path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
105176386/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv') matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv') cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv') def cantidad_goles(texto): return texto.count('G') - texto.count('OG') players['goles'] = players['Event'].fillna('').map(cantidad_goles) players
code
105176386/cell_19
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv') matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv') cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv') matches = matches.dropna() partidos_por_anio = matches[['Year', 'MatchID']].dropna().astype('Int64') jugadores_goles = players[['MatchID', 'Player Name', 'goles']] goles = pd.merge(jugadores_goles, partidos_por_anio, on='MatchID', how='inner') goles inicio = goles.groupby('Player Name').agg({'Year': 'min'}) inicio = inicio.to_dict()['Year'] plt.hist(goles['antiguedad'])
code
105176386/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105176386/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv') matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv') cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv') cups
code
105176386/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv') matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv') cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv') players[players['Player Name'].str.contains('MESSI')]
code
105176386/cell_15
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv') matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv') cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv') matches = matches.dropna() partidos_por_anio = matches[['Year', 'MatchID']].dropna().astype('Int64') jugadores_goles = players[['MatchID', 'Player Name', 'goles']] goles = pd.merge(jugadores_goles, partidos_por_anio, on='MatchID', how='inner') goles inicio = goles.groupby('Player Name').agg({'Year': 'min'}) inicio = inicio.to_dict()['Year'] goles['anio_inicio'] = goles['Player Name'].map(lambda x: inicio[x]) goles
code
105176386/cell_16
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv') matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv') cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv') matches = matches.dropna() partidos_por_anio = matches[['Year', 'MatchID']].dropna().astype('Int64') jugadores_goles = players[['MatchID', 'Player Name', 'goles']] goles = pd.merge(jugadores_goles, partidos_por_anio, on='MatchID', how='inner') goles inicio = goles.groupby('Player Name').agg({'Year': 'min'}) inicio = inicio.to_dict()['Year'] goles['antiguedad'] = goles['Year'] - goles['anio_inicio'] goles
code
105176386/cell_35
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv') matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv') cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv') matches = matches.dropna() partidos_por_anio = matches[['Year', 'MatchID']].dropna().astype('Int64') def cantidad_goles(texto): return texto.count('G') - texto.count('OG') jugadores_goles = players[['MatchID', 'Player Name', 'goles']] goles = pd.merge(jugadores_goles, partidos_por_anio, on='MatchID', how='inner') goles inicio = goles.groupby('Player Name').agg({'Year': 'min'}) inicio = inicio.to_dict()['Year'] def min_goles(texto): eventos = texto.split("' ") goles = [e.replace("'", '') for e in eventos if e and e[0] == 'G'] return [int(g[1:]) for g in goles] plt.xlim((0, 120)) plt.yticks([]) matches.groupby(['Home Team Name', 'Year']).agg({'Home Team Goals': 'mean'}) matches.groupby(['Away Team Name', 'Year']).agg({'Away Team Goals': 'mean'}) home_goals = matches[['Home Team Name', 'Year', 'Home Team Goals']].rename(columns={'Home Team Name': 'Team Name', 'Home Team Goals': 'Goals'}) away_goals = matches[['Away Team Name', 'Year', 'Away Team Goals']].rename(columns={'Away Team Name': 'Team Name', 'Home Team Goals': 'Goals'}) goals = pd.concat([home_goals, away_goals], ignore_index=True) goals.groupby(['Team Name', 'Year']).agg({'Goals': 'mean'}) top = list(goals['Team Name'].value_counts().nlargest(10).index) goalsTop = goals[goals['Team Name'].isin(top)] matriz = goalsTop.pivot_table(values='Goals', index='Team Name', columns='Year', aggfunc='mean').fillna(0) matriz
code
105176386/cell_31
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv') matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv') cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv') matches = matches.dropna() partidos_por_anio = matches[['Year', 'MatchID']].dropna().astype('Int64') def cantidad_goles(texto): return texto.count('G') - texto.count('OG') jugadores_goles = players[['MatchID', 'Player Name', 'goles']] goles = pd.merge(jugadores_goles, partidos_por_anio, on='MatchID', how='inner') goles inicio = goles.groupby('Player Name').agg({'Year': 'min'}) inicio = inicio.to_dict()['Year'] def min_goles(texto): eventos = texto.split("' ") goles = [e.replace("'", '') for e in eventos if e and e[0] == 'G'] return [int(g[1:]) for g in goles] plt.xlim((0, 120)) plt.yticks([]) matches.groupby(['Home Team Name', 'Year']).agg({'Home Team Goals': 'mean'}) matches.groupby(['Away Team Name', 'Year']).agg({'Away Team Goals': 'mean'}) home_goals = matches[['Home Team Name', 'Year', 'Home Team Goals']].rename(columns={'Home Team Name': 'Team Name', 'Home Team Goals': 'Goals'}) away_goals = matches[['Away Team Name', 'Year', 'Away Team Goals']].rename(columns={'Away Team Name': 'Team Name', 'Home Team Goals': 'Goals'}) goals = pd.concat([home_goals, away_goals], ignore_index=True) goals.groupby(['Team Name', 'Year']).agg({'Goals': 'mean'}) sns.heatmap(goals.pivot_table(values='Goals', index='Team Name', columns='Year', aggfunc='mean').fillna(0))
code
105176386/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv') matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv') cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv') matches = matches.dropna() partidos_por_anio = matches[['Year', 'MatchID']].dropna().astype('Int64') def cantidad_goles(texto): return texto.count('G') - texto.count('OG') jugadores_goles = players[['MatchID', 'Player Name', 'goles']] goles = pd.merge(jugadores_goles, partidos_por_anio, on='MatchID', how='inner') goles inicio = goles.groupby('Player Name').agg({'Year': 'min'}) inicio = inicio.to_dict()['Year'] def min_goles(texto): eventos = texto.split("' ") goles = [e.replace("'", '') for e in eventos if e and e[0] == 'G'] return [int(g[1:]) for g in goles] plt.xlim((0, 120)) plt.yticks([]) plt.hist(players['Event'].fillna('').map(min_goles).sum(), color='#9FC131') plt.ylabel('Probabilidad') plt.xlabel('Minuto') plt.title('Distribución de los minutos en los que ocurren goles')
code
105176386/cell_37
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv') matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv') cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv') matches = matches.dropna() partidos_por_anio = matches[['Year', 'MatchID']].dropna().astype('Int64') def cantidad_goles(texto): return texto.count('G') - texto.count('OG') jugadores_goles = players[['MatchID', 'Player Name', 'goles']] goles = pd.merge(jugadores_goles, partidos_por_anio, on='MatchID', how='inner') goles inicio = goles.groupby('Player Name').agg({'Year': 'min'}) inicio = inicio.to_dict()['Year'] def min_goles(texto): eventos = texto.split("' ") goles = [e.replace("'", '') for e in eventos if e and e[0] == 'G'] return [int(g[1:]) for g in goles] plt.xlim((0, 120)) plt.yticks([]) matches.groupby(['Home Team Name', 'Year']).agg({'Home Team Goals': 'mean'}) matches.groupby(['Away Team Name', 'Year']).agg({'Away Team Goals': 'mean'}) home_goals = matches[['Home Team Name', 'Year', 'Home Team Goals']].rename(columns={'Home Team Name': 'Team Name', 'Home Team Goals': 'Goals'}) away_goals = matches[['Away Team Name', 'Year', 'Away Team Goals']].rename(columns={'Away Team Name': 'Team Name', 'Home Team Goals': 'Goals'}) goals = pd.concat([home_goals, away_goals], ignore_index=True) goals.groupby(['Team Name', 'Year']).agg({'Goals': 'mean'}) top = list(goals['Team Name'].value_counts().nlargest(10).index) goalsTop = goals[goals['Team Name'].isin(top)] matriz = goalsTop.pivot_table(values='Goals', index='Team Name', columns='Year', aggfunc='mean').fillna(0) matriz plt.figure(dpi=125) sns.boxplot(data=goalsTop, x='Year', y='Goals') plt.ylim((0, 7)) plt.xticks(rotation=90)
code
105176386/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv') matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv') cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv') matches
code
105176386/cell_36
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns players = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupPlayers.csv') matches = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCupMatches.csv') cups = pd.read_csv('/kaggle/input/fifa-world-cup/WorldCups.csv') matches = matches.dropna() partidos_por_anio = matches[['Year', 'MatchID']].dropna().astype('Int64') def cantidad_goles(texto): return texto.count('G') - texto.count('OG') jugadores_goles = players[['MatchID', 'Player Name', 'goles']] goles = pd.merge(jugadores_goles, partidos_por_anio, on='MatchID', how='inner') goles inicio = goles.groupby('Player Name').agg({'Year': 'min'}) inicio = inicio.to_dict()['Year'] def min_goles(texto): eventos = texto.split("' ") goles = [e.replace("'", '') for e in eventos if e and e[0] == 'G'] return [int(g[1:]) for g in goles] plt.xlim((0, 120)) plt.yticks([]) matches.groupby(['Home Team Name', 'Year']).agg({'Home Team Goals': 'mean'}) matches.groupby(['Away Team Name', 'Year']).agg({'Away Team Goals': 'mean'}) home_goals = matches[['Home Team Name', 'Year', 'Home Team Goals']].rename(columns={'Home Team Name': 'Team Name', 'Home Team Goals': 'Goals'}) away_goals = matches[['Away Team Name', 'Year', 'Away Team Goals']].rename(columns={'Away Team Name': 'Team Name', 'Home Team Goals': 'Goals'}) goals = pd.concat([home_goals, away_goals], ignore_index=True) goals.groupby(['Team Name', 'Year']).agg({'Goals': 'mean'}) top = list(goals['Team Name'].value_counts().nlargest(10).index) goalsTop = goals[goals['Team Name'].isin(top)] matriz = goalsTop.pivot_table(values='Goals', index='Team Name', columns='Year', aggfunc='mean').fillna(0) matriz plt.figure(dpi=175) sns.heatmap(matriz, square=True, cmap=sns.light_palette('seagreen', as_cmap=True), yticklabels=top) plt.title('Goles promedio por selección y año') plt.xlabel('Año') plt.ylabel('Selección')
code
88090632/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df10B = pd.read_excel('../input/trabajohoras2/TrabajoHoras.xlsx') df10B.loc[df10B['Nombres'] == 'Victoria']
code
2000591/cell_13
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns mydataset = pd.read_csv('HR_comma_sep.csv') mydataset.shape mydataset.dtypes fig = plt.figure(figsize=(10,10)) corr = mydataset.corr() sns.heatmap(corr, vmax=1, square=True,annot=True) sns.plt.title('Correlation Matrix Heatmap') mydataset.mean() print('there are {} employees evaluated more than 0.7'.format(len(mydataset[mydataset['last_evaluation'] > 0.7]))) print('there are {} employees evaluated less than 0.7'.format(len(mydataset[mydataset['last_evaluation'] <= 0.7]))) print('there are {} employees satisfication level more than 0.6'.format(len(mydataset[mydataset['satisfaction_level'] > 0.6]))) print('there are {} employees satisfication level less than 0.6'.format(len(mydataset[mydataset['satisfaction_level'] <= 0.6]))) print('there are {} employees have project more than 3.80'.format(len(mydataset[mydataset['number_project'] > 3.8]))) print('there are {} employees have project less than 3.80'.format(len(mydataset[mydataset['number_project'] <= 3.8]))) print('there are {} employees that spend average monthly hours more than 201.050337'.format(len(mydataset[mydataset['average_montly_hours'] > 201.050337]))) print('there are {} employees that spend average monthly hours less than 201.050337'.format(len(mydataset[mydataset['average_montly_hours'] <= 201.050337])))
code
2000591/cell_23
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns mydataset = pd.read_csv('HR_comma_sep.csv') mydataset.shape mydataset.dtypes fig = plt.figure(figsize=(10,10)) corr = mydataset.corr() sns.heatmap(corr, vmax=1, square=True,annot=True) sns.plt.title('Correlation Matrix Heatmap') mydataset.mean() mydataset.groupby(['sales', 'left']).mean() left = mydataset[mydataset.left == 1] stay = mydataset[mydataset.left == 0] plt.xticks(rotation=90) plt.xticks(rotation=90) sns.countplot(x='number_project', hue='left', data=mydataset) plt.title('Number of People Doing project and still they left')
code
2000591/cell_20
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns mydataset = pd.read_csv('HR_comma_sep.csv') mydataset.shape mydataset.dtypes fig = plt.figure(figsize=(10,10)) corr = mydataset.corr() sns.heatmap(corr, vmax=1, square=True,annot=True) sns.plt.title('Correlation Matrix Heatmap') mydataset.mean() mydataset.groupby(['sales', 'left']).mean() left = mydataset[mydataset.left == 1] stay = mydataset[mydataset.left == 0] temp3 = pd.crosstab(mydataset['sales'], mydataset['salary']) temp3.plot(kind='bar', stacked=True, color=['red', 'blue', 'Green'], grid=False)
code
2000591/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd mydataset = pd.read_csv('HR_comma_sep.csv') mydataset.shape
code
2000591/cell_26
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns mydataset = pd.read_csv('HR_comma_sep.csv') mydataset.shape mydataset.dtypes fig = plt.figure(figsize=(10,10)) corr = mydataset.corr() sns.heatmap(corr, vmax=1, square=True,annot=True) sns.plt.title('Correlation Matrix Heatmap') mydataset.mean() mydataset.groupby(['sales', 'left']).mean() left = mydataset[mydataset.left == 1] stay = mydataset[mydataset.left == 0] plt.xticks(rotation=90) plt.xticks(rotation=90) sns.factorplot('number_project', 'average_montly_hours', hue='left', data=mydataset)
code
2000591/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns mydataset = pd.read_csv('HR_comma_sep.csv') mydataset.shape mydataset.dtypes fig = plt.figure(figsize=(10, 10)) corr = mydataset.corr() sns.heatmap(corr, vmax=1, square=True, annot=True) sns.plt.title('Correlation Matrix Heatmap')
code
2000591/cell_19
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns mydataset = pd.read_csv('HR_comma_sep.csv') mydataset.shape mydataset.dtypes fig = plt.figure(figsize=(10,10)) corr = mydataset.corr() sns.heatmap(corr, vmax=1, square=True,annot=True) sns.plt.title('Correlation Matrix Heatmap') mydataset.mean() mydataset.groupby(['sales', 'left']).mean() left = mydataset[mydataset.left == 1] stay = mydataset[mydataset.left == 0] plt.xticks(rotation=90) sns.countplot(x='sales', hue='left', data=mydataset) plt.title('Number of people left from particular department') plt.xticks(rotation=90)
code
2000591/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd mydataset = pd.read_csv('HR_comma_sep.csv') mydataset.shape mydataset.head()
code
2000591/cell_18
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns mydataset = pd.read_csv('HR_comma_sep.csv') mydataset.shape mydataset.dtypes fig = plt.figure(figsize=(10,10)) corr = mydataset.corr() sns.heatmap(corr, vmax=1, square=True,annot=True) sns.plt.title('Correlation Matrix Heatmap') mydataset.mean() mydataset.groupby(['sales', 'left']).mean() left = mydataset[mydataset.left == 1] stay = mydataset[mydataset.left == 0] sns.countplot(x='sales', data=mydataset) plt.title('Distribution of employess across departments') plt.xticks(rotation=90)
code
2000591/cell_28
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns mydataset = pd.read_csv('HR_comma_sep.csv') mydataset.shape mydataset.dtypes fig = plt.figure(figsize=(10,10)) corr = mydataset.corr() sns.heatmap(corr, vmax=1, square=True,annot=True) sns.plt.title('Correlation Matrix Heatmap') mydataset.mean() mydataset.groupby(['sales', 'left']).mean() left = mydataset[mydataset.left == 1] stay = mydataset[mydataset.left == 0] plt.xticks(rotation=90) plt.xticks(rotation=90) sns.factorplot('number_project', 'satisfaction_level', hue='left', data=mydataset) plt.title('Number of project vs Satisfaction level based on that people leaving and staying')
code
2000591/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd mydataset = pd.read_csv('HR_comma_sep.csv') mydataset.shape mydataset.describe()
code
2000591/cell_15
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns mydataset = pd.read_csv('HR_comma_sep.csv') mydataset.shape mydataset.dtypes fig = plt.figure(figsize=(10,10)) corr = mydataset.corr() sns.heatmap(corr, vmax=1, square=True,annot=True) sns.plt.title('Correlation Matrix Heatmap') mydataset.mean() mydataset.groupby(['sales', 'left']).mean() sns.factorplot('sales', col='salary', col_wrap=3, data=mydataset, kind='count', size=15, aspect=0.4)
code
2000591/cell_16
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns mydataset = pd.read_csv('HR_comma_sep.csv') mydataset.shape mydataset.dtypes fig = plt.figure(figsize=(10,10)) corr = mydataset.corr() sns.heatmap(corr, vmax=1, square=True,annot=True) sns.plt.title('Correlation Matrix Heatmap') mydataset.mean() mydataset.groupby(['sales', 'left']).mean() mydataset.hist(figsize=(15, 15)) plt.show()
code
2000591/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import matplotlib as matplot import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LogisticRegression from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.naive_bayes import GaussianNB from sklearn import cross_validation from IPython.display import display from sklearn.metrics import classification_report, confusion_matrix
code
2000591/cell_17
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns mydataset = pd.read_csv('HR_comma_sep.csv') mydataset.shape mydataset.dtypes fig = plt.figure(figsize=(10,10)) corr = mydataset.corr() sns.heatmap(corr, vmax=1, square=True,annot=True) sns.plt.title('Correlation Matrix Heatmap') mydataset.mean() mydataset.groupby(['sales', 'left']).mean() left = mydataset[mydataset.left == 1] stay = mydataset[mydataset.left == 0] print('number of people stay =' + str(len(stay))) print('Number of people left=' + str(len(left)))
code
2000591/cell_24
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns mydataset = pd.read_csv('HR_comma_sep.csv') mydataset.shape mydataset.dtypes fig = plt.figure(figsize=(10,10)) corr = mydataset.corr() sns.heatmap(corr, vmax=1, square=True,annot=True) sns.plt.title('Correlation Matrix Heatmap') mydataset.mean() mydataset.groupby(['sales', 'left']).mean() left = mydataset[mydataset.left == 1] stay = mydataset[mydataset.left == 0] plt.xticks(rotation=90) plt.xticks(rotation=90) sns.countplot(x='number_project', hue='salary', data=mydataset) plt.title('Number of project Vs Salary')
code
2000591/cell_14
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns mydataset = pd.read_csv('HR_comma_sep.csv') mydataset.shape mydataset.dtypes fig = plt.figure(figsize=(10,10)) corr = mydataset.corr() sns.heatmap(corr, vmax=1, square=True,annot=True) sns.plt.title('Correlation Matrix Heatmap') mydataset.mean() mydataset.groupby(['sales', 'left']).mean()
code
2000591/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd mydataset = pd.read_csv('HR_comma_sep.csv') mydataset.shape mydataset.dtypes
code
2000591/cell_12
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns mydataset = pd.read_csv('HR_comma_sep.csv') mydataset.shape mydataset.dtypes fig = plt.figure(figsize=(10,10)) corr = mydataset.corr() sns.heatmap(corr, vmax=1, square=True,annot=True) sns.plt.title('Correlation Matrix Heatmap') mydataset.mean()
code
2000591/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd mydataset = pd.read_csv('HR_comma_sep.csv')
code
128011233/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd nodes = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') nodes edges = pd.read_csv('../input/tolokers/edges.tsv', sep='\t') edges
code
128011233/cell_34
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import networkx as nx import numpy as np import pandas as pd nodes = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') nodes edges = pd.read_csv('../input/tolokers/edges.tsv', sep='\t') edges G = nx.Graph() G.add_edges_from(edges.values) node_degrees = {} for node in G.nodes(): node_degrees[node] = len(list(G.neighbors(node))) def freedman_diaconis(data): IQR = np.percentile(data, 75) - np.percentile(data, 25) bin_width = 2 * IQR / len(data) ** (1 / 3) data_range = max(data) - min(data) num_bins = int(np.ceil(data_range / bin_width)) return num_bins degrees_dist = np.array(list(node_degrees.values())) plt.xlim([0, 500]) degrees, degree_counts = np.unique(degrees_dist, return_counts=True) probs = degree_counts / sum(degree_counts) plt.loglog(degrees, probs, 'bo', markersize=2) log_degrees = np.log10(degrees) log_probs = np.log10(probs) m1, b1 = np.polyfit(log_degrees, log_probs, 1) y = m1 * log_degrees + b1 def C_v_i(v): neighborhood = list(G.neighbors(v)) n_i = len(neighborhood) if n_i < 2: return 0 v_i = 0 for i in range(n_i): for j in range(i + 1, n_i): if G.has_edge(neighborhood[i], neighborhood[j]): v_i += 1 max_n_i = n_i * (n_i - 1) return 2 * (v_i / max_n_i) coefficients = [] for node in G.nodes(): coefficients.append(C_v_i(node)) C_G = np.average(coefficients) print('Clustering coefficient of a graph G is: ', C_G)
code
128011233/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd nodes = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') nodes nodes['education'].value_counts()
code
128011233/cell_32
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import networkx as nx import numpy as np import pandas as pd nodes = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') nodes edges = pd.read_csv('../input/tolokers/edges.tsv', sep='\t') edges G = nx.Graph() G.add_edges_from(edges.values) node_degrees = {} for node in G.nodes(): node_degrees[node] = len(list(G.neighbors(node))) def freedman_diaconis(data): IQR = np.percentile(data, 75) - np.percentile(data, 25) bin_width = 2 * IQR / len(data) ** (1 / 3) data_range = max(data) - min(data) num_bins = int(np.ceil(data_range / bin_width)) return num_bins degrees_dist = np.array(list(node_degrees.values())) plt.xlim([0, 500]) degrees, degree_counts = np.unique(degrees_dist, return_counts=True) probs = degree_counts / sum(degree_counts) plt.loglog(degrees, probs, 'bo', markersize=2) log_degrees = np.log10(degrees) log_probs = np.log10(probs) m1, b1 = np.polyfit(log_degrees, log_probs, 1) y = m1 * log_degrees + b1 plt.plot(10 ** log_degrees, 10 ** y, c='red') plt.xlabel('Degree') plt.ylabel('Probability') plt.show() print('Slope: ', -m1)
code
128011233/cell_28
[ "text_html_output_1.png" ]
import networkx as nx import pandas as pd nodes = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') nodes edges = pd.read_csv('../input/tolokers/edges.tsv', sep='\t') edges G = nx.Graph() G.add_edges_from(edges.values) radius = nx.radius(G) diameter = nx.diameter(G) print('Radius: ', radius) print('Diameter: ', diameter)
code
128011233/cell_3
[ "text_html_output_1.png" ]
import pandas as pd nodes = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') nodes
code
128011233/cell_31
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import networkx as nx import numpy as np import pandas as pd nodes = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') nodes edges = pd.read_csv('../input/tolokers/edges.tsv', sep='\t') edges G = nx.Graph() G.add_edges_from(edges.values) node_degrees = {} for node in G.nodes(): node_degrees[node] = len(list(G.neighbors(node))) def freedman_diaconis(data): IQR = np.percentile(data, 75) - np.percentile(data, 25) bin_width = 2 * IQR / len(data) ** (1 / 3) data_range = max(data) - min(data) num_bins = int(np.ceil(data_range / bin_width)) return num_bins degrees_dist = np.array(list(node_degrees.values())) plt.hist(degrees_dist, bins=freedman_diaconis(degrees_dist)) plt.xlim([0, 500]) plt.xlabel('Degree') plt.ylabel('Frequency') plt.show()
code
121149218/cell_21
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mv = pd.read_csv('/kaggle/input/netflix-shows/netflix_titles.csv') mv.shape mv.sample(3) mv.dtypes mv.isnull().sum()
code
121149218/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mv = pd.read_csv('/kaggle/input/netflix-shows/netflix_titles.csv') mv.shape mv.head(5)
code
121149218/cell_9
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mv = pd.read_csv('/kaggle/input/netflix-shows/netflix_titles.csv') mv.shape
code
121149218/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mv = pd.read_csv('/kaggle/input/netflix-shows/netflix_titles.csv') mv.shape mv.sample(3) mv.dtypes mv.isnull().sum() mv.describe()
code
121149218/cell_23
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mv = pd.read_csv('/kaggle/input/netflix-shows/netflix_titles.csv') mv.shape mv.sample(3) mv.dtypes mv.isnull().sum() mv['type'].value_counts().plot(kind='pie', autopct='%.2f')
code
121149218/cell_33
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mv = pd.read_csv('/kaggle/input/netflix-shows/netflix_titles.csv') mv.shape mv.sample(3) mv.dtypes mv.isnull().sum() mv['duration'] = mv['duration'].str.replace(' min', '') mv['country'].value_counts().head(10).plot(kind='bar') plt.show()
code
121149218/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mv = pd.read_csv('/kaggle/input/netflix-shows/netflix_titles.csv') mv.shape mv.sample(3) mv.dtypes mv.isnull().sum() mv['duration'] = mv['duration'].str.replace(' min', '') mv.head(6)
code
121149218/cell_39
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mv = pd.read_csv('/kaggle/input/netflix-shows/netflix_titles.csv') mv.shape mv.sample(3) mv.dtypes mv.isnull().sum() mv['duration'] = mv['duration'].str.replace(' min', '') mv.groupby('listed_in')['title'].count().sort_values(ascending=False).reset_index()[:5] len(mv[mv['release_year'] == 2021])
code
121149218/cell_41
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mv = pd.read_csv('/kaggle/input/netflix-shows/netflix_titles.csv') mv.shape mv.sample(3) mv.dtypes mv.isnull().sum() mv['duration'] = mv['duration'].str.replace(' min', '') mv.groupby('listed_in')['title'].count().sort_values(ascending=False).reset_index()[:5] z = mv.groupby(['rating']).size().reset_index(name='count') z
code
121149218/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mv = pd.read_csv('/kaggle/input/netflix-shows/netflix_titles.csv') mv.shape mv
code
121149218/cell_19
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mv = pd.read_csv('/kaggle/input/netflix-shows/netflix_titles.csv') mv.shape mv.sample(3) mv.dtypes
code
121149218/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mv = pd.read_csv('/kaggle/input/netflix-shows/netflix_titles.csv') mv
code
121149218/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mv = pd.read_csv('/kaggle/input/netflix-shows/netflix_titles.csv') mv.shape mv.tail(5)
code
121149218/cell_3
[ "text_html_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
121149218/cell_17
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mv = pd.read_csv('/kaggle/input/netflix-shows/netflix_titles.csv') mv.shape mv.sample(3)
code
121149218/cell_35
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mv = pd.read_csv('/kaggle/input/netflix-shows/netflix_titles.csv') mv.shape mv.sample(3) mv.dtypes mv.isnull().sum() mv['duration'] = mv['duration'].str.replace(' min', '') mv.groupby('listed_in')['title'].count().sort_values(ascending=False).reset_index()[:5]
code
121149218/cell_31
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mv = pd.read_csv('/kaggle/input/netflix-shows/netflix_titles.csv') mv.shape mv.sample(3) mv.dtypes mv.isnull().sum() mv['duration'] = mv['duration'].str.replace(' min', '') a = mv['director'].value_counts().reset_index()[1:11] a
code
121149218/cell_27
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mv = pd.read_csv('/kaggle/input/netflix-shows/netflix_titles.csv') mv.shape mv.sample(3) mv.dtypes mv.isnull().sum() pd.crosstab(mv['country'], 'counts')
code
121149218/cell_37
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mv = pd.read_csv('/kaggle/input/netflix-shows/netflix_titles.csv') mv.shape mv.sample(3) mv.dtypes mv.isnull().sum() mv['duration'] = mv['duration'].str.replace(' min', '') mv.groupby('listed_in')['title'].count().sort_values(ascending=False).reset_index()[:5] mv[mv['country'] == 'India'].listed_in.value_counts()
code
17123294/cell_21
[ "text_html_output_1.png" ]
import pandas as pd train_path = '../input/train.csv' test_path = '../input/test.csv' train_df = pd.read_csv(train_path) test_df = pd.read_csv(test_path) train_df.shape missing_data = train_df.isnull().sum() percent_missing = round(missing_data / train_df.isnull().count() * 100, 2) missing_df = pd.concat([missing_data.sort_values(ascending=False), percent_missing.sort_values(ascending=False)], axis=1, keys=['Total', 'Percent']) missing_df.head(5)
code
17123294/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd train_path = '../input/train.csv' test_path = '../input/test.csv' train_df = pd.read_csv(train_path) test_df = pd.read_csv(test_path) train_df.shape train_df.info()
code
17123294/cell_34
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns sns.set(style='darkgrid') train_path = '../input/train.csv' test_path = '../input/test.csv' train_df = pd.read_csv(train_path) test_df = pd.read_csv(test_path) train_df.shape missing_data = train_df.isnull().sum() percent_missing = round(missing_data / train_df.isnull().count() * 100, 2) missing_df = pd.concat([missing_data.sort_values(ascending=False), percent_missing.sort_values(ascending=False)], axis=1, keys=['Total', 'Percent']) train_df.columns temp_df = train_df.copy() temp_df['Cabin'] = temp_df['Cabin'].fillna('Unknown') occ_cabins = temp_df['Cabin'].copy() occ_cabins[occ_cabins != 'Unknown'] = 'Known' temp_df['Cabin'] = occ_cabins females = train_df[train_df['Sex'] == 'female'] males = train_df[train_df['Sex'] == 'male'] plt.figure(figsize=(12, 5)) plt.subplot(1, 2, 1) ax = sns.distplot(males[males['Survived'] == 1]['Age'].dropna(), bins=10, kde=False, label='survived') ax = sns.distplot(males[males['Survived'] == 0]['Age'].dropna(), bins=10, kde=False, label='not survived') ax.legend() ax.set_title('Male') plt.subplot(1, 2, 2) ax = sns.distplot(females[females['Survived'] == 1]['Age'].dropna(), kde=False, label='survived') ax = sns.distplot(females[females['Survived'] == 0]['Age'].dropna(), kde=False, label='not survived') ax.legend() ax.set_title('Female') plt.show() plt.figure(figsize=(5.5, 5)) sns.boxplot(x='Survived', y='Age', data=train_df)
code
17123294/cell_40
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns sns.set(style='darkgrid') train_path = '../input/train.csv' test_path = '../input/test.csv' train_df = pd.read_csv(train_path) test_df = pd.read_csv(test_path) train_df.shape missing_data = train_df.isnull().sum() percent_missing = round(missing_data / train_df.isnull().count() * 100, 2) missing_df = pd.concat([missing_data.sort_values(ascending=False), percent_missing.sort_values(ascending=False)], axis=1, keys=['Total', 'Percent']) train_df.columns temp_df = train_df.copy() temp_df['Cabin'] = temp_df['Cabin'].fillna('Unknown') occ_cabins = temp_df['Cabin'].copy() occ_cabins[occ_cabins != 'Unknown'] = 'Known' temp_df['Cabin'] = occ_cabins females = train_df[train_df['Sex'] == 'female'] males = train_df[train_df['Sex'] == 'male'] plt.figure(figsize=(12, 5)) plt.subplot(1, 2, 1) ax = sns.distplot(males[males['Survived'] == 1]['Age'].dropna(), bins=10, kde=False, label='survived') ax = sns.distplot(males[males['Survived'] == 0]['Age'].dropna(), bins=10, kde=False, label='not survived') ax.legend() ax.set_title('Male') plt.subplot(1, 2, 2) ax = sns.distplot(females[females['Survived'] == 1]['Age'].dropna(), kde=False, label='survived') ax = sns.distplot(females[females['Survived'] == 0]['Age'].dropna(), kde=False, label='not survived') ax.legend() ax.set_title('Female') plt.show() plt.figure(figsize=(5.5, 5)) sns.pointplot(x='Pclass', y='Survived', data=train_df)
code
17123294/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns sns.set(style='darkgrid') train_path = '../input/train.csv' test_path = '../input/test.csv' train_df = pd.read_csv(train_path) test_df = pd.read_csv(test_path) train_df.shape missing_data = train_df.isnull().sum() percent_missing = round(missing_data / train_df.isnull().count() * 100, 2) missing_df = pd.concat([missing_data.sort_values(ascending=False), percent_missing.sort_values(ascending=False)], axis=1, keys=['Total', 'Percent']) train_df.columns temp_df = train_df.copy() temp_df['Cabin'] = temp_df['Cabin'].fillna('Unknown') occ_cabins = temp_df['Cabin'].copy() occ_cabins[occ_cabins != 'Unknown'] = 'Known' temp_df['Cabin'] = occ_cabins plt.figure(figsize=(12, 5)) plt.subplot(1, 2, 1) sns.barplot(x='Sex', y='Survived', data=train_df) plt.subplot(1, 2, 2) sns.violinplot(x='Survived', y='Age', data=train_df, hue='Sex', split=True)
code
17123294/cell_26
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns sns.set(style='darkgrid') train_path = '../input/train.csv' test_path = '../input/test.csv' train_df = pd.read_csv(train_path) test_df = pd.read_csv(test_path) train_df.shape missing_data = train_df.isnull().sum() percent_missing = round(missing_data / train_df.isnull().count() * 100, 2) missing_df = pd.concat([missing_data.sort_values(ascending=False), percent_missing.sort_values(ascending=False)], axis=1, keys=['Total', 'Percent']) train_df.columns temp_df = train_df.copy() temp_df['Cabin'] = temp_df['Cabin'].fillna('Unknown') occ_cabins = temp_df['Cabin'].copy() occ_cabins[occ_cabins != 'Unknown'] = 'Known' temp_df['Cabin'] = occ_cabins plt.figure(figsize=(5.5, 5)) sns.barplot(x='Cabin', y='Survived', data=temp_df) sns.pointplot(x='Cabin', y='Survived', data=temp_df, color='k')
code
17123294/cell_18
[ "text_html_output_1.png" ]
import pandas as pd train_path = '../input/train.csv' test_path = '../input/test.csv' train_df = pd.read_csv(train_path) test_df = pd.read_csv(test_path) train_df.shape train_df.head()
code
17123294/cell_32
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns sns.set(style='darkgrid') train_path = '../input/train.csv' test_path = '../input/test.csv' train_df = pd.read_csv(train_path) test_df = pd.read_csv(test_path) train_df.shape missing_data = train_df.isnull().sum() percent_missing = round(missing_data / train_df.isnull().count() * 100, 2) missing_df = pd.concat([missing_data.sort_values(ascending=False), percent_missing.sort_values(ascending=False)], axis=1, keys=['Total', 'Percent']) train_df.columns temp_df = train_df.copy() temp_df['Cabin'] = temp_df['Cabin'].fillna('Unknown') occ_cabins = temp_df['Cabin'].copy() occ_cabins[occ_cabins != 'Unknown'] = 'Known' temp_df['Cabin'] = occ_cabins females = train_df[train_df['Sex'] == 'female'] males = train_df[train_df['Sex'] == 'male'] plt.figure(figsize=(12, 5)) plt.subplot(1, 2, 1) ax = sns.distplot(males[males['Survived'] == 1]['Age'].dropna(), bins=10, kde=False, label='survived') ax = sns.distplot(males[males['Survived'] == 0]['Age'].dropna(), bins=10, kde=False, label='not survived') ax.legend() ax.set_title('Male') plt.subplot(1, 2, 2) ax = sns.distplot(females[females['Survived'] == 1]['Age'].dropna(), kde=False, label='survived') ax = sns.distplot(females[females['Survived'] == 0]['Age'].dropna(), kde=False, label='not survived') ax.legend() ax.set_title('Female') plt.show()
code
17123294/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd train_path = '../input/train.csv' test_path = '../input/test.csv' train_df = pd.read_csv(train_path) test_df = pd.read_csv(test_path) train_df.shape train_df.describe()
code
17123294/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib import numpy import pandas import seaborn import sklearn import sys import sys print('Python: {}'.format(sys.version)) import numpy print('numpy: {}'.format(numpy.__version__)) import pandas print('pandas: {}'.format(pandas.__version__)) import matplotlib print('matplotlib: {}'.format(matplotlib.__version__)) import seaborn print('seaborn: {}'.format(seaborn.__version__)) import sklearn print('sklearn: {}'.format(sklearn.__version__))
code
17123294/cell_24
[ "text_html_output_1.png" ]
import pandas as pd train_path = '../input/train.csv' test_path = '../input/test.csv' train_df = pd.read_csv(train_path) test_df = pd.read_csv(test_path) train_df.shape missing_data = train_df.isnull().sum() percent_missing = round(missing_data / train_df.isnull().count() * 100, 2) missing_df = pd.concat([missing_data.sort_values(ascending=False), percent_missing.sort_values(ascending=False)], axis=1, keys=['Total', 'Percent']) train_df.columns
code
17123294/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd train_path = '../input/train.csv' test_path = '../input/test.csv' train_df = pd.read_csv(train_path) test_df = pd.read_csv(test_path) train_df.shape
code
17123294/cell_37
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns sns.set(style='darkgrid') train_path = '../input/train.csv' test_path = '../input/test.csv' train_df = pd.read_csv(train_path) test_df = pd.read_csv(test_path) train_df.shape missing_data = train_df.isnull().sum() percent_missing = round(missing_data / train_df.isnull().count() * 100, 2) missing_df = pd.concat([missing_data.sort_values(ascending=False), percent_missing.sort_values(ascending=False)], axis=1, keys=['Total', 'Percent']) train_df.columns temp_df = train_df.copy() temp_df['Cabin'] = temp_df['Cabin'].fillna('Unknown') occ_cabins = temp_df['Cabin'].copy() occ_cabins[occ_cabins != 'Unknown'] = 'Known' temp_df['Cabin'] = occ_cabins females = train_df[train_df['Sex'] == 'female'] males = train_df[train_df['Sex'] == 'male'] plt.figure(figsize=(12, 5)) plt.subplot(1, 2, 1) ax = sns.distplot(males[males['Survived'] == 1]['Age'].dropna(), bins=10, kde=False, label='survived') ax = sns.distplot(males[males['Survived'] == 0]['Age'].dropna(), bins=10, kde=False, label='not survived') ax.legend() ax.set_title('Male') plt.subplot(1, 2, 2) ax = sns.distplot(females[females['Survived'] == 1]['Age'].dropna(), kde=False, label='survived') ax = sns.distplot(females[females['Survived'] == 0]['Age'].dropna(), kde=False, label='not survived') ax.legend() ax.set_title('Female') plt.show() plt.figure(figsize=(5.5, 5)) sns.boxplot(x='Survived', y='Fare', data=train_df)
code
1003448/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) print('Skewness: %f' % train['SalePrice'].skew()) print('Kurtosis: %f' % train['SalePrice'].kurt())
code
1003448/cell_30
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import xgboost as xgb train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) all_data = all_data.replace({'Utilities': {'AllPub': 1, 'NoSeWa': 0, 'NoSewr': 0, 'ELO': 0}, 'Street': {'Pave': 1, 'Grvl': 0}, 'FireplaceQu': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoFireplace': 0}, 'Fence': {'GdPrv': 2, 'GdWo': 2, 'MnPrv': 1, 'MnWw': 1, 'NoFence': 0}, 'ExterQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'ExterCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'BsmtQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'BsmtExposure': {'Gd': 3, 'Av': 2, 'Mn': 1, 'No': 0, 'NoBsmt': 0}, 'BsmtCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'GarageQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'GarageCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'KitchenQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'Functional': {'Typ': 0, 'Min1': 1, 'Min2': 1, 'Mod': 2, 'Maj1': 3, 'Maj2': 4, 'Sev': 5, 'Sal': 6}}) train.sort_values(by='GrLivArea', ascending=False)[:2] train = train.drop(train[train['Id'] == 1299].index) train = train.drop(train[train['Id'] == 524].index) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice model_xgb = xgb.XGBRegressor(n_estimators=360, max_depth=2, learning_rate=0.1) model_xgb.fit(X_train, y)
code
1003448/cell_20
[ "image_output_1.png" ]
import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) #box plot overallqual/saleprice var = 'OverallQual' data = pd.concat([train['SalePrice'], train[var]], axis=1) f, ax = plt.subplots(figsize=(8, 6)) fig = sns.boxplot(x=var, y="SalePrice", data=data) fig.axis(ymin=0, ymax=800000); matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) data.plot.scatter(x=var, y='SalePrice', ylim=(0, 800000))
code
1003448/cell_40
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression, Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import xgboost as xgb train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) all_data = all_data.replace({'Utilities': {'AllPub': 1, 'NoSeWa': 0, 'NoSewr': 0, 'ELO': 0}, 'Street': {'Pave': 1, 'Grvl': 0}, 'FireplaceQu': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoFireplace': 0}, 'Fence': {'GdPrv': 2, 'GdWo': 2, 'MnPrv': 1, 'MnWw': 1, 'NoFence': 0}, 'ExterQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'ExterCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'BsmtQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'BsmtExposure': {'Gd': 3, 'Av': 2, 'Mn': 1, 'No': 0, 'NoBsmt': 0}, 'BsmtCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'GarageQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'GarageCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'KitchenQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'Functional': {'Typ': 0, 'Min1': 1, 'Min2': 1, 'Mod': 2, 'Maj1': 3, 'Maj2': 4, 'Sev': 5, 'Sal': 6}}) var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) #box plot overallqual/saleprice var = 'OverallQual' data = pd.concat([train['SalePrice'], train[var]], axis=1) f, ax = plt.subplots(figsize=(8, 6)) fig = sns.boxplot(x=var, y="SalePrice", data=data) fig.axis(ymin=0, ymax=800000); matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) saleprice_scaled = StandardScaler().fit_transform(train['SalePrice'][:, np.newaxis]) low_range = saleprice_scaled[saleprice_scaled[:, 0].argsort()][:10] high_range = saleprice_scaled[saleprice_scaled[:, 0].argsort()][-10:] var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) train.sort_values(by='GrLivArea', ascending=False)[:2] train = train.drop(train[train['Id'] == 1299].index) train = train.drop(train[train['Id'] == 524].index) var = 'TotalBsmtSF' data = pd.concat([df_train['SalePrice'], df_train[var]], axis=1) var = 'TotalBsmtSF' data = pd.concat([train['SalePrice'], train[var]], axis=1) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice from sklearn.linear_model import LinearRegression, Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score def rmse_cv(model): rmse = np.sqrt(-cross_val_score(model, X_train, y, scoring='neg_mean_squared_error', cv=5)) return rmse model_xgb = xgb.XGBRegressor(n_estimators=360, max_depth=2, learning_rate=0.1) model_xgb.fit(X_train, y) lasso = LassoCV(alphas=[0.0001, 0.0003, 0.0006, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1, 0.3, 0.6, 1], max_iter=50000, cv=10) lasso.fit(X_train, y) alpha = lasso.alpha_ lasso = LassoCV(alphas=[alpha * 0.6, alpha * 0.65, alpha * 0.7, alpha * 0.75, alpha * 0.8, alpha * 0.85, alpha * 0.9, alpha * 0.95, alpha, alpha * 1.05, alpha * 1.1, alpha * 1.15, alpha * 1.25, alpha * 1.3, alpha * 1.35, alpha * 1.4], max_iter=50000, cv=10) lasso.fit(X_train, y) alpha = lasso.alpha_ y_train_las = lasso.predict(X_train) y_test_las = lasso.predict(X_test) plt.hlines(y=0, xmin=10.5, xmax=13.5, color='red') coefs = pd.Series(lasso.coef_, index=X_train.columns) imp_coefs = pd.concat([coefs.sort_values().head(10), coefs.sort_values().tail(10)]) alphas = [0.07, 0.1, 0.3, 1, 6, 7, 13, 26, 52, 78, 104] cv_ridge = [rmse_cv(Ridge(alpha=alpha)).mean() for alpha in alphas] cv_ridge = pd.Series(cv_ridge, index=alphas) xgb_preds = np.expm1(model_xgb.predict(X_test)) lasso_preds = np.expm1(model_lasso.predict(X_test)) predictions = pd.DataFrame({'xgb': xgb_preds, 'lasso': lasso_preds}) predictions.plot(x='xgb', y='lasso', kind='scatter')
code
1003448/cell_29
[ "application_vnd.jupyter.stderr_output_1.png" ]
model.loc[30:, ['test-rmse-mean', 'train-rmse-mean']].plot()
code
1003448/cell_39
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.model_selection import cross_val_score import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import xgboost as xgb train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) all_data = all_data.replace({'Utilities': {'AllPub': 1, 'NoSeWa': 0, 'NoSewr': 0, 'ELO': 0}, 'Street': {'Pave': 1, 'Grvl': 0}, 'FireplaceQu': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoFireplace': 0}, 'Fence': {'GdPrv': 2, 'GdWo': 2, 'MnPrv': 1, 'MnWw': 1, 'NoFence': 0}, 'ExterQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'ExterCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'BsmtQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'BsmtExposure': {'Gd': 3, 'Av': 2, 'Mn': 1, 'No': 0, 'NoBsmt': 0}, 'BsmtCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'GarageQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'GarageCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'KitchenQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'Functional': {'Typ': 0, 'Min1': 1, 'Min2': 1, 'Mod': 2, 'Maj1': 3, 'Maj2': 4, 'Sev': 5, 'Sal': 6}}) var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) #box plot overallqual/saleprice var = 'OverallQual' data = pd.concat([train['SalePrice'], train[var]], axis=1) f, ax = plt.subplots(figsize=(8, 6)) fig = sns.boxplot(x=var, y="SalePrice", data=data) fig.axis(ymin=0, ymax=800000); matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) saleprice_scaled = StandardScaler().fit_transform(train['SalePrice'][:, np.newaxis]) low_range = saleprice_scaled[saleprice_scaled[:, 0].argsort()][:10] high_range = saleprice_scaled[saleprice_scaled[:, 0].argsort()][-10:] train.sort_values(by='GrLivArea', ascending=False)[:2] train = train.drop(train[train['Id'] == 1299].index) train = train.drop(train[train['Id'] == 524].index) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice from sklearn.linear_model import LinearRegression, Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score def rmse_cv(model): rmse = np.sqrt(-cross_val_score(model, X_train, y, scoring='neg_mean_squared_error', cv=5)) return rmse model_xgb = xgb.XGBRegressor(n_estimators=360, max_depth=2, learning_rate=0.1) model_xgb.fit(X_train, y) xgb_preds = np.expm1(model_xgb.predict(X_test)) lasso_preds = np.expm1(model_lasso.predict(X_test))
code
1003448/cell_41
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.model_selection import cross_val_score import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import xgboost as xgb train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) all_data = all_data.replace({'Utilities': {'AllPub': 1, 'NoSeWa': 0, 'NoSewr': 0, 'ELO': 0}, 'Street': {'Pave': 1, 'Grvl': 0}, 'FireplaceQu': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoFireplace': 0}, 'Fence': {'GdPrv': 2, 'GdWo': 2, 'MnPrv': 1, 'MnWw': 1, 'NoFence': 0}, 'ExterQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'ExterCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'BsmtQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'BsmtExposure': {'Gd': 3, 'Av': 2, 'Mn': 1, 'No': 0, 'NoBsmt': 0}, 'BsmtCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'GarageQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'GarageCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'KitchenQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'Functional': {'Typ': 0, 'Min1': 1, 'Min2': 1, 'Mod': 2, 'Maj1': 3, 'Maj2': 4, 'Sev': 5, 'Sal': 6}}) var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) #box plot overallqual/saleprice var = 'OverallQual' data = pd.concat([train['SalePrice'], train[var]], axis=1) f, ax = plt.subplots(figsize=(8, 6)) fig = sns.boxplot(x=var, y="SalePrice", data=data) fig.axis(ymin=0, ymax=800000); matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) saleprice_scaled = StandardScaler().fit_transform(train['SalePrice'][:, np.newaxis]) low_range = saleprice_scaled[saleprice_scaled[:, 0].argsort()][:10] high_range = saleprice_scaled[saleprice_scaled[:, 0].argsort()][-10:] train.sort_values(by='GrLivArea', ascending=False)[:2] train = train.drop(train[train['Id'] == 1299].index) train = train.drop(train[train['Id'] == 524].index) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice from sklearn.linear_model import LinearRegression, Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score def rmse_cv(model): rmse = np.sqrt(-cross_val_score(model, X_train, y, scoring='neg_mean_squared_error', cv=5)) return rmse model_xgb = xgb.XGBRegressor(n_estimators=360, max_depth=2, learning_rate=0.1) model_xgb.fit(X_train, y) xgb_preds = np.expm1(model_xgb.predict(X_test)) lasso_preds = np.expm1(model_lasso.predict(X_test)) preds = 0.6 * lasso_preds + 0.4 * xgb_preds
code
1003448/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) train['SalePrice'].describe()
code
1003448/cell_19
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) #box plot overallqual/saleprice var = 'OverallQual' data = pd.concat([train['SalePrice'], train[var]], axis=1) f, ax = plt.subplots(figsize=(8, 6)) fig = sns.boxplot(x=var, y="SalePrice", data=data) fig.axis(ymin=0, ymax=800000); matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) saleprice_scaled = StandardScaler().fit_transform(train['SalePrice'][:, np.newaxis]) low_range = saleprice_scaled[saleprice_scaled[:, 0].argsort()][:10] high_range = saleprice_scaled[saleprice_scaled[:, 0].argsort()][-10:] print('outer range (low) of the distribution:') print(low_range) print('\nouter range (high) of the distribution:') print(high_range)
code
1003448/cell_32
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression, Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) all_data = all_data.replace({'Utilities': {'AllPub': 1, 'NoSeWa': 0, 'NoSewr': 0, 'ELO': 0}, 'Street': {'Pave': 1, 'Grvl': 0}, 'FireplaceQu': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoFireplace': 0}, 'Fence': {'GdPrv': 2, 'GdWo': 2, 'MnPrv': 1, 'MnWw': 1, 'NoFence': 0}, 'ExterQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'ExterCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'BsmtQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'BsmtExposure': {'Gd': 3, 'Av': 2, 'Mn': 1, 'No': 0, 'NoBsmt': 0}, 'BsmtCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'GarageQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'GarageCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'KitchenQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'Functional': {'Typ': 0, 'Min1': 1, 'Min2': 1, 'Mod': 2, 'Maj1': 3, 'Maj2': 4, 'Sev': 5, 'Sal': 6}}) var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) #box plot overallqual/saleprice var = 'OverallQual' data = pd.concat([train['SalePrice'], train[var]], axis=1) f, ax = plt.subplots(figsize=(8, 6)) fig = sns.boxplot(x=var, y="SalePrice", data=data) fig.axis(ymin=0, ymax=800000); matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) train.sort_values(by='GrLivArea', ascending=False)[:2] train = train.drop(train[train['Id'] == 1299].index) train = train.drop(train[train['Id'] == 524].index) var = 'TotalBsmtSF' data = pd.concat([df_train['SalePrice'], df_train[var]], axis=1) var = 'TotalBsmtSF' data = pd.concat([train['SalePrice'], train[var]], axis=1) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice lasso = LassoCV(alphas=[0.0001, 0.0003, 0.0006, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1, 0.3, 0.6, 1], max_iter=50000, cv=10) lasso.fit(X_train, y) alpha = lasso.alpha_ print('Best alpha :', alpha) print('Try again for more precision with alphas centered around ' + str(alpha)) lasso = LassoCV(alphas=[alpha * 0.6, alpha * 0.65, alpha * 0.7, alpha * 0.75, alpha * 0.8, alpha * 0.85, alpha * 0.9, alpha * 0.95, alpha, alpha * 1.05, alpha * 1.1, alpha * 1.15, alpha * 1.25, alpha * 1.3, alpha * 1.35, alpha * 1.4], max_iter=50000, cv=10) lasso.fit(X_train, y) alpha = lasso.alpha_ print('Best alpha :', alpha) print('Lasso RMSE on Training set :', rmse_cv_train(lasso).mean()) print('Lasso RMSE on Test set :', rmse_cv_test(lasso).mean()) y_train_las = lasso.predict(X_train) y_test_las = lasso.predict(X_test) plt.scatter(y_train_las, y_train_las - y_train, c='blue', marker='s', label='Training data') plt.scatter(y_test_las, y_test_las - y_test, c='lightgreen', marker='s', label='Validation data') plt.title('Linear regression with Lasso regularization') plt.xlabel('Predicted values') plt.ylabel('Residuals') plt.legend(loc='upper left') plt.hlines(y=0, xmin=10.5, xmax=13.5, color='red') plt.show() plt.scatter(y_train_las, y_train, c='blue', marker='s', label='Training data') plt.scatter(y_test_las, y_test, c='lightgreen', marker='s', label='Validation data') plt.title('Linear regression with Lasso regularization') plt.xlabel('Predicted values') plt.ylabel('Real values') plt.legend(loc='upper left') plt.plot([10.5, 13.5], [10.5, 13.5], c='red') plt.show() coefs = pd.Series(lasso.coef_, index=X_train.columns) print('Lasso picked ' + str(sum(coefs != 0)) + ' features and eliminated the other ' + str(sum(coefs == 0)) + ' features') imp_coefs = pd.concat([coefs.sort_values().head(10), coefs.sort_values().tail(10)]) imp_coefs.plot(kind='barh') plt.title('Coefficients in the Lasso Model') plt.show()
code
1003448/cell_15
[ "image_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) sns.distplot(train['SalePrice'])
code
1003448/cell_16
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) var = 'OverallQual' data = pd.concat([train['SalePrice'], train[var]], axis=1) f, ax = plt.subplots(figsize=(8, 6)) fig = sns.boxplot(x=var, y='SalePrice', data=data) fig.axis(ymin=0, ymax=800000)
code
1003448/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) #box plot overallqual/saleprice var = 'OverallQual' data = pd.concat([train['SalePrice'], train[var]], axis=1) f, ax = plt.subplots(figsize=(8, 6)) fig = sns.boxplot(x=var, y="SalePrice", data=data) fig.axis(ymin=0, ymax=800000); matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) prices.hist()
code
1003448/cell_35
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression, Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) all_data = all_data.replace({'Utilities': {'AllPub': 1, 'NoSeWa': 0, 'NoSewr': 0, 'ELO': 0}, 'Street': {'Pave': 1, 'Grvl': 0}, 'FireplaceQu': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoFireplace': 0}, 'Fence': {'GdPrv': 2, 'GdWo': 2, 'MnPrv': 1, 'MnWw': 1, 'NoFence': 0}, 'ExterQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'ExterCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'BsmtQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'BsmtExposure': {'Gd': 3, 'Av': 2, 'Mn': 1, 'No': 0, 'NoBsmt': 0}, 'BsmtCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'GarageQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'GarageCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'KitchenQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'Functional': {'Typ': 0, 'Min1': 1, 'Min2': 1, 'Mod': 2, 'Maj1': 3, 'Maj2': 4, 'Sev': 5, 'Sal': 6}}) var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) #box plot overallqual/saleprice var = 'OverallQual' data = pd.concat([train['SalePrice'], train[var]], axis=1) f, ax = plt.subplots(figsize=(8, 6)) fig = sns.boxplot(x=var, y="SalePrice", data=data) fig.axis(ymin=0, ymax=800000); matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) saleprice_scaled = StandardScaler().fit_transform(train['SalePrice'][:, np.newaxis]) low_range = saleprice_scaled[saleprice_scaled[:, 0].argsort()][:10] high_range = saleprice_scaled[saleprice_scaled[:, 0].argsort()][-10:] var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) train.sort_values(by='GrLivArea', ascending=False)[:2] train = train.drop(train[train['Id'] == 1299].index) train = train.drop(train[train['Id'] == 524].index) var = 'TotalBsmtSF' data = pd.concat([df_train['SalePrice'], df_train[var]], axis=1) var = 'TotalBsmtSF' data = pd.concat([train['SalePrice'], train[var]], axis=1) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice from sklearn.linear_model import LinearRegression, Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score def rmse_cv(model): rmse = np.sqrt(-cross_val_score(model, X_train, y, scoring='neg_mean_squared_error', cv=5)) return rmse lasso = LassoCV(alphas=[0.0001, 0.0003, 0.0006, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1, 0.3, 0.6, 1], max_iter=50000, cv=10) lasso.fit(X_train, y) alpha = lasso.alpha_ lasso = LassoCV(alphas=[alpha * 0.6, alpha * 0.65, alpha * 0.7, alpha * 0.75, alpha * 0.8, alpha * 0.85, alpha * 0.9, alpha * 0.95, alpha, alpha * 1.05, alpha * 1.1, alpha * 1.15, alpha * 1.25, alpha * 1.3, alpha * 1.35, alpha * 1.4], max_iter=50000, cv=10) lasso.fit(X_train, y) alpha = lasso.alpha_ y_train_las = lasso.predict(X_train) y_test_las = lasso.predict(X_test) plt.hlines(y=0, xmin=10.5, xmax=13.5, color='red') coefs = pd.Series(lasso.coef_, index=X_train.columns) imp_coefs = pd.concat([coefs.sort_values().head(10), coefs.sort_values().tail(10)]) alphas = [0.07, 0.1, 0.3, 1, 6, 7, 13, 26, 52, 78, 104] cv_ridge = [rmse_cv(Ridge(alpha=alpha)).mean() for alpha in alphas]
code
1003448/cell_14
[ "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) data.plot.scatter(x=var, y='SalePrice', ylim=(0, 800000))
code
1003448/cell_22
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) #box plot overallqual/saleprice var = 'OverallQual' data = pd.concat([train['SalePrice'], train[var]], axis=1) f, ax = plt.subplots(figsize=(8, 6)) fig = sns.boxplot(x=var, y="SalePrice", data=data) fig.axis(ymin=0, ymax=800000); matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) train.sort_values(by='GrLivArea', ascending=False)[:2] train = train.drop(train[train['Id'] == 1299].index) train = train.drop(train[train['Id'] == 524].index) var = 'TotalBsmtSF' data = pd.concat([df_train['SalePrice'], df_train[var]], axis=1) data.plot.scatter(x=var, y='SalePrice', ylim=(0, 800000)) var = 'TotalBsmtSF' data = pd.concat([train['SalePrice'], train[var]], axis=1) data.plot.scatter(x=var, y='SalePrice', ylim=(0, 800000))
code
1003448/cell_10
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) train.head()
code
1003448/cell_37
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression, Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) all_data = all_data.replace({'Utilities': {'AllPub': 1, 'NoSeWa': 0, 'NoSewr': 0, 'ELO': 0}, 'Street': {'Pave': 1, 'Grvl': 0}, 'FireplaceQu': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoFireplace': 0}, 'Fence': {'GdPrv': 2, 'GdWo': 2, 'MnPrv': 1, 'MnWw': 1, 'NoFence': 0}, 'ExterQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'ExterCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'BsmtQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'BsmtExposure': {'Gd': 3, 'Av': 2, 'Mn': 1, 'No': 0, 'NoBsmt': 0}, 'BsmtCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'GarageQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'GarageCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'KitchenQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'Functional': {'Typ': 0, 'Min1': 1, 'Min2': 1, 'Mod': 2, 'Maj1': 3, 'Maj2': 4, 'Sev': 5, 'Sal': 6}}) var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) #box plot overallqual/saleprice var = 'OverallQual' data = pd.concat([train['SalePrice'], train[var]], axis=1) f, ax = plt.subplots(figsize=(8, 6)) fig = sns.boxplot(x=var, y="SalePrice", data=data) fig.axis(ymin=0, ymax=800000); matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) saleprice_scaled = StandardScaler().fit_transform(train['SalePrice'][:, np.newaxis]) low_range = saleprice_scaled[saleprice_scaled[:, 0].argsort()][:10] high_range = saleprice_scaled[saleprice_scaled[:, 0].argsort()][-10:] var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) train.sort_values(by='GrLivArea', ascending=False)[:2] train = train.drop(train[train['Id'] == 1299].index) train = train.drop(train[train['Id'] == 524].index) var = 'TotalBsmtSF' data = pd.concat([df_train['SalePrice'], df_train[var]], axis=1) var = 'TotalBsmtSF' data = pd.concat([train['SalePrice'], train[var]], axis=1) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice from sklearn.linear_model import LinearRegression, Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score def rmse_cv(model): rmse = np.sqrt(-cross_val_score(model, X_train, y, scoring='neg_mean_squared_error', cv=5)) return rmse lasso = LassoCV(alphas=[0.0001, 0.0003, 0.0006, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1, 0.3, 0.6, 1], max_iter=50000, cv=10) lasso.fit(X_train, y) alpha = lasso.alpha_ lasso = LassoCV(alphas=[alpha * 0.6, alpha * 0.65, alpha * 0.7, alpha * 0.75, alpha * 0.8, alpha * 0.85, alpha * 0.9, alpha * 0.95, alpha, alpha * 1.05, alpha * 1.1, alpha * 1.15, alpha * 1.25, alpha * 1.3, alpha * 1.35, alpha * 1.4], max_iter=50000, cv=10) lasso.fit(X_train, y) alpha = lasso.alpha_ y_train_las = lasso.predict(X_train) y_test_las = lasso.predict(X_test) plt.hlines(y=0, xmin=10.5, xmax=13.5, color='red') coefs = pd.Series(lasso.coef_, index=X_train.columns) imp_coefs = pd.concat([coefs.sort_values().head(10), coefs.sort_values().tail(10)]) alphas = [0.07, 0.1, 0.3, 1, 6, 7, 13, 26, 52, 78, 104] cv_ridge = [rmse_cv(Ridge(alpha=alpha)).mean() for alpha in alphas] cv_ridge = pd.Series(cv_ridge, index=alphas) cv_ridge.min()
code
1003448/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) train['SalePrice'].describe()
code
1003448/cell_36
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression, Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') all_data = pd.concat((train.loc[:, 'MSSubClass':'SaleCondition'], test.loc[:, 'MSSubClass':'SaleCondition'])) all_data = all_data.replace({'Utilities': {'AllPub': 1, 'NoSeWa': 0, 'NoSewr': 0, 'ELO': 0}, 'Street': {'Pave': 1, 'Grvl': 0}, 'FireplaceQu': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoFireplace': 0}, 'Fence': {'GdPrv': 2, 'GdWo': 2, 'MnPrv': 1, 'MnWw': 1, 'NoFence': 0}, 'ExterQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'ExterCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'BsmtQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'BsmtExposure': {'Gd': 3, 'Av': 2, 'Mn': 1, 'No': 0, 'NoBsmt': 0}, 'BsmtCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoBsmt': 0}, 'GarageQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'GarageCond': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1, 'NoGarage': 0}, 'KitchenQual': {'Ex': 5, 'Gd': 4, 'TA': 3, 'Fa': 2, 'Po': 1}, 'Functional': {'Typ': 0, 'Min1': 1, 'Min2': 1, 'Mod': 2, 'Maj1': 3, 'Maj2': 4, 'Sev': 5, 'Sal': 6}}) var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) #box plot overallqual/saleprice var = 'OverallQual' data = pd.concat([train['SalePrice'], train[var]], axis=1) f, ax = plt.subplots(figsize=(8, 6)) fig = sns.boxplot(x=var, y="SalePrice", data=data) fig.axis(ymin=0, ymax=800000); matplotlib.rcParams['figure.figsize'] = (12.0, 6.0) prices = pd.DataFrame({'price': train['SalePrice'], 'log(price + 1)': np.log1p(train['SalePrice'])}) saleprice_scaled = StandardScaler().fit_transform(train['SalePrice'][:, np.newaxis]) low_range = saleprice_scaled[saleprice_scaled[:, 0].argsort()][:10] high_range = saleprice_scaled[saleprice_scaled[:, 0].argsort()][-10:] var = 'GrLivArea' data = pd.concat([train['SalePrice'], train[var]], axis=1) train.sort_values(by='GrLivArea', ascending=False)[:2] train = train.drop(train[train['Id'] == 1299].index) train = train.drop(train[train['Id'] == 524].index) var = 'TotalBsmtSF' data = pd.concat([df_train['SalePrice'], df_train[var]], axis=1) var = 'TotalBsmtSF' data = pd.concat([train['SalePrice'], train[var]], axis=1) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice from sklearn.linear_model import LinearRegression, Ridge, RidgeCV, ElasticNet, LassoCV, LassoLarsCV from sklearn.model_selection import cross_val_score def rmse_cv(model): rmse = np.sqrt(-cross_val_score(model, X_train, y, scoring='neg_mean_squared_error', cv=5)) return rmse lasso = LassoCV(alphas=[0.0001, 0.0003, 0.0006, 0.001, 0.003, 0.006, 0.01, 0.03, 0.06, 0.1, 0.3, 0.6, 1], max_iter=50000, cv=10) lasso.fit(X_train, y) alpha = lasso.alpha_ lasso = LassoCV(alphas=[alpha * 0.6, alpha * 0.65, alpha * 0.7, alpha * 0.75, alpha * 0.8, alpha * 0.85, alpha * 0.9, alpha * 0.95, alpha, alpha * 1.05, alpha * 1.1, alpha * 1.15, alpha * 1.25, alpha * 1.3, alpha * 1.35, alpha * 1.4], max_iter=50000, cv=10) lasso.fit(X_train, y) alpha = lasso.alpha_ y_train_las = lasso.predict(X_train) y_test_las = lasso.predict(X_test) plt.hlines(y=0, xmin=10.5, xmax=13.5, color='red') coefs = pd.Series(lasso.coef_, index=X_train.columns) imp_coefs = pd.concat([coefs.sort_values().head(10), coefs.sort_values().tail(10)]) alphas = [0.07, 0.1, 0.3, 1, 6, 7, 13, 26, 52, 78, 104] cv_ridge = [rmse_cv(Ridge(alpha=alpha)).mean() for alpha in alphas] cv_ridge = pd.Series(cv_ridge, index=alphas) cv_ridge.plot(title='Validation: Ridge model') plt.xlabel('alpha') plt.ylabel('rmse')
code
2033577/cell_2
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/fashion-mnist_train.csv') train_df.head(5)
code
2033577/cell_1
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import keras from keras.layers import * from keras.models import * import matplotlib.pyplot as plt from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2033577/cell_7
[ "text_plain_output_1.png" ]
import keras import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/fashion-mnist_train.csv') batch_size = 128 num_classes = 10 epochs = 10 img_rows, img_cols = (28, 28) y_train = keras.utils.to_categorical(train_df.label.values, num_classes) x_train = np.array([row.reshape((img_rows, img_cols, 1)) for row in train_df.drop('label', axis=1, inplace=False).values]) def model(input_shape): x_input = Input(input_shape) x = Conv2D(20, (5, 5), strides=(1, 1), name='conv0')(x_input) x = BatchNormalization(axis=3, name='bn0')(x) x = Activation('relu')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='max_pool0')(x) x = Conv2D(25, (3, 3), strides=(1, 1), padding='same', name='conv1')(x) x = BatchNormalization(axis=3, name='bn1')(x) x = Activation('relu')(x) x = MaxPooling2D((3, 3), strides=(2, 2), name='max_pool1')(x) x = Conv2D(30, (1, 1), strides=(1, 1), padding='same', name='conv2')(x) x = BatchNormalization(axis=3, name='bn2')(x) x = Activation('relu')(x) x = Dropout(0.25)(x) x = Flatten()(x) x = Dense(128, activation='relu', name='fc0')(x) x = Dropout(0.5)(x) x = Dense(num_classes, activation='softmax', name='fc1')(x) return Model(inputs=x_input, outputs=x, name='Fashion_MNIST') input_shape = (img_rows, img_cols, 1) fashionmodel = model(input_shape) fashionmodel.summary() fashionmodel.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) history = fashionmodel.fit(x_train, y_train, epochs=epochs, batch_size=batch_size)
code
2033577/cell_8
[ "text_plain_output_1.png" ]
import keras import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/fashion-mnist_train.csv') batch_size = 128 num_classes = 10 epochs = 10 img_rows, img_cols = (28, 28) y_train = keras.utils.to_categorical(train_df.label.values, num_classes) x_train = np.array([row.reshape((img_rows, img_cols, 1)) for row in train_df.drop('label', axis=1, inplace=False).values]) def model(input_shape): x_input = Input(input_shape) x = Conv2D(20, (5, 5), strides=(1, 1), name='conv0')(x_input) x = BatchNormalization(axis=3, name='bn0')(x) x = Activation('relu')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='max_pool0')(x) x = Conv2D(25, (3, 3), strides=(1, 1), padding='same', name='conv1')(x) x = BatchNormalization(axis=3, name='bn1')(x) x = Activation('relu')(x) x = MaxPooling2D((3, 3), strides=(2, 2), name='max_pool1')(x) x = Conv2D(30, (1, 1), strides=(1, 1), padding='same', name='conv2')(x) x = BatchNormalization(axis=3, name='bn2')(x) x = Activation('relu')(x) x = Dropout(0.25)(x) x = Flatten()(x) x = Dense(128, activation='relu', name='fc0')(x) x = Dropout(0.5)(x) x = Dense(num_classes, activation='softmax', name='fc1')(x) return Model(inputs=x_input, outputs=x, name='Fashion_MNIST') input_shape = (img_rows, img_cols, 1) fashionmodel = model(input_shape) fashionmodel.summary() fashionmodel.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) history = fashionmodel.fit(x_train, y_train, epochs=epochs, batch_size=batch_size) print(history.history.keys()) plt.plot(history.history['acc']) plt.title('Model Accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['train'], loc='upper left') plt.show() plt.plot(history.history['loss']) plt.title('Model Loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['train'], loc='upper left') plt.show()
code
2033577/cell_3
[ "text_plain_output_1.png" ]
import keras import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/fashion-mnist_train.csv') batch_size = 128 num_classes = 10 epochs = 10 img_rows, img_cols = (28, 28) y_train = keras.utils.to_categorical(train_df.label.values, num_classes) print('y_train: ', y_train.shape) x_train = np.array([row.reshape((img_rows, img_cols, 1)) for row in train_df.drop('label', axis=1, inplace=False).values]) print('x_train: ', x_train.shape)
code
2033577/cell_5
[ "text_plain_output_1.png" ]
import keras import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/fashion-mnist_train.csv') batch_size = 128 num_classes = 10 epochs = 10 img_rows, img_cols = (28, 28) y_train = keras.utils.to_categorical(train_df.label.values, num_classes) x_train = np.array([row.reshape((img_rows, img_cols, 1)) for row in train_df.drop('label', axis=1, inplace=False).values]) def model(input_shape): x_input = Input(input_shape) x = Conv2D(20, (5, 5), strides=(1, 1), name='conv0')(x_input) x = BatchNormalization(axis=3, name='bn0')(x) x = Activation('relu')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='max_pool0')(x) x = Conv2D(25, (3, 3), strides=(1, 1), padding='same', name='conv1')(x) x = BatchNormalization(axis=3, name='bn1')(x) x = Activation('relu')(x) x = MaxPooling2D((3, 3), strides=(2, 2), name='max_pool1')(x) x = Conv2D(30, (1, 1), strides=(1, 1), padding='same', name='conv2')(x) x = BatchNormalization(axis=3, name='bn2')(x) x = Activation('relu')(x) x = Dropout(0.25)(x) x = Flatten()(x) x = Dense(128, activation='relu', name='fc0')(x) x = Dropout(0.5)(x) x = Dense(num_classes, activation='softmax', name='fc1')(x) return Model(inputs=x_input, outputs=x, name='Fashion_MNIST') input_shape = (img_rows, img_cols, 1) fashionmodel = model(input_shape) fashionmodel.summary()
code
121152202/cell_13
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv') df.drop(columns='id', inplace=True) df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv') df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True) df = pd.concat([df, df_add]) df_test = pd.read_csv('/kaggle/input/playground-series-s3e9/test.csv') df_test.drop(columns='id', inplace=True) y = df.pop('Strength') df['tot_comp'] = df.iloc[:, :7].sum(axis=1) df['ageinmonth'] = df.AgeInDays // 30 / 12 df['AgeInDays'] = df.AgeInDays / 365 df_test['tot_comp'] = df_test.iloc[:, :7].sum(axis=1) df_test['ageinmonth'] = df_test.AgeInDays // 30 / 12 df_test['AgeInDays'] = df_test.AgeInDays / 365 df_transform = df.iloc[:, :7].transform(lambda x: x / df.tot_comp) df_transform = pd.concat([df_transform, df.AgeInDays, df.ageinmonth], axis=1) df_test_transform = df_test.iloc[:, :7].transform(lambda x: x / df_test.tot_comp) df_test_transform = pd.concat([df_test_transform, df_test.AgeInDays, df_test.ageinmonth], axis=1) subs = pd.read_csv('/kaggle/input/playground-series-s3e9/sample_submission.csv') subs.head()
code