path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
89142701/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') test.isnull().sum()
code
89142701/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.head()
code
89142701/cell_12
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.shape train.isnull().sum()
code
89142701/cell_36
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.shape train.isnull().sum() mask = np.triu(train.drop(['PassengerId'], axis=1).corr()) fig = sns.catplot(x='Pclass',y='Age',data=train,hue='Survived',ci=None) fig = sns.barplot(x='Pclass',y='Survived',data=train, hue='Sex',ci=None) for container in fig.containers: fig.bar_label(container,label_type='center',fmt='%1.2f%%') fig = sns.barplot(x='Pclass', y='Survived', data=train) fig.bar_label(fig.containers[0],label_type='center',fmt='%1.1f%%') fig = sns.barplot(x='Survived',y='Sex',data=train) fig.bar_label(fig.containers[0],size=14,label_type='center',fmt='%1.2f%%') g = sns.FacetGrid(train, col='Embarked', size=6) g.map(sns.barplot, 'Pclass', 'Survived', hue=train.Sex) g.add_legend() fig = sns.barplot(x='Embarked', y='Survived', data=train) fig.bar_label(fig.containers[0], size=14, label_type='center', fmt='%1.2f%%')
code
16154547/cell_13
[ "text_plain_output_1.png" ]
import ase as ase import dscribe as ds import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) structure = pd.read_csv('../input/structures.csv') rcut = 10.0 g2_params = [[1, 2], [0.1, 2], [0.01, 2], [1, 6], [0.1, 6], [0.01, 6]] g4_params = [[1, 4, 1], [0.1, 4, 1], [0.01, 4, 1], [1, 4, -1], [0.1, 4, -1], [0.01, 4, -1]] g3_params = None g5_params = None tmp_structure = structure.loc[structure.molecule_name == 'dsgdb9nsd_000001', :].copy() species = tmp_structure.atom.unique() acsf = ds.descriptors.ACSF(species=species, rcut=rcut, g2_params=g2_params, g3_params=g3_params, g4_params=g4_params, g5_params=g5_params) molecule_atoms = tmp_structure.loc[:, 'atom'] molecule_positions = tmp_structure.loc[:, ['x', 'y', 'z']] molecule_system = ase.atoms.Atoms(symbols=molecule_atoms, positions=molecule_positions) acsf_features = acsf.create(molecule_system, n_jobs=1) acsf_features[0] def create_feature_labels(species, rcut, g2_params=None, g3_params=None, g4_params=None, g5_params=None, transform_to_symbols=True): def get_atom_id(atom_nr, tranform_to_symbols): if transform_to_symbols == True: atom_id = nr_to_symbol[atom_nr] else: atom_id = atom_nr return atom_id feature_label = [] g_params = {'g1': [rcut], 'g2': g2_params, 'g3': g3_params, 'g4': g4_params, 'g5': g5_params} tmp_system = ase.Atoms(species, [[0, 0, 0]] * len(species)) nr_to_symbol = {number: symbol for symbol, number in zip(tmp_system.get_chemical_symbols(), tmp_system.get_atomic_numbers())} atomic_numbers = sorted(tmp_system.get_atomic_numbers()) for atom_nr in atomic_numbers: atom_id = get_atom_id(atom_nr, transform_to_symbols) for g in ['g1', 'g2', 'g3']: params = g_params[g] if params is not None: for para in params: feature_label.append(f'feat_acsf_{g}_{atom_id}_{para}') for atom_nr in atomic_numbers: atom_id = get_atom_id(atom_nr, transform_to_symbols) for i in range(0, atom_nr + 1): if i in atomic_numbers: atom_id_2 = get_atom_id(i, transform_to_symbols) for g in ['g4', 'g5']: params = g_params[g] if params is not None: for para in params: feature_label.append(f'feat_acsf_{g}_{atom_id}_{atom_id_2}_{para}') return feature_label def calculate_symmetric_functions(df_structure, rcut, g2_params=None, g3_params=None, g4_params=None, g5_params=None): species = df_structure.atom.unique() acsf = ds.descriptors.ACSF(species=species, rcut=rcut, g2_params=g2_params, g3_params=g3_params, g4_params=g4_params, g5_params=g5_params) structure_molecules = df_structure.molecule_name.unique() acsf_feature_labels = create_feature_labels(species=species, rcut=rcut, g2_params=g2_params, g3_params=g3_params, g4_params=g4_params, g5_params=g5_params) df_structure = df_structure.reindex(columns=df_structure.columns.tolist() + acsf_feature_labels) df_structure = df_structure.sort_values(['molecule_name', 'atom_index']) acsf_structure_chunks = calculate_acsf_in_chunks(structure_molecules, df_structure, acsf, acsf_feature_labels) acsf_structure = pd.DataFrame().append(acsf_structure_chunks) return acsf_structure def calculate_acsf_in_chunks(structure_molecules, df_structure, acsf, acsf_feature_labels, step_size=2000): mol_counter = 0 max_counter = len(structure_molecules) all_chunks = [] tic = time.time() while mol_counter * step_size < max_counter: tmp_molecules = structure_molecules[mol_counter * step_size:(mol_counter + 1) * step_size] tmp_structure = df_structure.loc[df_structure.molecule_name.isin(tmp_molecules), :].copy() tmp_results = calculate_acsf_multiple_molecules(tmp_molecules, tmp_structure, acsf, acsf_feature_labels) all_chunks.append(tmp_results.copy()) mol_counter += 1 return all_chunks def calculate_acsf_multiple_molecules(molecule_names, df_structure, acsf, acsf_feature_labels): counter = 0 tic = time.time() for molecule_name in molecule_names: df_molecule = df_structure.loc[df_structure.molecule_name == molecule_name, :] acsf_values = calculate_acsf_single_molecule(df_molecule, acsf) df_structure.loc[df_structure.molecule_name == molecule_name, acsf_feature_labels] = copy.copy(acsf_values) counter += 1 return df_structure def calculate_acsf_single_molecule(df_molecule, acsf): molecule_atoms = df_molecule.loc[:, 'atom'] molecule_positions = df_molecule.loc[:, ['x', 'y', 'z']] molecule_system = ase.atoms.Atoms(symbols=molecule_atoms, positions=molecule_positions) return acsf.create(molecule_system, n_jobs=1) acsf_structure = calculate_symmetric_functions(structure.loc[structure.molecule_name == 'dsgdb9nsd_000001', :].copy(), rcut, g2_params=g2_params, g4_params=g4_params) acsf_structure.head()
code
16154547/cell_9
[ "text_plain_output_1.png" ]
import ase as ase import dscribe as ds import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) structure = pd.read_csv('../input/structures.csv') rcut = 10.0 g2_params = [[1, 2], [0.1, 2], [0.01, 2], [1, 6], [0.1, 6], [0.01, 6]] g4_params = [[1, 4, 1], [0.1, 4, 1], [0.01, 4, 1], [1, 4, -1], [0.1, 4, -1], [0.01, 4, -1]] g3_params = None g5_params = None tmp_structure = structure.loc[structure.molecule_name == 'dsgdb9nsd_000001', :].copy() species = tmp_structure.atom.unique() acsf = ds.descriptors.ACSF(species=species, rcut=rcut, g2_params=g2_params, g3_params=g3_params, g4_params=g4_params, g5_params=g5_params) molecule_atoms = tmp_structure.loc[:, 'atom'] molecule_positions = tmp_structure.loc[:, ['x', 'y', 'z']] molecule_system = ase.atoms.Atoms(symbols=molecule_atoms, positions=molecule_positions) acsf_features = acsf.create(molecule_system, n_jobs=1) acsf_features[0]
code
16154547/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
16154547/cell_18
[ "text_plain_output_1.png" ]
import ase as ase import dscribe as ds import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) structure = pd.read_csv('../input/structures.csv') rcut = 10.0 g2_params = [[1, 2], [0.1, 2], [0.01, 2], [1, 6], [0.1, 6], [0.01, 6]] g4_params = [[1, 4, 1], [0.1, 4, 1], [0.01, 4, 1], [1, 4, -1], [0.1, 4, -1], [0.01, 4, -1]] g3_params = None g5_params = None tmp_structure = structure.loc[structure.molecule_name == 'dsgdb9nsd_000001', :].copy() species = tmp_structure.atom.unique() acsf = ds.descriptors.ACSF(species=species, rcut=rcut, g2_params=g2_params, g3_params=g3_params, g4_params=g4_params, g5_params=g5_params) molecule_atoms = tmp_structure.loc[:, 'atom'] molecule_positions = tmp_structure.loc[:, ['x', 'y', 'z']] molecule_system = ase.atoms.Atoms(symbols=molecule_atoms, positions=molecule_positions) acsf_features = acsf.create(molecule_system, n_jobs=1) acsf_features[0] def create_feature_labels(species, rcut, g2_params=None, g3_params=None, g4_params=None, g5_params=None, transform_to_symbols=True): def get_atom_id(atom_nr, tranform_to_symbols): if transform_to_symbols == True: atom_id = nr_to_symbol[atom_nr] else: atom_id = atom_nr return atom_id feature_label = [] g_params = {'g1': [rcut], 'g2': g2_params, 'g3': g3_params, 'g4': g4_params, 'g5': g5_params} tmp_system = ase.Atoms(species, [[0, 0, 0]] * len(species)) nr_to_symbol = {number: symbol for symbol, number in zip(tmp_system.get_chemical_symbols(), tmp_system.get_atomic_numbers())} atomic_numbers = sorted(tmp_system.get_atomic_numbers()) for atom_nr in atomic_numbers: atom_id = get_atom_id(atom_nr, transform_to_symbols) for g in ['g1', 'g2', 'g3']: params = g_params[g] if params is not None: for para in params: feature_label.append(f'feat_acsf_{g}_{atom_id}_{para}') for atom_nr in atomic_numbers: atom_id = get_atom_id(atom_nr, transform_to_symbols) for i in range(0, atom_nr + 1): if i in atomic_numbers: atom_id_2 = get_atom_id(i, transform_to_symbols) for g in ['g4', 'g5']: params = g_params[g] if params is not None: for para in params: feature_label.append(f'feat_acsf_{g}_{atom_id}_{atom_id_2}_{para}') return feature_label def calculate_symmetric_functions(df_structure, rcut, g2_params=None, g3_params=None, g4_params=None, g5_params=None): species = df_structure.atom.unique() acsf = ds.descriptors.ACSF(species=species, rcut=rcut, g2_params=g2_params, g3_params=g3_params, g4_params=g4_params, g5_params=g5_params) structure_molecules = df_structure.molecule_name.unique() acsf_feature_labels = create_feature_labels(species=species, rcut=rcut, g2_params=g2_params, g3_params=g3_params, g4_params=g4_params, g5_params=g5_params) df_structure = df_structure.reindex(columns=df_structure.columns.tolist() + acsf_feature_labels) df_structure = df_structure.sort_values(['molecule_name', 'atom_index']) acsf_structure_chunks = calculate_acsf_in_chunks(structure_molecules, df_structure, acsf, acsf_feature_labels) acsf_structure = pd.DataFrame().append(acsf_structure_chunks) return acsf_structure def calculate_acsf_in_chunks(structure_molecules, df_structure, acsf, acsf_feature_labels, step_size=2000): mol_counter = 0 max_counter = len(structure_molecules) all_chunks = [] tic = time.time() while mol_counter * step_size < max_counter: tmp_molecules = structure_molecules[mol_counter * step_size:(mol_counter + 1) * step_size] tmp_structure = df_structure.loc[df_structure.molecule_name.isin(tmp_molecules), :].copy() tmp_results = calculate_acsf_multiple_molecules(tmp_molecules, tmp_structure, acsf, acsf_feature_labels) all_chunks.append(tmp_results.copy()) mol_counter += 1 return all_chunks def calculate_acsf_multiple_molecules(molecule_names, df_structure, acsf, acsf_feature_labels): counter = 0 tic = time.time() for molecule_name in molecule_names: df_molecule = df_structure.loc[df_structure.molecule_name == molecule_name, :] acsf_values = calculate_acsf_single_molecule(df_molecule, acsf) df_structure.loc[df_structure.molecule_name == molecule_name, acsf_feature_labels] = copy.copy(acsf_values) counter += 1 return df_structure def calculate_acsf_single_molecule(df_molecule, acsf): molecule_atoms = df_molecule.loc[:, 'atom'] molecule_positions = df_molecule.loc[:, ['x', 'y', 'z']] molecule_system = ase.atoms.Atoms(symbols=molecule_atoms, positions=molecule_positions) return acsf.create(molecule_system, n_jobs=1) acsf_structure = calculate_symmetric_functions(structure.loc[structure.molecule_name == 'dsgdb9nsd_000001', :].copy(), rcut, g2_params=g2_params, g4_params=g4_params) def dist(coord_0, coord_1): return np.sqrt(np.sum((coord_0 - coord_1) ** 2)) def fc(dist, rcut): return 0.5 * (np.cos(np.pi * dist / rcut) + 1) test_molecule = structure.loc[structure.molecule_name == 'dsgdb9nsd_000001', :] coord_c = test_molecule.loc[test_molecule.atom == 'C', ['x', 'y', 'z']].values[0] g1_H = 0 for coord_h in test_molecule.loc[test_molecule.atom == 'H', ['x', 'y', 'z']].values: dist_h_c = dist(coord_c, coord_h) if dist_h_c <= rcut: g1_H += fc(dist_h_c, rcut) print(f'g1 value is {g1_H}, using rcut: {rcut}') for para in g2_params: eta = para[0] rs = para[1] g2_H = 0 for coord_h in test_molecule.loc[test_molecule.atom == 'H', ['x', 'y', 'z']].values: dist_h_c = dist(coord_c, coord_h) g2_H += np.exp(-eta * (dist_h_c - rs) ** 2) * fc(dist_h_c, rcut) print(f'g2 value is {g2_H}, using eta: {eta}, rs: {rs}')
code
16154547/cell_8
[ "text_plain_output_1.png" ]
import ase as ase import dscribe as ds import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) structure = pd.read_csv('../input/structures.csv') rcut = 10.0 g2_params = [[1, 2], [0.1, 2], [0.01, 2], [1, 6], [0.1, 6], [0.01, 6]] g4_params = [[1, 4, 1], [0.1, 4, 1], [0.01, 4, 1], [1, 4, -1], [0.1, 4, -1], [0.01, 4, -1]] g3_params = None g5_params = None tmp_structure = structure.loc[structure.molecule_name == 'dsgdb9nsd_000001', :].copy() species = tmp_structure.atom.unique() acsf = ds.descriptors.ACSF(species=species, rcut=rcut, g2_params=g2_params, g3_params=g3_params, g4_params=g4_params, g5_params=g5_params) molecule_atoms = tmp_structure.loc[:, 'atom'] molecule_positions = tmp_structure.loc[:, ['x', 'y', 'z']] molecule_system = ase.atoms.Atoms(symbols=molecule_atoms, positions=molecule_positions) print(molecule_system) print(molecule_system.get_atomic_numbers()) print(molecule_system.get_positions())
code
16154547/cell_22
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import ase as ase import dscribe as ds import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) structure = pd.read_csv('../input/structures.csv') rcut = 10.0 g2_params = [[1, 2], [0.1, 2], [0.01, 2], [1, 6], [0.1, 6], [0.01, 6]] g4_params = [[1, 4, 1], [0.1, 4, 1], [0.01, 4, 1], [1, 4, -1], [0.1, 4, -1], [0.01, 4, -1]] g3_params = None g5_params = None tmp_structure = structure.loc[structure.molecule_name == 'dsgdb9nsd_000001', :].copy() species = tmp_structure.atom.unique() acsf = ds.descriptors.ACSF(species=species, rcut=rcut, g2_params=g2_params, g3_params=g3_params, g4_params=g4_params, g5_params=g5_params) molecule_atoms = tmp_structure.loc[:, 'atom'] molecule_positions = tmp_structure.loc[:, ['x', 'y', 'z']] molecule_system = ase.atoms.Atoms(symbols=molecule_atoms, positions=molecule_positions) acsf_features = acsf.create(molecule_system, n_jobs=1) acsf_features[0] def create_feature_labels(species, rcut, g2_params=None, g3_params=None, g4_params=None, g5_params=None, transform_to_symbols=True): def get_atom_id(atom_nr, tranform_to_symbols): if transform_to_symbols == True: atom_id = nr_to_symbol[atom_nr] else: atom_id = atom_nr return atom_id feature_label = [] g_params = {'g1': [rcut], 'g2': g2_params, 'g3': g3_params, 'g4': g4_params, 'g5': g5_params} tmp_system = ase.Atoms(species, [[0, 0, 0]] * len(species)) nr_to_symbol = {number: symbol for symbol, number in zip(tmp_system.get_chemical_symbols(), tmp_system.get_atomic_numbers())} atomic_numbers = sorted(tmp_system.get_atomic_numbers()) for atom_nr in atomic_numbers: atom_id = get_atom_id(atom_nr, transform_to_symbols) for g in ['g1', 'g2', 'g3']: params = g_params[g] if params is not None: for para in params: feature_label.append(f'feat_acsf_{g}_{atom_id}_{para}') for atom_nr in atomic_numbers: atom_id = get_atom_id(atom_nr, transform_to_symbols) for i in range(0, atom_nr + 1): if i in atomic_numbers: atom_id_2 = get_atom_id(i, transform_to_symbols) for g in ['g4', 'g5']: params = g_params[g] if params is not None: for para in params: feature_label.append(f'feat_acsf_{g}_{atom_id}_{atom_id_2}_{para}') return feature_label def calculate_symmetric_functions(df_structure, rcut, g2_params=None, g3_params=None, g4_params=None, g5_params=None): species = df_structure.atom.unique() acsf = ds.descriptors.ACSF(species=species, rcut=rcut, g2_params=g2_params, g3_params=g3_params, g4_params=g4_params, g5_params=g5_params) structure_molecules = df_structure.molecule_name.unique() acsf_feature_labels = create_feature_labels(species=species, rcut=rcut, g2_params=g2_params, g3_params=g3_params, g4_params=g4_params, g5_params=g5_params) df_structure = df_structure.reindex(columns=df_structure.columns.tolist() + acsf_feature_labels) df_structure = df_structure.sort_values(['molecule_name', 'atom_index']) acsf_structure_chunks = calculate_acsf_in_chunks(structure_molecules, df_structure, acsf, acsf_feature_labels) acsf_structure = pd.DataFrame().append(acsf_structure_chunks) return acsf_structure def calculate_acsf_in_chunks(structure_molecules, df_structure, acsf, acsf_feature_labels, step_size=2000): mol_counter = 0 max_counter = len(structure_molecules) all_chunks = [] tic = time.time() while mol_counter * step_size < max_counter: tmp_molecules = structure_molecules[mol_counter * step_size:(mol_counter + 1) * step_size] tmp_structure = df_structure.loc[df_structure.molecule_name.isin(tmp_molecules), :].copy() tmp_results = calculate_acsf_multiple_molecules(tmp_molecules, tmp_structure, acsf, acsf_feature_labels) all_chunks.append(tmp_results.copy()) mol_counter += 1 return all_chunks def calculate_acsf_multiple_molecules(molecule_names, df_structure, acsf, acsf_feature_labels): counter = 0 tic = time.time() for molecule_name in molecule_names: df_molecule = df_structure.loc[df_structure.molecule_name == molecule_name, :] acsf_values = calculate_acsf_single_molecule(df_molecule, acsf) df_structure.loc[df_structure.molecule_name == molecule_name, acsf_feature_labels] = copy.copy(acsf_values) counter += 1 return df_structure def calculate_acsf_single_molecule(df_molecule, acsf): molecule_atoms = df_molecule.loc[:, 'atom'] molecule_positions = df_molecule.loc[:, ['x', 'y', 'z']] molecule_system = ase.atoms.Atoms(symbols=molecule_atoms, positions=molecule_positions) return acsf.create(molecule_system, n_jobs=1) acsf_structure = calculate_symmetric_functions(structure.loc[structure.molecule_name == 'dsgdb9nsd_000001', :].copy(), rcut, g2_params=g2_params, g4_params=g4_params) feature_columns = [col for col in acsf_structure.columns if col.startswith('feat_acsf')] len_features = len(feature_columns) print(f'We have {len_features} feautres') print(f'Boris announced ~ 250')
code
1009798/cell_4
[ "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
from glob import glob import numpy as np # linear algebra import os import os from glob import glob TRAIN_DATA = '../input/train' type_1_files = glob(os.path.join(TRAIN_DATA, 'Type_1', '*.jpg')) type_1_ids = np.array([s[len(os.path.join(TRAIN_DATA, 'Type_1')) + 1:-4] for s in type_1_files]) type_2_files = glob(os.path.join(TRAIN_DATA, 'Type_2', '*.jpg')) type_2_ids = np.array([s[len(os.path.join(TRAIN_DATA, 'Type_2')) + 1:-4] for s in type_2_files]) type_3_files = glob(os.path.join(TRAIN_DATA, 'Type_3', '*.jpg')) type_3_ids = np.array([s[len(os.path.join(TRAIN_DATA, 'Type_3')) + 1:-4] for s in type_3_files]) TEST_DATA = '../input/test' test_files = glob(os.path.join(TEST_DATA, '*.jpg')) test_ids = np.array([s[len(TEST_DATA) + 1:-4] for s in test_files]) print(len(test_ids)) print(test_ids[:10])
code
1009798/cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
1009798/cell_11
[ "text_plain_output_1.png" ]
from glob import glob import cv2 import matplotlib.pylab as plt import numpy as np # linear algebra import os import os from glob import glob TRAIN_DATA = '../input/train' type_1_files = glob(os.path.join(TRAIN_DATA, 'Type_1', '*.jpg')) type_1_ids = np.array([s[len(os.path.join(TRAIN_DATA, 'Type_1')) + 1:-4] for s in type_1_files]) type_2_files = glob(os.path.join(TRAIN_DATA, 'Type_2', '*.jpg')) type_2_ids = np.array([s[len(os.path.join(TRAIN_DATA, 'Type_2')) + 1:-4] for s in type_2_files]) type_3_files = glob(os.path.join(TRAIN_DATA, 'Type_3', '*.jpg')) type_3_ids = np.array([s[len(os.path.join(TRAIN_DATA, 'Type_3')) + 1:-4] for s in type_3_files]) TEST_DATA = '../input/test' test_files = glob(os.path.join(TEST_DATA, '*.jpg')) test_ids = np.array([s[len(TEST_DATA) + 1:-4] for s in test_files]) ADDITIONAL_DATA = '../input/additional' additional_type_1_files = glob(os.path.join(ADDITIONAL_DATA, 'Type_1', '*.jpg')) additional_type_1_ids = np.array([s[len(os.path.join(ADDITIONAL_DATA, 'Type_1')) + 1:-4] for s in additional_type_1_files]) additional_type_2_files = glob(os.path.join(ADDITIONAL_DATA, 'Type_2', '*.jpg')) additional_type_2_ids = np.array([s[len(os.path.join(ADDITIONAL_DATA, 'Type_2')) + 1:-4] for s in additional_type_2_files]) additional_type_3_files = glob(os.path.join(ADDITIONAL_DATA, 'Type_3', '*.jpg')) additional_type_3_ids = np.array([s[len(os.path.join(ADDITIONAL_DATA, 'Type_3')) + 1:-4] for s in additional_type_3_files]) def get_filename(image_id, image_type): """ Method to get image file path from its id and type """ if image_type == 'Type_1' or image_type == 'Type_2' or image_type == 'Type_3': data_path = os.path.join(TRAIN_DATA, image_type) elif image_type == 'Test': data_path = TEST_DATA elif image_type == 'AType_1' or image_type == 'AType_2' or image_type == 'AType_3': data_path = os.path.join(ADDITIONAL_DATA, image_type) else: raise Exception("Image type '%s' is not recognized" % image_type) ext = 'jpg' return os.path.join(data_path, '{}.{}'.format(image_id, ext)) import cv2 def get_image_data(image_id, image_type): """ Method to get image data as np.array specifying image id and type """ fname = get_filename(image_id, image_type) img = cv2.imread(fname) assert img is not None, 'Failed to read image : %s, %s' % (image_id, image_type) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img import matplotlib.pylab as plt def plt_st(l1, l2): pass tile_size = (256, 256) n = 15 complete_images = [] for k, type_ids in enumerate([type_1_ids, type_2_ids, type_3_ids]): m = int(np.floor(len(type_ids) / n)) complete_image = np.zeros((m * (tile_size[0] + 2), n * (tile_size[1] + 2), 3), dtype=np.uint8) train_ids = sorted(type_ids) counter = 0 for i in range(m): ys = i * (tile_size[1] + 2) ye = ys + tile_size[1] for j in range(n): xs = j * (tile_size[0] + 2) xe = xs + tile_size[0] image_id = train_ids[counter] counter += 1 img = get_image_data(image_id, 'Type_%i' % (k + 1)) img = cv2.resize(img, dsize=tile_size) img = cv2.putText(img, image_id, (5, img.shape[0] - 5), cv2.FONT_HERSHEY_SIMPLEX, 2.0, (255, 255, 255), thickness=3) complete_image[ys:ye, xs:xe] = img[:, :, :] complete_images.append(complete_image) plt_st(20, 20) index = 1 m = complete_images[index].shape[0] / (tile_size[0] + 2) n = int(np.ceil(m / 20)) for i in range(n): plt_st(20, 20) ys = i * (tile_size[0] + 2) * 20 ye = min((i + 1) * (tile_size[0] + 2) * 20, complete_images[index].shape[0]) plt.imshow(complete_images[index][ys:ye, :, :]) plt.title('Training dataset of type %i, part %i' % (index + 1, i))
code
1009798/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
from glob import glob import numpy as np # linear algebra import os import os from glob import glob TRAIN_DATA = '../input/train' type_1_files = glob(os.path.join(TRAIN_DATA, 'Type_1', '*.jpg')) type_1_ids = np.array([s[len(os.path.join(TRAIN_DATA, 'Type_1')) + 1:-4] for s in type_1_files]) type_2_files = glob(os.path.join(TRAIN_DATA, 'Type_2', '*.jpg')) type_2_ids = np.array([s[len(os.path.join(TRAIN_DATA, 'Type_2')) + 1:-4] for s in type_2_files]) type_3_files = glob(os.path.join(TRAIN_DATA, 'Type_3', '*.jpg')) type_3_ids = np.array([s[len(os.path.join(TRAIN_DATA, 'Type_3')) + 1:-4] for s in type_3_files]) print(len(type_1_files), len(type_2_files), len(type_3_files)) print('Type 1', type_1_ids[:10]) print('Type 2', type_2_ids[:10]) print('Type 3', type_3_ids[:10])
code
1009798/cell_10
[ "text_plain_output_1.png" ]
from glob import glob import cv2 import matplotlib.pylab as plt import numpy as np # linear algebra import os import os from glob import glob TRAIN_DATA = '../input/train' type_1_files = glob(os.path.join(TRAIN_DATA, 'Type_1', '*.jpg')) type_1_ids = np.array([s[len(os.path.join(TRAIN_DATA, 'Type_1')) + 1:-4] for s in type_1_files]) type_2_files = glob(os.path.join(TRAIN_DATA, 'Type_2', '*.jpg')) type_2_ids = np.array([s[len(os.path.join(TRAIN_DATA, 'Type_2')) + 1:-4] for s in type_2_files]) type_3_files = glob(os.path.join(TRAIN_DATA, 'Type_3', '*.jpg')) type_3_ids = np.array([s[len(os.path.join(TRAIN_DATA, 'Type_3')) + 1:-4] for s in type_3_files]) TEST_DATA = '../input/test' test_files = glob(os.path.join(TEST_DATA, '*.jpg')) test_ids = np.array([s[len(TEST_DATA) + 1:-4] for s in test_files]) ADDITIONAL_DATA = '../input/additional' additional_type_1_files = glob(os.path.join(ADDITIONAL_DATA, 'Type_1', '*.jpg')) additional_type_1_ids = np.array([s[len(os.path.join(ADDITIONAL_DATA, 'Type_1')) + 1:-4] for s in additional_type_1_files]) additional_type_2_files = glob(os.path.join(ADDITIONAL_DATA, 'Type_2', '*.jpg')) additional_type_2_ids = np.array([s[len(os.path.join(ADDITIONAL_DATA, 'Type_2')) + 1:-4] for s in additional_type_2_files]) additional_type_3_files = glob(os.path.join(ADDITIONAL_DATA, 'Type_3', '*.jpg')) additional_type_3_ids = np.array([s[len(os.path.join(ADDITIONAL_DATA, 'Type_3')) + 1:-4] for s in additional_type_3_files]) def get_filename(image_id, image_type): """ Method to get image file path from its id and type """ if image_type == 'Type_1' or image_type == 'Type_2' or image_type == 'Type_3': data_path = os.path.join(TRAIN_DATA, image_type) elif image_type == 'Test': data_path = TEST_DATA elif image_type == 'AType_1' or image_type == 'AType_2' or image_type == 'AType_3': data_path = os.path.join(ADDITIONAL_DATA, image_type) else: raise Exception("Image type '%s' is not recognized" % image_type) ext = 'jpg' return os.path.join(data_path, '{}.{}'.format(image_id, ext)) import cv2 def get_image_data(image_id, image_type): """ Method to get image data as np.array specifying image id and type """ fname = get_filename(image_id, image_type) img = cv2.imread(fname) assert img is not None, 'Failed to read image : %s, %s' % (image_id, image_type) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img import matplotlib.pylab as plt def plt_st(l1, l2): pass tile_size = (256, 256) n = 15 complete_images = [] for k, type_ids in enumerate([type_1_ids, type_2_ids, type_3_ids]): m = int(np.floor(len(type_ids) / n)) complete_image = np.zeros((m * (tile_size[0] + 2), n * (tile_size[1] + 2), 3), dtype=np.uint8) train_ids = sorted(type_ids) counter = 0 for i in range(m): ys = i * (tile_size[1] + 2) ye = ys + tile_size[1] for j in range(n): xs = j * (tile_size[0] + 2) xe = xs + tile_size[0] image_id = train_ids[counter] counter += 1 img = get_image_data(image_id, 'Type_%i' % (k + 1)) img = cv2.resize(img, dsize=tile_size) img = cv2.putText(img, image_id, (5, img.shape[0] - 5), cv2.FONT_HERSHEY_SIMPLEX, 2.0, (255, 255, 255), thickness=3) complete_image[ys:ye, xs:xe] = img[:, :, :] complete_images.append(complete_image) plt_st(20, 20) plt.imshow(complete_images[0]) plt.title('Training dataset of type %i' % 0)
code
1009798/cell_5
[ "image_output_2.png", "image_output_1.png" ]
from glob import glob import numpy as np # linear algebra import os import os from glob import glob TRAIN_DATA = '../input/train' type_1_files = glob(os.path.join(TRAIN_DATA, 'Type_1', '*.jpg')) type_1_ids = np.array([s[len(os.path.join(TRAIN_DATA, 'Type_1')) + 1:-4] for s in type_1_files]) type_2_files = glob(os.path.join(TRAIN_DATA, 'Type_2', '*.jpg')) type_2_ids = np.array([s[len(os.path.join(TRAIN_DATA, 'Type_2')) + 1:-4] for s in type_2_files]) type_3_files = glob(os.path.join(TRAIN_DATA, 'Type_3', '*.jpg')) type_3_ids = np.array([s[len(os.path.join(TRAIN_DATA, 'Type_3')) + 1:-4] for s in type_3_files]) TEST_DATA = '../input/test' test_files = glob(os.path.join(TEST_DATA, '*.jpg')) test_ids = np.array([s[len(TEST_DATA) + 1:-4] for s in test_files]) ADDITIONAL_DATA = '../input/additional' additional_type_1_files = glob(os.path.join(ADDITIONAL_DATA, 'Type_1', '*.jpg')) additional_type_1_ids = np.array([s[len(os.path.join(ADDITIONAL_DATA, 'Type_1')) + 1:-4] for s in additional_type_1_files]) additional_type_2_files = glob(os.path.join(ADDITIONAL_DATA, 'Type_2', '*.jpg')) additional_type_2_ids = np.array([s[len(os.path.join(ADDITIONAL_DATA, 'Type_2')) + 1:-4] for s in additional_type_2_files]) additional_type_3_files = glob(os.path.join(ADDITIONAL_DATA, 'Type_3', '*.jpg')) additional_type_3_ids = np.array([s[len(os.path.join(ADDITIONAL_DATA, 'Type_3')) + 1:-4] for s in additional_type_3_files]) print(len(additional_type_1_files), len(additional_type_2_files), len(additional_type_2_files)) print('Type 1', additional_type_1_ids[:10]) print('Type 2', additional_type_2_ids[:10]) print('Type 3', additional_type_3_ids[:10])
code
34144954/cell_9
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from tensorflow import keras from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, Callback, ReduceLROnPlateau from tensorflow.keras.layers import BatchNormalization,Activation,Dropout,Dense from tensorflow.keras.layers import Flatten, Conv2D, MaxPooling2D import cv2 import glob import keras import numpy as np import numpy as np # linear algebra import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf import numpy as np import pandas as pd import os submission_sumple = pd.read_csv('/kaggle/input/aiacademydeeplearning/sample_submission.csv') train = pd.read_csv('/kaggle/input/aiacademydeeplearning/train.csv') num_cols = ['bedrooms', 'bathrooms', 'area', 'zipcode'] target = ['price'] train[num_cols] = train[num_cols].fillna(-99999) Scaler = StandardScaler() train[num_cols] = Scaler.fit_transform(train[num_cols]) test = pd.read_csv('/kaggle/input/aiacademydeeplearning/test.csv') test[num_cols] = test[num_cols].fillna(-99999) Scaler = StandardScaler() test[num_cols] = Scaler.fit_transform(test[num_cols]) def load_images(df, inputPath, size, roomType1, roomType2, roomType3, roomType4): images = [] for i in df['id']: basePath1 = os.path.sep.join([inputPath, '{}_{}*'.format(i, roomType1)]) basePath2 = os.path.sep.join([inputPath, '{}_{}*'.format(i, roomType2)]) basePath3 = os.path.sep.join([inputPath, '{}_{}*'.format(i, roomType3)]) basePath4 = os.path.sep.join([inputPath, '{}_{}*'.format(i, roomType4)]) housePaths1 = sorted(list(glob.glob(basePath1))) housePaths2 = sorted(list(glob.glob(basePath2))) housePaths3 = sorted(list(glob.glob(basePath3))) housePaths4 = sorted(list(glob.glob(basePath4))) for housePath1 in housePaths1: image1 = cv2.imread(housePath1) image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB) image1 = cv2.resize(image1, (size, size)) for housePath2 in housePaths2: image2 = cv2.imread(housePath2) image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB) image2 = cv2.resize(image2, (size, size)) for housePath3 in housePaths3: image3 = cv2.imread(housePath3) image3 = cv2.cvtColor(image3, cv2.COLOR_BGR2RGB) image3 = cv2.resize(image3, (size, size)) for housePath4 in housePaths4: image4 = cv2.imread(housePath4) image4 = cv2.cvtColor(image4, cv2.COLOR_BGR2RGB) image4 = cv2.resize(image4, (size, size)) image1_2 = cv2.vconcat([image1, image2]) image3_4 = cv2.vconcat([image3, image4]) image_all = cv2.hconcat([image1_2, image1_2]) images.append(image_all) return np.array(images) / 255.0 inputPath = '/kaggle/input/aiacademydeeplearning/train_images/' size = 28 roomType1 = 'kitchen' roomType2 = 'bathroom' roomType3 = 'bedroom' roomType4 = 'frontal' train_images = load_images(train, inputPath, size, roomType1, roomType2, roomType3, roomType4) inputPath_test = '/kaggle/input/aiacademydeeplearning/test_images/' test_images = load_images(test, inputPath_test, size, roomType1, roomType2, roomType3, roomType4) def mean_absolute_percentage_error(y_true, y_pred): y_true, y_pred = (np.array(y_true), np.array(y_pred)) return np.mean(np.abs((y_true - y_pred) / y_true)) * 100 if int(tf.__version__.split('.')[0]) >= 2: from tensorflow import keras else: import keras inputs = keras.layers.Input(shape=(size * 2, size * 2, 3)) lay1 = keras.layers.Conv2D(filters=32, kernel_size=(5, 5), strides=(1, 1), padding='valid', activation='relu', kernel_initializer='he_normal')(inputs) lay2 = MaxPooling2D(pool_size=(2, 2))(lay1) lay3 = BatchNormalization()(lay2) lay4 = Dropout(0.2)(lay3) lay5 = Conv2D(filters=64, kernel_size=(5, 5), strides=(1, 1), padding='valid', activation='relu', kernel_initializer='he_normal')(lay4) lay6 = MaxPooling2D(pool_size=(2, 2))(lay5) lay7 = BatchNormalization()(lay6) lay8 = Dropout(0.2)(lay7) lay9 = Conv2D(filters=128, kernel_size=(5, 5), strides=(1, 1), padding='valid', activation='relu', kernel_initializer='he_normal')(lay8) lay10 = MaxPooling2D(pool_size=(2, 2))(lay9) lay11 = BatchNormalization()(lay10) lay12 = Dropout(0.2)(lay11) lay13 = Flatten()(lay12) lay14 = Dense(units=256, activation='relu', kernel_initializer='he_normal')(lay13) inputs_mlp = keras.layers.Input(shape=(4,)) lay1_mlp = Dense(units=512, input_shape=(len(num_cols),), kernel_initializer='he_normal', activation='relu')(inputs_mlp) lay2_mlp = Dropout(0.2)(lay1_mlp) lay3_mlp = Dense(units=256, kernel_initializer='he_normal', activation='relu')(lay2_mlp) lay4_mlp = Dropout(0.2)(lay3_mlp) merged = keras.layers.concatenate([lay14, lay4_mlp]) lay15 = Dense(units=32, activation='relu', kernel_initializer='he_normal')(merged) lay16 = Dense(units=1, activation='linear')(lay15) model = keras.Model(inputs=[inputs, inputs_mlp], outputs=lay16) model.compile(loss='mape', optimizer='adam', metrics=['mape']) filepath = 'cnn_best_model.hdf5' es = EarlyStopping(patience=5, mode='min', verbose=1) checkpoint = ModelCheckpoint(monitor='val_loss', filepath=filepath, save_best_only=True, mode='auto') reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', patience=2, verbose=1, mode='min') n = 5 y_pred = np.zeros(len(test)) mape_scores = [] for i in range(n): train_x, valid_x, train_images_x, valid_images_x = train_test_split(train, train_images, test_size=0.2, random_state=i * 10) train_y = train_x['price'].values valid_y = valid_x['price'].values train_table, valid_table = train_test_split(train, test_size=0.2, random_state=i * 10) train_f, train_t = (train_table[num_cols].values, train_table[target].values) valid_f, valid_t = (valid_table[num_cols].values, valid_table[target].values) model.fit([train_images_x, train_f], train_y, validation_data=([valid_images_x, valid_f], valid_y), epochs=50, batch_size=16, callbacks=[es, checkpoint, reduce_lr_loss]) model.load_weights(filepath) valid_pred = model.predict([valid_images_x, valid_f], batch_size=32).reshape((-1, 1)) mape_score = mean_absolute_percentage_error(valid_y, valid_pred) mape_scores.append(mape_score) test_pred = model.predict([test_images, test[num_cols].values], batch_size=32).reshape((-1, 1)) y_pred += test_pred.reshape([len(test)]) ykai = y_pred / n print(mape_scores)
code
34144954/cell_6
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.preprocessing import StandardScaler import cv2 import glob import numpy as np import numpy as np # linear algebra import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os submission_sumple = pd.read_csv('/kaggle/input/aiacademydeeplearning/sample_submission.csv') train = pd.read_csv('/kaggle/input/aiacademydeeplearning/train.csv') num_cols = ['bedrooms', 'bathrooms', 'area', 'zipcode'] target = ['price'] train[num_cols] = train[num_cols].fillna(-99999) Scaler = StandardScaler() train[num_cols] = Scaler.fit_transform(train[num_cols]) def load_images(df, inputPath, size, roomType1, roomType2, roomType3, roomType4): images = [] for i in df['id']: basePath1 = os.path.sep.join([inputPath, '{}_{}*'.format(i, roomType1)]) basePath2 = os.path.sep.join([inputPath, '{}_{}*'.format(i, roomType2)]) basePath3 = os.path.sep.join([inputPath, '{}_{}*'.format(i, roomType3)]) basePath4 = os.path.sep.join([inputPath, '{}_{}*'.format(i, roomType4)]) housePaths1 = sorted(list(glob.glob(basePath1))) housePaths2 = sorted(list(glob.glob(basePath2))) housePaths3 = sorted(list(glob.glob(basePath3))) housePaths4 = sorted(list(glob.glob(basePath4))) for housePath1 in housePaths1: image1 = cv2.imread(housePath1) image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB) image1 = cv2.resize(image1, (size, size)) for housePath2 in housePaths2: image2 = cv2.imread(housePath2) image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB) image2 = cv2.resize(image2, (size, size)) for housePath3 in housePaths3: image3 = cv2.imread(housePath3) image3 = cv2.cvtColor(image3, cv2.COLOR_BGR2RGB) image3 = cv2.resize(image3, (size, size)) for housePath4 in housePaths4: image4 = cv2.imread(housePath4) image4 = cv2.cvtColor(image4, cv2.COLOR_BGR2RGB) image4 = cv2.resize(image4, (size, size)) image1_2 = cv2.vconcat([image1, image2]) image3_4 = cv2.vconcat([image3, image4]) image_all = cv2.hconcat([image1_2, image1_2]) images.append(image_all) return np.array(images) / 255.0 inputPath = '/kaggle/input/aiacademydeeplearning/train_images/' size = 28 roomType1 = 'kitchen' roomType2 = 'bathroom' roomType3 = 'bedroom' roomType4 = 'frontal' train_images = load_images(train, inputPath, size, roomType1, roomType2, roomType3, roomType4) display(train_images.shape) display(train_images[0][0][0]) print(train_images.shape[1])
code
34144954/cell_1
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34144954/cell_7
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.preprocessing import StandardScaler import cv2 import glob import numpy as np import numpy as np # linear algebra import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os submission_sumple = pd.read_csv('/kaggle/input/aiacademydeeplearning/sample_submission.csv') train = pd.read_csv('/kaggle/input/aiacademydeeplearning/train.csv') num_cols = ['bedrooms', 'bathrooms', 'area', 'zipcode'] target = ['price'] train[num_cols] = train[num_cols].fillna(-99999) Scaler = StandardScaler() train[num_cols] = Scaler.fit_transform(train[num_cols]) test = pd.read_csv('/kaggle/input/aiacademydeeplearning/test.csv') test[num_cols] = test[num_cols].fillna(-99999) Scaler = StandardScaler() test[num_cols] = Scaler.fit_transform(test[num_cols]) def load_images(df, inputPath, size, roomType1, roomType2, roomType3, roomType4): images = [] for i in df['id']: basePath1 = os.path.sep.join([inputPath, '{}_{}*'.format(i, roomType1)]) basePath2 = os.path.sep.join([inputPath, '{}_{}*'.format(i, roomType2)]) basePath3 = os.path.sep.join([inputPath, '{}_{}*'.format(i, roomType3)]) basePath4 = os.path.sep.join([inputPath, '{}_{}*'.format(i, roomType4)]) housePaths1 = sorted(list(glob.glob(basePath1))) housePaths2 = sorted(list(glob.glob(basePath2))) housePaths3 = sorted(list(glob.glob(basePath3))) housePaths4 = sorted(list(glob.glob(basePath4))) for housePath1 in housePaths1: image1 = cv2.imread(housePath1) image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB) image1 = cv2.resize(image1, (size, size)) for housePath2 in housePaths2: image2 = cv2.imread(housePath2) image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB) image2 = cv2.resize(image2, (size, size)) for housePath3 in housePaths3: image3 = cv2.imread(housePath3) image3 = cv2.cvtColor(image3, cv2.COLOR_BGR2RGB) image3 = cv2.resize(image3, (size, size)) for housePath4 in housePaths4: image4 = cv2.imread(housePath4) image4 = cv2.cvtColor(image4, cv2.COLOR_BGR2RGB) image4 = cv2.resize(image4, (size, size)) image1_2 = cv2.vconcat([image1, image2]) image3_4 = cv2.vconcat([image3, image4]) image_all = cv2.hconcat([image1_2, image1_2]) images.append(image_all) return np.array(images) / 255.0 inputPath = '/kaggle/input/aiacademydeeplearning/train_images/' size = 28 roomType1 = 'kitchen' roomType2 = 'bathroom' roomType3 = 'bedroom' roomType4 = 'frontal' train_images = load_images(train, inputPath, size, roomType1, roomType2, roomType3, roomType4) inputPath_test = '/kaggle/input/aiacademydeeplearning/test_images/' test_images = load_images(test, inputPath_test, size, roomType1, roomType2, roomType3, roomType4) display(test_images.shape) display(test_images[0][0][0])
code
34144954/cell_14
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from tensorflow import keras from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, Callback, ReduceLROnPlateau from tensorflow.keras.layers import BatchNormalization,Activation,Dropout,Dense from tensorflow.keras.layers import Flatten, Conv2D, MaxPooling2D import cv2 import glob import keras import numpy as np import numpy as np # linear algebra import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf import numpy as np import pandas as pd import os submission_sumple = pd.read_csv('/kaggle/input/aiacademydeeplearning/sample_submission.csv') train = pd.read_csv('/kaggle/input/aiacademydeeplearning/train.csv') num_cols = ['bedrooms', 'bathrooms', 'area', 'zipcode'] target = ['price'] train[num_cols] = train[num_cols].fillna(-99999) Scaler = StandardScaler() train[num_cols] = Scaler.fit_transform(train[num_cols]) test = pd.read_csv('/kaggle/input/aiacademydeeplearning/test.csv') test[num_cols] = test[num_cols].fillna(-99999) Scaler = StandardScaler() test[num_cols] = Scaler.fit_transform(test[num_cols]) def load_images(df, inputPath, size, roomType1, roomType2, roomType3, roomType4): images = [] for i in df['id']: basePath1 = os.path.sep.join([inputPath, '{}_{}*'.format(i, roomType1)]) basePath2 = os.path.sep.join([inputPath, '{}_{}*'.format(i, roomType2)]) basePath3 = os.path.sep.join([inputPath, '{}_{}*'.format(i, roomType3)]) basePath4 = os.path.sep.join([inputPath, '{}_{}*'.format(i, roomType4)]) housePaths1 = sorted(list(glob.glob(basePath1))) housePaths2 = sorted(list(glob.glob(basePath2))) housePaths3 = sorted(list(glob.glob(basePath3))) housePaths4 = sorted(list(glob.glob(basePath4))) for housePath1 in housePaths1: image1 = cv2.imread(housePath1) image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB) image1 = cv2.resize(image1, (size, size)) for housePath2 in housePaths2: image2 = cv2.imread(housePath2) image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB) image2 = cv2.resize(image2, (size, size)) for housePath3 in housePaths3: image3 = cv2.imread(housePath3) image3 = cv2.cvtColor(image3, cv2.COLOR_BGR2RGB) image3 = cv2.resize(image3, (size, size)) for housePath4 in housePaths4: image4 = cv2.imread(housePath4) image4 = cv2.cvtColor(image4, cv2.COLOR_BGR2RGB) image4 = cv2.resize(image4, (size, size)) image1_2 = cv2.vconcat([image1, image2]) image3_4 = cv2.vconcat([image3, image4]) image_all = cv2.hconcat([image1_2, image1_2]) images.append(image_all) return np.array(images) / 255.0 inputPath = '/kaggle/input/aiacademydeeplearning/train_images/' size = 28 roomType1 = 'kitchen' roomType2 = 'bathroom' roomType3 = 'bedroom' roomType4 = 'frontal' train_images = load_images(train, inputPath, size, roomType1, roomType2, roomType3, roomType4) inputPath_test = '/kaggle/input/aiacademydeeplearning/test_images/' test_images = load_images(test, inputPath_test, size, roomType1, roomType2, roomType3, roomType4) def mean_absolute_percentage_error(y_true, y_pred): y_true, y_pred = (np.array(y_true), np.array(y_pred)) return np.mean(np.abs((y_true - y_pred) / y_true)) * 100 if int(tf.__version__.split('.')[0]) >= 2: from tensorflow import keras else: import keras inputs = keras.layers.Input(shape=(size * 2, size * 2, 3)) lay1 = keras.layers.Conv2D(filters=32, kernel_size=(5, 5), strides=(1, 1), padding='valid', activation='relu', kernel_initializer='he_normal')(inputs) lay2 = MaxPooling2D(pool_size=(2, 2))(lay1) lay3 = BatchNormalization()(lay2) lay4 = Dropout(0.2)(lay3) lay5 = Conv2D(filters=64, kernel_size=(5, 5), strides=(1, 1), padding='valid', activation='relu', kernel_initializer='he_normal')(lay4) lay6 = MaxPooling2D(pool_size=(2, 2))(lay5) lay7 = BatchNormalization()(lay6) lay8 = Dropout(0.2)(lay7) lay9 = Conv2D(filters=128, kernel_size=(5, 5), strides=(1, 1), padding='valid', activation='relu', kernel_initializer='he_normal')(lay8) lay10 = MaxPooling2D(pool_size=(2, 2))(lay9) lay11 = BatchNormalization()(lay10) lay12 = Dropout(0.2)(lay11) lay13 = Flatten()(lay12) lay14 = Dense(units=256, activation='relu', kernel_initializer='he_normal')(lay13) inputs_mlp = keras.layers.Input(shape=(4,)) lay1_mlp = Dense(units=512, input_shape=(len(num_cols),), kernel_initializer='he_normal', activation='relu')(inputs_mlp) lay2_mlp = Dropout(0.2)(lay1_mlp) lay3_mlp = Dense(units=256, kernel_initializer='he_normal', activation='relu')(lay2_mlp) lay4_mlp = Dropout(0.2)(lay3_mlp) merged = keras.layers.concatenate([lay14, lay4_mlp]) lay15 = Dense(units=32, activation='relu', kernel_initializer='he_normal')(merged) lay16 = Dense(units=1, activation='linear')(lay15) model = keras.Model(inputs=[inputs, inputs_mlp], outputs=lay16) model.compile(loss='mape', optimizer='adam', metrics=['mape']) filepath = 'cnn_best_model.hdf5' es = EarlyStopping(patience=5, mode='min', verbose=1) checkpoint = ModelCheckpoint(monitor='val_loss', filepath=filepath, save_best_only=True, mode='auto') reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', patience=2, verbose=1, mode='min') n = 5 y_pred = np.zeros(len(test)) mape_scores = [] for i in range(n): train_x, valid_x, train_images_x, valid_images_x = train_test_split(train, train_images, test_size=0.2, random_state=i * 10) train_y = train_x['price'].values valid_y = valid_x['price'].values train_table, valid_table = train_test_split(train, test_size=0.2, random_state=i * 10) train_f, train_t = (train_table[num_cols].values, train_table[target].values) valid_f, valid_t = (valid_table[num_cols].values, valid_table[target].values) model.fit([train_images_x, train_f], train_y, validation_data=([valid_images_x, valid_f], valid_y), epochs=50, batch_size=16, callbacks=[es, checkpoint, reduce_lr_loss]) model.load_weights(filepath) valid_pred = model.predict([valid_images_x, valid_f], batch_size=32).reshape((-1, 1)) mape_score = mean_absolute_percentage_error(valid_y, valid_pred) mape_scores.append(mape_score) test_pred = model.predict([test_images, test[num_cols].values], batch_size=32).reshape((-1, 1)) y_pred += test_pred.reshape([len(test)]) ykai = y_pred / n final = ykai df = pd.DataFrame(final, columns=['price']) submission_sumple2 = submission_sumple.drop(['price'], axis=1) kai = pd.concat([submission_sumple2, df], axis=1) kai.to_csv('submission.csv', index=False) kai
code
34144954/cell_5
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.preprocessing import StandardScaler import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) submission_sumple = pd.read_csv('/kaggle/input/aiacademydeeplearning/sample_submission.csv') train = pd.read_csv('/kaggle/input/aiacademydeeplearning/train.csv') num_cols = ['bedrooms', 'bathrooms', 'area', 'zipcode'] target = ['price'] train[num_cols] = train[num_cols].fillna(-99999) Scaler = StandardScaler() train[num_cols] = Scaler.fit_transform(train[num_cols]) test = pd.read_csv('/kaggle/input/aiacademydeeplearning/test.csv') test[num_cols] = test[num_cols].fillna(-99999) Scaler = StandardScaler() test[num_cols] = Scaler.fit_transform(test[num_cols]) display(test.shape) display(test.head())
code
16133160/cell_6
[ "image_output_1.png" ]
import os import os os.listdir('../input')
code
16133160/cell_26
[ "application_vnd.jupyter.stderr_output_1.png" ]
from html.parser import HTMLParser from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.tokenize import word_tokenize from wordcloud import WordCloud, STOPWORDS import collections import gensim import nltk import pandas as pd import pandas as pd import re import scipy.cluster.hierarchy as shc import unicodedata import unicodedata from html.parser import HTMLParser class HTMLStripper(HTMLParser): def __init__(self): HTMLParser.__init__(self) self._lines = [] def error(self, message): pass @staticmethod def remove_control_characters(s): return ''.join((ch for ch in s if unicodedata.category(ch)[0] != 'C')) def read(self, data): self.reset() self.feed(data) return ' '.join(self._lines) def handle_data(self, data): data = self.remove_control_characters(data) data = data.strip() self._lines.append(data) import pandas as pd class ImportData: @staticmethod def read_data(file_name): data = pd.read_csv(file_name) try: data = data.drop(['Unnamed: 0'], axis=0) except KeyError: pass return data @staticmethod def handle_null_values(data): data.drop(columns=['product_meta_keywords'], inplace=True) data.dropna(axis=0, inplace=True) return data def import_data(self, csv_file): data = self.read_data(csv_file) data = self.handle_null_values(data) return data import re import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer class Preprocess: def __init__(self): nltk.download('stopwords') self.STOPWORDS = set(stopwords.words('english')) self.STRIP_PUNCTUATION = re.compile('[",\\(\\)\\|!\\?;:]') self.STRIP_PERIODS = re.compile('\\.(?!\\d)') @staticmethod def strip_tags(html): s = HTMLStripper() return s.read(html) def normalize(self, text): text = text.lower() text = self.STRIP_PUNCTUATION.sub('', text) text = self.STRIP_PERIODS.sub('', text) text = text.split(' ') text = [word for word in text if word not in self.STOPWORDS] text = ' '.join(text) text = [WordNetLemmatizer().lemmatize(word) for word in text] text = ''.join(text) text = text.strip() text = re.sub(' +', ' ', text) return text def process(self, html): text = self.strip_tags(html) text = self.normalize(text) return text from wordcloud import WordCloud, STOPWORDS from matplotlib import pyplot as plt class Visualize: def __init__(self, width=500, height=500, bg_color='white', font_size=15, stopwords=STOPWORDS, text=''): self.width = width self.height = height self.bg_color = bg_color self.font_size = font_size self.stopwords = stopwords self.text = text self.wordcloud = WordCloud(width=self.width, height=self.height, background_color=self.bg_color, stopwords=self.stopwords, min_font_size=self.font_size) def plot(self): wordcloud = self.wordcloud.generate(self.text) plt.axis('off') plt.tight_layout(pad=0) import gensim import pandas as pd import collections from nltk.tokenize import word_tokenize class Doc2Vec: def __init__(self, filename='../input/Product_Details.csv'): self.data = pd.read_csv(filename) self.train_corpus = self.get_train_data() self.test_corpus = self.get_test_data() def read_corpus(self, tokens_only=False): for i, row in enumerate(self.data): if tokens_only: yield word_tokenize(row) else: yield gensim.models.doc2vec.TaggedDocument(word_tokenize(row), [i]) def get_train_data(self): train_corpus = list(self.read_corpus()) return train_corpus def get_test_data(self): test_corpus = list(self.read_corpus(tokens_only=True)) return test_corpus def train_model(self, epochs=40, vector_size=50, min_count=2, workers=4, save_model=True): model = gensim.models.doc2vec.Doc2Vec(vector_size=vector_size, min_count=min_count, epochs=epochs, workers=workers) model.build_vocab(self.train_corpus) model.train(self.train_corpus, total_examples=model.corpus_count, epochs=model.epochs) if save_model: name = 'doc2vec.model' model.save(name) return model def test_model(self): model = self.train_model() ranks = [] second_ranks = [] for doc_id in range(len(self.train_corpus)): inferred_vector = model.infer_vector(self.train_corpus[doc_id].words) sims = model.docvecs.most_similar([inferred_vector], topn=len(model.docvecs)) rank = [docid for docid, sim in sims].index(doc_id) ranks.append(rank) second_ranks.append(sims[1]) collections.Counter(ranks) def export_vsm_vocab(self, model): document_vector_list = [] for i in range(self.data.shape[0]): document_vector_list.append(model.docvecs[i]) return document_vector_list data_importer = ImportData() data = data_importer.import_data('../input/qiagen-detail/Qiagen_details.csv') def TaggedDoc(dataframe): global punct tagdoc = [] for i in range(len(dataframe)): x = dataframe.iloc[i] y = gensim.models.doc2vec.TaggedDocument(x.lower().split(), [i]) tagdoc.append(y) return tagdoc df_desc = TaggedDoc(data['product_html']) model = gensim.models.doc2vec.Doc2Vec(vector_size=50, max_count=5, epochs=30, dm=1, workers=4, dbow_words=0) model.build_vocab(df_desc) len(model.wv.vocab) import scipy.cluster.hierarchy as shc plt.figure(figsize=(10, 8)) plt.title('Dendrograms') dend = shc.dendrogram(shc.linkage(model.docvecs.vectors_docs, method='ward'))
code
16133160/cell_8
[ "text_plain_output_1.png" ]
from html.parser import HTMLParser import pandas as pd import pandas as pd import unicodedata import unicodedata from html.parser import HTMLParser class HTMLStripper(HTMLParser): def __init__(self): HTMLParser.__init__(self) self._lines = [] def error(self, message): pass @staticmethod def remove_control_characters(s): return ''.join((ch for ch in s if unicodedata.category(ch)[0] != 'C')) def read(self, data): self.reset() self.feed(data) return ' '.join(self._lines) def handle_data(self, data): data = self.remove_control_characters(data) data = data.strip() self._lines.append(data) import pandas as pd class ImportData: @staticmethod def read_data(file_name): data = pd.read_csv(file_name) try: data = data.drop(['Unnamed: 0'], axis=0) except KeyError: pass return data @staticmethod def handle_null_values(data): data.drop(columns=['product_meta_keywords'], inplace=True) data.dropna(axis=0, inplace=True) return data def import_data(self, csv_file): data = self.read_data(csv_file) data = self.handle_null_values(data) return data data_importer = ImportData() data = data_importer.import_data('../input/qiagen-detail/Qiagen_details.csv') data.head()
code
16133160/cell_15
[ "text_html_output_1.png" ]
from html.parser import HTMLParser import pandas as pd import pandas as pd import unicodedata import unicodedata from html.parser import HTMLParser class HTMLStripper(HTMLParser): def __init__(self): HTMLParser.__init__(self) self._lines = [] def error(self, message): pass @staticmethod def remove_control_characters(s): return ''.join((ch for ch in s if unicodedata.category(ch)[0] != 'C')) def read(self, data): self.reset() self.feed(data) return ' '.join(self._lines) def handle_data(self, data): data = self.remove_control_characters(data) data = data.strip() self._lines.append(data) import pandas as pd class ImportData: @staticmethod def read_data(file_name): data = pd.read_csv(file_name) try: data = data.drop(['Unnamed: 0'], axis=0) except KeyError: pass return data @staticmethod def handle_null_values(data): data.drop(columns=['product_meta_keywords'], inplace=True) data.dropna(axis=0, inplace=True) return data def import_data(self, csv_file): data = self.read_data(csv_file) data = self.handle_null_values(data) return data data_importer = ImportData() data = data_importer.import_data('../input/qiagen-detail/Qiagen_details.csv') len(data['product_category'])
code
16133160/cell_16
[ "text_plain_output_1.png" ]
len(ist)
code
16133160/cell_24
[ "text_plain_output_1.png" ]
code
16133160/cell_14
[ "text_plain_output_1.png" ]
from html.parser import HTMLParser import pandas as pd import pandas as pd import unicodedata import unicodedata from html.parser import HTMLParser class HTMLStripper(HTMLParser): def __init__(self): HTMLParser.__init__(self) self._lines = [] def error(self, message): pass @staticmethod def remove_control_characters(s): return ''.join((ch for ch in s if unicodedata.category(ch)[0] != 'C')) def read(self, data): self.reset() self.feed(data) return ' '.join(self._lines) def handle_data(self, data): data = self.remove_control_characters(data) data = data.strip() self._lines.append(data) import pandas as pd class ImportData: @staticmethod def read_data(file_name): data = pd.read_csv(file_name) try: data = data.drop(['Unnamed: 0'], axis=0) except KeyError: pass return data @staticmethod def handle_null_values(data): data.drop(columns=['product_meta_keywords'], inplace=True) data.dropna(axis=0, inplace=True) return data def import_data(self, csv_file): data = self.read_data(csv_file) data = self.handle_null_values(data) return data data_importer = ImportData() data = data_importer.import_data('../input/qiagen-detail/Qiagen_details.csv') len(data['product_html'])
code
16133160/cell_22
[ "text_plain_output_1.png" ]
from html.parser import HTMLParser from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk.tokenize import word_tokenize from wordcloud import WordCloud, STOPWORDS import collections import gensim import nltk import pandas as pd import pandas as pd import re import unicodedata import unicodedata from html.parser import HTMLParser class HTMLStripper(HTMLParser): def __init__(self): HTMLParser.__init__(self) self._lines = [] def error(self, message): pass @staticmethod def remove_control_characters(s): return ''.join((ch for ch in s if unicodedata.category(ch)[0] != 'C')) def read(self, data): self.reset() self.feed(data) return ' '.join(self._lines) def handle_data(self, data): data = self.remove_control_characters(data) data = data.strip() self._lines.append(data) import pandas as pd class ImportData: @staticmethod def read_data(file_name): data = pd.read_csv(file_name) try: data = data.drop(['Unnamed: 0'], axis=0) except KeyError: pass return data @staticmethod def handle_null_values(data): data.drop(columns=['product_meta_keywords'], inplace=True) data.dropna(axis=0, inplace=True) return data def import_data(self, csv_file): data = self.read_data(csv_file) data = self.handle_null_values(data) return data import re import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer class Preprocess: def __init__(self): nltk.download('stopwords') self.STOPWORDS = set(stopwords.words('english')) self.STRIP_PUNCTUATION = re.compile('[",\\(\\)\\|!\\?;:]') self.STRIP_PERIODS = re.compile('\\.(?!\\d)') @staticmethod def strip_tags(html): s = HTMLStripper() return s.read(html) def normalize(self, text): text = text.lower() text = self.STRIP_PUNCTUATION.sub('', text) text = self.STRIP_PERIODS.sub('', text) text = text.split(' ') text = [word for word in text if word not in self.STOPWORDS] text = ' '.join(text) text = [WordNetLemmatizer().lemmatize(word) for word in text] text = ''.join(text) text = text.strip() text = re.sub(' +', ' ', text) return text def process(self, html): text = self.strip_tags(html) text = self.normalize(text) return text from wordcloud import WordCloud, STOPWORDS from matplotlib import pyplot as plt class Visualize: def __init__(self, width=500, height=500, bg_color='white', font_size=15, stopwords=STOPWORDS, text=''): self.width = width self.height = height self.bg_color = bg_color self.font_size = font_size self.stopwords = stopwords self.text = text self.wordcloud = WordCloud(width=self.width, height=self.height, background_color=self.bg_color, stopwords=self.stopwords, min_font_size=self.font_size) def plot(self): wordcloud = self.wordcloud.generate(self.text) plt.axis('off') plt.tight_layout(pad=0) import gensim import pandas as pd import collections from nltk.tokenize import word_tokenize class Doc2Vec: def __init__(self, filename='../input/Product_Details.csv'): self.data = pd.read_csv(filename) self.train_corpus = self.get_train_data() self.test_corpus = self.get_test_data() def read_corpus(self, tokens_only=False): for i, row in enumerate(self.data): if tokens_only: yield word_tokenize(row) else: yield gensim.models.doc2vec.TaggedDocument(word_tokenize(row), [i]) def get_train_data(self): train_corpus = list(self.read_corpus()) return train_corpus def get_test_data(self): test_corpus = list(self.read_corpus(tokens_only=True)) return test_corpus def train_model(self, epochs=40, vector_size=50, min_count=2, workers=4, save_model=True): model = gensim.models.doc2vec.Doc2Vec(vector_size=vector_size, min_count=min_count, epochs=epochs, workers=workers) model.build_vocab(self.train_corpus) model.train(self.train_corpus, total_examples=model.corpus_count, epochs=model.epochs) if save_model: name = 'doc2vec.model' model.save(name) return model def test_model(self): model = self.train_model() ranks = [] second_ranks = [] for doc_id in range(len(self.train_corpus)): inferred_vector = model.infer_vector(self.train_corpus[doc_id].words) sims = model.docvecs.most_similar([inferred_vector], topn=len(model.docvecs)) rank = [docid for docid, sim in sims].index(doc_id) ranks.append(rank) second_ranks.append(sims[1]) collections.Counter(ranks) def export_vsm_vocab(self, model): document_vector_list = [] for i in range(self.data.shape[0]): document_vector_list.append(model.docvecs[i]) return document_vector_list data_importer = ImportData() data = data_importer.import_data('../input/qiagen-detail/Qiagen_details.csv') def TaggedDoc(dataframe): global punct tagdoc = [] for i in range(len(dataframe)): x = dataframe.iloc[i] y = gensim.models.doc2vec.TaggedDocument(x.lower().split(), [i]) tagdoc.append(y) return tagdoc df_desc = TaggedDoc(data['product_html']) model = gensim.models.doc2vec.Doc2Vec(vector_size=50, max_count=5, epochs=30, dm=1, workers=4, dbow_words=0) model.build_vocab(df_desc) len(model.wv.vocab)
code
16133160/cell_10
[ "text_plain_output_1.png" ]
data_processor = Preprocess()
code
16133160/cell_27
[ "text_plain_output_1.png" ]
from sklearn.cluster import AgglomerativeClustering cluster = AgglomerativeClustering(n_clusters=6, affinity='euclidean', linkage='ward')
code
16133160/cell_5
[ "text_plain_output_1.png" ]
!pip install paramiko
code
34127100/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isnull().sum() train_df = train_data.drop('Cabin', axis=True) categorical_col = train_df.select_dtypes(include=['object']).columns categorical_col train_df.isnull().sum() sns.pairplot(train_df.drop(['PassengerId', 'Parch', 'SibSp'], axis=1), hue='Survived')
code
34127100/cell_13
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isnull().sum() train_df = train_data.drop('Cabin', axis=True) categorical_col = train_df.select_dtypes(include=['object']).columns categorical_col ar_of_modes = np.array(train_df[categorical_col].mode()) val = ar_of_modes[0] val
code
34127100/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.info()
code
34127100/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isnull().sum() train_df = train_data.drop('Cabin', axis=True) categorical_col = train_df.select_dtypes(include=['object']).columns categorical_col train_df.isnull().sum() sns.countplot(x='Survived', hue='Sex', data=train_df)
code
34127100/cell_33
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') print('X_train', len(X_train)) print('X_test', len(X_test)) print('y_train', len(y_train)) print('y_test', len(y_test)) print('test', len(test_data))
code
34127100/cell_39
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix classifier = LogisticRegression() classifier.fit(X_train, y_train) lr_score = classifier.score(X_test, y_test) predictions = classifier.predict(X_test) from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix confusion_matrix(y_test, predictions)
code
34127100/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isnull().sum() train_df = train_data.drop('Cabin', axis=True) categorical_col = train_df.select_dtypes(include=['object']).columns categorical_col train_df.isnull().sum() train_df.corr()
code
34127100/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isnull().sum() train_df = train_data.drop('Cabin', axis=True) categorical_col = train_df.select_dtypes(include=['object']).columns categorical_col train_df.isnull().sum() sns.heatmap(train_df.isna())
code
34127100/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34127100/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') sns.heatmap(train_data.isnull())
code
34127100/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isnull().sum() train_df = train_data.drop('Cabin', axis=True) categorical_col = train_df.select_dtypes(include=['object']).columns categorical_col train_df.isnull().sum() print(train_df.isnull().sum())
code
34127100/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') import seaborn as sns import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') train_data.isnull().sum() train_df = train_data.drop('Cabin', axis=True) categorical_col = train_df.select_dtypes(include=['object']).columns categorical_col train_df.isnull().sum() train_df.corr() cor = train_df.corr() cor_target = abs(cor['Survived']) print(cor_target.sort_values())
code
34127100/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isnull().sum()
code
34127100/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isnull().sum() train_df = train_data.drop('Cabin', axis=True) categorical_col = train_df.select_dtypes(include=['object']).columns categorical_col train_df.isnull().sum()
code
34127100/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.head(3)
code
34127100/cell_35
[ "image_output_1.png" ]
from sklearn.linear_model import LogisticRegression classifier = LogisticRegression() classifier.fit(X_train, y_train)
code
34127100/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isnull().sum() train_df = train_data.drop('Cabin', axis=True) categorical_col = train_df.select_dtypes(include=['object']).columns categorical_col train_df.isnull().sum() sns.countplot(x='Survived', hue='Embarked', data=train_df)
code
34127100/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isnull().sum() train_df = train_data.drop('Cabin', axis=True) categorical_col = train_df.select_dtypes(include=['object']).columns categorical_col train_df.isnull().sum() sns.countplot(train_df['Sex'])
code
34127100/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') import seaborn as sns import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') train_data.isnull().sum() train_df = train_data.drop('Cabin', axis=True) categorical_col = train_df.select_dtypes(include=['object']).columns categorical_col train_df.isnull().sum() train_df.corr() plt.figure(figsize=(20, 18)) cor = train_df.corr() sns.heatmap(cor, annot=True) plt.show()
code
34127100/cell_37
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report classifier = LogisticRegression() classifier.fit(X_train, y_train) lr_score = classifier.score(X_test, y_test) predictions = classifier.predict(X_test) from sklearn.metrics import classification_report print(classification_report(y_test, predictions))
code
34127100/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.isnull().sum() train_df = train_data.drop('Cabin', axis=True) categorical_col = train_df.select_dtypes(include=['object']).columns categorical_col
code
34127100/cell_36
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression classifier = LogisticRegression() classifier.fit(X_train, y_train) lr_score = classifier.score(X_test, y_test) print(lr_score)
code
49120184/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.isnull().sum() test.isnull().sum() train.replace({'Sex': {'male': 0, 'female': 1}}, inplace=True) test.replace({'Sex': {'male': 0, 'female': 1}}, inplace=True) train.groupby('Embarked').size() test.groupby('Embarked').size() train.replace({'Embarked': {'C': 0, 'Q': 1, 'S': 2}}, inplace=True) test.replace({'Embarked': {'C': 0, 'Q': 1, 'S': 2}}, inplace=True) train = train.drop(columns=['PassengerId', 'Name', 'Ticket', 'Cabin']) test = test.drop(columns=['PassengerId', 'Name', 'Ticket', 'Cabin']) train = train.astype(float) test = test.astype(float) train.dtypes test.dtypes
code
49120184/cell_25
[ "text_plain_output_1.png" ]
from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingClassifier clf = GradientBoostingClassifier() clf.fit(X_train, y_train) print('学習スコア', clf.score(X_train, y_train)) print('テストスコア', clf.score(X_val, y_val))
code
49120184/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.isnull().sum()
code
49120184/cell_23
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.isnull().sum() test.isnull().sum() train.replace({'Sex': {'male': 0, 'female': 1}}, inplace=True) test.replace({'Sex': {'male': 0, 'female': 1}}, inplace=True) #先ほどの五段階の評価をビジュアライズ f ,ax = plt.subplots() train['Age'].value_counts().plot.bar() train.groupby('Embarked').size() test.groupby('Embarked').size() train.replace({'Embarked': {'C': 0, 'Q': 1, 'S': 2}}, inplace=True) test.replace({'Embarked': {'C': 0, 'Q': 1, 'S': 2}}, inplace=True) train = train.drop(columns=['PassengerId', 'Name', 'Ticket', 'Cabin']) test = test.drop(columns=['PassengerId', 'Name', 'Ticket', 'Cabin']) train = train.astype(float) test = test.astype(float) train.dtypes test.dtypes colormap = plt.cm.RdBu plt.figure(figsize=(14, 12)) sns.heatmap(train.corr(), linewidths=0.1, cmap=colormap, linecolor='white', annot=True)
code
49120184/cell_30
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import log_loss from sklearn.metrics import roc_auc_score from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier import lightgbm as lgb import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.isnull().sum() test.isnull().sum() train.replace({'Sex': {'male': 0, 'female': 1}}, inplace=True) test.replace({'Sex': {'male': 0, 'female': 1}}, inplace=True) #先ほどの五段階の評価をビジュアライズ f ,ax = plt.subplots() train['Age'].value_counts().plot.bar() train.groupby('Embarked').size() test.groupby('Embarked').size() train.replace({'Embarked': {'C': 0, 'Q': 1, 'S': 2}}, inplace=True) test.replace({'Embarked': {'C': 0, 'Q': 1, 'S': 2}}, inplace=True) train = train.drop(columns=['PassengerId', 'Name', 'Ticket', 'Cabin']) test = test.drop(columns=['PassengerId', 'Name', 'Ticket', 'Cabin']) train = train.astype(float) test = test.astype(float) train.dtypes test.dtypes colormap = plt.cm.RdBu X = train.drop(columns=['Survived']) y = train['Survived'] X_test = test from sklearn.model_selection import train_test_split X_train, X_val, y_train, y_val = train_test_split(X, y, train_size=0.8, random_state=0) import sklearn from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X_train, y_train) from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier(criterion='entropy', max_depth=5, random_state=0) model.fit(X_train, y_train) from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier(n_neighbors=3) model.fit(X_train, y_train) import lightgbm as lgb from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.metrics import log_loss from sklearn.metrics import roc_auc_score model = lgb.LGBMClassifier() model.fit(X_train, y_train) y_pred = model.predict(X_val) y_pred_prob = model.predict_proba(X_val) acc = accuracy_score(y_val, y_pred) logloss = log_loss(y_val, y_pred_prob) auc = roc_auc_score(y_val, y_pred_prob[:, 1]) y_pred_1 = model.predict(X_test) print(y_pred_1.shape)
code
49120184/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.isnull().sum() train.head()
code
49120184/cell_29
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import log_loss from sklearn.metrics import roc_auc_score from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier import lightgbm as lgb import sklearn from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X_train, y_train) from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier(criterion='entropy', max_depth=5, random_state=0) model.fit(X_train, y_train) from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier(n_neighbors=3) model.fit(X_train, y_train) import lightgbm as lgb from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.metrics import log_loss from sklearn.metrics import roc_auc_score model = lgb.LGBMClassifier() model.fit(X_train, y_train) y_pred = model.predict(X_val) y_pred_prob = model.predict_proba(X_val) print(model.score(X_train, y_train)) print(model.score(X_val, y_val)) acc = accuracy_score(y_val, y_pred) print('Acc :', acc) logloss = log_loss(y_val, y_pred_prob) print('logloss :', logloss) auc = roc_auc_score(y_val, y_pred_prob[:, 1]) print('AUC :', auc)
code
49120184/cell_26
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression import sklearn from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X_train, y_train) print('train score:', model.score(X_train, y_train)) print('test score:', model.score(X_val, y_val))
code
49120184/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.isnull().sum() test.isnull().sum() train.replace({'Sex': {'male': 0, 'female': 1}}, inplace=True) test.replace({'Sex': {'male': 0, 'female': 1}}, inplace=True) train.groupby('Embarked').size() test.groupby('Embarked').size() train.replace({'Embarked': {'C': 0, 'Q': 1, 'S': 2}}, inplace=True) test.replace({'Embarked': {'C': 0, 'Q': 1, 'S': 2}}, inplace=True) print(train.shape) print(test.shape)
code
49120184/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
49120184/cell_32
[ "text_plain_output_1.png" ]
from imblearn.over_sampling import SMOTE from xgboost import XGBClassifier from xgboost import XGBClassifier xgb = XGBClassifier(objective='binary:logistic') xgb.fit(X_train, y_train) pred = xgb.predict(X_val) from imblearn.over_sampling import SMOTE method = SMOTE() X_resampled, y_resampled = method.fit_sample(X_train, y_train) xgb.fit(X_resampled, y_resampled) pred1 = xgb.predict(X_val) print('Train Score: ', xgb.score(X_resampled, y_resampled)) print('Test Score: ', xgb.score(X_val, y_val))
code
49120184/cell_28
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier import sklearn from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X_train, y_train) from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier(criterion='entropy', max_depth=5, random_state=0) model.fit(X_train, y_train) from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier(n_neighbors=3) model.fit(X_train, y_train) print('正解率(train):{:.3f}'.format(model.score(X_train, y_train))) print('正解率(test):{:.3f}'.format(model.score(X_val, y_val)))
code
49120184/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.isnull().sum() test.isnull().sum() train.replace({'Sex': {'male': 0, 'female': 1}}, inplace=True) test.replace({'Sex': {'male': 0, 'female': 1}}, inplace=True) train.groupby('Embarked').size()
code
49120184/cell_16
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.isnull().sum() test.isnull().sum() train.replace({'Sex': {'male': 0, 'female': 1}}, inplace=True) test.replace({'Sex': {'male': 0, 'female': 1}}, inplace=True) test.groupby('Embarked').size()
code
49120184/cell_31
[ "text_plain_output_1.png" ]
from xgboost import XGBClassifier from xgboost import XGBClassifier xgb = XGBClassifier(objective='binary:logistic') xgb.fit(X_train, y_train) pred = xgb.predict(X_val) print(xgb.score(X_train, y_train)) print(xgb.score(X_val, y_val))
code
49120184/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.isnull().sum() test.isnull().sum() train.replace({'Sex': {'male': 0, 'female': 1}}, inplace=True) test.replace({'Sex': {'male': 0, 'female': 1}}, inplace=True) train.groupby('Embarked').size() test.groupby('Embarked').size() train.replace({'Embarked': {'C': 0, 'Q': 1, 'S': 2}}, inplace=True) test.replace({'Embarked': {'C': 0, 'Q': 1, 'S': 2}}, inplace=True) train = train.drop(columns=['PassengerId', 'Name', 'Ticket', 'Cabin']) test = test.drop(columns=['PassengerId', 'Name', 'Ticket', 'Cabin']) train = train.astype(float) test = test.astype(float) train.dtypes test.dtypes print(train.shape) print(test.shape)
code
49120184/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.isnull().sum() test.isnull().sum() train.replace({'Sex': {'male': 0, 'female': 1}}, inplace=True) test.replace({'Sex': {'male': 0, 'female': 1}}, inplace=True) f, ax = plt.subplots() train['Age'].value_counts().plot.bar()
code
49120184/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier import sklearn from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X_train, y_train) from sklearn.tree import DecisionTreeClassifier model = DecisionTreeClassifier(criterion='entropy', max_depth=5, random_state=0) model.fit(X_train, y_train) print('正解率(train):{:.3f}'.format(model.score(X_train, y_train))) print('正解率(test):{:.3f}'.format(model.score(X_val, y_val)))
code
49120184/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') test.isnull().sum()
code
73061601/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np t = np.arange(0, 11) x = 0.85 ** t plt.figure(figsize=(12, 12)) plt.subplot(2, 2, 1) plt.title('Analog Signal', fontsize=20) plt.plot(t, x, linewidth=3, label='x(t) = (0.85)^t') plt.xlabel('t', fontsize=15) plt.ylabel('amplitude', fontsize=15) plt.legend() plt.subplot(2, 2, 2) plt.title('Sampling', fontsize=20) plt.plot(t, x, linewidth=3, label='x(t) = (0.85)^t') n = t markerline, stemlines, baseline = plt.stem(n, x, label='x(n) = (0.85)^n') plt.setp(stemlines, 'linewidth', 3) plt.xlabel('n', fontsize=15) plt.ylabel('amplitude', fontsize=15) plt.legend() plt.subplot(2, 2, 3) plt.title('Quantization', fontsize=20) plt.plot(t, x, linewidth=3) markerline, stemlines, baseline = plt.stem(n, x) plt.setp(stemlines, 'linewidth', 3) plt.xlabel('n', fontsize=15) plt.ylabel('Range of Quantizer', fontsize=15) plt.axhline(y=0.1, xmin=0, xmax=10, color='r', linewidth=3.0) plt.axhline(y=0.2, xmin=0, xmax=10, color='r', linewidth=3.0) plt.axhline(y=0.3, xmin=0, xmax=10, color='r', linewidth=3.0) plt.axhline(y=0.4, xmin=0, xmax=10, color='r', linewidth=3.0) plt.axhline(y=0.5, xmin=0, xmax=10, color='r', linewidth=3.0) plt.axhline(y=0.6, xmin=0, xmax=10, color='r', linewidth=3.0) plt.axhline(y=0.7, xmin=0, xmax=10, color='r', linewidth=3.0) plt.axhline(y=0.8, xmin=0, xmax=10, color='r', linewidth=3.0) plt.axhline(y=0.9, xmin=0, xmax=10, color='r', linewidth=3.0) plt.axhline(y=1.0, xmin=0, xmax=10, color='r', linewidth=3.0) plt.subplot(2, 2, 4) plt.title('Quantized Signal', fontsize=20) xq = np.around(x, 1) markerline, stemlines, baseline = plt.stem(n, xq) plt.setp(stemlines, 'linewidth', 3) plt.xlabel('n', fontsize=15) plt.ylabel('Range of Quantizer', fontsize=15) plt.axhline(y=0.1, xmin=0, xmax=10, color='r', linewidth=3.0) plt.axhline(y=0.2, xmin=0, xmax=10, color='r', linewidth=3.0) plt.axhline(y=0.3, xmin=0, xmax=10, color='r', linewidth=3.0) plt.axhline(y=0.4, xmin=0, xmax=10, color='r', linewidth=3.0) plt.axhline(y=0.5, xmin=0, xmax=10, color='r', linewidth=3.0) plt.axhline(y=0.6, xmin=0, xmax=10, color='r', linewidth=3.0) plt.axhline(y=0.7, xmin=0, xmax=10, color='r', linewidth=3.0) plt.axhline(y=0.8, xmin=0, xmax=10, color='r', linewidth=3.0) plt.axhline(y=0.9, xmin=0, xmax=10, color='r', linewidth=3.0) plt.axhline(y=1.0, xmin=0, xmax=10, color='r', linewidth=3.0)
code
128024272/cell_12
[ "text_plain_output_1.png" ]
import tensorflow as tf import tensorflow as tf def yolov1(input_shape, num_classes): model = tf.keras.models.Sequential() model.add(tf.keras.layers.Conv2D(64, (7, 7), strides=(2, 2), padding='same', input_shape=input_shape)) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(tf.keras.layers.Conv2D(192, (3, 3), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(tf.keras.layers.Conv2D(128, (1, 1), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Conv2D(256, (3, 3), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Conv2D(256, (1, 1), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Conv2D(512, (3, 3), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(tf.keras.layers.Conv2D(256, (1, 1), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Conv2D(512, (3, 3), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Conv2D(256, (1, 1), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Conv2D(512, (3, 3), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Conv2D(256, (1, 1), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Conv2D(512, (3, 3), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Conv2D(256, (1, 1), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Conv2D(512, (3, 3), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Conv2D(512, (1, 1), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Conv2D(1024, (3, 3), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(tf.keras.layers.Conv2D(512, (1, 1), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Conv2D(1024, (3, 3), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Conv2D(512, (1, 1), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Conv2D(1024, (3, 3), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Conv2D(1024, (3, 3), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Conv2D(1024, (3, 3), strides=(2, 2), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Conv2D(1024, (3, 3), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Conv2D(1024, (3, 3), padding='same')) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(4096)) model.add(tf.keras.layers.LeakyReLU(alpha=0.1)) model.add(tf.keras.layers.Dense(7 * 7 * (num_classes + 5))) return model input_shape = (448, 448, 3) num_classes = 20 yolo_model = yolov1(input_shape, num_classes) yolo_model.summary()
code
1005801/cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import tensorflow as tf import random from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
1005801/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random df = pd.read_csv('../input/train.csv') t = pd.DataFrame({'Validation': list(map(lambda x: random.random() < 0.3, range(891)))}) C = pd.concat([df, t], axis=1) features = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare'] y_train = df['Survived'].values x_train = df[features].values print(len(x_train))
code
88098005/cell_4
[ "text_html_output_1.png" ]
! pip install -q git+https://github.com/tensorflow/docs
code
88098005/cell_33
[ "text_plain_output_1.png" ]
from IPython.display import HTML, display import cv2 import numpy as np import tensorflow as tf import tensorflow_hub as hub KEYPOINT_EDGE_INDS_TO_COLOR = {(0, 1): 'm', (0, 2): 'c', (1, 3): 'm', (2, 4): 'c', (0, 5): 'm', (0, 6): 'c', (5, 7): 'm', (7, 9): 'm', (6, 8): 'c', (8, 10): 'c', (5, 6): 'y', (5, 11): 'm', (6, 12): 'c', (11, 12): 'y', (11, 13): 'm', (13, 15): 'm', (12, 14): 'c', (14, 16): 'c'} model = hub.load('https://tfhub.dev/google/movenet/multipose/lightning/1') movenet = model.signatures['serving_default'] def loop(frame, keypoints, threshold=0.11): pass def draw_keypoints(frame, keypoints, threshold=0.11): width, height, _ = frame.shape shaped = np.squeeze(np.multiply(keypoints, [width, height, 1])) for kp in shaped: ky, kx, kp_conf = kp if kp_conf > threshold: cv2.circle(frame, (int(kx), int(ky)), 4, (255, 0, 0), -1) def draw_edges(frame, keypoints, edges, threshold=0.11): y, x, c = frame.shape shaped = np.squeeze(np.multiply(keypoints, [y, x, 1])) for edge, color in edges.items(): p1, p2 = edge y1, x1, c1 = shaped[p1] y2, x2, c2 = shaped[p2] if (c1 > threshold) & (c2 > threshold): cv2.line(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 4) def progress(value, max=100): return HTML("\n <progress\n value='{value}'\n max='{max}',\n style='width: 100%'\n >\n {value}\n </progress>\n ".format(value=value, max=max)) gif = cv2.VideoCapture('./ngannou.gif') frame_count = int(gif.get(cv2.CAP_PROP_FRAME_COUNT)) output_frames = [] def run_inference(): #Set the progress bar to 0. It ranges from the first to the last frame bar = display(progress(0, frame_count-1), display_id=True) while gif.isOpened(): #Capture the frame ret, frame = gif.read() #Process the frame : resize to the input size if frame is None: break #Retrieve the frame index index = gif.get(cv2.CAP_PROP_POS_FRAMES) image = frame.copy() image = tf.cast(tf.image.resize_with_pad(image, 256, 256), dtype=tf.int32) input_image = tf.expand_dims(image, axis=0) #Perform inference results = movenet(input_image) keypoints = results['output_0'].numpy()[:,:,:51].reshape((6,17,3)) #Loop through the results loop(frame, keypoints, threshold=0.11) #Add the drawings to the output frames frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) #OpenCV processes BGR images instead of RGB output_frames.append(frame_rgb) #Update the progress bar bar.update(progress(index, frame_count-1)) #Release the object gif.release() run_inference()
code
88098005/cell_28
[ "text_plain_output_1.png" ]
import cv2 import numpy as np def draw_keypoints(frame, keypoints, threshold=0.11): width, height, _ = frame.shape shaped = np.squeeze(np.multiply(keypoints, [width, height, 1])) for kp in shaped: ky, kx, kp_conf = kp if kp_conf > threshold: cv2.circle(frame, (int(kx), int(ky)), 4, (255, 0, 0), -1) def draw_edges(frame, keypoints, edges, threshold=0.11): y, x, c = frame.shape shaped = np.squeeze(np.multiply(keypoints, [y, x, 1])) for edge, color in edges.items(): p1, p2 = edge y1, x1, c1 = shaped[p1] y2, x2, c2 = shaped[p2] if (c1 > threshold) & (c2 > threshold): cv2.line(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 4) gif = cv2.VideoCapture('./ngannou.gif') frame_count = int(gif.get(cv2.CAP_PROP_FRAME_COUNT)) print(f'Frame count: {frame_count}')
code
88098005/cell_17
[ "application_vnd.jupyter.stderr_output_1.png" ]
! wget -O ngannou.gif https://raw.githubusercontent.com/Justsecret123/Human-pose-estimation/main/Test%20gifs/Ngannou_takedown.gif
code
88098005/cell_12
[ "text_plain_output_1.png" ]
import tensorflow_hub as hub model = hub.load('https://tfhub.dev/google/movenet/multipose/lightning/1') movenet = model.signatures['serving_default']
code
88098005/cell_36
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
from IPython.display import HTML, display from tensorflow_docs.vis import embed import cv2 import imageio import numpy as np import tensorflow as tf import tensorflow_hub as hub KEYPOINT_EDGE_INDS_TO_COLOR = {(0, 1): 'm', (0, 2): 'c', (1, 3): 'm', (2, 4): 'c', (0, 5): 'm', (0, 6): 'c', (5, 7): 'm', (7, 9): 'm', (6, 8): 'c', (8, 10): 'c', (5, 6): 'y', (5, 11): 'm', (6, 12): 'c', (11, 12): 'y', (11, 13): 'm', (13, 15): 'm', (12, 14): 'c', (14, 16): 'c'} model = hub.load('https://tfhub.dev/google/movenet/multipose/lightning/1') movenet = model.signatures['serving_default'] def loop(frame, keypoints, threshold=0.11): pass def draw_keypoints(frame, keypoints, threshold=0.11): width, height, _ = frame.shape shaped = np.squeeze(np.multiply(keypoints, [width, height, 1])) for kp in shaped: ky, kx, kp_conf = kp if kp_conf > threshold: cv2.circle(frame, (int(kx), int(ky)), 4, (255, 0, 0), -1) def draw_edges(frame, keypoints, edges, threshold=0.11): y, x, c = frame.shape shaped = np.squeeze(np.multiply(keypoints, [y, x, 1])) for edge, color in edges.items(): p1, p2 = edge y1, x1, c1 = shaped[p1] y2, x2, c2 = shaped[p2] if (c1 > threshold) & (c2 > threshold): cv2.line(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 4) def progress(value, max=100): return HTML("\n <progress\n value='{value}'\n max='{max}',\n style='width: 100%'\n >\n {value}\n </progress>\n ".format(value=value, max=max)) gif = cv2.VideoCapture('./ngannou.gif') frame_count = int(gif.get(cv2.CAP_PROP_FRAME_COUNT)) output_frames = [] def run_inference(): #Set the progress bar to 0. It ranges from the first to the last frame bar = display(progress(0, frame_count-1), display_id=True) while gif.isOpened(): #Capture the frame ret, frame = gif.read() #Process the frame : resize to the input size if frame is None: break #Retrieve the frame index index = gif.get(cv2.CAP_PROP_POS_FRAMES) image = frame.copy() image = tf.cast(tf.image.resize_with_pad(image, 256, 256), dtype=tf.int32) input_image = tf.expand_dims(image, axis=0) #Perform inference results = movenet(input_image) keypoints = results['output_0'].numpy()[:,:,:51].reshape((6,17,3)) #Loop through the results loop(frame, keypoints, threshold=0.11) #Add the drawings to the output frames frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) #OpenCV processes BGR images instead of RGB output_frames.append(frame_rgb) #Update the progress bar bar.update(progress(index, frame_count-1)) #Release the object gif.release() output = np.stack(output_frames, axis=0) imageio.mimsave('./animation.gif', output, fps=10) embed.embed_file('./animation.gif')
code
16116561/cell_13
[ "text_plain_output_1.png" ]
from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import precision_score,recall_score,f1_score,roc_auc_score,roc_curve from sklearn.model_selection import train_test_split,GridSearchCV from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np import pandas as pd import sklearn.metrics as metrics file = pd.read_csv('../input/pulsar_stars.csv') y = file.target_class X = file[file.columns[:8]] X.shape y.value_counts() scaler = StandardScaler() X_scaled = scaler.fit_transform(X.astype(np.float64)) X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=0) sm = SMOTE(random_state=2) X_train_res, y_train_res = sm.fit_sample(X_train, y_train.ravel()) rnd_clf = RandomForestClassifier(random_state=100) param_grid = {'n_estimators': [100, 150], 'max_features': ['auto', 'sqrt', 'log2'], 'max_depth': [5, 6, 7, 8], 'criterion': ['gini', 'entropy']} CV_rfc = GridSearchCV(estimator=rnd_clf, param_grid=param_grid, cv=5) rnd_cv_fit = CV_rfc.fit(X_train_res, y_train_res) rnd = RandomForestClassifier(random_state=100, n_estimators=150, criterion='gini', max_depth=8, max_features='log2') rnd_fit = rnd_clf.fit(X_train_res, y_train_res) y_test_fit = rnd_fit.predict(X_test) roc_curve(y_test, y_test_fit) fpr, tpr, threshold = roc_curve(y_test, y_test_fit) roc_auc = metrics.auc(fpr, tpr) plt.title('Receiver Operating Characteristic') plt.plot(fpr, tpr, 'b', label='AUC = %0.2f' % roc_auc) plt.legend(loc='lower right') plt.plot([0, 1], [0, 1], 'r--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show()
code
16116561/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd file = pd.read_csv('../input/pulsar_stars.csv') y = file.target_class X = file[file.columns[:8]] X.shape pd.value_counts(y).plot.bar() plt.title('Data on star detection') plt.xlabel('Class') plt.ylabel('Frequency') y.value_counts()
code
16116561/cell_6
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split,GridSearchCV from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np import pandas as pd file = pd.read_csv('../input/pulsar_stars.csv') y = file.target_class X = file[file.columns[:8]] X.shape y.value_counts() scaler = StandardScaler() X_scaled = scaler.fit_transform(X.astype(np.float64)) X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=0) print('Number transactions X_train dataset: ', X_train.shape) print('Number transactions y_train dataset: ', y_train.shape) print('Number transactions X_test dataset: ', X_test.shape) print('Number transactions y_test dataset: ', y_test.shape)
code
16116561/cell_11
[ "text_plain_output_1.png", "image_output_1.png" ]
from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split,GridSearchCV from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np import pandas as pd file = pd.read_csv('../input/pulsar_stars.csv') y = file.target_class X = file[file.columns[:8]] X.shape y.value_counts() scaler = StandardScaler() X_scaled = scaler.fit_transform(X.astype(np.float64)) X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=0) sm = SMOTE(random_state=2) X_train_res, y_train_res = sm.fit_sample(X_train, y_train.ravel()) rnd_clf = RandomForestClassifier(random_state=100) param_grid = {'n_estimators': [100, 150], 'max_features': ['auto', 'sqrt', 'log2'], 'max_depth': [5, 6, 7, 8], 'criterion': ['gini', 'entropy']} CV_rfc = GridSearchCV(estimator=rnd_clf, param_grid=param_grid, cv=5) rnd_cv_fit = CV_rfc.fit(X_train_res, y_train_res) rnd = RandomForestClassifier(random_state=100, n_estimators=150, criterion='gini', max_depth=8, max_features='log2') rnd_fit = rnd_clf.fit(X_train_res, y_train_res) y_test_fit = rnd_fit.predict(X_test)
code
16116561/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import sklearn.metrics as metrics from sklearn.linear_model import SGDClassifier from sklearn.model_selection import cross_val_score from sklearn.metrics import precision_score, recall_score, f1_score, roc_auc_score, roc_curve from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split, GridSearchCV from imblearn.over_sampling import SMOTE import matplotlib.pyplot as plt
code
16116561/cell_8
[ "image_output_1.png" ]
from imblearn.over_sampling import SMOTE from sklearn.model_selection import train_test_split,GridSearchCV from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np import pandas as pd file = pd.read_csv('../input/pulsar_stars.csv') y = file.target_class X = file[file.columns[:8]] X.shape y.value_counts() scaler = StandardScaler() X_scaled = scaler.fit_transform(X.astype(np.float64)) X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=0) print("Before OverSampling, counts of label '1': {}".format(sum(y_train == 1))) print("Before OverSampling, counts of label '0': {} \n".format(sum(y_train == 0))) sm = SMOTE(random_state=2) X_train_res, y_train_res = sm.fit_sample(X_train, y_train.ravel()) print('After OverSampling, the shape of train_X: {}'.format(X_train_res.shape)) print('After OverSampling, the shape of train_y: {} \n'.format(y_train_res.shape)) print("After OverSampling, counts of label '1': {}".format(sum(y_train_res == 1))) print("After OverSampling, counts of label '0': {}".format(sum(y_train_res == 0)))
code
16116561/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd file = pd.read_csv('../input/pulsar_stars.csv') y = file.target_class X = file[file.columns[:8]] X.shape
code
16116561/cell_10
[ "text_plain_output_1.png" ]
from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split,GridSearchCV from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np import pandas as pd file = pd.read_csv('../input/pulsar_stars.csv') y = file.target_class X = file[file.columns[:8]] X.shape y.value_counts() scaler = StandardScaler() X_scaled = scaler.fit_transform(X.astype(np.float64)) X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=0) sm = SMOTE(random_state=2) X_train_res, y_train_res = sm.fit_sample(X_train, y_train.ravel()) rnd_clf = RandomForestClassifier(random_state=100) param_grid = {'n_estimators': [100, 150], 'max_features': ['auto', 'sqrt', 'log2'], 'max_depth': [5, 6, 7, 8], 'criterion': ['gini', 'entropy']} CV_rfc = GridSearchCV(estimator=rnd_clf, param_grid=param_grid, cv=5) rnd_cv_fit = CV_rfc.fit(X_train_res, y_train_res) CV_rfc.best_params_
code
16116561/cell_12
[ "text_plain_output_1.png" ]
from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import precision_score,recall_score,f1_score,roc_auc_score,roc_curve from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_split,GridSearchCV from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np import pandas as pd file = pd.read_csv('../input/pulsar_stars.csv') y = file.target_class X = file[file.columns[:8]] X.shape y.value_counts() scaler = StandardScaler() X_scaled = scaler.fit_transform(X.astype(np.float64)) X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=0) sm = SMOTE(random_state=2) X_train_res, y_train_res = sm.fit_sample(X_train, y_train.ravel()) rnd_clf = RandomForestClassifier(random_state=100) param_grid = {'n_estimators': [100, 150], 'max_features': ['auto', 'sqrt', 'log2'], 'max_depth': [5, 6, 7, 8], 'criterion': ['gini', 'entropy']} CV_rfc = GridSearchCV(estimator=rnd_clf, param_grid=param_grid, cv=5) rnd_cv_fit = CV_rfc.fit(X_train_res, y_train_res) rnd = RandomForestClassifier(random_state=100, n_estimators=150, criterion='gini', max_depth=8, max_features='log2') rnd_fit = rnd_clf.fit(X_train_res, y_train_res) y_test_fit = rnd_fit.predict(X_test) print('Cross-Validated Accuracy on 3 cv sets:', cross_val_score(rnd, X_test, y_test, cv=3, scoring='accuracy')) print('Precision Score:', precision_score(y_test, y_test_fit)) print('Recall Score:', recall_score(y_test, y_test_fit)) print('F1-score:', f1_score(y_test, y_test_fit))
code
17123947/cell_4
[ "text_plain_output_1.png" ]
from pyspark.sql import SparkSession from pyspark.sql import SparkSession my_spark = SparkSession.builder.getOrCreate() print(my_spark)
code
17123947/cell_23
[ "text_plain_output_1.png" ]
from pyspark.ml import Pipeline from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler from pyspark.sql import SparkSession from pyspark.sql import SparkSession my_spark = SparkSession.builder.getOrCreate() file_path = '../input/flights.csv' flights = my_spark.read.csv(file_path, header=True) flights.createOrReplaceTempView('flights') flights = flights.withColumn('duration_hrs', flights.air_time / 60) flights.toPandas().shape[0] file_path = '../input/planes.csv' planes = my_spark.read.csv(file_path, header=True) planes = planes.withColumnRenamed('year', 'plane_year') model_data = flights.join(planes, on='tailnum', how='leftouter') model_data = model_data.withColumn('arr_delay', model_data.arr_delay.cast('integer')) model_data = model_data.withColumn('air_time', model_data.air_time.cast('integer')) model_data = model_data.withColumn('month', model_data.month.cast('integer')) model_data = model_data.withColumn('plane_year', model_data.plane_year.cast('integer')) model_data = model_data.withColumn('plane_age', model_data.year - model_data.plane_year) model_data = model_data.withColumn('is_late', model_data.arr_delay > 0) model_data = model_data.withColumn('label', model_data.is_late.cast('integer')) model_data = model_data.filter('arr_delay is not NULL and dep_delay is not NULL and air_time is not NULL and plane_year is not NULL') from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler carr_indexer = StringIndexer(inputCol='carrier', outputCol='carrier_index') carr_encoder = OneHotEncoder(inputCol='carrier_index', outputCol='carrier_fact') dest_indexer = StringIndexer(inputCol='dest', outputCol='dest_index') dest_encoder = OneHotEncoder(inputCol='dest_index', outputCol='dest_fact') vec_assembler = VectorAssembler(inputCols=['month', 'air_time', 'carrier_fact', 'dest_fact', 'plane_age'], outputCol='features') from pyspark.ml import Pipeline flights_pipe = Pipeline(stages=[dest_indexer, dest_encoder, carr_indexer, carr_encoder, vec_assembler]) piped_data = flights_pipe.fit(model_data).transform(model_data) piped_data.toPandas().head(3)
code
17123947/cell_30
[ "text_plain_output_1.png", "image_output_1.png" ]
from pyspark.ml.classification import LogisticRegression import numpy as np import numpy as np # linear algebra import pyspark.ml.evaluation as evals import pyspark.ml.tuning as tune from pyspark.ml.classification import LogisticRegression lr = LogisticRegression() import pyspark.ml.evaluation as evals evaluator = evals.BinaryClassificationEvaluator(metricName='areaUnderROC') import pyspark.ml.tuning as tune grid = tune.ParamGridBuilder() grid = grid.addGrid(lr.regParam, np.arange(0, 0.1, 0.01)) grid = grid.addGrid(lr.elasticNetParam, [0, 1]) grid = grid.build() best_lr = lr.fit(training) test_results = best_lr.transform(test) print(evaluator.evaluate(test_results))
code
17123947/cell_6
[ "text_plain_output_1.png" ]
from pyspark.sql import SparkSession from pyspark.sql import SparkSession my_spark = SparkSession.builder.getOrCreate() file_path = '../input/flights.csv' flights = my_spark.read.csv(file_path, header=True) flights.show() print(my_spark.catalog.listTables()) flights.createOrReplaceTempView('flights') print(my_spark.catalog.listTables())
code
17123947/cell_29
[ "text_plain_output_1.png" ]
from pyspark.ml.classification import LogisticRegression import numpy as np import numpy as np # linear algebra import pyspark.ml.tuning as tune from pyspark.ml.classification import LogisticRegression lr = LogisticRegression() import pyspark.ml.tuning as tune grid = tune.ParamGridBuilder() grid = grid.addGrid(lr.regParam, np.arange(0, 0.1, 0.01)) grid = grid.addGrid(lr.elasticNetParam, [0, 1]) grid = grid.build() best_lr = lr.fit(training) print(best_lr)
code
17123947/cell_2
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
17123947/cell_8
[ "text_plain_output_1.png" ]
from pyspark.sql import SparkSession from pyspark.sql import SparkSession my_spark = SparkSession.builder.getOrCreate() file_path = '../input/flights.csv' flights = my_spark.read.csv(file_path, header=True) flights.createOrReplaceTempView('flights') flights = flights.withColumn('duration_hrs', flights.air_time / 60) flights.toPandas().shape[0]
code