path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
74056627/cell_26
[ "text_plain_output_1.png" ]
df = pd.DataFrame({'a': np.random.choice(list('abcd')), 'b': np.random.rand(10000000)})
code
74056627/cell_11
[ "text_plain_output_1.png" ]
!pip install line_profiler
code
74056627/cell_7
[ "text_plain_output_1.png" ]
for i in range(5): pd.Series(np.random.randint(10, 20, 10000))
code
74056627/cell_18
[ "text_plain_output_1.png" ]
code
74056627/cell_32
[ "text_plain_output_1.png" ]
from numba import vectorize, int64 @vectorize([int64(int64)]) def vect_relu(n): if n < 0: return 0 else: return n
code
74056627/cell_15
[ "text_plain_output_1.png" ]
total = 0 for val in s: total += val
code
74056627/cell_16
[ "text_plain_output_1.png" ]
code
74056627/cell_17
[ "text_plain_output_1.png" ]
code
74056627/cell_31
[ "text_plain_output_1.png" ]
s = pd.Series(np.random.randint(-3, 10, 1000000)) def relu(n): return 0 if n < 0 else n
code
74056627/cell_24
[ "text_plain_output_1.png" ]
code
74056627/cell_27
[ "text_plain_output_1.png" ]
code
34126448/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) grid_df = pd.read_pickle('/kaggle/input/m5-simple-fe/grid_part_1.pkl') grid_df = grid_df[['id', 'd', 'sales']].pivot(index='id', columns='d').reset_index() ids = grid_df['id'] grid_df = grid_df['sales'].iloc[:, :1913] grid_df = pd.DataFrame(np.where(grid_df.isnull(), np.nan, np.where(grid_df > 0, 1, -1))) grid_df.columns = [f'd_{i}' for i in range(1, 1914)] d1_peak = grid_df.notnull().sum(axis=1) cluster = d1_peak.copy() grid_df['cluster'] = cluster grid_df = grid_df.fillna(0) grid_df['cluster'].value_counts()
code
34126448/cell_6
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns grid_df = pd.read_pickle('/kaggle/input/m5-simple-fe/grid_part_1.pkl') grid_df = grid_df[['id', 'd', 'sales']].pivot(index='id', columns='d').reset_index() ids = grid_df['id'] grid_df = grid_df['sales'].iloc[:, :1913] grid_df = pd.DataFrame(np.where(grid_df.isnull(), np.nan, np.where(grid_df > 0, 1, -1))) grid_df.columns = [f'd_{i}' for i in range(1, 1914)] d1_peak = grid_df.notnull().sum(axis=1) cluster = d1_peak.copy() sns.kdeplot(d1_peak) plt.title('# of Nan distribution') plt.show()
code
34126448/cell_1
[ "text_plain_output_1.png" ]
import os import warnings import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm from scipy.cluster.hierarchy import linkage, fcluster import warnings warnings.filterwarnings('ignore')
code
34126448/cell_10
[ "image_output_1.png" ]
from scipy.cluster.hierarchy import linkage, fcluster from tqdm import tqdm import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) grid_df = pd.read_pickle('/kaggle/input/m5-simple-fe/grid_part_1.pkl') grid_df = grid_df[['id', 'd', 'sales']].pivot(index='id', columns='d').reset_index() ids = grid_df['id'] grid_df = grid_df['sales'].iloc[:, :1913] grid_df = pd.DataFrame(np.where(grid_df.isnull(), np.nan, np.where(grid_df > 0, 1, -1))) grid_df.columns = [f'd_{i}' for i in range(1, 1914)] d1_peak = grid_df.notnull().sum(axis=1) cluster = d1_peak.copy() grid_df['cluster'] = cluster grid_df = grid_df.fillna(0) for clt in tqdm(range(4, 5)): df_name = f'cluster_{clt}_df' cluster_df = grid_df[grid_df['cluster'] == clt] cluster_array = cluster_df.values dist_matrix = np.dot(cluster_array, cluster_array.T) Z = linkage(dist_matrix, method='single') cluster_num = fcluster(Z, t=4, criterion='maxclust') cluster_df['cluster'] = cluster_df['cluster'] * cluster_num globals()[df_name] = cluster_df
code
18160674/cell_13
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra path = Path('../input/dataset') path.ls() np.random.seed(42) data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=False), size=256, num_workers=4).normalize(imagenet_stats) data.classes (data.classes, data.c, len(data.train_ds), len(data.valid_ds)) learn = cnn_learner(data, models.densenet121, metrics=accuracy) learn.fit_one_cycle(10) learn.model_dir = '/kaggle/working' learn.save('densenet256', return_path=True) learn.unfreeze() learn.lr_find() learn.recorder.plot()
code
18160674/cell_9
[ "image_output_1.png" ]
import numpy as np # linear algebra path = Path('../input/dataset') path.ls() np.random.seed(42) data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=False), size=256, num_workers=4).normalize(imagenet_stats) data.classes (data.classes, data.c, len(data.train_ds), len(data.valid_ds)) learn = cnn_learner(data, models.densenet121, metrics=accuracy)
code
18160674/cell_6
[ "image_output_1.png" ]
import numpy as np # linear algebra path = Path('../input/dataset') path.ls() np.random.seed(42) data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=False), size=256, num_workers=4).normalize(imagenet_stats) data.classes
code
18160674/cell_11
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra path = Path('../input/dataset') path.ls() np.random.seed(42) data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=False), size=256, num_workers=4).normalize(imagenet_stats) data.classes (data.classes, data.c, len(data.train_ds), len(data.valid_ds)) learn = cnn_learner(data, models.densenet121, metrics=accuracy) learn.fit_one_cycle(10) learn.model_dir = '/kaggle/working' learn.save('densenet256', return_path=True)
code
18160674/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
18160674/cell_7
[ "text_html_output_1.png" ]
import numpy as np # linear algebra path = Path('../input/dataset') path.ls() np.random.seed(42) data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=False), size=256, num_workers=4).normalize(imagenet_stats) data.classes data.show_batch(rows=3, figsize=(7, 8))
code
18160674/cell_8
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra path = Path('../input/dataset') path.ls() np.random.seed(42) data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=False), size=256, num_workers=4).normalize(imagenet_stats) data.classes (data.classes, data.c, len(data.train_ds), len(data.valid_ds))
code
18160674/cell_15
[ "text_html_output_1.png" ]
import numpy as np # linear algebra path = Path('../input/dataset') path.ls() np.random.seed(42) data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=False), size=256, num_workers=4).normalize(imagenet_stats) data.classes (data.classes, data.c, len(data.train_ds), len(data.valid_ds)) learn = cnn_learner(data, models.densenet121, metrics=accuracy) learn.fit_one_cycle(10) learn.model_dir = '/kaggle/working' learn.save('densenet256', return_path=True) learn.unfreeze() learn.lr_find() learn.fit_one_cycle(10, max_lr=slice(1e-06, 0.001)) learn.save('densenet121_256_s2', return_path=True)
code
18160674/cell_16
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra path = Path('../input/dataset') path.ls() np.random.seed(42) data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=False), size=256, num_workers=4).normalize(imagenet_stats) data.classes (data.classes, data.c, len(data.train_ds), len(data.valid_ds)) learn = cnn_learner(data, models.densenet121, metrics=accuracy) learn.fit_one_cycle(10) learn.model_dir = '/kaggle/working' learn.save('densenet256', return_path=True) learn.unfreeze() learn.lr_find() learn.fit_one_cycle(10, max_lr=slice(1e-06, 0.001)) learn.save('densenet121_256_s2', return_path=True) interp = ClassificationInterpretation.from_learner(learn) interp.plot_confusion_matrix()
code
18160674/cell_3
[ "text_plain_output_1.png" ]
path = Path('../input/dataset') path.ls()
code
18160674/cell_14
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np # linear algebra path = Path('../input/dataset') path.ls() np.random.seed(42) data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=False), size=256, num_workers=4).normalize(imagenet_stats) data.classes (data.classes, data.c, len(data.train_ds), len(data.valid_ds)) learn = cnn_learner(data, models.densenet121, metrics=accuracy) learn.fit_one_cycle(10) learn.model_dir = '/kaggle/working' learn.save('densenet256', return_path=True) learn.unfreeze() learn.lr_find() learn.fit_one_cycle(10, max_lr=slice(1e-06, 0.001))
code
18160674/cell_10
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra path = Path('../input/dataset') path.ls() np.random.seed(42) data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=False), size=256, num_workers=4).normalize(imagenet_stats) data.classes (data.classes, data.c, len(data.train_ds), len(data.valid_ds)) learn = cnn_learner(data, models.densenet121, metrics=accuracy) learn.fit_one_cycle(10)
code
18160674/cell_12
[ "image_output_1.png" ]
import numpy as np # linear algebra path = Path('../input/dataset') path.ls() np.random.seed(42) data = ImageDataBunch.from_folder(path, train='.', valid_pct=0.2, ds_tfms=get_transforms(do_flip=False), size=256, num_workers=4).normalize(imagenet_stats) data.classes (data.classes, data.c, len(data.train_ds), len(data.valid_ds)) learn = cnn_learner(data, models.densenet121, metrics=accuracy) learn.fit_one_cycle(10) learn.model_dir = '/kaggle/working' learn.save('densenet256', return_path=True) learn.unfreeze() learn.lr_find()
code
73068375/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from warnings import filterwarnings as filt from scipy.stats import skew, norm pd.options.display.max_columns = None filt('ignore') plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = (12, 6) import os df = pd.read_csv('/kaggle/input/adult-census-income/adult.csv') df.shape df.columns = [c.replace('.', '_') for c in df.columns] df.nunique() df.isnull().values.sum() df.workclass.unique() df.occupation.unique() def null_idx(df): idx = [] for col in df.columns: i = df[df[col] == '?'].index.values.tolist() idx.append(i) return idx def null_col(df, null_idx=None): if null_idx: n = pd.DataFrame({'null': [len(i) for i in null_idx], 'null_per': [len(i) / df.shape[0] for i in null_idx]}, index=df.columns).sort_values('null', ascending=False) return n[n.null > 0] n = pd.DataFrame(df.isnull().sum(), columns=['nans']) return n[n.nans > 0] df[df.workclass == '?'].describe()
code
73068375/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from warnings import filterwarnings as filt from scipy.stats import skew, norm pd.options.display.max_columns = None filt('ignore') plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = (12, 6) import os df = pd.read_csv('/kaggle/input/adult-census-income/adult.csv') df.shape df.columns = [c.replace('.', '_') for c in df.columns] df.nunique() df.isnull().values.sum() df.workclass.unique()
code
73068375/cell_4
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from warnings import filterwarnings as filt from scipy.stats import skew, norm pd.options.display.max_columns = None filt('ignore') plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = (12, 6) import os df = pd.read_csv('/kaggle/input/adult-census-income/adult.csv') df.shape df.columns = [c.replace('.', '_') for c in df.columns] df.info()
code
73068375/cell_2
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from warnings import filterwarnings as filt from scipy.stats import skew, norm pd.options.display.max_columns = None filt('ignore') plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = (12, 6) import os df = pd.read_csv('/kaggle/input/adult-census-income/adult.csv') df.shape
code
73068375/cell_1
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from warnings import filterwarnings as filt from scipy.stats import skew, norm pd.options.display.max_columns = None filt('ignore') plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = (12, 6) import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
73068375/cell_7
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from warnings import filterwarnings as filt from scipy.stats import skew, norm pd.options.display.max_columns = None filt('ignore') plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = (12, 6) import os df = pd.read_csv('/kaggle/input/adult-census-income/adult.csv') df.shape df.columns = [c.replace('.', '_') for c in df.columns] df.nunique() df.isnull().values.sum()
code
73068375/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from warnings import filterwarnings as filt from scipy.stats import skew, norm pd.options.display.max_columns = None filt('ignore') plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = (12, 6) import os df = pd.read_csv('/kaggle/input/adult-census-income/adult.csv') df.shape df.columns = [c.replace('.', '_') for c in df.columns] df.nunique() df.isnull().values.sum() df.workclass.unique() df.occupation.unique() def null_idx(df): idx = [] for col in df.columns: i = df[df[col] == '?'].index.values.tolist() idx.append(i) return idx def null_col(df, null_idx=None): if null_idx: n = pd.DataFrame({'null': [len(i) for i in null_idx], 'null_per': [len(i) / df.shape[0] for i in null_idx]}, index=df.columns).sort_values('null', ascending=False) return n[n.null > 0] n = pd.DataFrame(df.isnull().sum(), columns=['nans']) return n[n.nans > 0] null_indx = null_idx(df) nans = null_col(df, null_indx) nans idx_to_drop = [] for i in null_indx: idx_to_drop = idx_to_drop + i idx_to_drop = np.unique(idx_to_drop) idx_to_drop.shape[0] / df.shape[0] df = df.drop(idx_to_drop) df.head()
code
73068375/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from warnings import filterwarnings as filt from scipy.stats import skew, norm pd.options.display.max_columns = None filt('ignore') plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = (12, 6) import os df = pd.read_csv('/kaggle/input/adult-census-income/adult.csv') df.shape df.columns = [c.replace('.', '_') for c in df.columns] df.nunique() df.isnull().values.sum() df.workclass.unique() df.occupation.unique() def null_idx(df): idx = [] for col in df.columns: i = df[df[col] == '?'].index.values.tolist() idx.append(i) return idx def null_col(df, null_idx=None): if null_idx: n = pd.DataFrame({'null': [len(i) for i in null_idx], 'null_per': [len(i) / df.shape[0] for i in null_idx]}, index=df.columns).sort_values('null', ascending=False) return n[n.null > 0] n = pd.DataFrame(df.isnull().sum(), columns=['nans']) return n[n.nans > 0] null_indx = null_idx(df) nans = null_col(df, null_indx) nans
code
73068375/cell_3
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from warnings import filterwarnings as filt from scipy.stats import skew, norm pd.options.display.max_columns = None filt('ignore') plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = (12, 6) import os df = pd.read_csv('/kaggle/input/adult-census-income/adult.csv') df.shape df.columns = [c.replace('.', '_') for c in df.columns] df.head()
code
73068375/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from warnings import filterwarnings as filt from scipy.stats import skew, norm pd.options.display.max_columns = None filt('ignore') plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = (12, 6) import os df = pd.read_csv('/kaggle/input/adult-census-income/adult.csv') df.shape df.columns = [c.replace('.', '_') for c in df.columns] df.nunique() df.isnull().values.sum() df.workclass.unique() df.occupation.unique() def null_idx(df): idx = [] for col in df.columns: i = df[df[col] == '?'].index.values.tolist() idx.append(i) return idx def null_col(df, null_idx=None): if null_idx: n = pd.DataFrame({'null': [len(i) for i in null_idx], 'null_per': [len(i) / df.shape[0] for i in null_idx]}, index=df.columns).sort_values('null', ascending=False) return n[n.null > 0] n = pd.DataFrame(df.isnull().sum(), columns=['nans']) return n[n.nans > 0] null_indx = null_idx(df) nans = null_col(df, null_indx) nans idx_to_drop = [] for i in null_indx: idx_to_drop = idx_to_drop + i idx_to_drop = np.unique(idx_to_drop) idx_to_drop.shape[0] / df.shape[0]
code
73068375/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from warnings import filterwarnings as filt from scipy.stats import skew, norm pd.options.display.max_columns = None filt('ignore') plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = (12, 6) import os df = pd.read_csv('/kaggle/input/adult-census-income/adult.csv') df.shape df.columns = [c.replace('.', '_') for c in df.columns] df.nunique() df.isnull().values.sum() df.workclass.unique() df.occupation.unique()
code
73068375/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from warnings import filterwarnings as filt from scipy.stats import skew, norm pd.options.display.max_columns = None filt('ignore') plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = (12, 6) import os df = pd.read_csv('/kaggle/input/adult-census-income/adult.csv') df.shape df.columns = [c.replace('.', '_') for c in df.columns] df.nunique() df.isnull().values.sum() df.workclass.unique() df.occupation.unique() def null_idx(df): idx = [] for col in df.columns: i = df[df[col] == '?'].index.values.tolist() idx.append(i) return idx def null_col(df, null_idx=None): if null_idx: n = pd.DataFrame({'null': [len(i) for i in null_idx], 'null_per': [len(i) / df.shape[0] for i in null_idx]}, index=df.columns).sort_values('null', ascending=False) return n[n.null > 0] n = pd.DataFrame(df.isnull().sum(), columns=['nans']) return n[n.nans > 0] df[df.workclass == '?'].head()
code
73068375/cell_5
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from warnings import filterwarnings as filt from scipy.stats import skew, norm pd.options.display.max_columns = None filt('ignore') plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = (12, 6) import os df = pd.read_csv('/kaggle/input/adult-census-income/adult.csv') df.shape df.columns = [c.replace('.', '_') for c in df.columns] df.nunique()
code
88090498/cell_21
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.columns df.shape df.isnull().sum() [features for features in df.columns if df[features].isnull().sum() > 0] sns.heatmap(df.isnull(), yticklabels=False, cbar=False, cmap='viridis')
code
88090498/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.columns df.shape
code
88090498/cell_23
[ "text_plain_output_1.png" ]
# installing openpyxl to run our excel file - pd.read_excel !pip install openpyxl
code
88090498/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.head()
code
88090498/cell_29
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.columns df.shape df.isnull().sum() [features for features in df.columns if df[features].isnull().sum() > 0] df_country = pd.read_excel('../input/zomato-restaurants-data/Country-Code.xlsx') df_country final_df = pd.merge(df, df_country, on='Country Code', how='left') final_df.dtypes
code
88090498/cell_41
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.columns df.shape df.isnull().sum() [features for features in df.columns if df[features].isnull().sum() > 0] df_country = pd.read_excel('../input/zomato-restaurants-data/Country-Code.xlsx') df_country final_df = pd.merge(df, df_country, on='Country Code', how='left') final_df.dtypes final_df.Country.value_counts() country_names = final_df.Country.value_counts().index country_val = final_df.Country.value_counts().values final_df.columns
code
88090498/cell_54
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.columns df.shape df.isnull().sum() [features for features in df.columns if df[features].isnull().sum() > 0] df_country = pd.read_excel('../input/zomato-restaurants-data/Country-Code.xlsx') df_country final_df = pd.merge(df, df_country, on='Country Code', how='left') final_df.dtypes final_df.Country.value_counts() country_names = final_df.Country.value_counts().index country_val = final_df.Country.value_counts().values final_df.columns final_df.groupby(['Aggregate rating', 'Rating color', 'Rating text']).size() ratings = final_df.groupby(['Aggregate rating', 'Rating color', 'Rating text']).size().reset_index().rename(columns={0: 'Rating Count'}) plt.rcParams['figure.figsize'] = (12, 6) plt.rcParams['figure.figsize'] = (12, 6) plt.rcParams['figure.figsize'] = (12, 6) sns.barplot(x='Aggregate rating', y='Rating Count', hue='Rating color', data=ratings, palette=['blue', 'red', 'orange', 'yellow', 'green', 'green'])
code
88090498/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.columns df.shape df.isnull().sum() [features for features in df.columns if df[features].isnull().sum() > 0]
code
88090498/cell_52
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.columns df.shape df.isnull().sum() [features for features in df.columns if df[features].isnull().sum() > 0] df_country = pd.read_excel('../input/zomato-restaurants-data/Country-Code.xlsx') df_country final_df = pd.merge(df, df_country, on='Country Code', how='left') final_df.dtypes final_df.Country.value_counts() country_names = final_df.Country.value_counts().index country_val = final_df.Country.value_counts().values final_df.columns final_df.groupby(['Aggregate rating', 'Rating color', 'Rating text']).size() ratings = final_df.groupby(['Aggregate rating', 'Rating color', 'Rating text']).size().reset_index().rename(columns={0: 'Rating Count'}) plt.rcParams['figure.figsize'] = (12, 6) plt.rcParams['figure.figsize'] = (12, 6) sns.barplot(x='Aggregate rating', y='Rating Count', hue='Rating color', data=ratings)
code
88090498/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.columns
code
88090498/cell_49
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.columns df.shape df.isnull().sum() [features for features in df.columns if df[features].isnull().sum() > 0] df_country = pd.read_excel('../input/zomato-restaurants-data/Country-Code.xlsx') df_country final_df = pd.merge(df, df_country, on='Country Code', how='left') final_df.dtypes final_df.Country.value_counts() country_names = final_df.Country.value_counts().index country_val = final_df.Country.value_counts().values final_df.columns final_df.groupby(['Aggregate rating', 'Rating color', 'Rating text']).size() ratings = final_df.groupby(['Aggregate rating', 'Rating color', 'Rating text']).size().reset_index().rename(columns={0: 'Rating Count'}) ratings.head()
code
88090498/cell_32
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.columns df.shape df.isnull().sum() [features for features in df.columns if df[features].isnull().sum() > 0] df_country = pd.read_excel('../input/zomato-restaurants-data/Country-Code.xlsx') df_country final_df = pd.merge(df, df_country, on='Country Code', how='left') final_df.dtypes final_df.Country.value_counts()
code
88090498/cell_51
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.columns df.shape df.isnull().sum() [features for features in df.columns if df[features].isnull().sum() > 0] df_country = pd.read_excel('../input/zomato-restaurants-data/Country-Code.xlsx') df_country final_df = pd.merge(df, df_country, on='Country Code', how='left') final_df.dtypes final_df.Country.value_counts() country_names = final_df.Country.value_counts().index country_val = final_df.Country.value_counts().values final_df.columns final_df.groupby(['Aggregate rating', 'Rating color', 'Rating text']).size() ratings = final_df.groupby(['Aggregate rating', 'Rating color', 'Rating text']).size().reset_index().rename(columns={0: 'Rating Count'}) plt.rcParams['figure.figsize'] = (12, 6) sns.barplot(x='Aggregate rating', y='Rating Count', data=ratings)
code
88090498/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.columns df.shape df.isnull().sum()
code
88090498/cell_38
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.columns df.shape df.isnull().sum() [features for features in df.columns if df[features].isnull().sum() > 0] df_country = pd.read_excel('../input/zomato-restaurants-data/Country-Code.xlsx') df_country final_df = pd.merge(df, df_country, on='Country Code', how='left') final_df.dtypes final_df.Country.value_counts() country_names = final_df.Country.value_counts().index country_val = final_df.Country.value_counts().values plt.pie(country_val[:3], labels=country_names[:3], autopct='%1.2f%%')
code
88090498/cell_35
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.columns df.shape df.isnull().sum() [features for features in df.columns if df[features].isnull().sum() > 0] df_country = pd.read_excel('../input/zomato-restaurants-data/Country-Code.xlsx') df_country final_df = pd.merge(df, df_country, on='Country Code', how='left') final_df.dtypes final_df.Country.value_counts() country_names = final_df.Country.value_counts().index country_names
code
88090498/cell_43
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.columns df.shape df.isnull().sum() [features for features in df.columns if df[features].isnull().sum() > 0] df_country = pd.read_excel('../input/zomato-restaurants-data/Country-Code.xlsx') df_country final_df = pd.merge(df, df_country, on='Country Code', how='left') final_df.dtypes final_df.Country.value_counts() country_names = final_df.Country.value_counts().index country_val = final_df.Country.value_counts().values final_df.columns final_df.groupby(['Aggregate rating', 'Rating color', 'Rating text']).size()
code
88090498/cell_46
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.columns df.shape df.isnull().sum() [features for features in df.columns if df[features].isnull().sum() > 0] df_country = pd.read_excel('../input/zomato-restaurants-data/Country-Code.xlsx') df_country final_df = pd.merge(df, df_country, on='Country Code', how='left') final_df.dtypes final_df.Country.value_counts() country_names = final_df.Country.value_counts().index country_val = final_df.Country.value_counts().values final_df.columns final_df.groupby(['Aggregate rating', 'Rating color', 'Rating text']).size() ratings = final_df.groupby(['Aggregate rating', 'Rating color', 'Rating text']).size().reset_index().rename(columns={0: 'Rating Count'}) ratings
code
88090498/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df_country = pd.read_excel('../input/zomato-restaurants-data/Country-Code.xlsx') df_country
code
88090498/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.columns df.shape df.info()
code
88090498/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.columns df.shape df.isnull().sum() [features for features in df.columns if df[features].isnull().sum() > 0] df_country = pd.read_excel('../input/zomato-restaurants-data/Country-Code.xlsx') df_country final_df = pd.merge(df, df_country, on='Country Code', how='left') final_df
code
88090498/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/zomato-restaurants-data/zomato.csv', encoding='latin-1') df.columns df.shape df.describe()
code
322662/cell_2
[ "text_html_output_1.png" ]
from subprocess import check_output import datetime import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import datetime from subprocess import check_output def dateparse(x): try: return pd.datetime.strptime(x, '%Y-%m-%d %H:%M:%S') except TypeError as err: return None d = pd.read_csv('../input/trainView.csv', header=0, names=['train_id', 'status', 'next_station', 'service', 'dest', 'lon', 'lat', 'source', 'track_change', 'track', 'date', 'timeStamp0', 'timeStamp1'], dtype={'train_id': str, 'status': str, 'next_station': str, 'service': str, 'dest': str, 'lon': str, 'lat': str, 'source': str, 'track_change': str, 'track': str, 'date': str, 'timeStamp0': datetime.datetime, 'timeStamp1': datetime.datetime}) d.head() d['timeStamp0'] = pd.to_datetime(d['timeStamp0'], format='%Y-%m-%d %H:%M:%S') d['timeStamp1'] = pd.to_datetime(d['timeStamp1'], format='%Y-%m-%d %H:%M:%S', errors='coerce') d.head()
code
322662/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import datetime import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import datetime from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) def dateparse(x): try: print('Inside DateParse') return pd.datetime.strptime(x, '%Y-%m-%d %H:%M:%S') except TypeError as err: print('My exception occurred, value:', err.value) return None d = pd.read_csv('../input/trainView.csv', header=0, names=['train_id', 'status', 'next_station', 'service', 'dest', 'lon', 'lat', 'source', 'track_change', 'track', 'date', 'timeStamp0', 'timeStamp1'], dtype={'train_id': str, 'status': str, 'next_station': str, 'service': str, 'dest': str, 'lon': str, 'lat': str, 'source': str, 'track_change': str, 'track': str, 'date': str, 'timeStamp0': datetime.datetime, 'timeStamp1': datetime.datetime})
code
322662/cell_3
[ "text_plain_output_1.png" ]
""" def getDeltaTime(x): r=(x[1] - x[0]).total_seconds() return r # It might make sense to add delta_s to the next version d['delta_s']=d[['timeStamp0','timeStamp1']].apply(getDeltaTime, axis=1) """
code
2000224/cell_4
[ "text_html_output_1.png" ]
from plotly.offline import iplot, init_notebook_mode from subprocess import check_output import numpy as np import pandas as pd import plotly.graph_objs as go import pandas as pd import numpy as np import plotly.plotly as py import plotly.graph_objs as go from plotly import tools from plotly.offline import iplot, init_notebook_mode init_notebook_mode() from subprocess import check_output pakistan = pd.read_csv('../input/PakistanDroneAttacks.csv', encoding='ISO-8859-1') pakistan.columns = pakistan.columns.str.lower() pakistan = pakistan.dropna(subset=['date']) separate = pakistan['date'].str.split(',') day, month, years = zip(*separate) pakistan['years'] = years pakistan_years = np.asarray(pakistan['years'].unique()) pakistan_died = pakistan.groupby('years')['total died mix'].count() pakistan_injured = pakistan.groupby('years')['injured max'].count() labels = ['DIED', 'INJURED'] colors = ['rgb(255, 51, 0)', 'rgb(0, 51, 204)'] x_data = pakistan_years y_data = [pakistan_died, pakistan_injured] traces = [] for i in range(0, 2): traces.append(go.Scatter(x=x_data, y=y_data[i], mode='splines', name=labels[i], line=dict(color=colors[i], width=1.5))) layout = {'title': 'Died and Injured by Drone Acttack (2004-2017)', 'xaxis': {'title': 'Years'}, 'yaxis': {'title': 'People'}} figure = dict(data=traces, layout=layout) iplot(figure)
code
2000224/cell_6
[ "text_html_output_1.png" ]
from plotly.offline import iplot, init_notebook_mode from subprocess import check_output import numpy as np import pandas as pd import plotly.graph_objs as go import pandas as pd import numpy as np import plotly.plotly as py import plotly.graph_objs as go from plotly import tools from plotly.offline import iplot, init_notebook_mode init_notebook_mode() from subprocess import check_output pakistan = pd.read_csv('../input/PakistanDroneAttacks.csv', encoding='ISO-8859-1') pakistan.columns = pakistan.columns.str.lower() pakistan = pakistan.dropna(subset=['date']) separate = pakistan['date'].str.split(',') day, month, years = zip(*separate) pakistan['years'] = years pakistan_years = np.asarray(pakistan['years'].unique()) pakistan_died = pakistan.groupby('years')['total died mix'].count() pakistan_injured = pakistan.groupby('years')['injured max'].count() labels = ['DIED', 'INJURED'] colors = ['rgb(255, 51, 0)', 'rgb(0, 51, 204)'] x_data = pakistan_years y_data = [pakistan_died, pakistan_injured] traces = [] for i in range(0, 2): traces.append(go.Scatter(x=x_data, y=y_data[i], mode='splines', name=labels[i], line=dict(color=colors[i], width=1.5))) layout = {'title': 'Died and Injured by Drone Acttack (2004-2017)', 'xaxis': {'title': 'Years'}, 'yaxis': {'title': 'People'}} figure = dict(data=traces, layout=layout) pakistan['injured max'] = pakistan['injured max'].fillna(0) pakistan['total died mix'] = pakistan['total died mix'].fillna(0) pakistan['text'] = pakistan['date'] + '<br>' + pakistan['total died mix'].astype(str) + ' Killed, ' + pakistan['injured max'].astype(str) + ' Injured' + '<br>' + 'City: ' + pakistan['city'].astype(str) + '<br>' + 'Location: ' + pakistan['location'].astype(str) died = dict(type='scattergeo', locationmode='Pakistan', lon=pakistan[pakistan['total died mix'] > 0]['longitude'], lat=pakistan[pakistan['total died mix'] > 0]['latitude'], text=pakistan[pakistan['total died mix'] > 0]['text'], mode='markers', name='DIED', hoverinfo='text+name', marker=dict(size=pakistan[pakistan['total died mix'] > 0]['total died mix'] ** 0.255 * 8, opacity=0.95, color='rgb(240, 140, 45)')) injuries = dict(type='scattergeo', locationmode='Pakistan', lon=pakistan[pakistan['total died mix'] == 0]['longitude'], lat=pakistan[pakistan['total died mix'] == 0]['latitude'], text=pakistan[pakistan['total died mix'] == 0]['text'], mode='markers', name='INJURIES', hoverinfo='text+name', marker=dict(size=(pakistan[pakistan['total died mix'] == 0]['injured max'] + 1) ** 0.245 * 8, opacity=0.85, color='rgb(20, 150, 187)')) layout = go.Layout(title='Drone Attacks by Latitude/Longitude in Pakistan (2004-2017)', showlegend=True, legend=dict(x=0.85, y=0.4), geo=dict(resolution=50, scope='Pakistan', showframe=False, showcoastlines=True, showland=True, showcountries=True, landcolor='rgb(200,200,200)', countrycolor='rgb(1, 1, 1)', coastlinecolor='rgb(1, 1, 1)', projection=dict(type='Mercator'), lonaxis=dict(range=[62.0, 78.0]), lataxis=dict(range=[24.0, 35]), domain=dict(x=[0, 1], y=[0, 1]))) data = [died, injuries] figure = dict(data=data, layout=layout) iplot(figure)
code
2000224/cell_2
[ "text_plain_output_1.png" ]
from plotly.offline import iplot, init_notebook_mode from subprocess import check_output import pandas as pd import pandas as pd import numpy as np import plotly.plotly as py import plotly.graph_objs as go from plotly import tools from plotly.offline import iplot, init_notebook_mode init_notebook_mode() from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) pakistan = pd.read_csv('../input/PakistanDroneAttacks.csv', encoding='ISO-8859-1') pakistan.columns = pakistan.columns.str.lower() pakistan = pakistan.dropna(subset=['date']) separate = pakistan['date'].str.split(',') day, month, years = zip(*separate) pakistan['years'] = years
code
122253041/cell_4
[ "text_html_output_1.png" ]
import pandas as pd us_yt = pd.read_csv('../input/youtube-trending-video-dataset/US_youtube_trending_data.csv') us_yt.categoryId.nunique() us_yt[us_yt['view_count'].idxmax():us_yt['view_count'].idxmax() + 1]
code
122253041/cell_2
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd us_yt = pd.read_csv('../input/youtube-trending-video-dataset/US_youtube_trending_data.csv') display(us_yt.head()) print(us_yt.columns)
code
122253041/cell_3
[ "text_html_output_1.png" ]
import pandas as pd us_yt = pd.read_csv('../input/youtube-trending-video-dataset/US_youtube_trending_data.csv') us_yt.categoryId.nunique() us_yt.head()
code
122253041/cell_5
[ "text_html_output_1.png" ]
import pandas as pd us_yt = pd.read_csv('../input/youtube-trending-video-dataset/US_youtube_trending_data.csv') us_yt.categoryId.nunique() corrolation_list = ['view_count', 'likes', 'dislikes', 'comment_count'] hm_data = us_yt[corrolation_list].corr() display(hm_data)
code
2009496/cell_2
[ "text_plain_output_1.png" ]
from sklearn import preprocessing,cross_validation,neighbors import numpy as np # linear algebra import pandas as pd import numpy as np import pandas as pd from sklearn import preprocessing, cross_validation, neighbors def handle_non_numeric(df): columns = df.columns.values for col in columns: text_digit_vals = {} def convert_to_int(val): return text_digit_vals[val] if df[col].dtype != np.int64 and df[col].dtype != np.float64: column_contents = df[col].values.tolist() unique_elements = set(column_contents) x = 0 for unique in unique_elements: if unique not in text_digit_vals: text_digit_vals[unique] = x x += 1 df[col] = list(map(convert_to_int, df[col])) return df df_o = pd.read_csv('../input/Family Income and Expenditure.csv') quants = list(df_o['Total Household Income'].quantile([0.25, 0.5, 0.75])) print('quantiles', quants) income_cat = [] for i in df_o['Total Household Income']: if i < quants[0]: income_cat.append('P') elif i >= quants[0] and i < quants[1]: income_cat.append('LM') elif i >= quants[1] and i < quants[2]: income_cat.append('HM') else: income_cat.append('R') df = df_o.drop('Total Household Income', 1) df['Income'] = income_cat df = handle_non_numeric(df) X = np.array(df.drop('Income', 1).astype(float)) X = preprocessing.scale(X) y = np.array(df['Income']) X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2) clf = neighbors.KNeighborsClassifier() clf.fit(X_train, y_train) accuracy = clf.score(X_test, y_test) print('accuracy', accuracy)
code
2009496/cell_1
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np # linear algebra import pandas as pd import numpy as np import pandas as pd from sklearn import preprocessing, cross_validation, neighbors def handle_non_numeric(df): columns = df.columns.values for col in columns: text_digit_vals = {} def convert_to_int(val): return text_digit_vals[val] if df[col].dtype != np.int64 and df[col].dtype != np.float64: column_contents = df[col].values.tolist() unique_elements = set(column_contents) x = 0 for unique in unique_elements: if unique not in text_digit_vals: text_digit_vals[unique] = x x += 1 df[col] = list(map(convert_to_int, df[col])) return df df_o = pd.read_csv('../input/Family Income and Expenditure.csv') print(df_o.head())
code
2009496/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn import preprocessing,cross_validation,neighbors import numpy as np # linear algebra import pandas as pd import numpy as np import pandas as pd from sklearn import preprocessing, cross_validation, neighbors def handle_non_numeric(df): columns = df.columns.values for col in columns: text_digit_vals = {} def convert_to_int(val): return text_digit_vals[val] if df[col].dtype != np.int64 and df[col].dtype != np.float64: column_contents = df[col].values.tolist() unique_elements = set(column_contents) x = 0 for unique in unique_elements: if unique not in text_digit_vals: text_digit_vals[unique] = x x += 1 df[col] = list(map(convert_to_int, df[col])) return df df_o = pd.read_csv('../input/Family Income and Expenditure.csv') quants = list(df_o['Total Household Income'].quantile([0.25, 0.5, 0.75])) income_cat = [] for i in df_o['Total Household Income']: if i < quants[0]: income_cat.append('P') elif i >= quants[0] and i < quants[1]: income_cat.append('LM') elif i >= quants[1] and i < quants[2]: income_cat.append('HM') else: income_cat.append('R') df = df_o.drop('Total Household Income', 1) df['Income'] = income_cat df = handle_non_numeric(df) X = np.array(df.drop('Income', 1).astype(float)) X = preprocessing.scale(X) y = np.array(df['Income']) X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2) clf = neighbors.KNeighborsClassifier() clf.fit(X_train, y_train) accuracy = clf.score(X_test, y_test) clf = KMeans(n_clusters=4) clf.fit(X) correct = 0 for i in range(len(X)): predict_me = np.array(X[i].astype(float)) predict_me = predict_me.reshape(-1, len(predict_me)) prediction = clf.predict(predict_me) if prediction[0] == y[i]: correct += 1 print('accuracy', correct / len(X))
code
332299/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt iris = pd.read_csv('../input/Iris.csv') sns.jointplot(x='SepalLengthCm', y='SepalWidthCm', data=iris, size=5)
code
332299/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt iris = pd.read_csv('../input/Iris.csv') sns.FacetGrid(iris, hue='Species', size=5).map(plt.scatter, 'SepalLengthCm', 'SepalWidthCm').add_legend() sns.boxplot(x='Species', y='PetalLengthCm', data=iris)
code
332299/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt iris = pd.read_csv('../input/Iris.csv') iris['Species'].value_counts()
code
332299/cell_1
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt iris = pd.read_csv('../input/Iris.csv') iris.head()
code
332299/cell_7
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt iris = pd.read_csv('../input/Iris.csv') sns.FacetGrid(iris, hue='Species', size=5).map(plt.scatter, 'SepalLengthCm', 'SepalWidthCm').add_legend() ax = sns.boxplot(x='Species', y='PetalLengthCm', data=iris) ax = sns.stripplot(x='Species', y='PetalLengthCm', data=iris, jitter=True, edgecolor='gray')
code
332299/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt iris = pd.read_csv('../input/Iris.csv') iris.plot(kind='scatter', x='SepalLengthCm', y='SepalWidthCm')
code
332299/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt iris = pd.read_csv('../input/Iris.csv') sns.FacetGrid(iris, hue='Species', size=5).map(plt.scatter, 'SepalLengthCm', 'SepalWidthCm').add_legend()
code
130017103/cell_9
[ "text_html_output_4.png", "text_html_output_2.png", "text_html_output_1.png", "text_html_output_3.png" ]
import pandas as pd import warnings train_clinical_all = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') proteins = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_proteins.csv') proteins_features = pd.pivot_table(proteins, values='NPX', index='visit_id', columns='UniProt', aggfunc='sum') train_clinical_all = train_clinical_all.merge(proteins_features, left_on='visit_id', right_index=True, how='left') import warnings warnings.filterwarnings('ignore') train_clinical_all[proteins_features.columns] = train_clinical_all.groupby('patient_id')[proteins_features.columns].transform(lambda x: x.fillna(x.median())) train_clinical_all['pred_month'] = train_clinical_all['visit_month'] for plus_month in [6, 12, 24]: train_shift = train_clinical_all[['patient_id', 'visit_month', 'pred_month', 'updrs_1', 'updrs_2', 'updrs_3', 'updrs_4']].copy() train_shift['visit_month'] -= plus_month train_shift.rename(columns={f'updrs_{i}': f'updrs_{i}_plus_{plus_month}' for i in range(1, 5)}, inplace=True) train_shift.rename(columns={'pred_month': f'pred_month_plus_{plus_month}'}, inplace=True) train_clinical_all = train_clinical_all.merge(train_shift, how='left', on=['patient_id', 'visit_month']) train_clinical_all.rename(columns={f'updrs_{i}': f'updrs_{i}_plus_0' for i in range(1, 5)}, inplace=True) train_clinical_all.rename(columns={'pred_month': f'pred_month_plus_0'}, inplace=True) train_clinical_all
code
130017103/cell_19
[ "text_html_output_4.png", "text_html_output_2.png", "text_html_output_1.png", "text_html_output_3.png" ]
from scipy.optimize import minimize from scipy.stats import mode from tqdm.auto import tqdm import numpy as np import pandas as pd import warnings def smape_plus_1(y_true, y_pred): y_true_plus_1 = y_true + 1 y_pred_plus_1 = y_pred + 1 metric = np.zeros(len(y_true_plus_1)) numerator = np.abs(y_true_plus_1 - y_pred_plus_1) denominator = (np.abs(y_true_plus_1) + np.abs(y_pred_plus_1)) / 2 mask_not_zeros = (y_true_plus_1 != 0) | (y_pred_plus_1 != 0) metric[mask_not_zeros] = numerator[mask_not_zeros] / denominator[mask_not_zeros] return 100 * np.nanmean(metric) train_clinical_all = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') proteins = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_proteins.csv') proteins_features = pd.pivot_table(proteins, values='NPX', index='visit_id', columns='UniProt', aggfunc='sum') train_clinical_all = train_clinical_all.merge(proteins_features, left_on='visit_id', right_index=True, how='left') import warnings warnings.filterwarnings('ignore') train_clinical_all[proteins_features.columns] = train_clinical_all.groupby('patient_id')[proteins_features.columns].transform(lambda x: x.fillna(x.median())) train_clinical_all['pred_month'] = train_clinical_all['visit_month'] for plus_month in [6, 12, 24]: train_shift = train_clinical_all[['patient_id', 'visit_month', 'pred_month', 'updrs_1', 'updrs_2', 'updrs_3', 'updrs_4']].copy() train_shift['visit_month'] -= plus_month train_shift.rename(columns={f'updrs_{i}': f'updrs_{i}_plus_{plus_month}' for i in range(1, 5)}, inplace=True) train_shift.rename(columns={'pred_month': f'pred_month_plus_{plus_month}'}, inplace=True) train_clinical_all = train_clinical_all.merge(train_shift, how='left', on=['patient_id', 'visit_month']) train_clinical_all.rename(columns={f'updrs_{i}': f'updrs_{i}_plus_0' for i in range(1, 5)}, inplace=True) train_clinical_all.rename(columns={'pred_month': f'pred_month_plus_0'}, inplace=True) train_clinical_all from scipy.stats import mode fill_with_mode = lambda x: x.fillna(mode(x).mode[0]) def calculate_month_trend_predicitons(pred_month, trend): if target == 'updrs_4': pred_month = pred_month.clip(60, None) return trend[0] + pred_month * trend[1] target_to_trend = {'updrs_1': [5.394793062665313, 0.027091086167821344], 'updrs_2': [5.469498130092747, 0.02824188329658148], 'updrs_3': [21.182145576879183, 0.08897763331790556], 'updrs_4': [-4.434453480103724, 0.07531448585334258]} def calculate_predicitons_protein(pred_month, protein_shift): trend_pred_month = target_to_trend[target] pred_month_trend = calculate_month_trend_predicitons(pred_month=pred_month, trend=trend_pred_month) return np.round(pred_month_trend + protein_shift) def function_to_minimize(x): metric = smape_plus_1(y_true=y_true_array, y_pred=calculate_predicitons_protein(pred_month=pred_month_array, protein_shift=x[0])) return metric def find_best_const(train_clinical_all_filtered, target): columns_with_target = [f'{target}_plus_{plus_month}' for plus_month in [0, 6, 12, 24]] columns_with_pred_month = [f'pred_month_plus_{plus_month}' for plus_month in [0, 6, 12, 24]] global y_true_array global pred_month_array global protein_array y_true_array = train_clinical_all_filtered[columns_with_target].values.ravel() pred_month_array = train_clinical_all_filtered[columns_with_pred_month].values.ravel() result = minimize(fun=function_to_minimize, x0=[0.0], method='Powell').x[0] return result feature0 = 'O15240' quantiles = [0, 0.05, 0.95, 1.0] df_plot = [] for quantile_low, quantile_high in tqdm(zip(quantiles[:-1], quantiles[1:])): item = {'quantile_low': quantile_low, 'quantile_high': quantile_high, 'quantile_middle': (quantile_low + quantile_high) / 2} quantile_low_value = train_clinical_all[feature0].quantile(quantile_low) quantile_high_value = train_clinical_all[feature0].quantile(quantile_high) item['quantile_low_value'] = quantile_low_value item['quantile_high_value'] = quantile_high_value if quantile_high == 1: quantile_high_value += 1e-05 train_clinical_all_filtered0 = train_clinical_all[(train_clinical_all[feature0] >= quantile_low_value) & (train_clinical_all[feature0] <= quantile_high_value)] for target in ['updrs_1', 'updrs_2', 'updrs_3', 'updrs_4']: item[f'{target}_shift'] = find_best_const(train_clinical_all_filtered0, target) df_plot.append(item) df_plot = pd.DataFrame(df_plot) feature1 = 'O00533' quantiles = [0, 0.05, 0.95, 1.0] df_plot = [] for quantile_low, quantile_high in tqdm(zip(quantiles[:-1], quantiles[1:])): item = {'quantile_low': quantile_low, 'quantile_high': quantile_high, 'quantile_middle': (quantile_low + quantile_high) / 2} quantile_low_value = train_clinical_all[feature1].quantile(quantile_low) quantile_high_value = train_clinical_all[feature1].quantile(quantile_high) item['quantile_low_value'] = quantile_low_value item['quantile_high_value'] = quantile_high_value if quantile_high == 1: quantile_high_value += 1e-05 train_clinical_all_filtered1 = train_clinical_all[(train_clinical_all[feature1] >= quantile_low_value) & (train_clinical_all[feature1] < quantile_high_value)] for target in ['updrs_1', 'updrs_2', 'updrs_3', 'updrs_4']: item[f'{target}_shift'] = find_best_const(train_clinical_all_filtered1, target) df_plot.append(item) df_plot = pd.DataFrame(df_plot) feature2 = 'O15394' quantiles = [0, 0.05, 0.95, 1.0] df_plot = [] for quantile_low, quantile_high in tqdm(zip(quantiles[:-1], quantiles[1:])): item = {'quantile_low': quantile_low, 'quantile_high': quantile_high, 'quantile_middle': (quantile_low + quantile_high) / 2} quantile_low_value = train_clinical_all[feature2].quantile(quantile_low) quantile_high_value = train_clinical_all[feature2].quantile(quantile_high) item['quantile_low_value'] = quantile_low_value item['quantile_high_value'] = quantile_high_value if quantile_high == 1: quantile_high_value += 1e-05 train_clinical_all_filtered2 = train_clinical_all[(train_clinical_all[feature2] >= quantile_low_value) & (train_clinical_all[feature2] < quantile_high_value)] for target in ['updrs_1', 'updrs_2', 'updrs_3', 'updrs_4']: item[f'{target}_shift'] = find_best_const(train_clinical_all_filtered2, target) df_plot.append(item) df_plot = pd.DataFrame(df_plot)
code
130017103/cell_15
[ "text_html_output_1.png" ]
from scipy.optimize import minimize from scipy.stats import mode from tqdm.auto import tqdm import numpy as np import pandas as pd import warnings def smape_plus_1(y_true, y_pred): y_true_plus_1 = y_true + 1 y_pred_plus_1 = y_pred + 1 metric = np.zeros(len(y_true_plus_1)) numerator = np.abs(y_true_plus_1 - y_pred_plus_1) denominator = (np.abs(y_true_plus_1) + np.abs(y_pred_plus_1)) / 2 mask_not_zeros = (y_true_plus_1 != 0) | (y_pred_plus_1 != 0) metric[mask_not_zeros] = numerator[mask_not_zeros] / denominator[mask_not_zeros] return 100 * np.nanmean(metric) train_clinical_all = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') proteins = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_proteins.csv') proteins_features = pd.pivot_table(proteins, values='NPX', index='visit_id', columns='UniProt', aggfunc='sum') train_clinical_all = train_clinical_all.merge(proteins_features, left_on='visit_id', right_index=True, how='left') import warnings warnings.filterwarnings('ignore') train_clinical_all[proteins_features.columns] = train_clinical_all.groupby('patient_id')[proteins_features.columns].transform(lambda x: x.fillna(x.median())) train_clinical_all['pred_month'] = train_clinical_all['visit_month'] for plus_month in [6, 12, 24]: train_shift = train_clinical_all[['patient_id', 'visit_month', 'pred_month', 'updrs_1', 'updrs_2', 'updrs_3', 'updrs_4']].copy() train_shift['visit_month'] -= plus_month train_shift.rename(columns={f'updrs_{i}': f'updrs_{i}_plus_{plus_month}' for i in range(1, 5)}, inplace=True) train_shift.rename(columns={'pred_month': f'pred_month_plus_{plus_month}'}, inplace=True) train_clinical_all = train_clinical_all.merge(train_shift, how='left', on=['patient_id', 'visit_month']) train_clinical_all.rename(columns={f'updrs_{i}': f'updrs_{i}_plus_0' for i in range(1, 5)}, inplace=True) train_clinical_all.rename(columns={'pred_month': f'pred_month_plus_0'}, inplace=True) train_clinical_all from scipy.stats import mode fill_with_mode = lambda x: x.fillna(mode(x).mode[0]) def calculate_month_trend_predicitons(pred_month, trend): if target == 'updrs_4': pred_month = pred_month.clip(60, None) return trend[0] + pred_month * trend[1] target_to_trend = {'updrs_1': [5.394793062665313, 0.027091086167821344], 'updrs_2': [5.469498130092747, 0.02824188329658148], 'updrs_3': [21.182145576879183, 0.08897763331790556], 'updrs_4': [-4.434453480103724, 0.07531448585334258]} def calculate_predicitons_protein(pred_month, protein_shift): trend_pred_month = target_to_trend[target] pred_month_trend = calculate_month_trend_predicitons(pred_month=pred_month, trend=trend_pred_month) return np.round(pred_month_trend + protein_shift) def function_to_minimize(x): metric = smape_plus_1(y_true=y_true_array, y_pred=calculate_predicitons_protein(pred_month=pred_month_array, protein_shift=x[0])) return metric def find_best_const(train_clinical_all_filtered, target): columns_with_target = [f'{target}_plus_{plus_month}' for plus_month in [0, 6, 12, 24]] columns_with_pred_month = [f'pred_month_plus_{plus_month}' for plus_month in [0, 6, 12, 24]] global y_true_array global pred_month_array global protein_array y_true_array = train_clinical_all_filtered[columns_with_target].values.ravel() pred_month_array = train_clinical_all_filtered[columns_with_pred_month].values.ravel() result = minimize(fun=function_to_minimize, x0=[0.0], method='Powell').x[0] return result feature0 = 'O15240' quantiles = [0, 0.05, 0.95, 1.0] df_plot = [] for quantile_low, quantile_high in tqdm(zip(quantiles[:-1], quantiles[1:])): item = {'quantile_low': quantile_low, 'quantile_high': quantile_high, 'quantile_middle': (quantile_low + quantile_high) / 2} quantile_low_value = train_clinical_all[feature0].quantile(quantile_low) quantile_high_value = train_clinical_all[feature0].quantile(quantile_high) item['quantile_low_value'] = quantile_low_value item['quantile_high_value'] = quantile_high_value if quantile_high == 1: quantile_high_value += 1e-05 train_clinical_all_filtered0 = train_clinical_all[(train_clinical_all[feature0] >= quantile_low_value) & (train_clinical_all[feature0] <= quantile_high_value)] for target in ['updrs_1', 'updrs_2', 'updrs_3', 'updrs_4']: item[f'{target}_shift'] = find_best_const(train_clinical_all_filtered0, target) df_plot.append(item) df_plot = pd.DataFrame(df_plot)
code
130017103/cell_17
[ "text_html_output_4.png", "text_html_output_2.png", "text_html_output_5.png", "text_html_output_3.png" ]
from scipy.optimize import minimize from scipy.stats import mode from tqdm.auto import tqdm import numpy as np import pandas as pd import warnings def smape_plus_1(y_true, y_pred): y_true_plus_1 = y_true + 1 y_pred_plus_1 = y_pred + 1 metric = np.zeros(len(y_true_plus_1)) numerator = np.abs(y_true_plus_1 - y_pred_plus_1) denominator = (np.abs(y_true_plus_1) + np.abs(y_pred_plus_1)) / 2 mask_not_zeros = (y_true_plus_1 != 0) | (y_pred_plus_1 != 0) metric[mask_not_zeros] = numerator[mask_not_zeros] / denominator[mask_not_zeros] return 100 * np.nanmean(metric) train_clinical_all = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_clinical_data.csv') proteins = pd.read_csv('/kaggle/input/amp-parkinsons-disease-progression-prediction/train_proteins.csv') proteins_features = pd.pivot_table(proteins, values='NPX', index='visit_id', columns='UniProt', aggfunc='sum') train_clinical_all = train_clinical_all.merge(proteins_features, left_on='visit_id', right_index=True, how='left') import warnings warnings.filterwarnings('ignore') train_clinical_all[proteins_features.columns] = train_clinical_all.groupby('patient_id')[proteins_features.columns].transform(lambda x: x.fillna(x.median())) train_clinical_all['pred_month'] = train_clinical_all['visit_month'] for plus_month in [6, 12, 24]: train_shift = train_clinical_all[['patient_id', 'visit_month', 'pred_month', 'updrs_1', 'updrs_2', 'updrs_3', 'updrs_4']].copy() train_shift['visit_month'] -= plus_month train_shift.rename(columns={f'updrs_{i}': f'updrs_{i}_plus_{plus_month}' for i in range(1, 5)}, inplace=True) train_shift.rename(columns={'pred_month': f'pred_month_plus_{plus_month}'}, inplace=True) train_clinical_all = train_clinical_all.merge(train_shift, how='left', on=['patient_id', 'visit_month']) train_clinical_all.rename(columns={f'updrs_{i}': f'updrs_{i}_plus_0' for i in range(1, 5)}, inplace=True) train_clinical_all.rename(columns={'pred_month': f'pred_month_plus_0'}, inplace=True) train_clinical_all from scipy.stats import mode fill_with_mode = lambda x: x.fillna(mode(x).mode[0]) def calculate_month_trend_predicitons(pred_month, trend): if target == 'updrs_4': pred_month = pred_month.clip(60, None) return trend[0] + pred_month * trend[1] target_to_trend = {'updrs_1': [5.394793062665313, 0.027091086167821344], 'updrs_2': [5.469498130092747, 0.02824188329658148], 'updrs_3': [21.182145576879183, 0.08897763331790556], 'updrs_4': [-4.434453480103724, 0.07531448585334258]} def calculate_predicitons_protein(pred_month, protein_shift): trend_pred_month = target_to_trend[target] pred_month_trend = calculate_month_trend_predicitons(pred_month=pred_month, trend=trend_pred_month) return np.round(pred_month_trend + protein_shift) def function_to_minimize(x): metric = smape_plus_1(y_true=y_true_array, y_pred=calculate_predicitons_protein(pred_month=pred_month_array, protein_shift=x[0])) return metric def find_best_const(train_clinical_all_filtered, target): columns_with_target = [f'{target}_plus_{plus_month}' for plus_month in [0, 6, 12, 24]] columns_with_pred_month = [f'pred_month_plus_{plus_month}' for plus_month in [0, 6, 12, 24]] global y_true_array global pred_month_array global protein_array y_true_array = train_clinical_all_filtered[columns_with_target].values.ravel() pred_month_array = train_clinical_all_filtered[columns_with_pred_month].values.ravel() result = minimize(fun=function_to_minimize, x0=[0.0], method='Powell').x[0] return result feature0 = 'O15240' quantiles = [0, 0.05, 0.95, 1.0] df_plot = [] for quantile_low, quantile_high in tqdm(zip(quantiles[:-1], quantiles[1:])): item = {'quantile_low': quantile_low, 'quantile_high': quantile_high, 'quantile_middle': (quantile_low + quantile_high) / 2} quantile_low_value = train_clinical_all[feature0].quantile(quantile_low) quantile_high_value = train_clinical_all[feature0].quantile(quantile_high) item['quantile_low_value'] = quantile_low_value item['quantile_high_value'] = quantile_high_value if quantile_high == 1: quantile_high_value += 1e-05 train_clinical_all_filtered0 = train_clinical_all[(train_clinical_all[feature0] >= quantile_low_value) & (train_clinical_all[feature0] <= quantile_high_value)] for target in ['updrs_1', 'updrs_2', 'updrs_3', 'updrs_4']: item[f'{target}_shift'] = find_best_const(train_clinical_all_filtered0, target) df_plot.append(item) df_plot = pd.DataFrame(df_plot) feature1 = 'O00533' quantiles = [0, 0.05, 0.95, 1.0] df_plot = [] for quantile_low, quantile_high in tqdm(zip(quantiles[:-1], quantiles[1:])): item = {'quantile_low': quantile_low, 'quantile_high': quantile_high, 'quantile_middle': (quantile_low + quantile_high) / 2} quantile_low_value = train_clinical_all[feature1].quantile(quantile_low) quantile_high_value = train_clinical_all[feature1].quantile(quantile_high) item['quantile_low_value'] = quantile_low_value item['quantile_high_value'] = quantile_high_value if quantile_high == 1: quantile_high_value += 1e-05 train_clinical_all_filtered1 = train_clinical_all[(train_clinical_all[feature1] >= quantile_low_value) & (train_clinical_all[feature1] < quantile_high_value)] for target in ['updrs_1', 'updrs_2', 'updrs_3', 'updrs_4']: item[f'{target}_shift'] = find_best_const(train_clinical_all_filtered1, target) df_plot.append(item) df_plot = pd.DataFrame(df_plot)
code
128020295/cell_21
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') seasons_stats[seasons_stats.Age > 40][seasons_stats.PTS > 100] seasons_stats.Pos.value_counts().iloc[0:5] seasons_stats[seasons_stats.Player == 'LeBron James'] triples = seasons_stats.groupby('Year')['3P'].sum() seasons_stats.sort_values('3P', ascending=False)[:25]
code
128020295/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') players.isnull().sum() players['height'].corr(players['weight'])
code
128020295/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') players.isnull().sum() players[players['height'] == players['height'].min()]
code
128020295/cell_25
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') seasons_stats[seasons_stats.Age > 40][seasons_stats.PTS > 100] seasons_stats.Pos.value_counts().iloc[0:5] seasons_stats[seasons_stats.Player == 'LeBron James'] triples = seasons_stats.groupby('Year')['3P'].sum() seasons_stats.sort_values('3P', ascending=False)[:25] seasons_stats[seasons_stats.GS < 41].sort_values('MP', ascending=False)[:25] seasons_stats[seasons_stats.GS > 50][seasons_stats.MP < 1000]
code
128020295/cell_4
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') players.isnull().sum()
code
128020295/cell_23
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') seasons_stats[seasons_stats.Age > 40][seasons_stats.PTS > 100] seasons_stats.Pos.value_counts().iloc[0:5] seasons_stats[seasons_stats.Player == 'LeBron James'] triples = seasons_stats.groupby('Year')['3P'].sum() seasons_stats.sort_values('3P', ascending=False)[:25] seasons_stats['GS'].corr(seasons_stats['MP'])
code
128020295/cell_30
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') seasons_stats[seasons_stats.Age > 40][seasons_stats.PTS > 100] seasons_stats.Pos.value_counts().iloc[0:5] seasons_stats[seasons_stats.Player == 'LeBron James'] triples = seasons_stats.groupby('Year')['3P'].sum() seasons_stats.sort_values('3P', ascending=False)[:25] seasons_stats[seasons_stats.GS < 41].sort_values('MP', ascending=False)[:25] seasons_stats[seasons_stats.GS > 50][seasons_stats.MP < 1000] real_players = seasons_stats[seasons_stats.MP > 1000] real_players.groupby('Pos').mean().sort_values('PTS', ascending=False)['PTS'].plot.pie()
code
128020295/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') seasons_stats[seasons_stats.Age > 40][seasons_stats.PTS > 100] seasons_stats.Pos.value_counts().iloc[0:5] seasons_stats[seasons_stats.Player == 'LeBron James'] triples = seasons_stats.groupby('Year')['3P'].sum() print(triples) triples.plot(x='Year', y='3P', figsize=(12, 8))
code
128020295/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') players.isnull().sum() players.describe()
code
128020295/cell_29
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') seasons_stats[seasons_stats.Age > 40][seasons_stats.PTS > 100] seasons_stats.Pos.value_counts().iloc[0:5] seasons_stats[seasons_stats.Player == 'LeBron James'] triples = seasons_stats.groupby('Year')['3P'].sum() seasons_stats.sort_values('3P', ascending=False)[:25] seasons_stats[seasons_stats.GS < 41].sort_values('MP', ascending=False)[:25] seasons_stats[seasons_stats.GS > 50][seasons_stats.MP < 1000] real_players = seasons_stats[seasons_stats.MP > 1000] real_players.groupby('Pos').mean().sort_values('AST', ascending=False)['AST'].plot.pie()
code
128020295/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') seasons_stats[seasons_stats.Age > 40][seasons_stats.PTS > 100] seasons_stats.Pos.value_counts().iloc[0:5] seasons_stats[seasons_stats.Player == 'LeBron James'] triples = seasons_stats.groupby('Year')['3P'].sum() seasons_stats.sort_values('3P', ascending=False)[:25] seasons_stats[seasons_stats.GS < 41].sort_values('MP', ascending=False)[:25] seasons_stats[seasons_stats.GS > 50][seasons_stats.MP < 1000] real_players = seasons_stats[seasons_stats.MP > 1000] real_players.groupby('Pos').mean().sort_values('TRB', ascending=False)['TRB'].plot.pie()
code
128020295/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') players.isnull().sum() players[players['weight'] == players['weight'].min()]
code
128020295/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/nba-players-stats/Players.csv') seasons_stats = pd.read_csv('/kaggle/input/nba-players-stats/Seasons_Stats.csv') player_data = pd.read_csv('/kaggle/input/nba-players-stats/player_data.csv') seasons_stats[seasons_stats.Age > 40][seasons_stats.PTS > 100] seasons_stats.Pos.value_counts().iloc[0:5] seasons_stats[seasons_stats.Player == 'LeBron James'] seasons_stats['3P'].corr(seasons_stats['3PA'])
code