggle/input/CORD-19-research-challenge/'
METADATA_PATH = f'{ROOT_PATH}/metadata.csv'
SAMPLE_SIZE = None
def create_embedding_dict(filepath, sample_size=None):
"""function to create embedding dictionary using given file"""
embedding_dict = {}
with open(filepath) as csvfile:
reader = csv.reader(csvfile, delimiter=',')
for i, row in enumerate(reader):
if i == sample_size:
break
embed = np.zeros((768,))
for idx, val in enumerate(row):
if idx > 0:
embed[idx - 1] = float(val)
embedding_dict[row[0]] = embed
return embedding_dict
embedding_dict = create_embedding_dict(f'{ROOT_PATH}/cord19_specter_embeddings_2020-04-10/cord19_specter_embeddings_2020-04-10.csv', sample_size=SAMPLE_SIZE)
embedding_mat = np.array(list(embedding_dict.values()))
(embedding_mat.shape, len(embedding_dict))
n_clusters = 10
def fuzzy_clustering(all_embedding, n_clusters):
centroids, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(data=all_embedding.T, c=n_clusters, m=2, error=0.5, maxiter=100, init=None)
clusters = np.argmax(u, axis=0)
return (clusters, centroids)
def get_pca(all_embedding):
pca = PCA()
pca_result = pca.fit_transform(all_embedding)
return pca_result
def plot_pca(pca_result, clusters, title):
sns.set(rc={'figure.figsize': (10, 10)})
palette = sns.color_palette('bright', len(set(clusters)))
kmeans_pca = get_pca(embedding_mat)
plot_pca(kmeans_pca, kmeans_clusters, 'PCA Covid-19 Articles - Clustered(kmeans)') | code |
32068018/cell_2 | [
"text_html_output_1.png"
] | # install required packages that are not available in the given environment
!pip install scikit-fuzzy | code |
32068018/cell_19 | [
"text_plain_output_1.png"
] | from sklearn.decomposition import PCA
import csv
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import skfuzzy as fuzz
ROOT_PATH = '/kaggle/input/CORD-19-research-challenge/'
METADATA_PATH = f'{ROOT_PATH}/metadata.csv'
SAMPLE_SIZE = None
def create_embedding_dict(filepath, sample_size=None):
"""function to create embedding dictionary using given file"""
embedding_dict = {}
with open(filepath) as csvfile:
reader = csv.reader(csvfile, delimiter=',')
for i, row in enumerate(reader):
if i == sample_size:
break
embed = np.zeros((768,))
for idx, val in enumerate(row):
if idx > 0:
embed[idx - 1] = float(val)
embedding_dict[row[0]] = embed
return embedding_dict
embedding_dict = create_embedding_dict(f'{ROOT_PATH}/cord19_specter_embeddings_2020-04-10/cord19_specter_embeddings_2020-04-10.csv', sample_size=SAMPLE_SIZE)
embedding_mat = np.array(list(embedding_dict.values()))
(embedding_mat.shape, len(embedding_dict))
n_clusters = 10
def fuzzy_clustering(all_embedding, n_clusters):
centroids, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(data=all_embedding.T, c=n_clusters, m=2, error=0.5, maxiter=100, init=None)
clusters = np.argmax(u, axis=0)
return (clusters, centroids)
def get_pca(all_embedding):
pca = PCA()
pca_result = pca.fit_transform(all_embedding)
return pca_result
def plot_pca(pca_result, clusters, title):
sns.set(rc={'figure.figsize': (10, 10)})
palette = sns.color_palette('bright', len(set(clusters)))
fuzzy_pca = get_pca(embedding_mat)
plot_pca(fuzzy_pca, fuzzy_clusters, 'PCA Covid-19 Articles - Clustered(Fuzzy C-Means)') | code |
32068018/cell_5 | [
"image_output_1.png"
] | import pandas as pd
ROOT_PATH = '/kaggle/input/CORD-19-research-challenge/'
METADATA_PATH = f'{ROOT_PATH}/metadata.csv'
SAMPLE_SIZE = None
meta_df = pd.read_csv(METADATA_PATH, dtype={'pubmed_id': str, 'Microsoft Academic Paper ID': str, 'doi': str})
meta_df.head() | code |
16123280/cell_21 | [
"text_plain_output_1.png"
] | size_list = [i for i in range(1, 10)]
size_list | code |
16123280/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/argentina.csv')
data.NUMBER = data.NUMBER.astype(str)
data.NUMBER = data.NUMBER.str.strip(' ')
data['DIGITO'] = data.NUMBER.map(lambda x: x[0])
index_drop = data[data.DIGITO == '0'].index.values
index_drop
data.drop(index_drop, axis=0, inplace=True)
experemental_values = data.DIGITO.value_counts()
experemental_values
data[data.DIGITO == '1'].shape[0]
data['DIGITO'].loc[data['DIGITO'] == '0'].count() | code |
16123280/cell_25 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/argentina.csv')
data.NUMBER = data.NUMBER.astype(str)
data.NUMBER = data.NUMBER.str.strip(' ')
data['DIGITO'] = data.NUMBER.map(lambda x: x[0])
index_drop = data[data.DIGITO == '0'].index.values
index_drop
data.drop(index_drop, axis=0, inplace=True)
experemental_values = data.DIGITO.value_counts()
experemental_values
data[data.DIGITO == '1'].shape[0]
data.shape
num_address = data[data['DIGITO'] != '0']
num_address.shape
new_num_address = num_address['DIGITO'].astype(str)
print(type(new_num_address)) | code |
16123280/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/argentina.csv')
data.info() | code |
16123280/cell_23 | [
"text_plain_output_1.png"
] | import math
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns # seaborn to create grafic
data = pd.read_csv('../input/argentina.csv')
data.NUMBER = data.NUMBER.astype(str)
data.NUMBER = data.NUMBER.str.strip(' ')
data['DIGITO'] = data.NUMBER.map(lambda x: x[0])
index_drop = data[data.DIGITO == '0'].index.values
index_drop
data.drop(index_drop, axis=0, inplace=True)
experemental_values = data.DIGITO.value_counts()
experemental_values
data[data.DIGITO == '1'].shape[0]
data.shape
num_address = data[data['DIGITO'] != '0']
num_address.shape
import math
array = [float(i) for i in range(1, 10)]
percent_bf = [math.log10(1 + 1 / d) for d in array]
percent_bf
fd_teorico = []
for i in range(len(percent_bf)):
fd_teorico.append(len(num_address) * percent_bf[i])
fd_teorico
fd_plot = []
for i in range(len(percent_bf)):
fd_plot.append(fd_teorico[i] / len(num_address))
size_list = [i for i in range(1, 10)]
size_list
sns.barplot(x=size_list, y=fd_plot) | code |
16123280/cell_20 | [
"text_plain_output_1.png"
] | import math
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/argentina.csv')
data.NUMBER = data.NUMBER.astype(str)
data.NUMBER = data.NUMBER.str.strip(' ')
data['DIGITO'] = data.NUMBER.map(lambda x: x[0])
index_drop = data[data.DIGITO == '0'].index.values
index_drop
data.drop(index_drop, axis=0, inplace=True)
experemental_values = data.DIGITO.value_counts()
experemental_values
data[data.DIGITO == '1'].shape[0]
data.shape
num_address = data[data['DIGITO'] != '0']
num_address.shape
import math
array = [float(i) for i in range(1, 10)]
percent_bf = [math.log10(1 + 1 / d) for d in array]
percent_bf
fd_teorico = []
for i in range(len(percent_bf)):
fd_teorico.append(len(num_address) * percent_bf[i])
fd_teorico
fd_plot = []
for i in range(len(percent_bf)):
fd_plot.append(fd_teorico[i] / len(num_address))
print(fd_plot) | code |
16123280/cell_26 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/argentina.csv')
data.NUMBER = data.NUMBER.astype(str)
data.NUMBER = data.NUMBER.str.strip(' ')
data['DIGITO'] = data.NUMBER.map(lambda x: x[0])
index_drop = data[data.DIGITO == '0'].index.values
index_drop
data.drop(index_drop, axis=0, inplace=True)
experemental_values = data.DIGITO.value_counts()
experemental_values
data[data.DIGITO == '1'].shape[0]
data.shape
num_address = data[data['DIGITO'] != '0']
num_address.shape
new_num_address = num_address['DIGITO'].astype(str)
new_num_address.loc[new_num_address == '0'].count() | code |
16123280/cell_2 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/argentina.csv')
data.head() | code |
16123280/cell_11 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/argentina.csv')
data.NUMBER = data.NUMBER.astype(str)
data.NUMBER = data.NUMBER.str.strip(' ')
data['DIGITO'] = data.NUMBER.map(lambda x: x[0])
index_drop = data[data.DIGITO == '0'].index.values
index_drop
data.drop(index_drop, axis=0, inplace=True)
experemental_values = data.DIGITO.value_counts()
experemental_values | code |
16123280/cell_19 | [
"text_plain_output_1.png"
] | import math
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/argentina.csv')
data.NUMBER = data.NUMBER.astype(str)
data.NUMBER = data.NUMBER.str.strip(' ')
data['DIGITO'] = data.NUMBER.map(lambda x: x[0])
index_drop = data[data.DIGITO == '0'].index.values
index_drop
data.drop(index_drop, axis=0, inplace=True)
experemental_values = data.DIGITO.value_counts()
experemental_values
data[data.DIGITO == '1'].shape[0]
data.shape
num_address = data[data['DIGITO'] != '0']
num_address.shape
import math
array = [float(i) for i in range(1, 10)]
percent_bf = [math.log10(1 + 1 / d) for d in array]
percent_bf
fd_teorico = []
for i in range(len(percent_bf)):
fd_teorico.append(len(num_address) * percent_bf[i])
fd_teorico | code |
16123280/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pylab as plt
import os
print(os.listdir('../input')) | code |
16123280/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/argentina.csv')
data.NUMBER = data.NUMBER.astype(str)
data.NUMBER = data.NUMBER.str.strip(' ')
data['DIGITO'] = data.NUMBER.map(lambda x: x[0])
data.head() | code |
16123280/cell_18 | [
"text_plain_output_1.png"
] | import math
import math
array = [float(i) for i in range(1, 10)]
percent_bf = [math.log10(1 + 1 / d) for d in array]
percent_bf | code |
16123280/cell_8 | [
"text_plain_output_1.png"
] | [str(x) for x in range(10)] | code |
16123280/cell_15 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/argentina.csv')
data.NUMBER = data.NUMBER.astype(str)
data.NUMBER = data.NUMBER.str.strip(' ')
data['DIGITO'] = data.NUMBER.map(lambda x: x[0])
index_drop = data[data.DIGITO == '0'].index.values
index_drop
data.drop(index_drop, axis=0, inplace=True)
experemental_values = data.DIGITO.value_counts()
experemental_values
data[data.DIGITO == '1'].shape[0]
data.shape
num_address = data[data['DIGITO'] != '0']
num_address.shape | code |
16123280/cell_16 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/argentina.csv')
data.NUMBER = data.NUMBER.astype(str)
data.NUMBER = data.NUMBER.str.strip(' ')
data['DIGITO'] = data.NUMBER.map(lambda x: x[0])
index_drop = data[data.DIGITO == '0'].index.values
index_drop
data.drop(index_drop, axis=0, inplace=True)
experemental_values = data.DIGITO.value_counts()
experemental_values
data[data.DIGITO == '1'].shape[0]
data.shape
num_address = data[data['DIGITO'] != '0']
num_address.shape
num_address['DIGITO'].head() | code |
16123280/cell_3 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/argentina.csv')
data.STREET.value_counts().head() | code |
16123280/cell_17 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/argentina.csv')
data.NUMBER = data.NUMBER.astype(str)
data.NUMBER = data.NUMBER.str.strip(' ')
data['DIGITO'] = data.NUMBER.map(lambda x: x[0])
index_drop = data[data.DIGITO == '0'].index.values
index_drop
data.drop(index_drop, axis=0, inplace=True)
experemental_values = data.DIGITO.value_counts()
experemental_values
data[data.DIGITO == '1'].shape[0]
data.shape
num_address = data[data['DIGITO'] != '0']
num_address.shape
len(num_address) | code |
16123280/cell_24 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/argentina.csv')
data.NUMBER = data.NUMBER.astype(str)
data.NUMBER = data.NUMBER.str.strip(' ')
data['DIGITO'] = data.NUMBER.map(lambda x: x[0])
index_drop = data[data.DIGITO == '0'].index.values
index_drop
data.drop(index_drop, axis=0, inplace=True)
experemental_values = data.DIGITO.value_counts()
experemental_values
data[data.DIGITO == '1'].shape[0]
data.shape
num_address = data[data['DIGITO'] != '0']
num_address.shape
type(num_address) | code |
16123280/cell_14 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/argentina.csv')
data.NUMBER = data.NUMBER.astype(str)
data.NUMBER = data.NUMBER.str.strip(' ')
data['DIGITO'] = data.NUMBER.map(lambda x: x[0])
index_drop = data[data.DIGITO == '0'].index.values
index_drop
data.drop(index_drop, axis=0, inplace=True)
experemental_values = data.DIGITO.value_counts()
experemental_values
data[data.DIGITO == '1'].shape[0]
data.shape | code |
16123280/cell_22 | [
"text_plain_output_1.png"
] | import math
import matplotlib.pylab as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/argentina.csv')
data.NUMBER = data.NUMBER.astype(str)
data.NUMBER = data.NUMBER.str.strip(' ')
data['DIGITO'] = data.NUMBER.map(lambda x: x[0])
index_drop = data[data.DIGITO == '0'].index.values
index_drop
data.drop(index_drop, axis=0, inplace=True)
experemental_values = data.DIGITO.value_counts()
experemental_values
data[data.DIGITO == '1'].shape[0]
data.shape
num_address = data[data['DIGITO'] != '0']
num_address.shape
import math
array = [float(i) for i in range(1, 10)]
percent_bf = [math.log10(1 + 1 / d) for d in array]
percent_bf
fd_teorico = []
for i in range(len(percent_bf)):
fd_teorico.append(len(num_address) * percent_bf[i])
fd_teorico
fd_plot = []
for i in range(len(percent_bf)):
fd_plot.append(fd_teorico[i] / len(num_address))
size_list = [i for i in range(1, 10)]
size_list
plt.bar(size_list, fd_plot)
plt.show | code |
16123280/cell_10 | [
"text_html_output_1.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/argentina.csv')
data.NUMBER = data.NUMBER.astype(str)
data.NUMBER = data.NUMBER.str.strip(' ')
data['DIGITO'] = data.NUMBER.map(lambda x: x[0])
index_drop = data[data.DIGITO == '0'].index.values
index_drop
data.drop(index_drop, axis=0, inplace=True)
for num in [str(x) for x in range(10)]:
print(num, data[data['DIGITO'] == num].shape[0], data[data['DIGITO'] == num].shape[0] / data.shape[0]) | code |
16123280/cell_12 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/argentina.csv')
data.NUMBER = data.NUMBER.astype(str)
data.NUMBER = data.NUMBER.str.strip(' ')
data['DIGITO'] = data.NUMBER.map(lambda x: x[0])
index_drop = data[data.DIGITO == '0'].index.values
index_drop
data.drop(index_drop, axis=0, inplace=True)
experemental_values = data.DIGITO.value_counts()
experemental_values
data[data.DIGITO == '1'].shape[0] | code |
16123280/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/argentina.csv')
data['NUMBER'].head() | code |
2034808/cell_1 | [
"text_plain_output_1.png"
] | from subprocess import check_output
import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import log_loss
from subprocess import check_output
print(check_output(['ls', '../input']).decode('utf8')) | code |
2034808/cell_7 | [
"text_plain_output_1.png"
] | from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import log_loss
import numpy as np
import pandas as pd
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
sampleSubmission = pd.read_csv('../input/sample_submission.csv')
col = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
trainTxt = train['comment_text']
testTxt = test['comment_text']
trainTxt = trainTxt.fillna('unknown')
testTxt = testTxt.fillna('unknown')
combinedTxt = pd.concat([trainTxt, testTxt], axis=0)
vect = TfidfVectorizer(decode_error='ignore', use_idf=True, smooth_idf=True, min_df=10, ngram_range=(1, 3), lowercase=True, stop_words='english')
combinedDtm = vect.fit_transform(combinedTxt)
trainDtm = combinedDtm[:train.shape[0]]
testDtm = vect.transform(testTxt)
preds = np.zeros((test.shape[0], len(col)))
loss = []
for i, j in enumerate(col):
lr = LogisticRegression(C=4)
lr.fit(trainDtm, train[j])
preds[:, i] = lr.predict_proba(testDtm)[:, 1]
train_preds = lr.predict_proba(trainDtm)[:, 1]
loss.append(log_loss(train[j], train_preds))
loss | code |
18146642/cell_4 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
data = pd.read_csv('../input/train.csv')
labels = data['target'].values
data = data.drop(['id', 'target'], axis=1).values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2)
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(solver='saga', multi_class='multinomial')
clf.fit(X_train, y_train) | code |
18146642/cell_6 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
data = pd.read_csv('../input/train.csv')
labels = data['target'].values
data = data.drop(['id', 'target'], axis=1).values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2)
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(solver='saga', multi_class='multinomial')
clf.fit(X_train, y_train)
def evaluate(pred, labels):
return sum(pred == labels) / len(pred)
pred = clf.predict(X_test)
print('Accuracy:', evaluate(pred, y_test)) | code |
18146642/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
18146642/cell_7 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
data = pd.read_csv('../input/train.csv')
labels = data['target'].values
data = data.drop(['id', 'target'], axis=1).values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2)
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n_jobs=-1, n_estimators=5)
rfc.fit(X_train, y_train) | code |
18146642/cell_8 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
data = pd.read_csv('../input/train.csv')
labels = data['target'].values
data = data.drop(['id', 'target'], axis=1).values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2)
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(solver='saga', multi_class='multinomial')
clf.fit(X_train, y_train)
def evaluate(pred, labels):
return sum(pred == labels) / len(pred)
pred = clf.predict(X_test)
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n_jobs=-1, n_estimators=5)
rfc.fit(X_train, y_train)
pred = rfc.predict(X_test)
print('Accuracy:', evaluate(pred, y_test)) | code |
18146642/cell_3 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.model_selection import train_test_split
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
data = pd.read_csv('../input/train.csv')
labels = data['target'].values
data = data.drop(['id', 'target'], axis=1).values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2)
print(X_train.shape, y_train.shape, X_test.shape, y_test.shape) | code |
18146642/cell_10 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
data = pd.read_csv('../input/train.csv')
labels = data['target'].values
data = data.drop(['id', 'target'], axis=1).values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2)
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(solver='saga', multi_class='multinomial')
clf.fit(X_train, y_train)
def evaluate(pred, labels):
return sum(pred == labels) / len(pred)
pred = clf.predict(X_test)
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n_jobs=-1, n_estimators=5)
rfc.fit(X_train, y_train)
pred = rfc.predict(X_test)
unknown = pd.read_csv('../input/test.csv')
ids = unknown['id']
unknown = unknown.drop(['id'], axis=1).values
pred = rfc.predict(unknown)
out = pd.DataFrame(columns=['Id', 'Prediction'])
out['Id'] = ids
out['Prediction'] = pred
print(out.info())
out.head(10) | code |
18131067/cell_13 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_games = pd.read_csv('../input/games.csv')
keep = ['id', 'rated', 'turns', 'victory_status', 'winner', 'increment_code', 'white_rating', 'black_rating', 'moves', 'opening_eco', 'opening_name', 'opening_ply']
df_games = df_games[keep]
df_minis = df_games[df_games['turns'] <= 30]
games = len(df_games.index)
minis = len(df_minis.index)
percent_minis = round(minis / games * 100, 2)
time_control_types = {'classic': {'start': 60, 'end': 999}, 'rapid': {'start': 11, 'end': 59}, 'blitz': {'start': 5, 'end': 10}, 'bullet': {'start': 0, 'end': 4}}
game_types = ['classic', 'rapid', 'blitz']
def get_time_control(minutes):
if minutes >= time_control_types['classic']['start']:
return 'classic'
elif minutes >= time_control_types['rapid']['start']:
return 'rapid'
elif minutes >= time_control_types['blitz']['start']:
return 'blitz'
else:
return 'bullet'
temp_df = df_games['increment_code'].str.split('+', n=1, expand=True)
temp_df[0] = temp_df[0].apply(lambda x: get_time_control(int(x)))
df_games = pd.concat([df_games, temp_df[0]], axis=1)
df_games.rename(columns={0: 'time_control_type'}, inplace=True)
list_opening_moves = ['e4', 'd4', 'Nf', 'other']
opening_moves = {}
for move in list_opening_moves:
if move != 'other':
opening_moves[move] = df_games[df_games['moves'].str.slice(0, 2, 1) == move].count()['moves']
else:
opening_moves[move] = df_games[~df_games['moves'].str.slice(0, 2, 1).isin(list_opening_moves)].count()['moves']
print(opening_moves) | code |
18131067/cell_9 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_games = pd.read_csv('../input/games.csv')
keep = ['id', 'rated', 'turns', 'victory_status', 'winner', 'increment_code', 'white_rating', 'black_rating', 'moves', 'opening_eco', 'opening_name', 'opening_ply']
df_games = df_games[keep]
df_minis = df_games[df_games['turns'] <= 30]
games = len(df_games.index)
minis = len(df_minis.index)
percent_minis = round(minis / games * 100, 2)
time_control_types = {'classic': {'start': 60, 'end': 999}, 'rapid': {'start': 11, 'end': 59}, 'blitz': {'start': 5, 'end': 10}, 'bullet': {'start': 0, 'end': 4}}
game_types = ['classic', 'rapid', 'blitz']
def get_time_control(minutes):
if minutes >= time_control_types['classic']['start']:
return 'classic'
elif minutes >= time_control_types['rapid']['start']:
return 'rapid'
elif minutes >= time_control_types['blitz']['start']:
return 'blitz'
else:
return 'bullet'
temp_df = df_games['increment_code'].str.split('+', n=1, expand=True)
temp_df[0] = temp_df[0].apply(lambda x: get_time_control(int(x)))
df_games = pd.concat([df_games, temp_df[0]], axis=1)
df_games.rename(columns={0: 'time_control_type'}, inplace=True)
print(df_games.columns) | code |
18131067/cell_4 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_games = pd.read_csv('../input/games.csv')
keep = ['id', 'rated', 'turns', 'victory_status', 'winner', 'increment_code', 'white_rating', 'black_rating', 'moves', 'opening_eco', 'opening_name', 'opening_ply']
df_games = df_games[keep]
print(df_games.columns) | code |
18131067/cell_6 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_games = pd.read_csv('../input/games.csv')
keep = ['id', 'rated', 'turns', 'victory_status', 'winner', 'increment_code', 'white_rating', 'black_rating', 'moves', 'opening_eco', 'opening_name', 'opening_ply']
df_games = df_games[keep]
df_minis = df_games[df_games['turns'] <= 30]
games = len(df_games.index)
minis = len(df_minis.index)
percent_minis = round(minis / games * 100, 2)
colors = ['blue', 'orange']
plt.pie([minis, games - minis], labels=['Minis', 'Not Minis'], colors=colors, startangle=90, autopct='%.1f%%')
plt.show() | code |
18131067/cell_11 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_games = pd.read_csv('../input/games.csv')
keep = ['id', 'rated', 'turns', 'victory_status', 'winner', 'increment_code', 'white_rating', 'black_rating', 'moves', 'opening_eco', 'opening_name', 'opening_ply']
df_games = df_games[keep]
df_minis = df_games[df_games['turns'] <= 30]
games = len(df_games.index)
minis = len(df_minis.index)
percent_minis = round(minis / games * 100, 2)
time_control_types = {'classic': {'start': 60, 'end': 999}, 'rapid': {'start': 11, 'end': 59}, 'blitz': {'start': 5, 'end': 10}, 'bullet': {'start': 0, 'end': 4}}
game_types = ['classic', 'rapid', 'blitz']
def get_time_control(minutes):
if minutes >= time_control_types['classic']['start']:
return 'classic'
elif minutes >= time_control_types['rapid']['start']:
return 'rapid'
elif minutes >= time_control_types['blitz']['start']:
return 'blitz'
else:
return 'bullet'
temp_df = df_games['increment_code'].str.split('+', n=1, expand=True)
temp_df[0] = temp_df[0].apply(lambda x: get_time_control(int(x)))
df_games = pd.concat([df_games, temp_df[0]], axis=1)
df_games.rename(columns={0: 'time_control_type'}, inplace=True)
ends = df_games['winner'].unique()
finish_by_control = {}
control_totals = {}
for control in game_types:
finish_by_control[control] = {}
control_totals[control] = 0
for end in ends:
finish_by_control[control][end] = df_games[(df_games['winner'] == end) & (df_games['time_control_type'] == control)].count()['winner']
control_totals[control] = finish_by_control[control][end] + control_totals[control]
end_percents = {}
for control in game_types:
end_percents[control] = {}
for end in ends:
end_percents[control][end] = round(finish_by_control[control][end] / control_totals[control] * 100, 2)
end_percents | code |
18131067/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
print(os.listdir('../input')) | code |
18131067/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_games = pd.read_csv('../input/games.csv')
keep = ['id', 'rated', 'turns', 'victory_status', 'winner', 'increment_code', 'white_rating', 'black_rating', 'moves', 'opening_eco', 'opening_name', 'opening_ply']
df_games = df_games[keep]
df_minis = df_games[df_games['turns'] <= 30]
games = len(df_games.index)
minis = len(df_minis.index)
percent_minis = round(minis / games * 100, 2)
time_control_types = {'classic': {'start': 60, 'end': 999}, 'rapid': {'start': 11, 'end': 59}, 'blitz': {'start': 5, 'end': 10}, 'bullet': {'start': 0, 'end': 4}}
game_types = ['classic', 'rapid', 'blitz']
def get_time_control(minutes):
if minutes >= time_control_types['classic']['start']:
return 'classic'
elif minutes >= time_control_types['rapid']['start']:
return 'rapid'
elif minutes >= time_control_types['blitz']['start']:
return 'blitz'
else:
return 'bullet'
temp_df = df_games['increment_code'].str.split('+', n=1, expand=True)
temp_df[0] = temp_df[0].apply(lambda x: get_time_control(int(x)))
print(temp_df.head(10)) | code |
18131067/cell_15 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_games = pd.read_csv('../input/games.csv')
keep = ['id', 'rated', 'turns', 'victory_status', 'winner', 'increment_code', 'white_rating', 'black_rating', 'moves', 'opening_eco', 'opening_name', 'opening_ply']
df_games = df_games[keep]
df_minis = df_games[df_games['turns'] <= 30]
games = len(df_games.index)
minis = len(df_minis.index)
percent_minis = round(minis / games * 100, 2)
time_control_types = {'classic': {'start': 60, 'end': 999}, 'rapid': {'start': 11, 'end': 59}, 'blitz': {'start': 5, 'end': 10}, 'bullet': {'start': 0, 'end': 4}}
game_types = ['classic', 'rapid', 'blitz']
def get_time_control(minutes):
if minutes >= time_control_types['classic']['start']:
return 'classic'
elif minutes >= time_control_types['rapid']['start']:
return 'rapid'
elif minutes >= time_control_types['blitz']['start']:
return 'blitz'
else:
return 'bullet'
temp_df = df_games['increment_code'].str.split('+', n=1, expand=True)
temp_df[0] = temp_df[0].apply(lambda x: get_time_control(int(x)))
df_games = pd.concat([df_games, temp_df[0]], axis=1)
df_games.rename(columns={0: 'time_control_type'}, inplace=True)
ends = df_games['winner'].unique()
finish_by_control = {}
control_totals = {}
for control in game_types:
finish_by_control[control] = {}
control_totals[control] = 0
for end in ends:
finish_by_control[control][end] = df_games[(df_games['winner'] == end) & (df_games['time_control_type'] == control)].count()['winner']
control_totals[control] = finish_by_control[control][end] + control_totals[control]
list_opening_moves = ['e4', 'd4', 'Nf', 'other']
opening_moves = {}
for move in list_opening_moves:
if move != 'other':
opening_moves[move] = df_games[df_games['moves'].str.slice(0, 2, 1) == move].count()['moves']
else:
opening_moves[move] = df_games[~df_games['moves'].str.slice(0, 2, 1).isin(list_opening_moves)].count()['moves']
result_by_opening_move = {}
for opening in list_opening_moves:
result_by_opening_move[opening] = {}
for end in ends:
if opening != 'other':
result_by_opening_move[opening][end] = df_games[(df_games['winner'] == end) & (df_games['moves'].str.slice(0, 2, 1) == opening)].count()['moves']
else:
result_by_opening_move[opening][end] = df_games[(df_games['winner'] == end) & ~df_games['moves'].str.slice(0, 2, 1).isin(list_opening_moves)].count()['moves']
result_by_opening_move
move_percentage = {}
for move in list_opening_moves:
move_percentage[move] = {}
for end in ends:
move_percentage[move][end] = round(result_by_opening_move[move][end] / opening_moves[move] * 100, 2)
move_percentage | code |
18131067/cell_16 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_games = pd.read_csv('../input/games.csv')
keep = ['id', 'rated', 'turns', 'victory_status', 'winner', 'increment_code', 'white_rating', 'black_rating', 'moves', 'opening_eco', 'opening_name', 'opening_ply']
df_games = df_games[keep]
df_minis = df_games[df_games['turns'] <= 30]
games = len(df_games.index)
minis = len(df_minis.index)
percent_minis = round(minis / games * 100, 2)
colors = ['blue', 'orange']
time_control_types = {'classic': {'start': 60, 'end': 999}, 'rapid': {'start': 11, 'end': 59}, 'blitz': {'start': 5, 'end': 10}, 'bullet': {'start': 0, 'end': 4}}
game_types = ['classic', 'rapid', 'blitz']
def get_time_control(minutes):
if minutes >= time_control_types['classic']['start']:
return 'classic'
elif minutes >= time_control_types['rapid']['start']:
return 'rapid'
elif minutes >= time_control_types['blitz']['start']:
return 'blitz'
else:
return 'bullet'
temp_df = df_games['increment_code'].str.split('+', n=1, expand=True)
temp_df[0] = temp_df[0].apply(lambda x: get_time_control(int(x)))
df_games = pd.concat([df_games, temp_df[0]], axis=1)
df_games.rename(columns={0: 'time_control_type'}, inplace=True)
ends = df_games['winner'].unique()
finish_by_control = {}
control_totals = {}
for control in game_types:
finish_by_control[control] = {}
control_totals[control] = 0
for end in ends:
finish_by_control[control][end] = df_games[(df_games['winner'] == end) & (df_games['time_control_type'] == control)].count()['winner']
control_totals[control] = finish_by_control[control][end] + control_totals[control]
end_percents = {}
for control in game_types:
end_percents[control] = {}
for end in ends:
end_percents[control][end] = round(finish_by_control[control][end] / control_totals[control] * 100, 2)
end_percents
#graphing the win rates grouped by time control
#bar widiths and postitions
bar_width=0.25
bpos=np.arange(len(end_percents.keys()))
#create the bars!
fig,ax=plt.subplots()
white = ax.bar(bpos-bar_width,[end_percents[control]['white'] for control in game_types],bar_width,label='White')
black = ax.bar(bpos,[end_percents[control]['black'] for control in game_types],bar_width,label='Black')
draws = ax.bar(bpos+bar_width,[end_percents[control]['draw'] for control in game_types],bar_width,label='Draw')
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Win Percentage')
ax.set_title('Win Percentage by Control Type')
ax.set_xticks(bpos)
ax.set_xticklabels([x.capitalize() for x in game_types])
ax.legend()
fig.tight_layout()
plt.show()
list_opening_moves = ['e4', 'd4', 'Nf', 'other']
opening_moves = {}
for move in list_opening_moves:
if move != 'other':
opening_moves[move] = df_games[df_games['moves'].str.slice(0, 2, 1) == move].count()['moves']
else:
opening_moves[move] = df_games[~df_games['moves'].str.slice(0, 2, 1).isin(list_opening_moves)].count()['moves']
result_by_opening_move = {}
for opening in list_opening_moves:
result_by_opening_move[opening] = {}
for end in ends:
if opening != 'other':
result_by_opening_move[opening][end] = df_games[(df_games['winner'] == end) & (df_games['moves'].str.slice(0, 2, 1) == opening)].count()['moves']
else:
result_by_opening_move[opening][end] = df_games[(df_games['winner'] == end) & ~df_games['moves'].str.slice(0, 2, 1).isin(list_opening_moves)].count()['moves']
result_by_opening_move
move_percentage = {}
for move in list_opening_moves:
move_percentage[move] = {}
for end in ends:
move_percentage[move][end] = round(result_by_opening_move[move][end] / opening_moves[move] * 100, 2)
move_percentage
bar_width = 0.25
bpos = np.arange(len(move_percentage.keys()))
fig, ax = plt.subplots()
white = ax.bar(bpos - bar_width, [move_percentage[move]['white'] for move in list_opening_moves], bar_width, label='White')
black = ax.bar(bpos, [move_percentage[move]['black'] for move in list_opening_moves], bar_width, label='Black')
draws = ax.bar(bpos + bar_width, [move_percentage[move]['draw'] for move in list_opening_moves], bar_width, label='Draw')
ax.set_ylabel('Win Percentage')
ax.set_title('Win Percentage by Move')
ax.set_xticks(bpos)
ax.set_xticklabels(['King Pawn', 'Queen Pawn', 'Reti', 'Other'])
ax.legend()
fig.tight_layout()
plt.show() | code |
18131067/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_games = pd.read_csv('../input/games.csv')
print(df_games.columns) | code |
18131067/cell_14 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_games = pd.read_csv('../input/games.csv')
keep = ['id', 'rated', 'turns', 'victory_status', 'winner', 'increment_code', 'white_rating', 'black_rating', 'moves', 'opening_eco', 'opening_name', 'opening_ply']
df_games = df_games[keep]
df_minis = df_games[df_games['turns'] <= 30]
games = len(df_games.index)
minis = len(df_minis.index)
percent_minis = round(minis / games * 100, 2)
time_control_types = {'classic': {'start': 60, 'end': 999}, 'rapid': {'start': 11, 'end': 59}, 'blitz': {'start': 5, 'end': 10}, 'bullet': {'start': 0, 'end': 4}}
game_types = ['classic', 'rapid', 'blitz']
def get_time_control(minutes):
if minutes >= time_control_types['classic']['start']:
return 'classic'
elif minutes >= time_control_types['rapid']['start']:
return 'rapid'
elif minutes >= time_control_types['blitz']['start']:
return 'blitz'
else:
return 'bullet'
temp_df = df_games['increment_code'].str.split('+', n=1, expand=True)
temp_df[0] = temp_df[0].apply(lambda x: get_time_control(int(x)))
df_games = pd.concat([df_games, temp_df[0]], axis=1)
df_games.rename(columns={0: 'time_control_type'}, inplace=True)
ends = df_games['winner'].unique()
finish_by_control = {}
control_totals = {}
for control in game_types:
finish_by_control[control] = {}
control_totals[control] = 0
for end in ends:
finish_by_control[control][end] = df_games[(df_games['winner'] == end) & (df_games['time_control_type'] == control)].count()['winner']
control_totals[control] = finish_by_control[control][end] + control_totals[control]
list_opening_moves = ['e4', 'd4', 'Nf', 'other']
opening_moves = {}
for move in list_opening_moves:
if move != 'other':
opening_moves[move] = df_games[df_games['moves'].str.slice(0, 2, 1) == move].count()['moves']
else:
opening_moves[move] = df_games[~df_games['moves'].str.slice(0, 2, 1).isin(list_opening_moves)].count()['moves']
result_by_opening_move = {}
for opening in list_opening_moves:
result_by_opening_move[opening] = {}
for end in ends:
if opening != 'other':
result_by_opening_move[opening][end] = df_games[(df_games['winner'] == end) & (df_games['moves'].str.slice(0, 2, 1) == opening)].count()['moves']
else:
result_by_opening_move[opening][end] = df_games[(df_games['winner'] == end) & ~df_games['moves'].str.slice(0, 2, 1).isin(list_opening_moves)].count()['moves']
result_by_opening_move | code |
18131067/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_games = pd.read_csv('../input/games.csv')
keep = ['id', 'rated', 'turns', 'victory_status', 'winner', 'increment_code', 'white_rating', 'black_rating', 'moves', 'opening_eco', 'opening_name', 'opening_ply']
df_games = df_games[keep]
df_minis = df_games[df_games['turns'] <= 30]
games = len(df_games.index)
minis = len(df_minis.index)
percent_minis = round(minis / games * 100, 2)
time_control_types = {'classic': {'start': 60, 'end': 999}, 'rapid': {'start': 11, 'end': 59}, 'blitz': {'start': 5, 'end': 10}, 'bullet': {'start': 0, 'end': 4}}
game_types = ['classic', 'rapid', 'blitz']
def get_time_control(minutes):
if minutes >= time_control_types['classic']['start']:
return 'classic'
elif minutes >= time_control_types['rapid']['start']:
return 'rapid'
elif minutes >= time_control_types['blitz']['start']:
return 'blitz'
else:
return 'bullet'
temp_df = df_games['increment_code'].str.split('+', n=1, expand=True)
temp_df[0] = temp_df[0].apply(lambda x: get_time_control(int(x)))
df_games = pd.concat([df_games, temp_df[0]], axis=1)
df_games.rename(columns={0: 'time_control_type'}, inplace=True)
ends = df_games['winner'].unique()
finish_by_control = {}
control_totals = {}
for control in game_types:
finish_by_control[control] = {}
control_totals[control] = 0
for end in ends:
finish_by_control[control][end] = df_games[(df_games['winner'] == end) & (df_games['time_control_type'] == control)].count()['winner']
control_totals[control] = finish_by_control[control][end] + control_totals[control]
print(finish_by_control)
print(control_totals) | code |
18131067/cell_12 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_games = pd.read_csv('../input/games.csv')
keep = ['id', 'rated', 'turns', 'victory_status', 'winner', 'increment_code', 'white_rating', 'black_rating', 'moves', 'opening_eco', 'opening_name', 'opening_ply']
df_games = df_games[keep]
df_minis = df_games[df_games['turns'] <= 30]
games = len(df_games.index)
minis = len(df_minis.index)
percent_minis = round(minis / games * 100, 2)
colors = ['blue', 'orange']
time_control_types = {'classic': {'start': 60, 'end': 999}, 'rapid': {'start': 11, 'end': 59}, 'blitz': {'start': 5, 'end': 10}, 'bullet': {'start': 0, 'end': 4}}
game_types = ['classic', 'rapid', 'blitz']
def get_time_control(minutes):
if minutes >= time_control_types['classic']['start']:
return 'classic'
elif minutes >= time_control_types['rapid']['start']:
return 'rapid'
elif minutes >= time_control_types['blitz']['start']:
return 'blitz'
else:
return 'bullet'
temp_df = df_games['increment_code'].str.split('+', n=1, expand=True)
temp_df[0] = temp_df[0].apply(lambda x: get_time_control(int(x)))
df_games = pd.concat([df_games, temp_df[0]], axis=1)
df_games.rename(columns={0: 'time_control_type'}, inplace=True)
ends = df_games['winner'].unique()
finish_by_control = {}
control_totals = {}
for control in game_types:
finish_by_control[control] = {}
control_totals[control] = 0
for end in ends:
finish_by_control[control][end] = df_games[(df_games['winner'] == end) & (df_games['time_control_type'] == control)].count()['winner']
control_totals[control] = finish_by_control[control][end] + control_totals[control]
end_percents = {}
for control in game_types:
end_percents[control] = {}
for end in ends:
end_percents[control][end] = round(finish_by_control[control][end] / control_totals[control] * 100, 2)
end_percents
bar_width = 0.25
bpos = np.arange(len(end_percents.keys()))
fig, ax = plt.subplots()
white = ax.bar(bpos - bar_width, [end_percents[control]['white'] for control in game_types], bar_width, label='White')
black = ax.bar(bpos, [end_percents[control]['black'] for control in game_types], bar_width, label='Black')
draws = ax.bar(bpos + bar_width, [end_percents[control]['draw'] for control in game_types], bar_width, label='Draw')
ax.set_ylabel('Win Percentage')
ax.set_title('Win Percentage by Control Type')
ax.set_xticks(bpos)
ax.set_xticklabels([x.capitalize() for x in game_types])
ax.legend()
fig.tight_layout()
plt.show() | code |
18131067/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_games = pd.read_csv('../input/games.csv')
keep = ['id', 'rated', 'turns', 'victory_status', 'winner', 'increment_code', 'white_rating', 'black_rating', 'moves', 'opening_eco', 'opening_name', 'opening_ply']
df_games = df_games[keep]
df_minis = df_games[df_games['turns'] <= 30]
games = len(df_games.index)
minis = len(df_minis.index)
percent_minis = round(minis / games * 100, 2)
print('{mi}/{gmes} = {percent}% games are minis.'.format(mi=minis, gmes=games, percent=percent_minis)) | code |
2002649/cell_9 | [
"text_plain_output_1.png"
] | from sklearn import svm
from sklearn.preprocessing import LabelEncoder
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/mushrooms.csv')
from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()
for col in data.columns:
data[col] = labelencoder.fit_transform(data[col])
data = np.array(data)
_length = 8000
train, test = (data[0:_length,], data[_length:,])
Xtrain, ytrain = (train[:, 1:], train[:, 0])
Xtest, ytest = (test[:, 1:], test[:, 0])
from sklearn import svm
model = svm.SVC(kernel='linear', gamma=1)
model.fit(Xtrain, ytrain)
scr = model.score(Xtrain, ytrain)
predicted = model.predict(Xtest)
dif = predicted - ytest
from keras.models import *
from keras.layers import *
batch_size = 1
mlp_neurons = 5
neurons = 5
bi_neurons = 5
repeats = 5
nb_epochs = 5
def mlp_model(train, batch_size, nb_epoch, neurons):
X, y = (train[:, 1:], train[:, 0])
model = Sequential()
model.add(Dense(neurons, input_dim=X.shape[1], init='normal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(neurons, init='normal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(neurons, init='normal', activation='relu'))
model.add(Dense(1, activation='linear'))
model.compile(loss='mse', optimizer='adam', metrics=['acc'])
for i in range(nb_epoch):
model.fit(X, y, epochs=1, batch_size=batch_size, verbose=2, shuffle=False)
model.reset_states()
return model
mlp_RNN = mlp_model(train, batch_size, nb_epochs, mlp_neurons) | code |
2002649/cell_4 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import LabelEncoder
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/mushrooms.csv')
from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()
for col in data.columns:
data[col] = labelencoder.fit_transform(data[col])
print(data.shape)
data = np.array(data)
_length = 8000
train, test = (data[0:_length,], data[_length:,])
Xtrain, ytrain = (train[:, 1:], train[:, 0])
Xtest, ytest = (test[:, 1:], test[:, 0])
print(Xtrain.shape)
print(ytrain.shape)
print(Xtest.shape)
print(ytest.shape) | code |
2002649/cell_6 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | from keras.models import *
from keras.layers import *
batch_size = 1
mlp_neurons = 5
neurons = 5
bi_neurons = 5
repeats = 5
nb_epochs = 5 | code |
2002649/cell_11 | [
"text_html_output_1.png"
] | from sklearn import svm
from sklearn.preprocessing import LabelEncoder
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/mushrooms.csv')
from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()
for col in data.columns:
data[col] = labelencoder.fit_transform(data[col])
data = np.array(data)
_length = 8000
train, test = (data[0:_length,], data[_length:,])
Xtrain, ytrain = (train[:, 1:], train[:, 0])
Xtest, ytest = (test[:, 1:], test[:, 0])
from sklearn import svm
model = svm.SVC(kernel='linear', gamma=1)
model.fit(Xtrain, ytrain)
scr = model.score(Xtrain, ytrain)
predicted = model.predict(Xtest)
dif = predicted - ytest
from keras.models import *
from keras.layers import *
batch_size = 1
mlp_neurons = 5
neurons = 5
bi_neurons = 5
repeats = 5
nb_epochs = 5
def mlp_model(train, batch_size, nb_epoch, neurons):
X, y = (train[:, 1:], train[:, 0])
model = Sequential()
model.add(Dense(neurons, input_dim=X.shape[1], init='normal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(neurons, init='normal', activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(neurons, init='normal', activation='relu'))
model.add(Dense(1, activation='linear'))
model.compile(loss='mse', optimizer='adam', metrics=['acc'])
for i in range(nb_epoch):
model.fit(X, y, epochs=1, batch_size=batch_size, verbose=2, shuffle=False)
model.reset_states()
return model
def forecast_mlp(model, batch_size, row):
X = row
X = X.reshape(1, len(X))
yhat = model.predict(X, batch_size=batch_size)
return yhat
mlp_RNN = mlp_model(train, batch_size, nb_epochs, mlp_neurons)
def simulated_mlp(model, train, batch_size, nb_epochs, neurons):
n1 = len(Xtest)
n2 = repeats
predictions1 = np.zeros((n1, n2), dtype=float)
for r in range(repeats):
predictions2 = list()
for i in range(len(Xtest)):
if i == 0:
y = forecast_mlp(model, batch_size, Xtest[i, :])
Xtest[i + 1, :-1] = Xtest[i, 1:]
Xtest[i + 1, -1] = y
predictions2.append(y)
else:
y = forecast_mlp(model, batch_size, Xtest[i - 1, :])
Xtest[i, :-1] = Xtest[i - 1, 1:]
Xtest[i, -1] = y
predictions2.append(y)
predictions1[:, r] = predictions2
return np.mean(predictions1, axis=1)
print(ytest)
print('===================== mlp ==================================')
print(simulated_mlp(mlp_RNN, train, batch_size, nb_epochs, mlp_neurons)) | code |
2002649/cell_1 | [
"text_plain_output_1.png"
] | from subprocess import check_output
import numpy as np
import pandas as pd
from subprocess import check_output
print(check_output(['ls', '../input']).decode('utf8')) | code |
2002649/cell_3 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import LabelEncoder
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/mushrooms.csv')
from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()
for col in data.columns:
data[col] = labelencoder.fit_transform(data[col])
data.head() | code |
2002649/cell_5 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn import svm
from sklearn.preprocessing import LabelEncoder
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/mushrooms.csv')
from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()
for col in data.columns:
data[col] = labelencoder.fit_transform(data[col])
data = np.array(data)
_length = 8000
train, test = (data[0:_length,], data[_length:,])
Xtrain, ytrain = (train[:, 1:], train[:, 0])
Xtest, ytest = (test[:, 1:], test[:, 0])
from sklearn import svm
model = svm.SVC(kernel='linear', gamma=1)
model.fit(Xtrain, ytrain)
scr = model.score(Xtrain, ytrain)
print(scr)
predicted = model.predict(Xtest)
print(predicted)
dif = predicted - ytest
print(dif) | code |
16120909/cell_21 | [
"text_plain_output_1.png"
] | train_y.shape | code |
16120909/cell_9 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
health_data = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
health_data = health_data.drop(columns=['BCHC Requested Methodology', 'Source', 'Methods', 'Notes'])
health_data.columns
health_data.isna().sum() | code |
16120909/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
health_data = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
health_data.info() | code |
16120909/cell_23 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
train_y.shape
model = LinearRegression()
model.fit(train_x, train_y)
model.coef_ | code |
16120909/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
health_data = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
health_data = health_data.drop(columns=['BCHC Requested Methodology', 'Source', 'Methods', 'Notes'])
health_data.columns | code |
16120909/cell_26 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
health_data = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
health_data = health_data.drop(columns=['BCHC Requested Methodology', 'Source', 'Methods', 'Notes'])
health_data.columns
health_data.isna().sum()
categorical_cols = health_data.select_dtypes(exclude=np.number).columns
train_y.shape
model = LinearRegression()
model.fit(train_x, train_y)
model.coef_
model.intercept_
train_predict = model.predict(train_x)
test_predict = model.predict(test_x)
print('MSE - Train :', mean_squared_error(train_y, train_predict))
print('MSE - Test :', mean_squared_error(test_y, test_predict))
print('MAE - Train :', mean_absolute_error(train_y, train_predict))
print('MAE - Test :', mean_absolute_error(test_y, test_predict))
print('R2 - Train :', r2_score(train_y, train_predict))
print('R2 - Test :', r2_score(test_y, test_predict))
print('Mape - Train:', np.mean(np.abs((train_y, train_predict))))
print('Mape - Test:', np.mean(np.abs((test_y, test_predict)))) | code |
16120909/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
16120909/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
health_data = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
health_data = health_data.drop(columns=['BCHC Requested Methodology', 'Source', 'Methods', 'Notes'])
health_data.columns
health_data.head() | code |
16120909/cell_17 | [
"text_html_output_1.png"
] | import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
health_data = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
health_data = health_data.drop(columns=['BCHC Requested Methodology', 'Source', 'Methods', 'Notes'])
health_data.columns
health_data.isna().sum()
categorical_cols = health_data.select_dtypes(exclude=np.number).columns
categorical_cols = categorical_cols.drop(['Indicator', 'Place'])
encoded_cols = pd.get_dummies(health_data[categorical_cols])
final_data = pd.concat([encoded_cols, health_data['Value']], axis=1)
final_data.info() | code |
16120909/cell_24 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
train_y.shape
model = LinearRegression()
model.fit(train_x, train_y)
model.coef_
model.intercept_ | code |
16120909/cell_14 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
health_data = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
health_data = health_data.drop(columns=['BCHC Requested Methodology', 'Source', 'Methods', 'Notes'])
health_data.columns
health_data.isna().sum()
categorical_cols = health_data.select_dtypes(exclude=np.number).columns
categorical_cols = categorical_cols.drop(['Indicator', 'Place'])
categorical_cols | code |
16120909/cell_22 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
train_y.shape
model = LinearRegression()
model.fit(train_x, train_y) | code |
16120909/cell_12 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
health_data = pd.read_csv('../input/Big_Cities_Health_Data_Inventory.csv')
health_data = health_data.drop(columns=['BCHC Requested Methodology', 'Source', 'Methods', 'Notes'])
health_data.columns
health_data.isna().sum()
categorical_cols = health_data.select_dtypes(exclude=np.number).columns
categorical_cols | code |
72076807/cell_4 | [
"text_html_output_1.png"
] | from sklearn.model_selection import train_test_split
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
test = pd.read_csv('../input/30-days-of-ml/test.csv')
train = pd.read_csv('../input/30-days-of-ml/train.csv')
y = train.target
X = train.drop(['target'], axis=1)
X_train, X_valid, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0)
test.head() | code |
72076807/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
72076807/cell_7 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder,OrdinalEncoder
from xgboost import XGBRegressor
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
test = pd.read_csv('../input/30-days-of-ml/test.csv')
train = pd.read_csv('../input/30-days-of-ml/train.csv')
y = train.target
X = train.drop(['target'], axis=1)
X_train, X_valid, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0)
integer_features = list(X.columns[X.dtypes == 'int64'])
continuous_features = list(X.columns[X.dtypes == 'float64'])
categorical_features = list(X.columns[X.dtypes == 'object'])
OneEncoder = OneHotEncoder(handle_unknown='ignore', sparse=False)
OH_train_cols = pd.DataFrame(OneEncoder.fit_transform(X_train[categorical_features]))
OH_valid_cols = pd.DataFrame(OneEncoder.transform(X_valid[categorical_features]))
OH_train_cols.index = X_train.index
OH_valid_cols.index = X_valid.index
OH_numtrain_cols = X_train.drop(categorical_features, axis=1)
OH_numval_cols = X_valid.drop(categorical_features, axis=1)
OH_X_train = pd.concat([OH_train_cols, OH_numtrain_cols], axis=1)
OH_X_valid = pd.concat([OH_valid_cols, OH_numval_cols], axis=1)
model = XGBRegressor(n_estimators=700, random_state=0, learning_rate=0.05)
model.fit(OH_X_train, y_train)
predict = model.predict(OH_X_valid)
print(mean_squared_error(predict, y_valid, squared=False)) | code |
33118397/cell_9 | [
"text_plain_output_1.png"
] | import json
import os # To walk through the data files provided
import re # Regular expressions
testDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/test/'
trainingDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
evaluationDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
def readTaskFile(filename):
f = open(filename, 'r')
data = json.loads(f.read())
data['id'] = re.sub('(.*/)|(\\.json)', '', filename)
f.close()
return data
filename = testDirectory + '19bb5feb.json'
readTaskFile(filename)
def getGridSizeComparison(filename):
data = readTaskFile(filename)
trainSection = data['train']
ident = data['id']
numTrain = len(trainSection)
result = {}
for i in range(numTrain):
trainCase = trainSection[i]
trainCaseInput = trainCase['input']
trainCaseOutput = trainCase['output']
sameY = len(trainCaseInput) == len(trainCaseOutput)
sameX = len(trainCaseInput[0]) == len(trainCaseOutput[0])
result[ident + '_train_' + str(i)] = sameX and sameY
return result
filename = testDirectory + '19bb5feb.json'
getGridSizeComparison(filename)
def getResults(directory, f):
results = {}
for _, _, filenames in os.walk(directory):
for filename in filenames:
results.update(f(directory + filename))
return results
results = getResults(trainingDirectory, getGridSizeComparison)
print(results) | code |
33118397/cell_19 | [
"text_plain_output_1.png"
] | from matplotlib import colors
import json
import matplotlib.pyplot as plt
import os # To walk through the data files provided
import re # Regular expressions
testDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/test/'
trainingDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
evaluationDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
def readTaskFile(filename):
f = open(filename, 'r')
data = json.loads(f.read())
data['id'] = re.sub('(.*/)|(\\.json)', '', filename)
f.close()
return data
filename = testDirectory + '19bb5feb.json'
readTaskFile(filename)
def getGridSizeComparison(filename):
data = readTaskFile(filename)
trainSection = data['train']
ident = data['id']
numTrain = len(trainSection)
result = {}
for i in range(numTrain):
trainCase = trainSection[i]
trainCaseInput = trainCase['input']
trainCaseOutput = trainCase['output']
sameY = len(trainCaseInput) == len(trainCaseOutput)
sameX = len(trainCaseInput[0]) == len(trainCaseOutput[0])
result[ident + '_train_' + str(i)] = sameX and sameY
return result
filename = testDirectory + '19bb5feb.json'
getGridSizeComparison(filename)
def getResults(directory, f):
results = {}
for _, _, filenames in os.walk(directory):
for filename in filenames:
results.update(f(directory + filename))
return results
results = getResults(trainingDirectory, getGridSizeComparison)
count = 0
for _, value in results.items():
if value:
count += 1
# Visualise the training cases for a task
# Code inspiration from https://www.kaggle.com/inversion/abstraction-and-reasoning-starter-notebook
def plotTaskTraining(task):
"""
Plots the training pairs of a specified task,
using same color scheme as the ARC app
"""
cmap = colors.ListedColormap(
['#000000', '#0074D9','#FF4136','#2ECC40','#FFDC00',
'#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25'])
norm = colors.Normalize(vmin=0, vmax=9)
# Plot all the training cases
nTrainingCases = len(task["train"])
fig, axs = plt.subplots(nTrainingCases, 2, figsize=(15,15))
for i in range(nTrainingCases):
axs[i][0].imshow(task['train'][i]['input'], cmap=cmap, norm=norm)
axs[i][0].axis('off')
axs[i][0].set_title('Train Input')
axs[i][1].imshow(task['train'][i]['output'], cmap=cmap, norm=norm)
axs[i][1].axis('off')
axs[i][1].set_title('Train Output')
plt.tight_layout()
plt.show()
filename = testDirectory + '19bb5feb.json'
task = readTaskFile(filename)
def getGridSizeComparison2(filename):
data = readTaskFile(filename)
trainSection = data['train']
ident = data['id']
numTrain = len(trainSection)
result = {'allCorrespond': True, 'outputsSame': True}
for i in range(numTrain):
trainCase = trainSection[i]
trainCaseInput = trainCase['input']
trainCaseOutput = trainCase['output']
sameY = len(trainCaseInput) == len(trainCaseOutput)
sameX = len(trainCaseInput[0]) == len(trainCaseOutput[0])
if not (sameX and sameY):
result['allCorrespond'] = False
break
outputX = None
outputY = None
for i in range(numTrain):
trainCase = trainSection[i]
trainCaseOutput = trainCase['output']
same = True
if outputY == None:
outputY = len(trainCaseOutput)
elif not outputY == len(trainCaseOutput):
same = False
if outputX == None:
outputX = len(trainCaseOutput[0])
elif not outputX == len(trainCaseOutput[0]):
same = False
if not same:
result['outputsSame'] = False
break
return {ident: result}
results = getResults(trainingDirectory, getGridSizeComparison2)
countAllCorrespondFalse = 0
for _, value in results.items():
if not value['allCorrespond']:
countAllCorrespondFalse += 1
countAllCorrespondFalseOutputsSameTrue = 0
for _, value in results.items():
if value['allCorrespond'] == False and value['outputsSame'] == True:
countAllCorrespondFalseOutputsSameTrue += 1
print('Of the ' + str(countAllCorrespondFalse) + ' tasks where the input:output ' + 'grid sizes were not the same,\n' + str(countAllCorrespondFalseOutputsSameTrue) + ' had identical grid sizes ' + 'for all their outputs, or ' + str(round(countAllCorrespondFalseOutputsSameTrue / countAllCorrespondFalse * 100)) + '%.') | code |
33118397/cell_7 | [
"text_plain_output_1.png"
] | import json
import re # Regular expressions
testDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/test/'
trainingDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
evaluationDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
def readTaskFile(filename):
f = open(filename, 'r')
data = json.loads(f.read())
data['id'] = re.sub('(.*/)|(\\.json)', '', filename)
f.close()
return data
filename = testDirectory + '19bb5feb.json'
readTaskFile(filename)
def getGridSizeComparison(filename):
data = readTaskFile(filename)
trainSection = data['train']
ident = data['id']
numTrain = len(trainSection)
result = {}
for i in range(numTrain):
trainCase = trainSection[i]
trainCaseInput = trainCase['input']
trainCaseOutput = trainCase['output']
sameY = len(trainCaseInput) == len(trainCaseOutput)
sameX = len(trainCaseInput[0]) == len(trainCaseOutput[0])
result[ident + '_train_' + str(i)] = sameX and sameY
return result
filename = testDirectory + '19bb5feb.json'
getGridSizeComparison(filename) | code |
33118397/cell_18 | [
"text_plain_output_1.png"
] | from matplotlib import colors
import json
import matplotlib.pyplot as plt
import os # To walk through the data files provided
import re # Regular expressions
testDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/test/'
trainingDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
evaluationDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
def readTaskFile(filename):
f = open(filename, 'r')
data = json.loads(f.read())
data['id'] = re.sub('(.*/)|(\\.json)', '', filename)
f.close()
return data
filename = testDirectory + '19bb5feb.json'
readTaskFile(filename)
def getGridSizeComparison(filename):
data = readTaskFile(filename)
trainSection = data['train']
ident = data['id']
numTrain = len(trainSection)
result = {}
for i in range(numTrain):
trainCase = trainSection[i]
trainCaseInput = trainCase['input']
trainCaseOutput = trainCase['output']
sameY = len(trainCaseInput) == len(trainCaseOutput)
sameX = len(trainCaseInput[0]) == len(trainCaseOutput[0])
result[ident + '_train_' + str(i)] = sameX and sameY
return result
filename = testDirectory + '19bb5feb.json'
getGridSizeComparison(filename)
def getResults(directory, f):
results = {}
for _, _, filenames in os.walk(directory):
for filename in filenames:
results.update(f(directory + filename))
return results
results = getResults(trainingDirectory, getGridSizeComparison)
count = 0
for _, value in results.items():
if value:
count += 1
# Visualise the training cases for a task
# Code inspiration from https://www.kaggle.com/inversion/abstraction-and-reasoning-starter-notebook
def plotTaskTraining(task):
"""
Plots the training pairs of a specified task,
using same color scheme as the ARC app
"""
cmap = colors.ListedColormap(
['#000000', '#0074D9','#FF4136','#2ECC40','#FFDC00',
'#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25'])
norm = colors.Normalize(vmin=0, vmax=9)
# Plot all the training cases
nTrainingCases = len(task["train"])
fig, axs = plt.subplots(nTrainingCases, 2, figsize=(15,15))
for i in range(nTrainingCases):
axs[i][0].imshow(task['train'][i]['input'], cmap=cmap, norm=norm)
axs[i][0].axis('off')
axs[i][0].set_title('Train Input')
axs[i][1].imshow(task['train'][i]['output'], cmap=cmap, norm=norm)
axs[i][1].axis('off')
axs[i][1].set_title('Train Output')
plt.tight_layout()
plt.show()
filename = testDirectory + '19bb5feb.json'
task = readTaskFile(filename)
def getGridSizeComparison2(filename):
data = readTaskFile(filename)
trainSection = data['train']
ident = data['id']
numTrain = len(trainSection)
result = {'allCorrespond': True, 'outputsSame': True}
for i in range(numTrain):
trainCase = trainSection[i]
trainCaseInput = trainCase['input']
trainCaseOutput = trainCase['output']
sameY = len(trainCaseInput) == len(trainCaseOutput)
sameX = len(trainCaseInput[0]) == len(trainCaseOutput[0])
if not (sameX and sameY):
result['allCorrespond'] = False
break
outputX = None
outputY = None
for i in range(numTrain):
trainCase = trainSection[i]
trainCaseOutput = trainCase['output']
same = True
if outputY == None:
outputY = len(trainCaseOutput)
elif not outputY == len(trainCaseOutput):
same = False
if outputX == None:
outputX = len(trainCaseOutput[0])
elif not outputX == len(trainCaseOutput[0]):
same = False
if not same:
result['outputsSame'] = False
break
return {ident: result}
results = getResults(trainingDirectory, getGridSizeComparison2)
print(results) | code |
33118397/cell_15 | [
"text_plain_output_1.png"
] | from matplotlib import colors
import json
import matplotlib.pyplot as plt
import re # Regular expressions
testDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/test/'
trainingDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
evaluationDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
def readTaskFile(filename):
f = open(filename, 'r')
data = json.loads(f.read())
data['id'] = re.sub('(.*/)|(\\.json)', '', filename)
f.close()
return data
filename = testDirectory + '19bb5feb.json'
readTaskFile(filename)
def getGridSizeComparison(filename):
data = readTaskFile(filename)
trainSection = data['train']
ident = data['id']
numTrain = len(trainSection)
result = {}
for i in range(numTrain):
trainCase = trainSection[i]
trainCaseInput = trainCase['input']
trainCaseOutput = trainCase['output']
sameY = len(trainCaseInput) == len(trainCaseOutput)
sameX = len(trainCaseInput[0]) == len(trainCaseOutput[0])
result[ident + '_train_' + str(i)] = sameX and sameY
return result
filename = testDirectory + '19bb5feb.json'
getGridSizeComparison(filename)
# Visualise the training cases for a task
# Code inspiration from https://www.kaggle.com/inversion/abstraction-and-reasoning-starter-notebook
def plotTaskTraining(task):
"""
Plots the training pairs of a specified task,
using same color scheme as the ARC app
"""
cmap = colors.ListedColormap(
['#000000', '#0074D9','#FF4136','#2ECC40','#FFDC00',
'#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25'])
norm = colors.Normalize(vmin=0, vmax=9)
# Plot all the training cases
nTrainingCases = len(task["train"])
fig, axs = plt.subplots(nTrainingCases, 2, figsize=(15,15))
for i in range(nTrainingCases):
axs[i][0].imshow(task['train'][i]['input'], cmap=cmap, norm=norm)
axs[i][0].axis('off')
axs[i][0].set_title('Train Input')
axs[i][1].imshow(task['train'][i]['output'], cmap=cmap, norm=norm)
axs[i][1].axis('off')
axs[i][1].set_title('Train Output')
plt.tight_layout()
plt.show()
filename = testDirectory + '19bb5feb.json'
task = readTaskFile(filename)
def getGridSizeComparison2(filename):
data = readTaskFile(filename)
trainSection = data['train']
ident = data['id']
numTrain = len(trainSection)
result = {'allCorrespond': True, 'outputsSame': True}
for i in range(numTrain):
trainCase = trainSection[i]
trainCaseInput = trainCase['input']
trainCaseOutput = trainCase['output']
sameY = len(trainCaseInput) == len(trainCaseOutput)
sameX = len(trainCaseInput[0]) == len(trainCaseOutput[0])
if not (sameX and sameY):
result['allCorrespond'] = False
break
outputX = None
outputY = None
for i in range(numTrain):
trainCase = trainSection[i]
trainCaseOutput = trainCase['output']
same = True
if outputY == None:
outputY = len(trainCaseOutput)
elif not outputY == len(trainCaseOutput):
same = False
if outputX == None:
outputX = len(trainCaseOutput[0])
elif not outputX == len(trainCaseOutput[0]):
same = False
if not same:
result['outputsSame'] = False
break
return {ident: result}
filename = testDirectory + '19bb5feb.json'
print(getGridSizeComparison2(filename)) | code |
33118397/cell_16 | [
"text_plain_output_1.png"
] | from matplotlib import colors
import json
import matplotlib.pyplot as plt
import re # Regular expressions
testDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/test/'
trainingDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
evaluationDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
def readTaskFile(filename):
f = open(filename, 'r')
data = json.loads(f.read())
data['id'] = re.sub('(.*/)|(\\.json)', '', filename)
f.close()
return data
filename = testDirectory + '19bb5feb.json'
readTaskFile(filename)
def getGridSizeComparison(filename):
data = readTaskFile(filename)
trainSection = data['train']
ident = data['id']
numTrain = len(trainSection)
result = {}
for i in range(numTrain):
trainCase = trainSection[i]
trainCaseInput = trainCase['input']
trainCaseOutput = trainCase['output']
sameY = len(trainCaseInput) == len(trainCaseOutput)
sameX = len(trainCaseInput[0]) == len(trainCaseOutput[0])
result[ident + '_train_' + str(i)] = sameX and sameY
return result
filename = testDirectory + '19bb5feb.json'
getGridSizeComparison(filename)
# Visualise the training cases for a task
# Code inspiration from https://www.kaggle.com/inversion/abstraction-and-reasoning-starter-notebook
def plotTaskTraining(task):
"""
Plots the training pairs of a specified task,
using same color scheme as the ARC app
"""
cmap = colors.ListedColormap(
['#000000', '#0074D9','#FF4136','#2ECC40','#FFDC00',
'#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25'])
norm = colors.Normalize(vmin=0, vmax=9)
# Plot all the training cases
nTrainingCases = len(task["train"])
fig, axs = plt.subplots(nTrainingCases, 2, figsize=(15,15))
for i in range(nTrainingCases):
axs[i][0].imshow(task['train'][i]['input'], cmap=cmap, norm=norm)
axs[i][0].axis('off')
axs[i][0].set_title('Train Input')
axs[i][1].imshow(task['train'][i]['output'], cmap=cmap, norm=norm)
axs[i][1].axis('off')
axs[i][1].set_title('Train Output')
plt.tight_layout()
plt.show()
filename = testDirectory + '19bb5feb.json'
task = readTaskFile(filename)
def getGridSizeComparison2(filename):
data = readTaskFile(filename)
trainSection = data['train']
ident = data['id']
numTrain = len(trainSection)
result = {'allCorrespond': True, 'outputsSame': True}
for i in range(numTrain):
trainCase = trainSection[i]
trainCaseInput = trainCase['input']
trainCaseOutput = trainCase['output']
sameY = len(trainCaseInput) == len(trainCaseOutput)
sameX = len(trainCaseInput[0]) == len(trainCaseOutput[0])
if not (sameX and sameY):
result['allCorrespond'] = False
break
outputX = None
outputY = None
for i in range(numTrain):
trainCase = trainSection[i]
trainCaseOutput = trainCase['output']
same = True
if outputY == None:
outputY = len(trainCaseOutput)
elif not outputY == len(trainCaseOutput):
same = False
if outputX == None:
outputX = len(trainCaseOutput[0])
elif not outputX == len(trainCaseOutput[0]):
same = False
if not same:
result['outputsSame'] = False
break
return {ident: result}
filename = testDirectory + '19bb5feb.json'
filename = trainingDirectory + '0b148d64.json'
print(getGridSizeComparison2(filename)) | code |
33118397/cell_17 | [
"image_output_1.png"
] | from matplotlib import colors
import json
import matplotlib.pyplot as plt
import re # Regular expressions
testDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/test/'
trainingDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
evaluationDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
def readTaskFile(filename):
f = open(filename, 'r')
data = json.loads(f.read())
data['id'] = re.sub('(.*/)|(\\.json)', '', filename)
f.close()
return data
filename = testDirectory + '19bb5feb.json'
readTaskFile(filename)
def getGridSizeComparison(filename):
data = readTaskFile(filename)
trainSection = data['train']
ident = data['id']
numTrain = len(trainSection)
result = {}
for i in range(numTrain):
trainCase = trainSection[i]
trainCaseInput = trainCase['input']
trainCaseOutput = trainCase['output']
sameY = len(trainCaseInput) == len(trainCaseOutput)
sameX = len(trainCaseInput[0]) == len(trainCaseOutput[0])
result[ident + '_train_' + str(i)] = sameX and sameY
return result
filename = testDirectory + '19bb5feb.json'
getGridSizeComparison(filename)
# Visualise the training cases for a task
# Code inspiration from https://www.kaggle.com/inversion/abstraction-and-reasoning-starter-notebook
def plotTaskTraining(task):
"""
Plots the training pairs of a specified task,
using same color scheme as the ARC app
"""
cmap = colors.ListedColormap(
['#000000', '#0074D9','#FF4136','#2ECC40','#FFDC00',
'#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25'])
norm = colors.Normalize(vmin=0, vmax=9)
# Plot all the training cases
nTrainingCases = len(task["train"])
fig, axs = plt.subplots(nTrainingCases, 2, figsize=(15,15))
for i in range(nTrainingCases):
axs[i][0].imshow(task['train'][i]['input'], cmap=cmap, norm=norm)
axs[i][0].axis('off')
axs[i][0].set_title('Train Input')
axs[i][1].imshow(task['train'][i]['output'], cmap=cmap, norm=norm)
axs[i][1].axis('off')
axs[i][1].set_title('Train Output')
plt.tight_layout()
plt.show()
filename = testDirectory + '19bb5feb.json'
task = readTaskFile(filename)
def getGridSizeComparison2(filename):
data = readTaskFile(filename)
trainSection = data['train']
ident = data['id']
numTrain = len(trainSection)
result = {'allCorrespond': True, 'outputsSame': True}
for i in range(numTrain):
trainCase = trainSection[i]
trainCaseInput = trainCase['input']
trainCaseOutput = trainCase['output']
sameY = len(trainCaseInput) == len(trainCaseOutput)
sameX = len(trainCaseInput[0]) == len(trainCaseOutput[0])
if not (sameX and sameY):
result['allCorrespond'] = False
break
outputX = None
outputY = None
for i in range(numTrain):
trainCase = trainSection[i]
trainCaseOutput = trainCase['output']
same = True
if outputY == None:
outputY = len(trainCaseOutput)
elif not outputY == len(trainCaseOutput):
same = False
if outputX == None:
outputX = len(trainCaseOutput[0])
elif not outputX == len(trainCaseOutput[0]):
same = False
if not same:
result['outputsSame'] = False
break
return {ident: result}
filename = testDirectory + '19bb5feb.json'
filename = trainingDirectory + '0b148d64.json'
filename = trainingDirectory + '0b148d64.json'
task = readTaskFile(filename)
plotTaskTraining(task) | code |
33118397/cell_10 | [
"text_plain_output_1.png"
] | import json
import os # To walk through the data files provided
import re # Regular expressions
testDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/test/'
trainingDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
evaluationDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
def readTaskFile(filename):
f = open(filename, 'r')
data = json.loads(f.read())
data['id'] = re.sub('(.*/)|(\\.json)', '', filename)
f.close()
return data
filename = testDirectory + '19bb5feb.json'
readTaskFile(filename)
def getGridSizeComparison(filename):
data = readTaskFile(filename)
trainSection = data['train']
ident = data['id']
numTrain = len(trainSection)
result = {}
for i in range(numTrain):
trainCase = trainSection[i]
trainCaseInput = trainCase['input']
trainCaseOutput = trainCase['output']
sameY = len(trainCaseInput) == len(trainCaseOutput)
sameX = len(trainCaseInput[0]) == len(trainCaseOutput[0])
result[ident + '_train_' + str(i)] = sameX and sameY
return result
filename = testDirectory + '19bb5feb.json'
getGridSizeComparison(filename)
def getResults(directory, f):
results = {}
for _, _, filenames in os.walk(directory):
for filename in filenames:
results.update(f(directory + filename))
return results
results = getResults(trainingDirectory, getGridSizeComparison)
count = 0
for _, value in results.items():
if value:
count += 1
print('Proportion of training examples with the same grid size: ' + str(round(count / len(results), 2))) | code |
33118397/cell_12 | [
"text_plain_output_1.png"
] | from matplotlib import colors
import json
import matplotlib.pyplot as plt
import re # Regular expressions
testDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/test/'
trainingDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
evaluationDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
def readTaskFile(filename):
f = open(filename, 'r')
data = json.loads(f.read())
data['id'] = re.sub('(.*/)|(\\.json)', '', filename)
f.close()
return data
filename = testDirectory + '19bb5feb.json'
readTaskFile(filename)
def getGridSizeComparison(filename):
data = readTaskFile(filename)
trainSection = data['train']
ident = data['id']
numTrain = len(trainSection)
result = {}
for i in range(numTrain):
trainCase = trainSection[i]
trainCaseInput = trainCase['input']
trainCaseOutput = trainCase['output']
sameY = len(trainCaseInput) == len(trainCaseOutput)
sameX = len(trainCaseInput[0]) == len(trainCaseOutput[0])
result[ident + '_train_' + str(i)] = sameX and sameY
return result
filename = testDirectory + '19bb5feb.json'
getGridSizeComparison(filename)
# Visualise the training cases for a task
# Code inspiration from https://www.kaggle.com/inversion/abstraction-and-reasoning-starter-notebook
def plotTaskTraining(task):
"""
Plots the training pairs of a specified task,
using same color scheme as the ARC app
"""
cmap = colors.ListedColormap(
['#000000', '#0074D9','#FF4136','#2ECC40','#FFDC00',
'#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25'])
norm = colors.Normalize(vmin=0, vmax=9)
# Plot all the training cases
nTrainingCases = len(task["train"])
fig, axs = plt.subplots(nTrainingCases, 2, figsize=(15,15))
for i in range(nTrainingCases):
axs[i][0].imshow(task['train'][i]['input'], cmap=cmap, norm=norm)
axs[i][0].axis('off')
axs[i][0].set_title('Train Input')
axs[i][1].imshow(task['train'][i]['output'], cmap=cmap, norm=norm)
axs[i][1].axis('off')
axs[i][1].set_title('Train Output')
plt.tight_layout()
plt.show()
filename = testDirectory + '19bb5feb.json'
task = readTaskFile(filename)
plotTaskTraining(task) | code |
33118397/cell_5 | [
"image_output_1.png"
] | import json
import re # Regular expressions
testDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/test/'
trainingDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
evaluationDirectory = '/kaggle/input/abstraction-and-reasoning-challenge/training/'
def readTaskFile(filename):
f = open(filename, 'r')
data = json.loads(f.read())
data['id'] = re.sub('(.*/)|(\\.json)', '', filename)
f.close()
return data
filename = testDirectory + '19bb5feb.json'
readTaskFile(filename) | code |
34127012/cell_13 | [
"text_html_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('https://d17h27t6h515a5.cloudfront.net/topher/2017/October/59dd2e9a_noshowappointments-kagglev2-may-2016/noshowappointments-kagglev2-may-2016.csv')
data_df.isnull().sum()
data_df.dtypes | code |
34127012/cell_6 | [
"text_plain_output_1.png"
] | import os
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
34127012/cell_19 | [
"text_plain_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('https://d17h27t6h515a5.cloudfront.net/topher/2017/October/59dd2e9a_noshowappointments-kagglev2-may-2016/noshowappointments-kagglev2-may-2016.csv')
data_df.isnull().sum()
data_df.dtypes
data_df.duplicated().sum() | code |
34127012/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('https://d17h27t6h515a5.cloudfront.net/topher/2017/October/59dd2e9a_noshowappointments-kagglev2-may-2016/noshowappointments-kagglev2-may-2016.csv')
data_df.head(2) | code |
34127012/cell_17 | [
"text_plain_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('https://d17h27t6h515a5.cloudfront.net/topher/2017/October/59dd2e9a_noshowappointments-kagglev2-may-2016/noshowappointments-kagglev2-may-2016.csv')
data_df.isnull().sum()
data_df.dtypes
data_df['Neighbourhood'].unique() | code |
34127012/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd
data_df = pd.read_csv('https://d17h27t6h515a5.cloudfront.net/topher/2017/October/59dd2e9a_noshowappointments-kagglev2-may-2016/noshowappointments-kagglev2-may-2016.csv')
data_df.isnull().sum() | code |
105176386/cell_21 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv')
matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv')
cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv')
matches = matches.dropna()
partidos_por_anio = matches[['Year', 'MatchID']].dropna().astype('Int64')
jugadores_goles = players[['MatchID', 'Player Name', 'goles']]
goles = pd.merge(jugadores_goles, partidos_por_anio, on='MatchID', how='inner')
goles
inicio = goles.groupby('Player Name').agg({'Year': 'min'})
inicio = inicio.to_dict()['Year']
plt.figure(dpi=125, figsize=(4.8, 4.8))
sns.countplot(data=goles[goles['antiguedad'] < 20], x='antiguedad', palette=['#FFF5E0', '#EAD2A4', '#BF9445', '#733E1F', '#592D1D'])
plt.title('Distribución de los años de experiencia en mundiales\n para los jugadores')
plt.xlabel('Cantidad de jugadores')
plt.ylabel('Años de experiencia en mundiales') | code |
105176386/cell_13 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv')
matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv')
cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv')
matches = matches.dropna()
partidos_por_anio = matches[['Year', 'MatchID']].dropna().astype('Int64')
jugadores_goles = players[['MatchID', 'Player Name', 'goles']]
goles = pd.merge(jugadores_goles, partidos_por_anio, on='MatchID', how='inner')
goles | code |
105176386/cell_25 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv')
matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv')
cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv')
matches = matches.dropna()
matches.groupby(['Home Team Name', 'Year']).agg({'Home Team Goals': 'mean'}) | code |
105176386/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv')
matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv')
cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv')
players | code |
105176386/cell_23 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv')
matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv')
cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv')
matches = matches.dropna()
partidos_por_anio = matches[['Year', 'MatchID']].dropna().astype('Int64')
def cantidad_goles(texto):
return texto.count('G') - texto.count('OG')
jugadores_goles = players[['MatchID', 'Player Name', 'goles']]
goles = pd.merge(jugadores_goles, partidos_por_anio, on='MatchID', how='inner')
goles
inicio = goles.groupby('Player Name').agg({'Year': 'min'})
inicio = inicio.to_dict()['Year']
def min_goles(texto):
eventos = texto.split("' ")
goles = [e.replace("'", '') for e in eventos if e and e[0] == 'G']
return [int(g[1:]) for g in goles]
sns.kdeplot(players['Event'].fillna('').map(min_goles).sum(), fill=True, color='#BDE038')
plt.xlim((0, 120))
plt.yticks([])
plt.ylabel('Probabilidad')
plt.xlabel('Minuto')
plt.title('Distribución de los minutos en los que ocurren goles') | code |
105176386/cell_30 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv')
matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv')
cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv')
matches = matches.dropna()
partidos_por_anio = matches[['Year', 'MatchID']].dropna().astype('Int64')
jugadores_goles = players[['MatchID', 'Player Name', 'goles']]
goles = pd.merge(jugadores_goles, partidos_por_anio, on='MatchID', how='inner')
goles
matches.groupby(['Home Team Name', 'Year']).agg({'Home Team Goals': 'mean'})
matches.groupby(['Away Team Name', 'Year']).agg({'Away Team Goals': 'mean'})
home_goals = matches[['Home Team Name', 'Year', 'Home Team Goals']].rename(columns={'Home Team Name': 'Team Name', 'Home Team Goals': 'Goals'})
away_goals = matches[['Away Team Name', 'Year', 'Away Team Goals']].rename(columns={'Away Team Name': 'Team Name', 'Home Team Goals': 'Goals'})
goals = pd.concat([home_goals, away_goals], ignore_index=True)
goals.groupby(['Team Name', 'Year']).agg({'Goals': 'mean'}) | code |
105176386/cell_20 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv')
matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv')
cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv')
matches = matches.dropna()
partidos_por_anio = matches[['Year', 'MatchID']].dropna().astype('Int64')
jugadores_goles = players[['MatchID', 'Player Name', 'goles']]
goles = pd.merge(jugadores_goles, partidos_por_anio, on='MatchID', how='inner')
goles
inicio = goles.groupby('Player Name').agg({'Year': 'min'})
inicio = inicio.to_dict()['Year']
plt.hist(goles[goles['antiguedad'] < 20]['antiguedad']) | code |
105176386/cell_26 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv')
matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv')
cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv')
matches = matches.dropna()
matches.groupby(['Home Team Name', 'Year']).agg({'Home Team Goals': 'mean'})
matches.groupby(['Away Team Name', 'Year']).agg({'Away Team Goals': 'mean'}) | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.