path
stringlengths
13
17
screenshot_names
listlengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
73071444/cell_36
[ "image_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') train_data = train_data.drop(['Cabin', 'Ticket', 'PassengerId'], axis=1) test_data = test_data.drop(['Cabin', 'Ticket'], axis=1) combine = [train_data, test_data] for dataset in combine: dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\\.', expand=False) (pd.crosstab(train_data['Title'], train_data['Sex']), pd.crosstab(test_data['Title'], test_data['Sex'])) for dataset in combine: dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess', 'Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare') dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs') pd.crosstab(train_data['Title'], train_data['Sex'])
code
1008801/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd jan = '../input/1january.csv' jan_data = pd.read_csv(jan) jan_data.query('trip_distance == 8000010.0') jan_data = jan_data[jan_data.trip_distance != 8000010.0] jan_data['trip_distance'].mean()
code
1008801/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd jan = '../input/1january.csv' jan_data = pd.read_csv(jan) max(jan_data['trip_distance'])
code
1008801/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd jan = '../input/1january.csv' jan_data = pd.read_csv(jan) jan_data.query('trip_distance == 8000010.0') jan_data = jan_data[jan_data.trip_distance != 8000010.0] jan_data = jan_data[jan_data.trip_distance < 13.4] jan_data['trip_distance'].mean()
code
1008801/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd jan = '../input/1january.csv' jan_data = pd.read_csv(jan) jan_data.query('trip_distance == 8000010.0') jan_data = jan_data[jan_data.trip_distance != 8000010.0] jan_data = jan_data[jan_data.trip_distance < 13.4] plt.hist(jan_data['trip_distance'], normed=True, bins=[1, 2, 3, 5, 10])
code
1008801/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd jan = '../input/1january.csv' jan_data = pd.read_csv(jan) jan_data['trip_distance'][0:10]
code
1008801/cell_15
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd jan = '../input/1january.csv' jan_data = pd.read_csv(jan) jan_data.query('trip_distance == 8000010.0') jan_data = jan_data[jan_data.trip_distance != 8000010.0] plt.hist(jan_data['trip_distance'], normed=True, bins=[1, 2, 3, 5, 50])
code
1008801/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd jan = '../input/1january.csv' jan_data = pd.read_csv(jan) jan_data.query('trip_distance == 8000010.0')
code
122249728/cell_13
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import os import pandas as pd import scipy.stats as stat dataset_path = '/kaggle/input/diabetes-readmission-prediction-i43/' df = pd.read_csv(os.path.join(dataset_path, 'train.csv')) columns_to_drop = ['weight', 'payer_code', 'medical_specialty', 'max_glu_serum', 'A1Cresult'] df = df.drop(columns=columns_to_drop) df = df.dropna() missing_values = round(100 * df.isnull().sum() / df.shape[0], 1) missing_values def chi_square(df, output, significance_error): for col in df.columns: data_crosstab = pd.crosstab(df[col], df[output], margins=True, margins_name='Total') chi_square = 0 rows = df[col].unique() columns = df[output].unique() for i in columns: for j in rows: O = data_crosstab[i][j] E = data_crosstab[i]['Total'] * data_crosstab['Total'][j] / data_crosstab['Total']['Total'] chi_square += (O - E) ** 2 / E p_value = stat.chi2.sf(chi_square, (len(rows) - 1) * (len(columns) - 1)) dicision = 'rejected' if p_value <= significance_error else 'failed to reject' chi_square(df, 'readmitted', 0.001) numerical_features = ['time_in_hospital', 'num_lab_procedures', 'num_procedures', 'num_medications', 'number_outpatient', 'number_emergency', 'number_inpatient', 'number_diagnoses'] n_df = df.loc[:, numerical_features].copy() label_df = df.iloc[:, -1].copy() id_df = df.iloc[:, :2].copy() df = df.drop(columns=numerical_features + list(id_df.columns)) df = df.drop(columns='readmitted') from sklearn.ensemble import RandomForestClassifier as RC def feature_importance(df, col): test = pd.get_dummies(df[col]) test = pd.concat([test, df['readmitted']], axis=1) model = RC(n_estimators=100) x = test.iloc[:, :-1] y = test.iloc[:, -1] model.fit(x, y) importance = model.feature_importances_ df2 = pd.concat([df, n_df, label_df], axis=1) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() for i in list(df2.keys()): df2[i] = le.fit_transform(df2[i]) model = RC(n_estimators=100) x = df2.iloc[:, :-1] y = df2.iloc[:, -1] model.fit(x, y) importance = model.feature_importances_ columns = list(df2.columns[:-1]) pair = [] [pair.append((i, j)) for i, j in zip(importance, columns)] sorted_pair = sorted(pair) x = [] y = [] for i in sorted_pair: x.append(i[0]) y.append(i[1]) plt.figure(figsize=(20, 20)) plt.barh(y, x) plt.show()
code
122249728/cell_6
[ "text_plain_output_1.png" ]
import os import pandas as pd import scipy.stats as stat dataset_path = '/kaggle/input/diabetes-readmission-prediction-i43/' df = pd.read_csv(os.path.join(dataset_path, 'train.csv')) columns_to_drop = ['weight', 'payer_code', 'medical_specialty', 'max_glu_serum', 'A1Cresult'] df = df.drop(columns=columns_to_drop) df = df.dropna() missing_values = round(100 * df.isnull().sum() / df.shape[0], 1) missing_values def chi_square(df, output, significance_error): for col in df.columns: data_crosstab = pd.crosstab(df[col], df[output], margins=True, margins_name='Total') chi_square = 0 rows = df[col].unique() columns = df[output].unique() for i in columns: for j in rows: O = data_crosstab[i][j] E = data_crosstab[i]['Total'] * data_crosstab['Total'][j] / data_crosstab['Total']['Total'] chi_square += (O - E) ** 2 / E p_value = stat.chi2.sf(chi_square, (len(rows) - 1) * (len(columns) - 1)) dicision = 'rejected' if p_value <= significance_error else 'failed to reject' print(f'{col:<25}', f"'{dicision:^20}'", ' -> chisquare-score is:', f'{chi_square:<20}', ' and p value is:', p_value) chi_square(df, 'readmitted', 0.001)
code
122249728/cell_19
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import os import pandas as pd import scipy.stats as stat dataset_path = '/kaggle/input/diabetes-readmission-prediction-i43/' df = pd.read_csv(os.path.join(dataset_path, 'train.csv')) columns_to_drop = ['weight', 'payer_code', 'medical_specialty', 'max_glu_serum', 'A1Cresult'] df = df.drop(columns=columns_to_drop) df = df.dropna() missing_values = round(100 * df.isnull().sum() / df.shape[0], 1) missing_values def chi_square(df, output, significance_error): for col in df.columns: data_crosstab = pd.crosstab(df[col], df[output], margins=True, margins_name='Total') chi_square = 0 rows = df[col].unique() columns = df[output].unique() for i in columns: for j in rows: O = data_crosstab[i][j] E = data_crosstab[i]['Total'] * data_crosstab['Total'][j] / data_crosstab['Total']['Total'] chi_square += (O - E) ** 2 / E p_value = stat.chi2.sf(chi_square, (len(rows) - 1) * (len(columns) - 1)) dicision = 'rejected' if p_value <= significance_error else 'failed to reject' chi_square(df, 'readmitted', 0.001) numerical_features = ['time_in_hospital', 'num_lab_procedures', 'num_procedures', 'num_medications', 'number_outpatient', 'number_emergency', 'number_inpatient', 'number_diagnoses'] n_df = df.loc[:, numerical_features].copy() label_df = df.iloc[:, -1].copy() id_df = df.iloc[:, :2].copy() df = df.drop(columns=numerical_features + list(id_df.columns)) df = df.drop(columns='readmitted') from sklearn.ensemble import RandomForestClassifier as RC def feature_importance(df, col): test = pd.get_dummies(df[col]) test = pd.concat([test, df['readmitted']], axis=1) model = RC(n_estimators=100) x = test.iloc[:, :-1] y = test.iloc[:, -1] model.fit(x, y) importance = model.feature_importances_ df2 = pd.concat([df, n_df, label_df], axis=1) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() for i in list(df2.keys()): df2[i] = le.fit_transform(df2[i]) model = RC(n_estimators=100) x = df2.iloc[:, :-1] y = df2.iloc[:, -1] model.fit(x, y) importance = model.feature_importances_ columns = list(df2.columns[:-1]) pair = [] [pair.append((i, j)) for i, j in zip(importance, columns)] sorted_pair = sorted(pair) x = [] y = [] for i in sorted_pair: x.append(i[0]) y.append(i[1]) plt.barh(y, x) under_failed = y[:21] df = df.drop(columns=under_failed) df3 = pd.concat([id_df, df, label_df], axis=1) df3 = df3.drop(columns='readmitted') df3.columns
code
122249728/cell_16
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import os import pandas as pd import scipy.stats as stat dataset_path = '/kaggle/input/diabetes-readmission-prediction-i43/' df = pd.read_csv(os.path.join(dataset_path, 'train.csv')) columns_to_drop = ['weight', 'payer_code', 'medical_specialty', 'max_glu_serum', 'A1Cresult'] df = df.drop(columns=columns_to_drop) df = df.dropna() missing_values = round(100 * df.isnull().sum() / df.shape[0], 1) missing_values def chi_square(df, output, significance_error): for col in df.columns: data_crosstab = pd.crosstab(df[col], df[output], margins=True, margins_name='Total') chi_square = 0 rows = df[col].unique() columns = df[output].unique() for i in columns: for j in rows: O = data_crosstab[i][j] E = data_crosstab[i]['Total'] * data_crosstab['Total'][j] / data_crosstab['Total']['Total'] chi_square += (O - E) ** 2 / E p_value = stat.chi2.sf(chi_square, (len(rows) - 1) * (len(columns) - 1)) dicision = 'rejected' if p_value <= significance_error else 'failed to reject' chi_square(df, 'readmitted', 0.001) numerical_features = ['time_in_hospital', 'num_lab_procedures', 'num_procedures', 'num_medications', 'number_outpatient', 'number_emergency', 'number_inpatient', 'number_diagnoses'] n_df = df.loc[:, numerical_features].copy() label_df = df.iloc[:, -1].copy() id_df = df.iloc[:, :2].copy() df = df.drop(columns=numerical_features + list(id_df.columns)) df = df.drop(columns='readmitted') from sklearn.ensemble import RandomForestClassifier as RC def feature_importance(df, col): test = pd.get_dummies(df[col]) test = pd.concat([test, df['readmitted']], axis=1) model = RC(n_estimators=100) x = test.iloc[:, :-1] y = test.iloc[:, -1] model.fit(x, y) importance = model.feature_importances_ df2 = pd.concat([df, n_df, label_df], axis=1) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() for i in list(df2.keys()): df2[i] = le.fit_transform(df2[i]) model = RC(n_estimators=100) x = df2.iloc[:, :-1] y = df2.iloc[:, -1] model.fit(x, y) importance = model.feature_importances_ columns = list(df2.columns[:-1]) pair = [] [pair.append((i, j)) for i, j in zip(importance, columns)] sorted_pair = sorted(pair) x = [] y = [] for i in sorted_pair: x.append(i[0]) y.append(i[1]) plt.barh(y, x) under_failed = y[:21] df = df.drop(columns=under_failed) df3 = pd.concat([id_df, df, label_df], axis=1) chi_square(df3, 'readmitted', 0.001)
code
122249728/cell_3
[ "text_plain_output_1.png" ]
import os import pandas as pd dataset_path = '/kaggle/input/diabetes-readmission-prediction-i43/' df = pd.read_csv(os.path.join(dataset_path, 'train.csv')) print('The shape of the dataset is {}.\n\n'.format(df.shape)) df.head()
code
122249728/cell_5
[ "text_plain_output_1.png" ]
import os import pandas as pd dataset_path = '/kaggle/input/diabetes-readmission-prediction-i43/' df = pd.read_csv(os.path.join(dataset_path, 'train.csv')) columns_to_drop = ['weight', 'payer_code', 'medical_specialty', 'max_glu_serum', 'A1Cresult'] df = df.drop(columns=columns_to_drop) df = df.dropna() missing_values = round(100 * df.isnull().sum() / df.shape[0], 1) missing_values
code
105191527/cell_42
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns india_nutrition_facts = pd.read_csv('../input/mcdonalds-india-menu-nutrition-facts/India_Menu.csv') def highlight_color(s): return ['background-color: #FFC72C'] * 8 if s.name == 'Trans fat (g)' else [''] * 8 india_nutrition_facts.describe().style.apply(highlight_color, axis=0) fig, axs = plt.subplots(figsize=(15,8)) plt.rcParams.update({'font.size': 9.5}) ax = [None for _ in range(10)] df_num_features = india_nutrition_facts.select_dtypes(include=[np.number]) num_features = df_num_features.columns.tolist() num_features.remove("Trans fat (g)") for i in range(len(num_features)): ax[i] = plt.subplot2grid((3,5), (i//3,i%3), colspan=1) ax[i] = sns.violinplot(data=india_nutrition_facts[num_features[i]], orient="h", color='#FFC72C') plt.title(num_features[i]) ax[9] = fig.add_axes([0.62,0.232,0.38,0.5]) ax[9] = sns.violinplot(data=india_nutrition_facts["Trans fat (g)"], orient="h", color='#DA291C') plt.title("Trans fat (g)", fontweight="bold") plt.suptitle("Distribution of the Content of Each Nutrition", fontsize=15) plt.tight_layout() plt.show() del df_num_features def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) for c in ['Trans fat (g)', 'Total carbohydrate (g)', 'Cholesterols (mg)', 'Sat Fat (g)']: india_nutrition_facts.loc[25, c] = india_nutrition_facts.loc[24, c] * 5 / 3 def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) index = india_nutrition_facts[india_nutrition_facts['Sodium (mg)'].isna()].index.tolist()[0] india_nutrition_facts.loc[index, 'Sodium (mg)'] = 1370.89 food_nutrition_facts = india_nutrition_facts[india_nutrition_facts['Per Serve Size'].str.endswith('g')] food_nutrition_facts['Per Serve Size'] = food_nutrition_facts['Per Serve Size'].str.replace(' g', '').astype(float) food_nutrition_facts.rename(columns={'Per Serve Size': 'Per Serve Size (g)'}, inplace=True) condiment_nutrition_facts = food_nutrition_facts[food_nutrition_facts['Menu Category'] == 'Condiments Menu'] food_nutrition_facts = food_nutrition_facts[food_nutrition_facts['Menu Category'] != 'Condiments Menu'] display(condiment_nutrition_facts) print(condiment_nutrition_facts.shape)
code
105191527/cell_21
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns india_nutrition_facts = pd.read_csv('../input/mcdonalds-india-menu-nutrition-facts/India_Menu.csv') def highlight_color(s): return ['background-color: #FFC72C'] * 8 if s.name == 'Trans fat (g)' else [''] * 8 india_nutrition_facts.describe().style.apply(highlight_color, axis=0) fig, axs = plt.subplots(figsize=(15,8)) plt.rcParams.update({'font.size': 9.5}) ax = [None for _ in range(10)] df_num_features = india_nutrition_facts.select_dtypes(include=[np.number]) num_features = df_num_features.columns.tolist() num_features.remove("Trans fat (g)") for i in range(len(num_features)): ax[i] = plt.subplot2grid((3,5), (i//3,i%3), colspan=1) ax[i] = sns.violinplot(data=india_nutrition_facts[num_features[i]], orient="h", color='#FFC72C') plt.title(num_features[i]) ax[9] = fig.add_axes([0.62,0.232,0.38,0.5]) ax[9] = sns.violinplot(data=india_nutrition_facts["Trans fat (g)"], orient="h", color='#DA291C') plt.title("Trans fat (g)", fontweight="bold") plt.suptitle("Distribution of the Content of Each Nutrition", fontsize=15) plt.tight_layout() plt.show() del df_num_features india_nutrition_facts[india_nutrition_facts['Trans fat (g)'] > 10]
code
105191527/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd india_nutrition_facts = pd.read_csv('../input/mcdonalds-india-menu-nutrition-facts/India_Menu.csv') india_nutrition_facts.info()
code
105191527/cell_34
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns india_nutrition_facts = pd.read_csv('../input/mcdonalds-india-menu-nutrition-facts/India_Menu.csv') def highlight_color(s): return ['background-color: #FFC72C'] * 8 if s.name == 'Trans fat (g)' else [''] * 8 india_nutrition_facts.describe().style.apply(highlight_color, axis=0) fig, axs = plt.subplots(figsize=(15,8)) plt.rcParams.update({'font.size': 9.5}) ax = [None for _ in range(10)] df_num_features = india_nutrition_facts.select_dtypes(include=[np.number]) num_features = df_num_features.columns.tolist() num_features.remove("Trans fat (g)") for i in range(len(num_features)): ax[i] = plt.subplot2grid((3,5), (i//3,i%3), colspan=1) ax[i] = sns.violinplot(data=india_nutrition_facts[num_features[i]], orient="h", color='#FFC72C') plt.title(num_features[i]) ax[9] = fig.add_axes([0.62,0.232,0.38,0.5]) ax[9] = sns.violinplot(data=india_nutrition_facts["Trans fat (g)"], orient="h", color='#DA291C') plt.title("Trans fat (g)", fontweight="bold") plt.suptitle("Distribution of the Content of Each Nutrition", fontsize=15) plt.tight_layout() plt.show() del df_num_features def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) for c in ['Trans fat (g)', 'Total carbohydrate (g)', 'Cholesterols (mg)', 'Sat Fat (g)']: india_nutrition_facts.loc[25, c] = india_nutrition_facts.loc[24, c] * 5 / 3 def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) df_veg_or_chicken = india_nutrition_facts[india_nutrition_facts['Menu Items'].str.contains('Veg|Chicken')] chicken_list_index = [104, 109, 111] veg_list_index = [105, 110, 112] def highlight_color(s): if s.name in chicken_list_index: return ['background-color: #FFC72C'] * 13 elif s.name in veg_list_index: return ['background-color: #9BEB34'] * 13 else: return [''] * 13 print('The number of rows: ', df_veg_or_chicken.shape[0]) df_veg_or_chicken.tail(10).style.apply(highlight_color, axis=1)
code
105191527/cell_23
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns india_nutrition_facts = pd.read_csv('../input/mcdonalds-india-menu-nutrition-facts/India_Menu.csv') def highlight_color(s): return ['background-color: #FFC72C'] * 8 if s.name == 'Trans fat (g)' else [''] * 8 india_nutrition_facts.describe().style.apply(highlight_color, axis=0) fig, axs = plt.subplots(figsize=(15,8)) plt.rcParams.update({'font.size': 9.5}) ax = [None for _ in range(10)] df_num_features = india_nutrition_facts.select_dtypes(include=[np.number]) num_features = df_num_features.columns.tolist() num_features.remove("Trans fat (g)") for i in range(len(num_features)): ax[i] = plt.subplot2grid((3,5), (i//3,i%3), colspan=1) ax[i] = sns.violinplot(data=india_nutrition_facts[num_features[i]], orient="h", color='#FFC72C') plt.title(num_features[i]) ax[9] = fig.add_axes([0.62,0.232,0.38,0.5]) ax[9] = sns.violinplot(data=india_nutrition_facts["Trans fat (g)"], orient="h", color='#DA291C') plt.title("Trans fat (g)", fontweight="bold") plt.suptitle("Distribution of the Content of Each Nutrition", fontsize=15) plt.tight_layout() plt.show() del df_num_features def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1)
code
105191527/cell_30
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns india_nutrition_facts = pd.read_csv('../input/mcdonalds-india-menu-nutrition-facts/India_Menu.csv') def highlight_color(s): return ['background-color: #FFC72C'] * 8 if s.name == 'Trans fat (g)' else [''] * 8 india_nutrition_facts.describe().style.apply(highlight_color, axis=0) fig, axs = plt.subplots(figsize=(15,8)) plt.rcParams.update({'font.size': 9.5}) ax = [None for _ in range(10)] df_num_features = india_nutrition_facts.select_dtypes(include=[np.number]) num_features = df_num_features.columns.tolist() num_features.remove("Trans fat (g)") for i in range(len(num_features)): ax[i] = plt.subplot2grid((3,5), (i//3,i%3), colspan=1) ax[i] = sns.violinplot(data=india_nutrition_facts[num_features[i]], orient="h", color='#FFC72C') plt.title(num_features[i]) ax[9] = fig.add_axes([0.62,0.232,0.38,0.5]) ax[9] = sns.violinplot(data=india_nutrition_facts["Trans fat (g)"], orient="h", color='#DA291C') plt.title("Trans fat (g)", fontweight="bold") plt.suptitle("Distribution of the Content of Each Nutrition", fontsize=15) plt.tight_layout() plt.show() del df_num_features def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) for c in ['Trans fat (g)', 'Total carbohydrate (g)', 'Cholesterols (mg)', 'Sat Fat (g)']: india_nutrition_facts.loc[25, c] = india_nutrition_facts.loc[24, c] * 5 / 3 def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) india_nutrition_facts[india_nutrition_facts['Sodium (mg)'].isna()]
code
105191527/cell_40
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns india_nutrition_facts = pd.read_csv('../input/mcdonalds-india-menu-nutrition-facts/India_Menu.csv') def highlight_color(s): return ['background-color: #FFC72C'] * 8 if s.name == 'Trans fat (g)' else [''] * 8 india_nutrition_facts.describe().style.apply(highlight_color, axis=0) fig, axs = plt.subplots(figsize=(15,8)) plt.rcParams.update({'font.size': 9.5}) ax = [None for _ in range(10)] df_num_features = india_nutrition_facts.select_dtypes(include=[np.number]) num_features = df_num_features.columns.tolist() num_features.remove("Trans fat (g)") for i in range(len(num_features)): ax[i] = plt.subplot2grid((3,5), (i//3,i%3), colspan=1) ax[i] = sns.violinplot(data=india_nutrition_facts[num_features[i]], orient="h", color='#FFC72C') plt.title(num_features[i]) ax[9] = fig.add_axes([0.62,0.232,0.38,0.5]) ax[9] = sns.violinplot(data=india_nutrition_facts["Trans fat (g)"], orient="h", color='#DA291C') plt.title("Trans fat (g)", fontweight="bold") plt.suptitle("Distribution of the Content of Each Nutrition", fontsize=15) plt.tight_layout() plt.show() del df_num_features def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) for c in ['Trans fat (g)', 'Total carbohydrate (g)', 'Cholesterols (mg)', 'Sat Fat (g)']: india_nutrition_facts.loc[25, c] = india_nutrition_facts.loc[24, c] * 5 / 3 def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) index = india_nutrition_facts[india_nutrition_facts['Sodium (mg)'].isna()].index.tolist()[0] india_nutrition_facts.loc[index, 'Sodium (mg)'] = 1370.89 food_nutrition_facts = india_nutrition_facts[india_nutrition_facts['Per Serve Size'].str.endswith('g')] food_nutrition_facts['Per Serve Size'] = food_nutrition_facts['Per Serve Size'].str.replace(' g', '').astype(float) food_nutrition_facts.rename(columns={'Per Serve Size': 'Per Serve Size (g)'}, inplace=True) condiment_nutrition_facts = food_nutrition_facts[food_nutrition_facts['Menu Category'] == 'Condiments Menu'] food_nutrition_facts = food_nutrition_facts[food_nutrition_facts['Menu Category'] != 'Condiments Menu'] display(food_nutrition_facts.head()) print(food_nutrition_facts.shape)
code
105191527/cell_26
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns india_nutrition_facts = pd.read_csv('../input/mcdonalds-india-menu-nutrition-facts/India_Menu.csv') def highlight_color(s): return ['background-color: #FFC72C'] * 8 if s.name == 'Trans fat (g)' else [''] * 8 india_nutrition_facts.describe().style.apply(highlight_color, axis=0) fig, axs = plt.subplots(figsize=(15,8)) plt.rcParams.update({'font.size': 9.5}) ax = [None for _ in range(10)] df_num_features = india_nutrition_facts.select_dtypes(include=[np.number]) num_features = df_num_features.columns.tolist() num_features.remove("Trans fat (g)") for i in range(len(num_features)): ax[i] = plt.subplot2grid((3,5), (i//3,i%3), colspan=1) ax[i] = sns.violinplot(data=india_nutrition_facts[num_features[i]], orient="h", color='#FFC72C') plt.title(num_features[i]) ax[9] = fig.add_axes([0.62,0.232,0.38,0.5]) ax[9] = sns.violinplot(data=india_nutrition_facts["Trans fat (g)"], orient="h", color='#DA291C') plt.title("Trans fat (g)", fontweight="bold") plt.suptitle("Distribution of the Content of Each Nutrition", fontsize=15) plt.tight_layout() plt.show() del df_num_features df_check_ratio = india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')] df_check_ratio = df_check_ratio.drop(23) df_check_ratio['Per Serve Size'] = df_check_ratio['Per Serve Size'].str.replace(' g', '').astype(int) df_check_ratio.rename(columns={'Per Serve Size': 'Per Serve Size (g)'}, inplace=True) columns = df_check_ratio.columns.tolist() for c in ['Menu Category', 'Menu Items', 'Added Sugars (g)']: columns.remove(c) for c in columns: df_check_ratio.loc['Ratio', c] = df_check_ratio.loc[25, c] / df_check_ratio.loc[24, c] fig, ax = plt.subplots(figsize=(15, 6)) plt.rcParams.update({'font.size': 13}) series_check_ratio = df_check_ratio.loc['Ratio', :].dropna() series_check_ratio = series_check_ratio.apply(lambda x: np.log(x)) series_check_ratio = series_check_ratio.sort_values(ascending=False) colors = [] for i in range(10): if i == 0: colors.append('#DA291C') elif i >= 7: colors.append('#1C75DA') else: colors.append('lightgray') ax = sns.barplot(x=series_check_ratio, y=series_check_ratio.index, edgecolor='black', orient='hor', palette=colors) sns.despine(top=True, right=True, left=True) ax.tick_params(left=False) plt.title('The Ratio of Nutrition Contents', fontsize=15, loc='left', y=1.05) plt.tight_layout() plt.show()
code
105191527/cell_48
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns india_nutrition_facts = pd.read_csv('../input/mcdonalds-india-menu-nutrition-facts/India_Menu.csv') def highlight_color(s): return ['background-color: #FFC72C'] * 8 if s.name == 'Trans fat (g)' else [''] * 8 india_nutrition_facts.describe().style.apply(highlight_color, axis=0) fig, axs = plt.subplots(figsize=(15,8)) plt.rcParams.update({'font.size': 9.5}) ax = [None for _ in range(10)] df_num_features = india_nutrition_facts.select_dtypes(include=[np.number]) num_features = df_num_features.columns.tolist() num_features.remove("Trans fat (g)") for i in range(len(num_features)): ax[i] = plt.subplot2grid((3,5), (i//3,i%3), colspan=1) ax[i] = sns.violinplot(data=india_nutrition_facts[num_features[i]], orient="h", color='#FFC72C') plt.title(num_features[i]) ax[9] = fig.add_axes([0.62,0.232,0.38,0.5]) ax[9] = sns.violinplot(data=india_nutrition_facts["Trans fat (g)"], orient="h", color='#DA291C') plt.title("Trans fat (g)", fontweight="bold") plt.suptitle("Distribution of the Content of Each Nutrition", fontsize=15) plt.tight_layout() plt.show() del df_num_features def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) for c in ['Trans fat (g)', 'Total carbohydrate (g)', 'Cholesterols (mg)', 'Sat Fat (g)']: india_nutrition_facts.loc[25, c] = india_nutrition_facts.loc[24, c] * 5 / 3 def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) index = india_nutrition_facts[india_nutrition_facts['Sodium (mg)'].isna()].index.tolist()[0] india_nutrition_facts.loc[index, 'Sodium (mg)'] = 1370.89 food_nutrition_facts = india_nutrition_facts[india_nutrition_facts['Per Serve Size'].str.endswith('g')] food_nutrition_facts['Per Serve Size'] = food_nutrition_facts['Per Serve Size'].str.replace(' g', '').astype(float) food_nutrition_facts.rename(columns={'Per Serve Size': 'Per Serve Size (g)'}, inplace=True) condiment_nutrition_facts = food_nutrition_facts[food_nutrition_facts['Menu Category'] == 'Condiments Menu'] food_nutrition_facts = food_nutrition_facts[food_nutrition_facts['Menu Category'] != 'Condiments Menu'] drink_nutrition_facts = india_nutrition_facts[india_nutrition_facts['Per Serve Size'].str.endswith('ml')] drink_nutrition_facts['Per Serve Size'] = drink_nutrition_facts['Per Serve Size'].str.replace(' ml', '').astype(float) drink_nutrition_facts.rename(columns={'Per Serve Size': 'Per Serve Size (ml)'}, inplace=True) def add_daily_value_features(df, cal): nutrition_daily_value = ['Energy (kCal)', 'Protein (g)', 'Total fat (g)', 'Sat Fat (g)', 'Trans fat (g)', 'Total carbohydrate (g)', 'Added Sugars (g)'] max_dv_percentage = [None, 20, 30, 10, 1, 50, 2.5] for i in range(len(nutrition_daily_value)): if 'Energy' in nutrition_daily_value[i]: nutrition_dv_name = nutrition_daily_value[i].replace('(kCal)', '') else: nutrition_dv_name = nutrition_daily_value[i].replace('(g)', '') nutrition_dv_name = nutrition_dv_name + '(% Daily Value) - ' + str(cal) + ' kCal' value = 0.0 if 'Energy' in nutrition_dv_name: value = df[nutrition_daily_value[i]] / cal * 100 elif 'Protein' in nutrition_dv_name or 'carbohydrate' in nutrition_dv_name: value = df[nutrition_daily_value[i]] * 4 / (cal * max_dv_percentage[i] / 100) * 100 elif 'Fat' in nutrition_dv_name or 'fat' in nutrition_dv_name: value = df[nutrition_daily_value[i]] * 9 / (cal * max_dv_percentage[i] / 100) * 100 elif 'Sugars' in nutrition_dv_name: value = df[nutrition_daily_value[i]] / (cal * max_dv_percentage[i] / 100) * 100 df[nutrition_dv_name] = round(value, 2) df['Cholesterols (% Daily Value)'] = round(df['Cholesterols (mg)'] / 300 * 100, 2) df['Sodium (% Daily Value)'] = round(df['Sodium (mg)'] / 2300 * 100, 2) return df food_nutrition_facts = add_daily_value_features(food_nutrition_facts, 1500) drink_nutrition_facts = add_daily_value_features(drink_nutrition_facts, 1500) condiment_nutrition_facts = add_daily_value_features(condiment_nutrition_facts, 1500) food_nutrition_facts.head()
code
105191527/cell_41
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns india_nutrition_facts = pd.read_csv('../input/mcdonalds-india-menu-nutrition-facts/India_Menu.csv') def highlight_color(s): return ['background-color: #FFC72C'] * 8 if s.name == 'Trans fat (g)' else [''] * 8 india_nutrition_facts.describe().style.apply(highlight_color, axis=0) fig, axs = plt.subplots(figsize=(15,8)) plt.rcParams.update({'font.size': 9.5}) ax = [None for _ in range(10)] df_num_features = india_nutrition_facts.select_dtypes(include=[np.number]) num_features = df_num_features.columns.tolist() num_features.remove("Trans fat (g)") for i in range(len(num_features)): ax[i] = plt.subplot2grid((3,5), (i//3,i%3), colspan=1) ax[i] = sns.violinplot(data=india_nutrition_facts[num_features[i]], orient="h", color='#FFC72C') plt.title(num_features[i]) ax[9] = fig.add_axes([0.62,0.232,0.38,0.5]) ax[9] = sns.violinplot(data=india_nutrition_facts["Trans fat (g)"], orient="h", color='#DA291C') plt.title("Trans fat (g)", fontweight="bold") plt.suptitle("Distribution of the Content of Each Nutrition", fontsize=15) plt.tight_layout() plt.show() del df_num_features def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) for c in ['Trans fat (g)', 'Total carbohydrate (g)', 'Cholesterols (mg)', 'Sat Fat (g)']: india_nutrition_facts.loc[25, c] = india_nutrition_facts.loc[24, c] * 5 / 3 def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) index = india_nutrition_facts[india_nutrition_facts['Sodium (mg)'].isna()].index.tolist()[0] india_nutrition_facts.loc[index, 'Sodium (mg)'] = 1370.89 drink_nutrition_facts = india_nutrition_facts[india_nutrition_facts['Per Serve Size'].str.endswith('ml')] drink_nutrition_facts['Per Serve Size'] = drink_nutrition_facts['Per Serve Size'].str.replace(' ml', '').astype(float) drink_nutrition_facts.rename(columns={'Per Serve Size': 'Per Serve Size (ml)'}, inplace=True) display(drink_nutrition_facts.head()) print(drink_nutrition_facts.shape)
code
105191527/cell_19
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns india_nutrition_facts = pd.read_csv('../input/mcdonalds-india-menu-nutrition-facts/India_Menu.csv') def highlight_color(s): return ['background-color: #FFC72C'] * 8 if s.name == 'Trans fat (g)' else [''] * 8 india_nutrition_facts.describe().style.apply(highlight_color, axis=0) fig, axs = plt.subplots(figsize=(15, 8)) plt.rcParams.update({'font.size': 9.5}) ax = [None for _ in range(10)] df_num_features = india_nutrition_facts.select_dtypes(include=[np.number]) num_features = df_num_features.columns.tolist() num_features.remove('Trans fat (g)') for i in range(len(num_features)): ax[i] = plt.subplot2grid((3, 5), (i // 3, i % 3), colspan=1) ax[i] = sns.violinplot(data=india_nutrition_facts[num_features[i]], orient='h', color='#FFC72C') plt.title(num_features[i]) ax[9] = fig.add_axes([0.62, 0.232, 0.38, 0.5]) ax[9] = sns.violinplot(data=india_nutrition_facts['Trans fat (g)'], orient='h', color='#DA291C') plt.title('Trans fat (g)', fontweight='bold') plt.suptitle('Distribution of the Content of Each Nutrition', fontsize=15) plt.tight_layout() plt.show() del df_num_features
code
105191527/cell_50
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns india_nutrition_facts = pd.read_csv('../input/mcdonalds-india-menu-nutrition-facts/India_Menu.csv') def highlight_color(s): return ['background-color: #FFC72C'] * 8 if s.name == 'Trans fat (g)' else [''] * 8 india_nutrition_facts.describe().style.apply(highlight_color, axis=0) fig, axs = plt.subplots(figsize=(15,8)) plt.rcParams.update({'font.size': 9.5}) ax = [None for _ in range(10)] df_num_features = india_nutrition_facts.select_dtypes(include=[np.number]) num_features = df_num_features.columns.tolist() num_features.remove("Trans fat (g)") for i in range(len(num_features)): ax[i] = plt.subplot2grid((3,5), (i//3,i%3), colspan=1) ax[i] = sns.violinplot(data=india_nutrition_facts[num_features[i]], orient="h", color='#FFC72C') plt.title(num_features[i]) ax[9] = fig.add_axes([0.62,0.232,0.38,0.5]) ax[9] = sns.violinplot(data=india_nutrition_facts["Trans fat (g)"], orient="h", color='#DA291C') plt.title("Trans fat (g)", fontweight="bold") plt.suptitle("Distribution of the Content of Each Nutrition", fontsize=15) plt.tight_layout() plt.show() del df_num_features def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) for c in ['Trans fat (g)', 'Total carbohydrate (g)', 'Cholesterols (mg)', 'Sat Fat (g)']: india_nutrition_facts.loc[25, c] = india_nutrition_facts.loc[24, c] * 5 / 3 def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) index = india_nutrition_facts[india_nutrition_facts['Sodium (mg)'].isna()].index.tolist()[0] india_nutrition_facts.loc[index, 'Sodium (mg)'] = 1370.89 food_nutrition_facts = india_nutrition_facts[india_nutrition_facts['Per Serve Size'].str.endswith('g')] food_nutrition_facts['Per Serve Size'] = food_nutrition_facts['Per Serve Size'].str.replace(' g', '').astype(float) food_nutrition_facts.rename(columns={'Per Serve Size': 'Per Serve Size (g)'}, inplace=True) condiment_nutrition_facts = food_nutrition_facts[food_nutrition_facts['Menu Category'] == 'Condiments Menu'] food_nutrition_facts = food_nutrition_facts[food_nutrition_facts['Menu Category'] != 'Condiments Menu'] drink_nutrition_facts = india_nutrition_facts[india_nutrition_facts['Per Serve Size'].str.endswith('ml')] drink_nutrition_facts['Per Serve Size'] = drink_nutrition_facts['Per Serve Size'].str.replace(' ml', '').astype(float) drink_nutrition_facts.rename(columns={'Per Serve Size': 'Per Serve Size (ml)'}, inplace=True) def add_daily_value_features(df, cal): nutrition_daily_value = ['Energy (kCal)', 'Protein (g)', 'Total fat (g)', 'Sat Fat (g)', 'Trans fat (g)', 'Total carbohydrate (g)', 'Added Sugars (g)'] max_dv_percentage = [None, 20, 30, 10, 1, 50, 2.5] for i in range(len(nutrition_daily_value)): if 'Energy' in nutrition_daily_value[i]: nutrition_dv_name = nutrition_daily_value[i].replace('(kCal)', '') else: nutrition_dv_name = nutrition_daily_value[i].replace('(g)', '') nutrition_dv_name = nutrition_dv_name + '(% Daily Value) - ' + str(cal) + ' kCal' value = 0.0 if 'Energy' in nutrition_dv_name: value = df[nutrition_daily_value[i]] / cal * 100 elif 'Protein' in nutrition_dv_name or 'carbohydrate' in nutrition_dv_name: value = df[nutrition_daily_value[i]] * 4 / (cal * max_dv_percentage[i] / 100) * 100 elif 'Fat' in nutrition_dv_name or 'fat' in nutrition_dv_name: value = df[nutrition_daily_value[i]] * 9 / (cal * max_dv_percentage[i] / 100) * 100 elif 'Sugars' in nutrition_dv_name: value = df[nutrition_daily_value[i]] / (cal * max_dv_percentage[i] / 100) * 100 df[nutrition_dv_name] = round(value, 2) df['Cholesterols (% Daily Value)'] = round(df['Cholesterols (mg)'] / 300 * 100, 2) df['Sodium (% Daily Value)'] = round(df['Sodium (mg)'] / 2300 * 100, 2) return df food_nutrition_facts = add_daily_value_features(food_nutrition_facts, 1500) drink_nutrition_facts = add_daily_value_features(drink_nutrition_facts, 1500) condiment_nutrition_facts = add_daily_value_features(condiment_nutrition_facts, 1500) condiment_nutrition_facts.head(10)
code
105191527/cell_52
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns india_nutrition_facts = pd.read_csv('../input/mcdonalds-india-menu-nutrition-facts/India_Menu.csv') def highlight_color(s): return ['background-color: #FFC72C'] * 8 if s.name == 'Trans fat (g)' else [''] * 8 india_nutrition_facts.describe().style.apply(highlight_color, axis=0) fig, axs = plt.subplots(figsize=(15,8)) plt.rcParams.update({'font.size': 9.5}) ax = [None for _ in range(10)] df_num_features = india_nutrition_facts.select_dtypes(include=[np.number]) num_features = df_num_features.columns.tolist() num_features.remove("Trans fat (g)") for i in range(len(num_features)): ax[i] = plt.subplot2grid((3,5), (i//3,i%3), colspan=1) ax[i] = sns.violinplot(data=india_nutrition_facts[num_features[i]], orient="h", color='#FFC72C') plt.title(num_features[i]) ax[9] = fig.add_axes([0.62,0.232,0.38,0.5]) ax[9] = sns.violinplot(data=india_nutrition_facts["Trans fat (g)"], orient="h", color='#DA291C') plt.title("Trans fat (g)", fontweight="bold") plt.suptitle("Distribution of the Content of Each Nutrition", fontsize=15) plt.tight_layout() plt.show() del df_num_features def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) df_check_ratio = india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')] df_check_ratio = df_check_ratio.drop(23) df_check_ratio['Per Serve Size'] = df_check_ratio['Per Serve Size'].str.replace(' g', '').astype(int) df_check_ratio.rename(columns={'Per Serve Size': 'Per Serve Size (g)'}, inplace=True) columns = df_check_ratio.columns.tolist() for c in ['Menu Category', 'Menu Items', 'Added Sugars (g)']: columns.remove(c) for c in columns: df_check_ratio.loc['Ratio', c] = df_check_ratio.loc[25, c] / df_check_ratio.loc[24, c] fig, ax = plt.subplots(figsize=(15,6)) plt.rcParams.update({'font.size': 13}) series_check_ratio = df_check_ratio.loc["Ratio", :].dropna() series_check_ratio = series_check_ratio.apply(lambda x: np.log(x)) series_check_ratio = series_check_ratio.sort_values(ascending=False) colors = [] for i in range(10): if(i==0): colors.append("#DA291C") elif(i>=7): colors.append("#1C75DA") else: colors.append("lightgray") ax = sns.barplot(x=series_check_ratio, y=series_check_ratio.index, edgecolor='black', orient='hor', palette=colors) sns.despine(top=True, right=True, left=True) ax.tick_params(left=False) plt.title("The Ratio of Nutrition Contents", fontsize=15, loc='left', y=1.05) plt.tight_layout() plt.show() for c in ['Trans fat (g)', 'Total carbohydrate (g)', 'Cholesterols (mg)', 'Sat Fat (g)']: india_nutrition_facts.loc[25, c] = india_nutrition_facts.loc[24, c] * 5 / 3 def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) index = india_nutrition_facts[india_nutrition_facts['Sodium (mg)'].isna()].index.tolist()[0] india_nutrition_facts.loc[index, 'Sodium (mg)'] = 1370.89 food_nutrition_facts = india_nutrition_facts[india_nutrition_facts['Per Serve Size'].str.endswith('g')] food_nutrition_facts['Per Serve Size'] = food_nutrition_facts['Per Serve Size'].str.replace(' g', '').astype(float) food_nutrition_facts.rename(columns={'Per Serve Size': 'Per Serve Size (g)'}, inplace=True) condiment_nutrition_facts = food_nutrition_facts[food_nutrition_facts['Menu Category'] == 'Condiments Menu'] food_nutrition_facts = food_nutrition_facts[food_nutrition_facts['Menu Category'] != 'Condiments Menu'] drink_nutrition_facts = india_nutrition_facts[india_nutrition_facts['Per Serve Size'].str.endswith('ml')] drink_nutrition_facts['Per Serve Size'] = drink_nutrition_facts['Per Serve Size'].str.replace(' ml', '').astype(float) drink_nutrition_facts.rename(columns={'Per Serve Size': 'Per Serve Size (ml)'}, inplace=True) def add_daily_value_features(df, cal): nutrition_daily_value = ['Energy (kCal)', 'Protein (g)', 'Total fat (g)', 'Sat Fat (g)', 'Trans fat (g)', 'Total carbohydrate (g)', 'Added Sugars (g)'] max_dv_percentage = [None, 20, 30, 10, 1, 50, 2.5] for i in range(len(nutrition_daily_value)): if 'Energy' in nutrition_daily_value[i]: nutrition_dv_name = nutrition_daily_value[i].replace('(kCal)', '') else: nutrition_dv_name = nutrition_daily_value[i].replace('(g)', '') nutrition_dv_name = nutrition_dv_name + '(% Daily Value) - ' + str(cal) + ' kCal' value = 0.0 if 'Energy' in nutrition_dv_name: value = df[nutrition_daily_value[i]] / cal * 100 elif 'Protein' in nutrition_dv_name or 'carbohydrate' in nutrition_dv_name: value = df[nutrition_daily_value[i]] * 4 / (cal * max_dv_percentage[i] / 100) * 100 elif 'Fat' in nutrition_dv_name or 'fat' in nutrition_dv_name: value = df[nutrition_daily_value[i]] * 9 / (cal * max_dv_percentage[i] / 100) * 100 elif 'Sugars' in nutrition_dv_name: value = df[nutrition_daily_value[i]] / (cal * max_dv_percentage[i] / 100) * 100 df[nutrition_dv_name] = round(value, 2) df['Cholesterols (% Daily Value)'] = round(df['Cholesterols (mg)'] / 300 * 100, 2) df['Sodium (% Daily Value)'] = round(df['Sodium (mg)'] / 2300 * 100, 2) return df food_nutrition_facts = add_daily_value_features(food_nutrition_facts, 1500) drink_nutrition_facts = add_daily_value_features(drink_nutrition_facts, 1500) condiment_nutrition_facts = add_daily_value_features(condiment_nutrition_facts, 1500) def clean_dv_features(features): clean_features = [x.replace('% Daily Value', '') for x in features] clean_features = [x.replace(' - 1500 kCal', '').strip(' ()') for x in clean_features] print(clean_features) return clean_features df_food = food_nutrition_facts.copy() df_drink = drink_nutrition_facts.copy() df_condiment = condiment_nutrition_facts.copy() df_food = df_food.drop('Per Serve Size (g)', axis=1) df_drink = df_drink.drop('Per Serve Size (ml)', axis=1) df_condiment = df_condiment.drop('Per Serve Size (g)', axis=1) daily_value_features = [x for x in df_food.columns.tolist() if 'Daily Value' in x] clean_daily_value_features = clean_dv_features(daily_value_features) required_nutritions = ['Energy (% Daily Value) - 1500 kCal', 'Protein (% Daily Value) - 1500 kCal', 'Total fat (% Daily Value) - 1500 kCal', 'Total carbohydrate (% Daily Value) - 1500 kCal'] clean_required_nutritions = clean_dv_features(required_nutritions) restricted_nutritions = ['Sat Fat (% Daily Value) - 1500 kCal', 'Trans fat (% Daily Value) - 1500 kCal', 'Added Sugars (% Daily Value) - 1500 kCal', 'Cholesterols (% Daily Value)', 'Sodium (% Daily Value)'] clean_restricted_nutritions = clean_dv_features(restricted_nutritions) num_features = df_food.select_dtypes(include=np.number).columns.tolist()
code
105191527/cell_49
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns india_nutrition_facts = pd.read_csv('../input/mcdonalds-india-menu-nutrition-facts/India_Menu.csv') def highlight_color(s): return ['background-color: #FFC72C'] * 8 if s.name == 'Trans fat (g)' else [''] * 8 india_nutrition_facts.describe().style.apply(highlight_color, axis=0) fig, axs = plt.subplots(figsize=(15,8)) plt.rcParams.update({'font.size': 9.5}) ax = [None for _ in range(10)] df_num_features = india_nutrition_facts.select_dtypes(include=[np.number]) num_features = df_num_features.columns.tolist() num_features.remove("Trans fat (g)") for i in range(len(num_features)): ax[i] = plt.subplot2grid((3,5), (i//3,i%3), colspan=1) ax[i] = sns.violinplot(data=india_nutrition_facts[num_features[i]], orient="h", color='#FFC72C') plt.title(num_features[i]) ax[9] = fig.add_axes([0.62,0.232,0.38,0.5]) ax[9] = sns.violinplot(data=india_nutrition_facts["Trans fat (g)"], orient="h", color='#DA291C') plt.title("Trans fat (g)", fontweight="bold") plt.suptitle("Distribution of the Content of Each Nutrition", fontsize=15) plt.tight_layout() plt.show() del df_num_features def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) for c in ['Trans fat (g)', 'Total carbohydrate (g)', 'Cholesterols (mg)', 'Sat Fat (g)']: india_nutrition_facts.loc[25, c] = india_nutrition_facts.loc[24, c] * 5 / 3 def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) index = india_nutrition_facts[india_nutrition_facts['Sodium (mg)'].isna()].index.tolist()[0] india_nutrition_facts.loc[index, 'Sodium (mg)'] = 1370.89 food_nutrition_facts = india_nutrition_facts[india_nutrition_facts['Per Serve Size'].str.endswith('g')] food_nutrition_facts['Per Serve Size'] = food_nutrition_facts['Per Serve Size'].str.replace(' g', '').astype(float) food_nutrition_facts.rename(columns={'Per Serve Size': 'Per Serve Size (g)'}, inplace=True) condiment_nutrition_facts = food_nutrition_facts[food_nutrition_facts['Menu Category'] == 'Condiments Menu'] food_nutrition_facts = food_nutrition_facts[food_nutrition_facts['Menu Category'] != 'Condiments Menu'] drink_nutrition_facts = india_nutrition_facts[india_nutrition_facts['Per Serve Size'].str.endswith('ml')] drink_nutrition_facts['Per Serve Size'] = drink_nutrition_facts['Per Serve Size'].str.replace(' ml', '').astype(float) drink_nutrition_facts.rename(columns={'Per Serve Size': 'Per Serve Size (ml)'}, inplace=True) def add_daily_value_features(df, cal): nutrition_daily_value = ['Energy (kCal)', 'Protein (g)', 'Total fat (g)', 'Sat Fat (g)', 'Trans fat (g)', 'Total carbohydrate (g)', 'Added Sugars (g)'] max_dv_percentage = [None, 20, 30, 10, 1, 50, 2.5] for i in range(len(nutrition_daily_value)): if 'Energy' in nutrition_daily_value[i]: nutrition_dv_name = nutrition_daily_value[i].replace('(kCal)', '') else: nutrition_dv_name = nutrition_daily_value[i].replace('(g)', '') nutrition_dv_name = nutrition_dv_name + '(% Daily Value) - ' + str(cal) + ' kCal' value = 0.0 if 'Energy' in nutrition_dv_name: value = df[nutrition_daily_value[i]] / cal * 100 elif 'Protein' in nutrition_dv_name or 'carbohydrate' in nutrition_dv_name: value = df[nutrition_daily_value[i]] * 4 / (cal * max_dv_percentage[i] / 100) * 100 elif 'Fat' in nutrition_dv_name or 'fat' in nutrition_dv_name: value = df[nutrition_daily_value[i]] * 9 / (cal * max_dv_percentage[i] / 100) * 100 elif 'Sugars' in nutrition_dv_name: value = df[nutrition_daily_value[i]] / (cal * max_dv_percentage[i] / 100) * 100 df[nutrition_dv_name] = round(value, 2) df['Cholesterols (% Daily Value)'] = round(df['Cholesterols (mg)'] / 300 * 100, 2) df['Sodium (% Daily Value)'] = round(df['Sodium (mg)'] / 2300 * 100, 2) return df food_nutrition_facts = add_daily_value_features(food_nutrition_facts, 1500) drink_nutrition_facts = add_daily_value_features(drink_nutrition_facts, 1500) condiment_nutrition_facts = add_daily_value_features(condiment_nutrition_facts, 1500) drink_nutrition_facts.head()
code
105191527/cell_32
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns india_nutrition_facts = pd.read_csv('../input/mcdonalds-india-menu-nutrition-facts/India_Menu.csv') def highlight_color(s): return ['background-color: #FFC72C'] * 8 if s.name == 'Trans fat (g)' else [''] * 8 india_nutrition_facts.describe().style.apply(highlight_color, axis=0) fig, axs = plt.subplots(figsize=(15,8)) plt.rcParams.update({'font.size': 9.5}) ax = [None for _ in range(10)] df_num_features = india_nutrition_facts.select_dtypes(include=[np.number]) num_features = df_num_features.columns.tolist() num_features.remove("Trans fat (g)") for i in range(len(num_features)): ax[i] = plt.subplot2grid((3,5), (i//3,i%3), colspan=1) ax[i] = sns.violinplot(data=india_nutrition_facts[num_features[i]], orient="h", color='#FFC72C') plt.title(num_features[i]) ax[9] = fig.add_axes([0.62,0.232,0.38,0.5]) ax[9] = sns.violinplot(data=india_nutrition_facts["Trans fat (g)"], orient="h", color='#DA291C') plt.title("Trans fat (g)", fontweight="bold") plt.suptitle("Distribution of the Content of Each Nutrition", fontsize=15) plt.tight_layout() plt.show() del df_num_features def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) for c in ['Trans fat (g)', 'Total carbohydrate (g)', 'Cholesterols (mg)', 'Sat Fat (g)']: india_nutrition_facts.loc[25, c] = india_nutrition_facts.loc[24, c] * 5 / 3 def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) india_nutrition_facts[india_nutrition_facts['Menu Items'].str.startswith('Piri piri Mc Spicy')]
code
105191527/cell_28
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns india_nutrition_facts = pd.read_csv('../input/mcdonalds-india-menu-nutrition-facts/India_Menu.csv') def highlight_color(s): return ['background-color: #FFC72C'] * 8 if s.name == 'Trans fat (g)' else [''] * 8 india_nutrition_facts.describe().style.apply(highlight_color, axis=0) fig, axs = plt.subplots(figsize=(15,8)) plt.rcParams.update({'font.size': 9.5}) ax = [None for _ in range(10)] df_num_features = india_nutrition_facts.select_dtypes(include=[np.number]) num_features = df_num_features.columns.tolist() num_features.remove("Trans fat (g)") for i in range(len(num_features)): ax[i] = plt.subplot2grid((3,5), (i//3,i%3), colspan=1) ax[i] = sns.violinplot(data=india_nutrition_facts[num_features[i]], orient="h", color='#FFC72C') plt.title(num_features[i]) ax[9] = fig.add_axes([0.62,0.232,0.38,0.5]) ax[9] = sns.violinplot(data=india_nutrition_facts["Trans fat (g)"], orient="h", color='#DA291C') plt.title("Trans fat (g)", fontweight="bold") plt.suptitle("Distribution of the Content of Each Nutrition", fontsize=15) plt.tight_layout() plt.show() del df_num_features def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) for c in ['Trans fat (g)', 'Total carbohydrate (g)', 'Cholesterols (mg)', 'Sat Fat (g)']: india_nutrition_facts.loc[25, c] = india_nutrition_facts.loc[24, c] * 5 / 3 def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1)
code
105191527/cell_14
[ "text_html_output_1.png" ]
import pandas as pd india_nutrition_facts = pd.read_csv('../input/mcdonalds-india-menu-nutrition-facts/India_Menu.csv') def highlight_color(s): return ['background-color: #FFC72C'] * 8 if s.name == 'Trans fat (g)' else [''] * 8 india_nutrition_facts.describe().style.apply(highlight_color, axis=0)
code
105191527/cell_37
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns india_nutrition_facts = pd.read_csv('../input/mcdonalds-india-menu-nutrition-facts/India_Menu.csv') def highlight_color(s): return ['background-color: #FFC72C'] * 8 if s.name == 'Trans fat (g)' else [''] * 8 india_nutrition_facts.describe().style.apply(highlight_color, axis=0) fig, axs = plt.subplots(figsize=(15,8)) plt.rcParams.update({'font.size': 9.5}) ax = [None for _ in range(10)] df_num_features = india_nutrition_facts.select_dtypes(include=[np.number]) num_features = df_num_features.columns.tolist() num_features.remove("Trans fat (g)") for i in range(len(num_features)): ax[i] = plt.subplot2grid((3,5), (i//3,i%3), colspan=1) ax[i] = sns.violinplot(data=india_nutrition_facts[num_features[i]], orient="h", color='#FFC72C') plt.title(num_features[i]) ax[9] = fig.add_axes([0.62,0.232,0.38,0.5]) ax[9] = sns.violinplot(data=india_nutrition_facts["Trans fat (g)"], orient="h", color='#DA291C') plt.title("Trans fat (g)", fontweight="bold") plt.suptitle("Distribution of the Content of Each Nutrition", fontsize=15) plt.tight_layout() plt.show() del df_num_features def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) for c in ['Trans fat (g)', 'Total carbohydrate (g)', 'Cholesterols (mg)', 'Sat Fat (g)']: india_nutrition_facts.loc[25, c] = india_nutrition_facts.loc[24, c] * 5 / 3 def highlight_color(s): return ['background-color: #FFC72C'] * 13 if s.name == 25 else [''] * 13 india_nutrition_facts[india_nutrition_facts['Menu Items'].str.endswith('Chicken Strips')].style.apply(highlight_color, axis=1) index = india_nutrition_facts[india_nutrition_facts['Sodium (mg)'].isna()].index.tolist()[0] india_nutrition_facts.loc[index, 'Sodium (mg)'] = 1370.89 india_nutrition_facts.info()
code
105191527/cell_12
[ "text_html_output_1.png" ]
import pandas as pd india_nutrition_facts = pd.read_csv('../input/mcdonalds-india-menu-nutrition-facts/India_Menu.csv') india_nutrition_facts.head()
code
16137293/cell_11
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder import gc import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/train.csv') y = data.deal_probability.copy() X_train, X_test, y_train, y_test = train_test_split(data, y, test_size=0.2, random_state=23) del data gc.collect() predictors = ['num_desc_punct', 'num_words_title', 'words_vs_unique_title', 'num_unique_words_title', 'words_vs_unique_description', 'num_unique_words_description', 'num_words_description', 'price', 'item_seq_number', 'Day of Month', 'weekday'] categorical = ['image_top_1', 'param_1', 'param_2', 'param_3', 'city', 'region', 'category_name', 'parent_category_name', 'user_type'] predictors = predictors + categorical for feature in categorical: print(f'Transforming {feature}...') encoder = LabelEncoder() X_train[feature].fillna('unknown', inplace=True) X_test[feature].fillna('unknown', inplace=True) encoder.fit(X_train[feature].append(X_test[feature]).astype(str)) X_train[feature] = encoder.transform(X_train[feature].astype(str)) X_test[feature] = encoder.transform(X_test[feature].astype(str))
code
16137293/cell_18
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.model_selection import train_test_split import gc import lightgbm as lgb import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy data = pd.read_csv('../input/train.csv') y = data.deal_probability.copy() X_train, X_test, y_train, y_test = train_test_split(data, y, test_size=0.2, random_state=23) del data gc.collect() count_vectorizer_title = CountVectorizer(stop_words=stopwords.words('russian'), lowercase=True, ngram_range=(1, 2), max_features=8000) title_counts = count_vectorizer_title.fit_transform(X_train['title'].append(X_test['title'])) train_title_counts = title_counts[:len(X_train)] test_title_counts = title_counts[len(X_train):] count_vectorizer_desc = TfidfVectorizer(stop_words=stopwords.words('russian'), lowercase=True, ngram_range=(1, 2), max_features=17000) desc_counts = count_vectorizer_desc.fit_transform(X_train['description'].append(X_test['description'])) train_desc_counts = desc_counts[:len(X_train)] test_desc_counts = desc_counts[len(X_train):] (train_title_counts.shape, train_desc_counts.shape) predictors = ['num_desc_punct', 'num_words_title', 'words_vs_unique_title', 'num_unique_words_title', 'words_vs_unique_description', 'num_unique_words_description', 'num_words_description', 'price', 'item_seq_number', 'Day of Month', 'weekday'] categorical = ['image_top_1', 'param_1', 'param_2', 'param_3', 'city', 'region', 'category_name', 'parent_category_name', 'user_type'] predictors = predictors + categorical X_train['price'] = np.log(X_train['price'] + 0.001) X_train['price'].fillna(-1, inplace=True) X_train['image_top_1'].fillna(-1, inplace=True) X_test['price'] = np.log(X_test['price'] + 0.001) X_test['price'].fillna(-1, inplace=True) X_test['image_top_1'].fillna(-1, inplace=True) feature_names = np.hstack([count_vectorizer_desc.get_feature_names(), count_vectorizer_title.get_feature_names(), predictors]) test = scipy.sparse.hstack([test_desc_counts, test_title_counts, X_test.loc[:, predictors]], format='csr') train = scipy.sparse.hstack([train_desc_counts, train_title_counts, X_train.loc[:, predictors]], format='csr') import lightgbm as lgb lgbm_params = {'objective': 'regression', 'metric': 'rmse', 'num_leaves': 300, 'learning_rate': 0.02, 'feature_fraction': 0.6, 'bagging_fraction': 0.8, 'verbosity': -1} lgtrain = lgb.Dataset(train, y_train, feature_name=list(feature_names), categorical_feature=categorical) lgvalid = lgb.Dataset(test, y_test, feature_name=list(feature_names), categorical_feature=categorical) lgb_clf = lgb.train(lgbm_params, lgtrain, num_boost_round=5000, valid_sets=[lgtrain, lgvalid], valid_names=['train', 'valid'], early_stopping_rounds=50, verbose_eval=100) print('Model Evaluation Stage') print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, lgb_clf.predict(test))))
code
16137293/cell_8
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from nltk.corpus import stopwords from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.model_selection import train_test_split import gc import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/train.csv') y = data.deal_probability.copy() X_train, X_test, y_train, y_test = train_test_split(data, y, test_size=0.2, random_state=23) del data gc.collect() count_vectorizer_title = CountVectorizer(stop_words=stopwords.words('russian'), lowercase=True, ngram_range=(1, 2), max_features=8000) title_counts = count_vectorizer_title.fit_transform(X_train['title'].append(X_test['title'])) train_title_counts = title_counts[:len(X_train)] test_title_counts = title_counts[len(X_train):] count_vectorizer_desc = TfidfVectorizer(stop_words=stopwords.words('russian'), lowercase=True, ngram_range=(1, 2), max_features=17000) desc_counts = count_vectorizer_desc.fit_transform(X_train['description'].append(X_test['description'])) train_desc_counts = desc_counts[:len(X_train)] test_desc_counts = desc_counts[len(X_train):] (train_title_counts.shape, train_desc_counts.shape)
code
16137293/cell_15
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.model_selection import train_test_split import gc import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/train.csv') y = data.deal_probability.copy() X_train, X_test, y_train, y_test = train_test_split(data, y, test_size=0.2, random_state=23) del data gc.collect() count_vectorizer_title = CountVectorizer(stop_words=stopwords.words('russian'), lowercase=True, ngram_range=(1, 2), max_features=8000) title_counts = count_vectorizer_title.fit_transform(X_train['title'].append(X_test['title'])) train_title_counts = title_counts[:len(X_train)] test_title_counts = title_counts[len(X_train):] count_vectorizer_desc = TfidfVectorizer(stop_words=stopwords.words('russian'), lowercase=True, ngram_range=(1, 2), max_features=17000) desc_counts = count_vectorizer_desc.fit_transform(X_train['description'].append(X_test['description'])) train_desc_counts = desc_counts[:len(X_train)] test_desc_counts = desc_counts[len(X_train):] (train_title_counts.shape, train_desc_counts.shape) predictors = ['num_desc_punct', 'num_words_title', 'words_vs_unique_title', 'num_unique_words_title', 'words_vs_unique_description', 'num_unique_words_description', 'num_words_description', 'price', 'item_seq_number', 'Day of Month', 'weekday'] categorical = ['image_top_1', 'param_1', 'param_2', 'param_3', 'city', 'region', 'category_name', 'parent_category_name', 'user_type'] predictors = predictors + categorical X_train['price'] = np.log(X_train['price'] + 0.001) X_train['price'].fillna(-1, inplace=True) X_train['image_top_1'].fillna(-1, inplace=True) X_test['price'] = np.log(X_test['price'] + 0.001) X_test['price'].fillna(-1, inplace=True) X_test['image_top_1'].fillna(-1, inplace=True) feature_names = np.hstack([count_vectorizer_desc.get_feature_names(), count_vectorizer_title.get_feature_names(), predictors]) print('Number of features:', len(feature_names))
code
16137293/cell_3
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import gc import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/train.csv') y = data.deal_probability.copy() X_train, X_test, y_train, y_test = train_test_split(data, y, test_size=0.2, random_state=23) del data gc.collect() X_train.head()
code
1010626/cell_6
[ "image_output_2.png", "image_output_1.png" ]
from glob import glob import cv2 import matplotlib.pyplot as plt import numpy as np import pandas as pd from glob import glob basepath = '../input/train/' all_cervix_images = [] for path in glob(basepath + '*'): cervix_type = path.split('/')[-1] cervix_images = glob(basepath + cervix_type + '/*') all_cervix_images = all_cervix_images + cervix_images all_cervix_images = pd.DataFrame({'imagepath': all_cervix_images}) all_cervix_images['filetype'] = all_cervix_images.apply(lambda row: row.imagepath.split('.')[-1], axis=1) all_cervix_images['type'] = all_cervix_images.apply(lambda row: row.imagepath.split('/')[-2], axis=1) i = 1 fig = plt.figure(figsize=(12, 8)) for t in all_cervix_images['type'].unique()[:1]: ax = fig.add_subplot(1, 3, i) f = all_cervix_images[all_cervix_images['type'] == t]['imagepath'].values[0] img = cv2.imread(f) Z = img.reshape((-1, 3)) Z = np.float32(Z) criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) '\n Right now the mask has an either in or out policy \n ' K = 8 ret, label, center = cv2.kmeans(Z, K, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS) center = np.uint8(center) res = center[label.flatten()] res2 = res.reshape(img.shape) plt.imshow(res2, cmap='gray') plt.show() plt.title('sample for cervix {}'.format(t)) "\n screen_res = 1280, 720\n scale_width = screen_res[0] / img.shape[1]\n scale_height = screen_res[1] / img.shape[0]\n scale = min(scale_width, scale_height)\n window_width = int(img.shape[1] * scale)\n window_height = int(img.shape[0] * scale)\n cv2.namedWindow('dst_rt', cv2.WINDOW_NORMAL)\n cv2.resizeWindow('dst_rt', window_width, window_height)\n cv2.imshow('dst_rt', res2)\n cv2.waitKey(0)\n cv2.destroyAllWindows()\n "
code
1010626/cell_3
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from skimage.io import imread, imshow import cv2 from subprocess import check_output print(check_output(['ls', '../input/train']).decode('utf8'))
code
1010626/cell_5
[ "text_html_output_1.png" ]
from glob import glob import pandas as pd from glob import glob basepath = '../input/train/' all_cervix_images = [] for path in glob(basepath + '*'): cervix_type = path.split('/')[-1] cervix_images = glob(basepath + cervix_type + '/*') all_cervix_images = all_cervix_images + cervix_images all_cervix_images = pd.DataFrame({'imagepath': all_cervix_images}) all_cervix_images['filetype'] = all_cervix_images.apply(lambda row: row.imagepath.split('.')[-1], axis=1) all_cervix_images['type'] = all_cervix_images.apply(lambda row: row.imagepath.split('/')[-2], axis=1) all_cervix_images.head()
code
72075238/cell_25
[ "image_output_1.png" ]
import numpy as np import pandas as pd train_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') train_dataset.fillna(0, inplace=True) test_dataset.fillna(0, inplace=True) train_dataset.isnull().sum() copy_train_dataset = train_dataset.copy() def non_numeric_data(df): columns = df.columns.values for column in columns: text_digit = {} def convert_to_int(key): return text_digit[key] if df[column].dtype != np.int64 and df[column].dtype != np.float64: column_content = df[column].values.tolist() unique_elements = set(column_content) x = 0 for unique in unique_elements: if unique not in text_digit: text_digit[unique] = x x = x + 1 df[column] = list(map(convert_to_int, df[column])) return df non_numeric_train = non_numeric_data(copy_train_dataset) numeric_column_names = non_numeric_train.columns.tolist() non_numeric_train.OverallQual.unique()
code
72075238/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd train_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') test_dataset.tail()
code
72075238/cell_23
[ "image_output_1.png" ]
import numpy as np import pandas as pd train_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') train_dataset.fillna(0, inplace=True) test_dataset.fillna(0, inplace=True) train_dataset.isnull().sum() copy_train_dataset = train_dataset.copy() def non_numeric_data(df): columns = df.columns.values for column in columns: text_digit = {} def convert_to_int(key): return text_digit[key] if df[column].dtype != np.int64 and df[column].dtype != np.float64: column_content = df[column].values.tolist() unique_elements = set(column_content) x = 0 for unique in unique_elements: if unique not in text_digit: text_digit[unique] = x x = x + 1 df[column] = list(map(convert_to_int, df[column])) return df non_numeric_train = non_numeric_data(copy_train_dataset) numeric_column_names = non_numeric_train.columns.tolist() correlation = [] for item in numeric_column_names: correlation.append(non_numeric_train[item].corr(non_numeric_train['SalePrice'])) correlation_list_df = pd.DataFrame({'column': numeric_column_names, 'correlation': correlation}) correlation_list_df = correlation_list_df.sort_values(by='correlation', ascending=False) print(correlation_list_df)
code
72075238/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd train_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') train_dataset.fillna(0, inplace=True) test_dataset.fillna(0, inplace=True) train_dataset.isnull().sum()
code
72075238/cell_29
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') train_dataset.fillna(0, inplace=True) test_dataset.fillna(0, inplace=True) train_dataset.isnull().sum() copy_train_dataset = train_dataset.copy() def non_numeric_data(df): columns = df.columns.values for column in columns: text_digit = {} def convert_to_int(key): return text_digit[key] if df[column].dtype != np.int64 and df[column].dtype != np.float64: column_content = df[column].values.tolist() unique_elements = set(column_content) x = 0 for unique in unique_elements: if unique not in text_digit: text_digit[unique] = x x = x + 1 df[column] = list(map(convert_to_int, df[column])) return df non_numeric_train = non_numeric_data(copy_train_dataset) plt.xticks(rotation=90) plt.xticks(rotation=90) plt.xticks(rotation=90) plt.xticks(rotation=90) numeric_column_names = non_numeric_train.columns.tolist() correlation = [] for item in numeric_column_names: correlation.append(non_numeric_train[item].corr(non_numeric_train['SalePrice'])) correlation_list_df = pd.DataFrame({'column': numeric_column_names, 'correlation': correlation}) correlation_list_df = correlation_list_df.sort_values(by='correlation', ascending=False) plt.xticks(rotation=90) non_numeric_train.OverallQual.unique() quality_pivot = non_numeric_train.pivot_table(index='OverallQual', values='SalePrice', aggfunc=np.median) quality_pivot.plot(kind='bar', color='green') plt.xlabel('Overall Quality') plt.ylabel('Median') plt.xticks(rotation=0) plt.show()
code
72075238/cell_39
[ "image_output_1.png" ]
import numpy as np import pandas as pd train_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') train_dataset.fillna(0, inplace=True) test_dataset.fillna(0, inplace=True) train_dataset.isnull().sum() copy_train_dataset = train_dataset.copy() def non_numeric_data(df): columns = df.columns.values for column in columns: text_digit = {} def convert_to_int(key): return text_digit[key] if df[column].dtype != np.int64 and df[column].dtype != np.float64: column_content = df[column].values.tolist() unique_elements = set(column_content) x = 0 for unique in unique_elements: if unique not in text_digit: text_digit[unique] = x x = x + 1 df[column] = list(map(convert_to_int, df[column])) return df non_numeric_train = non_numeric_data(copy_train_dataset) numeric_column_names = non_numeric_train.columns.tolist() correlation = [] for item in numeric_column_names: correlation.append(non_numeric_train[item].corr(non_numeric_train['SalePrice'])) correlation_list_df = pd.DataFrame({'column': numeric_column_names, 'correlation': correlation}) correlation_list_df = correlation_list_df.sort_values(by='correlation', ascending=False) submission = pd.DataFrame() submission['Id'] = test_dataset.Id submission.head()
code
72075238/cell_19
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') train_dataset.fillna(0, inplace=True) test_dataset.fillna(0, inplace=True) train_dataset.isnull().sum() copy_train_dataset = train_dataset.copy() def non_numeric_data(df): columns = df.columns.values for column in columns: text_digit = {} def convert_to_int(key): return text_digit[key] if df[column].dtype != np.int64 and df[column].dtype != np.float64: column_content = df[column].values.tolist() unique_elements = set(column_content) x = 0 for unique in unique_elements: if unique not in text_digit: text_digit[unique] = x x = x + 1 df[column] = list(map(convert_to_int, df[column])) return df non_numeric_train = non_numeric_data(copy_train_dataset) plt.xticks(rotation=90) plt.xticks(rotation=90) plt.xticks(rotation=90) plt.subplots(figsize=(19, 4)) sns.barplot(x=non_numeric_train['OverallQual'], y=non_numeric_train['SalePrice']) plt.xticks(rotation=90) plt.show()
code
72075238/cell_7
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns train_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') train_dataset.fillna(0, inplace=True) test_dataset.fillna(0, inplace=True) train_dataset.isnull().sum() sns.displot(train_dataset['SalePrice'])
code
72075238/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') train_dataset.fillna(0, inplace=True) test_dataset.fillna(0, inplace=True) train_dataset.isnull().sum() copy_train_dataset = train_dataset.copy() def non_numeric_data(df): columns = df.columns.values for column in columns: text_digit = {} def convert_to_int(key): return text_digit[key] if df[column].dtype != np.int64 and df[column].dtype != np.float64: column_content = df[column].values.tolist() unique_elements = set(column_content) x = 0 for unique in unique_elements: if unique not in text_digit: text_digit[unique] = x x = x + 1 df[column] = list(map(convert_to_int, df[column])) return df non_numeric_train = non_numeric_data(copy_train_dataset) plt.xticks(rotation=90) plt.subplots(figsize=(19, 4)) sns.barplot(x=non_numeric_train['SaleType'], y=non_numeric_train['SalePrice']) plt.xticks(rotation=90) plt.show()
code
72075238/cell_3
[ "image_output_1.png" ]
import pandas as pd train_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') train_dataset.head()
code
72075238/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') train_dataset.fillna(0, inplace=True) test_dataset.fillna(0, inplace=True) train_dataset.isnull().sum() copy_train_dataset = train_dataset.copy() def non_numeric_data(df): columns = df.columns.values for column in columns: text_digit = {} def convert_to_int(key): return text_digit[key] if df[column].dtype != np.int64 and df[column].dtype != np.float64: column_content = df[column].values.tolist() unique_elements = set(column_content) x = 0 for unique in unique_elements: if unique not in text_digit: text_digit[unique] = x x = x + 1 df[column] = list(map(convert_to_int, df[column])) return df non_numeric_train = non_numeric_data(copy_train_dataset) plt.xticks(rotation=90) plt.xticks(rotation=90) plt.subplots(figsize=(19, 4)) sns.barplot(x=train_dataset['Neighborhood'], y=non_numeric_train['SalePrice']) plt.xticks(rotation=90) plt.show()
code
72075238/cell_35
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression clf = LinearRegression(fit_intercept=False, normalize=False, n_jobs=-1) model = clf.fit(X_train, y_train) print(model.score(X_test, y_test))
code
72075238/cell_24
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') train_dataset.fillna(0, inplace=True) test_dataset.fillna(0, inplace=True) train_dataset.isnull().sum() copy_train_dataset = train_dataset.copy() def non_numeric_data(df): columns = df.columns.values for column in columns: text_digit = {} def convert_to_int(key): return text_digit[key] if df[column].dtype != np.int64 and df[column].dtype != np.float64: column_content = df[column].values.tolist() unique_elements = set(column_content) x = 0 for unique in unique_elements: if unique not in text_digit: text_digit[unique] = x x = x + 1 df[column] = list(map(convert_to_int, df[column])) return df non_numeric_train = non_numeric_data(copy_train_dataset) plt.xticks(rotation=90) plt.xticks(rotation=90) plt.xticks(rotation=90) plt.xticks(rotation=90) numeric_column_names = non_numeric_train.columns.tolist() correlation = [] for item in numeric_column_names: correlation.append(non_numeric_train[item].corr(non_numeric_train['SalePrice'])) correlation_list_df = pd.DataFrame({'column': numeric_column_names, 'correlation': correlation}) correlation_list_df = correlation_list_df.sort_values(by='correlation', ascending=False) plt.subplots(figsize=(19, 4)) sns.barplot(x=correlation_list_df['column'], y=correlation_list_df['correlation']) plt.xticks(rotation=90) plt.ylabel('Correlation', fontsize=13) plt.xlabel('Columns', fontsize=13) plt.title('Correlation of numeric columns with SalePrice') plt.show()
code
72075238/cell_14
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') train_dataset.fillna(0, inplace=True) test_dataset.fillna(0, inplace=True) train_dataset.isnull().sum() copy_train_dataset = train_dataset.copy() def non_numeric_data(df): columns = df.columns.values for column in columns: text_digit = {} def convert_to_int(key): return text_digit[key] if df[column].dtype != np.int64 and df[column].dtype != np.float64: column_content = df[column].values.tolist() unique_elements = set(column_content) x = 0 for unique in unique_elements: if unique not in text_digit: text_digit[unique] = x x = x + 1 df[column] = list(map(convert_to_int, df[column])) return df non_numeric_train = non_numeric_data(copy_train_dataset) plt.subplots(figsize=(19, 4)) sns.barplot(x=non_numeric_train['YrSold'], y=non_numeric_train['SalePrice']) plt.xticks(rotation=90) plt.show()
code
72075238/cell_27
[ "image_output_1.png" ]
import numpy as np import pandas as pd train_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') train_dataset.fillna(0, inplace=True) test_dataset.fillna(0, inplace=True) train_dataset.isnull().sum() copy_train_dataset = train_dataset.copy() def non_numeric_data(df): columns = df.columns.values for column in columns: text_digit = {} def convert_to_int(key): return text_digit[key] if df[column].dtype != np.int64 and df[column].dtype != np.float64: column_content = df[column].values.tolist() unique_elements = set(column_content) x = 0 for unique in unique_elements: if unique not in text_digit: text_digit[unique] = x x = x + 1 df[column] = list(map(convert_to_int, df[column])) return df non_numeric_train = non_numeric_data(copy_train_dataset) numeric_column_names = non_numeric_train.columns.tolist() non_numeric_train.OverallQual.unique() quality_pivot = non_numeric_train.pivot_table(index='OverallQual', values='SalePrice', aggfunc=np.median) quality_pivot
code
72075238/cell_37
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression clf = LinearRegression(fit_intercept=False, normalize=False, n_jobs=-1) model = clf.fit(X_train, y_train) result = model.predict(X_test) result.shape
code
72075238/cell_12
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd train_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv') test_dataset = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv') train_dataset.fillna(0, inplace=True) test_dataset.fillna(0, inplace=True) train_dataset.isnull().sum() copy_train_dataset = train_dataset.copy() def non_numeric_data(df): columns = df.columns.values for column in columns: text_digit = {} def convert_to_int(key): return text_digit[key] if df[column].dtype != np.int64 and df[column].dtype != np.float64: column_content = df[column].values.tolist() unique_elements = set(column_content) x = 0 for unique in unique_elements: if unique not in text_digit: text_digit[unique] = x x = x + 1 df[column] = list(map(convert_to_int, df[column])) return df non_numeric_train = non_numeric_data(copy_train_dataset) non_numeric_train.head()
code
88083684/cell_9
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tydiqa-bengali-telugu/tydiqa_secondary.csv') df df.columns temp = df.copy() temp['language'] = [i.split('-')[0] for i in df['id']] temp['language'].nunique()
code
88083684/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tydiqa-bengali-telugu/tydiqa_secondary.csv') df df.columns df['id']
code
88083684/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tydiqa-bengali-telugu/tydiqa_secondary.csv') df
code
88083684/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tydiqa-bengali-telugu/tydiqa_secondary.csv') df df.columns temp = df.copy() temp['language'] = [i.split('-')[0] for i in df['id']] temp
code
88083684/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
88083684/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tydiqa-bengali-telugu/tydiqa_secondary.csv') df df.columns temp = df.copy() temp['language'] = [i.split('-')[0] for i in df['id']] temp['language']
code
88083684/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tydiqa-bengali-telugu/tydiqa_secondary.csv') df df.columns
code
88083684/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tydiqa-bengali-telugu/tydiqa_secondary.csv') df df.columns temp = df.copy() temp['language'] = [i.split('-')[0] for i in df['id']] temp.columns out = temp[temp['language'] == 'telugu'] out
code
88083684/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tydiqa-bengali-telugu/tydiqa_secondary.csv') df df.columns temp = df.copy() temp['language'] = [i.split('-')[0] for i in df['id']] temp['language'].value_counts()
code
88083684/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tydiqa-bengali-telugu/tydiqa_secondary.csv') df df.columns temp = df.copy() temp['language'] = [i.split('-')[0] for i in df['id']] temp.columns
code
88083684/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/tydiqa-bengali-telugu/tydiqa_secondary.csv') df df.columns df['id'][100].split('-')[0]
code
88081459/cell_21
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report, accuracy_score from sklearn.metrics import plot_confusion_matrix from sklearn.naive_bayes import MultinomialNB from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import classification_report, accuracy_score from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import plot_confusion_matrix tfidf_vec = TfidfVectorizer().fit(X_train) X_train_vec, X_test_vec = (tfidf_vec.transform(X_train), tfidf_vec.transform(X_test)) model = MultinomialNB() model.fit(X_train_vec, y_train) from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression model = RandomForestClassifier() model.fit(X_train_vec, y_train) from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X_train_vec, y_train) print(classification_report(y_test, model.predict(X_test_vec))) plot_confusion_matrix(model, X_test_vec, y_test)
code
88081459/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns sms = pd.read_csv('/kaggle/input/sms-spam-collection-dataset/spam.csv', encoding='latin-1') sms = sms.rename(columns={'v1': 'label', 'v2': 'text'}) sms.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True) sms['label_num'] = sms['label'].map({'ham': 0, 'spam': 1}) sms['Length'] = sms['text'].apply(len) spam_len = sms.loc[sms['label_num'] == 1, 'Length'] ham_len = sms.loc[sms['label_num'] == 0, 'Length'] spam_len.mean() sns.countplot(spam_len)
code
88081459/cell_9
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sms = pd.read_csv('/kaggle/input/sms-spam-collection-dataset/spam.csv', encoding='latin-1') sms = sms.rename(columns={'v1': 'label', 'v2': 'text'}) sms.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True) sms['label_num'] = sms['label'].map({'ham': 0, 'spam': 1}) sms['Length'] = sms['text'].apply(len) print('Average Length of a text is', round(sms['Length'].mean())) print('Standard deviation of length is', round(sms['Length'].std()))
code
88081459/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sms = pd.read_csv('/kaggle/input/sms-spam-collection-dataset/spam.csv', encoding='latin-1') sms = sms.rename(columns={'v1': 'label', 'v2': 'text'}) sms.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True) sms['label_num'] = sms['label'].map({'ham': 0, 'spam': 1}) sms['Length'] = sms['text'].apply(len) sms.head()
code
88081459/cell_20
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import classification_report, accuracy_score from sklearn.metrics import plot_confusion_matrix from sklearn.naive_bayes import MultinomialNB from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import classification_report, accuracy_score from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import plot_confusion_matrix tfidf_vec = TfidfVectorizer().fit(X_train) X_train_vec, X_test_vec = (tfidf_vec.transform(X_train), tfidf_vec.transform(X_test)) model = MultinomialNB() model.fit(X_train_vec, y_train) from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression model = RandomForestClassifier() model.fit(X_train_vec, y_train) print(classification_report(y_test, model.predict(X_test_vec))) plot_confusion_matrix(model, X_test_vec, y_test)
code
88081459/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns sms = pd.read_csv('/kaggle/input/sms-spam-collection-dataset/spam.csv', encoding='latin-1') sms = sms.rename(columns={'v1': 'label', 'v2': 'text'}) sms.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True) sms['label_num'] = sms['label'].map({'ham': 0, 'spam': 1}) sms['Length'] = sms['text'].apply(len) sns.countplot(sms['label'], palette=sns.color_palette('Set2'))
code
88081459/cell_2
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sms = pd.read_csv('/kaggle/input/sms-spam-collection-dataset/spam.csv', encoding='latin-1') sms.head()
code
88081459/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sms = pd.read_csv('/kaggle/input/sms-spam-collection-dataset/spam.csv', encoding='latin-1') sms = sms.rename(columns={'v1': 'label', 'v2': 'text'}) sms.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True) sms['label_num'] = sms['label'].map({'ham': 0, 'spam': 1}) sms['Length'] = sms['text'].apply(len) spam_len = sms.loc[sms['label_num'] == 1, 'Length'] ham_len = sms.loc[sms['label_num'] == 0, 'Length'] spam_len.mean()
code
88081459/cell_19
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import classification_report, accuracy_score from sklearn.metrics import plot_confusion_matrix from sklearn.naive_bayes import MultinomialNB from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import classification_report, accuracy_score from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import plot_confusion_matrix tfidf_vec = TfidfVectorizer().fit(X_train) X_train_vec, X_test_vec = (tfidf_vec.transform(X_train), tfidf_vec.transform(X_test)) model = MultinomialNB() model.fit(X_train_vec, y_train) print(classification_report(y_test, model.predict(X_test_vec))) plot_confusion_matrix(model, X_test_vec, y_test)
code
88081459/cell_7
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sms = pd.read_csv('/kaggle/input/sms-spam-collection-dataset/spam.csv', encoding='latin-1') sms = sms.rename(columns={'v1': 'label', 'v2': 'text'}) sms.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True) sms['label_num'] = sms['label'].map({'ham': 0, 'spam': 1}) sms['Length'] = sms['text'].apply(len) sms['label'].value_counts()
code
88081459/cell_18
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sms = pd.read_csv('/kaggle/input/sms-spam-collection-dataset/spam.csv', encoding='latin-1') sms = sms.rename(columns={'v1': 'label', 'v2': 'text'}) sms.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True) sms['label_num'] = sms['label'].map({'ham': 0, 'spam': 1}) sms['Length'] = sms['text'].apply(len) spam_len = sms.loc[sms['label_num'] == 1, 'Length'] ham_len = sms.loc[sms['label_num'] == 0, 'Length'] from sklearn.model_selection import train_test_split X, y = (np.asanyarray(sms['text']), np.asanyarray(sms['label_num'])) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=24) (len(X_train), len(X_test))
code
88081459/cell_8
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns sms = pd.read_csv('/kaggle/input/sms-spam-collection-dataset/spam.csv', encoding='latin-1') sms = sms.rename(columns={'v1': 'label', 'v2': 'text'}) sms.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True) sms['label_num'] = sms['label'].map({'ham': 0, 'spam': 1}) sms['Length'] = sms['text'].apply(len) sns.countplot(sms['Length'], palette=sns.color_palette('Set2'))
code
88081459/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns sms = pd.read_csv('/kaggle/input/sms-spam-collection-dataset/spam.csv', encoding='latin-1') sms = sms.rename(columns={'v1': 'label', 'v2': 'text'}) sms.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True) sms['label_num'] = sms['label'].map({'ham': 0, 'spam': 1}) sms['Length'] = sms['text'].apply(len) spam_len = sms.loc[sms['label_num'] == 1, 'Length'] ham_len = sms.loc[sms['label_num'] == 0, 'Length'] spam_len.mean() ham_len.mean() sns.countplot(ham_len)
code
88081459/cell_16
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sms = pd.read_csv('/kaggle/input/sms-spam-collection-dataset/spam.csv', encoding='latin-1') sms = sms.rename(columns={'v1': 'label', 'v2': 'text'}) sms.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True) sms['label_num'] = sms['label'].map({'ham': 0, 'spam': 1}) sms['Length'] = sms['text'].apply(len) spam_len = sms.loc[sms['label_num'] == 1, 'Length'] ham_len = sms.loc[sms['label_num'] == 0, 'Length'] ham_len.mean() print('Average Length of a text of ham mail is', round(ham_len.mean())) print('Standard deviation of length of ham mail is', round(ham_len.std()))
code
88081459/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sms = pd.read_csv('/kaggle/input/sms-spam-collection-dataset/spam.csv', encoding='latin-1') sms = sms.rename(columns={'v1': 'label', 'v2': 'text'}) sms.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True) sms.head()
code
88081459/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import string sms = pd.read_csv('/kaggle/input/sms-spam-collection-dataset/spam.csv', encoding='latin-1') sms = sms.rename(columns={'v1': 'label', 'v2': 'text'}) sms.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True) sms['label_num'] = sms['label'].map({'ham': 0, 'spam': 1}) sms['Length'] = sms['text'].apply(len) spam_len = sms.loc[sms['label_num'] == 1, 'Length'] ham_len = sms.loc[sms['label_num'] == 0, 'Length'] def remove_punc(test_str): res = test_str.translate(str.maketrans(' ', ' ', string.punctuation)) return res sms['text'] = sms['text'].apply(remove_punc) sms['text']
code
88081459/cell_14
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sms = pd.read_csv('/kaggle/input/sms-spam-collection-dataset/spam.csv', encoding='latin-1') sms = sms.rename(columns={'v1': 'label', 'v2': 'text'}) sms.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True) sms['label_num'] = sms['label'].map({'ham': 0, 'spam': 1}) sms['Length'] = sms['text'].apply(len) spam_len = sms.loc[sms['label_num'] == 1, 'Length'] ham_len = sms.loc[sms['label_num'] == 0, 'Length'] spam_len.mean() print('Average Length of a text of spam mail is', round(spam_len.mean())) print('Standard deviation of length of spam mail is', round(spam_len.std()))
code
88081459/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sms = pd.read_csv('/kaggle/input/sms-spam-collection-dataset/spam.csv', encoding='latin-1') sms = sms.rename(columns={'v1': 'label', 'v2': 'text'}) sms.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True) sms['label_num'] = sms['label'].map({'ham': 0, 'spam': 1}) sms['Length'] = sms['text'].apply(len) spam_len = sms.loc[sms['label_num'] == 1, 'Length'] ham_len = sms.loc[sms['label_num'] == 0, 'Length'] ham_len.mean()
code
105197650/cell_13
[ "text_html_output_1.png" ]
from statsmodels.tsa.statespace.sarimax import SARIMAX import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/time-series-datasets/Electric_Production.csv') df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') plt.xlabel = 'Dates' plt.ylabel = 'Total Production' train_data = df[:len(df) - 12] test_data = df[len(df) - 12:] arima_model = SARIMAX(train_data['Monthly beer production'], order=(2, 1, 1), seasonal_order=(4, 0, 3, 12)) arima_result = arima_model.fit() arima_result.summary() arima_pred = arima_result.predict(start=len(train_data), end=len(df) - 1, typ='levels').rename('ARIMA Predictions') arima_pred test_data['Monthly beer production'].plot(figsize=(16, 5), legend=True) arima_pred.plot(legend=True)
code
105197650/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/time-series-datasets/Electric_Production.csv') df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') plt.figure(figsize=(18, 9)) plt.plot(df.index, df['Monthly beer production'], linestyle='-') plt.xlabel = 'Dates' plt.ylabel = 'Total Production' plt.show()
code
105197650/cell_2
[ "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/time-series-datasets/Electric_Production.csv') data.head()
code
105197650/cell_11
[ "text_html_output_1.png" ]
from statsmodels.tsa.statespace.sarimax import SARIMAX import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/time-series-datasets/Electric_Production.csv') df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') plt.xlabel = 'Dates' plt.ylabel = 'Total Production' train_data = df[:len(df) - 12] test_data = df[len(df) - 12:] arima_model = SARIMAX(train_data['Monthly beer production'], order=(2, 1, 1), seasonal_order=(4, 0, 3, 12)) arima_result = arima_model.fit() arima_result.summary()
code
105197650/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/time-series-datasets/Electric_Production.csv') df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') plt.xlabel = 'Dates' plt.ylabel = 'Total Production' train_data = df[:len(df) - 12] test_data = df[len(df) - 12:] test_data
code
105197650/cell_1
[ "text_plain_output_1.png" ]
import pandas as pd from pandas.plotting import autocorrelation_plot from pandas import DataFrame from pandas import concat import numpy as np from math import sqrt from sklearn.metrics import mean_squared_error from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.stattools import acf from statsmodels.tsa.stattools import pacf from statsmodels.tsa.arima_model import ARIMA from scipy.stats import boxcox import seaborn as sns sns.set_style('whitegrid') import matplotlib.pyplot as plt from matplotlib.pylab import rcParams from matplotlib import colors import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105197650/cell_18
[ "text_plain_output_4.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "text_html_output_1.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from statsmodels.tsa.statespace.sarimax import SARIMAX import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/time-series-datasets/Electric_Production.csv') df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') plt.xlabel = 'Dates' plt.ylabel = 'Total Production' train_data = df[:len(df) - 12] test_data = df[len(df) - 12:] arima_model = SARIMAX(train_data['Monthly beer production'], order=(2, 1, 1), seasonal_order=(4, 0, 3, 12)) arima_result = arima_model.fit() arima_result.summary() arima_pred = arima_result.predict(start=len(train_data), end=len(df) - 1, typ='levels').rename('ARIMA Predictions') arima_pred test_data['ARIMA_Predictions'] = arima_pred
code
105197650/cell_8
[ "text_html_output_1.png" ]
from statsmodels.tsa.seasonal import seasonal_decompose import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/time-series-datasets/Electric_Production.csv') df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') plt.xlabel = 'Dates' plt.ylabel = 'Total Production' plt.figure(figsize=(25, 5)) a = seasonal_decompose(df['Monthly beer production'], model='add') plt.subplot(1, 3, 1) plt.plot(a.seasonal) plt.subplot(1, 3, 2) plt.plot(a.trend) plt.subplot(1, 3, 3) plt.plot(a.resid) plt.show()
code
105197650/cell_15
[ "image_output_1.png" ]
from statsmodels.tools.eval_measures import rmse from statsmodels.tsa.statespace.sarimax import SARIMAX import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/time-series-datasets/Electric_Production.csv') df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') plt.xlabel = 'Dates' plt.ylabel = 'Total Production' train_data = df[:len(df) - 12] test_data = df[len(df) - 12:] arima_model = SARIMAX(train_data['Monthly beer production'], order=(2, 1, 1), seasonal_order=(4, 0, 3, 12)) arima_result = arima_model.fit() arima_result.summary() arima_pred = arima_result.predict(start=len(train_data), end=len(df) - 1, typ='levels').rename('ARIMA Predictions') arima_pred arima_rmse_error = rmse(test_data['Monthly beer production'], arima_pred) arima_mse_error = arima_rmse_error ** 2 mean_value = df['Monthly beer production'].mean() print(f'MSE Error: {arima_mse_error}\nRMSE Error: {arima_rmse_error}\nMean: {mean_value}')
code
105197650/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/time-series-datasets/Electric_Production.csv') df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.head()
code
105197650/cell_17
[ "image_output_1.png" ]
from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.statespace.sarimax import SARIMAX import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/time-series-datasets/Electric_Production.csv') df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') plt.xlabel = 'Dates' plt.ylabel = 'Total Production' a = seasonal_decompose(df['Monthly beer production'], model='add') train_data = df[:len(df) - 12] test_data = df[len(df) - 12:] arima_model = SARIMAX(train_data['Monthly beer production'], order=(2, 1, 1), seasonal_order=(4, 0, 3, 12)) arima_result = arima_model.fit() arima_result.summary() arima_pred = arima_result.predict(start=len(train_data), end=len(df) - 1, typ='levels').rename('ARIMA Predictions') arima_pred plt.figure(figsize=(10, 6)) plt.plot(test_data, label='true values', color='blue') plt.plot(arima_pred, label='forecasts', color='orange') plt.title('ARIMA Model', size=14) plt.legend(loc='upper left') plt.show()
code
105197650/cell_12
[ "text_html_output_1.png" ]
from statsmodels.tsa.statespace.sarimax import SARIMAX import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/time-series-datasets/Electric_Production.csv') df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') plt.xlabel = 'Dates' plt.ylabel = 'Total Production' train_data = df[:len(df) - 12] test_data = df[len(df) - 12:] arima_model = SARIMAX(train_data['Monthly beer production'], order=(2, 1, 1), seasonal_order=(4, 0, 3, 12)) arima_result = arima_model.fit() arima_result.summary() arima_pred = arima_result.predict(start=len(train_data), end=len(df) - 1, typ='levels').rename('ARIMA Predictions') arima_pred
code
105197650/cell_5
[ "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/time-series-datasets/Electric_Production.csv') df = pd.read_csv('/kaggle/input/time-series-datasets/monthly-beer-production-in-austr.csv') df.Month = pd.to_datetime(df.Month) df = df.set_index('Month') df.head()
code