path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
128020295/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
128020295/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') players.isnull().sum() print('Tallest player : {0} - {1} cm'.format(players['height'].idxmax(), players['height'].max())) print('Smallest player: {0} - {1} cm'.format(players['height'].idxmin(), players['height'].min())) print() print('Heaviest player: {0} - {1} kg'.format(players['weight'].idxmax(), players['weight'].max())) print('Lightest player: {0} - {1} kg'.format(players['weight'].idxmin(), players['weight'].min())) print() print('Height average of players: ', players['height'].mean()) print('Weight average of players: ', players['weight'].mean())
code
128020295/cell_18
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') seasons_stats[seasons_stats.Age > 40][seasons_stats.PTS > 100] seasons_stats.Pos.value_counts().iloc[0:5] seasons_stats[seasons_stats.Player == 'LeBron James'] seasons_stats[seasons_stats.PTS > 2500].plot(x='Player', y='PTS', kind='bar', figsize=(12, 8))
code
128020295/cell_28
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') seasons_stats[seasons_stats.Age > 40][seasons_stats.PTS > 100] seasons_stats.Pos.value_counts().iloc[0:5] seasons_stats[seasons_stats.Player == 'LeBron James'] triples = seasons_stats.groupby('Year')['3P'].sum() seasons_stats.sort_values('3P', ascending=False)[:25] seasons_stats[seasons_stats.GS < 41].sort_values('MP', ascending=False)[:25] seasons_stats[seasons_stats.GS > 50][seasons_stats.MP < 1000] real_players = seasons_stats[seasons_stats.MP > 1000] real_players.groupby('Pos').mean().sort_values('STL', ascending=False)['STL'].plot.pie()
code
128020295/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') players.isnull().sum() players[players['height'] == players['height'].max()]
code
128020295/cell_15
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') seasons_stats[seasons_stats.Age > 40][seasons_stats.PTS > 100] seasons_stats.Pos.value_counts().iloc[0:5]
code
128020295/cell_16
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') seasons_stats[seasons_stats.Age > 40][seasons_stats.PTS > 100] seasons_stats.Pos.value_counts().iloc[0:5] seasons_stats[seasons_stats.Player == 'LeBron James']
code
128020295/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') len(players)
code
128020295/cell_17
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') seasons_stats[seasons_stats.Age > 40][seasons_stats.PTS > 100] seasons_stats.Pos.value_counts().iloc[0:5] seasons_stats[seasons_stats.Player == 'LeBron James'] seasons_stats[seasons_stats.Player == 'LeBron James'].plot(x='Year', y='PTS', figsize=(12, 8))
code
128020295/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') seasons_stats[seasons_stats.Age > 40][seasons_stats.PTS > 100] seasons_stats.Pos.value_counts().iloc[0:5] seasons_stats[seasons_stats.Player == 'LeBron James'] triples = seasons_stats.groupby('Year')['3P'].sum() seasons_stats.sort_values('3P', ascending=False)[:25] seasons_stats[seasons_stats.GS < 41].sort_values('MP', ascending=False)[:25]
code
128020295/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') seasons_stats[seasons_stats.Age > 40][seasons_stats.PTS > 100]
code
128020295/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') seasons_stats[seasons_stats.Age > 40][seasons_stats.PTS > 100] seasons_stats.Pos.value_counts().iloc[0:5] seasons_stats[seasons_stats.Player == 'LeBron James'] triples = seasons_stats.groupby('Year')['3P'].sum() seasons_stats.sort_values('3P', ascending=False)[:25] seasons_stats['G'].corr(seasons_stats['MP'])
code
128020295/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') players.isnull().sum() players[players['weight'] == players['weight'].max()]
code
128020295/cell_27
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') seasons_stats[seasons_stats.Age > 40][seasons_stats.PTS > 100] seasons_stats.Pos.value_counts().iloc[0:5] seasons_stats[seasons_stats.Player == 'LeBron James'] triples = seasons_stats.groupby('Year')['3P'].sum() seasons_stats.sort_values('3P', ascending=False)[:25] seasons_stats[seasons_stats.GS < 41].sort_values('MP', ascending=False)[:25] seasons_stats[seasons_stats.GS > 50][seasons_stats.MP < 1000] real_players = seasons_stats[seasons_stats.MP > 1000] real_players.groupby('Pos').mean().sort_values('BLK', ascending=False)['BLK'].plot.pie()
code
128020295/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') players.isnull().sum() players.plot(x='height', y='weight', kind='scatter', figsize=(12, 8))
code
128020295/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') players.isnull().sum() players.info()
code
32068455/cell_13
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from tqdm import tqdm import glob import json import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) pd.set_option('display.expand_frame_repr', False) pd.options.mode.chained_assignment = None tqdm.pandas() def filepath(*args): if len(args) < 1: return None elif len(args) == 1: return args[0] else: return f'{args[0]}/{filepath(*args[1:])}' def addtimebar(L, threshold=1000): if len(L) > threshold: return tqdm(L) else: return L class FileReader: def __init__(self, file_path): with open(file_path) as file: content = json.load(file) self.paper_id = content['paper_id'] self.abstract = [] self.body_text = [] try: for entry in content['abstract']: self.abstract.append(entry['text']) except KeyError: pass try: for entry in content['body_text']: self.body_text.append(entry['text']) except KeyError: pass self.abstract = '\n'.join(self.abstract) self.body_text = '\n'.join(self.body_text) def __repr__(self): return f'{self.paper_id}: {self.abstract[:200]}... {self.body_text[:200]}...' def get_breaks(content, length): data = '' words = content.split(' ') total_chars = 0 for i in range(len(words)): total_chars += len(words[i]) if total_chars > length: data = data + '<br>' + words[i] total_chars = 0 else: data = data + ' ' + words[i] return data def compose(*funcs): *funcs, penultimate, last = funcs if funcs: penultimate = compose(*funcs, penultimate) return lambda *args: penultimate(last(*args)) path = '../input/CORD-19-research-challenge' meta = 'metadata.csv' all_jsons = glob.glob(filepath(path, '**', '*.json'), recursive=True) meta_df = pd.read_csv(filepath(path, meta), dtype={'pubmed_id': str, 'Microsoft Academic Paper ID': str, 'doi': str, 'journal': str}, low_memory=False) dict_ = {'paper_id': [], 'abstract': [], 'body_text': [], 'authors': [], 'title': [], 'publish_time': [], 'journal': [], 'abstract_summary': []} for entry in all_jsons[:10]: content = FileReader(entry) print(content.abstract) meta_data = meta_df.loc[meta_df['sha'] == content.paper_id] if len(meta_data) == 0: continue dict_['paper_id'].append(content.paper_id) dict_['abstract'].append(content.abstract) dict_['body_text'].append(content.body_text) print(content.paper_id) if len(content.abstract) == 0: dict_['abstract_summary'].append('Not provided.') elif len(content.abstract.split(' ')) > 100: info = content.abstract.split(' ')[:100] summary = get_breaks(' '.join(info), 40) dict_['abstract_summary'].append(summary + '...') else: summary = get_breaks(content.abstract, 40) dict_['abstract_summary'].append(summary) meta_data = meta_df.loc[meta_df['sha'] == content.paper_id] try: authors = meta_data['authors'].values[0].split(';') if len(authors) > 2: dict_['authors'].append('. '.join(authors[:2]) + '...') else: dict_['authors'].append('. '.join(authors)) except Exception as e: dict_['authors'].append(meta_data['authors'].values[0]) try: title = get_breaks(meta_data['title'].values[0], 40) dict_['title'].append(title) except Exception as e: dict_['title'].append(meta_data['title'].values[0]) try: publish_time = get_breaks(meta_data['publish_time'].values[0], 40) dict_['publish_time'].append(publish_time) except Exception as e: dict_['publish_time'].append(meta_data['publish_time'].values[0]) dict_['journal'].append(meta_data['journal'].values[0]) df_covid = pd.DataFrame(dict_, columns=['paper_id', 'abstract', 'body_text', 'authors', 'title', 'journal', 'publish_time', 'abstract_summary']) df_covid.head()
code
32068455/cell_4
[ "text_html_output_1.png" ]
from pandarallel import pandarallel import nltk import spacy import numpy as np import pandas as pd import glob import json import re import itertools from tqdm import tqdm import nltk nltk.download('punkt') nltk.download('stopwords') nltk.download('wordnet') from nltk import tokenize from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from collections import defaultdict from nltk.corpus import wordnet as wn from langdetect import detect from nltk.corpus import stopwords import contractions import inflect from nltk.stem import PorterStemmer from nltk.stem import LancasterStemmer from nltk.stem import WordNetLemmatizer from pandarallel import pandarallel import pickle from PIL import Image from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator import matplotlib.pyplot as plt import seaborn as sns from sentence_transformers import SentenceTransformer from sklearn.cluster import KMeans from sklearn.metrics.pairwise import cosine_similarity import re import bs4 import requests import spacy from spacy import displacy nlp = spacy.load('en_core_web_sm') from spacy.matcher import Matcher from spacy.tokens import Span import networkx as nx pandarallel.initialize(use_memory_fs=False, nb_workers=8)
code
32068455/cell_33
[ "text_plain_output_1.png", "image_output_1.png" ]
from langdetect import detect from nltk.corpus import stopwords from nltk.stem import PorterStemmer from nltk.stem import WordNetLemmatizer from os import path from pandarallel import pandarallel from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from tqdm import tqdm import contractions import glob import json import nltk import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import re import seaborn as sns import seaborn as sns import spacy import numpy as np import pandas as pd import glob import json import re import itertools from tqdm import tqdm import nltk nltk.download('punkt') nltk.download('stopwords') nltk.download('wordnet') from nltk import tokenize from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from collections import defaultdict from nltk.corpus import wordnet as wn from langdetect import detect from nltk.corpus import stopwords import contractions import inflect from nltk.stem import PorterStemmer from nltk.stem import LancasterStemmer from nltk.stem import WordNetLemmatizer from pandarallel import pandarallel import pickle from PIL import Image from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator import matplotlib.pyplot as plt import seaborn as sns from sentence_transformers import SentenceTransformer from sklearn.cluster import KMeans from sklearn.metrics.pairwise import cosine_similarity import re import bs4 import requests import spacy from spacy import displacy nlp = spacy.load('en_core_web_sm') from spacy.matcher import Matcher from spacy.tokens import Span import networkx as nx pandarallel.initialize(use_memory_fs=False, nb_workers=8) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) pd.set_option('display.expand_frame_repr', False) pd.options.mode.chained_assignment = None tqdm.pandas() def filepath(*args): if len(args) < 1: return None elif len(args) == 1: return args[0] else: return f'{args[0]}/{filepath(*args[1:])}' def addtimebar(L, threshold=1000): if len(L) > threshold: return tqdm(L) else: return L class FileReader: def __init__(self, file_path): with open(file_path) as file: content = json.load(file) self.paper_id = content['paper_id'] self.abstract = [] self.body_text = [] try: for entry in content['abstract']: self.abstract.append(entry['text']) except KeyError: pass try: for entry in content['body_text']: self.body_text.append(entry['text']) except KeyError: pass self.abstract = '\n'.join(self.abstract) self.body_text = '\n'.join(self.body_text) def __repr__(self): return f'{self.paper_id}: {self.abstract[:200]}... {self.body_text[:200]}...' def get_breaks(content, length): data = '' words = content.split(' ') total_chars = 0 for i in range(len(words)): total_chars += len(words[i]) if total_chars > length: data = data + '<br>' + words[i] total_chars = 0 else: data = data + ' ' + words[i] return data def compose(*funcs): *funcs, penultimate, last = funcs if funcs: penultimate = compose(*funcs, penultimate) return lambda *args: penultimate(last(*args)) path = '../input/CORD-19-research-challenge' meta = 'metadata.csv' all_jsons = glob.glob(filepath(path, '**', '*.json'), recursive=True) meta_df = pd.read_csv(filepath(path, meta), dtype={'pubmed_id': str, 'Microsoft Academic Paper ID': str, 'doi': str, 'journal': str}, low_memory=False) dict_ = {'paper_id': [], 'abstract': [], 'body_text': [], 'authors': [], 'title': [], 'publish_time': [], 'journal': [], 'abstract_summary': []} for entry in all_jsons[:10]: content = FileReader(entry) meta_data = meta_df.loc[meta_df['sha'] == content.paper_id] if len(meta_data) == 0: continue dict_['paper_id'].append(content.paper_id) dict_['abstract'].append(content.abstract) dict_['body_text'].append(content.body_text) if len(content.abstract) == 0: dict_['abstract_summary'].append('Not provided.') elif len(content.abstract.split(' ')) > 100: info = content.abstract.split(' ')[:100] summary = get_breaks(' '.join(info), 40) dict_['abstract_summary'].append(summary + '...') else: summary = get_breaks(content.abstract, 40) dict_['abstract_summary'].append(summary) meta_data = meta_df.loc[meta_df['sha'] == content.paper_id] try: authors = meta_data['authors'].values[0].split(';') if len(authors) > 2: dict_['authors'].append('. '.join(authors[:2]) + '...') else: dict_['authors'].append('. '.join(authors)) except Exception as e: dict_['authors'].append(meta_data['authors'].values[0]) try: title = get_breaks(meta_data['title'].values[0], 40) dict_['title'].append(title) except Exception as e: dict_['title'].append(meta_data['title'].values[0]) try: publish_time = get_breaks(meta_data['publish_time'].values[0], 40) dict_['publish_time'].append(publish_time) except Exception as e: dict_['publish_time'].append(meta_data['publish_time'].values[0]) dict_['journal'].append(meta_data['journal'].values[0]) df_covid = pd.DataFrame(dict_, columns=['paper_id', 'abstract', 'body_text', 'authors', 'title', 'journal', 'publish_time', 'abstract_summary']) def is_lang(row, item, lang, dropNA=True): if row[item] != None and row[item] != '' and (row[item] != 'None') and isinstance(row[item], str): try: return detect(row[item]) == lang except Exception as e: return False else: return not dropNA def select_article_lang_multi(df, basedon='abstract', lang='en'): return df[df.parallel_apply(lambda text: is_lang(text, basedon, lang), axis=1)] df_covid_eng = select_article_lang_multi(df_covid) def replace_brackets_with_whitespace(text): text = text.replace('(', '') text = text.replace(')', '') text = text.replace('[', '') text = text.replace(']', '') return text def replace_contractions(text): return contractions.fix(text) def strip_characters(text): t = re.sub('\\(|\\)|:|,|;|\\.|’||“|\\?|%|>|<', '', text) t = re.sub('/', ' ', t) t = t.replace("'", '') return t def to_lowercase(word): return word.lower() def do_stemming(stemmer): return lambda word: stemmer.stem(word) def do_lemmatizing(lemmatizer): return lambda word: lemmatizer.lemmatize(word, pos='v') def is_stopword(word): return word in stopwords.words('english') def process_word_by(word_cleanner, uniqueYN): def cond(word): return len(word) > 1 and (not is_stopword(word)) and (not word.isnumeric()) and word.isalnum() and (word != len(word) * word[0]) def clean_byword(text): return list(take_unique(uniqueYN)((word_cleanner(word) for word in text if cond(word)))) return clean_byword def take_unique(YN): return set if YN else lambda x: x text_processor = compose(replace_brackets_with_whitespace, replace_contractions, strip_characters) word_processor = compose(to_lowercase, do_lemmatizing(WordNetLemmatizer()), do_stemming(PorterStemmer())) def pre_processing(df, text_tools, word_tools): def inner(col, uniqueYN=False): return df[col].parallel_apply(text_tools).parallel_apply(nltk.word_tokenize).parallel_apply(process_word_by(word_tools, uniqueYN=uniqueYN)) return inner def get_top_nK_words(corpus, K=1, n=None): vec1 = CountVectorizer(max_df=0.7, stop_words=stopwords.words('english'), ngram_range=(K, K), max_features=2000).fit(corpus) bag_of_words = vec1.transform(corpus) sum_words = bag_of_words.sum(axis=0) words_freq = [(word, sum_words[0, idx]) for word, idx in vec1.vocabulary_.items()] words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True) return words_freq[:n] #Convert most freq words to dataframe for plotting bar plot top_words = get_top_nK_words(corpus, K=1, n=20) top_df = pd.DataFrame(top_words) top_df.columns=["Word", "Freq"] #Barplot of most freq words sns.set(rc={'figure.figsize':(13,8)}) g = sns.barplot(x="Word", y="Freq", data=top_df) g.set_xticklabels(g.get_xticklabels(), rotation=30) top2_words = get_top_nK_words(corpus, K=2, n=20) top2_df = pd.DataFrame(top2_words) top2_df.columns = ['Bi-gram', 'Freq'] print(top2_df) import seaborn as sns sns.set(rc={'figure.figsize': (13, 8)}) h = sns.barplot(x='Bi-gram', y='Freq', data=top2_df) h.set_xticklabels(h.get_xticklabels(), rotation=45) fig = h.get_figure()
code
32068455/cell_39
[ "text_plain_output_1.png", "image_output_1.png" ]
from langdetect import detect from nltk.corpus import stopwords from nltk.stem import PorterStemmer from nltk.stem import WordNetLemmatizer from os import path from pandarallel import pandarallel from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from tqdm import tqdm import contractions import glob import json import nltk import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pickle import re import re import seaborn as sns import seaborn as sns import seaborn as sns import spacy import numpy as np import pandas as pd import glob import json import re import itertools from tqdm import tqdm import nltk nltk.download('punkt') nltk.download('stopwords') nltk.download('wordnet') from nltk import tokenize from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from collections import defaultdict from nltk.corpus import wordnet as wn from langdetect import detect from nltk.corpus import stopwords import contractions import inflect from nltk.stem import PorterStemmer from nltk.stem import LancasterStemmer from nltk.stem import WordNetLemmatizer from pandarallel import pandarallel import pickle from PIL import Image from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator import matplotlib.pyplot as plt import seaborn as sns from sentence_transformers import SentenceTransformer from sklearn.cluster import KMeans from sklearn.metrics.pairwise import cosine_similarity import re import bs4 import requests import spacy from spacy import displacy nlp = spacy.load('en_core_web_sm') from spacy.matcher import Matcher from spacy.tokens import Span import networkx as nx pandarallel.initialize(use_memory_fs=False, nb_workers=8) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) pd.set_option('display.expand_frame_repr', False) pd.options.mode.chained_assignment = None tqdm.pandas() def filepath(*args): if len(args) < 1: return None elif len(args) == 1: return args[0] else: return f'{args[0]}/{filepath(*args[1:])}' def addtimebar(L, threshold=1000): if len(L) > threshold: return tqdm(L) else: return L class FileReader: def __init__(self, file_path): with open(file_path) as file: content = json.load(file) self.paper_id = content['paper_id'] self.abstract = [] self.body_text = [] try: for entry in content['abstract']: self.abstract.append(entry['text']) except KeyError: pass try: for entry in content['body_text']: self.body_text.append(entry['text']) except KeyError: pass self.abstract = '\n'.join(self.abstract) self.body_text = '\n'.join(self.body_text) def __repr__(self): return f'{self.paper_id}: {self.abstract[:200]}... {self.body_text[:200]}...' def get_breaks(content, length): data = '' words = content.split(' ') total_chars = 0 for i in range(len(words)): total_chars += len(words[i]) if total_chars > length: data = data + '<br>' + words[i] total_chars = 0 else: data = data + ' ' + words[i] return data def compose(*funcs): *funcs, penultimate, last = funcs if funcs: penultimate = compose(*funcs, penultimate) return lambda *args: penultimate(last(*args)) path = '../input/CORD-19-research-challenge' meta = 'metadata.csv' all_jsons = glob.glob(filepath(path, '**', '*.json'), recursive=True) meta_df = pd.read_csv(filepath(path, meta), dtype={'pubmed_id': str, 'Microsoft Academic Paper ID': str, 'doi': str, 'journal': str}, low_memory=False) dict_ = {'paper_id': [], 'abstract': [], 'body_text': [], 'authors': [], 'title': [], 'publish_time': [], 'journal': [], 'abstract_summary': []} for entry in all_jsons[:10]: content = FileReader(entry) meta_data = meta_df.loc[meta_df['sha'] == content.paper_id] if len(meta_data) == 0: continue dict_['paper_id'].append(content.paper_id) dict_['abstract'].append(content.abstract) dict_['body_text'].append(content.body_text) if len(content.abstract) == 0: dict_['abstract_summary'].append('Not provided.') elif len(content.abstract.split(' ')) > 100: info = content.abstract.split(' ')[:100] summary = get_breaks(' '.join(info), 40) dict_['abstract_summary'].append(summary + '...') else: summary = get_breaks(content.abstract, 40) dict_['abstract_summary'].append(summary) meta_data = meta_df.loc[meta_df['sha'] == content.paper_id] try: authors = meta_data['authors'].values[0].split(';') if len(authors) > 2: dict_['authors'].append('. '.join(authors[:2]) + '...') else: dict_['authors'].append('. '.join(authors)) except Exception as e: dict_['authors'].append(meta_data['authors'].values[0]) try: title = get_breaks(meta_data['title'].values[0], 40) dict_['title'].append(title) except Exception as e: dict_['title'].append(meta_data['title'].values[0]) try: publish_time = get_breaks(meta_data['publish_time'].values[0], 40) dict_['publish_time'].append(publish_time) except Exception as e: dict_['publish_time'].append(meta_data['publish_time'].values[0]) dict_['journal'].append(meta_data['journal'].values[0]) df_covid = pd.DataFrame(dict_, columns=['paper_id', 'abstract', 'body_text', 'authors', 'title', 'journal', 'publish_time', 'abstract_summary']) def is_lang(row, item, lang, dropNA=True): if row[item] != None and row[item] != '' and (row[item] != 'None') and isinstance(row[item], str): try: return detect(row[item]) == lang except Exception as e: return False else: return not dropNA def select_article_lang_multi(df, basedon='abstract', lang='en'): return df[df.parallel_apply(lambda text: is_lang(text, basedon, lang), axis=1)] df_covid_eng = select_article_lang_multi(df_covid) def replace_brackets_with_whitespace(text): text = text.replace('(', '') text = text.replace(')', '') text = text.replace('[', '') text = text.replace(']', '') return text def replace_contractions(text): return contractions.fix(text) def strip_characters(text): t = re.sub('\\(|\\)|:|,|;|\\.|’||“|\\?|%|>|<', '', text) t = re.sub('/', ' ', t) t = t.replace("'", '') return t def to_lowercase(word): return word.lower() def do_stemming(stemmer): return lambda word: stemmer.stem(word) def do_lemmatizing(lemmatizer): return lambda word: lemmatizer.lemmatize(word, pos='v') def is_stopword(word): return word in stopwords.words('english') def process_word_by(word_cleanner, uniqueYN): def cond(word): return len(word) > 1 and (not is_stopword(word)) and (not word.isnumeric()) and word.isalnum() and (word != len(word) * word[0]) def clean_byword(text): return list(take_unique(uniqueYN)((word_cleanner(word) for word in text if cond(word)))) return clean_byword def take_unique(YN): return set if YN else lambda x: x text_processor = compose(replace_brackets_with_whitespace, replace_contractions, strip_characters) word_processor = compose(to_lowercase, do_lemmatizing(WordNetLemmatizer()), do_stemming(PorterStemmer())) def pre_processing(df, text_tools, word_tools): def inner(col, uniqueYN=False): return df[col].parallel_apply(text_tools).parallel_apply(nltk.word_tokenize).parallel_apply(process_word_by(word_tools, uniqueYN=uniqueYN)) return inner tokenized_df = df_covid_eng.sort_values(by='publish_time', ascending=False) processor = pre_processing(tokenized_df, text_processor, word_processor) tokenized_df['abstract_token'] = processor('abstract') tokenized_df = tokenized_df.reset_index(drop=True) tokenized_df.head()['abstract_token'] with open('../data/df_kaggle_all_eng_tokenized.pkl', 'rb') as fp: tokenized_df = pickle.load(fp) def get_top_nK_words(corpus, K=1, n=None): vec1 = CountVectorizer(max_df=0.7, stop_words=stopwords.words('english'), ngram_range=(K, K), max_features=2000).fit(corpus) bag_of_words = vec1.transform(corpus) sum_words = bag_of_words.sum(axis=0) words_freq = [(word, sum_words[0, idx]) for word, idx in vec1.vocabulary_.items()] words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True) return words_freq[:n] #Convert most freq words to dataframe for plotting bar plot top_words = get_top_nK_words(corpus, K=1, n=20) top_df = pd.DataFrame(top_words) top_df.columns=["Word", "Freq"] #Barplot of most freq words sns.set(rc={'figure.figsize':(13,8)}) g = sns.barplot(x="Word", y="Freq", data=top_df) g.set_xticklabels(g.get_xticklabels(), rotation=30) # Top bi-grams top2_words = get_top_nK_words(corpus, K=2, n=20) top2_df = pd.DataFrame(top2_words) top2_df.columns=["Bi-gram", "Freq"] print(top2_df) #Barplot of most freq Bi-grams import seaborn as sns sns.set(rc={'figure.figsize':(13,8)}) h=sns.barplot(x="Bi-gram", y="Freq", data=top2_df) h.set_xticklabels(h.get_xticklabels(), rotation=45) fig = h.get_figure() top3_words = get_top_nK_words(corpus, K=3, n=20) top3_df = pd.DataFrame(top3_words) top3_df.columns=["Tri-gram", "Freq"] print(top3_df) #Barplot of most freq Tri-grams import seaborn as sns sns.set(rc={'figure.figsize':(13,8)}) j=sns.barplot(x="Tri-gram", y="Freq", data=top3_df) j.set_xticklabels(j.get_xticklabels(), rotation=45) fig = j.get_figure() def tfidf_(df): myvectorizer = TfidfVectorizer() vectors = myvectorizer.fit_transform(df['abstract_token'].parallel_apply(lambda x: ' '.join(x))).toarray() feature_names = myvectorizer.get_feature_names() veclist = vectors.tolist() out_tfidf = pd.DataFrame(veclist, columns=feature_names) return out_tfidf tfidf_(tokenized_df[:5000]).head()
code
32068455/cell_2
[ "text_html_output_1.png", "text_plain_output_1.png" ]
# install packages !pip install nltk --user !pip install owlready2 --user !pip install pronto --user !pip install ipynb-py-convert --user !pip install langdetect --user !pip install contractions --user !pip install inflect --user !pip install num2words --user !pip install tables --user !pip install h5py --user !pip install sentence-transformers --user !pip install pandas --user !pip install tqdm --user !pip install seaborn --user !pip install numpy --user !pip install scipy --user !pip install matplotlib --user !pip install numpy --user !pip install bottleneck --user !pip install pandarallel --user !pip install wordcloud --user !pip install --user spacy !pip install --user https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.2.0/en_core_web_sm-2.2.0.tar.gz
code
32068455/cell_11
[ "text_plain_output_1.png" ]
from tqdm import tqdm import glob import json import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) pd.set_option('display.expand_frame_repr', False) pd.options.mode.chained_assignment = None tqdm.pandas() def filepath(*args): if len(args) < 1: return None elif len(args) == 1: return args[0] else: return f'{args[0]}/{filepath(*args[1:])}' def addtimebar(L, threshold=1000): if len(L) > threshold: return tqdm(L) else: return L class FileReader: def __init__(self, file_path): with open(file_path) as file: content = json.load(file) self.paper_id = content['paper_id'] self.abstract = [] self.body_text = [] try: for entry in content['abstract']: self.abstract.append(entry['text']) except KeyError: pass try: for entry in content['body_text']: self.body_text.append(entry['text']) except KeyError: pass self.abstract = '\n'.join(self.abstract) self.body_text = '\n'.join(self.body_text) def __repr__(self): return f'{self.paper_id}: {self.abstract[:200]}... {self.body_text[:200]}...' def get_breaks(content, length): data = '' words = content.split(' ') total_chars = 0 for i in range(len(words)): total_chars += len(words[i]) if total_chars > length: data = data + '<br>' + words[i] total_chars = 0 else: data = data + ' ' + words[i] return data def compose(*funcs): *funcs, penultimate, last = funcs if funcs: penultimate = compose(*funcs, penultimate) return lambda *args: penultimate(last(*args)) path = '../input/CORD-19-research-challenge' meta = 'metadata.csv' all_jsons = glob.glob(filepath(path, '**', '*.json'), recursive=True) first_row = FileReader(all_jsons[0]) print(first_row)
code
32068455/cell_16
[ "text_plain_output_1.png" ]
from langdetect import detect from tqdm import tqdm import glob import json import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) pd.set_option('display.expand_frame_repr', False) pd.options.mode.chained_assignment = None tqdm.pandas() def filepath(*args): if len(args) < 1: return None elif len(args) == 1: return args[0] else: return f'{args[0]}/{filepath(*args[1:])}' def addtimebar(L, threshold=1000): if len(L) > threshold: return tqdm(L) else: return L class FileReader: def __init__(self, file_path): with open(file_path) as file: content = json.load(file) self.paper_id = content['paper_id'] self.abstract = [] self.body_text = [] try: for entry in content['abstract']: self.abstract.append(entry['text']) except KeyError: pass try: for entry in content['body_text']: self.body_text.append(entry['text']) except KeyError: pass self.abstract = '\n'.join(self.abstract) self.body_text = '\n'.join(self.body_text) def __repr__(self): return f'{self.paper_id}: {self.abstract[:200]}... {self.body_text[:200]}...' def get_breaks(content, length): data = '' words = content.split(' ') total_chars = 0 for i in range(len(words)): total_chars += len(words[i]) if total_chars > length: data = data + '<br>' + words[i] total_chars = 0 else: data = data + ' ' + words[i] return data def compose(*funcs): *funcs, penultimate, last = funcs if funcs: penultimate = compose(*funcs, penultimate) return lambda *args: penultimate(last(*args)) path = '../input/CORD-19-research-challenge' meta = 'metadata.csv' all_jsons = glob.glob(filepath(path, '**', '*.json'), recursive=True) meta_df = pd.read_csv(filepath(path, meta), dtype={'pubmed_id': str, 'Microsoft Academic Paper ID': str, 'doi': str, 'journal': str}, low_memory=False) dict_ = {'paper_id': [], 'abstract': [], 'body_text': [], 'authors': [], 'title': [], 'publish_time': [], 'journal': [], 'abstract_summary': []} for entry in all_jsons[:10]: content = FileReader(entry) meta_data = meta_df.loc[meta_df['sha'] == content.paper_id] if len(meta_data) == 0: continue dict_['paper_id'].append(content.paper_id) dict_['abstract'].append(content.abstract) dict_['body_text'].append(content.body_text) if len(content.abstract) == 0: dict_['abstract_summary'].append('Not provided.') elif len(content.abstract.split(' ')) > 100: info = content.abstract.split(' ')[:100] summary = get_breaks(' '.join(info), 40) dict_['abstract_summary'].append(summary + '...') else: summary = get_breaks(content.abstract, 40) dict_['abstract_summary'].append(summary) meta_data = meta_df.loc[meta_df['sha'] == content.paper_id] try: authors = meta_data['authors'].values[0].split(';') if len(authors) > 2: dict_['authors'].append('. '.join(authors[:2]) + '...') else: dict_['authors'].append('. '.join(authors)) except Exception as e: dict_['authors'].append(meta_data['authors'].values[0]) try: title = get_breaks(meta_data['title'].values[0], 40) dict_['title'].append(title) except Exception as e: dict_['title'].append(meta_data['title'].values[0]) try: publish_time = get_breaks(meta_data['publish_time'].values[0], 40) dict_['publish_time'].append(publish_time) except Exception as e: dict_['publish_time'].append(meta_data['publish_time'].values[0]) dict_['journal'].append(meta_data['journal'].values[0]) df_covid = pd.DataFrame(dict_, columns=['paper_id', 'abstract', 'body_text', 'authors', 'title', 'journal', 'publish_time', 'abstract_summary']) def is_lang(row, item, lang, dropNA=True): if row[item] != None and row[item] != '' and (row[item] != 'None') and isinstance(row[item], str): try: return detect(row[item]) == lang except Exception as e: return False else: return not dropNA def select_article_lang_multi(df, basedon='abstract', lang='en'): return df[df.parallel_apply(lambda text: is_lang(text, basedon, lang), axis=1)] df_covid_eng = select_article_lang_multi(df_covid) print('Number of English Articles: {}/{}'.format(len(df_covid_eng), len(df_covid))) df_covid_eng.head(n=2)
code
32068455/cell_35
[ "text_plain_output_1.png", "image_output_1.png" ]
from langdetect import detect from nltk.corpus import stopwords from nltk.stem import PorterStemmer from nltk.stem import WordNetLemmatizer from os import path from pandarallel import pandarallel from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from tqdm import tqdm import contractions import glob import json import nltk import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import re import seaborn as sns import seaborn as sns import seaborn as sns import spacy import numpy as np import pandas as pd import glob import json import re import itertools from tqdm import tqdm import nltk nltk.download('punkt') nltk.download('stopwords') nltk.download('wordnet') from nltk import tokenize from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from collections import defaultdict from nltk.corpus import wordnet as wn from langdetect import detect from nltk.corpus import stopwords import contractions import inflect from nltk.stem import PorterStemmer from nltk.stem import LancasterStemmer from nltk.stem import WordNetLemmatizer from pandarallel import pandarallel import pickle from PIL import Image from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator import matplotlib.pyplot as plt import seaborn as sns from sentence_transformers import SentenceTransformer from sklearn.cluster import KMeans from sklearn.metrics.pairwise import cosine_similarity import re import bs4 import requests import spacy from spacy import displacy nlp = spacy.load('en_core_web_sm') from spacy.matcher import Matcher from spacy.tokens import Span import networkx as nx pandarallel.initialize(use_memory_fs=False, nb_workers=8) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) pd.set_option('display.expand_frame_repr', False) pd.options.mode.chained_assignment = None tqdm.pandas() def filepath(*args): if len(args) < 1: return None elif len(args) == 1: return args[0] else: return f'{args[0]}/{filepath(*args[1:])}' def addtimebar(L, threshold=1000): if len(L) > threshold: return tqdm(L) else: return L class FileReader: def __init__(self, file_path): with open(file_path) as file: content = json.load(file) self.paper_id = content['paper_id'] self.abstract = [] self.body_text = [] try: for entry in content['abstract']: self.abstract.append(entry['text']) except KeyError: pass try: for entry in content['body_text']: self.body_text.append(entry['text']) except KeyError: pass self.abstract = '\n'.join(self.abstract) self.body_text = '\n'.join(self.body_text) def __repr__(self): return f'{self.paper_id}: {self.abstract[:200]}... {self.body_text[:200]}...' def get_breaks(content, length): data = '' words = content.split(' ') total_chars = 0 for i in range(len(words)): total_chars += len(words[i]) if total_chars > length: data = data + '<br>' + words[i] total_chars = 0 else: data = data + ' ' + words[i] return data def compose(*funcs): *funcs, penultimate, last = funcs if funcs: penultimate = compose(*funcs, penultimate) return lambda *args: penultimate(last(*args)) path = '../input/CORD-19-research-challenge' meta = 'metadata.csv' all_jsons = glob.glob(filepath(path, '**', '*.json'), recursive=True) meta_df = pd.read_csv(filepath(path, meta), dtype={'pubmed_id': str, 'Microsoft Academic Paper ID': str, 'doi': str, 'journal': str}, low_memory=False) dict_ = {'paper_id': [], 'abstract': [], 'body_text': [], 'authors': [], 'title': [], 'publish_time': [], 'journal': [], 'abstract_summary': []} for entry in all_jsons[:10]: content = FileReader(entry) meta_data = meta_df.loc[meta_df['sha'] == content.paper_id] if len(meta_data) == 0: continue dict_['paper_id'].append(content.paper_id) dict_['abstract'].append(content.abstract) dict_['body_text'].append(content.body_text) if len(content.abstract) == 0: dict_['abstract_summary'].append('Not provided.') elif len(content.abstract.split(' ')) > 100: info = content.abstract.split(' ')[:100] summary = get_breaks(' '.join(info), 40) dict_['abstract_summary'].append(summary + '...') else: summary = get_breaks(content.abstract, 40) dict_['abstract_summary'].append(summary) meta_data = meta_df.loc[meta_df['sha'] == content.paper_id] try: authors = meta_data['authors'].values[0].split(';') if len(authors) > 2: dict_['authors'].append('. '.join(authors[:2]) + '...') else: dict_['authors'].append('. '.join(authors)) except Exception as e: dict_['authors'].append(meta_data['authors'].values[0]) try: title = get_breaks(meta_data['title'].values[0], 40) dict_['title'].append(title) except Exception as e: dict_['title'].append(meta_data['title'].values[0]) try: publish_time = get_breaks(meta_data['publish_time'].values[0], 40) dict_['publish_time'].append(publish_time) except Exception as e: dict_['publish_time'].append(meta_data['publish_time'].values[0]) dict_['journal'].append(meta_data['journal'].values[0]) df_covid = pd.DataFrame(dict_, columns=['paper_id', 'abstract', 'body_text', 'authors', 'title', 'journal', 'publish_time', 'abstract_summary']) def is_lang(row, item, lang, dropNA=True): if row[item] != None and row[item] != '' and (row[item] != 'None') and isinstance(row[item], str): try: return detect(row[item]) == lang except Exception as e: return False else: return not dropNA def select_article_lang_multi(df, basedon='abstract', lang='en'): return df[df.parallel_apply(lambda text: is_lang(text, basedon, lang), axis=1)] df_covid_eng = select_article_lang_multi(df_covid) def replace_brackets_with_whitespace(text): text = text.replace('(', '') text = text.replace(')', '') text = text.replace('[', '') text = text.replace(']', '') return text def replace_contractions(text): return contractions.fix(text) def strip_characters(text): t = re.sub('\\(|\\)|:|,|;|\\.|’||“|\\?|%|>|<', '', text) t = re.sub('/', ' ', t) t = t.replace("'", '') return t def to_lowercase(word): return word.lower() def do_stemming(stemmer): return lambda word: stemmer.stem(word) def do_lemmatizing(lemmatizer): return lambda word: lemmatizer.lemmatize(word, pos='v') def is_stopword(word): return word in stopwords.words('english') def process_word_by(word_cleanner, uniqueYN): def cond(word): return len(word) > 1 and (not is_stopword(word)) and (not word.isnumeric()) and word.isalnum() and (word != len(word) * word[0]) def clean_byword(text): return list(take_unique(uniqueYN)((word_cleanner(word) for word in text if cond(word)))) return clean_byword def take_unique(YN): return set if YN else lambda x: x text_processor = compose(replace_brackets_with_whitespace, replace_contractions, strip_characters) word_processor = compose(to_lowercase, do_lemmatizing(WordNetLemmatizer()), do_stemming(PorterStemmer())) def pre_processing(df, text_tools, word_tools): def inner(col, uniqueYN=False): return df[col].parallel_apply(text_tools).parallel_apply(nltk.word_tokenize).parallel_apply(process_word_by(word_tools, uniqueYN=uniqueYN)) return inner def get_top_nK_words(corpus, K=1, n=None): vec1 = CountVectorizer(max_df=0.7, stop_words=stopwords.words('english'), ngram_range=(K, K), max_features=2000).fit(corpus) bag_of_words = vec1.transform(corpus) sum_words = bag_of_words.sum(axis=0) words_freq = [(word, sum_words[0, idx]) for word, idx in vec1.vocabulary_.items()] words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True) return words_freq[:n] #Convert most freq words to dataframe for plotting bar plot top_words = get_top_nK_words(corpus, K=1, n=20) top_df = pd.DataFrame(top_words) top_df.columns=["Word", "Freq"] #Barplot of most freq words sns.set(rc={'figure.figsize':(13,8)}) g = sns.barplot(x="Word", y="Freq", data=top_df) g.set_xticklabels(g.get_xticklabels(), rotation=30) # Top bi-grams top2_words = get_top_nK_words(corpus, K=2, n=20) top2_df = pd.DataFrame(top2_words) top2_df.columns=["Bi-gram", "Freq"] print(top2_df) #Barplot of most freq Bi-grams import seaborn as sns sns.set(rc={'figure.figsize':(13,8)}) h=sns.barplot(x="Bi-gram", y="Freq", data=top2_df) h.set_xticklabels(h.get_xticklabels(), rotation=45) fig = h.get_figure() top3_words = get_top_nK_words(corpus, K=3, n=20) top3_df = pd.DataFrame(top3_words) top3_df.columns = ['Tri-gram', 'Freq'] print(top3_df) import seaborn as sns sns.set(rc={'figure.figsize': (13, 8)}) j = sns.barplot(x='Tri-gram', y='Freq', data=top3_df) j.set_xticklabels(j.get_xticklabels(), rotation=45) fig = j.get_figure()
code
32068455/cell_31
[ "text_plain_output_1.png", "image_output_1.png" ]
from langdetect import detect from nltk.corpus import stopwords from nltk.stem import PorterStemmer from nltk.stem import WordNetLemmatizer from os import path from pandarallel import pandarallel from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from tqdm import tqdm import contractions import glob import json import nltk import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import re import seaborn as sns import spacy import numpy as np import pandas as pd import glob import json import re import itertools from tqdm import tqdm import nltk nltk.download('punkt') nltk.download('stopwords') nltk.download('wordnet') from nltk import tokenize from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from collections import defaultdict from nltk.corpus import wordnet as wn from langdetect import detect from nltk.corpus import stopwords import contractions import inflect from nltk.stem import PorterStemmer from nltk.stem import LancasterStemmer from nltk.stem import WordNetLemmatizer from pandarallel import pandarallel import pickle from PIL import Image from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator import matplotlib.pyplot as plt import seaborn as sns from sentence_transformers import SentenceTransformer from sklearn.cluster import KMeans from sklearn.metrics.pairwise import cosine_similarity import re import bs4 import requests import spacy from spacy import displacy nlp = spacy.load('en_core_web_sm') from spacy.matcher import Matcher from spacy.tokens import Span import networkx as nx pandarallel.initialize(use_memory_fs=False, nb_workers=8) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) pd.set_option('display.expand_frame_repr', False) pd.options.mode.chained_assignment = None tqdm.pandas() def filepath(*args): if len(args) < 1: return None elif len(args) == 1: return args[0] else: return f'{args[0]}/{filepath(*args[1:])}' def addtimebar(L, threshold=1000): if len(L) > threshold: return tqdm(L) else: return L class FileReader: def __init__(self, file_path): with open(file_path) as file: content = json.load(file) self.paper_id = content['paper_id'] self.abstract = [] self.body_text = [] try: for entry in content['abstract']: self.abstract.append(entry['text']) except KeyError: pass try: for entry in content['body_text']: self.body_text.append(entry['text']) except KeyError: pass self.abstract = '\n'.join(self.abstract) self.body_text = '\n'.join(self.body_text) def __repr__(self): return f'{self.paper_id}: {self.abstract[:200]}... {self.body_text[:200]}...' def get_breaks(content, length): data = '' words = content.split(' ') total_chars = 0 for i in range(len(words)): total_chars += len(words[i]) if total_chars > length: data = data + '<br>' + words[i] total_chars = 0 else: data = data + ' ' + words[i] return data def compose(*funcs): *funcs, penultimate, last = funcs if funcs: penultimate = compose(*funcs, penultimate) return lambda *args: penultimate(last(*args)) path = '../input/CORD-19-research-challenge' meta = 'metadata.csv' all_jsons = glob.glob(filepath(path, '**', '*.json'), recursive=True) meta_df = pd.read_csv(filepath(path, meta), dtype={'pubmed_id': str, 'Microsoft Academic Paper ID': str, 'doi': str, 'journal': str}, low_memory=False) dict_ = {'paper_id': [], 'abstract': [], 'body_text': [], 'authors': [], 'title': [], 'publish_time': [], 'journal': [], 'abstract_summary': []} for entry in all_jsons[:10]: content = FileReader(entry) meta_data = meta_df.loc[meta_df['sha'] == content.paper_id] if len(meta_data) == 0: continue dict_['paper_id'].append(content.paper_id) dict_['abstract'].append(content.abstract) dict_['body_text'].append(content.body_text) if len(content.abstract) == 0: dict_['abstract_summary'].append('Not provided.') elif len(content.abstract.split(' ')) > 100: info = content.abstract.split(' ')[:100] summary = get_breaks(' '.join(info), 40) dict_['abstract_summary'].append(summary + '...') else: summary = get_breaks(content.abstract, 40) dict_['abstract_summary'].append(summary) meta_data = meta_df.loc[meta_df['sha'] == content.paper_id] try: authors = meta_data['authors'].values[0].split(';') if len(authors) > 2: dict_['authors'].append('. '.join(authors[:2]) + '...') else: dict_['authors'].append('. '.join(authors)) except Exception as e: dict_['authors'].append(meta_data['authors'].values[0]) try: title = get_breaks(meta_data['title'].values[0], 40) dict_['title'].append(title) except Exception as e: dict_['title'].append(meta_data['title'].values[0]) try: publish_time = get_breaks(meta_data['publish_time'].values[0], 40) dict_['publish_time'].append(publish_time) except Exception as e: dict_['publish_time'].append(meta_data['publish_time'].values[0]) dict_['journal'].append(meta_data['journal'].values[0]) df_covid = pd.DataFrame(dict_, columns=['paper_id', 'abstract', 'body_text', 'authors', 'title', 'journal', 'publish_time', 'abstract_summary']) def is_lang(row, item, lang, dropNA=True): if row[item] != None and row[item] != '' and (row[item] != 'None') and isinstance(row[item], str): try: return detect(row[item]) == lang except Exception as e: return False else: return not dropNA def select_article_lang_multi(df, basedon='abstract', lang='en'): return df[df.parallel_apply(lambda text: is_lang(text, basedon, lang), axis=1)] df_covid_eng = select_article_lang_multi(df_covid) def replace_brackets_with_whitespace(text): text = text.replace('(', '') text = text.replace(')', '') text = text.replace('[', '') text = text.replace(']', '') return text def replace_contractions(text): return contractions.fix(text) def strip_characters(text): t = re.sub('\\(|\\)|:|,|;|\\.|’||“|\\?|%|>|<', '', text) t = re.sub('/', ' ', t) t = t.replace("'", '') return t def to_lowercase(word): return word.lower() def do_stemming(stemmer): return lambda word: stemmer.stem(word) def do_lemmatizing(lemmatizer): return lambda word: lemmatizer.lemmatize(word, pos='v') def is_stopword(word): return word in stopwords.words('english') def process_word_by(word_cleanner, uniqueYN): def cond(word): return len(word) > 1 and (not is_stopword(word)) and (not word.isnumeric()) and word.isalnum() and (word != len(word) * word[0]) def clean_byword(text): return list(take_unique(uniqueYN)((word_cleanner(word) for word in text if cond(word)))) return clean_byword def take_unique(YN): return set if YN else lambda x: x text_processor = compose(replace_brackets_with_whitespace, replace_contractions, strip_characters) word_processor = compose(to_lowercase, do_lemmatizing(WordNetLemmatizer()), do_stemming(PorterStemmer())) def pre_processing(df, text_tools, word_tools): def inner(col, uniqueYN=False): return df[col].parallel_apply(text_tools).parallel_apply(nltk.word_tokenize).parallel_apply(process_word_by(word_tools, uniqueYN=uniqueYN)) return inner def get_top_nK_words(corpus, K=1, n=None): vec1 = CountVectorizer(max_df=0.7, stop_words=stopwords.words('english'), ngram_range=(K, K), max_features=2000).fit(corpus) bag_of_words = vec1.transform(corpus) sum_words = bag_of_words.sum(axis=0) words_freq = [(word, sum_words[0, idx]) for word, idx in vec1.vocabulary_.items()] words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True) return words_freq[:n] top_words = get_top_nK_words(corpus, K=1, n=20) top_df = pd.DataFrame(top_words) top_df.columns = ['Word', 'Freq'] sns.set(rc={'figure.figsize': (13, 8)}) g = sns.barplot(x='Word', y='Freq', data=top_df) g.set_xticklabels(g.get_xticklabels(), rotation=30)
code
32068455/cell_24
[ "text_html_output_1.png" ]
from langdetect import detect from nltk.corpus import stopwords from nltk.stem import PorterStemmer from nltk.stem import WordNetLemmatizer from pandarallel import pandarallel from tqdm import tqdm import contractions import glob import json import nltk import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import re import spacy import numpy as np import pandas as pd import glob import json import re import itertools from tqdm import tqdm import nltk nltk.download('punkt') nltk.download('stopwords') nltk.download('wordnet') from nltk import tokenize from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from collections import defaultdict from nltk.corpus import wordnet as wn from langdetect import detect from nltk.corpus import stopwords import contractions import inflect from nltk.stem import PorterStemmer from nltk.stem import LancasterStemmer from nltk.stem import WordNetLemmatizer from pandarallel import pandarallel import pickle from PIL import Image from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator import matplotlib.pyplot as plt import seaborn as sns from sentence_transformers import SentenceTransformer from sklearn.cluster import KMeans from sklearn.metrics.pairwise import cosine_similarity import re import bs4 import requests import spacy from spacy import displacy nlp = spacy.load('en_core_web_sm') from spacy.matcher import Matcher from spacy.tokens import Span import networkx as nx pandarallel.initialize(use_memory_fs=False, nb_workers=8) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) pd.set_option('display.expand_frame_repr', False) pd.options.mode.chained_assignment = None tqdm.pandas() def filepath(*args): if len(args) < 1: return None elif len(args) == 1: return args[0] else: return f'{args[0]}/{filepath(*args[1:])}' def addtimebar(L, threshold=1000): if len(L) > threshold: return tqdm(L) else: return L class FileReader: def __init__(self, file_path): with open(file_path) as file: content = json.load(file) self.paper_id = content['paper_id'] self.abstract = [] self.body_text = [] try: for entry in content['abstract']: self.abstract.append(entry['text']) except KeyError: pass try: for entry in content['body_text']: self.body_text.append(entry['text']) except KeyError: pass self.abstract = '\n'.join(self.abstract) self.body_text = '\n'.join(self.body_text) def __repr__(self): return f'{self.paper_id}: {self.abstract[:200]}... {self.body_text[:200]}...' def get_breaks(content, length): data = '' words = content.split(' ') total_chars = 0 for i in range(len(words)): total_chars += len(words[i]) if total_chars > length: data = data + '<br>' + words[i] total_chars = 0 else: data = data + ' ' + words[i] return data def compose(*funcs): *funcs, penultimate, last = funcs if funcs: penultimate = compose(*funcs, penultimate) return lambda *args: penultimate(last(*args)) path = '../input/CORD-19-research-challenge' meta = 'metadata.csv' all_jsons = glob.glob(filepath(path, '**', '*.json'), recursive=True) meta_df = pd.read_csv(filepath(path, meta), dtype={'pubmed_id': str, 'Microsoft Academic Paper ID': str, 'doi': str, 'journal': str}, low_memory=False) dict_ = {'paper_id': [], 'abstract': [], 'body_text': [], 'authors': [], 'title': [], 'publish_time': [], 'journal': [], 'abstract_summary': []} for entry in all_jsons[:10]: content = FileReader(entry) meta_data = meta_df.loc[meta_df['sha'] == content.paper_id] if len(meta_data) == 0: continue dict_['paper_id'].append(content.paper_id) dict_['abstract'].append(content.abstract) dict_['body_text'].append(content.body_text) if len(content.abstract) == 0: dict_['abstract_summary'].append('Not provided.') elif len(content.abstract.split(' ')) > 100: info = content.abstract.split(' ')[:100] summary = get_breaks(' '.join(info), 40) dict_['abstract_summary'].append(summary + '...') else: summary = get_breaks(content.abstract, 40) dict_['abstract_summary'].append(summary) meta_data = meta_df.loc[meta_df['sha'] == content.paper_id] try: authors = meta_data['authors'].values[0].split(';') if len(authors) > 2: dict_['authors'].append('. '.join(authors[:2]) + '...') else: dict_['authors'].append('. '.join(authors)) except Exception as e: dict_['authors'].append(meta_data['authors'].values[0]) try: title = get_breaks(meta_data['title'].values[0], 40) dict_['title'].append(title) except Exception as e: dict_['title'].append(meta_data['title'].values[0]) try: publish_time = get_breaks(meta_data['publish_time'].values[0], 40) dict_['publish_time'].append(publish_time) except Exception as e: dict_['publish_time'].append(meta_data['publish_time'].values[0]) dict_['journal'].append(meta_data['journal'].values[0]) df_covid = pd.DataFrame(dict_, columns=['paper_id', 'abstract', 'body_text', 'authors', 'title', 'journal', 'publish_time', 'abstract_summary']) def is_lang(row, item, lang, dropNA=True): if row[item] != None and row[item] != '' and (row[item] != 'None') and isinstance(row[item], str): try: return detect(row[item]) == lang except Exception as e: return False else: return not dropNA def select_article_lang_multi(df, basedon='abstract', lang='en'): return df[df.parallel_apply(lambda text: is_lang(text, basedon, lang), axis=1)] df_covid_eng = select_article_lang_multi(df_covid) def replace_brackets_with_whitespace(text): text = text.replace('(', '') text = text.replace(')', '') text = text.replace('[', '') text = text.replace(']', '') return text def replace_contractions(text): return contractions.fix(text) def strip_characters(text): t = re.sub('\\(|\\)|:|,|;|\\.|’||“|\\?|%|>|<', '', text) t = re.sub('/', ' ', t) t = t.replace("'", '') return t def to_lowercase(word): return word.lower() def do_stemming(stemmer): return lambda word: stemmer.stem(word) def do_lemmatizing(lemmatizer): return lambda word: lemmatizer.lemmatize(word, pos='v') def is_stopword(word): return word in stopwords.words('english') def process_word_by(word_cleanner, uniqueYN): def cond(word): return len(word) > 1 and (not is_stopword(word)) and (not word.isnumeric()) and word.isalnum() and (word != len(word) * word[0]) def clean_byword(text): return list(take_unique(uniqueYN)((word_cleanner(word) for word in text if cond(word)))) return clean_byword def take_unique(YN): return set if YN else lambda x: x text_processor = compose(replace_brackets_with_whitespace, replace_contractions, strip_characters) word_processor = compose(to_lowercase, do_lemmatizing(WordNetLemmatizer()), do_stemming(PorterStemmer())) def pre_processing(df, text_tools, word_tools): def inner(col, uniqueYN=False): return df[col].parallel_apply(text_tools).parallel_apply(nltk.word_tokenize).parallel_apply(process_word_by(word_tools, uniqueYN=uniqueYN)) return inner tokenized_df = df_covid_eng.sort_values(by='publish_time', ascending=False) processor = pre_processing(tokenized_df, text_processor, word_processor) tokenized_df['abstract_token'] = processor('abstract') tokenized_df = tokenized_df.reset_index(drop=True) tokenized_df.head()['abstract_token']
code
32068455/cell_22
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from langdetect import detect from tqdm import tqdm import glob import json import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) pd.set_option('display.expand_frame_repr', False) pd.options.mode.chained_assignment = None tqdm.pandas() def filepath(*args): if len(args) < 1: return None elif len(args) == 1: return args[0] else: return f'{args[0]}/{filepath(*args[1:])}' def addtimebar(L, threshold=1000): if len(L) > threshold: return tqdm(L) else: return L class FileReader: def __init__(self, file_path): with open(file_path) as file: content = json.load(file) self.paper_id = content['paper_id'] self.abstract = [] self.body_text = [] try: for entry in content['abstract']: self.abstract.append(entry['text']) except KeyError: pass try: for entry in content['body_text']: self.body_text.append(entry['text']) except KeyError: pass self.abstract = '\n'.join(self.abstract) self.body_text = '\n'.join(self.body_text) def __repr__(self): return f'{self.paper_id}: {self.abstract[:200]}... {self.body_text[:200]}...' def get_breaks(content, length): data = '' words = content.split(' ') total_chars = 0 for i in range(len(words)): total_chars += len(words[i]) if total_chars > length: data = data + '<br>' + words[i] total_chars = 0 else: data = data + ' ' + words[i] return data def compose(*funcs): *funcs, penultimate, last = funcs if funcs: penultimate = compose(*funcs, penultimate) return lambda *args: penultimate(last(*args)) path = '../input/CORD-19-research-challenge' meta = 'metadata.csv' all_jsons = glob.glob(filepath(path, '**', '*.json'), recursive=True) meta_df = pd.read_csv(filepath(path, meta), dtype={'pubmed_id': str, 'Microsoft Academic Paper ID': str, 'doi': str, 'journal': str}, low_memory=False) dict_ = {'paper_id': [], 'abstract': [], 'body_text': [], 'authors': [], 'title': [], 'publish_time': [], 'journal': [], 'abstract_summary': []} for entry in all_jsons[:10]: content = FileReader(entry) meta_data = meta_df.loc[meta_df['sha'] == content.paper_id] if len(meta_data) == 0: continue dict_['paper_id'].append(content.paper_id) dict_['abstract'].append(content.abstract) dict_['body_text'].append(content.body_text) if len(content.abstract) == 0: dict_['abstract_summary'].append('Not provided.') elif len(content.abstract.split(' ')) > 100: info = content.abstract.split(' ')[:100] summary = get_breaks(' '.join(info), 40) dict_['abstract_summary'].append(summary + '...') else: summary = get_breaks(content.abstract, 40) dict_['abstract_summary'].append(summary) meta_data = meta_df.loc[meta_df['sha'] == content.paper_id] try: authors = meta_data['authors'].values[0].split(';') if len(authors) > 2: dict_['authors'].append('. '.join(authors[:2]) + '...') else: dict_['authors'].append('. '.join(authors)) except Exception as e: dict_['authors'].append(meta_data['authors'].values[0]) try: title = get_breaks(meta_data['title'].values[0], 40) dict_['title'].append(title) except Exception as e: dict_['title'].append(meta_data['title'].values[0]) try: publish_time = get_breaks(meta_data['publish_time'].values[0], 40) dict_['publish_time'].append(publish_time) except Exception as e: dict_['publish_time'].append(meta_data['publish_time'].values[0]) dict_['journal'].append(meta_data['journal'].values[0]) df_covid = pd.DataFrame(dict_, columns=['paper_id', 'abstract', 'body_text', 'authors', 'title', 'journal', 'publish_time', 'abstract_summary']) def is_lang(row, item, lang, dropNA=True): if row[item] != None and row[item] != '' and (row[item] != 'None') and isinstance(row[item], str): try: return detect(row[item]) == lang except Exception as e: return False else: return not dropNA def select_article_lang_multi(df, basedon='abstract', lang='en'): return df[df.parallel_apply(lambda text: is_lang(text, basedon, lang), axis=1)] df_covid_eng = select_article_lang_multi(df_covid) tokenized_df = df_covid_eng.sort_values(by='publish_time', ascending=False) tokenized_df.head(n=3)
code
32068455/cell_10
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from tqdm import tqdm import glob import json import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) pd.set_option('display.expand_frame_repr', False) pd.options.mode.chained_assignment = None tqdm.pandas() def filepath(*args): if len(args) < 1: return None elif len(args) == 1: return args[0] else: return f'{args[0]}/{filepath(*args[1:])}' def addtimebar(L, threshold=1000): if len(L) > threshold: return tqdm(L) else: return L class FileReader: def __init__(self, file_path): with open(file_path) as file: content = json.load(file) self.paper_id = content['paper_id'] self.abstract = [] self.body_text = [] try: for entry in content['abstract']: self.abstract.append(entry['text']) except KeyError: pass try: for entry in content['body_text']: self.body_text.append(entry['text']) except KeyError: pass self.abstract = '\n'.join(self.abstract) self.body_text = '\n'.join(self.body_text) def __repr__(self): return f'{self.paper_id}: {self.abstract[:200]}... {self.body_text[:200]}...' def get_breaks(content, length): data = '' words = content.split(' ') total_chars = 0 for i in range(len(words)): total_chars += len(words[i]) if total_chars > length: data = data + '<br>' + words[i] total_chars = 0 else: data = data + ' ' + words[i] return data def compose(*funcs): *funcs, penultimate, last = funcs if funcs: penultimate = compose(*funcs, penultimate) return lambda *args: penultimate(last(*args)) path = '../input/CORD-19-research-challenge' meta = 'metadata.csv' all_jsons = glob.glob(filepath(path, '**', '*.json'), recursive=True) meta_df = pd.read_csv(filepath(path, meta), dtype={'pubmed_id': str, 'Microsoft Academic Paper ID': str, 'doi': str, 'journal': str}, low_memory=False) print(len(meta_df)) meta_df.head(n=2)
code
32068455/cell_27
[ "text_plain_output_1.png" ]
tokenized_df['abstract_corpus'] = tokenized_df['abstract_token'].apply(lambda tokens: ' '.join(tokens)) corpus = tokenized_df['abstract_corpus'].tolist() from os import path from PIL import Image from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator import matplotlib.pyplot as plt wordcloud = WordCloud(background_color='white', stopwords=stopwords.words('english'), max_words=100, max_font_size=50, random_state=42).generate(' '.join(corpus)) print(wordcloud) fig = plt.figure(1) plt.imshow(wordcloud) plt.axis('off') plt.show()
code
128029297/cell_20
[ "text_plain_output_1.png" ]
from pathlib import Path from pathlib import Path from skimage.io import imread from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report from tensorflow.keras.preprocessing import image import cv2 as cv import numpy as np image_height = 128 image_width = 128 DATA = '/kaggle/input/malimg-dataset9010/dataset_9010/dataset_9010/malimg_dataset' TRAIN_DATA = DATA + '/train' VALIDATION_DATA = DATA + '/validation' from pathlib import Path train_image_dir = Path(TRAIN_DATA) train_folders = [directory for directory in train_image_dir.iterdir() if directory.is_dir()] classes = [fo.name for fo in train_folders] from pathlib import Path val_image_dir = Path(VALIDATION_DATA) val_folders = [directory for directory in val_image_dir.iterdir() if directory.is_dir()] from skimage.io import imread from tensorflow.keras.preprocessing import image import cv2 as cv train_img = [] y_train = [] for i, direc in enumerate(train_folders): for file in direc.iterdir(): img = imread(file) img_pred = cv.resize(img, (50, 50), interpolation=cv.INTER_AREA) img_pred = image.img_to_array(img_pred) img_pred = img_pred / 255 train_img.append(img_pred) y_train.append(i) val_img = [] y_val = [] for i, direc in enumerate(val_folders): for file in direc.iterdir(): img = imread(file) img_pred = cv.resize(img, (50, 50), interpolation=cv.INTER_AREA) img_pred = image.img_to_array(img_pred) img_pred = img_pred / 255 val_img.append(img_pred) y_val.append(i) import numpy as np X_train = np.array(train_img) X_val = np.array(val_img) X_train = np.reshape(X_train, (X_train.shape[0], -1)) X_val = np.reshape(X_val, (X_val.shape[0], -1)) from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators=100) hist = model.fit(X_train, y_train) score = model.score(X_val, y_val) Y_pred = model.predict(X_val) from sklearn.metrics import classification_report print(classification_report(y_val, Y_pred, target_names=classes))
code
128029297/cell_7
[ "text_plain_output_1.png" ]
from pathlib import Path from pathlib import Path from skimage.io import imread from tensorflow.keras.preprocessing import image import cv2 as cv image_height = 128 image_width = 128 DATA = '/kaggle/input/malimg-dataset9010/dataset_9010/dataset_9010/malimg_dataset' TRAIN_DATA = DATA + '/train' VALIDATION_DATA = DATA + '/validation' from pathlib import Path train_image_dir = Path(TRAIN_DATA) train_folders = [directory for directory in train_image_dir.iterdir() if directory.is_dir()] classes = [fo.name for fo in train_folders] from skimage.io import imread from tensorflow.keras.preprocessing import image import cv2 as cv train_img = [] y_train = [] for i, direc in enumerate(train_folders): for file in direc.iterdir(): img = imread(file) img_pred = cv.resize(img, (50, 50), interpolation=cv.INTER_AREA) img_pred = image.img_to_array(img_pred) img_pred = img_pred / 255 train_img.append(img_pred) y_train.append(i)
code
128029297/cell_18
[ "text_plain_output_1.png" ]
from pathlib import Path from pathlib import Path from skimage.io import imread from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix from tensorflow.keras.preprocessing import image import cv2 as cv import numpy as np image_height = 128 image_width = 128 DATA = '/kaggle/input/malimg-dataset9010/dataset_9010/dataset_9010/malimg_dataset' TRAIN_DATA = DATA + '/train' VALIDATION_DATA = DATA + '/validation' from pathlib import Path train_image_dir = Path(TRAIN_DATA) train_folders = [directory for directory in train_image_dir.iterdir() if directory.is_dir()] classes = [fo.name for fo in train_folders] from pathlib import Path val_image_dir = Path(VALIDATION_DATA) val_folders = [directory for directory in val_image_dir.iterdir() if directory.is_dir()] from skimage.io import imread from tensorflow.keras.preprocessing import image import cv2 as cv train_img = [] y_train = [] for i, direc in enumerate(train_folders): for file in direc.iterdir(): img = imread(file) img_pred = cv.resize(img, (50, 50), interpolation=cv.INTER_AREA) img_pred = image.img_to_array(img_pred) img_pred = img_pred / 255 train_img.append(img_pred) y_train.append(i) val_img = [] y_val = [] for i, direc in enumerate(val_folders): for file in direc.iterdir(): img = imread(file) img_pred = cv.resize(img, (50, 50), interpolation=cv.INTER_AREA) img_pred = image.img_to_array(img_pred) img_pred = img_pred / 255 val_img.append(img_pred) y_val.append(i) import numpy as np X_train = np.array(train_img) X_val = np.array(val_img) X_train = np.reshape(X_train, (X_train.shape[0], -1)) X_val = np.reshape(X_val, (X_val.shape[0], -1)) from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators=100) hist = model.fit(X_train, y_train) score = model.score(X_val, y_val) Y_pred = model.predict(X_val) from sklearn.metrics import confusion_matrix print(confusion_matrix(y_true=y_val, y_pred=Y_pred))
code
128029297/cell_14
[ "application_vnd.jupyter.stderr_output_1.png" ]
from pathlib import Path from pathlib import Path from skimage.io import imread from sklearn.ensemble import RandomForestClassifier from tensorflow.keras.preprocessing import image import cv2 as cv import numpy as np image_height = 128 image_width = 128 DATA = '/kaggle/input/malimg-dataset9010/dataset_9010/dataset_9010/malimg_dataset' TRAIN_DATA = DATA + '/train' VALIDATION_DATA = DATA + '/validation' from pathlib import Path train_image_dir = Path(TRAIN_DATA) train_folders = [directory for directory in train_image_dir.iterdir() if directory.is_dir()] classes = [fo.name for fo in train_folders] from pathlib import Path val_image_dir = Path(VALIDATION_DATA) val_folders = [directory for directory in val_image_dir.iterdir() if directory.is_dir()] from skimage.io import imread from tensorflow.keras.preprocessing import image import cv2 as cv train_img = [] y_train = [] for i, direc in enumerate(train_folders): for file in direc.iterdir(): img = imread(file) img_pred = cv.resize(img, (50, 50), interpolation=cv.INTER_AREA) img_pred = image.img_to_array(img_pred) img_pred = img_pred / 255 train_img.append(img_pred) y_train.append(i) val_img = [] y_val = [] for i, direc in enumerate(val_folders): for file in direc.iterdir(): img = imread(file) img_pred = cv.resize(img, (50, 50), interpolation=cv.INTER_AREA) img_pred = image.img_to_array(img_pred) img_pred = img_pred / 255 val_img.append(img_pred) y_val.append(i) import numpy as np X_train = np.array(train_img) X_val = np.array(val_img) X_train = np.reshape(X_train, (X_train.shape[0], -1)) X_val = np.reshape(X_val, (X_val.shape[0], -1)) from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier(n_estimators=100) hist = model.fit(X_train, y_train) score = model.score(X_val, y_val) print('Accuracy:', score)
code
32070571/cell_13
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum() headline_length = all_sources['title'].str.len() headline_length = all_sources['abstract'].str.len() plt.hist(headline_length) plt.show()
code
32070571/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum()
code
32070571/cell_44
[ "text_plain_output_1.png" ]
from collections import Counter from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer,PorterStemmer from sklearn.cluster import DBSCAN from sklearn.metrics.pairwise import cosine_similarity from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import spacy path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum() headline_length = all_sources['title'].str.len() headline_length = all_sources['abstract'].str.len() stop = set(stopwords.words('english')) def build_list(df, col='title'): corpus = [] lem = WordNetLemmatizer() stop = set(stopwords.words('english')) new = df[col].dropna().str.split() new = new.values.tolist() corpus = [lem.lemmatize(word.lower()) for i in new for word in i if word not in stop] return corpus corpus = build_list(all_sources) counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) corpus = build_list(all_sources, 'abstract') counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) def prepare_similarity(vectors): similarity = cosine_similarity(vectors) return similarity def get_top_similar(sentence, sentence_list, similarity_matrix, topN): index = sentence_list.index(sentence) similarity_row = np.array(similarity_matrix[index, :]) indices = similarity_row.argsort()[-topN:][::-1] return [(i, sentence_list[i]) for i in indices] nlp = spacy.load('en_core_web_sm') sent_vecs = {} docs = [] for i in tqdm(all_sources['title'].fillna('unknown')[:1000]): doc = nlp(i) docs.append(doc) sent_vecs.update({i: doc.vector}) sentences = list(sent_vecs.keys()) vectors = list(sent_vecs.values()) x = np.array(vectors) dbscan = DBSCAN(eps=0.08, min_samples=2, metric='cosine').fit(x) df_cluster = pd.DataFrame({'sentences': sentences, 'label': dbscan.labels_}) df_cluster.label.unique()
code
32070571/cell_55
[ "text_html_output_1.png" ]
from collections import Counter from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer,PorterStemmer from sklearn.cluster import DBSCAN from sklearn.metrics.pairwise import cosine_similarity from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import spacy path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum() headline_length = all_sources['title'].str.len() headline_length = all_sources['abstract'].str.len() stop = set(stopwords.words('english')) def build_list(df, col='title'): corpus = [] lem = WordNetLemmatizer() stop = set(stopwords.words('english')) new = df[col].dropna().str.split() new = new.values.tolist() corpus = [lem.lemmatize(word.lower()) for i in new for word in i if word not in stop] return corpus corpus = build_list(all_sources) counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) corpus = build_list(all_sources, 'abstract') counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) def prepare_similarity(vectors): similarity = cosine_similarity(vectors) return similarity def get_top_similar(sentence, sentence_list, similarity_matrix, topN): index = sentence_list.index(sentence) similarity_row = np.array(similarity_matrix[index, :]) indices = similarity_row.argsort()[-topN:][::-1] return [(i, sentence_list[i]) for i in indices] nlp = spacy.load('en_core_web_sm') sent_vecs = {} docs = [] for i in tqdm(all_sources['title'].fillna('unknown')[:1000]): doc = nlp(i) docs.append(doc) sent_vecs.update({i: doc.vector}) sentences = list(sent_vecs.keys()) vectors = list(sent_vecs.values()) x = np.array(vectors) dbscan = DBSCAN(eps=0.08, min_samples=2, metric='cosine').fit(x) df_cluster = pd.DataFrame({'sentences': sentences, 'label': dbscan.labels_}) path = '../input/cord-19-eda-parse-json-and-generate-clean-csv/' clean_comm = pd.read_csv(path + 'clean_comm_use.csv', nrows=5000) clean_comm['source'] = 'clean_comm' biox = pd.read_csv(path + 'biorxiv_clean.csv') biox['source'] = 'biorx' all_articles = pd.concat([biox, clean_comm]) all_articles.shape
code
32070571/cell_6
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics.pairwise import cosine_similarity from nltk.stem import WordNetLemmatizer, PorterStemmer from nltk.tokenize import word_tokenize from sklearn.cluster import DBSCAN from nltk.corpus import stopwords from spacy.matcher import Matcher from collections import Counter import matplotlib.pyplot as plt from spacy.tokens import Span import tensorflow_hub as hub from rake_nltk import Rake import tensorflow as tf import pyLDAvis.gensim from tqdm import tqdm import seaborn as sns import networkx as nx import pandas as pd import numpy as np import pyLDAvis import gensim import spacy import os import gc
code
32070571/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
from collections import Counter from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer,PorterStemmer from nltk.tokenize import word_tokenize import gensim import matplotlib.pyplot as plt import pandas as pd import seaborn as sns path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum() headline_length = all_sources['title'].str.len() headline_length = all_sources['abstract'].str.len() stop = set(stopwords.words('english')) def build_list(df, col='title'): corpus = [] lem = WordNetLemmatizer() stop = set(stopwords.words('english')) new = df[col].dropna().str.split() new = new.values.tolist() corpus = [lem.lemmatize(word.lower()) for i in new for word in i if word not in stop] return corpus corpus = build_list(all_sources) counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) corpus = build_list(all_sources, 'abstract') counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) def preprocess_news(df): corpus = [] stem = PorterStemmer() lem = WordNetLemmatizer() for news in df['title'].dropna()[:5000]: words = [w for w in word_tokenize(news) if w not in stop] words = [lem.lemmatize(w) for w in words if len(w) > 2] corpus.append(words) return corpus corpus = preprocess_news(all_sources) dic = gensim.corpora.Dictionary(corpus) bow_corpus = [dic.doc2bow(doc) for doc in corpus] lda_model = gensim.models.LdaMulticore(bow_corpus, num_topics=4, id2word=dic, passes=10, workers=2) lda_model.show_topics()
code
32070571/cell_39
[ "text_plain_output_1.png" ]
import gc del corpus, top_n_bigrams, lda_model, bow_corpus, top_tri_grams gc.collect() del embed_vectors, sentence_list, similarity_matrix gc.collect()
code
32070571/cell_48
[ "application_vnd.jupyter.stderr_output_1.png" ]
from collections import Counter from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer,PorterStemmer from sklearn.cluster import DBSCAN from sklearn.metrics.pairwise import cosine_similarity from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import spacy path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum() headline_length = all_sources['title'].str.len() headline_length = all_sources['abstract'].str.len() stop = set(stopwords.words('english')) def build_list(df, col='title'): corpus = [] lem = WordNetLemmatizer() stop = set(stopwords.words('english')) new = df[col].dropna().str.split() new = new.values.tolist() corpus = [lem.lemmatize(word.lower()) for i in new for word in i if word not in stop] return corpus corpus = build_list(all_sources) counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) corpus = build_list(all_sources, 'abstract') counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) def prepare_similarity(vectors): similarity = cosine_similarity(vectors) return similarity def get_top_similar(sentence, sentence_list, similarity_matrix, topN): index = sentence_list.index(sentence) similarity_row = np.array(similarity_matrix[index, :]) indices = similarity_row.argsort()[-topN:][::-1] return [(i, sentence_list[i]) for i in indices] nlp = spacy.load('en_core_web_sm') sent_vecs = {} docs = [] for i in tqdm(all_sources['title'].fillna('unknown')[:1000]): doc = nlp(i) docs.append(doc) sent_vecs.update({i: doc.vector}) sentences = list(sent_vecs.keys()) vectors = list(sent_vecs.values()) x = np.array(vectors) dbscan = DBSCAN(eps=0.08, min_samples=2, metric='cosine').fit(x) df_cluster = pd.DataFrame({'sentences': sentences, 'label': dbscan.labels_}) df_cluster.label.unique() df_cluster[df_cluster['label'] == 1].head()
code
32070571/cell_73
[ "text_plain_output_1.png" ]
!pip install python-rake
code
32070571/cell_41
[ "text_plain_output_1.png" ]
from tqdm import tqdm import pandas as pd import spacy path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum() nlp = spacy.load('en_core_web_sm') sent_vecs = {} docs = [] for i in tqdm(all_sources['title'].fillna('unknown')[:1000]): doc = nlp(i) docs.append(doc) sent_vecs.update({i: doc.vector})
code
32070571/cell_54
[ "text_html_output_1.png" ]
import gc del corpus, top_n_bigrams, lda_model, bow_corpus, top_tri_grams gc.collect() del embed_vectors, sentence_list, similarity_matrix gc.collect() del biox, clean_comm gc.collect()
code
32070571/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum() headline_length = all_sources['title'].str.len() sns.distplot(headline_length) plt.show()
code
32070571/cell_60
[ "text_html_output_1.png" ]
from collections import Counter from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer,PorterStemmer from sklearn.cluster import DBSCAN from sklearn.metrics.pairwise import cosine_similarity from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import spacy path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum() headline_length = all_sources['title'].str.len() headline_length = all_sources['abstract'].str.len() stop = set(stopwords.words('english')) def build_list(df, col='title'): corpus = [] lem = WordNetLemmatizer() stop = set(stopwords.words('english')) new = df[col].dropna().str.split() new = new.values.tolist() corpus = [lem.lemmatize(word.lower()) for i in new for word in i if word not in stop] return corpus corpus = build_list(all_sources) counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) corpus = build_list(all_sources, 'abstract') counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) def prepare_similarity(vectors): similarity = cosine_similarity(vectors) return similarity def get_top_similar(sentence, sentence_list, similarity_matrix, topN): index = sentence_list.index(sentence) similarity_row = np.array(similarity_matrix[index, :]) indices = similarity_row.argsort()[-topN:][::-1] return [(i, sentence_list[i]) for i in indices] nlp = spacy.load('en_core_web_sm') sent_vecs = {} docs = [] for i in tqdm(all_sources['title'].fillna('unknown')[:1000]): doc = nlp(i) docs.append(doc) sent_vecs.update({i: doc.vector}) sentences = list(sent_vecs.keys()) vectors = list(sent_vecs.values()) x = np.array(vectors) dbscan = DBSCAN(eps=0.08, min_samples=2, metric='cosine').fit(x) df_cluster = pd.DataFrame({'sentences': sentences, 'label': dbscan.labels_}) path = '../input/cord-19-eda-parse-json-and-generate-clean-csv/' clean_comm = pd.read_csv(path + 'clean_comm_use.csv', nrows=5000) clean_comm['source'] = 'clean_comm' biox = pd.read_csv(path + 'biorxiv_clean.csv') biox['source'] = 'biorx' all_articles = pd.concat([biox, clean_comm]) all_articles.shape tasks = ['What is known about transmission, incubation, and environmental stability', 'What do we know about COVID-19 risk factors', 'What do we know about virus genetics, origin, and evolution', 'What do we know about vaccines and therapeutics', 'What do we know about non-pharmaceutical interventions', 'What do we know about diagnostics and surveillance', 'What has been published about ethical and social science considerations', 'Role of the environment in transmission', 'Range of incubation periods for the disease in humans', 'Prevalence of asymptomatic shedding and transmission', 'Seasonality of transmission', 'Persistence of virus on surfaces of different materials (e,g., copper, stainless steel, plastic)', 'Susceptibility of populations', 'Public health mitigation measures that could be effective for control', 'Transmission dynamics of the virus', 'Evidence that livestock could be infected', 'Socioeconomic and behavioral risk factors for this spill-over', 'Sustainable risk reduction strategies'] task_df = pd.DataFrame({'title': tasks, 'source': 'task'}) all_articles = pd.concat([all_articles, task_df]) all_articles.fillna('Unknown', inplace=True)
code
32070571/cell_19
[ "image_output_1.png" ]
from collections import Counter from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer,PorterStemmer import matplotlib.pyplot as plt import pandas as pd import seaborn as sns path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum() headline_length = all_sources['title'].str.len() headline_length = all_sources['abstract'].str.len() stop = set(stopwords.words('english')) def build_list(df, col='title'): corpus = [] lem = WordNetLemmatizer() stop = set(stopwords.words('english')) new = df[col].dropna().str.split() new = new.values.tolist() corpus = [lem.lemmatize(word.lower()) for i in new for word in i if word not in stop] return corpus corpus = build_list(all_sources) counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) corpus = build_list(all_sources, 'abstract') counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) plt.figure(figsize=(9, 7)) sns.barplot(x=y, y=x)
code
32070571/cell_64
[ "application_vnd.jupyter.stderr_output_1.png" ]
from collections import Counter from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer,PorterStemmer from sklearn.cluster import DBSCAN from sklearn.metrics.pairwise import cosine_similarity from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import spacy import tensorflow_hub as hub path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum() headline_length = all_sources['title'].str.len() headline_length = all_sources['abstract'].str.len() stop = set(stopwords.words('english')) def build_list(df, col='title'): corpus = [] lem = WordNetLemmatizer() stop = set(stopwords.words('english')) new = df[col].dropna().str.split() new = new.values.tolist() corpus = [lem.lemmatize(word.lower()) for i in new for word in i if word not in stop] return corpus corpus = build_list(all_sources) counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) corpus = build_list(all_sources, 'abstract') counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) def prepare_similarity(vectors): similarity = cosine_similarity(vectors) return similarity def get_top_similar(sentence, sentence_list, similarity_matrix, topN): index = sentence_list.index(sentence) similarity_row = np.array(similarity_matrix[index, :]) indices = similarity_row.argsort()[-topN:][::-1] return [(i, sentence_list[i]) for i in indices] module_url = '../input/universalsentenceencoderlarge4' embed = hub.load(module_url) titles = all_sources['title'].fillna('Unknown') embed_vectors = embed(titles[:100].values)['outputs'].numpy() sentence_list = titles.values.tolist() sentence = titles.iloc[5] similarity_matrix = prepare_similarity(embed_vectors) similar = get_top_similar(sentence, sentence_list, similarity_matrix, 6) nlp = spacy.load('en_core_web_sm') sent_vecs = {} docs = [] for i in tqdm(all_sources['title'].fillna('unknown')[:1000]): doc = nlp(i) docs.append(doc) sent_vecs.update({i: doc.vector}) sentences = list(sent_vecs.keys()) vectors = list(sent_vecs.values()) x = np.array(vectors) dbscan = DBSCAN(eps=0.08, min_samples=2, metric='cosine').fit(x) df_cluster = pd.DataFrame({'sentences': sentences, 'label': dbscan.labels_}) path = '../input/cord-19-eda-parse-json-and-generate-clean-csv/' clean_comm = pd.read_csv(path + 'clean_comm_use.csv', nrows=5000) clean_comm['source'] = 'clean_comm' biox = pd.read_csv(path + 'biorxiv_clean.csv') biox['source'] = 'biorx' all_articles = pd.concat([biox, clean_comm]) all_articles.shape tasks = ['What is known about transmission, incubation, and environmental stability', 'What do we know about COVID-19 risk factors', 'What do we know about virus genetics, origin, and evolution', 'What do we know about vaccines and therapeutics', 'What do we know about non-pharmaceutical interventions', 'What do we know about diagnostics and surveillance', 'What has been published about ethical and social science considerations', 'Role of the environment in transmission', 'Range of incubation periods for the disease in humans', 'Prevalence of asymptomatic shedding and transmission', 'Seasonality of transmission', 'Persistence of virus on surfaces of different materials (e,g., copper, stainless steel, plastic)', 'Susceptibility of populations', 'Public health mitigation measures that could be effective for control', 'Transmission dynamics of the virus', 'Evidence that livestock could be infected', 'Socioeconomic and behavioral risk factors for this spill-over', 'Sustainable risk reduction strategies'] task_df = pd.DataFrame({'title': tasks, 'source': 'task'}) all_articles = pd.concat([all_articles, task_df]) all_articles.fillna('Unknown', inplace=True) sentence_list = all_articles.title.values.tolist() embed_vectors = embed(sentence_list)['outputs'].numpy() similarity_matrix = prepare_similarity(embed_vectors) sentence = 'Role of the environment in transmission' similar = get_top_similar(sentence, sentence_list, similarity_matrix, 10) for sent in similar: print(sent[1])
code
32070571/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
import gc del corpus, top_n_bigrams, lda_model, bow_corpus, top_tri_grams gc.collect()
code
32070571/cell_59
[ "text_plain_output_1.png" ]
from collections import Counter from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer,PorterStemmer from sklearn.cluster import DBSCAN from sklearn.metrics.pairwise import cosine_similarity from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import spacy path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum() headline_length = all_sources['title'].str.len() headline_length = all_sources['abstract'].str.len() stop = set(stopwords.words('english')) def build_list(df, col='title'): corpus = [] lem = WordNetLemmatizer() stop = set(stopwords.words('english')) new = df[col].dropna().str.split() new = new.values.tolist() corpus = [lem.lemmatize(word.lower()) for i in new for word in i if word not in stop] return corpus corpus = build_list(all_sources) counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) corpus = build_list(all_sources, 'abstract') counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) def prepare_similarity(vectors): similarity = cosine_similarity(vectors) return similarity def get_top_similar(sentence, sentence_list, similarity_matrix, topN): index = sentence_list.index(sentence) similarity_row = np.array(similarity_matrix[index, :]) indices = similarity_row.argsort()[-topN:][::-1] return [(i, sentence_list[i]) for i in indices] nlp = spacy.load('en_core_web_sm') sent_vecs = {} docs = [] for i in tqdm(all_sources['title'].fillna('unknown')[:1000]): doc = nlp(i) docs.append(doc) sent_vecs.update({i: doc.vector}) sentences = list(sent_vecs.keys()) vectors = list(sent_vecs.values()) x = np.array(vectors) dbscan = DBSCAN(eps=0.08, min_samples=2, metric='cosine').fit(x) df_cluster = pd.DataFrame({'sentences': sentences, 'label': dbscan.labels_}) path = '../input/cord-19-eda-parse-json-and-generate-clean-csv/' clean_comm = pd.read_csv(path + 'clean_comm_use.csv', nrows=5000) clean_comm['source'] = 'clean_comm' biox = pd.read_csv(path + 'biorxiv_clean.csv') biox['source'] = 'biorx' all_articles = pd.concat([biox, clean_comm]) tasks = ['What is known about transmission, incubation, and environmental stability', 'What do we know about COVID-19 risk factors', 'What do we know about virus genetics, origin, and evolution', 'What do we know about vaccines and therapeutics', 'What do we know about non-pharmaceutical interventions', 'What do we know about diagnostics and surveillance', 'What has been published about ethical and social science considerations', 'Role of the environment in transmission', 'Range of incubation periods for the disease in humans', 'Prevalence of asymptomatic shedding and transmission', 'Seasonality of transmission', 'Persistence of virus on surfaces of different materials (e,g., copper, stainless steel, plastic)', 'Susceptibility of populations', 'Public health mitigation measures that could be effective for control', 'Transmission dynamics of the virus', 'Evidence that livestock could be infected', 'Socioeconomic and behavioral risk factors for this spill-over', 'Sustainable risk reduction strategies'] task_df = pd.DataFrame({'title': tasks, 'source': 'task'}) task_df.head()
code
32070571/cell_38
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.metrics.pairwise import cosine_similarity import numpy as np import pandas as pd import tensorflow_hub as hub path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum() def prepare_similarity(vectors): similarity = cosine_similarity(vectors) return similarity def get_top_similar(sentence, sentence_list, similarity_matrix, topN): index = sentence_list.index(sentence) similarity_row = np.array(similarity_matrix[index, :]) indices = similarity_row.argsort()[-topN:][::-1] return [(i, sentence_list[i]) for i in indices] module_url = '../input/universalsentenceencoderlarge4' embed = hub.load(module_url) titles = all_sources['title'].fillna('Unknown') embed_vectors = embed(titles[:100].values)['outputs'].numpy() sentence_list = titles.values.tolist() sentence = titles.iloc[5] similarity_matrix = prepare_similarity(embed_vectors) similar = get_top_similar(sentence, sentence_list, similarity_matrix, 6) for sentence in similar: print(sentence) print('\n')
code
32070571/cell_75
[ "text_plain_output_1.png" ]
from collections import Counter from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer,PorterStemmer from nltk.tokenize import word_tokenize from sklearn.cluster import DBSCAN from sklearn.metrics.pairwise import cosine_similarity from tqdm import tqdm import RAKE import matplotlib.pyplot as plt import numpy as np import pandas as pd import re import seaborn as sns import spacy import tensorflow_hub as hub path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum() headline_length = all_sources['title'].str.len() headline_length = all_sources['abstract'].str.len() stop = set(stopwords.words('english')) def build_list(df, col='title'): corpus = [] lem = WordNetLemmatizer() stop = set(stopwords.words('english')) new = df[col].dropna().str.split() new = new.values.tolist() corpus = [lem.lemmatize(word.lower()) for i in new for word in i if word not in stop] return corpus corpus = build_list(all_sources) counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) corpus = build_list(all_sources, 'abstract') counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) def preprocess_news(df): corpus = [] stem = PorterStemmer() lem = WordNetLemmatizer() for news in df['title'].dropna()[:5000]: words = [w for w in word_tokenize(news) if w not in stop] words = [lem.lemmatize(w) for w in words if len(w) > 2] corpus.append(words) return corpus def prepare_similarity(vectors): similarity = cosine_similarity(vectors) return similarity def get_top_similar(sentence, sentence_list, similarity_matrix, topN): index = sentence_list.index(sentence) similarity_row = np.array(similarity_matrix[index, :]) indices = similarity_row.argsort()[-topN:][::-1] return [(i, sentence_list[i]) for i in indices] module_url = '../input/universalsentenceencoderlarge4' embed = hub.load(module_url) titles = all_sources['title'].fillna('Unknown') embed_vectors = embed(titles[:100].values)['outputs'].numpy() sentence_list = titles.values.tolist() sentence = titles.iloc[5] similarity_matrix = prepare_similarity(embed_vectors) similar = get_top_similar(sentence, sentence_list, similarity_matrix, 6) nlp = spacy.load('en_core_web_sm') sent_vecs = {} docs = [] for i in tqdm(all_sources['title'].fillna('unknown')[:1000]): doc = nlp(i) docs.append(doc) sent_vecs.update({i: doc.vector}) sentences = list(sent_vecs.keys()) vectors = list(sent_vecs.values()) x = np.array(vectors) dbscan = DBSCAN(eps=0.08, min_samples=2, metric='cosine').fit(x) df_cluster = pd.DataFrame({'sentences': sentences, 'label': dbscan.labels_}) path = '../input/cord-19-eda-parse-json-and-generate-clean-csv/' clean_comm = pd.read_csv(path + 'clean_comm_use.csv', nrows=5000) clean_comm['source'] = 'clean_comm' biox = pd.read_csv(path + 'biorxiv_clean.csv') biox['source'] = 'biorx' all_articles = pd.concat([biox, clean_comm]) all_articles.shape tasks = ['What is known about transmission, incubation, and environmental stability', 'What do we know about COVID-19 risk factors', 'What do we know about virus genetics, origin, and evolution', 'What do we know about vaccines and therapeutics', 'What do we know about non-pharmaceutical interventions', 'What do we know about diagnostics and surveillance', 'What has been published about ethical and social science considerations', 'Role of the environment in transmission', 'Range of incubation periods for the disease in humans', 'Prevalence of asymptomatic shedding and transmission', 'Seasonality of transmission', 'Persistence of virus on surfaces of different materials (e,g., copper, stainless steel, plastic)', 'Susceptibility of populations', 'Public health mitigation measures that could be effective for control', 'Transmission dynamics of the virus', 'Evidence that livestock could be infected', 'Socioeconomic and behavioral risk factors for this spill-over', 'Sustainable risk reduction strategies'] task_df = pd.DataFrame({'title': tasks, 'source': 'task'}) all_articles = pd.concat([all_articles, task_df]) all_articles.fillna('Unknown', inplace=True) sentence_list = all_articles.title.values.tolist() embed_vectors = embed(sentence_list)['outputs'].numpy() similarity_matrix = prepare_similarity(embed_vectors) sentence = 'Role of the environment in transmission' similar = get_top_similar(sentence, sentence_list, similarity_matrix, 10) ind, title = list(map(list, zip(*similar))) titles = [] texts = [] for i in ind: titles.append(all_articles.iloc[i]['title']) texts.append(all_articles.iloc[i]['abstract']) import re def clean(txt): txt = re.sub('\\n', '', txt) txt = re.sub('\\([^()]*\\)', '', txt) txt = re.sub('https?:\\S+\\sdoi', '', txt) return txt texts = list(map(clean, texts)) text_list = ' '.join(texts) import RAKE import operator stop_dir = '../input/stopwordsforrake/SmartStoplist.txt' rake_object = RAKE.Rake(stop_dir) keywords = rake_object.run(text_list) words, score = list(map(list, zip(*keywords))) for word in words[:10]: print(word)
code
32070571/cell_47
[ "text_plain_output_1.png" ]
from collections import Counter from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer,PorterStemmer from sklearn.cluster import DBSCAN from sklearn.metrics.pairwise import cosine_similarity from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import spacy path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum() headline_length = all_sources['title'].str.len() headline_length = all_sources['abstract'].str.len() stop = set(stopwords.words('english')) def build_list(df, col='title'): corpus = [] lem = WordNetLemmatizer() stop = set(stopwords.words('english')) new = df[col].dropna().str.split() new = new.values.tolist() corpus = [lem.lemmatize(word.lower()) for i in new for word in i if word not in stop] return corpus corpus = build_list(all_sources) counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) corpus = build_list(all_sources, 'abstract') counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) def prepare_similarity(vectors): similarity = cosine_similarity(vectors) return similarity def get_top_similar(sentence, sentence_list, similarity_matrix, topN): index = sentence_list.index(sentence) similarity_row = np.array(similarity_matrix[index, :]) indices = similarity_row.argsort()[-topN:][::-1] return [(i, sentence_list[i]) for i in indices] nlp = spacy.load('en_core_web_sm') sent_vecs = {} docs = [] for i in tqdm(all_sources['title'].fillna('unknown')[:1000]): doc = nlp(i) docs.append(doc) sent_vecs.update({i: doc.vector}) sentences = list(sent_vecs.keys()) vectors = list(sent_vecs.values()) x = np.array(vectors) dbscan = DBSCAN(eps=0.08, min_samples=2, metric='cosine').fit(x) df_cluster = pd.DataFrame({'sentences': sentences, 'label': dbscan.labels_}) df_cluster.label.unique() df_cluster[df_cluster['label'] == 0].head()
code
32070571/cell_17
[ "text_plain_output_1.png" ]
from collections import Counter from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer,PorterStemmer import matplotlib.pyplot as plt import pandas as pd import seaborn as sns path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum() headline_length = all_sources['title'].str.len() headline_length = all_sources['abstract'].str.len() stop = set(stopwords.words('english')) def build_list(df, col='title'): corpus = [] lem = WordNetLemmatizer() stop = set(stopwords.words('english')) new = df[col].dropna().str.split() new = new.values.tolist() corpus = [lem.lemmatize(word.lower()) for i in new for word in i if word not in stop] return corpus corpus = build_list(all_sources) counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) plt.figure(figsize=(9, 7)) sns.barplot(x=y, y=x)
code
32070571/cell_77
[ "text_plain_output_1.png" ]
!pip install pytextrank
code
32070571/cell_31
[ "text_plain_output_1.png", "image_output_1.png" ]
from collections import Counter from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer,PorterStemmer from nltk.tokenize import word_tokenize import gensim import matplotlib.pyplot as plt import pandas as pd import pyLDAvis import seaborn as sns path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum() headline_length = all_sources['title'].str.len() headline_length = all_sources['abstract'].str.len() stop = set(stopwords.words('english')) def build_list(df, col='title'): corpus = [] lem = WordNetLemmatizer() stop = set(stopwords.words('english')) new = df[col].dropna().str.split() new = new.values.tolist() corpus = [lem.lemmatize(word.lower()) for i in new for word in i if word not in stop] return corpus corpus = build_list(all_sources) counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) corpus = build_list(all_sources, 'abstract') counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) def preprocess_news(df): corpus = [] stem = PorterStemmer() lem = WordNetLemmatizer() for news in df['title'].dropna()[:5000]: words = [w for w in word_tokenize(news) if w not in stop] words = [lem.lemmatize(w) for w in words if len(w) > 2] corpus.append(words) return corpus corpus = preprocess_news(all_sources) dic = gensim.corpora.Dictionary(corpus) bow_corpus = [dic.doc2bow(doc) for doc in corpus] lda_model = gensim.models.LdaMulticore(bow_corpus, num_topics=4, id2word=dic, passes=10, workers=2) pyLDAvis.enable_notebook() vis = pyLDAvis.gensim.prepare(lda_model, bow_corpus, dic) vis
code
32070571/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
from collections import Counter from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer,PorterStemmer from sklearn.feature_extraction.text import CountVectorizer import matplotlib.pyplot as plt import pandas as pd import seaborn as sns path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum() headline_length = all_sources['title'].str.len() headline_length = all_sources['abstract'].str.len() stop = set(stopwords.words('english')) def build_list(df, col='title'): corpus = [] lem = WordNetLemmatizer() stop = set(stopwords.words('english')) new = df[col].dropna().str.split() new = new.values.tolist() corpus = [lem.lemmatize(word.lower()) for i in new for word in i if word not in stop] return corpus corpus = build_list(all_sources) counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) corpus = build_list(all_sources, 'abstract') counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) def get_top_ngram(corpus, n=None): vec = CountVectorizer(ngram_range=(n, n)).fit(corpus) bag_of_words = vec.transform(corpus) sum_words = bag_of_words.sum(axis=0) words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()] words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True) return words_freq[:10] top_n_bigrams = get_top_ngram(all_sources['title'].dropna(), 2)[:10] x, y = map(list, zip(*top_n_bigrams)) top_tri_grams = get_top_ngram(all_sources['title'].dropna(), n=3) x, y = map(list, zip(*top_tri_grams)) plt.figure(figsize=(9, 7)) sns.barplot(x=y, y=x)
code
32070571/cell_22
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from collections import Counter from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer,PorterStemmer from sklearn.feature_extraction.text import CountVectorizer import matplotlib.pyplot as plt import pandas as pd import seaborn as sns path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum() headline_length = all_sources['title'].str.len() headline_length = all_sources['abstract'].str.len() stop = set(stopwords.words('english')) def build_list(df, col='title'): corpus = [] lem = WordNetLemmatizer() stop = set(stopwords.words('english')) new = df[col].dropna().str.split() new = new.values.tolist() corpus = [lem.lemmatize(word.lower()) for i in new for word in i if word not in stop] return corpus corpus = build_list(all_sources) counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) corpus = build_list(all_sources, 'abstract') counter = Counter(corpus) most = counter.most_common() x = [] y = [] for word, count in most[:10]: if word not in stop: x.append(word) y.append(count) def get_top_ngram(corpus, n=None): vec = CountVectorizer(ngram_range=(n, n)).fit(corpus) bag_of_words = vec.transform(corpus) sum_words = bag_of_words.sum(axis=0) words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()] words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True) return words_freq[:10] top_n_bigrams = get_top_ngram(all_sources['title'].dropna(), 2)[:10] x, y = map(list, zip(*top_n_bigrams)) plt.figure(figsize=(9, 7)) sns.barplot(x=y, y=x)
code
32070571/cell_37
[ "text_plain_output_1.png" ]
from sklearn.metrics.pairwise import cosine_similarity import numpy as np import pandas as pd import tensorflow_hub as hub path = '../input/CORD-19-research-challenge/' all_sources = pd.read_csv(path + 'metadata.csv') all_sources.isna().sum() def prepare_similarity(vectors): similarity = cosine_similarity(vectors) return similarity def get_top_similar(sentence, sentence_list, similarity_matrix, topN): index = sentence_list.index(sentence) similarity_row = np.array(similarity_matrix[index, :]) indices = similarity_row.argsort()[-topN:][::-1] return [(i, sentence_list[i]) for i in indices] module_url = '../input/universalsentenceencoderlarge4' embed = hub.load(module_url) titles = all_sources['title'].fillna('Unknown') embed_vectors = embed(titles[:100].values)['outputs'].numpy() sentence_list = titles.values.tolist() sentence = titles.iloc[5] print('Find similar research papers for :') print(sentence) similarity_matrix = prepare_similarity(embed_vectors) similar = get_top_similar(sentence, sentence_list, similarity_matrix, 6)
code
32070571/cell_5
[ "text_plain_output_1.png" ]
!pip install rake-nltk
code
74065110/cell_42
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) site_data_example = elec_meter_data_all.loc[:, elec_meter_data_all.columns.str.contains('Panther') & elec_meter_data_all.columns.str.contains('office')] site_data_example_2017 = site_data_example.truncate(before='2017-01-01') weather_data = pd.read_csv('../input/buildingdatagenomeproject2/weather.csv', index_col='timestamp', parse_dates=True) weather_data_site = weather_data[weather_data.site_id == 'Panther'] sample_meter = pd.DataFrame(site_data_example_2017['Panther_office_Lavinia']) sample_meter_nooutlier = sample_meter[sample_meter > 10] sample_meter_nooutlier_nogaps = sample_meter_nooutlier.fillna(method='ffill') temp_data = pd.DataFrame(weather_data_site['airTemperature'].truncate(before='01-01-2017')) comparison = pd.concat([temp_data, sample_meter_nooutlier_nogaps], axis=1) comparison.resample('D').mean().plot(kind='scatter', x='airTemperature', y='Panther_office_Lavinia', figsize=(10, 10))
code
74065110/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) weather_data = pd.read_csv('../input/buildingdatagenomeproject2/weather.csv', index_col='timestamp', parse_dates=True) weather_data_site = weather_data[weather_data.site_id == 'Panther'] weather_data_site.head()
code
74065110/cell_25
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) site_data_example = elec_meter_data_all.loc[:, elec_meter_data_all.columns.str.contains('Panther') & elec_meter_data_all.columns.str.contains('office')] site_data_example_2017 = site_data_example.truncate(before='2017-01-01') weather_data = pd.read_csv('../input/buildingdatagenomeproject2/weather.csv', index_col='timestamp', parse_dates=True) sample_meter = pd.DataFrame(site_data_example_2017['Panther_office_Lavinia']) sample_meter_nooutlier = sample_meter[sample_meter > 10] sample_meter_nooutlier.info()
code
74065110/cell_4
[ "text_html_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) elec_meter_data_all.info()
code
74065110/cell_34
[ "text_plain_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) site_data_example = elec_meter_data_all.loc[:, elec_meter_data_all.columns.str.contains('Panther') & elec_meter_data_all.columns.str.contains('office')] site_data_example_2017 = site_data_example.truncate(before='2017-01-01') weather_data = pd.read_csv('../input/buildingdatagenomeproject2/weather.csv', index_col='timestamp', parse_dates=True) weather_data_site = weather_data[weather_data.site_id == 'Panther'] sample_meter = pd.DataFrame(site_data_example_2017['Panther_office_Lavinia']) sample_meter_nooutlier = sample_meter[sample_meter > 10] sample_meter_nooutlier_nogaps = sample_meter_nooutlier.fillna(method='ffill') temp_data = pd.DataFrame(weather_data_site['airTemperature'].truncate(before='01-01-2017')) comparison = pd.concat([temp_data, sample_meter_nooutlier_nogaps], axis=1) comparison.info()
code
74065110/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) site_data_example = elec_meter_data_all.loc[:, elec_meter_data_all.columns.str.contains('Panther') & elec_meter_data_all.columns.str.contains('office')] site_data_example_2017 = site_data_example.truncate(before='2017-01-01') weather_data = pd.read_csv('../input/buildingdatagenomeproject2/weather.csv', index_col='timestamp', parse_dates=True) sample_meter = pd.DataFrame(site_data_example_2017['Panther_office_Lavinia']) sample_meter_nooutlier = sample_meter[sample_meter > 10] sample_meter_nooutlier.truncate(before='02-10-2017', after='02-20-2017').plot(figsize=(10, 4))
code
74065110/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) site_data_example = elec_meter_data_all.loc[:, elec_meter_data_all.columns.str.contains('Panther') & elec_meter_data_all.columns.str.contains('office')] site_data_example_2017 = site_data_example.truncate(before='2017-01-01') weather_data = pd.read_csv('../input/buildingdatagenomeproject2/weather.csv', index_col='timestamp', parse_dates=True) sample_meter = pd.DataFrame(site_data_example_2017['Panther_office_Lavinia']) sample_meter.truncate(before='02-10-2017', after='02-20-2017').plot(figsize=(10, 4))
code
74065110/cell_39
[ "text_plain_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) site_data_example = elec_meter_data_all.loc[:, elec_meter_data_all.columns.str.contains('Panther') & elec_meter_data_all.columns.str.contains('office')] site_data_example_2017 = site_data_example.truncate(before='2017-01-01') weather_data = pd.read_csv('../input/buildingdatagenomeproject2/weather.csv', index_col='timestamp', parse_dates=True) weather_data_site = weather_data[weather_data.site_id == 'Panther'] sample_meter = pd.DataFrame(site_data_example_2017['Panther_office_Lavinia']) sample_meter_nooutlier = sample_meter[sample_meter > 10] sample_meter_nooutlier_nogaps = sample_meter_nooutlier.fillna(method='ffill') temp_data = pd.DataFrame(weather_data_site['airTemperature'].truncate(before='01-01-2017')) comparison = pd.concat([temp_data, sample_meter_nooutlier_nogaps], axis=1) comparison.plot(figsize=(20, 10), subplots=True)
code
74065110/cell_41
[ "text_plain_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) site_data_example = elec_meter_data_all.loc[:, elec_meter_data_all.columns.str.contains('Panther') & elec_meter_data_all.columns.str.contains('office')] site_data_example_2017 = site_data_example.truncate(before='2017-01-01') weather_data = pd.read_csv('../input/buildingdatagenomeproject2/weather.csv', index_col='timestamp', parse_dates=True) weather_data_site = weather_data[weather_data.site_id == 'Panther'] sample_meter = pd.DataFrame(site_data_example_2017['Panther_office_Lavinia']) sample_meter_nooutlier = sample_meter[sample_meter > 10] sample_meter_nooutlier_nogaps = sample_meter_nooutlier.fillna(method='ffill') temp_data = pd.DataFrame(weather_data_site['airTemperature'].truncate(before='01-01-2017')) comparison = pd.concat([temp_data, sample_meter_nooutlier_nogaps], axis=1) comparison.plot(kind='scatter', x='airTemperature', y='Panther_office_Lavinia', figsize=(10, 10))
code
74065110/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) weather_data = pd.read_csv('../input/buildingdatagenomeproject2/weather.csv', index_col='timestamp', parse_dates=True) weather_data.info()
code
74065110/cell_19
[ "text_html_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) site_data_example = elec_meter_data_all.loc[:, elec_meter_data_all.columns.str.contains('Panther') & elec_meter_data_all.columns.str.contains('office')] site_data_example_2017 = site_data_example.truncate(before='2017-01-01') weather_data = pd.read_csv('../input/buildingdatagenomeproject2/weather.csv', index_col='timestamp', parse_dates=True) sample_meter = pd.DataFrame(site_data_example_2017['Panther_office_Lavinia']) sample_meter.plot(figsize=(10, 4))
code
74065110/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) site_data_example = elec_meter_data_all.loc[:, elec_meter_data_all.columns.str.contains('Panther') & elec_meter_data_all.columns.str.contains('office')] site_data_example_2017 = site_data_example.truncate(before='2017-01-01') site_data_example_2017.info()
code
74065110/cell_45
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) site_data_example = elec_meter_data_all.loc[:, elec_meter_data_all.columns.str.contains('Panther') & elec_meter_data_all.columns.str.contains('office')] site_data_example_2017 = site_data_example.truncate(before='2017-01-01') weather_data = pd.read_csv('../input/buildingdatagenomeproject2/weather.csv', index_col='timestamp', parse_dates=True) weather_data_site = weather_data[weather_data.site_id == 'Panther'] sample_meter = pd.DataFrame(site_data_example_2017['Panther_office_Lavinia']) sample_meter_nooutlier = sample_meter[sample_meter > 10] sample_meter_nooutlier_nogaps = sample_meter_nooutlier.fillna(method='ffill') temp_data = pd.DataFrame(weather_data_site['airTemperature'].truncate(before='01-01-2017')) comparison = pd.concat([temp_data, sample_meter_nooutlier_nogaps], axis=1) comparison.info()
code
74065110/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) site_data_example = elec_meter_data_all.loc[:, elec_meter_data_all.columns.str.contains('Panther') & elec_meter_data_all.columns.str.contains('office')] site_data_example_2017 = site_data_example.truncate(before='2017-01-01') weather_data = pd.read_csv('../input/buildingdatagenomeproject2/weather.csv', index_col='timestamp', parse_dates=True) sample_meter = pd.DataFrame(site_data_example_2017['Panther_office_Lavinia']) sample_meter.head()
code
74065110/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) site_data_example = elec_meter_data_all.loc[:, elec_meter_data_all.columns.str.contains('Panther') & elec_meter_data_all.columns.str.contains('office')] site_data_example_2017 = site_data_example.truncate(before='2017-01-01') weather_data = pd.read_csv('../input/buildingdatagenomeproject2/weather.csv', index_col='timestamp', parse_dates=True) sample_meter = pd.DataFrame(site_data_example_2017['Panther_office_Lavinia']) sample_meter_nooutlier = sample_meter[sample_meter > 10] sample_meter_nooutlier_nogaps = sample_meter_nooutlier.fillna(method='ffill') sample_meter_nooutlier_nogaps.truncate(before='02-10-2017', after='02-20-2017').plot(figsize=(10, 4))
code
74065110/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) site_data_example = elec_meter_data_all.loc[:, elec_meter_data_all.columns.str.contains('Panther') & elec_meter_data_all.columns.str.contains('office')] site_data_example_2017 = site_data_example.truncate(before='2017-01-01') site_data_example_2017.plot(figsize=(15, 50), subplots=True)
code
74065110/cell_15
[ "image_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) weather_data = pd.read_csv('../input/buildingdatagenomeproject2/weather.csv', index_col='timestamp', parse_dates=True) weather_data_site = weather_data[weather_data.site_id == 'Panther'] weather_data_site['airTemperature'].plot(figsize=(20, 4))
code
74065110/cell_38
[ "text_plain_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) site_data_example = elec_meter_data_all.loc[:, elec_meter_data_all.columns.str.contains('Panther') & elec_meter_data_all.columns.str.contains('office')] site_data_example_2017 = site_data_example.truncate(before='2017-01-01') weather_data = pd.read_csv('../input/buildingdatagenomeproject2/weather.csv', index_col='timestamp', parse_dates=True) weather_data_site = weather_data[weather_data.site_id == 'Panther'] sample_meter = pd.DataFrame(site_data_example_2017['Panther_office_Lavinia']) sample_meter_nooutlier = sample_meter[sample_meter > 10] sample_meter_nooutlier_nogaps = sample_meter_nooutlier.fillna(method='ffill') temp_data = pd.DataFrame(weather_data_site['airTemperature'].truncate(before='01-01-2017')) comparison = pd.concat([temp_data, sample_meter_nooutlier_nogaps], axis=1) comparison_merged = pd.merge(temp_data, sample_meter_nooutlier_nogaps, left_index=True, right_index=True, how='outer') comparison_merged.info()
code
74065110/cell_35
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) site_data_example = elec_meter_data_all.loc[:, elec_meter_data_all.columns.str.contains('Panther') & elec_meter_data_all.columns.str.contains('office')] site_data_example_2017 = site_data_example.truncate(before='2017-01-01') weather_data = pd.read_csv('../input/buildingdatagenomeproject2/weather.csv', index_col='timestamp', parse_dates=True) weather_data_site = weather_data[weather_data.site_id == 'Panther'] sample_meter = pd.DataFrame(site_data_example_2017['Panther_office_Lavinia']) sample_meter_nooutlier = sample_meter[sample_meter > 10] sample_meter_nooutlier_nogaps = sample_meter_nooutlier.fillna(method='ffill') temp_data = pd.DataFrame(weather_data_site['airTemperature'].truncate(before='01-01-2017')) comparison = pd.concat([temp_data, sample_meter_nooutlier_nogaps], axis=1) comparison.head()
code
74065110/cell_31
[ "text_plain_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) site_data_example = elec_meter_data_all.loc[:, elec_meter_data_all.columns.str.contains('Panther') & elec_meter_data_all.columns.str.contains('office')] site_data_example_2017 = site_data_example.truncate(before='2017-01-01') weather_data = pd.read_csv('../input/buildingdatagenomeproject2/weather.csv', index_col='timestamp', parse_dates=True) weather_data_site = weather_data[weather_data.site_id == 'Panther'] sample_meter = pd.DataFrame(site_data_example_2017['Panther_office_Lavinia']) temp_data = pd.DataFrame(weather_data_site['airTemperature'].truncate(before='01-01-2017')) temp_data.info()
code
74065110/cell_22
[ "text_html_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) site_data_example = elec_meter_data_all.loc[:, elec_meter_data_all.columns.str.contains('Panther') & elec_meter_data_all.columns.str.contains('office')] site_data_example_2017 = site_data_example.truncate(before='2017-01-01') weather_data = pd.read_csv('../input/buildingdatagenomeproject2/weather.csv', index_col='timestamp', parse_dates=True) sample_meter = pd.DataFrame(site_data_example_2017['Panther_office_Lavinia']) sample_meter_nooutlier = sample_meter[sample_meter > 10] sample_meter_nooutlier.plot(figsize=(10, 4))
code
74065110/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd elec_meter_data_all = pd.read_csv('../input/buildingdatagenomeproject2/electricity.csv', index_col='timestamp', parse_dates=True) site_data_example = elec_meter_data_all.loc[:, elec_meter_data_all.columns.str.contains('Panther') & elec_meter_data_all.columns.str.contains('office')] site_data_example_2017 = site_data_example.truncate(before='2017-01-01') weather_data = pd.read_csv('../input/buildingdatagenomeproject2/weather.csv', index_col='timestamp', parse_dates=True) sample_meter = pd.DataFrame(site_data_example_2017['Panther_office_Lavinia']) sample_meter_nooutlier = sample_meter[sample_meter > 10] sample_meter_nooutlier_nogaps = sample_meter_nooutlier.fillna(method='ffill') sample_meter_nooutlier_nogaps.info()
code
73078429/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Train.csv') test_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Test.csv') train_df.rename(columns={'labels': 'churn'}, inplace=True) train_df.describe().T
code
73078429/cell_9
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Train.csv') test_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Test.csv') print(train_df.shape) print(test_df.shape) print(train_df.size) print(test_df.size)
code
73078429/cell_25
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Train.csv') test_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Test.csv') train_df.rename(columns={'labels': 'churn'}, inplace=True) train_df.describe().T features = list(train_df.columns) features.remove('churn') features float_features = [i for i in train_df.columns if train_df[i].dtype == 'float64'] float_features
code
73078429/cell_34
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Train.csv') test_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Test.csv') train_df.rename(columns={'labels': 'churn'}, inplace=True) train_df.describe().T def summary(df): Types = df.dtypes Counts = df.apply(lambda x: x.count()) Uniques = df.apply(lambda x: x.unique().shape[0]) cols = ['Types', 'Counts', 'Uniques'] str = pd.concat([Types, Counts, Uniques], axis=1, sort=True) str.columns = cols summary(df=train_df) sizes = [29941,3967] labels='NO','YES' explode = (0, 0.1) fig1, ax1 = plt.subplots() ax1.pie(sizes, explode=explode,autopct='%1.1f%%',shadow=True, startangle=75 ) ax1.axis('equal') ax1.set_title("Client Churn Distribution") ax1.legend(labels) plt.show() #ratio of those who churn and those who don't def show_correlations(df, show_chart = True): fig = plt.figure(figsize = (20,10)) corr = df.corr() if show_chart == True: sns.heatmap(corr, xticklabels=corr.columns.values, yticklabels=corr.columns.values, annot=True) return corr correlation_df = show_correlations(train_df,show_chart=True) #Get Correlation of "churn" with other variables: features = list(train_df.columns) features.remove('churn') features float_features = [i for i in train_df.columns if train_df[i].dtype == 'float64'] float_features int_features = [i for i in train_df.columns if train_df[i].dtype == 'int64'] int_features.remove('churn') int_features fig, ax = plt.subplots(4, 2, figsize = (15, 10)) ax = ax.flatten() for i, c in enumerate(float_features): sns.boxplot(x = train_df[c], ax = ax[i], palette = 'Set3') plt.suptitle('Box Plot', fontsize = 25) fig.tight_layout() #Box plot of float features def plot_hist(variable): pass fig, ax = plt.subplots(5, 2, figsize = (15, 10)) ax = ax.flatten() for i, c in enumerate(int_features): sns.boxplot(x = train_df[c], ax = ax[i], palette = 'Set3') plt.suptitle('Box Plot', fontsize = 25) fig.tight_layout() #Box plot of integer features def bar_plot(variable): """ input: variable output: bar plot & value count """ var = train_df[variable] varValue = var.value_counts() plt.xticks(varValue.index, varValue.index.values) for c in int_features: bar_plot(c)
code
73078429/cell_30
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Train.csv') test_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Test.csv') train_df.rename(columns={'labels': 'churn'}, inplace=True) train_df.describe().T def summary(df): Types = df.dtypes Counts = df.apply(lambda x: x.count()) Uniques = df.apply(lambda x: x.unique().shape[0]) cols = ['Types', 'Counts', 'Uniques'] str = pd.concat([Types, Counts, Uniques], axis=1, sort=True) str.columns = cols summary(df=train_df) sizes = [29941,3967] labels='NO','YES' explode = (0, 0.1) fig1, ax1 = plt.subplots() ax1.pie(sizes, explode=explode,autopct='%1.1f%%',shadow=True, startangle=75 ) ax1.axis('equal') ax1.set_title("Client Churn Distribution") ax1.legend(labels) plt.show() #ratio of those who churn and those who don't def show_correlations(df, show_chart = True): fig = plt.figure(figsize = (20,10)) corr = df.corr() if show_chart == True: sns.heatmap(corr, xticklabels=corr.columns.values, yticklabels=corr.columns.values, annot=True) return corr correlation_df = show_correlations(train_df,show_chart=True) #Get Correlation of "churn" with other variables: features = list(train_df.columns) features.remove('churn') features float_features = [i for i in train_df.columns if train_df[i].dtype == 'float64'] float_features int_features = [i for i in train_df.columns if train_df[i].dtype == 'int64'] int_features.remove('churn') int_features fig, ax = plt.subplots(4, 2, figsize = (15, 10)) ax = ax.flatten() for i, c in enumerate(float_features): sns.boxplot(x = train_df[c], ax = ax[i], palette = 'Set3') plt.suptitle('Box Plot', fontsize = 25) fig.tight_layout() #Box plot of float features def plot_hist(variable): pass for n in float_features: plot_hist(n)
code
73078429/cell_20
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt sizes = [29941, 3967] labels = ('NO', 'YES') explode = (0, 0.1) fig1, ax1 = plt.subplots() ax1.pie(sizes, explode=explode, autopct='%1.1f%%', shadow=True, startangle=75) ax1.axis('equal') ax1.set_title('Client Churn Distribution') ax1.legend(labels) plt.show()
code
73078429/cell_6
[ "text_plain_output_5.png", "text_plain_output_9.png", "text_plain_output_4.png", "image_output_5.png", "text_plain_output_6.png", "image_output_7.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_7.png", "image_output_8.png", "text_plain_output_8.png", "image_output_6.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_9.png" ]
import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix import warnings warnings.filterwarnings('ignore') from time import time, strftime, gmtime start = time() import datetime print(str(datetime.datetime.now()))
code
73078429/cell_26
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Train.csv') test_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Test.csv') train_df.rename(columns={'labels': 'churn'}, inplace=True) train_df.describe().T features = list(train_df.columns) features.remove('churn') features float_features = [i for i in train_df.columns if train_df[i].dtype == 'float64'] float_features int_features = [i for i in train_df.columns if train_df[i].dtype == 'int64'] int_features.remove('churn') int_features
code
73078429/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Train.csv') test_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Test.csv') test_df.head()
code
73078429/cell_19
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Train.csv') test_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Test.csv') train_df.rename(columns={'labels': 'churn'}, inplace=True) train_df.describe().T dataset = train_df['churn'].value_counts() dataset
code
73078429/cell_32
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Train.csv') test_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Test.csv') train_df.rename(columns={'labels': 'churn'}, inplace=True) train_df.describe().T def summary(df): Types = df.dtypes Counts = df.apply(lambda x: x.count()) Uniques = df.apply(lambda x: x.unique().shape[0]) cols = ['Types', 'Counts', 'Uniques'] str = pd.concat([Types, Counts, Uniques], axis=1, sort=True) str.columns = cols summary(df=train_df) sizes = [29941,3967] labels='NO','YES' explode = (0, 0.1) fig1, ax1 = plt.subplots() ax1.pie(sizes, explode=explode,autopct='%1.1f%%',shadow=True, startangle=75 ) ax1.axis('equal') ax1.set_title("Client Churn Distribution") ax1.legend(labels) plt.show() #ratio of those who churn and those who don't def show_correlations(df, show_chart = True): fig = plt.figure(figsize = (20,10)) corr = df.corr() if show_chart == True: sns.heatmap(corr, xticklabels=corr.columns.values, yticklabels=corr.columns.values, annot=True) return corr correlation_df = show_correlations(train_df,show_chart=True) #Get Correlation of "churn" with other variables: features = list(train_df.columns) features.remove('churn') features float_features = [i for i in train_df.columns if train_df[i].dtype == 'float64'] float_features int_features = [i for i in train_df.columns if train_df[i].dtype == 'int64'] int_features.remove('churn') int_features fig, ax = plt.subplots(4, 2, figsize = (15, 10)) ax = ax.flatten() for i, c in enumerate(float_features): sns.boxplot(x = train_df[c], ax = ax[i], palette = 'Set3') plt.suptitle('Box Plot', fontsize = 25) fig.tight_layout() #Box plot of float features def plot_hist(variable): pass fig, ax = plt.subplots(5, 2, figsize=(15, 10)) ax = ax.flatten() for i, c in enumerate(int_features): sns.boxplot(x=train_df[c], ax=ax[i], palette='Set3') plt.suptitle('Box Plot', fontsize=25) fig.tight_layout()
code
73078429/cell_28
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Train.csv') test_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Test.csv') train_df.rename(columns={'labels': 'churn'}, inplace=True) train_df.describe().T def summary(df): Types = df.dtypes Counts = df.apply(lambda x: x.count()) Uniques = df.apply(lambda x: x.unique().shape[0]) cols = ['Types', 'Counts', 'Uniques'] str = pd.concat([Types, Counts, Uniques], axis=1, sort=True) str.columns = cols summary(df=train_df) sizes = [29941,3967] labels='NO','YES' explode = (0, 0.1) fig1, ax1 = plt.subplots() ax1.pie(sizes, explode=explode,autopct='%1.1f%%',shadow=True, startangle=75 ) ax1.axis('equal') ax1.set_title("Client Churn Distribution") ax1.legend(labels) plt.show() #ratio of those who churn and those who don't def show_correlations(df, show_chart = True): fig = plt.figure(figsize = (20,10)) corr = df.corr() if show_chart == True: sns.heatmap(corr, xticklabels=corr.columns.values, yticklabels=corr.columns.values, annot=True) return corr correlation_df = show_correlations(train_df,show_chart=True) #Get Correlation of "churn" with other variables: features = list(train_df.columns) features.remove('churn') features float_features = [i for i in train_df.columns if train_df[i].dtype == 'float64'] float_features int_features = [i for i in train_df.columns if train_df[i].dtype == 'int64'] int_features.remove('churn') int_features fig, ax = plt.subplots(4, 2, figsize=(15, 10)) ax = ax.flatten() for i, c in enumerate(float_features): sns.boxplot(x=train_df[c], ax=ax[i], palette='Set3') plt.suptitle('Box Plot', fontsize=25) fig.tight_layout()
code
73078429/cell_15
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Train.csv') test_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Test.csv') train_df.rename(columns={'labels': 'churn'}, inplace=True) train_df.describe().T def summary(df): Types = df.dtypes Counts = df.apply(lambda x: x.count()) Uniques = df.apply(lambda x: x.unique().shape[0]) cols = ['Types', 'Counts', 'Uniques'] str = pd.concat([Types, Counts, Uniques], axis=1, sort=True) str.columns = cols display(str.sort_values(by='Uniques', ascending=False)) print('__________Data Types__________\n') print(str.Types.value_counts()) summary(df=train_df)
code
73078429/cell_17
[ "text_html_output_1.png" ]
import missingno as msno import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Train.csv') test_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Test.csv') train_df.rename(columns={'labels': 'churn'}, inplace=True) train_df.describe().T import missingno as msno msno.matrix(train_df)
code
73078429/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Train.csv') test_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Test.csv') train_df.rename(columns={'labels': 'churn'}, inplace=True) train_df.describe().T features = list(train_df.columns) features.remove('churn') features
code
73078429/cell_22
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Train.csv') test_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Test.csv') train_df.rename(columns={'labels': 'churn'}, inplace=True) train_df.describe().T def summary(df): Types = df.dtypes Counts = df.apply(lambda x: x.count()) Uniques = df.apply(lambda x: x.unique().shape[0]) cols = ['Types', 'Counts', 'Uniques'] str = pd.concat([Types, Counts, Uniques], axis=1, sort=True) str.columns = cols summary(df=train_df) sizes = [29941,3967] labels='NO','YES' explode = (0, 0.1) fig1, ax1 = plt.subplots() ax1.pie(sizes, explode=explode,autopct='%1.1f%%',shadow=True, startangle=75 ) ax1.axis('equal') ax1.set_title("Client Churn Distribution") ax1.legend(labels) plt.show() #ratio of those who churn and those who don't def show_correlations(df, show_chart=True): fig = plt.figure(figsize=(20, 10)) corr = df.corr() if show_chart == True: sns.heatmap(corr, xticklabels=corr.columns.values, yticklabels=corr.columns.values, annot=True) return corr correlation_df = show_correlations(train_df, show_chart=True)
code
73078429/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Train.csv') test_df = pd.read_csv('/kaggle/input/insurance-churn-prediction-weekend-hackathon/Insurance_Churn_ParticipantsData/Test.csv') train_df.head()
code
73078429/cell_5
[ "image_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code