path
stringlengths 13
17
| screenshot_names
listlengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
121152202/cell_9
|
[
"text_html_output_1.png"
] |
import pandas as pd
import tensorflow as tf
df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv')
df.drop(columns='id', inplace=True)
df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv')
df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True)
df = pd.concat([df, df_add])
df_test = pd.read_csv('/kaggle/input/playground-series-s3e9/test.csv')
df_test.drop(columns='id', inplace=True)
y = df.pop('Strength')
df['tot_comp'] = df.iloc[:, :7].sum(axis=1)
df['ageinmonth'] = df.AgeInDays // 30 / 12
df['AgeInDays'] = df.AgeInDays / 365
df_test['tot_comp'] = df_test.iloc[:, :7].sum(axis=1)
df_test['ageinmonth'] = df_test.AgeInDays // 30 / 12
df_test['AgeInDays'] = df_test.AgeInDays / 365
df_transform = df.iloc[:, :7].transform(lambda x: x / df.tot_comp)
df_transform = pd.concat([df_transform, df.AgeInDays, df.ageinmonth], axis=1)
df_test_transform = df_test.iloc[:, :7].transform(lambda x: x / df_test.tot_comp)
df_test_transform = pd.concat([df_test_transform, df_test.AgeInDays, df_test.ageinmonth], axis=1)
model_nn = tf.keras.Sequential(name='neural_network')
model_nn.add(tf.keras.layers.Dense(9, activation='relu', input_shape=(df_transform.shape[1],)))
model_nn.add(tf.keras.layers.Dense(16, activation='relu'))
model_nn.add(tf.keras.layers.Dense(1, activation='relu'))
model_nn.summary()
|
code
|
121152202/cell_4
|
[
"text_plain_output_1.png"
] |
import pandas as pd
df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv')
df.drop(columns='id', inplace=True)
df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv')
df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True)
df = pd.concat([df, df_add])
df_test = pd.read_csv('/kaggle/input/playground-series-s3e9/test.csv')
df_test.drop(columns='id', inplace=True)
df_test.head()
|
code
|
121152202/cell_2
|
[
"text_html_output_1.png"
] |
import pandas as pd
df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv')
df.drop(columns='id', inplace=True)
print(f'the competition dataset shape is {df.shape}')
|
code
|
121152202/cell_11
|
[
"text_plain_output_1.png"
] |
import matplotlib.pyplot as plt
import pandas as pd
import tensorflow as tf
df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv')
df.drop(columns='id', inplace=True)
df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv')
df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True)
df = pd.concat([df, df_add])
df_test = pd.read_csv('/kaggle/input/playground-series-s3e9/test.csv')
df_test.drop(columns='id', inplace=True)
y = df.pop('Strength')
df['tot_comp'] = df.iloc[:, :7].sum(axis=1)
df['ageinmonth'] = df.AgeInDays // 30 / 12
df['AgeInDays'] = df.AgeInDays / 365
df_test['tot_comp'] = df_test.iloc[:, :7].sum(axis=1)
df_test['ageinmonth'] = df_test.AgeInDays // 30 / 12
df_test['AgeInDays'] = df_test.AgeInDays / 365
df_transform = df.iloc[:, :7].transform(lambda x: x / df.tot_comp)
df_transform = pd.concat([df_transform, df.AgeInDays, df.ageinmonth], axis=1)
df_test_transform = df_test.iloc[:, :7].transform(lambda x: x / df_test.tot_comp)
df_test_transform = pd.concat([df_test_transform, df_test.AgeInDays, df_test.ageinmonth], axis=1)
model_nn = tf.keras.Sequential(name='neural_network')
model_nn.add(tf.keras.layers.Dense(9, activation='relu', input_shape=(df_transform.shape[1],)))
model_nn.add(tf.keras.layers.Dense(16, activation='relu'))
model_nn.add(tf.keras.layers.Dense(1, activation='relu'))
model_nn.summary()
tf.random.set_seed(9)
model_nn.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0003), loss='mse', metrics=tf.keras.metrics.RootMeanSquaredError())
history = model_nn.fit(df_transform, y, batch_size=64, epochs=250, validation_split=0.3, verbose=2)
plt.plot(history.history['root_mean_squared_error'][10:], label='train RMSE')
plt.plot(history.history['val_root_mean_squared_error'][10:], label='valid RMSE')
plt.legend()
|
code
|
121152202/cell_1
|
[
"text_plain_output_1.png"
] |
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, KFold
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
import lightgbm as lgbm
import tensorflow as tf
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
|
code
|
121152202/cell_7
|
[
"text_plain_output_1.png",
"image_output_1.png"
] |
import pandas as pd
df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv')
df.drop(columns='id', inplace=True)
df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv')
df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True)
df = pd.concat([df, df_add])
df_test = pd.read_csv('/kaggle/input/playground-series-s3e9/test.csv')
df_test.drop(columns='id', inplace=True)
y = df.pop('Strength')
df['tot_comp'] = df.iloc[:, :7].sum(axis=1)
df['ageinmonth'] = df.AgeInDays // 30 / 12
df['AgeInDays'] = df.AgeInDays / 365
df_test['tot_comp'] = df_test.iloc[:, :7].sum(axis=1)
df_test['ageinmonth'] = df_test.AgeInDays // 30 / 12
df_test['AgeInDays'] = df_test.AgeInDays / 365
df_transform = df.iloc[:, :7].transform(lambda x: x / df.tot_comp)
df_transform = pd.concat([df_transform, df.AgeInDays, df.ageinmonth], axis=1)
df_transform.head()
df_test_transform = df_test.iloc[:, :7].transform(lambda x: x / df_test.tot_comp)
df_test_transform = pd.concat([df_test_transform, df_test.AgeInDays, df_test.ageinmonth], axis=1)
df_test_transform.head()
|
code
|
121152202/cell_8
|
[
"text_html_output_1.png"
] |
import pandas as pd
df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv')
df.drop(columns='id', inplace=True)
df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv')
df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True)
df = pd.concat([df, df_add])
df_test = pd.read_csv('/kaggle/input/playground-series-s3e9/test.csv')
df_test.drop(columns='id', inplace=True)
y = df.pop('Strength')
df['tot_comp'] = df.iloc[:, :7].sum(axis=1)
df['ageinmonth'] = df.AgeInDays // 30 / 12
df['AgeInDays'] = df.AgeInDays / 365
df_test['tot_comp'] = df_test.iloc[:, :7].sum(axis=1)
df_test['ageinmonth'] = df_test.AgeInDays // 30 / 12
df_test['AgeInDays'] = df_test.AgeInDays / 365
df_transform = df.iloc[:, :7].transform(lambda x: x / df.tot_comp)
df_transform = pd.concat([df_transform, df.AgeInDays, df.ageinmonth], axis=1)
df_test_transform = df_test.iloc[:, :7].transform(lambda x: x / df_test.tot_comp)
df_test_transform = pd.concat([df_test_transform, df_test.AgeInDays, df_test.ageinmonth], axis=1)
df_transform.head()
|
code
|
121152202/cell_3
|
[
"text_plain_output_1.png"
] |
import pandas as pd
df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv')
df.drop(columns='id', inplace=True)
df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv')
df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True)
print(f'the addition dataset shape is {df_add.shape}')
df = pd.concat([df, df_add])
print(f'the new dataset shape is {df.shape}')
|
code
|
121152202/cell_14
|
[
"text_html_output_1.png"
] |
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import tensorflow as tf
df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv')
df.drop(columns='id', inplace=True)
df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv')
df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True)
df = pd.concat([df, df_add])
df_test = pd.read_csv('/kaggle/input/playground-series-s3e9/test.csv')
df_test.drop(columns='id', inplace=True)
y = df.pop('Strength')
df['tot_comp'] = df.iloc[:, :7].sum(axis=1)
df['ageinmonth'] = df.AgeInDays // 30 / 12
df['AgeInDays'] = df.AgeInDays / 365
df_test['tot_comp'] = df_test.iloc[:, :7].sum(axis=1)
df_test['ageinmonth'] = df_test.AgeInDays // 30 / 12
df_test['AgeInDays'] = df_test.AgeInDays / 365
df_transform = df.iloc[:, :7].transform(lambda x: x / df.tot_comp)
df_transform = pd.concat([df_transform, df.AgeInDays, df.ageinmonth], axis=1)
df_test_transform = df_test.iloc[:, :7].transform(lambda x: x / df_test.tot_comp)
df_test_transform = pd.concat([df_test_transform, df_test.AgeInDays, df_test.ageinmonth], axis=1)
model_nn = tf.keras.Sequential(name='neural_network')
model_nn.add(tf.keras.layers.Dense(9, activation='relu', input_shape=(df_transform.shape[1],)))
model_nn.add(tf.keras.layers.Dense(16, activation='relu'))
model_nn.add(tf.keras.layers.Dense(1, activation='relu'))
model_nn.summary()
tf.random.set_seed(9)
model_nn.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0003), loss='mse', metrics=tf.keras.metrics.RootMeanSquaredError())
history = model_nn.fit(df_transform, y, batch_size=64, epochs=250, validation_split=0.3, verbose=2)
predictions = model_nn.predict(df_test_transform)
subs = pd.read_csv('/kaggle/input/playground-series-s3e9/sample_submission.csv')
subs['Strength'] = predictions
subs.head()
|
code
|
121152202/cell_10
|
[
"text_plain_output_1.png"
] |
import pandas as pd
import tensorflow as tf
df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv')
df.drop(columns='id', inplace=True)
df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv')
df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True)
df = pd.concat([df, df_add])
df_test = pd.read_csv('/kaggle/input/playground-series-s3e9/test.csv')
df_test.drop(columns='id', inplace=True)
y = df.pop('Strength')
df['tot_comp'] = df.iloc[:, :7].sum(axis=1)
df['ageinmonth'] = df.AgeInDays // 30 / 12
df['AgeInDays'] = df.AgeInDays / 365
df_test['tot_comp'] = df_test.iloc[:, :7].sum(axis=1)
df_test['ageinmonth'] = df_test.AgeInDays // 30 / 12
df_test['AgeInDays'] = df_test.AgeInDays / 365
df_transform = df.iloc[:, :7].transform(lambda x: x / df.tot_comp)
df_transform = pd.concat([df_transform, df.AgeInDays, df.ageinmonth], axis=1)
df_test_transform = df_test.iloc[:, :7].transform(lambda x: x / df_test.tot_comp)
df_test_transform = pd.concat([df_test_transform, df_test.AgeInDays, df_test.ageinmonth], axis=1)
model_nn = tf.keras.Sequential(name='neural_network')
model_nn.add(tf.keras.layers.Dense(9, activation='relu', input_shape=(df_transform.shape[1],)))
model_nn.add(tf.keras.layers.Dense(16, activation='relu'))
model_nn.add(tf.keras.layers.Dense(1, activation='relu'))
model_nn.summary()
tf.random.set_seed(9)
model_nn.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0003), loss='mse', metrics=tf.keras.metrics.RootMeanSquaredError())
history = model_nn.fit(df_transform, y, batch_size=64, epochs=250, validation_split=0.3, verbose=2)
|
code
|
121152202/cell_12
|
[
"text_html_output_1.png"
] |
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import tensorflow as tf
df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv')
df.drop(columns='id', inplace=True)
df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv')
df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True)
df = pd.concat([df, df_add])
df_test = pd.read_csv('/kaggle/input/playground-series-s3e9/test.csv')
df_test.drop(columns='id', inplace=True)
y = df.pop('Strength')
df['tot_comp'] = df.iloc[:, :7].sum(axis=1)
df['ageinmonth'] = df.AgeInDays // 30 / 12
df['AgeInDays'] = df.AgeInDays / 365
df_test['tot_comp'] = df_test.iloc[:, :7].sum(axis=1)
df_test['ageinmonth'] = df_test.AgeInDays // 30 / 12
df_test['AgeInDays'] = df_test.AgeInDays / 365
df_transform = df.iloc[:, :7].transform(lambda x: x / df.tot_comp)
df_transform = pd.concat([df_transform, df.AgeInDays, df.ageinmonth], axis=1)
df_test_transform = df_test.iloc[:, :7].transform(lambda x: x / df_test.tot_comp)
df_test_transform = pd.concat([df_test_transform, df_test.AgeInDays, df_test.ageinmonth], axis=1)
model_nn = tf.keras.Sequential(name='neural_network')
model_nn.add(tf.keras.layers.Dense(9, activation='relu', input_shape=(df_transform.shape[1],)))
model_nn.add(tf.keras.layers.Dense(16, activation='relu'))
model_nn.add(tf.keras.layers.Dense(1, activation='relu'))
model_nn.summary()
tf.random.set_seed(9)
model_nn.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0003), loss='mse', metrics=tf.keras.metrics.RootMeanSquaredError())
history = model_nn.fit(df_transform, y, batch_size=64, epochs=250, validation_split=0.3, verbose=2)
predictions = model_nn.predict(df_test_transform)
sns.kdeplot(y, color='chocolate', label='true value')
sns.kdeplot(predictions, label='prediction')
plt.legend()
|
code
|
121152202/cell_5
|
[
"image_output_1.png"
] |
import pandas as pd
df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv')
df.drop(columns='id', inplace=True)
df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv')
df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True)
df = pd.concat([df, df_add])
df.head()
|
code
|
128033768/cell_13
|
[
"text_html_output_1.png"
] |
from keras.layers import LSTM, Dense
from keras.models import Sequential
from sklearn.preprocessing import MinMaxScaler
from statsmodels.tsa.seasonal import seasonal_decompose
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
class Logger:
RESET = '\x1b[0m'
RED = '\x1b[31m'
GREEN = '\x1b[32m'
def info(self, message: str):
pass
def error(self, message: str):
pass
logger = Logger()
def load_data(file: str) -> pd.DataFrame:
data = pd.read_csv(file)
return data
def show_type_1(data: pd.DataFrame) -> None:
colors = ['#FF7F50', '#DDA0DD', '#66CDAA', '#BC8F8F']
def prepare_data(dataFrame: pd.DataFrame, target: str):
n_cols = 1
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(data))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
return (x_train, y_train, scaler, train_size, test_size, scaled_data)
def generate_forecast(scaled_data, train_size) -> (np.array, np.array):
time_steps = 60
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test)
def generate_forecast_v2(dataFrame: pd.DataFrame, target: str) -> (np.array, np.array):
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(dataset))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test, train_size)
train_data = load_data('/kaggle/input/daily-climate-time-series-data/DailyDelhiClimateTrain.csv')
test_data = load_data('/kaggle/input/daily-climate-time-series-data/DailyDelhiClimateTest.csv')
train_data = train_data[(train_data['meanpressure'] > 980) & (train_data['meanpressure'] < 1050)]
data_to_show = train_data.drop('date', axis=1)
ts_decomposition = seasonal_decompose(x=train_data['meantemp'], model='additive', period=365)
trend_estimate = ts_decomposition.trend
seasonal_estimate = ts_decomposition.seasonal
residual_estimate = ts_decomposition.resid
model = Sequential([LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1], 1)), LSTM(units=50, return_sequences=False), Dense(units=25), Dense(units=1)])
model.compile(optimizer='adam', loss='mean_squared_error')
history = model.fit(x_train, y_train, epochs=30, batch_size=32)
x_test, y_test = generate_forecast(scaled_data, train_size)
y_test = scaler.inverse_transform(y_test)
predictions = model.predict(x_test)
predictions = scaler.inverse_transform(predictions)
preds_acts = pd.DataFrame(data={'Predictions': predictions.flatten(), 'Actuals': y_test.flatten()})
plt.figure(figsize=(16, 6))
plt.plot(preds_acts['Predictions'])
plt.plot(preds_acts['Actuals'])
plt.legend(['Predictions', 'Actuals'])
plt.show()
|
code
|
128033768/cell_9
|
[
"text_plain_output_1.png",
"image_output_1.png"
] |
from sklearn.preprocessing import MinMaxScaler
from statsmodels.tsa.seasonal import seasonal_decompose
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
class Logger:
RESET = '\x1b[0m'
RED = '\x1b[31m'
GREEN = '\x1b[32m'
def info(self, message: str):
pass
def error(self, message: str):
pass
logger = Logger()
def load_data(file: str) -> pd.DataFrame:
data = pd.read_csv(file)
return data
def show_type_1(data: pd.DataFrame) -> None:
colors = ['#FF7F50', '#DDA0DD', '#66CDAA', '#BC8F8F']
def prepare_data(dataFrame: pd.DataFrame, target: str):
n_cols = 1
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(data))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
return (x_train, y_train, scaler, train_size, test_size, scaled_data)
def generate_forecast(scaled_data, train_size) -> (np.array, np.array):
time_steps = 60
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test)
def generate_forecast_v2(dataFrame: pd.DataFrame, target: str) -> (np.array, np.array):
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(dataset))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test, train_size)
train_data = load_data('/kaggle/input/daily-climate-time-series-data/DailyDelhiClimateTrain.csv')
test_data = load_data('/kaggle/input/daily-climate-time-series-data/DailyDelhiClimateTest.csv')
train_data = train_data[(train_data['meanpressure'] > 980) & (train_data['meanpressure'] < 1050)]
data_to_show = train_data.drop('date', axis=1)
ts_decomposition = seasonal_decompose(x=train_data['meantemp'], model='additive', period=365)
trend_estimate = ts_decomposition.trend
seasonal_estimate = ts_decomposition.seasonal
residual_estimate = ts_decomposition.resid
plt.figure(figsize=(15, 5))
plt.plot(train_data['meantemp'], label='Original')
plt.legend()
plt.figure(figsize=(15, 5))
plt.plot(trend_estimate, label='Trend')
plt.legend()
plt.figure(figsize=(15, 5))
plt.plot(seasonal_estimate, label='Seasonal')
plt.legend()
plt.figure(figsize=(15, 5))
plt.plot(residual_estimate, label='Residual')
plt.legend()
|
code
|
128033768/cell_4
|
[
"image_output_4.png",
"text_plain_output_1.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] |
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
class Logger:
RESET = '\x1b[0m'
RED = '\x1b[31m'
GREEN = '\x1b[32m'
def info(self, message: str):
pass
def error(self, message: str):
pass
logger = Logger()
def load_data(file: str) -> pd.DataFrame:
data = pd.read_csv(file)
return data
def show_type_1(data: pd.DataFrame) -> None:
colors = ['#FF7F50', '#DDA0DD', '#66CDAA', '#BC8F8F']
def prepare_data(dataFrame: pd.DataFrame, target: str):
n_cols = 1
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(data))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
return (x_train, y_train, scaler, train_size, test_size, scaled_data)
def generate_forecast(scaled_data, train_size) -> (np.array, np.array):
time_steps = 60
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test)
def generate_forecast_v2(dataFrame: pd.DataFrame, target: str) -> (np.array, np.array):
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(dataset))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test, train_size)
train_data = load_data('/kaggle/input/daily-climate-time-series-data/DailyDelhiClimateTrain.csv')
test_data = load_data('/kaggle/input/daily-climate-time-series-data/DailyDelhiClimateTest.csv')
train_data.info()
test_data.info()
|
code
|
128033768/cell_6
|
[
"text_plain_output_1.png"
] |
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
class Logger:
RESET = '\x1b[0m'
RED = '\x1b[31m'
GREEN = '\x1b[32m'
def info(self, message: str):
pass
def error(self, message: str):
pass
logger = Logger()
def load_data(file: str) -> pd.DataFrame:
data = pd.read_csv(file)
return data
def show_type_1(data: pd.DataFrame) -> None:
colors = ['#FF7F50', '#DDA0DD', '#66CDAA', '#BC8F8F']
def prepare_data(dataFrame: pd.DataFrame, target: str):
n_cols = 1
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(data))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
return (x_train, y_train, scaler, train_size, test_size, scaled_data)
def generate_forecast(scaled_data, train_size) -> (np.array, np.array):
time_steps = 60
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test)
def generate_forecast_v2(dataFrame: pd.DataFrame, target: str) -> (np.array, np.array):
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(dataset))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test, train_size)
train_data = load_data('/kaggle/input/daily-climate-time-series-data/DailyDelhiClimateTrain.csv')
test_data = load_data('/kaggle/input/daily-climate-time-series-data/DailyDelhiClimateTest.csv')
test_data.head()
|
code
|
128033768/cell_11
|
[
"text_html_output_1.png"
] |
from keras.layers import LSTM, Dense
from keras.models import Sequential
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
class Logger:
RESET = '\x1b[0m'
RED = '\x1b[31m'
GREEN = '\x1b[32m'
def info(self, message: str):
pass
def error(self, message: str):
pass
logger = Logger()
def load_data(file: str) -> pd.DataFrame:
data = pd.read_csv(file)
return data
def show_type_1(data: pd.DataFrame) -> None:
colors = ['#FF7F50', '#DDA0DD', '#66CDAA', '#BC8F8F']
def prepare_data(dataFrame: pd.DataFrame, target: str):
n_cols = 1
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(data))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
return (x_train, y_train, scaler, train_size, test_size, scaled_data)
def generate_forecast(scaled_data, train_size) -> (np.array, np.array):
time_steps = 60
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test)
def generate_forecast_v2(dataFrame: pd.DataFrame, target: str) -> (np.array, np.array):
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(dataset))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test, train_size)
model = Sequential([LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1], 1)), LSTM(units=50, return_sequences=False), Dense(units=25), Dense(units=1)])
model.compile(optimizer='adam', loss='mean_squared_error')
history = model.fit(x_train, y_train, epochs=30, batch_size=32)
|
code
|
128033768/cell_1
|
[
"application_vnd.jupyter.stderr_output_1.png"
] |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import LSTM, Dense
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.tsa.arima_model import ARIMA
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.seasonal import seasonal_decompose
from statsmodels.tsa.stattools import acf, pacf
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from sklearn.metrics import mean_squared_error, mean_absolute_error, mean_absolute_percentage_error
import itertools
|
code
|
128033768/cell_7
|
[
"text_plain_output_1.png"
] |
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
class Logger:
RESET = '\x1b[0m'
RED = '\x1b[31m'
GREEN = '\x1b[32m'
def info(self, message: str):
pass
def error(self, message: str):
pass
logger = Logger()
def load_data(file: str) -> pd.DataFrame:
data = pd.read_csv(file)
return data
def show_type_1(data: pd.DataFrame) -> None:
colors = ['#FF7F50', '#DDA0DD', '#66CDAA', '#BC8F8F']
def prepare_data(dataFrame: pd.DataFrame, target: str):
n_cols = 1
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(data))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
return (x_train, y_train, scaler, train_size, test_size, scaled_data)
def generate_forecast(scaled_data, train_size) -> (np.array, np.array):
time_steps = 60
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test)
def generate_forecast_v2(dataFrame: pd.DataFrame, target: str) -> (np.array, np.array):
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(dataset))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test, train_size)
train_data = load_data('/kaggle/input/daily-climate-time-series-data/DailyDelhiClimateTrain.csv')
test_data = load_data('/kaggle/input/daily-climate-time-series-data/DailyDelhiClimateTest.csv')
train_data.describe()
|
code
|
128033768/cell_8
|
[
"image_output_1.png"
] |
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
class Logger:
RESET = '\x1b[0m'
RED = '\x1b[31m'
GREEN = '\x1b[32m'
def info(self, message: str):
pass
def error(self, message: str):
pass
logger = Logger()
def load_data(file: str) -> pd.DataFrame:
data = pd.read_csv(file)
return data
def show_type_1(data: pd.DataFrame) -> None:
colors = ['#FF7F50', '#DDA0DD', '#66CDAA', '#BC8F8F']
def prepare_data(dataFrame: pd.DataFrame, target: str):
n_cols = 1
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(data))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
return (x_train, y_train, scaler, train_size, test_size, scaled_data)
def generate_forecast(scaled_data, train_size) -> (np.array, np.array):
time_steps = 60
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test)
def generate_forecast_v2(dataFrame: pd.DataFrame, target: str) -> (np.array, np.array):
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(dataset))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test, train_size)
train_data = load_data('/kaggle/input/daily-climate-time-series-data/DailyDelhiClimateTrain.csv')
test_data = load_data('/kaggle/input/daily-climate-time-series-data/DailyDelhiClimateTest.csv')
train_data = train_data[(train_data['meanpressure'] > 980) & (train_data['meanpressure'] < 1050)]
data_to_show = train_data.drop('date', axis=1)
show_type_1(data_to_show)
|
code
|
128033768/cell_10
|
[
"text_plain_output_1.png"
] |
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
class Logger:
RESET = '\x1b[0m'
RED = '\x1b[31m'
GREEN = '\x1b[32m'
def info(self, message: str):
pass
def error(self, message: str):
pass
logger = Logger()
def load_data(file: str) -> pd.DataFrame:
data = pd.read_csv(file)
return data
def show_type_1(data: pd.DataFrame) -> None:
colors = ['#FF7F50', '#DDA0DD', '#66CDAA', '#BC8F8F']
def prepare_data(dataFrame: pd.DataFrame, target: str):
n_cols = 1
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(data))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
return (x_train, y_train, scaler, train_size, test_size, scaled_data)
def generate_forecast(scaled_data, train_size) -> (np.array, np.array):
time_steps = 60
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test)
def generate_forecast_v2(dataFrame: pd.DataFrame, target: str) -> (np.array, np.array):
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(dataset))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test, train_size)
train_data = load_data('/kaggle/input/daily-climate-time-series-data/DailyDelhiClimateTrain.csv')
test_data = load_data('/kaggle/input/daily-climate-time-series-data/DailyDelhiClimateTest.csv')
train_data = train_data[(train_data['meanpressure'] > 980) & (train_data['meanpressure'] < 1050)]
data_to_show = train_data.drop('date', axis=1)
x_train, y_train, scaler, train_size, test_size, scaled_data = prepare_data(train_data, 'meantemp')
|
code
|
128033768/cell_12
|
[
"text_html_output_1.png"
] |
from keras.layers import LSTM, Dense
from keras.models import Sequential
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
class Logger:
RESET = '\x1b[0m'
RED = '\x1b[31m'
GREEN = '\x1b[32m'
def info(self, message: str):
pass
def error(self, message: str):
pass
logger = Logger()
def load_data(file: str) -> pd.DataFrame:
data = pd.read_csv(file)
return data
def show_type_1(data: pd.DataFrame) -> None:
colors = ['#FF7F50', '#DDA0DD', '#66CDAA', '#BC8F8F']
def prepare_data(dataFrame: pd.DataFrame, target: str):
n_cols = 1
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(data))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
return (x_train, y_train, scaler, train_size, test_size, scaled_data)
def generate_forecast(scaled_data, train_size) -> (np.array, np.array):
time_steps = 60
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test)
def generate_forecast_v2(dataFrame: pd.DataFrame, target: str) -> (np.array, np.array):
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(dataset))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test, train_size)
model = Sequential([LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1], 1)), LSTM(units=50, return_sequences=False), Dense(units=25), Dense(units=1)])
model.compile(optimizer='adam', loss='mean_squared_error')
history = model.fit(x_train, y_train, epochs=30, batch_size=32)
x_test, y_test = generate_forecast(scaled_data, train_size)
y_test = scaler.inverse_transform(y_test)
predictions = model.predict(x_test)
predictions = scaler.inverse_transform(predictions)
|
code
|
128033768/cell_5
|
[
"text_plain_output_1.png"
] |
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
class Logger:
RESET = '\x1b[0m'
RED = '\x1b[31m'
GREEN = '\x1b[32m'
def info(self, message: str):
pass
def error(self, message: str):
pass
logger = Logger()
def load_data(file: str) -> pd.DataFrame:
data = pd.read_csv(file)
return data
def show_type_1(data: pd.DataFrame) -> None:
colors = ['#FF7F50', '#DDA0DD', '#66CDAA', '#BC8F8F']
def prepare_data(dataFrame: pd.DataFrame, target: str):
n_cols = 1
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(data))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
return (x_train, y_train, scaler, train_size, test_size, scaled_data)
def generate_forecast(scaled_data, train_size) -> (np.array, np.array):
time_steps = 60
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test)
def generate_forecast_v2(dataFrame: pd.DataFrame, target: str) -> (np.array, np.array):
dataset = dataFrame[target]
dataset = pd.DataFrame(dataset)
data = dataset.values
train_size = int(len(data) * 0.75)
test_size = len(data) - train_size
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(np.array(dataset))
train_data = scaled_data[0:train_size, :]
x_train = []
y_train = []
time_steps = 60
n_cols = 1
for i in range(time_steps, len(scaled_data)):
x_train.append(scaled_data[i - time_steps:i, :n_cols])
y_train.append(scaled_data[i, :n_cols])
x_train, y_train = (np.array(x_train), np.array(y_train))
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], n_cols))
test_data = scaled_data[train_size - time_steps:, :]
x_test = []
y_test = []
n_cols = 1
for i in range(time_steps, len(test_data)):
x_test.append(test_data[i - time_steps:i, 0:n_cols])
y_test.append(test_data[i, 0:n_cols])
x_test, y_test = (np.array(x_test), np.array(y_test))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], n_cols))
return (x_test, y_test, train_size)
train_data = load_data('/kaggle/input/daily-climate-time-series-data/DailyDelhiClimateTrain.csv')
test_data = load_data('/kaggle/input/daily-climate-time-series-data/DailyDelhiClimateTest.csv')
train_data.head()
|
code
|
72094126/cell_4
|
[
"text_plain_output_1.png"
] |
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/heart-disease-uci/heart.csv')
data.info()
|
code
|
72094126/cell_6
|
[
"text_plain_output_1.png"
] |
from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier
tree = RandomForestClassifier()
tree.fit(xtrain, ytrain)
ypred = tree.predict(xtest)
print('Prediction Accuracy', metrics.accuracy_score(ytest, ypred))
|
code
|
72094126/cell_1
|
[
"text_plain_output_1.png"
] |
import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
|
code
|
72094126/cell_7
|
[
"text_html_output_1.png"
] |
from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/heart-disease-uci/heart.csv')
from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier
tree = RandomForestClassifier()
tree.fit(xtrain, ytrain)
ypred = tree.predict(xtest)
ypred = tree.predict(xtest)
pd.DataFrame({'predicted': ypred, 'actual': ytest})
|
code
|
72094126/cell_3
|
[
"text_html_output_1.png"
] |
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/heart-disease-uci/heart.csv')
data.head()
|
code
|
122263483/cell_6
|
[
"text_plain_output_100.png",
"text_plain_output_334.png",
"text_plain_output_445.png",
"text_plain_output_201.png",
"text_plain_output_586.png",
"text_plain_output_261.png",
"text_plain_output_565.png",
"text_plain_output_522.png",
"text_plain_output_84.png",
"text_plain_output_521.png",
"text_plain_output_322.png",
"text_plain_output_205.png",
"text_plain_output_511.png",
"text_plain_output_608.png",
"text_plain_output_271.png",
"text_plain_output_56.png",
"text_plain_output_475.png",
"text_plain_output_158.png",
"text_plain_output_455.png",
"text_plain_output_223.png",
"text_plain_output_218.png",
"text_plain_output_264.png",
"text_plain_output_282.png",
"text_plain_output_579.png",
"text_plain_output_396.png",
"text_plain_output_287.png",
"text_plain_output_232.png",
"text_plain_output_181.png",
"text_plain_output_137.png",
"text_plain_output_139.png",
"text_plain_output_362.png",
"text_plain_output_35.png",
"text_plain_output_501.png",
"text_plain_output_593.png",
"text_plain_output_258.png",
"text_plain_output_452.png",
"text_plain_output_130.png",
"text_plain_output_598.png",
"text_plain_output_490.png",
"text_plain_output_449.png",
"text_plain_output_462.png",
"text_plain_output_117.png",
"text_plain_output_286.png",
"text_plain_output_367.png",
"text_plain_output_262.png",
"text_plain_output_278.png",
"text_plain_output_588.png",
"text_plain_output_395.png",
"text_plain_output_254.png",
"text_plain_output_307.png",
"text_plain_output_570.png",
"text_plain_output_98.png",
"text_plain_output_399.png",
"text_plain_output_236.png",
"text_plain_output_195.png",
"text_plain_output_471.png",
"text_plain_output_219.png",
"text_plain_output_614.png",
"text_plain_output_420.png",
"text_plain_output_514.png",
"text_plain_output_485.png",
"text_plain_output_237.png",
"text_plain_output_43.png",
"text_plain_output_284.png",
"text_plain_output_187.png",
"text_plain_output_309.png",
"text_plain_output_576.png",
"text_plain_output_78.png",
"text_plain_output_143.png",
"text_plain_output_106.png",
"text_plain_output_37.png",
"text_plain_output_138.png",
"text_plain_output_544.png",
"text_plain_output_192.png",
"text_plain_output_426.png",
"text_plain_output_184.png",
"text_plain_output_477.png",
"text_plain_output_274.png",
"text_plain_output_172.png",
"text_plain_output_613.png",
"text_plain_output_332.png",
"text_plain_output_147.png",
"text_plain_output_443.png",
"text_plain_output_327.png",
"text_plain_output_256.png",
"text_plain_output_90.png",
"text_plain_output_79.png",
"text_plain_output_331.png",
"text_plain_output_5.png",
"text_plain_output_550.png",
"text_plain_output_75.png",
"text_plain_output_48.png",
"text_plain_output_388.png",
"text_plain_output_422.png",
"text_plain_output_116.png",
"text_plain_output_128.png",
"text_plain_output_30.png",
"text_plain_output_167.png",
"text_plain_output_213.png",
"text_plain_output_73.png",
"text_plain_output_126.png",
"text_plain_output_492.png",
"text_plain_output_321.png",
"text_plain_output_272.png",
"text_plain_output_115.png",
"text_plain_output_474.png",
"text_plain_output_407.png",
"text_plain_output_482.png",
"text_plain_output_316.png",
"text_plain_output_355.png",
"text_plain_output_15.png",
"text_plain_output_390.png",
"text_plain_output_133.png",
"text_plain_output_437.png",
"text_plain_output_198.png",
"text_plain_output_387.png",
"text_plain_output_555.png",
"text_plain_output_548.png",
"text_plain_output_178.png",
"text_plain_output_226.png",
"text_plain_output_154.png",
"text_plain_output_234.png",
"text_plain_output_375.png",
"text_plain_output_404.png",
"text_plain_output_114.png",
"text_plain_output_515.png",
"text_plain_output_157.png",
"text_plain_output_494.png",
"text_plain_output_317.png",
"text_plain_output_251.png",
"text_plain_output_470.png",
"text_plain_output_496.png",
"text_plain_output_423.png",
"text_plain_output_70.png",
"text_plain_output_9.png",
"text_plain_output_484.png",
"text_plain_output_44.png",
"text_plain_output_325.png",
"text_plain_output_203.png",
"text_plain_output_505.png",
"text_plain_output_603.png",
"text_plain_output_119.png",
"text_plain_output_546.png",
"text_plain_output_540.png",
"text_plain_output_373.png",
"text_plain_output_504.png",
"text_plain_output_86.png",
"text_plain_output_244.png",
"text_plain_output_118.png",
"text_plain_output_551.png",
"text_plain_output_583.png",
"text_plain_output_131.png",
"text_plain_output_40.png",
"text_plain_output_343.png",
"text_plain_output_123.png",
"text_plain_output_74.png",
"text_plain_output_190.png",
"text_plain_output_302.png",
"text_plain_output_604.png",
"text_plain_output_31.png",
"text_plain_output_340.png",
"text_plain_output_379.png",
"text_plain_output_281.png",
"text_plain_output_20.png",
"text_plain_output_557.png",
"text_plain_output_273.png",
"text_plain_output_263.png",
"text_plain_output_102.png",
"text_plain_output_229.png",
"text_plain_output_111.png",
"text_plain_output_414.png",
"text_plain_output_461.png",
"text_plain_output_510.png",
"text_plain_output_222.png",
"text_plain_output_589.png",
"text_plain_output_101.png",
"text_plain_output_530.png",
"text_plain_output_169.png",
"text_plain_output_531.png",
"text_plain_output_144.png",
"text_plain_output_161.png",
"text_plain_output_489.png",
"text_plain_output_305.png",
"text_plain_output_275.png",
"text_plain_output_301.png",
"text_plain_output_132.png",
"text_plain_output_60.png",
"text_plain_output_467.png",
"text_plain_output_502.png",
"text_plain_output_221.png",
"text_plain_output_596.png",
"text_plain_output_564.png",
"text_plain_output_552.png",
"text_plain_output_330.png",
"text_plain_output_155.png",
"text_plain_output_434.png",
"text_plain_output_68.png",
"text_plain_output_4.png",
"text_plain_output_65.png",
"text_plain_output_64.png",
"text_plain_output_419.png",
"text_plain_output_215.png",
"text_plain_output_532.png",
"text_plain_output_189.png",
"text_plain_output_415.png",
"text_plain_output_13.png",
"text_plain_output_200.png",
"text_plain_output_107.png",
"text_plain_output_567.png",
"text_plain_output_398.png",
"text_plain_output_312.png",
"text_plain_output_248.png",
"text_plain_output_318.png",
"text_plain_output_417.png",
"text_plain_output_52.png",
"text_plain_output_545.png",
"text_plain_output_393.png",
"text_plain_output_572.png",
"text_plain_output_594.png",
"text_plain_output_66.png",
"text_plain_output_446.png",
"text_plain_output_243.png",
"text_plain_output_611.png",
"text_plain_output_45.png",
"text_plain_output_380.png",
"text_plain_output_599.png",
"text_plain_output_442.png",
"text_plain_output_300.png",
"text_plain_output_257.png",
"text_plain_output_405.png",
"text_plain_output_353.png",
"text_plain_output_476.png",
"text_plain_output_277.png",
"text_plain_output_457.png",
"text_plain_output_361.png",
"text_plain_output_171.png",
"text_plain_output_518.png",
"text_plain_output_561.png",
"text_plain_output_431.png",
"text_plain_output_14.png",
"text_plain_output_159.png",
"text_plain_output_32.png",
"text_plain_output_516.png",
"text_plain_output_304.png",
"text_plain_output_88.png",
"text_plain_output_240.png",
"text_plain_output_29.png",
"text_plain_output_359.png",
"text_plain_output_529.png",
"text_plain_output_347.png",
"text_plain_output_140.png",
"text_plain_output_606.png",
"text_plain_output_376.png",
"text_plain_output_280.png",
"text_plain_output_129.png",
"text_plain_output_349.png",
"text_plain_output_242.png",
"text_plain_output_483.png",
"text_plain_output_460.png",
"text_plain_output_363.png",
"text_plain_output_289.png",
"text_plain_output_255.png",
"text_plain_output_160.png",
"text_plain_output_58.png",
"text_plain_output_329.png",
"text_plain_output_49.png",
"text_plain_output_63.png",
"text_plain_output_260.png",
"text_plain_output_294.png",
"text_plain_output_27.png",
"text_plain_output_392.png",
"text_plain_output_320.png",
"text_plain_output_177.png",
"text_plain_output_607.png",
"text_plain_output_386.png",
"text_plain_output_438.png",
"text_plain_output_76.png",
"text_plain_output_333.png",
"text_plain_output_108.png",
"text_plain_output_581.png",
"text_plain_output_54.png",
"text_plain_output_142.png",
"text_plain_output_10.png",
"text_plain_output_269.png",
"text_plain_output_276.png",
"text_plain_output_6.png",
"text_plain_output_326.png",
"text_plain_output_503.png",
"text_plain_output_578.png",
"text_plain_output_153.png",
"text_plain_output_170.png",
"text_plain_output_92.png",
"text_plain_output_57.png",
"text_plain_output_120.png",
"text_plain_output_469.png",
"text_plain_output_24.png",
"text_plain_output_357.png",
"text_plain_output_21.png",
"text_plain_output_344.png",
"text_plain_output_104.png",
"text_plain_output_270.png",
"text_plain_output_47.png",
"text_plain_output_466.png",
"text_plain_output_568.png",
"text_plain_output_121.png",
"text_plain_output_25.png",
"text_plain_output_134.png",
"text_plain_output_523.png",
"text_plain_output_401.png",
"text_plain_output_77.png",
"text_plain_output_421.png",
"text_plain_output_288.png",
"text_plain_output_535.png",
"text_plain_output_527.png",
"text_plain_output_488.png",
"text_plain_output_18.png",
"text_plain_output_183.png",
"text_plain_output_266.png",
"text_plain_output_149.png",
"text_plain_output_208.png",
"text_plain_output_50.png",
"text_plain_output_36.png",
"text_plain_output_383.png",
"text_plain_output_207.png",
"text_plain_output_391.png",
"text_plain_output_413.png",
"text_plain_output_96.png",
"text_plain_output_87.png",
"text_plain_output_3.png",
"text_plain_output_217.png",
"text_plain_output_418.png",
"text_plain_output_427.png",
"text_plain_output_180.png",
"text_plain_output_556.png",
"text_plain_output_141.png",
"text_plain_output_210.png",
"text_plain_output_112.png",
"text_plain_output_152.png",
"text_plain_output_225.png",
"text_plain_output_191.png",
"text_plain_output_609.png",
"text_plain_output_259.png",
"text_plain_output_447.png",
"text_plain_output_290.png",
"text_plain_output_506.png",
"text_plain_output_283.png",
"text_plain_output_495.png",
"text_plain_output_247.png",
"text_plain_output_113.png",
"text_plain_output_371.png",
"text_plain_output_479.png",
"text_plain_output_324.png",
"text_plain_output_22.png",
"text_plain_output_188.png",
"text_plain_output_366.png",
"text_plain_output_328.png",
"text_plain_output_81.png",
"text_plain_output_69.png",
"text_plain_output_368.png",
"text_plain_output_372.png",
"text_plain_output_175.png",
"text_plain_output_165.png",
"text_plain_output_542.png",
"text_plain_output_146.png",
"text_plain_output_145.png",
"text_plain_output_125.png",
"text_plain_output_454.png",
"text_plain_output_487.png",
"text_plain_output_595.png",
"text_plain_output_338.png",
"text_plain_output_575.png",
"text_plain_output_197.png",
"text_plain_output_512.png",
"text_plain_output_382.png",
"text_plain_output_315.png",
"text_plain_output_429.png",
"text_plain_output_38.png",
"text_plain_output_517.png",
"text_plain_output_433.png",
"text_plain_output_7.png",
"text_plain_output_528.png",
"text_plain_output_214.png",
"text_plain_output_166.png",
"text_plain_output_358.png",
"text_plain_output_513.png",
"text_plain_output_314.png",
"text_plain_output_592.png",
"text_plain_output_410.png",
"text_plain_output_432.png",
"text_plain_output_411.png",
"text_plain_output_91.png",
"text_plain_output_308.png",
"text_plain_output_245.png",
"text_plain_output_16.png",
"text_plain_output_497.png",
"text_plain_output_174.png",
"text_plain_output_212.png",
"text_plain_output_230.png",
"text_plain_output_265.png",
"text_plain_output_430.png",
"text_plain_output_435.png",
"text_plain_output_378.png",
"text_plain_output_59.png",
"text_plain_output_580.png",
"text_plain_output_409.png",
"text_plain_output_206.png",
"text_plain_output_103.png",
"text_plain_output_71.png",
"text_plain_output_539.png",
"text_plain_output_8.png",
"text_plain_output_122.png",
"text_plain_output_384.png",
"text_plain_output_498.png",
"text_plain_output_211.png",
"text_plain_output_182.png",
"text_plain_output_26.png",
"text_plain_output_601.png",
"text_plain_output_554.png",
"text_plain_output_536.png",
"text_plain_output_406.png",
"text_plain_output_310.png",
"text_plain_output_456.png",
"text_plain_output_541.png",
"text_plain_output_558.png",
"text_plain_output_220.png",
"text_plain_output_543.png",
"text_plain_output_451.png",
"text_plain_output_109.png",
"text_plain_output_459.png",
"text_plain_output_238.png",
"text_plain_output_520.png",
"text_plain_output_615.png",
"text_plain_output_41.png",
"text_plain_output_34.png",
"text_plain_output_612.png",
"text_plain_output_253.png",
"text_plain_output_346.png",
"text_plain_output_291.png",
"text_plain_output_168.png",
"text_plain_output_394.png",
"text_plain_output_204.png",
"text_plain_output_241.png",
"text_plain_output_231.png",
"text_plain_output_533.png",
"text_plain_output_345.png",
"text_plain_output_350.png",
"text_plain_output_209.png",
"text_plain_output_185.png",
"text_plain_output_85.png",
"text_plain_output_42.png",
"text_plain_output_110.png",
"text_plain_output_605.png",
"text_plain_output_549.png",
"text_plain_output_67.png",
"text_plain_output_508.png",
"text_plain_output_573.png",
"text_plain_output_468.png",
"text_plain_output_370.png",
"text_plain_output_297.png",
"text_plain_output_53.png",
"text_plain_output_313.png",
"text_plain_output_224.png",
"text_plain_output_193.png",
"text_plain_output_441.png",
"text_plain_output_403.png",
"text_plain_output_23.png",
"text_plain_output_610.png",
"text_plain_output_173.png",
"text_plain_output_235.png",
"text_plain_output_151.png",
"text_plain_output_89.png",
"text_plain_output_299.png",
"text_plain_output_51.png",
"text_plain_output_450.png",
"text_plain_output_252.png",
"text_plain_output_296.png",
"text_plain_output_525.png",
"text_plain_output_28.png",
"text_plain_output_72.png",
"text_plain_output_99.png",
"text_plain_output_381.png",
"text_plain_output_571.png",
"text_plain_output_163.png",
"text_plain_output_179.png",
"text_plain_output_537.png",
"text_plain_output_162.png",
"text_plain_output_136.png",
"text_plain_output_602.png",
"text_plain_output_246.png",
"text_plain_output_2.png",
"text_plain_output_569.png",
"text_plain_output_239.png",
"text_plain_output_127.png",
"text_plain_output_559.png",
"text_plain_output_311.png",
"text_plain_output_500.png",
"text_plain_output_295.png",
"text_plain_output_279.png",
"text_plain_output_507.png",
"text_plain_output_590.png",
"text_plain_output_509.png",
"text_plain_output_337.png",
"text_plain_output_562.png",
"text_plain_output_499.png",
"text_plain_output_196.png",
"text_plain_output_342.png",
"text_plain_output_563.png",
"text_plain_output_97.png",
"text_plain_output_227.png",
"text_plain_output_453.png",
"text_plain_output_1.png",
"text_plain_output_33.png",
"text_plain_output_150.png",
"text_plain_output_39.png",
"text_plain_output_176.png",
"text_plain_output_584.png",
"text_plain_output_335.png",
"text_plain_output_186.png",
"text_plain_output_233.png",
"text_plain_output_228.png",
"text_plain_output_473.png",
"text_plain_output_385.png",
"text_plain_output_478.png",
"text_plain_output_55.png",
"text_plain_output_412.png",
"text_plain_output_293.png",
"text_plain_output_268.png",
"text_plain_output_436.png",
"text_plain_output_199.png",
"text_plain_output_354.png",
"text_plain_output_463.png",
"text_plain_output_360.png",
"text_plain_output_319.png",
"text_plain_output_82.png",
"text_plain_output_356.png",
"text_plain_output_202.png",
"text_plain_output_93.png",
"text_plain_output_336.png",
"text_plain_output_19.png",
"text_plain_output_439.png",
"text_plain_output_341.png",
"text_plain_output_105.png",
"text_plain_output_465.png",
"text_plain_output_80.png",
"text_plain_output_491.png",
"text_plain_output_94.png",
"text_plain_output_164.png",
"text_plain_output_249.png",
"text_plain_output_534.png",
"text_plain_output_444.png",
"text_plain_output_216.png",
"text_plain_output_124.png",
"text_plain_output_17.png",
"text_plain_output_148.png",
"text_plain_output_323.png",
"text_plain_output_402.png",
"text_plain_output_424.png",
"text_plain_output_486.png",
"text_plain_output_597.png",
"text_plain_output_250.png",
"text_plain_output_11.png",
"text_plain_output_481.png",
"text_plain_output_560.png",
"text_plain_output_526.png",
"text_plain_output_400.png",
"text_plain_output_524.png",
"text_plain_output_538.png",
"text_plain_output_12.png",
"text_plain_output_267.png",
"text_plain_output_553.png",
"text_plain_output_408.png",
"text_plain_output_425.png",
"text_plain_output_591.png",
"text_plain_output_428.png",
"text_plain_output_416.png",
"text_plain_output_194.png",
"text_plain_output_577.png",
"text_plain_output_519.png",
"text_plain_output_62.png",
"text_plain_output_480.png",
"text_plain_output_303.png",
"text_plain_output_377.png",
"text_plain_output_440.png",
"text_plain_output_95.png",
"text_plain_output_339.png",
"text_plain_output_458.png",
"text_plain_output_464.png",
"text_plain_output_156.png",
"text_plain_output_547.png",
"text_plain_output_298.png",
"text_plain_output_369.png",
"text_plain_output_348.png",
"text_plain_output_587.png",
"text_plain_output_448.png",
"text_plain_output_365.png",
"text_plain_output_61.png",
"text_plain_output_585.png",
"text_plain_output_352.png",
"text_plain_output_83.png",
"text_plain_output_374.png",
"text_plain_output_472.png",
"text_plain_output_566.png",
"text_plain_output_397.png",
"text_plain_output_600.png",
"text_plain_output_389.png",
"text_plain_output_292.png",
"text_plain_output_351.png",
"text_plain_output_135.png",
"text_plain_output_285.png",
"text_plain_output_574.png",
"text_plain_output_582.png",
"text_plain_output_306.png",
"text_plain_output_493.png",
"text_plain_output_46.png"
] |
from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import tensorflow as tf
df = pd.read_parquet('/kaggle/input/sampled-datasets-v2/NF-UNSW-NB15-V2.parquet')
columns_to_remove = ['L4_SRC_PORT', 'L4_DST_PORT', 'Label', 'Attack']
train, test = train_test_split(df, test_size=0.2, shuffle=True)
y_test = np.array(test['Label'], dtype=np.uint0)
train_benign_idx = train['Label'] == 0
train_attack_idx = train['Label'] == 1
train.drop(columns=columns_to_remove, axis=1, inplace=True)
test.drop(columns=columns_to_remove, axis=1, inplace=True)
train_normal = train[train_benign_idx].values
train_attack = train[train_attack_idx].values
scaler = MinMaxScaler()
train = scaler.fit_transform(train_normal)
train_attack = scaler.transform(train_attack)
train, validation = train_test_split(train, test_size=0.2)
"""
Function to test a model
========================
- threshold_quantile: IF reconstruction loss > specified quantile of validation losses => attack! ELSE => benign!
- validation_benign: benign samples used for validation (and threshold determination)
- validation_attack: attack samples used for validation
- test: test data (both benign and attack samples)
- y_test: ground truth of the test data
- mae: IF true => loss function equals Mean Absolute Error ELSE loss function equals Mean Squared Error
"""
def test_model(model, threshold_quantile, validation_benign, validation_attack, test, y_test, mae=True):
val_losses = None
if mae:
val_losses = np.mean(abs(validation_benign - model.predict(validation_benign)), axis=1)
else:
val_losses = np.mean((validation_benign - model.predict(validation_benign)) ** 2, axis=1)
val_losses = pd.DataFrame({'benign': val_losses})
attack_losses = None
if mae:
attack_losses = np.mean(abs(validation_attack - model.predict(validation_attack)), axis=1)
else:
attack_losses = np.mean((validation_attack - model.predict(validation_attack)) ** 2, axis=1)
attack_losses = pd.DataFrame({'attack': attack_losses})
threshold = np.quantile(val_losses, 0.99)
test_losses = None
recons = model.predict(test)
if mae:
test_losses = np.mean(abs(test - recons), axis=1)
else:
test_losses = np.mean((test - recons) ** 2, axis=1)
preds = np.array(test_losses > threshold, dtype=np.uint8)
tn, fp, fn, tp = confusion_matrix(y_test, preds).ravel()
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(32, activation='relu'))
model.add(tf.keras.layers.Dense(16, activation='relu'))
model.add(tf.keras.layers.Dense(8, activation='relu'))
model.add(tf.keras.layers.Dense(4, activation='relu'))
model.add(tf.keras.layers.Dense(8, activation='relu'))
model.add(tf.keras.layers.Dense(16, activation='relu'))
model.add(tf.keras.layers.Dense(32, activation='relu'))
model.add(tf.keras.layers.Dense(39, activation='sigmoid'))
model.compile(optimizer='adam', loss='mae')
es = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3)
model.fit(train, train, batch_size=128, epochs=50, validation_split=0.1, shuffle=True, callbacks=[es])
print("TRAINED WITH LOSS 'MAE':")
print('=' * 20)
print('\tEVALUATE WITH MAE & QUANTILE 0.95:')
test_model(model, 0.95, validation, train_attack, test, y_test)
print('\tEVALUATE WITH MAE & QUANTILE 0.98:')
test_model(model, 0.98, validation, train_attack, test, y_test)
print('\tEVALUATE WITH MSE & QUANTILE 0.95:')
test_model(model, 0.95, validation, train_attack, test, y_test, mae=False)
print('\tEVALUATE WITH MSE & QUANTILE 0.98:')
test_model(model, 0.98, validation, train_attack, test, y_test, mae=False)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(32, activation='relu'))
model.add(tf.keras.layers.Dense(16, activation='relu'))
model.add(tf.keras.layers.Dense(8, activation='relu'))
model.add(tf.keras.layers.Dense(4, activation='relu'))
model.add(tf.keras.layers.Dense(8, activation='relu'))
model.add(tf.keras.layers.Dense(16, activation='relu'))
model.add(tf.keras.layers.Dense(32, activation='relu'))
model.add(tf.keras.layers.Dense(39, activation='sigmoid'))
model.compile(optimizer='adam', loss='mse')
model.fit(train, train, batch_size=128, epochs=50, validation_split=0.1, shuffle=True, callbacks=[es])
print("TRAINED WITH LOSS 'MSE':")
print('=' * 20)
print('\tEVALUATE WITH MAE & QUANTILE 0.95:')
test_model(model, 0.95, validation, train_attack, test, y_test)
print('\tEVALUATE WITH MAE & QUANTILE 0.98:')
test_model(model, 0.98, validation, train_attack, test, y_test)
print('\tEVALUATE WITH MSE & QUANTILE 0.95:')
test_model(model, 0.95, validation, train_attack, test, y_test, mae=False)
print('\tEVALUATE WITH MSE & QUANTILE 0.98:')
test_model(model, 0.98, validation, train_attack, test, y_test, mae=False)
|
code
|
122263483/cell_1
|
[
"text_plain_output_1.png"
] |
import os
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_matrix
import tensorflow as tf
import keras_tuner as kt
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
|
code
|
122263483/cell_3
|
[
"text_plain_output_1.png"
] |
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_parquet('/kaggle/input/sampled-datasets-v2/NF-UNSW-NB15-V2.parquet')
columns_to_remove = ['L4_SRC_PORT', 'L4_DST_PORT', 'Label', 'Attack']
train, test = train_test_split(df, test_size=0.2, shuffle=True)
y_test = np.array(test['Label'], dtype=np.uint0)
train_benign_idx = train['Label'] == 0
train_attack_idx = train['Label'] == 1
train.drop(columns=columns_to_remove, axis=1, inplace=True)
test.drop(columns=columns_to_remove, axis=1, inplace=True)
train_normal = train[train_benign_idx].values
train_attack = train[train_attack_idx].values
scaler = MinMaxScaler()
train = scaler.fit_transform(train_normal)
train_attack = scaler.transform(train_attack)
train, validation = train_test_split(train, test_size=0.2)
print(f'Shape train data: {train.shape}')
print(f'Shape validation data: {validation.shape}')
print(f'Shape test data: {test.shape}')
|
code
|
33111267/cell_21
|
[
"text_plain_output_1.png"
] |
from nltk import word_tokenize
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import fcluster
from sklearn.manifold import TSNE
from unidecode import unidecode
import bs4
import matplotlib.pyplot as plt
import nltk
import pandas as pd
import pandas as pd
import seaborn as sns
import seaborn as sns
import string
import tensorflow_hub as hub
import unicodedata
pd.options.display.max_colwidth = 255
df = pd.read_csv('../input/airline-sentiment/Tweets.csv')
module_url = 'https://tfhub.dev/google/universal-sentence-encoder/4'
model = hub.load(module_url)
def embed(input):
return model(input)
import seaborn as sns
df_neg = df.query("airline_sentiment == 'negative'").head(1000).copy()
df_neu = df.query("airline_sentiment == 'neutral'").head(1000).copy()
df_pos = df.query("airline_sentiment == 'positive'").head(1000).copy()
df_balanced = pd.concat([df_neg, df_neu, df_pos], ignore_index=True)
df_balanced = df_balanced.sample(frac=1).reset_index(drop=True)
comments = df_balanced['text'].copy()
def limpa_dataframe(data, column, hmtl='s', emoji='s', punct='s', lower='s', stopw='s', lng='english', token='s', stm='s', lmz='s'):
import nltk
from nltk import word_tokenize
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
import bs4
import string
wn = nltk.WordNetLemmatizer()
ps = nltk.PorterStemmer()
stopword = nltk.corpus.stopwords.words(lng)
if hmtl == 's':
data[column] = data[column].apply(lambda x: bs4.BeautifulSoup(x, 'lxml').get_text())
def deEmojify(inputString):
import unicodedata
from unidecode import unidecode
returnString = ''
for character in inputString:
try:
character.encode('ascii')
returnString += character
except UnicodeEncodeError:
replaced = unidecode(str(character))
if replaced != '':
returnString += replaced
else:
try:
returnString += '[' + unicodedata.name(character) + ']'
except ValueError:
returnString += '[x]'
return returnString
if emoji == 's':
data[column] = data[column].apply(lambda x: deEmojify(x))
def remove_punct(text):
text_nopunct = ''.join([char for char in text if char not in string.punctuation])
return text_nopunct
if punct == 's':
data[column] = data[column].apply(lambda x: remove_punct(x))
if lower == 's':
data[column] = [token.lower() for token in data[column]]
if token == 's':
data[column] = [word_tokenize(word) for word in data[column]]
def remove_stopwords(tokenized_list):
text = [word for word in tokenized_list if word not in stopword]
return text
if stopw == 's':
data[column] = data[column].apply(lambda x: remove_stopwords(x))
def stemming(tokenized_text):
text = [ps.stem(word) for word in tokenized_text]
return text
if stm == 's':
data[column] = data[column].apply(lambda x: stemming(x))
def lemmatizing(tokenized_text):
text = [wn.lemmatize(word) for word in tokenized_text]
return text
if lmz == 's':
data[column] = data[column].apply(lambda x: lemmatizing(x))
data[column] = [' '.join(word) for word in data[column]]
return data
df_clean = df_balanced.copy()
df_clean = limpa_dataframe(df_clean, column='text', hmtl='s', emoji='s', punct='s', stopw='s', lng='english', token='s', stm='s', lmz='s')
messages = df_clean['text']
message_embeddings = embed(messages)
from sklearn.manifold import TSNE
tsne = TSNE(n_components=2, perplexity=5)
tsne_result = tsne.fit_transform(message_embeddings)
tsne_df = pd.DataFrame({'X': tsne_result[:, 0], 'Y': tsne_result[:, 1]})
from scipy.spatial.distance import pdist
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import cophenet
from scipy.cluster.hierarchy import fcluster
X = tsne_result
Z = linkage(X, 'average', 'cosine')
threshold = 1 - 0.9
c = fcluster(Z, threshold, criterion='distance')
myset = set(c.tolist())
my_list = list(set(myset))
plt.title('Hierarchical Clustering Dendrogram (truncated)')
plt.xlabel('sample index')
plt.ylabel('distance')
dendrogram(Z, truncate_mode='lastp', p=100, show_leaf_counts=False, leaf_rotation=90.0, leaf_font_size=12.0, show_contracted=True)
plt.show()
|
code
|
33111267/cell_13
|
[
"text_plain_output_1.png"
] |
from nltk import word_tokenize
from unidecode import unidecode
import bs4
import nltk
import pandas as pd
import pandas as pd
import seaborn as sns
import seaborn as sns
import string
import unicodedata
pd.options.display.max_colwidth = 255
df = pd.read_csv('../input/airline-sentiment/Tweets.csv')
import seaborn as sns
df_neg = df.query("airline_sentiment == 'negative'").head(1000).copy()
df_neu = df.query("airline_sentiment == 'neutral'").head(1000).copy()
df_pos = df.query("airline_sentiment == 'positive'").head(1000).copy()
df_balanced = pd.concat([df_neg, df_neu, df_pos], ignore_index=True)
df_balanced = df_balanced.sample(frac=1).reset_index(drop=True)
comments = df_balanced['text'].copy()
def limpa_dataframe(data, column, hmtl='s', emoji='s', punct='s', lower='s', stopw='s', lng='english', token='s', stm='s', lmz='s'):
import nltk
from nltk import word_tokenize
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
import bs4
import string
wn = nltk.WordNetLemmatizer()
ps = nltk.PorterStemmer()
stopword = nltk.corpus.stopwords.words(lng)
if hmtl == 's':
data[column] = data[column].apply(lambda x: bs4.BeautifulSoup(x, 'lxml').get_text())
def deEmojify(inputString):
import unicodedata
from unidecode import unidecode
returnString = ''
for character in inputString:
try:
character.encode('ascii')
returnString += character
except UnicodeEncodeError:
replaced = unidecode(str(character))
if replaced != '':
returnString += replaced
else:
try:
returnString += '[' + unicodedata.name(character) + ']'
except ValueError:
returnString += '[x]'
return returnString
if emoji == 's':
data[column] = data[column].apply(lambda x: deEmojify(x))
def remove_punct(text):
text_nopunct = ''.join([char for char in text if char not in string.punctuation])
return text_nopunct
if punct == 's':
data[column] = data[column].apply(lambda x: remove_punct(x))
if lower == 's':
data[column] = [token.lower() for token in data[column]]
if token == 's':
data[column] = [word_tokenize(word) for word in data[column]]
def remove_stopwords(tokenized_list):
text = [word for word in tokenized_list if word not in stopword]
return text
if stopw == 's':
data[column] = data[column].apply(lambda x: remove_stopwords(x))
def stemming(tokenized_text):
text = [ps.stem(word) for word in tokenized_text]
return text
if stm == 's':
data[column] = data[column].apply(lambda x: stemming(x))
def lemmatizing(tokenized_text):
text = [wn.lemmatize(word) for word in tokenized_text]
return text
if lmz == 's':
data[column] = data[column].apply(lambda x: lemmatizing(x))
data[column] = [' '.join(word) for word in data[column]]
return data
df_clean = df_balanced.copy()
df_clean = limpa_dataframe(df_clean, column='text', hmtl='s', emoji='s', punct='s', stopw='s', lng='english', token='s', stm='s', lmz='s')
df_clean['text'].head(30)
|
code
|
33111267/cell_9
|
[
"text_plain_output_1.png"
] |
import pandas as pd
import pandas as pd
pd.options.display.max_colwidth = 255
df = pd.read_csv('../input/airline-sentiment/Tweets.csv')
df['airline_sentiment'].value_counts()
|
code
|
33111267/cell_25
|
[
"text_plain_output_1.png"
] |
from nltk import word_tokenize
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import fcluster
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
from sklearn.mixture import GaussianMixture
from sklearn.neighbors import NearestNeighbors
from unidecode import unidecode
import bs4
import matplotlib.pyplot as plt
import nltk
import numpy as np
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
import seaborn as sns
import seaborn as sns
import seaborn as sns
import string
import tensorflow_hub as hub
import unicodedata
pd.options.display.max_colwidth = 255
df = pd.read_csv('../input/airline-sentiment/Tweets.csv')
comments = df['text']
module_url = 'https://tfhub.dev/google/universal-sentence-encoder/4'
model = hub.load(module_url)
def embed(input):
return model(input)
import seaborn as sns
df_neg = df.query("airline_sentiment == 'negative'").head(1000).copy()
df_neu = df.query("airline_sentiment == 'neutral'").head(1000).copy()
df_pos = df.query("airline_sentiment == 'positive'").head(1000).copy()
df_balanced = pd.concat([df_neg, df_neu, df_pos], ignore_index=True)
df_balanced = df_balanced.sample(frac=1).reset_index(drop=True)
comments = df_balanced['text'].copy()
def limpa_dataframe(data, column, hmtl='s', emoji='s', punct='s', lower='s', stopw='s', lng='english', token='s', stm='s', lmz='s'):
import nltk
from nltk import word_tokenize
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
import bs4
import string
wn = nltk.WordNetLemmatizer()
ps = nltk.PorterStemmer()
stopword = nltk.corpus.stopwords.words(lng)
if hmtl == 's':
data[column] = data[column].apply(lambda x: bs4.BeautifulSoup(x, 'lxml').get_text())
def deEmojify(inputString):
import unicodedata
from unidecode import unidecode
returnString = ''
for character in inputString:
try:
character.encode('ascii')
returnString += character
except UnicodeEncodeError:
replaced = unidecode(str(character))
if replaced != '':
returnString += replaced
else:
try:
returnString += '[' + unicodedata.name(character) + ']'
except ValueError:
returnString += '[x]'
return returnString
if emoji == 's':
data[column] = data[column].apply(lambda x: deEmojify(x))
def remove_punct(text):
text_nopunct = ''.join([char for char in text if char not in string.punctuation])
return text_nopunct
if punct == 's':
data[column] = data[column].apply(lambda x: remove_punct(x))
if lower == 's':
data[column] = [token.lower() for token in data[column]]
if token == 's':
data[column] = [word_tokenize(word) for word in data[column]]
def remove_stopwords(tokenized_list):
text = [word for word in tokenized_list if word not in stopword]
return text
if stopw == 's':
data[column] = data[column].apply(lambda x: remove_stopwords(x))
def stemming(tokenized_text):
text = [ps.stem(word) for word in tokenized_text]
return text
if stm == 's':
data[column] = data[column].apply(lambda x: stemming(x))
def lemmatizing(tokenized_text):
text = [wn.lemmatize(word) for word in tokenized_text]
return text
if lmz == 's':
data[column] = data[column].apply(lambda x: lemmatizing(x))
data[column] = [' '.join(word) for word in data[column]]
return data
df_clean = df_balanced.copy()
df_clean = limpa_dataframe(df_clean, column='text', hmtl='s', emoji='s', punct='s', stopw='s', lng='english', token='s', stm='s', lmz='s')
messages = df_clean['text']
message_embeddings = embed(messages)
from sklearn.manifold import TSNE
tsne = TSNE(n_components=2, perplexity=5)
tsne_result = tsne.fit_transform(message_embeddings)
tsne_df = pd.DataFrame({'X': tsne_result[:, 0], 'Y': tsne_result[:, 1]})
from scipy.spatial.distance import pdist
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import cophenet
from scipy.cluster.hierarchy import fcluster
X = tsne_result
Z = linkage(X, 'average', 'cosine')
threshold = 1 - 0.9
c = fcluster(Z, threshold, criterion='distance')
myset = set(c.tolist())
my_list = list(set(myset))
dendrogram(Z, truncate_mode='lastp', p=100, show_leaf_counts=False, leaf_rotation=90.0, leaf_font_size=12.0, show_contracted=True)
from sklearn.cluster import KMeans
clf_k = KMeans(n_clusters=3, init='k-means++', max_iter=300, n_init=5, random_state=0)
pred_y_k = clf_k.fit_predict(X)
X = message_embeddings
import numpy as np
from sklearn.datasets.samples_generator import make_blobs
from sklearn.neighbors import NearestNeighbors
from sklearn.cluster import DBSCAN
from matplotlib import pyplot as plt
import seaborn as sns
sns.set()
neigh = NearestNeighbors(n_neighbors=2)
nbrs = neigh.fit(X)
distances, indices = nbrs.kneighbors(X)
distances = np.sort(distances, axis=0)
distances = distances[:, 1]
from sklearn.mixture import GaussianMixture
clf_em = GaussianMixture(n_components=5, init_params='random', covariance_type='full')
pred_y_em = clf_em.fit_predict(X)
myset = set(pred_y_em.tolist())
my_list = list(set(myset))
export = pd.DataFrame()
export['Comentario'] = comments
export['cluster'] = c
sns.countplot(x='cluster', data=export)
|
code
|
33111267/cell_4
|
[
"text_plain_output_2.png",
"text_plain_output_1.png",
"image_output_1.png"
] |
import pandas as pd
import pandas as pd
pd.options.display.max_colwidth = 255
df = pd.read_csv('../input/airline-sentiment/Tweets.csv')
df.head(2)
|
code
|
33111267/cell_23
|
[
"text_plain_output_1.png"
] |
from nltk import word_tokenize
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import fcluster
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
from sklearn.neighbors import NearestNeighbors
from unidecode import unidecode
import bs4
import matplotlib.pyplot as plt
import nltk
import numpy as np
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
import seaborn as sns
import seaborn as sns
import seaborn as sns
import string
import tensorflow_hub as hub
import unicodedata
pd.options.display.max_colwidth = 255
df = pd.read_csv('../input/airline-sentiment/Tweets.csv')
module_url = 'https://tfhub.dev/google/universal-sentence-encoder/4'
model = hub.load(module_url)
def embed(input):
return model(input)
import seaborn as sns
df_neg = df.query("airline_sentiment == 'negative'").head(1000).copy()
df_neu = df.query("airline_sentiment == 'neutral'").head(1000).copy()
df_pos = df.query("airline_sentiment == 'positive'").head(1000).copy()
df_balanced = pd.concat([df_neg, df_neu, df_pos], ignore_index=True)
df_balanced = df_balanced.sample(frac=1).reset_index(drop=True)
comments = df_balanced['text'].copy()
def limpa_dataframe(data, column, hmtl='s', emoji='s', punct='s', lower='s', stopw='s', lng='english', token='s', stm='s', lmz='s'):
import nltk
from nltk import word_tokenize
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
import bs4
import string
wn = nltk.WordNetLemmatizer()
ps = nltk.PorterStemmer()
stopword = nltk.corpus.stopwords.words(lng)
if hmtl == 's':
data[column] = data[column].apply(lambda x: bs4.BeautifulSoup(x, 'lxml').get_text())
def deEmojify(inputString):
import unicodedata
from unidecode import unidecode
returnString = ''
for character in inputString:
try:
character.encode('ascii')
returnString += character
except UnicodeEncodeError:
replaced = unidecode(str(character))
if replaced != '':
returnString += replaced
else:
try:
returnString += '[' + unicodedata.name(character) + ']'
except ValueError:
returnString += '[x]'
return returnString
if emoji == 's':
data[column] = data[column].apply(lambda x: deEmojify(x))
def remove_punct(text):
text_nopunct = ''.join([char for char in text if char not in string.punctuation])
return text_nopunct
if punct == 's':
data[column] = data[column].apply(lambda x: remove_punct(x))
if lower == 's':
data[column] = [token.lower() for token in data[column]]
if token == 's':
data[column] = [word_tokenize(word) for word in data[column]]
def remove_stopwords(tokenized_list):
text = [word for word in tokenized_list if word not in stopword]
return text
if stopw == 's':
data[column] = data[column].apply(lambda x: remove_stopwords(x))
def stemming(tokenized_text):
text = [ps.stem(word) for word in tokenized_text]
return text
if stm == 's':
data[column] = data[column].apply(lambda x: stemming(x))
def lemmatizing(tokenized_text):
text = [wn.lemmatize(word) for word in tokenized_text]
return text
if lmz == 's':
data[column] = data[column].apply(lambda x: lemmatizing(x))
data[column] = [' '.join(word) for word in data[column]]
return data
df_clean = df_balanced.copy()
df_clean = limpa_dataframe(df_clean, column='text', hmtl='s', emoji='s', punct='s', stopw='s', lng='english', token='s', stm='s', lmz='s')
messages = df_clean['text']
message_embeddings = embed(messages)
from sklearn.manifold import TSNE
tsne = TSNE(n_components=2, perplexity=5)
tsne_result = tsne.fit_transform(message_embeddings)
tsne_df = pd.DataFrame({'X': tsne_result[:, 0], 'Y': tsne_result[:, 1]})
from scipy.spatial.distance import pdist
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import cophenet
from scipy.cluster.hierarchy import fcluster
X = tsne_result
Z = linkage(X, 'average', 'cosine')
threshold = 1 - 0.9
c = fcluster(Z, threshold, criterion='distance')
myset = set(c.tolist())
my_list = list(set(myset))
dendrogram(Z, truncate_mode='lastp', p=100, show_leaf_counts=False, leaf_rotation=90.0, leaf_font_size=12.0, show_contracted=True)
from sklearn.cluster import KMeans
clf_k = KMeans(n_clusters=3, init='k-means++', max_iter=300, n_init=5, random_state=0)
pred_y_k = clf_k.fit_predict(X)
X = message_embeddings
import numpy as np
from sklearn.datasets.samples_generator import make_blobs
from sklearn.neighbors import NearestNeighbors
from sklearn.cluster import DBSCAN
from matplotlib import pyplot as plt
import seaborn as sns
sns.set()
neigh = NearestNeighbors(n_neighbors=2)
nbrs = neigh.fit(X)
distances, indices = nbrs.kneighbors(X)
distances = np.sort(distances, axis=0)
distances = distances[:, 1]
plt.plot(distances)
|
code
|
33111267/cell_20
|
[
"text_plain_output_1.png",
"image_output_1.png"
] |
from nltk import word_tokenize
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import fcluster
from sklearn.manifold import TSNE
from unidecode import unidecode
import bs4
import matplotlib.pyplot as plt
import nltk
import pandas as pd
import pandas as pd
import seaborn as sns
import seaborn as sns
import string
import tensorflow_hub as hub
import unicodedata
pd.options.display.max_colwidth = 255
df = pd.read_csv('../input/airline-sentiment/Tweets.csv')
module_url = 'https://tfhub.dev/google/universal-sentence-encoder/4'
model = hub.load(module_url)
def embed(input):
return model(input)
import seaborn as sns
df_neg = df.query("airline_sentiment == 'negative'").head(1000).copy()
df_neu = df.query("airline_sentiment == 'neutral'").head(1000).copy()
df_pos = df.query("airline_sentiment == 'positive'").head(1000).copy()
df_balanced = pd.concat([df_neg, df_neu, df_pos], ignore_index=True)
df_balanced = df_balanced.sample(frac=1).reset_index(drop=True)
comments = df_balanced['text'].copy()
def limpa_dataframe(data, column, hmtl='s', emoji='s', punct='s', lower='s', stopw='s', lng='english', token='s', stm='s', lmz='s'):
import nltk
from nltk import word_tokenize
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
import bs4
import string
wn = nltk.WordNetLemmatizer()
ps = nltk.PorterStemmer()
stopword = nltk.corpus.stopwords.words(lng)
if hmtl == 's':
data[column] = data[column].apply(lambda x: bs4.BeautifulSoup(x, 'lxml').get_text())
def deEmojify(inputString):
import unicodedata
from unidecode import unidecode
returnString = ''
for character in inputString:
try:
character.encode('ascii')
returnString += character
except UnicodeEncodeError:
replaced = unidecode(str(character))
if replaced != '':
returnString += replaced
else:
try:
returnString += '[' + unicodedata.name(character) + ']'
except ValueError:
returnString += '[x]'
return returnString
if emoji == 's':
data[column] = data[column].apply(lambda x: deEmojify(x))
def remove_punct(text):
text_nopunct = ''.join([char for char in text if char not in string.punctuation])
return text_nopunct
if punct == 's':
data[column] = data[column].apply(lambda x: remove_punct(x))
if lower == 's':
data[column] = [token.lower() for token in data[column]]
if token == 's':
data[column] = [word_tokenize(word) for word in data[column]]
def remove_stopwords(tokenized_list):
text = [word for word in tokenized_list if word not in stopword]
return text
if stopw == 's':
data[column] = data[column].apply(lambda x: remove_stopwords(x))
def stemming(tokenized_text):
text = [ps.stem(word) for word in tokenized_text]
return text
if stm == 's':
data[column] = data[column].apply(lambda x: stemming(x))
def lemmatizing(tokenized_text):
text = [wn.lemmatize(word) for word in tokenized_text]
return text
if lmz == 's':
data[column] = data[column].apply(lambda x: lemmatizing(x))
data[column] = [' '.join(word) for word in data[column]]
return data
df_clean = df_balanced.copy()
df_clean = limpa_dataframe(df_clean, column='text', hmtl='s', emoji='s', punct='s', stopw='s', lng='english', token='s', stm='s', lmz='s')
messages = df_clean['text']
message_embeddings = embed(messages)
from sklearn.manifold import TSNE
tsne = TSNE(n_components=2, perplexity=5)
tsne_result = tsne.fit_transform(message_embeddings)
tsne_df = pd.DataFrame({'X': tsne_result[:, 0], 'Y': tsne_result[:, 1]})
from scipy.spatial.distance import pdist
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import cophenet
from scipy.cluster.hierarchy import fcluster
X = tsne_result
Z = linkage(X, 'average', 'cosine')
threshold = 1 - 0.9
c = fcluster(Z, threshold, criterion='distance')
myset = set(c.tolist())
my_list = list(set(myset))
plt.figure(figsize=(10, 8))
plt.scatter(X[:, 0], X[:, 1], c=c, cmap='prism')
plt.show()
|
code
|
33111267/cell_6
|
[
"text_plain_output_1.png"
] |
import tensorflow_hub as hub
module_url = 'https://tfhub.dev/google/universal-sentence-encoder/4'
model = hub.load(module_url)
print('module %s loaded' % module_url)
def embed(input):
return model(input)
|
code
|
33111267/cell_29
|
[
"text_plain_output_1.png",
"image_output_1.png"
] |
from nltk import word_tokenize
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import fcluster
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
from sklearn.mixture import GaussianMixture
from sklearn.neighbors import NearestNeighbors
from unidecode import unidecode
import bs4
import matplotlib.pyplot as plt
import nltk
import numpy as np
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
import seaborn as sns
import seaborn as sns
import seaborn as sns
import string
import tensorflow_hub as hub
import unicodedata
pd.options.display.max_colwidth = 255
df = pd.read_csv('../input/airline-sentiment/Tweets.csv')
comments = df['text']
module_url = 'https://tfhub.dev/google/universal-sentence-encoder/4'
model = hub.load(module_url)
def embed(input):
return model(input)
import seaborn as sns
df_neg = df.query("airline_sentiment == 'negative'").head(1000).copy()
df_neu = df.query("airline_sentiment == 'neutral'").head(1000).copy()
df_pos = df.query("airline_sentiment == 'positive'").head(1000).copy()
df_balanced = pd.concat([df_neg, df_neu, df_pos], ignore_index=True)
df_balanced = df_balanced.sample(frac=1).reset_index(drop=True)
comments = df_balanced['text'].copy()
def limpa_dataframe(data, column, hmtl='s', emoji='s', punct='s', lower='s', stopw='s', lng='english', token='s', stm='s', lmz='s'):
import nltk
from nltk import word_tokenize
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
import bs4
import string
wn = nltk.WordNetLemmatizer()
ps = nltk.PorterStemmer()
stopword = nltk.corpus.stopwords.words(lng)
if hmtl == 's':
data[column] = data[column].apply(lambda x: bs4.BeautifulSoup(x, 'lxml').get_text())
def deEmojify(inputString):
import unicodedata
from unidecode import unidecode
returnString = ''
for character in inputString:
try:
character.encode('ascii')
returnString += character
except UnicodeEncodeError:
replaced = unidecode(str(character))
if replaced != '':
returnString += replaced
else:
try:
returnString += '[' + unicodedata.name(character) + ']'
except ValueError:
returnString += '[x]'
return returnString
if emoji == 's':
data[column] = data[column].apply(lambda x: deEmojify(x))
def remove_punct(text):
text_nopunct = ''.join([char for char in text if char not in string.punctuation])
return text_nopunct
if punct == 's':
data[column] = data[column].apply(lambda x: remove_punct(x))
if lower == 's':
data[column] = [token.lower() for token in data[column]]
if token == 's':
data[column] = [word_tokenize(word) for word in data[column]]
def remove_stopwords(tokenized_list):
text = [word for word in tokenized_list if word not in stopword]
return text
if stopw == 's':
data[column] = data[column].apply(lambda x: remove_stopwords(x))
def stemming(tokenized_text):
text = [ps.stem(word) for word in tokenized_text]
return text
if stm == 's':
data[column] = data[column].apply(lambda x: stemming(x))
def lemmatizing(tokenized_text):
text = [wn.lemmatize(word) for word in tokenized_text]
return text
if lmz == 's':
data[column] = data[column].apply(lambda x: lemmatizing(x))
data[column] = [' '.join(word) for word in data[column]]
return data
df_clean = df_balanced.copy()
df_clean = limpa_dataframe(df_clean, column='text', hmtl='s', emoji='s', punct='s', stopw='s', lng='english', token='s', stm='s', lmz='s')
messages = df_clean['text']
message_embeddings = embed(messages)
from sklearn.manifold import TSNE
tsne = TSNE(n_components=2, perplexity=5)
tsne_result = tsne.fit_transform(message_embeddings)
tsne_df = pd.DataFrame({'X': tsne_result[:, 0], 'Y': tsne_result[:, 1]})
from scipy.spatial.distance import pdist
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import cophenet
from scipy.cluster.hierarchy import fcluster
X = tsne_result
Z = linkage(X, 'average', 'cosine')
threshold = 1 - 0.9
c = fcluster(Z, threshold, criterion='distance')
myset = set(c.tolist())
my_list = list(set(myset))
dendrogram(Z, truncate_mode='lastp', p=100, show_leaf_counts=False, leaf_rotation=90.0, leaf_font_size=12.0, show_contracted=True)
from sklearn.cluster import KMeans
clf_k = KMeans(n_clusters=3, init='k-means++', max_iter=300, n_init=5, random_state=0)
pred_y_k = clf_k.fit_predict(X)
X = message_embeddings
import numpy as np
from sklearn.datasets.samples_generator import make_blobs
from sklearn.neighbors import NearestNeighbors
from sklearn.cluster import DBSCAN
from matplotlib import pyplot as plt
import seaborn as sns
sns.set()
neigh = NearestNeighbors(n_neighbors=2)
nbrs = neigh.fit(X)
distances, indices = nbrs.kneighbors(X)
distances = np.sort(distances, axis=0)
distances = distances[:, 1]
from sklearn.mixture import GaussianMixture
clf_em = GaussianMixture(n_components=5, init_params='random', covariance_type='full')
pred_y_em = clf_em.fit_predict(X)
myset = set(pred_y_em.tolist())
my_list = list(set(myset))
export = pd.DataFrame()
export['Comentario'] = comments
export['cluster'] = c
pd.options.display.max_colwidth = 255
print(export.query('cluster == 3')['Comentario'].head(10))
|
code
|
33111267/cell_26
|
[
"image_output_1.png"
] |
import pandas as pd
import pandas as pd
import seaborn as sns
import seaborn as sns
import seaborn as sns
pd.options.display.max_colwidth = 255
df = pd.read_csv('../input/airline-sentiment/Tweets.csv')
comments = df['text']
import seaborn as sns
df_neg = df.query("airline_sentiment == 'negative'").head(1000).copy()
df_neu = df.query("airline_sentiment == 'neutral'").head(1000).copy()
df_pos = df.query("airline_sentiment == 'positive'").head(1000).copy()
df_balanced = pd.concat([df_neg, df_neu, df_pos], ignore_index=True)
df_balanced = df_balanced.sample(frac=1).reset_index(drop=True)
comments = df_balanced['text'].copy()
len(comments)
|
code
|
33111267/cell_7
|
[
"text_plain_output_1.png"
] |
import pandas as pd
import pandas as pd
pd.options.display.max_colwidth = 255
df = pd.read_csv('../input/airline-sentiment/Tweets.csv')
print('Head: ', df.columns)
print('\nShape: ', df.shape)
print('\nDescrição:')
print(df.describe())
|
code
|
33111267/cell_18
|
[
"text_plain_output_1.png"
] |
from nltk import word_tokenize
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import fcluster
from sklearn.manifold import TSNE
from unidecode import unidecode
import bs4
import nltk
import pandas as pd
import pandas as pd
import seaborn as sns
import seaborn as sns
import string
import tensorflow_hub as hub
import unicodedata
pd.options.display.max_colwidth = 255
df = pd.read_csv('../input/airline-sentiment/Tweets.csv')
module_url = 'https://tfhub.dev/google/universal-sentence-encoder/4'
model = hub.load(module_url)
def embed(input):
return model(input)
import seaborn as sns
df_neg = df.query("airline_sentiment == 'negative'").head(1000).copy()
df_neu = df.query("airline_sentiment == 'neutral'").head(1000).copy()
df_pos = df.query("airline_sentiment == 'positive'").head(1000).copy()
df_balanced = pd.concat([df_neg, df_neu, df_pos], ignore_index=True)
df_balanced = df_balanced.sample(frac=1).reset_index(drop=True)
comments = df_balanced['text'].copy()
def limpa_dataframe(data, column, hmtl='s', emoji='s', punct='s', lower='s', stopw='s', lng='english', token='s', stm='s', lmz='s'):
import nltk
from nltk import word_tokenize
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
import bs4
import string
wn = nltk.WordNetLemmatizer()
ps = nltk.PorterStemmer()
stopword = nltk.corpus.stopwords.words(lng)
if hmtl == 's':
data[column] = data[column].apply(lambda x: bs4.BeautifulSoup(x, 'lxml').get_text())
def deEmojify(inputString):
import unicodedata
from unidecode import unidecode
returnString = ''
for character in inputString:
try:
character.encode('ascii')
returnString += character
except UnicodeEncodeError:
replaced = unidecode(str(character))
if replaced != '':
returnString += replaced
else:
try:
returnString += '[' + unicodedata.name(character) + ']'
except ValueError:
returnString += '[x]'
return returnString
if emoji == 's':
data[column] = data[column].apply(lambda x: deEmojify(x))
def remove_punct(text):
text_nopunct = ''.join([char for char in text if char not in string.punctuation])
return text_nopunct
if punct == 's':
data[column] = data[column].apply(lambda x: remove_punct(x))
if lower == 's':
data[column] = [token.lower() for token in data[column]]
if token == 's':
data[column] = [word_tokenize(word) for word in data[column]]
def remove_stopwords(tokenized_list):
text = [word for word in tokenized_list if word not in stopword]
return text
if stopw == 's':
data[column] = data[column].apply(lambda x: remove_stopwords(x))
def stemming(tokenized_text):
text = [ps.stem(word) for word in tokenized_text]
return text
if stm == 's':
data[column] = data[column].apply(lambda x: stemming(x))
def lemmatizing(tokenized_text):
text = [wn.lemmatize(word) for word in tokenized_text]
return text
if lmz == 's':
data[column] = data[column].apply(lambda x: lemmatizing(x))
data[column] = [' '.join(word) for word in data[column]]
return data
df_clean = df_balanced.copy()
df_clean = limpa_dataframe(df_clean, column='text', hmtl='s', emoji='s', punct='s', stopw='s', lng='english', token='s', stm='s', lmz='s')
messages = df_clean['text']
message_embeddings = embed(messages)
from sklearn.manifold import TSNE
tsne = TSNE(n_components=2, perplexity=5)
tsne_result = tsne.fit_transform(message_embeddings)
tsne_df = pd.DataFrame({'X': tsne_result[:, 0], 'Y': tsne_result[:, 1]})
from scipy.spatial.distance import pdist
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import cophenet
from scipy.cluster.hierarchy import fcluster
X = tsne_result
Z = linkage(X, 'average', 'cosine')
threshold = 1 - 0.9
c = fcluster(Z, threshold, criterion='distance')
myset = set(c.tolist())
my_list = list(set(myset))
print('Clusters Encontrados')
print(len(my_list))
|
code
|
33111267/cell_28
|
[
"text_plain_output_1.png",
"image_output_1.png"
] |
from nltk import word_tokenize
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import fcluster
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
from sklearn.mixture import GaussianMixture
from sklearn.neighbors import NearestNeighbors
from unidecode import unidecode
import bs4
import matplotlib.pyplot as plt
import nltk
import numpy as np
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
import seaborn as sns
import seaborn as sns
import seaborn as sns
import string
import tensorflow_hub as hub
import unicodedata
pd.options.display.max_colwidth = 255
df = pd.read_csv('../input/airline-sentiment/Tweets.csv')
comments = df['text']
module_url = 'https://tfhub.dev/google/universal-sentence-encoder/4'
model = hub.load(module_url)
def embed(input):
return model(input)
import seaborn as sns
df_neg = df.query("airline_sentiment == 'negative'").head(1000).copy()
df_neu = df.query("airline_sentiment == 'neutral'").head(1000).copy()
df_pos = df.query("airline_sentiment == 'positive'").head(1000).copy()
df_balanced = pd.concat([df_neg, df_neu, df_pos], ignore_index=True)
df_balanced = df_balanced.sample(frac=1).reset_index(drop=True)
comments = df_balanced['text'].copy()
def limpa_dataframe(data, column, hmtl='s', emoji='s', punct='s', lower='s', stopw='s', lng='english', token='s', stm='s', lmz='s'):
import nltk
from nltk import word_tokenize
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
import bs4
import string
wn = nltk.WordNetLemmatizer()
ps = nltk.PorterStemmer()
stopword = nltk.corpus.stopwords.words(lng)
if hmtl == 's':
data[column] = data[column].apply(lambda x: bs4.BeautifulSoup(x, 'lxml').get_text())
def deEmojify(inputString):
import unicodedata
from unidecode import unidecode
returnString = ''
for character in inputString:
try:
character.encode('ascii')
returnString += character
except UnicodeEncodeError:
replaced = unidecode(str(character))
if replaced != '':
returnString += replaced
else:
try:
returnString += '[' + unicodedata.name(character) + ']'
except ValueError:
returnString += '[x]'
return returnString
if emoji == 's':
data[column] = data[column].apply(lambda x: deEmojify(x))
def remove_punct(text):
text_nopunct = ''.join([char for char in text if char not in string.punctuation])
return text_nopunct
if punct == 's':
data[column] = data[column].apply(lambda x: remove_punct(x))
if lower == 's':
data[column] = [token.lower() for token in data[column]]
if token == 's':
data[column] = [word_tokenize(word) for word in data[column]]
def remove_stopwords(tokenized_list):
text = [word for word in tokenized_list if word not in stopword]
return text
if stopw == 's':
data[column] = data[column].apply(lambda x: remove_stopwords(x))
def stemming(tokenized_text):
text = [ps.stem(word) for word in tokenized_text]
return text
if stm == 's':
data[column] = data[column].apply(lambda x: stemming(x))
def lemmatizing(tokenized_text):
text = [wn.lemmatize(word) for word in tokenized_text]
return text
if lmz == 's':
data[column] = data[column].apply(lambda x: lemmatizing(x))
data[column] = [' '.join(word) for word in data[column]]
return data
df_clean = df_balanced.copy()
df_clean = limpa_dataframe(df_clean, column='text', hmtl='s', emoji='s', punct='s', stopw='s', lng='english', token='s', stm='s', lmz='s')
messages = df_clean['text']
message_embeddings = embed(messages)
from sklearn.manifold import TSNE
tsne = TSNE(n_components=2, perplexity=5)
tsne_result = tsne.fit_transform(message_embeddings)
tsne_df = pd.DataFrame({'X': tsne_result[:, 0], 'Y': tsne_result[:, 1]})
from scipy.spatial.distance import pdist
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import cophenet
from scipy.cluster.hierarchy import fcluster
X = tsne_result
Z = linkage(X, 'average', 'cosine')
threshold = 1 - 0.9
c = fcluster(Z, threshold, criterion='distance')
myset = set(c.tolist())
my_list = list(set(myset))
dendrogram(Z, truncate_mode='lastp', p=100, show_leaf_counts=False, leaf_rotation=90.0, leaf_font_size=12.0, show_contracted=True)
from sklearn.cluster import KMeans
clf_k = KMeans(n_clusters=3, init='k-means++', max_iter=300, n_init=5, random_state=0)
pred_y_k = clf_k.fit_predict(X)
X = message_embeddings
import numpy as np
from sklearn.datasets.samples_generator import make_blobs
from sklearn.neighbors import NearestNeighbors
from sklearn.cluster import DBSCAN
from matplotlib import pyplot as plt
import seaborn as sns
sns.set()
neigh = NearestNeighbors(n_neighbors=2)
nbrs = neigh.fit(X)
distances, indices = nbrs.kneighbors(X)
distances = np.sort(distances, axis=0)
distances = distances[:, 1]
from sklearn.mixture import GaussianMixture
clf_em = GaussianMixture(n_components=5, init_params='random', covariance_type='full')
pred_y_em = clf_em.fit_predict(X)
myset = set(pred_y_em.tolist())
my_list = list(set(myset))
export = pd.DataFrame()
export['Comentario'] = comments
export['cluster'] = c
pd.options.display.max_colwidth = 255
print(export.query('cluster == 2')['Comentario'].head(10))
|
code
|
33111267/cell_8
|
[
"text_plain_output_1.png"
] |
import pandas as pd
import pandas as pd
import seaborn as sns
import seaborn as sns
pd.options.display.max_colwidth = 255
df = pd.read_csv('../input/airline-sentiment/Tweets.csv')
import seaborn as sns
sns.countplot(x='airline_sentiment', data=df)
|
code
|
33111267/cell_16
|
[
"text_plain_output_1.png"
] |
from nltk import word_tokenize
from sklearn.manifold import TSNE
from unidecode import unidecode
import bs4
import nltk
import pandas as pd
import pandas as pd
import seaborn as sns
import seaborn as sns
import string
import tensorflow_hub as hub
import unicodedata
pd.options.display.max_colwidth = 255
df = pd.read_csv('../input/airline-sentiment/Tweets.csv')
module_url = 'https://tfhub.dev/google/universal-sentence-encoder/4'
model = hub.load(module_url)
def embed(input):
return model(input)
import seaborn as sns
df_neg = df.query("airline_sentiment == 'negative'").head(1000).copy()
df_neu = df.query("airline_sentiment == 'neutral'").head(1000).copy()
df_pos = df.query("airline_sentiment == 'positive'").head(1000).copy()
df_balanced = pd.concat([df_neg, df_neu, df_pos], ignore_index=True)
df_balanced = df_balanced.sample(frac=1).reset_index(drop=True)
comments = df_balanced['text'].copy()
def limpa_dataframe(data, column, hmtl='s', emoji='s', punct='s', lower='s', stopw='s', lng='english', token='s', stm='s', lmz='s'):
import nltk
from nltk import word_tokenize
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
import bs4
import string
wn = nltk.WordNetLemmatizer()
ps = nltk.PorterStemmer()
stopword = nltk.corpus.stopwords.words(lng)
if hmtl == 's':
data[column] = data[column].apply(lambda x: bs4.BeautifulSoup(x, 'lxml').get_text())
def deEmojify(inputString):
import unicodedata
from unidecode import unidecode
returnString = ''
for character in inputString:
try:
character.encode('ascii')
returnString += character
except UnicodeEncodeError:
replaced = unidecode(str(character))
if replaced != '':
returnString += replaced
else:
try:
returnString += '[' + unicodedata.name(character) + ']'
except ValueError:
returnString += '[x]'
return returnString
if emoji == 's':
data[column] = data[column].apply(lambda x: deEmojify(x))
def remove_punct(text):
text_nopunct = ''.join([char for char in text if char not in string.punctuation])
return text_nopunct
if punct == 's':
data[column] = data[column].apply(lambda x: remove_punct(x))
if lower == 's':
data[column] = [token.lower() for token in data[column]]
if token == 's':
data[column] = [word_tokenize(word) for word in data[column]]
def remove_stopwords(tokenized_list):
text = [word for word in tokenized_list if word not in stopword]
return text
if stopw == 's':
data[column] = data[column].apply(lambda x: remove_stopwords(x))
def stemming(tokenized_text):
text = [ps.stem(word) for word in tokenized_text]
return text
if stm == 's':
data[column] = data[column].apply(lambda x: stemming(x))
def lemmatizing(tokenized_text):
text = [wn.lemmatize(word) for word in tokenized_text]
return text
if lmz == 's':
data[column] = data[column].apply(lambda x: lemmatizing(x))
data[column] = [' '.join(word) for word in data[column]]
return data
df_clean = df_balanced.copy()
df_clean = limpa_dataframe(df_clean, column='text', hmtl='s', emoji='s', punct='s', stopw='s', lng='english', token='s', stm='s', lmz='s')
messages = df_clean['text']
message_embeddings = embed(messages)
from sklearn.manifold import TSNE
tsne = TSNE(n_components=2, perplexity=5)
tsne_result = tsne.fit_transform(message_embeddings)
tsne_df = pd.DataFrame({'X': tsne_result[:, 0], 'Y': tsne_result[:, 1]})
sns.scatterplot(x='X', y='Y', data=tsne_df)
|
code
|
33111267/cell_24
|
[
"text_plain_output_1.png",
"image_output_1.png"
] |
from nltk import word_tokenize
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import fcluster
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
from sklearn.mixture import GaussianMixture
from sklearn.neighbors import NearestNeighbors
from unidecode import unidecode
import bs4
import matplotlib.pyplot as plt
import nltk
import numpy as np
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
import seaborn as sns
import seaborn as sns
import seaborn as sns
import string
import tensorflow_hub as hub
import unicodedata
pd.options.display.max_colwidth = 255
df = pd.read_csv('../input/airline-sentiment/Tweets.csv')
module_url = 'https://tfhub.dev/google/universal-sentence-encoder/4'
model = hub.load(module_url)
def embed(input):
return model(input)
import seaborn as sns
df_neg = df.query("airline_sentiment == 'negative'").head(1000).copy()
df_neu = df.query("airline_sentiment == 'neutral'").head(1000).copy()
df_pos = df.query("airline_sentiment == 'positive'").head(1000).copy()
df_balanced = pd.concat([df_neg, df_neu, df_pos], ignore_index=True)
df_balanced = df_balanced.sample(frac=1).reset_index(drop=True)
comments = df_balanced['text'].copy()
def limpa_dataframe(data, column, hmtl='s', emoji='s', punct='s', lower='s', stopw='s', lng='english', token='s', stm='s', lmz='s'):
import nltk
from nltk import word_tokenize
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
import bs4
import string
wn = nltk.WordNetLemmatizer()
ps = nltk.PorterStemmer()
stopword = nltk.corpus.stopwords.words(lng)
if hmtl == 's':
data[column] = data[column].apply(lambda x: bs4.BeautifulSoup(x, 'lxml').get_text())
def deEmojify(inputString):
import unicodedata
from unidecode import unidecode
returnString = ''
for character in inputString:
try:
character.encode('ascii')
returnString += character
except UnicodeEncodeError:
replaced = unidecode(str(character))
if replaced != '':
returnString += replaced
else:
try:
returnString += '[' + unicodedata.name(character) + ']'
except ValueError:
returnString += '[x]'
return returnString
if emoji == 's':
data[column] = data[column].apply(lambda x: deEmojify(x))
def remove_punct(text):
text_nopunct = ''.join([char for char in text if char not in string.punctuation])
return text_nopunct
if punct == 's':
data[column] = data[column].apply(lambda x: remove_punct(x))
if lower == 's':
data[column] = [token.lower() for token in data[column]]
if token == 's':
data[column] = [word_tokenize(word) for word in data[column]]
def remove_stopwords(tokenized_list):
text = [word for word in tokenized_list if word not in stopword]
return text
if stopw == 's':
data[column] = data[column].apply(lambda x: remove_stopwords(x))
def stemming(tokenized_text):
text = [ps.stem(word) for word in tokenized_text]
return text
if stm == 's':
data[column] = data[column].apply(lambda x: stemming(x))
def lemmatizing(tokenized_text):
text = [wn.lemmatize(word) for word in tokenized_text]
return text
if lmz == 's':
data[column] = data[column].apply(lambda x: lemmatizing(x))
data[column] = [' '.join(word) for word in data[column]]
return data
df_clean = df_balanced.copy()
df_clean = limpa_dataframe(df_clean, column='text', hmtl='s', emoji='s', punct='s', stopw='s', lng='english', token='s', stm='s', lmz='s')
messages = df_clean['text']
message_embeddings = embed(messages)
from sklearn.manifold import TSNE
tsne = TSNE(n_components=2, perplexity=5)
tsne_result = tsne.fit_transform(message_embeddings)
tsne_df = pd.DataFrame({'X': tsne_result[:, 0], 'Y': tsne_result[:, 1]})
from scipy.spatial.distance import pdist
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import cophenet
from scipy.cluster.hierarchy import fcluster
X = tsne_result
Z = linkage(X, 'average', 'cosine')
threshold = 1 - 0.9
c = fcluster(Z, threshold, criterion='distance')
myset = set(c.tolist())
my_list = list(set(myset))
dendrogram(Z, truncate_mode='lastp', p=100, show_leaf_counts=False, leaf_rotation=90.0, leaf_font_size=12.0, show_contracted=True)
from sklearn.cluster import KMeans
clf_k = KMeans(n_clusters=3, init='k-means++', max_iter=300, n_init=5, random_state=0)
pred_y_k = clf_k.fit_predict(X)
X = message_embeddings
import numpy as np
from sklearn.datasets.samples_generator import make_blobs
from sklearn.neighbors import NearestNeighbors
from sklearn.cluster import DBSCAN
from matplotlib import pyplot as plt
import seaborn as sns
sns.set()
neigh = NearestNeighbors(n_neighbors=2)
nbrs = neigh.fit(X)
distances, indices = nbrs.kneighbors(X)
distances = np.sort(distances, axis=0)
distances = distances[:, 1]
from sklearn.mixture import GaussianMixture
clf_em = GaussianMixture(n_components=5, init_params='random', covariance_type='full')
pred_y_em = clf_em.fit_predict(X)
myset = set(pred_y_em.tolist())
my_list = list(set(myset))
print(len(my_list))
sns.scatterplot(x='X', y='Y', hue=pred_y_em, data=tsne_df)
|
code
|
33111267/cell_22
|
[
"text_plain_output_1.png",
"image_output_1.png"
] |
from nltk import word_tokenize
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import fcluster
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
from unidecode import unidecode
import bs4
import nltk
import pandas as pd
import pandas as pd
import seaborn as sns
import seaborn as sns
import string
import tensorflow_hub as hub
import unicodedata
pd.options.display.max_colwidth = 255
df = pd.read_csv('../input/airline-sentiment/Tweets.csv')
module_url = 'https://tfhub.dev/google/universal-sentence-encoder/4'
model = hub.load(module_url)
def embed(input):
return model(input)
import seaborn as sns
df_neg = df.query("airline_sentiment == 'negative'").head(1000).copy()
df_neu = df.query("airline_sentiment == 'neutral'").head(1000).copy()
df_pos = df.query("airline_sentiment == 'positive'").head(1000).copy()
df_balanced = pd.concat([df_neg, df_neu, df_pos], ignore_index=True)
df_balanced = df_balanced.sample(frac=1).reset_index(drop=True)
comments = df_balanced['text'].copy()
def limpa_dataframe(data, column, hmtl='s', emoji='s', punct='s', lower='s', stopw='s', lng='english', token='s', stm='s', lmz='s'):
import nltk
from nltk import word_tokenize
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
import bs4
import string
wn = nltk.WordNetLemmatizer()
ps = nltk.PorterStemmer()
stopword = nltk.corpus.stopwords.words(lng)
if hmtl == 's':
data[column] = data[column].apply(lambda x: bs4.BeautifulSoup(x, 'lxml').get_text())
def deEmojify(inputString):
import unicodedata
from unidecode import unidecode
returnString = ''
for character in inputString:
try:
character.encode('ascii')
returnString += character
except UnicodeEncodeError:
replaced = unidecode(str(character))
if replaced != '':
returnString += replaced
else:
try:
returnString += '[' + unicodedata.name(character) + ']'
except ValueError:
returnString += '[x]'
return returnString
if emoji == 's':
data[column] = data[column].apply(lambda x: deEmojify(x))
def remove_punct(text):
text_nopunct = ''.join([char for char in text if char not in string.punctuation])
return text_nopunct
if punct == 's':
data[column] = data[column].apply(lambda x: remove_punct(x))
if lower == 's':
data[column] = [token.lower() for token in data[column]]
if token == 's':
data[column] = [word_tokenize(word) for word in data[column]]
def remove_stopwords(tokenized_list):
text = [word for word in tokenized_list if word not in stopword]
return text
if stopw == 's':
data[column] = data[column].apply(lambda x: remove_stopwords(x))
def stemming(tokenized_text):
text = [ps.stem(word) for word in tokenized_text]
return text
if stm == 's':
data[column] = data[column].apply(lambda x: stemming(x))
def lemmatizing(tokenized_text):
text = [wn.lemmatize(word) for word in tokenized_text]
return text
if lmz == 's':
data[column] = data[column].apply(lambda x: lemmatizing(x))
data[column] = [' '.join(word) for word in data[column]]
return data
df_clean = df_balanced.copy()
df_clean = limpa_dataframe(df_clean, column='text', hmtl='s', emoji='s', punct='s', stopw='s', lng='english', token='s', stm='s', lmz='s')
messages = df_clean['text']
message_embeddings = embed(messages)
from sklearn.manifold import TSNE
tsne = TSNE(n_components=2, perplexity=5)
tsne_result = tsne.fit_transform(message_embeddings)
tsne_df = pd.DataFrame({'X': tsne_result[:, 0], 'Y': tsne_result[:, 1]})
from scipy.spatial.distance import pdist
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import cophenet
from scipy.cluster.hierarchy import fcluster
X = tsne_result
Z = linkage(X, 'average', 'cosine')
threshold = 1 - 0.9
c = fcluster(Z, threshold, criterion='distance')
myset = set(c.tolist())
my_list = list(set(myset))
from sklearn.cluster import KMeans
clf_k = KMeans(n_clusters=3, init='k-means++', max_iter=300, n_init=5, random_state=0)
pred_y_k = clf_k.fit_predict(X)
sns.scatterplot(x='X', y='Y', hue=pred_y_k, palette=['red', 'orange', 'blue'], data=tsne_df)
|
code
|
33111267/cell_10
|
[
"text_html_output_1.png"
] |
import pandas as pd
import pandas as pd
import seaborn as sns
import seaborn as sns
pd.options.display.max_colwidth = 255
df = pd.read_csv('../input/airline-sentiment/Tweets.csv')
import seaborn as sns
df_neg = df.query("airline_sentiment == 'negative'").head(1000).copy()
df_neu = df.query("airline_sentiment == 'neutral'").head(1000).copy()
df_pos = df.query("airline_sentiment == 'positive'").head(1000).copy()
df_balanced = pd.concat([df_neg, df_neu, df_pos], ignore_index=True)
df_balanced = df_balanced.sample(frac=1).reset_index(drop=True)
comments = df_balanced['text'].copy()
sns.countplot(x='airline_sentiment', data=df_balanced)
|
code
|
33111267/cell_27
|
[
"image_output_1.png"
] |
from nltk import word_tokenize
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import fcluster
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
from sklearn.mixture import GaussianMixture
from sklearn.neighbors import NearestNeighbors
from unidecode import unidecode
import bs4
import matplotlib.pyplot as plt
import nltk
import numpy as np
import numpy as np
import numpy as np
import pandas as pd
import pandas as pd
import seaborn as sns
import seaborn as sns
import seaborn as sns
import string
import tensorflow_hub as hub
import unicodedata
pd.options.display.max_colwidth = 255
df = pd.read_csv('../input/airline-sentiment/Tweets.csv')
comments = df['text']
module_url = 'https://tfhub.dev/google/universal-sentence-encoder/4'
model = hub.load(module_url)
def embed(input):
return model(input)
import seaborn as sns
df_neg = df.query("airline_sentiment == 'negative'").head(1000).copy()
df_neu = df.query("airline_sentiment == 'neutral'").head(1000).copy()
df_pos = df.query("airline_sentiment == 'positive'").head(1000).copy()
df_balanced = pd.concat([df_neg, df_neu, df_pos], ignore_index=True)
df_balanced = df_balanced.sample(frac=1).reset_index(drop=True)
comments = df_balanced['text'].copy()
def limpa_dataframe(data, column, hmtl='s', emoji='s', punct='s', lower='s', stopw='s', lng='english', token='s', stm='s', lmz='s'):
import nltk
from nltk import word_tokenize
from nltk.stem.porter import PorterStemmer
from nltk.stem import WordNetLemmatizer
import bs4
import string
wn = nltk.WordNetLemmatizer()
ps = nltk.PorterStemmer()
stopword = nltk.corpus.stopwords.words(lng)
if hmtl == 's':
data[column] = data[column].apply(lambda x: bs4.BeautifulSoup(x, 'lxml').get_text())
def deEmojify(inputString):
import unicodedata
from unidecode import unidecode
returnString = ''
for character in inputString:
try:
character.encode('ascii')
returnString += character
except UnicodeEncodeError:
replaced = unidecode(str(character))
if replaced != '':
returnString += replaced
else:
try:
returnString += '[' + unicodedata.name(character) + ']'
except ValueError:
returnString += '[x]'
return returnString
if emoji == 's':
data[column] = data[column].apply(lambda x: deEmojify(x))
def remove_punct(text):
text_nopunct = ''.join([char for char in text if char not in string.punctuation])
return text_nopunct
if punct == 's':
data[column] = data[column].apply(lambda x: remove_punct(x))
if lower == 's':
data[column] = [token.lower() for token in data[column]]
if token == 's':
data[column] = [word_tokenize(word) for word in data[column]]
def remove_stopwords(tokenized_list):
text = [word for word in tokenized_list if word not in stopword]
return text
if stopw == 's':
data[column] = data[column].apply(lambda x: remove_stopwords(x))
def stemming(tokenized_text):
text = [ps.stem(word) for word in tokenized_text]
return text
if stm == 's':
data[column] = data[column].apply(lambda x: stemming(x))
def lemmatizing(tokenized_text):
text = [wn.lemmatize(word) for word in tokenized_text]
return text
if lmz == 's':
data[column] = data[column].apply(lambda x: lemmatizing(x))
data[column] = [' '.join(word) for word in data[column]]
return data
df_clean = df_balanced.copy()
df_clean = limpa_dataframe(df_clean, column='text', hmtl='s', emoji='s', punct='s', stopw='s', lng='english', token='s', stm='s', lmz='s')
messages = df_clean['text']
message_embeddings = embed(messages)
from sklearn.manifold import TSNE
tsne = TSNE(n_components=2, perplexity=5)
tsne_result = tsne.fit_transform(message_embeddings)
tsne_df = pd.DataFrame({'X': tsne_result[:, 0], 'Y': tsne_result[:, 1]})
from scipy.spatial.distance import pdist
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import cophenet
from scipy.cluster.hierarchy import fcluster
X = tsne_result
Z = linkage(X, 'average', 'cosine')
threshold = 1 - 0.9
c = fcluster(Z, threshold, criterion='distance')
myset = set(c.tolist())
my_list = list(set(myset))
dendrogram(Z, truncate_mode='lastp', p=100, show_leaf_counts=False, leaf_rotation=90.0, leaf_font_size=12.0, show_contracted=True)
from sklearn.cluster import KMeans
clf_k = KMeans(n_clusters=3, init='k-means++', max_iter=300, n_init=5, random_state=0)
pred_y_k = clf_k.fit_predict(X)
X = message_embeddings
import numpy as np
from sklearn.datasets.samples_generator import make_blobs
from sklearn.neighbors import NearestNeighbors
from sklearn.cluster import DBSCAN
from matplotlib import pyplot as plt
import seaborn as sns
sns.set()
neigh = NearestNeighbors(n_neighbors=2)
nbrs = neigh.fit(X)
distances, indices = nbrs.kneighbors(X)
distances = np.sort(distances, axis=0)
distances = distances[:, 1]
from sklearn.mixture import GaussianMixture
clf_em = GaussianMixture(n_components=5, init_params='random', covariance_type='full')
pred_y_em = clf_em.fit_predict(X)
myset = set(pred_y_em.tolist())
my_list = list(set(myset))
export = pd.DataFrame()
export['Comentario'] = comments
export['cluster'] = c
pd.options.display.max_colwidth = 255
print(export.query('cluster == 1')['Comentario'].head(10))
|
code
|
33111267/cell_5
|
[
"text_plain_output_1.png",
"image_output_1.png"
] |
import pandas as pd
import pandas as pd
pd.options.display.max_colwidth = 255
df = pd.read_csv('../input/airline-sentiment/Tweets.csv')
comments = df['text']
comments.head(30)
|
code
|
129001574/cell_4
|
[
"text_html_output_1.png"
] |
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
import pandas as pd
import numpy as np
import math
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.spatial.distance import squareform
from scipy.cluster.hierarchy import dendrogram, linkage
import warnings
warnings.filterwarnings('ignore')
from scipy.cluster.hierarchy import dendrogram
from sklearn.cluster import AgglomerativeClustering
from matplotlib import pyplot as plt
pro = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_proteins.csv')
train = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv')
test_proteins = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/example_test_files/test_proteins.csv')
pro1 = pro.pivot(index=['visit_id', 'visit_month', 'patient_id'], columns='UniProt', values='NPX').reset_index().rename_axis(None, axis=1)
pro3 = pro1.dropna(thresh=1000, axis=1)
FEATURES_ALL = pro3.iloc[:, 3:].columns.tolist()
pro4 = pro3.dropna()
pro5 = pro4.copy()
for i in FEATURES_ALL:
pro5.loc[:, i] = (pro4.loc[:, i] - pro4.loc[:, i].mean(axis=0)) / pro4.loc[:, i].std(axis=0)
pro6 = train.merge(pro5, how='left', on='visit_id').dropna(subset=['Q92823']).rename(columns={'patient_id_x': 'patient_id', 'visit_month_x': 'visit_month'})
pro6
pro7 = pro6[pro6['visit_month'] <= 36]
FEATURES_PPI = ['O00584', 'O14773', 'O60888', 'O94919', 'P00441', 'P00734', 'P00736', 'P00738', 'P00746', 'P00747', 'P00748', 'P00751', 'P01008', 'P01009', 'P01011', 'P01023', 'P01024', 'P01033', 'P01344', 'P01621', 'P01717', 'P01834', 'P01857', 'P01859', 'P01860', 'P01876', 'P01877', 'P02452', 'P02652', 'P02656', 'P02679', 'P02747', 'P02749', 'P02750', 'P02751', 'P02753', 'P02760', 'P02763', 'P02765', 'P02766', 'P02768', 'P02787', 'P02790', 'P04004', 'P04156', 'P04180', 'P04196', 'P04207', 'P04211', 'P04216', 'P04217', 'P04275', 'P04433', 'P05067', 'P05090', 'P05155', 'P05156', 'P05546', 'P06681', 'P06727', 'P07195', 'P07225', 'P07339', 'P07711', 'P07858', 'P07998', 'P08294', 'P08493', 'P08697', 'P09486', 'P10451', 'P10643', 'P13521', 'P13611', 'P16070', 'P18065', 'P19652', 'P19823', 'P24592', 'P25311', 'P35542', 'P36222', 'P39060', 'P40925', 'P41222', 'P43251', 'P43652', 'P49908', 'P51884', 'P54289', 'P61626', 'P80748', 'P98160', 'Q13283', 'Q13451', 'Q14118', 'Q14508', 'Q14515', 'Q14624', 'Q16270', 'Q16610', 'Q6UXB8', 'Q7Z5P9', 'Q8IWV7', 'Q8N2S1', 'Q8NBJ4', 'Q92520', 'Q92876', 'Q96PD5', 'Q9BY67', 'Q9NQ79', 'Q9Y646', 'Q9Y6R7']
SUPPLYMENT_FEATURE = ['P00450', 'P10451', 'P01033', 'P01008', 'P02647', 'P01024', 'Q92876']
FEATURES_PPI = list(set(SUPPLYMENT_FEATURE) | set(FEATURES_PPI))
data = pro7[FEATURES_PPI]
corr = data.corr()
corr
adjoint = corr
adjoint
pro1 = pro.pivot(index=['visit_id', 'visit_month', 'patient_id'], columns='UniProt', values='NPX').reset_index().rename_axis(None, axis=1)
pro3 = pro1.dropna(thresh=1000, axis=1)
FEATURES_ALL = pro3.iloc[:, 3:].columns.tolist()
FEATURES_DLE = list(set(FEATURES_ALL) - set(FEATURES_PPI))
for i in FEATURES_ALL:
pro3.loc[:, i] = pro3.loc[:, i].fillna(pro3.loc[:, i].median())
pro4 = pro3.dropna()
pro5 = pro4.copy()
for i in FEATURES_ALL:
pro5.loc[:, i] = (pro4.loc[:, i] - pro4.loc[:, i].mean(axis=0)) / pro4.loc[:, i].std(axis=0)
pro6 = train.merge(pro5, how='left', on='visit_id').dropna(subset=['Q92823']).rename(columns={'patient_id_x': 'patient_id', 'visit_month_x': 'visit_month'})
pro6.drop(FEATURES_DLE, axis=1, inplace=True)
finaldata = pro6
finaldata = finaldata.dropna()
finaldata = finaldata.reset_index()
finaldata.visit_month = finaldata.visit_month.astype('float')
finaldata
|
code
|
129001574/cell_6
|
[
"text_plain_output_1.png"
] |
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
import pandas as pd
import numpy as np
import math
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.spatial.distance import squareform
from scipy.cluster.hierarchy import dendrogram, linkage
import warnings
warnings.filterwarnings('ignore')
from scipy.cluster.hierarchy import dendrogram
from sklearn.cluster import AgglomerativeClustering
from matplotlib import pyplot as plt
pro = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_proteins.csv')
train = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv')
test_proteins = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/example_test_files/test_proteins.csv')
pro1 = pro.pivot(index=['visit_id', 'visit_month', 'patient_id'], columns='UniProt', values='NPX').reset_index().rename_axis(None, axis=1)
pro3 = pro1.dropna(thresh=1000, axis=1)
FEATURES_ALL = pro3.iloc[:, 3:].columns.tolist()
pro4 = pro3.dropna()
pro5 = pro4.copy()
for i in FEATURES_ALL:
pro5.loc[:, i] = (pro4.loc[:, i] - pro4.loc[:, i].mean(axis=0)) / pro4.loc[:, i].std(axis=0)
pro6 = train.merge(pro5, how='left', on='visit_id').dropna(subset=['Q92823']).rename(columns={'patient_id_x': 'patient_id', 'visit_month_x': 'visit_month'})
pro6
pro7 = pro6[pro6['visit_month'] <= 36]
FEATURES_PPI = ['O00584', 'O14773', 'O60888', 'O94919', 'P00441', 'P00734', 'P00736', 'P00738', 'P00746', 'P00747', 'P00748', 'P00751', 'P01008', 'P01009', 'P01011', 'P01023', 'P01024', 'P01033', 'P01344', 'P01621', 'P01717', 'P01834', 'P01857', 'P01859', 'P01860', 'P01876', 'P01877', 'P02452', 'P02652', 'P02656', 'P02679', 'P02747', 'P02749', 'P02750', 'P02751', 'P02753', 'P02760', 'P02763', 'P02765', 'P02766', 'P02768', 'P02787', 'P02790', 'P04004', 'P04156', 'P04180', 'P04196', 'P04207', 'P04211', 'P04216', 'P04217', 'P04275', 'P04433', 'P05067', 'P05090', 'P05155', 'P05156', 'P05546', 'P06681', 'P06727', 'P07195', 'P07225', 'P07339', 'P07711', 'P07858', 'P07998', 'P08294', 'P08493', 'P08697', 'P09486', 'P10451', 'P10643', 'P13521', 'P13611', 'P16070', 'P18065', 'P19652', 'P19823', 'P24592', 'P25311', 'P35542', 'P36222', 'P39060', 'P40925', 'P41222', 'P43251', 'P43652', 'P49908', 'P51884', 'P54289', 'P61626', 'P80748', 'P98160', 'Q13283', 'Q13451', 'Q14118', 'Q14508', 'Q14515', 'Q14624', 'Q16270', 'Q16610', 'Q6UXB8', 'Q7Z5P9', 'Q8IWV7', 'Q8N2S1', 'Q8NBJ4', 'Q92520', 'Q92876', 'Q96PD5', 'Q9BY67', 'Q9NQ79', 'Q9Y646', 'Q9Y6R7']
SUPPLYMENT_FEATURE = ['P00450', 'P10451', 'P01033', 'P01008', 'P02647', 'P01024', 'Q92876']
FEATURES_PPI = list(set(SUPPLYMENT_FEATURE) | set(FEATURES_PPI))
data = pro7[FEATURES_PPI]
corr = data.corr()
corr
adjoint = corr
adjoint
pro1 = pro.pivot(index=['visit_id', 'visit_month', 'patient_id'], columns='UniProt', values='NPX').reset_index().rename_axis(None, axis=1)
pro3 = pro1.dropna(thresh=1000, axis=1)
FEATURES_ALL = pro3.iloc[:, 3:].columns.tolist()
FEATURES_DLE = list(set(FEATURES_ALL) - set(FEATURES_PPI))
for i in FEATURES_ALL:
pro3.loc[:, i] = pro3.loc[:, i].fillna(pro3.loc[:, i].median())
pro4 = pro3.dropna()
pro5 = pro4.copy()
for i in FEATURES_ALL:
pro5.loc[:, i] = (pro4.loc[:, i] - pro4.loc[:, i].mean(axis=0)) / pro4.loc[:, i].std(axis=0)
pro6 = train.merge(pro5, how='left', on='visit_id').dropna(subset=['Q92823']).rename(columns={'patient_id_x': 'patient_id', 'visit_month_x': 'visit_month'})
pro6.drop(FEATURES_DLE, axis=1, inplace=True)
finaldata = pro6
finaldata = finaldata.dropna()
finaldata = finaldata.reset_index()
finaldata.visit_month = finaldata.visit_month.astype('float')
finaldata
target = ['updrs_1', 'updrs_2', 'updrs_3', 'updrs_4']
x = finaldata[FEATURES_PPI]
y = finaldata[target]
adjoint1 = np.array(adjoint)[np.newaxis, :, :]
adjoint2 = np.repeat(adjoint1, len(finaldata), 0)
print(adjoint2.shape)
x1 = x.values[:, :, np.newaxis]
print(x1.shape)
|
code
|
129001574/cell_2
|
[
"text_html_output_1.png",
"text_plain_output_1.png"
] |
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
import pandas as pd
import numpy as np
import math
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.spatial.distance import squareform
from scipy.cluster.hierarchy import dendrogram, linkage
import warnings
warnings.filterwarnings('ignore')
from scipy.cluster.hierarchy import dendrogram
from sklearn.cluster import AgglomerativeClustering
from matplotlib import pyplot as plt
pro = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_proteins.csv')
train = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv')
test_proteins = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/example_test_files/test_proteins.csv')
pro1 = pro.pivot(index=['visit_id', 'visit_month', 'patient_id'], columns='UniProt', values='NPX').reset_index().rename_axis(None, axis=1)
pro3 = pro1.dropna(thresh=1000, axis=1)
FEATURES_ALL = pro3.iloc[:, 3:].columns.tolist()
pro4 = pro3.dropna()
pro5 = pro4.copy()
for i in FEATURES_ALL:
pro5.loc[:, i] = (pro4.loc[:, i] - pro4.loc[:, i].mean(axis=0)) / pro4.loc[:, i].std(axis=0)
pro6 = train.merge(pro5, how='left', on='visit_id').dropna(subset=['Q92823']).rename(columns={'patient_id_x': 'patient_id', 'visit_month_x': 'visit_month'})
pro6
pro7 = pro6[pro6['visit_month'] <= 36]
FEATURES_PPI = ['O00584', 'O14773', 'O60888', 'O94919', 'P00441', 'P00734', 'P00736', 'P00738', 'P00746', 'P00747', 'P00748', 'P00751', 'P01008', 'P01009', 'P01011', 'P01023', 'P01024', 'P01033', 'P01344', 'P01621', 'P01717', 'P01834', 'P01857', 'P01859', 'P01860', 'P01876', 'P01877', 'P02452', 'P02652', 'P02656', 'P02679', 'P02747', 'P02749', 'P02750', 'P02751', 'P02753', 'P02760', 'P02763', 'P02765', 'P02766', 'P02768', 'P02787', 'P02790', 'P04004', 'P04156', 'P04180', 'P04196', 'P04207', 'P04211', 'P04216', 'P04217', 'P04275', 'P04433', 'P05067', 'P05090', 'P05155', 'P05156', 'P05546', 'P06681', 'P06727', 'P07195', 'P07225', 'P07339', 'P07711', 'P07858', 'P07998', 'P08294', 'P08493', 'P08697', 'P09486', 'P10451', 'P10643', 'P13521', 'P13611', 'P16070', 'P18065', 'P19652', 'P19823', 'P24592', 'P25311', 'P35542', 'P36222', 'P39060', 'P40925', 'P41222', 'P43251', 'P43652', 'P49908', 'P51884', 'P54289', 'P61626', 'P80748', 'P98160', 'Q13283', 'Q13451', 'Q14118', 'Q14508', 'Q14515', 'Q14624', 'Q16270', 'Q16610', 'Q6UXB8', 'Q7Z5P9', 'Q8IWV7', 'Q8N2S1', 'Q8NBJ4', 'Q92520', 'Q92876', 'Q96PD5', 'Q9BY67', 'Q9NQ79', 'Q9Y646', 'Q9Y6R7']
SUPPLYMENT_FEATURE = ['P00450', 'P10451', 'P01033', 'P01008', 'P02647', 'P01024', 'Q92876']
FEATURES_PPI = list(set(SUPPLYMENT_FEATURE) | set(FEATURES_PPI))
print(len(FEATURES_PPI))
data = pro7[FEATURES_PPI]
corr = data.corr()
corr
adjoint = corr
adjoint
|
code
|
129001574/cell_1
|
[
"text_plain_output_1.png"
] |
import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
|
code
|
129001574/cell_7
|
[
"text_plain_output_1.png"
] |
pip install spektral
|
code
|
129001574/cell_8
|
[
"application_vnd.jupyter.stderr_output_1.png"
] |
from spektral.layers import GCNConv
from spektral.layers import GCNConv
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.layers import Input, Dropout, Dense,Reshape,GlobalMaxPool1D,MaxPool1D
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
import numpy as np
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import tensorflow as tf
import tensorflow.keras.backend as K
import warnings
import pandas as pd
import numpy as np
import math
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.spatial.distance import squareform
from scipy.cluster.hierarchy import dendrogram, linkage
import warnings
warnings.filterwarnings('ignore')
from scipy.cluster.hierarchy import dendrogram
from sklearn.cluster import AgglomerativeClustering
from matplotlib import pyplot as plt
pro = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_proteins.csv')
train = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv')
test_proteins = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/example_test_files/test_proteins.csv')
pro1 = pro.pivot(index=['visit_id', 'visit_month', 'patient_id'], columns='UniProt', values='NPX').reset_index().rename_axis(None, axis=1)
pro3 = pro1.dropna(thresh=1000, axis=1)
FEATURES_ALL = pro3.iloc[:, 3:].columns.tolist()
pro4 = pro3.dropna()
pro5 = pro4.copy()
for i in FEATURES_ALL:
pro5.loc[:, i] = (pro4.loc[:, i] - pro4.loc[:, i].mean(axis=0)) / pro4.loc[:, i].std(axis=0)
pro6 = train.merge(pro5, how='left', on='visit_id').dropna(subset=['Q92823']).rename(columns={'patient_id_x': 'patient_id', 'visit_month_x': 'visit_month'})
pro6
pro7 = pro6[pro6['visit_month'] <= 36]
FEATURES_PPI = ['O00584', 'O14773', 'O60888', 'O94919', 'P00441', 'P00734', 'P00736', 'P00738', 'P00746', 'P00747', 'P00748', 'P00751', 'P01008', 'P01009', 'P01011', 'P01023', 'P01024', 'P01033', 'P01344', 'P01621', 'P01717', 'P01834', 'P01857', 'P01859', 'P01860', 'P01876', 'P01877', 'P02452', 'P02652', 'P02656', 'P02679', 'P02747', 'P02749', 'P02750', 'P02751', 'P02753', 'P02760', 'P02763', 'P02765', 'P02766', 'P02768', 'P02787', 'P02790', 'P04004', 'P04156', 'P04180', 'P04196', 'P04207', 'P04211', 'P04216', 'P04217', 'P04275', 'P04433', 'P05067', 'P05090', 'P05155', 'P05156', 'P05546', 'P06681', 'P06727', 'P07195', 'P07225', 'P07339', 'P07711', 'P07858', 'P07998', 'P08294', 'P08493', 'P08697', 'P09486', 'P10451', 'P10643', 'P13521', 'P13611', 'P16070', 'P18065', 'P19652', 'P19823', 'P24592', 'P25311', 'P35542', 'P36222', 'P39060', 'P40925', 'P41222', 'P43251', 'P43652', 'P49908', 'P51884', 'P54289', 'P61626', 'P80748', 'P98160', 'Q13283', 'Q13451', 'Q14118', 'Q14508', 'Q14515', 'Q14624', 'Q16270', 'Q16610', 'Q6UXB8', 'Q7Z5P9', 'Q8IWV7', 'Q8N2S1', 'Q8NBJ4', 'Q92520', 'Q92876', 'Q96PD5', 'Q9BY67', 'Q9NQ79', 'Q9Y646', 'Q9Y6R7']
SUPPLYMENT_FEATURE = ['P00450', 'P10451', 'P01033', 'P01008', 'P02647', 'P01024', 'Q92876']
FEATURES_PPI = list(set(SUPPLYMENT_FEATURE) | set(FEATURES_PPI))
data = pro7[FEATURES_PPI]
corr = data.corr()
corr
adjoint = corr
adjoint
pro1 = pro.pivot(index=['visit_id', 'visit_month', 'patient_id'], columns='UniProt', values='NPX').reset_index().rename_axis(None, axis=1)
pro3 = pro1.dropna(thresh=1000, axis=1)
FEATURES_ALL = pro3.iloc[:, 3:].columns.tolist()
FEATURES_DLE = list(set(FEATURES_ALL) - set(FEATURES_PPI))
for i in FEATURES_ALL:
pro3.loc[:, i] = pro3.loc[:, i].fillna(pro3.loc[:, i].median())
pro4 = pro3.dropna()
pro5 = pro4.copy()
for i in FEATURES_ALL:
pro5.loc[:, i] = (pro4.loc[:, i] - pro4.loc[:, i].mean(axis=0)) / pro4.loc[:, i].std(axis=0)
pro6 = train.merge(pro5, how='left', on='visit_id').dropna(subset=['Q92823']).rename(columns={'patient_id_x': 'patient_id', 'visit_month_x': 'visit_month'})
pro6.drop(FEATURES_DLE, axis=1, inplace=True)
finaldata = pro6
finaldata = finaldata.dropna()
finaldata = finaldata.reset_index()
finaldata.visit_month = finaldata.visit_month.astype('float')
finaldata
target = ['updrs_1', 'updrs_2', 'updrs_3', 'updrs_4']
x = finaldata[FEATURES_PPI]
y = finaldata[target]
adjoint1 = np.array(adjoint)[np.newaxis, :, :]
adjoint2 = np.repeat(adjoint1, len(finaldata), 0)
x1 = x.values[:, :, np.newaxis]
from spektral.layers import GCNConv
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Input, Dropout, Dense, Reshape, GlobalMaxPool1D, MaxPool1D
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping
from spektral.layers import GCNConv
from spektral.utils import normalized_adjacency
import tensorflow.keras.backend as K
tf.keras.utils.set_random_seed(1234)
tf.random.set_seed(1234)
def smape_loss(y_true, y_pred):
epsilon = 0.1
y_true = y_true + 1
y_pred = y_pred + 1
numer = K.abs(y_pred - y_true)
denom = K.maximum(K.abs(y_true) + K.abs(y_pred) + epsilon, 0.5 + epsilon)
smape = numer / (denom / 2) * 100
smape = tf.where(tf.math.is_nan(smape), tf.zeros_like(smape), smape)
return smape
def calculate_smape(y_true, y_pred):
y_true, y_pred = (np.array(y_true), np.array(y_pred))
numer = np.round(np.abs(y_pred - y_true), 0)
denom = np.round(np.abs(y_true) + np.abs(y_pred), 0)
return 1 / len(y_true) * np.sum(np.nan_to_num(numer / (denom / 2))) * 100
def build_model():
X_in = Input(shape=(len(adjoint), 1))
A_in = Input((len(adjoint), len(adjoint)), sparse=True)
X_1 = GCNConv(116, activation='relu')([X_in, A_in])
X_2 = GlobalMaxPool1D()(X_1)
def build_model():
X_in = Input(shape=(len(adjoint), 1))
A_in = Input((len(adjoint), len(adjoint)), sparse=True)
X_1 = GCNConv(256, activation='relu')([X_in, A_in])
X_2 = GlobalMaxPool1D()(X_1)
X_3 = Dense(256, activation='relu')(X_2)
X_3 = Dropout(0.3)(X_3)
X_4 = Dense(256, activation='relu')(X_3)
X_5 = Dense(150, activation='relu')(X_4)
X_6 = Dense(150, activation='relu')(X_5)
X_6 = Dropout(0.3)(X_6)
X_7 = Dense(128, activation='relu')(X_6)
X_7 = Dropout(0.3)(X_7)
X_8 = Dense(128, activation='relu')(X_7)
X_8 = Dropout(0.3)(X_8)
output = Dense(4, activation='linear')(X_7)
model = Model(inputs=[X_in, A_in], outputs=output)
return model
model = build_model()
optimizer = Adam(learning_rate=0.005)
early_stopping = EarlyStopping(patience=10, restore_best_weights=True)
model.compile(optimizer=optimizer, loss=smape_loss)
model.summary()
|
code
|
129001574/cell_5
|
[
"text_plain_output_1.png"
] |
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import warnings
import pandas as pd
import numpy as np
import math
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.spatial.distance import squareform
from scipy.cluster.hierarchy import dendrogram, linkage
import warnings
warnings.filterwarnings('ignore')
from scipy.cluster.hierarchy import dendrogram
from sklearn.cluster import AgglomerativeClustering
from matplotlib import pyplot as plt
pro = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_proteins.csv')
train = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv')
test_proteins = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/example_test_files/test_proteins.csv')
pro1 = pro.pivot(index=['visit_id', 'visit_month', 'patient_id'], columns='UniProt', values='NPX').reset_index().rename_axis(None, axis=1)
pro3 = pro1.dropna(thresh=1000, axis=1)
FEATURES_ALL = pro3.iloc[:, 3:].columns.tolist()
pro4 = pro3.dropna()
pro5 = pro4.copy()
for i in FEATURES_ALL:
pro5.loc[:, i] = (pro4.loc[:, i] - pro4.loc[:, i].mean(axis=0)) / pro4.loc[:, i].std(axis=0)
pro6 = train.merge(pro5, how='left', on='visit_id').dropna(subset=['Q92823']).rename(columns={'patient_id_x': 'patient_id', 'visit_month_x': 'visit_month'})
pro6
pro7 = pro6[pro6['visit_month'] <= 36]
FEATURES_PPI = ['O00584', 'O14773', 'O60888', 'O94919', 'P00441', 'P00734', 'P00736', 'P00738', 'P00746', 'P00747', 'P00748', 'P00751', 'P01008', 'P01009', 'P01011', 'P01023', 'P01024', 'P01033', 'P01344', 'P01621', 'P01717', 'P01834', 'P01857', 'P01859', 'P01860', 'P01876', 'P01877', 'P02452', 'P02652', 'P02656', 'P02679', 'P02747', 'P02749', 'P02750', 'P02751', 'P02753', 'P02760', 'P02763', 'P02765', 'P02766', 'P02768', 'P02787', 'P02790', 'P04004', 'P04156', 'P04180', 'P04196', 'P04207', 'P04211', 'P04216', 'P04217', 'P04275', 'P04433', 'P05067', 'P05090', 'P05155', 'P05156', 'P05546', 'P06681', 'P06727', 'P07195', 'P07225', 'P07339', 'P07711', 'P07858', 'P07998', 'P08294', 'P08493', 'P08697', 'P09486', 'P10451', 'P10643', 'P13521', 'P13611', 'P16070', 'P18065', 'P19652', 'P19823', 'P24592', 'P25311', 'P35542', 'P36222', 'P39060', 'P40925', 'P41222', 'P43251', 'P43652', 'P49908', 'P51884', 'P54289', 'P61626', 'P80748', 'P98160', 'Q13283', 'Q13451', 'Q14118', 'Q14508', 'Q14515', 'Q14624', 'Q16270', 'Q16610', 'Q6UXB8', 'Q7Z5P9', 'Q8IWV7', 'Q8N2S1', 'Q8NBJ4', 'Q92520', 'Q92876', 'Q96PD5', 'Q9BY67', 'Q9NQ79', 'Q9Y646', 'Q9Y6R7']
SUPPLYMENT_FEATURE = ['P00450', 'P10451', 'P01033', 'P01008', 'P02647', 'P01024', 'Q92876']
FEATURES_PPI = list(set(SUPPLYMENT_FEATURE) | set(FEATURES_PPI))
data = pro7[FEATURES_PPI]
corr = data.corr()
corr
adjoint = corr
adjoint
pro1 = pro.pivot(index=['visit_id', 'visit_month', 'patient_id'], columns='UniProt', values='NPX').reset_index().rename_axis(None, axis=1)
pro3 = pro1.dropna(thresh=1000, axis=1)
FEATURES_ALL = pro3.iloc[:, 3:].columns.tolist()
FEATURES_DLE = list(set(FEATURES_ALL) - set(FEATURES_PPI))
for i in FEATURES_ALL:
pro3.loc[:, i] = pro3.loc[:, i].fillna(pro3.loc[:, i].median())
pro4 = pro3.dropna()
pro5 = pro4.copy()
for i in FEATURES_ALL:
pro5.loc[:, i] = (pro4.loc[:, i] - pro4.loc[:, i].mean(axis=0)) / pro4.loc[:, i].std(axis=0)
pro6 = train.merge(pro5, how='left', on='visit_id').dropna(subset=['Q92823']).rename(columns={'patient_id_x': 'patient_id', 'visit_month_x': 'visit_month'})
pro6.drop(FEATURES_DLE, axis=1, inplace=True)
finaldata = pro6
finaldata = finaldata.dropna()
finaldata = finaldata.reset_index()
finaldata.visit_month = finaldata.visit_month.astype('float')
finaldata
target = ['updrs_1', 'updrs_2', 'updrs_3', 'updrs_4']
x = finaldata[FEATURES_PPI]
y = finaldata[target]
print(x.shape)
print(y.shape)
|
code
|
73079164/cell_1
|
[
"text_plain_output_1.png"
] |
import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
|
code
|
73079164/cell_8
|
[
"application_vnd.jupyter.stderr_output_1.png"
] |
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import OneHotEncoder
from xgboost import XGBRegressor
import optuna
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv', index_col='id')
data_submission = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv', index_col='id')
object_cols = [col for col in data.columns if data[col].dtype == 'object']
num_cols = [col for col in data.columns if data[col].dtype != 'object' and col != 'target']
from sklearn.preprocessing import OneHotEncoder
OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)
OH_cols_train = pd.DataFrame(OH_encoder.fit_transform(X_train[object_cols]))
OH_cols_valid = pd.DataFrame(OH_encoder.transform(X_valid[object_cols]))
OH_cols_train.index = X_train.index
OH_cols_valid.index = X_valid.index
num_X_train = X_train.drop(object_cols, axis=1)
num_X_valid = X_valid.drop(object_cols, axis=1)
OH_X_train = pd.concat([num_X_train, OH_cols_train], axis=1)
OH_X_valid = pd.concat([num_X_valid, OH_cols_valid], axis=1)
from xgboost import XGBRegressor
from sklearn.metrics import mean_squared_error
def optimize_stuff(trial):
learning_rate = trial.suggest_float('learning_rate', 0.01, 0.25, log=True)
reg_lambda = trial.suggest_loguniform('reg_lambda', 1e-08, 100.0)
reg_alpha = trial.suggest_loguniform('reg_alpha', 1e-08, 100.0)
subsample = trial.suggest_float('subsample', 0.1, 1.0)
colsample_bytree = trial.suggest_float('colsample_bytree', 0.1, 1.0)
max_depth = trial.suggest_int('max_depth', 1, 7)
my_model = XGBRegressor(random_state=1, tree_method='gpu_hist', gpu_id=0, predictor='gpu_predictor', n_estimators=7000, learning_rate=learning_rate, reg_lambda=reg_lambda, reg_alpha=reg_alpha, subsample=subsample, colsample_bytree=colsample_bytree, max_depth=max_depth)
my_model.fit(OH_X_train, y_train, early_stopping_rounds=300, eval_set=[(OH_X_valid, y_valid)], verbose=False)
preds_valid = my_model.predict(OH_X_valid)
rmse = mean_squared_error(y_valid, preds_valid, squared=False)
return rmse
import optuna
study = optuna.create_study(direction='minimize')
study.optimize(optimize_stuff, n_trials=1000)
best_params = study.best_params
|
code
|
17115291/cell_13
|
[
"application_vnd.jupyter.stderr_output_1.png"
] |
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
data = pd.read_csv('../input/WorldCups.csv')
data.rename(columns={'Runners-Up': 'RunnersUp'}, inplace=True)
for i in range(len(data.Attendance)):
data.Attendance[i] = data.Attendance[i].replace('.', '')
data.Attendance = pd.to_numeric(data.Attendance)
data.corr()
f, ax = plt.subplots(figsize=(10, 10))
sns.heatmap(data.corr(), annot=True, linewidths=0.5, fmt='.4f', ax=ax)
plt.show()
|
code
|
17115291/cell_25
|
[
"text_plain_output_1.png"
] |
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
data = pd.read_csv('../input/WorldCups.csv')
data.rename(columns={'Runners-Up': 'RunnersUp'}, inplace=True)
for i in range(len(data.Attendance)):
data.Attendance[i] = data.Attendance[i].replace('.', '')
data.Attendance = pd.to_numeric(data.Attendance)
data.corr()
f,ax = plt.subplots(figsize=(10, 10))
sns.heatmap(data.corr(), annot=True, linewidths=.5, fmt= '.4f',ax=ax)
plt.show()
data.columns
data['AverageGoal'] = data.GoalsScored / data.MatchesPlayed
ax = plt.gca()
pd.Series(data.Winner).replace('Germany FR', 'Germany').value_counts().plot('bar', grid=True)
plt.show()
|
code
|
17115291/cell_20
|
[
"image_output_1.png"
] |
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
data = pd.read_csv('../input/WorldCups.csv')
data.rename(columns={'Runners-Up': 'RunnersUp'}, inplace=True)
for i in range(len(data.Attendance)):
data.Attendance[i] = data.Attendance[i].replace('.', '')
data.Attendance = pd.to_numeric(data.Attendance)
data.corr()
f,ax = plt.subplots(figsize=(10, 10))
sns.heatmap(data.corr(), annot=True, linewidths=.5, fmt= '.4f',ax=ax)
plt.show()
data.columns
data['AverageGoal'] = data.GoalsScored / data.MatchesPlayed
data.plot(kind='scatter', x='Year', y='AverageGoal', alpha=0.8, color='blue', figsize=(6, 6))
plt.legend()
plt.xlabel('Year')
plt.ylabel('AverageGoal')
plt.title('Scatter Plot')
plt.show()
|
code
|
17115291/cell_1
|
[
"text_plain_output_1.png"
] |
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
print(os.listdir('../input'))
|
code
|
17115291/cell_7
|
[
"image_output_1.png"
] |
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/WorldCups.csv')
data.rename(columns={'Runners-Up': 'RunnersUp'}, inplace=True)
data
|
code
|
17115291/cell_18
|
[
"text_html_output_1.png"
] |
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
data = pd.read_csv('../input/WorldCups.csv')
data.rename(columns={'Runners-Up': 'RunnersUp'}, inplace=True)
for i in range(len(data.Attendance)):
data.Attendance[i] = data.Attendance[i].replace('.', '')
data.Attendance = pd.to_numeric(data.Attendance)
data.corr()
f,ax = plt.subplots(figsize=(10, 10))
sns.heatmap(data.corr(), annot=True, linewidths=.5, fmt= '.4f',ax=ax)
plt.show()
data.columns
|
code
|
17115291/cell_8
|
[
"image_output_1.png"
] |
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/WorldCups.csv')
data.rename(columns={'Runners-Up': 'RunnersUp'}, inplace=True)
for i in range(len(data.Attendance)):
data.Attendance[i] = data.Attendance[i].replace('.', '')
|
code
|
17115291/cell_16
|
[
"text_plain_output_1.png"
] |
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
data = pd.read_csv('../input/WorldCups.csv')
data.rename(columns={'Runners-Up': 'RunnersUp'}, inplace=True)
for i in range(len(data.Attendance)):
data.Attendance[i] = data.Attendance[i].replace('.', '')
data.Attendance = pd.to_numeric(data.Attendance)
data.corr()
f,ax = plt.subplots(figsize=(10, 10))
sns.heatmap(data.corr(), annot=True, linewidths=.5, fmt= '.4f',ax=ax)
plt.show()
data.plot(kind='scatter', x='Year', y='GoalsScored', alpha=0.8, color='blue', figsize=(6, 6))
plt.legend()
plt.xlabel('Year')
plt.ylabel('GoalsScored')
plt.title('Scatter Plot')
plt.show()
|
code
|
17115291/cell_22
|
[
"image_output_1.png"
] |
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
data = pd.read_csv('../input/WorldCups.csv')
data.rename(columns={'Runners-Up': 'RunnersUp'}, inplace=True)
for i in range(len(data.Attendance)):
data.Attendance[i] = data.Attendance[i].replace('.', '')
data.Attendance = pd.to_numeric(data.Attendance)
data.corr()
f,ax = plt.subplots(figsize=(10, 10))
sns.heatmap(data.corr(), annot=True, linewidths=.5, fmt= '.4f',ax=ax)
plt.show()
data.columns
data['AverageGoal'] = data.GoalsScored / data.MatchesPlayed
ax = plt.gca()
data.plot(kind='line', x='Year', y='GoalsScored', color='green', ax=ax, grid=True, figsize=(7, 7))
data.plot(kind='line', x='Year', y='MatchesPlayed', color='red', ax=ax, grid=True)
data.plot(kind='line', x='Year', y='QualifiedTeams', color='b', ax=ax, grid=True)
plt.legend(loc='upper left')
plt.show()
|
code
|
17115291/cell_10
|
[
"text_plain_output_1.png"
] |
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/WorldCups.csv')
data.rename(columns={'Runners-Up': 'RunnersUp'}, inplace=True)
for i in range(len(data.Attendance)):
data.Attendance[i] = data.Attendance[i].replace('.', '')
data.Attendance = pd.to_numeric(data.Attendance)
data.info()
|
code
|
17115291/cell_12
|
[
"text_html_output_1.png"
] |
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/WorldCups.csv')
data.rename(columns={'Runners-Up': 'RunnersUp'}, inplace=True)
for i in range(len(data.Attendance)):
data.Attendance[i] = data.Attendance[i].replace('.', '')
data.Attendance = pd.to_numeric(data.Attendance)
data.corr()
|
code
|
17115291/cell_5
|
[
"image_output_1.png"
] |
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/WorldCups.csv')
data.info()
|
code
|
72112989/cell_21
|
[
"text_plain_output_1.png",
"image_output_1.png"
] |
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
import pandas as pd
iris = load_iris()
x = pd.DataFrame(data=iris.data, columns=iris.feature_names)
y = iris.target
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier(random_state=0)
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
pred = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
pred.to_csv('result.csv', index=False)
pred
|
code
|
72112989/cell_9
|
[
"text_plain_output_1.png"
] |
from sklearn.datasets import load_iris
import pandas as pd
iris = load_iris()
x = pd.DataFrame(data=iris.data, columns=iris.feature_names)
y = iris.target
x.isnull().sum()
x.describe()
|
code
|
72112989/cell_25
|
[
"text_html_output_1.png"
] |
from sklearn.metrics import accuracy_score, confusion_matrix,classification_report
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier(random_state=0)
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
y_train_pred = model.predict(x_train)
print(accuracy_score(y_train, y_train_pred) * 100)
|
code
|
72112989/cell_26
|
[
"text_plain_output_1.png"
] |
from sklearn.metrics import accuracy_score, confusion_matrix,classification_report
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier(random_state=0)
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(accuracy_score(y_test, y_pred) * 100)
|
code
|
72112989/cell_11
|
[
"text_plain_output_1.png"
] |
from sklearn.datasets import load_iris
import pandas as pd
import seaborn as sns
iris = load_iris()
x = pd.DataFrame(data=iris.data, columns=iris.feature_names)
y = iris.target
x.isnull().sum()
sns.relplot(x='petal length (cm)', y='petal width (cm)', data=x)
|
code
|
72112989/cell_7
|
[
"text_plain_output_1.png"
] |
from sklearn.datasets import load_iris
import pandas as pd
iris = load_iris()
x = pd.DataFrame(data=iris.data, columns=iris.feature_names)
y = iris.target
x.info()
|
code
|
72112989/cell_18
|
[
"text_plain_output_1.png",
"image_output_1.png"
] |
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier(random_state=0)
model.fit(x_train, y_train)
|
code
|
72112989/cell_32
|
[
"text_plain_output_1.png"
] |
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
import numpy as np
import pandas as pd
iris = load_iris()
x = pd.DataFrame(data=iris.data, columns=iris.feature_names)
y = iris.target
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier(random_state=0)
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
pred = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
pred.to_csv('result.csv', index=False)
y_train_pred = model.predict(x_train)
data = []
for i in range(4):
n = float(input())
data.append(n)
data = np.reshape(data, (1, len(data)))
pred = model.predict(data)
if pred == 0:
print('Iris-setosa')
elif pred == 1:
print('Iris-versicolor')
elif pred == 2:
print('Iris-virginica')
else:
pass
|
code
|
72112989/cell_28
|
[
"text_html_output_1.png"
] |
from sklearn.metrics import accuracy_score, confusion_matrix,classification_report
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier(random_state=0)
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(classification_report(y_test, y_pred))
|
code
|
72112989/cell_8
|
[
"image_output_1.png"
] |
from sklearn.datasets import load_iris
import pandas as pd
iris = load_iris()
x = pd.DataFrame(data=iris.data, columns=iris.feature_names)
y = iris.target
x.isnull().sum()
|
code
|
72112989/cell_15
|
[
"text_html_output_1.png"
] |
print(x_train.shape)
print(x_test.shape)
|
code
|
72112989/cell_35
|
[
"text_plain_output_1.png"
] |
from IPython.display import Image
from six import StringIO
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz
import numpy as np
import pandas as pd
import pydotplus
iris = load_iris()
x = pd.DataFrame(data=iris.data, columns=iris.feature_names)
y = iris.target
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier(random_state=0)
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
pred = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
pred.to_csv('result.csv', index=False)
y_train_pred = model.predict(x_train)
data = []
for i in range(4):
n = float(input())
data.append(n)
data = np.reshape(data, (1, len(data)))
pred = model.predict(data)
from six import StringIO
from IPython.display import Image
from sklearn.tree import export_graphviz
import pydotplus
dot_data = StringIO()
export_graphviz(model, out_file=dot_data, feature_names=iris.feature_names, filled=True, rounded=True, special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
Image(graph.create_png())
|
code
|
72112989/cell_31
|
[
"text_plain_output_1.png"
] |
import numpy as np
data = []
print('enter specifications: ')
for i in range(4):
if i == 0:
print('SepalLengthCm:')
elif i == 1:
print('SepalWidthCm:')
elif i == 2:
print('PetalLengthCm:')
elif i == 3:
print('PetalWidthCm:')
n = float(input())
data.append(n)
data = np.reshape(data, (1, len(data)))
print(data)
|
code
|
72112989/cell_10
|
[
"text_plain_output_1.png"
] |
from sklearn.datasets import load_iris
import pandas as pd
import seaborn as sns
iris = load_iris()
x = pd.DataFrame(data=iris.data, columns=iris.feature_names)
y = iris.target
x.isnull().sum()
sns.relplot(x='sepal length (cm)', y='sepal width (cm)', data=x)
|
code
|
72112989/cell_27
|
[
"text_plain_output_1.png"
] |
from sklearn.metrics import accuracy_score, confusion_matrix,classification_report
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier(random_state=0)
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(confusion_matrix(y_test, y_pred))
|
code
|
72112989/cell_37
|
[
"text_plain_output_1.png"
] |
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
plt.savefig('img.png')
|
code
|
72112989/cell_12
|
[
"text_plain_output_1.png"
] |
from sklearn.datasets import load_iris
import pandas as pd
iris = load_iris()
x = pd.DataFrame(data=iris.data, columns=iris.feature_names)
y = iris.target
x.isnull().sum()
x.corr()
|
code
|
72112989/cell_5
|
[
"text_plain_output_5.png",
"text_plain_output_4.png",
"text_plain_output_3.png",
"text_plain_output_2.png",
"text_plain_output_1.png"
] |
from sklearn.datasets import load_iris
import pandas as pd
iris = load_iris()
x = pd.DataFrame(data=iris.data, columns=iris.feature_names)
print(x.head())
y = iris.target
print(y)
|
code
|
1005915/cell_4
|
[
"text_html_output_1.png"
] |
from plotly.offline import iplot, init_notebook_mode
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.graph_objs as go
import numpy as np
import pandas as pd
pd.options.mode.chained_assignment = None
import plotly.plotly as py
import plotly.graph_objs as go
from plotly import tools
from plotly.offline import iplot, init_notebook_mode
init_notebook_mode(connected=True)
terror_data = pd.read_csv('../input/globalterrorismdb_0616dist.csv', encoding='ISO-8859-1', usecols=[0, 1, 2, 3, 8, 11, 13, 14, 35, 84, 100, 103])
terror_data = terror_data.rename(columns={'eventid': 'id', 'iyear': 'year', 'imonth': 'month', 'iday': 'day', 'country_txt': 'country', 'provstate': 'state', 'targtype1_txt': 'target', 'weaptype1_txt': 'weapon', 'nkill': 'fatalities', 'nwound': 'injuries'})
terror_data['fatalities'] = terror_data['fatalities'].fillna(0).astype(int)
terror_data['injuries'] = terror_data['injuries'].fillna(0).astype(int)
attacks_france = terror_data[terror_data.country == 'France']
terror_peryear = np.asarray(attacks_france.groupby('year').year.count())
terror_years = np.arange(1970, 2016)
terror_years = np.delete(terror_years, [23])
trace = [go.Scatter(x=terror_years, y=terror_peryear, mode='lines', line=dict(color='rgb(240, 140, 45)', width=3))]
layout = go.Layout(title='Terrorist Attacks by Year in France (1970-2015)', xaxis=dict(rangeslider=dict(thickness=0.05), showline=True, showgrid=False), yaxis=dict(range=[0.1, 425], showline=True, showgrid=False))
figure = dict(data=trace, layout=layout)
iplot(figure)
|
code
|
1005915/cell_1
|
[
"text_plain_output_1.png"
] |
from subprocess import check_output
import numpy as np
import pandas as pd
from subprocess import check_output
print(check_output(['ls', '../input']).decode('utf8'))
|
code
|
1005915/cell_3
|
[
"text_html_output_2.png"
] |
from plotly.offline import iplot, init_notebook_mode
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
pd.options.mode.chained_assignment = None
import plotly.plotly as py
import plotly.graph_objs as go
from plotly import tools
from plotly.offline import iplot, init_notebook_mode
init_notebook_mode(connected=True)
terror_data = pd.read_csv('../input/globalterrorismdb_0616dist.csv', encoding='ISO-8859-1', usecols=[0, 1, 2, 3, 8, 11, 13, 14, 35, 84, 100, 103])
terror_data = terror_data.rename(columns={'eventid': 'id', 'iyear': 'year', 'imonth': 'month', 'iday': 'day', 'country_txt': 'country', 'provstate': 'state', 'targtype1_txt': 'target', 'weaptype1_txt': 'weapon', 'nkill': 'fatalities', 'nwound': 'injuries'})
terror_data['fatalities'] = terror_data['fatalities'].fillna(0).astype(int)
terror_data['injuries'] = terror_data['injuries'].fillna(0).astype(int)
attacks_france = terror_data[terror_data.country == 'France']
attacks_france.head()
|
code
|
74056627/cell_21
|
[
"text_plain_output_1.png"
] |
df[0] = df[0].apply(str)
|
code
|
74056627/cell_9
|
[
"text_plain_output_1.png"
] |
code
|
|
74056627/cell_23
|
[
"text_plain_output_1.png"
] |
df = pd.DataFrame({'a': np.random.rand(10000), 'b': np.random.rand(10000)})
|
code
|
74056627/cell_33
|
[
"text_plain_output_1.png"
] |
import numpy as np
import pandas as pd
s = pd.Series(range(10000))
# Memory saving function credit to https://www.kaggle.com/gemartin/load-data-reduce-memory-usage
def reduce_mem_usage(df):
""" iterate through all the columns of a dataframe and modify the data type
to reduce memory usage.
"""
start_mem = df.memory_usage().sum() / 1024**2
print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
for col in df.columns:
col_type = df[col].dtype.name
if col_type not in ['object', 'category', 'datetime64[ns, UTC]']:
c_min = df[col].min()
c_max = df[col].max()
if str(col_type)[:3] == 'int':
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
else:
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
df[col] = df[col].astype(np.float16)
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
df[col] = df[col].astype(np.float32)
else:
df[col] = df[col].astype(np.float64)
end_mem = df.memory_usage().sum() / 1024**2
print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
return df
x = reduce_mem_usage(df)
np.allclose(s.apply(relu), vect_relu(s))
|
code
|
74056627/cell_20
|
[
"text_plain_output_1.png"
] |
df = pd.DataFrame(pd.date_range(start='1/1/2000', end='1/08/2018'))
|
code
|
74056627/cell_6
|
[
"text_plain_output_1.png"
] |
code
|
|
74056627/cell_29
|
[
"text_plain_output_1.png"
] |
import numpy as np
def reduce_mem_usage(df):
""" iterate through all the columns of a dataframe and modify the data type
to reduce memory usage.
"""
start_mem = df.memory_usage().sum() / 1024 ** 2
print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
for col in df.columns:
col_type = df[col].dtype.name
if col_type not in ['object', 'category', 'datetime64[ns, UTC]']:
c_min = df[col].min()
c_max = df[col].max()
if str(col_type)[:3] == 'int':
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
elif c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
df[col] = df[col].astype(np.float16)
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
df[col] = df[col].astype(np.float32)
else:
df[col] = df[col].astype(np.float64)
end_mem = df.memory_usage().sum() / 1024 ** 2
print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
return df
x = reduce_mem_usage(df)
|
code
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.