path
stringlengths
13
17
screenshot_names
listlengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
130012258/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('/kaggle/input/midjourney-v5-prompts-and-links/MJ_Part3.csv') df df = df.drop(['AuthorID', 'Author', 'Date', 'Reactions', 'Attachments'], axis=1) df df = df.dropna() df
code
130012258/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import pandas as pd df = pd.read_csv('/kaggle/input/midjourney-v5-prompts-and-links/MJ_Part3.csv') df df = df.drop(['AuthorID', 'Author', 'Date', 'Reactions', 'Attachments'], axis=1) df df = df.dropna() df import re pattern = '(?:\\*\\*)?(?:<.*?>)?(?:<.*?>)?(.*?)(?=\\s--)' df['Content'] = df['Content'].apply(lambda text: re.findall(pattern, text)[0].strip() if re.findall(pattern, text) else 'No Match') df
code
130012258/cell_27
[ "text_html_output_1.png" ]
from sklearn.cluster import KMeans from sklearn.feature_extraction.text import CountVectorizer import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('/kaggle/input/midjourney-v5-prompts-and-links/MJ_Part3.csv') df df = df.drop(['AuthorID', 'Author', 'Date', 'Reactions', 'Attachments'], axis=1) df df = df.dropna() df df = df[df['Content'] != 'No Match'] df from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer(max_features=5000, stop_words='english') vectors = cv.fit_transform(df['Content']).toarray() vectors from sklearn.cluster import KMeans num_clusters = 100 kmeans = KMeans(n_clusters=num_clusters) kmeans.fit(vectors) cluster_labels = kmeans.labels_ df['Cluster'] = cluster_labels for cluster in range(num_clusters): prompts_in_cluster = df[df['Cluster'] == cluster]['Content'].values print(f'Cluster {cluster}:') for prompt in prompts_in_cluster: print(prompt) print()
code
130012258/cell_12
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('/kaggle/input/midjourney-v5-prompts-and-links/MJ_Part3.csv') df df = df.drop(['AuthorID', 'Author', 'Date', 'Reactions', 'Attachments'], axis=1) df df = df.dropna() df df = df[df['Content'] != 'No Match'] df
code
122264951/cell_4
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd df = pd.read_csv('/kaggle/input/nbagameinfo/nba_games (1).csv', index_col=0) df df = df.sort_values('date') df df = df.reset_index(drop=True) df.drop(['mp.1', 'mp_opp.1', 'index_opp'], axis=1, inplace=True) def add_target(team): team['target'] = team['won'].shift(-1) return team df = df.groupby('team', group_keys=False).apply(add_target) df[df['team'] == 'LAL']
code
122264951/cell_6
[ "text_plain_output_4.png", "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
pip install scikit-learn
code
122264951/cell_2
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd df = pd.read_csv('/kaggle/input/nbagameinfo/nba_games (1).csv', index_col=0) df df = df.sort_values('date') df
code
122264951/cell_1
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd df = pd.read_csv('/kaggle/input/nbagameinfo/nba_games (1).csv', index_col=0) df
code
122264951/cell_5
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd df = pd.read_csv('/kaggle/input/nbagameinfo/nba_games (1).csv', index_col=0) df df = df.sort_values('date') df df = df.reset_index(drop=True) df.drop(['mp.1', 'mp_opp.1', 'index_opp'], axis=1, inplace=True) def add_target(team): team['target'] = team['won'].shift(-1) return team df = df.groupby('team', group_keys=False).apply(add_target) df[df['team'] == 'LAL'] df['target'][pd.isnull(df['target'])] = 2 df['target'] = df['target'].astype(int, errors='ignore') nulls = pd.isnull(df) nulls = nulls.sum() nulls = nulls[nulls > 0] valid_columns = df.columns[~df.columns.isin(nulls.index)] df = df[valid_columns].copy() df
code
105207802/cell_63
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from sklearn.metrics import accuracy_score,plot_confusion_matrix from sklearn.svm import SVC svc = SVC() svc.fit(X_train, y_train) y_pred = svc.predict(X_test) train_acc = round(svc.score(X_train, y_train) * 100, 1) val_acc = round(accuracy_score(y_pred, y_test) * 100, 2) plot_confusion_matrix(svc, X_test, y_test)
code
105207802/cell_25
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] x = df_pass['Type'].value_counts().plot.pie(explode=[0.5, 0.5, 0.5], autopct='%1.1f%%')
code
105207802/cell_57
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] df_fail = df_fail.drop(columns=['Air temperature [K]', 'Process temperature [K]', 'Rotational speed [rpm]', 'Torque [Nm]', 'Tool wear [min]', 'Product ID', 'UDI', 'Temp_diff', 'td', 'Target']) df_fail = pd.get_dummies(data=df_fail, columns=['Type'], drop_first=True) scaler = LabelEncoder() df_fail['Failure Type'] = scaler.fit_transform(df_fail['Failure Type']) df_fail_targ = df_fail_train = df_fail.iloc[:, 0] df_fail_train = df_fail.iloc[:, 1:] df_fail
code
105207802/cell_34
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] plt.figure(figsize=(18, 10)) sns.scatterplot(data=df_fail, x='Rotational speed [rpm]', y='Torque [Nm]', hue='Failure Type')
code
105207802/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') x = df['Type'].value_counts().plot.pie(explode=[0.5, 0.5, 0.5], autopct='%1.1f%%')
code
105207802/cell_30
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] sns.displot(data=df_fail, x='Rotational speed [rpm]', hue='Failure Type', kde=True, bins=30, height=8, aspect=1.5)
code
105207802/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] sns.displot(data=df_fail, x='Process temperature [K]', hue='Failure Type', kde=True, bins=30, height=8, aspect=1.5)
code
105207802/cell_74
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] df.columns df.columns df_fail = df_fail.drop(columns=['Air temperature [K]', 'Process temperature [K]', 'Rotational speed [rpm]', 'Torque [Nm]', 'Tool wear [min]', 'Product ID', 'UDI', 'Temp_diff', 'td', 'Target']) df_fail = pd.get_dummies(data=df_fail, columns=['Type'], drop_first=True) scaler = LabelEncoder() df_fail['Failure Type'] = scaler.fit_transform(df_fail['Failure Type']) df2 = df.drop(columns=['Air temperature [K]', 'Process temperature [K]', 'Rotational speed [rpm]', 'Torque [Nm]', 'Tool wear [min]', 'Product ID', 'UDI', 'Temp_diff', 'td', 'Failure Type']) df2 = pd.get_dummies(data=df2, columns=['Type'], drop_first=True) train = df2.iloc[:, 1:] tar = df2.iloc[:, 0] df2
code
105207802/cell_76
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] df.columns df.columns df_fail = df_fail.drop(columns=['Air temperature [K]', 'Process temperature [K]', 'Rotational speed [rpm]', 'Torque [Nm]', 'Tool wear [min]', 'Product ID', 'UDI', 'Temp_diff', 'td', 'Target']) df_fail = pd.get_dummies(data=df_fail, columns=['Type'], drop_first=True) scaler = LabelEncoder() df_fail['Failure Type'] = scaler.fit_transform(df_fail['Failure Type']) df2 = df.drop(columns=['Air temperature [K]', 'Process temperature [K]', 'Rotational speed [rpm]', 'Torque [Nm]', 'Tool wear [min]', 'Product ID', 'UDI', 'Temp_diff', 'td', 'Failure Type']) df2 = pd.get_dummies(data=df2, columns=['Type'], drop_first=True) train = df2.iloc[:, 1:] tar = df2.iloc[:, 0] tar
code
105207802/cell_40
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] plt.figure(figsize=(18, 10)) sns.scatterplot(data=df_fail, x='Tool wear [min]', y='Rotational speed [rpm]', hue='Failure Type')
code
105207802/cell_48
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df.columns df.columns
code
105207802/cell_61
[ "text_html_output_1.png" ]
X_train
code
105207802/cell_11
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df.head()
code
105207802/cell_69
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] df.columns df.columns df2 = df.drop(columns=['Air temperature [K]', 'Process temperature [K]', 'Rotational speed [rpm]', 'Torque [Nm]', 'Tool wear [min]', 'Product ID', 'UDI', 'Temp_diff', 'td', 'Failure Type']) df2
code
105207802/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import accuracy_score, plot_confusion_matrix import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105207802/cell_45
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] plt.figure(figsize=(18, 10)) sns.scatterplot(data=df_fail, x='td', y='Rotational speed [rpm]', hue='Failure Type')
code
105207802/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] sns.displot(data=df_fail, x='Air temperature [K]', hue='Failure Type', kde=True, bins=30, height=8, aspect=1.5)
code
105207802/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] sns.displot(data=df_fail, x='Rotational speed [rpm]', hue='Failure Type', kde=True, bins=30, height=8, aspect=1.5)
code
105207802/cell_62
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score,plot_confusion_matrix from sklearn.svm import SVC svc = SVC() svc.fit(X_train, y_train) y_pred = svc.predict(X_test) train_acc = round(svc.score(X_train, y_train) * 100, 1) val_acc = round(accuracy_score(y_pred, y_test) * 100, 2) print('Training Accuracy :', train_acc, '%') print('Model Accuracy Score :', val_acc, '%')
code
105207802/cell_59
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] df_fail = df_fail.drop(columns=['Air temperature [K]', 'Process temperature [K]', 'Rotational speed [rpm]', 'Torque [Nm]', 'Tool wear [min]', 'Product ID', 'UDI', 'Temp_diff', 'td', 'Target']) df_fail = pd.get_dummies(data=df_fail, columns=['Type'], drop_first=True) scaler = LabelEncoder() df_fail['Failure Type'] = scaler.fit_transform(df_fail['Failure Type']) df_fail_targ = df_fail_train = df_fail.iloc[:, 0] df_fail_train = df_fail.iloc[:, 1:] df_fail_targ
code
105207802/cell_58
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] df_fail = df_fail.drop(columns=['Air temperature [K]', 'Process temperature [K]', 'Rotational speed [rpm]', 'Torque [Nm]', 'Tool wear [min]', 'Product ID', 'UDI', 'Temp_diff', 'td', 'Target']) df_fail = pd.get_dummies(data=df_fail, columns=['Type'], drop_first=True) scaler = LabelEncoder() df_fail['Failure Type'] = scaler.fit_transform(df_fail['Failure Type']) df_fail_targ = df_fail_train = df_fail.iloc[:, 0] df_fail_train = df_fail.iloc[:, 1:] df_fail_train
code
105207802/cell_78
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.metrics import accuracy_score,plot_confusion_matrix from sklearn.svm import SVC svc = SVC() svc.fit(X_train, y_train) y_pred = svc.predict(X_test) train_acc = round(svc.score(X_train, y_train) * 100, 1) val_acc = round(accuracy_score(y_pred, y_test) * 100, 2) svc = SVC() svc.fit(X_train2, y_train2) y_pred2 = svc.predict(X_test2) train_acc2 = round(svc.score(X_train2, y_train2) * 100, 1) val_acc2 = round(accuracy_score(y_pred2, y_test2) * 100, 2) print('Training Accuracy:', train_acc2, '%') print('Model Accuracy Score :', val_acc2, '%') plot_confusion_matrix(svc, X_test, y_test)
code
105207802/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] sns.displot(data=df_fail, x='td', hue='Failure Type', kde=True, bins=30, height=8, aspect=1.5)
code
105207802/cell_75
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] df.columns df.columns df_fail = df_fail.drop(columns=['Air temperature [K]', 'Process temperature [K]', 'Rotational speed [rpm]', 'Torque [Nm]', 'Tool wear [min]', 'Product ID', 'UDI', 'Temp_diff', 'td', 'Target']) df_fail = pd.get_dummies(data=df_fail, columns=['Type'], drop_first=True) scaler = LabelEncoder() df_fail['Failure Type'] = scaler.fit_transform(df_fail['Failure Type']) df2 = df.drop(columns=['Air temperature [K]', 'Process temperature [K]', 'Rotational speed [rpm]', 'Torque [Nm]', 'Tool wear [min]', 'Product ID', 'UDI', 'Temp_diff', 'td', 'Failure Type']) df2 = pd.get_dummies(data=df2, columns=['Type'], drop_first=True) train = df2.iloc[:, 1:] train
code
105207802/cell_47
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] plt.figure(figsize=(18, 10)) sns.scatterplot(data=df_fail, x='td', y='Torque [Nm]', hue='Failure Type')
code
105207802/cell_66
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df.columns df.columns df
code
105207802/cell_35
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df.columns
code
105207802/cell_43
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] plt.figure(figsize=(18, 10)) sns.scatterplot(data=df_fail, x='Tool wear [min]', y='Torque [Nm]', hue='Failure Type')
code
105207802/cell_14
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] sns.displot(data=df_pass, x='td', hue='Failure Type', kde=True, bins=50, height=8, aspect=1.5)
code
105207802/cell_27
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] x = df_fail['Type'].value_counts().plot.pie(explode=[0.5, 0.5, 0.5], autopct='%1.1f%%')
code
105207802/cell_37
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] sns.displot(data=df_fail, x='Tool wear [min]', hue='Failure Type', kde=True, bins=30, height=8, aspect=1.5)
code
105207802/cell_71
[ "text_html_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') df_pass = df[df['Target'] == 0] df_pass = df_pass[df_pass['Failure Type'] == 'No Failure'] df_fail = df[df['Target'] == 1] df_fail = df_fail[df_fail['Failure Type'] != 'No Failure'] df1 = df[df['Failure Type'] == 'Heat Dissipation Failure'] df2 = df[df['Failure Type'] == 'Power Failure'] df3 = df[df['Failure Type'] == 'Overstrain Failure'] df4 = df[df['Failure Type'] == 'Tool Wear Failure'] df5 = df[df['Failure Type'] == 'Random Failures '] df.columns df.columns df_fail = df_fail.drop(columns=['Air temperature [K]', 'Process temperature [K]', 'Rotational speed [rpm]', 'Torque [Nm]', 'Tool wear [min]', 'Product ID', 'UDI', 'Temp_diff', 'td', 'Target']) df_fail = pd.get_dummies(data=df_fail, columns=['Type'], drop_first=True) scaler = LabelEncoder() df_fail['Failure Type'] = scaler.fit_transform(df_fail['Failure Type']) df2 = df.drop(columns=['Air temperature [K]', 'Process temperature [K]', 'Rotational speed [rpm]', 'Torque [Nm]', 'Tool wear [min]', 'Product ID', 'UDI', 'Temp_diff', 'td', 'Failure Type']) df2 = pd.get_dummies(data=df2, columns=['Type'], drop_first=True) df2
code
105207802/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_csv('../input/machine-predictive-maintenance-classification/predictive_maintenance.csv') x = df['Target'].value_counts().plot.pie(explode=[0.5, 0.5], autopct='%1.1f%%')
code
17112996/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ipldf = pd.read_csv('../input/matches.csv') print(ipldf.columns) print(ipldf.values)
code
17112996/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ipldf = pd.read_csv('../input/matches.csv') print(ipldf.head(5))
code
17112996/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
17112996/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ipldf = pd.read_csv('../input/matches.csv') idf = pd.DataFrame(ipldf.groupby('toss_winner').size()) print(idf.plot(kind='bar'))
code
17112996/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ipldf = pd.read_csv('../input/matches.csv') print(ipldf.describe())
code
17112996/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ipldf = pd.read_csv('../input/matches.csv') idf = pd.DataFrame(ipldf.groupby('toss_winner').size()) idf2 = ipldf.groupby('winner').size() print(idf2)
code
17112996/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) ipldf = pd.read_csv('../input/matches.csv') print(ipldf.groupby('season').size()) print(ipldf.groupby('season').size().plot(kind='bar'))
code
33112093/cell_25
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') data.isnull().sum() x = sns.PairGrid(data) x = x.map(plt.scatter) corr = data.corr() data1 = data data1.corr() simple = data1[['carat', 'x', 'y', 'z', 'price']] simple.shape simple.corr()
code
33112093/cell_23
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') data.isnull().sum() x = sns.PairGrid(data) x = x.map(plt.scatter) corr = data.corr() data1 = data data1.corr() simple = data1[['carat', 'x', 'y', 'z', 'price']] simple.head()
code
33112093/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') data.isnull().sum() x = sns.PairGrid(data) x = x.map(plt.scatter) corr = data.corr() data1 = data data1.corr()
code
33112093/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') data.isnull().sum() x = sns.PairGrid(data) x = x.map(plt.scatter)
code
33112093/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') data.isnull().sum() x = sns.PairGrid(data) x = x.map(plt.scatter) corr = data.corr() data1 = data data1.head()
code
33112093/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
33112093/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') data.isnull().sum()
code
33112093/cell_32
[ "text_plain_output_1.png" ]
from sklearn.linear_model import * lr = LinearRegression() lr.fit(X_train, y_train) print(lr.score(X_test, y_test))
code
33112093/cell_15
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') data.isnull().sum() x = sns.PairGrid(data) x = x.map(plt.scatter) corr = data.corr() print(data.cut.unique()) print(data.color.unique()) print(data.clarity.unique())
code
33112093/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') data.head(3)
code
33112093/cell_31
[ "text_plain_output_1.png" ]
from sklearn.linear_model import * lr = LinearRegression() lr.fit(X_train, y_train)
code
33112093/cell_24
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') data.isnull().sum() x = sns.PairGrid(data) x = x.map(plt.scatter) corr = data.corr() data1 = data data1.corr() simple = data1[['carat', 'x', 'y', 'z', 'price']] simple.shape
code
33112093/cell_27
[ "text_plain_output_1.png" ]
print(X_train.shape) print(X_test.shape)
code
33112093/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/diamonds/diamonds.csv') data.isnull().sum() x = sns.PairGrid(data) x = x.map(plt.scatter) corr = data.corr() sns.heatmap(corr, xticklabels=corr.columns, yticklabels=corr.columns)
code
90142006/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
90142006/cell_5
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_2.png", "image_output_1.png" ]
from imblearn.over_sampling import SMOTE from sklearn import preprocessing from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay from sklearn.naive_bayes import BernoulliNB import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/review/reviews.csv') label_encoder = preprocessing.LabelEncoder() data['label'] = label_encoder.fit_transform(data['label']) tfidf_vectorizer = TfidfVectorizer(max_features=5000, ngram_range=(2, 2)) X = tfidf_vectorizer.fit_transform(data['body']) y = data['label'] smote = SMOTE(random_state=42) X_res, y_res = smote.fit_resample(X, y) logreg = LogisticRegression(solver='lbfgs', max_iter=1000, random_state=0) naiveBayes = BernoulliNB() logreg.fit(X_train, y_train) clf1 = logreg.predict(X_test) naiveBayes.fit(X_train, y_train) clf2 = naiveBayes.predict(X_test) len(clf1) data['prediction'] = logreg.predict(X) data.to_csv('logisticRegression.csv') data['prediction'] = naiveBayes.predict(X) data.to_csv('naiveBayes.csv') print('Classification Report of Logistic Regression:\n', classification_report(y_test, clf1)) cm = confusion_matrix(y_test, clf1) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Negative', 'Neutral', 'Positive']) disp.plot() plt.show() print('\n') print('Classification Report of Naive Bayes:\n', classification_report(y_test, clf2)) cm = confusion_matrix(y_test, clf2) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Negative', 'Neutral', 'Positive']) disp.plot() plt.show()
code
18102611/cell_9
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd label = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'ax': 10, 'by': 20, 'cz': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=label) pd.Series(data=arr, index=label) pd.Series(d) pd.Series(label) ser1 = pd.Series(['TN', 'KL', 'AN'], label) ser1
code
18102611/cell_4
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd label = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'ax': 10, 'by': 20, 'cz': 30} pd.Series(data=my_data)
code
18102611/cell_6
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd label = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'ax': 10, 'by': 20, 'cz': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=label) pd.Series(data=arr, index=label)
code
18102611/cell_11
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd label = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'ax': 10, 'by': 20, 'cz': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=label) pd.Series(data=arr, index=label) pd.Series(d) pd.Series(label) ser1 = pd.Series(['TN', 'KL', 'AN'], label) ser1 serr1 = pd.Series([1, 2, 3], ['USA', 'USSR', 'JAPAN']) serr1 serr2 = pd.Series([1, 2, 3], ['SA', 'USSR', 'JAPAN']) serr2
code
18102611/cell_7
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd label = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'ax': 10, 'by': 20, 'cz': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=label) pd.Series(data=arr, index=label) pd.Series(d)
code
18102611/cell_8
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd label = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'ax': 10, 'by': 20, 'cz': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=label) pd.Series(data=arr, index=label) pd.Series(d) pd.Series(label)
code
18102611/cell_10
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd label = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'ax': 10, 'by': 20, 'cz': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=label) pd.Series(data=arr, index=label) pd.Series(d) pd.Series(label) ser1 = pd.Series(['TN', 'KL', 'AN'], label) ser1 serr1 = pd.Series([1, 2, 3], ['USA', 'USSR', 'JAPAN']) serr1
code
18102611/cell_12
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd label = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'ax': 10, 'by': 20, 'cz': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=label) pd.Series(data=arr, index=label) pd.Series(d) pd.Series(label) ser1 = pd.Series(['TN', 'KL', 'AN'], label) ser1 serr1 = pd.Series([1, 2, 3], ['USA', 'USSR', 'JAPAN']) serr1 serr2 = pd.Series([1, 2, 3], ['SA', 'USSR', 'JAPAN']) serr2 serr1 + serr2
code
18102611/cell_5
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd label = ['a', 'b', 'c'] my_data = [10, 20, 30] arr = np.array(my_data) d = {'ax': 10, 'by': 20, 'cz': 30} pd.Series(data=my_data) pd.Series(data=my_data, index=label)
code
104129687/cell_9
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv', delimiter=',', encoding='utf8') pd.set_option('display.max_columns', None) df.head().style.set_properties(**{'background-color': 'black', 'color': '#03e8fc'}) df['track_id'].value_counts()
code
104129687/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv', delimiter=',', encoding='utf8') pd.set_option('display.max_columns', None) df.head().style.set_properties(**{'background-color': 'black', 'color': '#03e8fc'}) df1 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv', delimiter=',', encoding='utf8') pd.set_option('display.max_columns', None) df1.head()
code
104129687/cell_1
[ "text_plain_output_1.png" ]
import os import plotly import warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import plotly.express as px import plotly.graph_objs as go import plotly plotly.offline.init_notebook_mode(connected=True) import warnings warnings.filterwarnings('ignore') import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
104129687/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv', delimiter=',', encoding='utf8') pd.set_option('display.max_columns', None) df.head().style.set_properties(**{'background-color': 'black', 'color': '#03e8fc'}) df1 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv', delimiter=',', encoding='utf8') pd.set_option('display.max_columns', None) df2 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv', delimiter=',', encoding='utf8') pd.set_option('display.max_columns', None) df2.head(3)
code
104129687/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv', delimiter=',', encoding='utf8') pd.set_option('display.max_columns', None) df.head().style.set_properties(**{'background-color': 'black', 'color': '#03e8fc'}) df1 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_tracking_table.csv', delimiter=',', encoding='utf8') pd.set_option('display.max_columns', None) df2 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_start_table.csv', delimiter=',', encoding='utf8') pd.set_option('display.max_columns', None) df3 = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_race_table.csv', delimiter=',', encoding='utf8') pd.set_option('display.max_columns', None) df3.head()
code
104129687/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/big-data-derby-2022/nyra_2019_complete.csv', delimiter=',', encoding='utf8') pd.set_option('display.max_columns', None) df.head().style.set_properties(**{'background-color': 'black', 'color': '#03e8fc'})
code
17118428/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/scmp2k19.csv') df.info()
code
17118428/cell_1
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from bokeh.io import output_file,show,output_notebook,push_notebook import os import numpy as np import pandas as pd import seaborn as sns from ipywidgets import interact from bokeh.io import output_file, show, output_notebook, push_notebook from bokeh.plotting import * from bokeh.models import ColumnDataSource, HoverTool, CategoricalColorMapper from bokeh.layouts import row, column, gridplot, widgetbox from bokeh.layouts import layout from bokeh.embed import file_html from bokeh.models import Text from bokeh.models import Plot from bokeh.models import Slider from bokeh.models import Circle from bokeh.models import Range1d from bokeh.models import CustomJS from bokeh.models import LinearAxis from bokeh.models import SingleIntervalTicker from bokeh.palettes import Spectral6 output_notebook() import os print(os.listdir('../input'))
code
18147081/cell_13
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_excel('../input/Data_Train.xlsx') test = pd.read_excel('../input/Data_Test.xlsx') (train.shape, test.shape) train.profile_report() train.sample(5) categorical_feature = ['Name', 'Location', 'Fuel_Type', 'Transmission', 'Owner_Type'] train[categorical_feature].nunique()
code
18147081/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_excel('../input/Data_Train.xlsx') test = pd.read_excel('../input/Data_Test.xlsx') (train.shape, test.shape)
code
18147081/cell_20
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd train = pd.read_excel('../input/Data_Train.xlsx') test = pd.read_excel('../input/Data_Test.xlsx') (train.shape, test.shape) train.profile_report() train.sample(5) test.sample(5) list(train.Fuel_Type[~train.Fuel_Type.isin(test.Fuel_Type)].unique()) train = train[train.Fuel_Type != 'Electric'] train['Full_name'] = train.Name.copy() test['Full_name'] = test.Name.copy() train.Name.sample(20)
code
18147081/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_excel('../input/Data_Train.xlsx') test = pd.read_excel('../input/Data_Test.xlsx') (train.shape, test.shape) train.profile_report()
code
18147081/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_excel('../input/Data_Train.xlsx') test = pd.read_excel('../input/Data_Test.xlsx') (train.shape, test.shape) train.profile_report() train.sample(5) def missing_values_table(df): mis_val = df.isnull().sum() mis_val_percent = 100 * df.isnull().sum() / len(df) mis_val_table = pd.concat([mis_val, mis_val_percent], axis=1) mis_val_table_ren_columns = mis_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'}) mis_val_table_ren_columns = mis_val_table_ren_columns[mis_val_table_ren_columns.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1) return mis_val_table_ren_columns missing_values_table(train)
code
18147081/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_excel('../input/Data_Train.xlsx') test = pd.read_excel('../input/Data_Test.xlsx') (train.shape, test.shape) train.profile_report() train.sample(5)
code
18147081/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_excel('../input/Data_Train.xlsx') test = pd.read_excel('../input/Data_Test.xlsx') (train.shape, test.shape) test.sample(5)
code
18147081/cell_16
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd train = pd.read_excel('../input/Data_Train.xlsx') test = pd.read_excel('../input/Data_Test.xlsx') (train.shape, test.shape) train.profile_report() train.sample(5) test.sample(5) list(train.Fuel_Type[~train.Fuel_Type.isin(test.Fuel_Type)].unique())
code
18147081/cell_14
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_excel('../input/Data_Train.xlsx') test = pd.read_excel('../input/Data_Test.xlsx') (train.shape, test.shape) test.sample(5) categorical_feature = ['Name', 'Location', 'Fuel_Type', 'Transmission', 'Owner_Type'] test[categorical_feature].nunique()
code
18147081/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_excel('../input/Data_Train.xlsx') test = pd.read_excel('../input/Data_Test.xlsx') (train.shape, test.shape) train.profile_report() train.sample(5) test.sample(5) list(train.Fuel_Type[~train.Fuel_Type.isin(test.Fuel_Type)].unique()) train = train[train.Fuel_Type != 'Electric'] train['Full_name'] = train.Name.copy() test['Full_name'] = test.Name.copy() train.Name.sample(20) temp1 = list(train.Name.str.split(' ').str[0].unique()) temp2 = list(test.Name.str.split(' ').str[0].unique()) temp3 = [item for item in temp1 if item not in temp2] temp3
code
18147081/cell_12
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd train = pd.read_excel('../input/Data_Train.xlsx') test = pd.read_excel('../input/Data_Test.xlsx') (train.shape, test.shape) test.sample(5) def missing_values_table(df): mis_val = df.isnull().sum() mis_val_percent = 100 * df.isnull().sum() / len(df) mis_val_table = pd.concat([mis_val, mis_val_percent], axis=1) mis_val_table_ren_columns = mis_val_table.rename(columns={0: 'Missing Values', 1: '% of Total Values'}) mis_val_table_ren_columns = mis_val_table_ren_columns[mis_val_table_ren_columns.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1) return mis_val_table_ren_columns missing_values_table(test)
code
104124186/cell_21
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/salary/Salary_Data.csv') data df = pd.DataFrame(data) df x = df.YearsExperience.values.reshape(-1, 1) y = df.Salary.values.reshape(-1, 1) regressor = LinearRegression() regressor.fit(x_train, y_train) y_pred = regressor.predict(x_test) y_pred a = x_test b = y_test c = x_test d = y_pred a = x_test b = y_test c = x_test d = y_pred compare = pd.DataFrame({'Actual': y_test.flatten(), 'Prediction': y_pred.flatten()}) compare a = x_train b = y_train c = x_test d = y_pred df2 = pd.DataFrame({'YearsExperience': [1.5, 2.5, 3.5, 4.5, 5], 'Salary': [1, 4, 8, 9, 10]}) df3 = df.append(df2) df3 train = df3.iloc[:25] test = df3.iloc[25:] x_train = df3['YearsExperience'][:30].values.reshape(-1, 1) y_train = df3['Salary'][:30].values.reshape(-1, 1) x_test = df3['YearsExperience'][30:].values.reshape(-1, 1) regressor.fit(x_train, y_train) y_pred = regressor.predict(x_test) plt.scatter(x_test, y_pred) plt.grid() plt.show()
code
104124186/cell_13
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression import pandas as pd data = pd.read_csv('../input/salary/Salary_Data.csv') data df = pd.DataFrame(data) df regressor = LinearRegression() regressor.fit(x_train, y_train) y_pred = regressor.predict(x_test) y_pred compare = pd.DataFrame({'Actual': y_test.flatten(), 'Prediction': y_pred.flatten()}) compare
code
104124186/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt regressor = LinearRegression() regressor.fit(x_train, y_train) y_pred = regressor.predict(x_test) y_pred a = x_test b = y_test c = x_test d = y_pred a = x_test b = y_test c = x_test d = y_pred plt.scatter(a, b) plt.plot(c, d) plt.grid() plt.show()
code
104124186/cell_6
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(x_train, y_train)
code
104124186/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/salary/Salary_Data.csv') data
code
104124186/cell_11
[ "text_html_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LinearRegression import numpy as np regressor = LinearRegression() regressor.fit(x_train, y_train) y_pred = regressor.predict(x_test) y_pred print('mean absolute error: ', metrics.mean_absolute_error(y_test, y_pred)) print('mean squared_error: ', metrics.mean_squared_error(y_test, y_pred)) print('root mean absolte error: ', np.sqrt(metrics.mean_absolute_error(y_test, y_pred))) print('r2score:', metrics.r2_score(y_test, y_pred))
code
104124186/cell_7
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(x_train, y_train) y_pred = regressor.predict(x_test) y_pred
code