path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
17123947/cell_3
[ "text_plain_output_1.png" ]
!pip install pyspark
code
17123947/cell_10
[ "text_plain_output_1.png" ]
from pyspark.sql import SparkSession from pyspark.sql import SparkSession my_spark = SparkSession.builder.getOrCreate() file_path = '../input/flights.csv' flights = my_spark.read.csv(file_path, header=True) flights.createOrReplaceTempView('flights') flights = flights.withColumn('duration_hrs', flights.air_time / 60) flights.toPandas().shape[0] flights.limit(flights.toPandas().shape[0]).toPandas()['duration_hrs'].hist()
code
17123947/cell_12
[ "text_plain_output_1.png" ]
!pip install pyspark_dist_explore # https://github.com/Bergvca/pyspark_dist_explore/
code
17123947/cell_5
[ "text_html_output_1.png" ]
from pyspark.sql import SparkSession from pyspark.sql import SparkSession my_spark = SparkSession.builder.getOrCreate() print(my_spark.catalog.listTables())
code
106210513/cell_42
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) df.sample(10) df.columns df_new = df.copy() df_new.drop(['ID'], axis=1, inplace=True) df_new.Manufacturer.unique()
code
106210513/cell_21
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) df['Doors'].value_counts()
code
106210513/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum()
code
106210513/cell_25
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) df['Mileage'] = df['Mileage'].apply(lambda x: str(x).replace('km', ' ')) df['Mileage'] = df['Mileage'].astype(str).astype(int) df['Mileage']
code
106210513/cell_34
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) df.sample(10) df.columns df.info()
code
106210513/cell_23
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) df['Doors'] = df['Doors'].str.replace('04-May', '4-5') df['Doors'] = df['Doors'].str.replace('02-Mar', '2-3') df['Doors'].value_counts()
code
106210513/cell_30
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) df['Levy'] = df['Levy'].apply(lambda x: str(x).replace('-', '0')) df['Levy'] = df['Levy'].astype(str).astype(int) df['Levy']
code
106210513/cell_33
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) df.sample(10) df.columns
code
106210513/cell_20
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) df['Doors']
code
106210513/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.head(10)
code
106210513/cell_39
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) df.sample(10) df.columns df_new = df.copy() df_new.drop(['ID'], axis=1, inplace=True) df_new['Price'].max()
code
106210513/cell_26
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) df['Engine volume']
code
106210513/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() print(f'Data Contains {df.shape[0]} rows , {df.shape[1]} columns')
code
106210513/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
106210513/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.info()
code
106210513/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) print(f'Data Contains {df.shape[0]} rows , {df.shape[1]} columns')
code
106210513/cell_32
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) df.sample(10)
code
106210513/cell_28
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) df['Levy']
code
106210513/cell_8
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') plt.figure(figsize=(7, 8)) sns.countplot(df.dtypes) plt.title('Count of DTypes of Data') plt.show() print(f'Count of DTypes of Columns') print(df.dtypes.value_counts())
code
106210513/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()]
code
106210513/cell_38
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) df.sample(10) df.columns df_new = df.copy() df_new.drop(['ID'], axis=1, inplace=True) df_new['Price'].mean()
code
106210513/cell_35
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) df.sample(10) df.columns df_new = df.copy() df_new.drop(['ID'], axis=1, inplace=True) df_new.info()
code
106210513/cell_43
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) df.sample(10) df.columns df_new = df.copy() df_new.drop(['ID'], axis=1, inplace=True) df_new.Manufacturer.unique() print('Num of Cars produced by different manufacturer: \n', df_new.Manufacturer.value_counts())
code
106210513/cell_31
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) sns.kdeplot(df['Levy'])
code
106210513/cell_24
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) df['Mileage']
code
106210513/cell_14
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T print(f'duplicated rows = {df.duplicated().sum()} ')
code
106210513/cell_27
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) df['Engine volume'] = df['Engine volume'].str.replace('Turbo', ' ') df['Engine volume'] = df['Engine volume'].astype(str).astype(float) df['Engine volume']
code
106210513/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T
code
106210513/cell_36
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/car-price-prediction-challenge/car_price_prediction.csv') df.isnull().sum() df.describe().T df.loc[df.duplicated()] df.drop_duplicates(inplace=True) df.sample(10) df.columns df_new = df.copy() df_new.drop(['ID'], axis=1, inplace=True) df_new.describe()
code
106195366/cell_2
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
106195366/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) age_10 = pd.read_csv('/kaggle/input/korea-age-repartition-20102021/2010 - regional sex and age pop.csv', encoding='euc_kr') age_11 = pd.read_csv('/kaggle/input/korea-age-repartition-20102021/2011 - regional sex and age pop.csv', encoding='euc_kr') age_12 = pd.read_csv('/kaggle/input/korea-age-repartition-20102021/2012 - regional sex and age pop.csv', encoding='euc_kr') age_13 = pd.read_csv('/kaggle/input/korea-age-repartition-20102021/2013 - regional sex and age pop.csv', encoding='euc_kr') age_14 = pd.read_csv('/kaggle/input/korea-age-repartition-20102021/2014 - regional sex and age pop.csv', encoding='euc_kr') age_15 = pd.read_csv('/kaggle/input/korea-age-repartition-20102021/2015 - regional sex and age pop.csv', encoding='euc_kr') age_16 = pd.read_csv('/kaggle/input/korea-age-repartition-20102021/2016 - regional sex and age pop.csv', encoding='euc_kr') age_17 = pd.read_csv('/kaggle/input/korea-age-repartition-20102021/2017 - regional sex and age pop.csv', encoding='euc_kr') age_18 = pd.read_csv('/kaggle/input/korea-age-repartition-20102021/2018 - regional sex and age pop.csv', encoding='euc_kr') age_19 = pd.read_csv('/kaggle/input/korea-age-repartition-20102021/2019 - regional sex and age pop.csv', encoding='euc_kr') age_20 = pd.read_csv('/kaggle/input/korea-age-repartition-20102021/2020 - regional sex and age pop.csv', encoding='euc_kr') age_21 = pd.read_csv('/kaggle/input/korea-age-repartition-20102021/2021 - regional sex and age pop.csv', encoding='euc_kr')
code
129010475/cell_21
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/used-cars-price-prediction/train-data.csv') df.sample(5) df2 = df.drop(['New_Price'], axis=1, inplace=False) df.drop(['New_Price'], axis=1, inplace=True) df.describe().T df.info()
code
129010475/cell_13
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/used-cars-price-prediction/train-data.csv') df.sample(5) df['New_Price'].isnull().sum()
code
129010475/cell_4
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/used-cars-price-prediction/train-data.csv') df.head()
code
129010475/cell_23
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/used-cars-price-prediction/train-data.csv') df.sample(5) df2 = df.drop(['New_Price'], axis=1, inplace=False) df.drop(['New_Price'], axis=1, inplace=True) df.describe().T unique_fuel = df['Fuel_Type'].unique() unique_fuel_list = unique_fuel.tolist() unique_fuel_list
code
129010475/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/used-cars-price-prediction/train-data.csv') df.sample(5) df2 = df.drop(['New_Price'], axis=1, inplace=False) df.drop(['New_Price'], axis=1, inplace=True) df.describe().T
code
129010475/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/used-cars-price-prediction/train-data.csv') df.head(2)
code
129010475/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/used-cars-price-prediction/train-data.csv') df.sample(5) len(df['Location'].unique())
code
129010475/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
129010475/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/used-cars-price-prediction/train-data.csv') df.sample(5)
code
129010475/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/used-cars-price-prediction/train-data.csv') df.sample(5) df2 = df.drop(['New_Price'], axis=1, inplace=False) df.drop(['New_Price'], axis=1, inplace=True) df.head(1)
code
129010475/cell_15
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/used-cars-price-prediction/train-data.csv') df.sample(5) df2 = df.drop(['New_Price'], axis=1, inplace=False) df2.head()
code
129010475/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/used-cars-price-prediction/train-data.csv') df.sample(5) df2 = df.drop(['New_Price'], axis=1, inplace=False) df.head(1)
code
129010475/cell_24
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/used-cars-price-prediction/train-data.csv') df.sample(5) df2 = df.drop(['New_Price'], axis=1, inplace=False) df.drop(['New_Price'], axis=1, inplace=True) df.describe().T df['Seats'].isnull().sum()
code
129010475/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/used-cars-price-prediction/train-data.csv') df.sample(5) unique_location = df['Location'].unique() unique_location_list = unique_location.tolist() len(unique_location_list)
code
129010475/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/used-cars-price-prediction/train-data.csv') df.head(-1)
code
128039607/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd training_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/train_data.csv') test_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/test_data.csv') airlines = list(training_set.airline) + list(test_set.airline) flights = list(training_set.flight) + list(test_set.flight) source_cities = list(training_set.source_city) + list(test_set.source_city) departure_times = list(training_set.departure_time) + list(test_set.departure_time) stops = list(training_set.stops) + list(test_set.stops) arrival_times = list(training_set.arrival_time) + list(test_set.arrival_time) destination_cities = list(training_set.destination_city) + list(test_set.destination_city) classes = list(training_set['class']) + list(test_set['class']) training_set.nunique()
code
128039607/cell_23
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns training_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/train_data.csv') test_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/test_data.csv') airlines = list(training_set.airline) + list(test_set.airline) flights = list(training_set.flight) + list(test_set.flight) source_cities = list(training_set.source_city) + list(test_set.source_city) departure_times = list(training_set.departure_time) + list(test_set.departure_time) stops = list(training_set.stops) + list(test_set.stops) arrival_times = list(training_set.arrival_time) + list(test_set.arrival_time) destination_cities = list(training_set.destination_city) + list(test_set.destination_city) classes = list(training_set['class']) + list(test_set['class']) training_set.nunique() training_set.drop(['id'], axis=1, inplace=True) training_set.drop(['flight'], axis=1, inplace=True) from turtle import title plt.figure(figsize=(15,5)) NF = sns.countplot(x='airline', data = training_set) NF.set(xlabel='Hindiston aviakompaniyalari', ylabel='Reyslar soni', title='Aviakompaniyalar tomonidan amalga oshirilgan parvozlar') plt.show(NF) from turtle import title plt.figure(figsize=(15, 5)) CE = sns.stripplot(x='price', y='class', hue='class', data=training_set) CE.set(xlabel='Bilet narxlari', ylabel='Sayohat klasslari', title="Sayohat klassi bo'yicha narxlar oralig'i") plt.show(CE)
code
128039607/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns training_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/train_data.csv') test_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/test_data.csv') airlines = list(training_set.airline) + list(test_set.airline) flights = list(training_set.flight) + list(test_set.flight) source_cities = list(training_set.source_city) + list(test_set.source_city) departure_times = list(training_set.departure_time) + list(test_set.departure_time) stops = list(training_set.stops) + list(test_set.stops) arrival_times = list(training_set.arrival_time) + list(test_set.arrival_time) destination_cities = list(training_set.destination_city) + list(test_set.destination_city) classes = list(training_set['class']) + list(test_set['class']) training_set.nunique() training_set.drop(['id'], axis=1, inplace=True) training_set.drop(['flight'], axis=1, inplace=True) from turtle import title plt.figure(figsize=(15, 5)) NF = sns.countplot(x='airline', data=training_set) NF.set(xlabel='Hindiston aviakompaniyalari', ylabel='Reyslar soni', title='Aviakompaniyalar tomonidan amalga oshirilgan parvozlar') plt.show(NF)
code
128039607/cell_6
[ "image_output_1.png" ]
import pandas as pd training_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/train_data.csv') test_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/test_data.csv') training_set.head(5)
code
128039607/cell_29
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns training_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/train_data.csv') test_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/test_data.csv') airlines = list(training_set.airline) + list(test_set.airline) flights = list(training_set.flight) + list(test_set.flight) source_cities = list(training_set.source_city) + list(test_set.source_city) departure_times = list(training_set.departure_time) + list(test_set.departure_time) stops = list(training_set.stops) + list(test_set.stops) arrival_times = list(training_set.arrival_time) + list(test_set.arrival_time) destination_cities = list(training_set.destination_city) + list(test_set.destination_city) classes = list(training_set['class']) + list(test_set['class']) training_set.nunique() training_set.drop(['id'], axis=1, inplace=True) training_set.drop(['flight'], axis=1, inplace=True) from turtle import title plt.figure(figsize=(15,5)) NF = sns.countplot(x='airline', data = training_set) NF.set(xlabel='Hindiston aviakompaniyalari', ylabel='Reyslar soni', title='Aviakompaniyalar tomonidan amalga oshirilgan parvozlar') plt.show(NF) from turtle import title plt.figure(figsize=(15,5)) CE = sns.stripplot(x='price', y='class',hue="class", data = training_set) CE.set(xlabel='Bilet narxlari', ylabel='Sayohat klasslari', title="Sayohat klassi bo'yicha narxlar oralig'i") plt.show(CE) from turtle import title plt.figure(figsize=(15,5)) TA = sns.countplot(x='class', data = training_set) TA.set(xlabel='Sayohat klassi', title="Sayohat klassiga ko'ra chiptalar mavjudligi") plt.show(TA) plt.figure(figsize=(15, 5)) PD = sns.scatterplot(x=training_set['duration'], y=training_set['price'], hue=training_set['airline']) PD.set(xlabel='Parvoz davomiyligi', ylabel='Bilet Narxi', title='Narx va turli aviakompaniyalar uchun parvoz davomiyligi') plt.show(PD)
code
128039607/cell_26
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns training_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/train_data.csv') test_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/test_data.csv') airlines = list(training_set.airline) + list(test_set.airline) flights = list(training_set.flight) + list(test_set.flight) source_cities = list(training_set.source_city) + list(test_set.source_city) departure_times = list(training_set.departure_time) + list(test_set.departure_time) stops = list(training_set.stops) + list(test_set.stops) arrival_times = list(training_set.arrival_time) + list(test_set.arrival_time) destination_cities = list(training_set.destination_city) + list(test_set.destination_city) classes = list(training_set['class']) + list(test_set['class']) training_set.nunique() training_set.drop(['id'], axis=1, inplace=True) training_set.drop(['flight'], axis=1, inplace=True) from turtle import title plt.figure(figsize=(15,5)) NF = sns.countplot(x='airline', data = training_set) NF.set(xlabel='Hindiston aviakompaniyalari', ylabel='Reyslar soni', title='Aviakompaniyalar tomonidan amalga oshirilgan parvozlar') plt.show(NF) from turtle import title plt.figure(figsize=(15,5)) CE = sns.stripplot(x='price', y='class',hue="class", data = training_set) CE.set(xlabel='Bilet narxlari', ylabel='Sayohat klasslari', title="Sayohat klassi bo'yicha narxlar oralig'i") plt.show(CE) from turtle import title plt.figure(figsize=(15, 5)) TA = sns.countplot(x='class', data=training_set) TA.set(xlabel='Sayohat klassi', title="Sayohat klassiga ko'ra chiptalar mavjudligi") plt.show(TA)
code
128039607/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd training_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/train_data.csv') test_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/test_data.csv') airlines = list(training_set.airline) + list(test_set.airline) flights = list(training_set.flight) + list(test_set.flight) source_cities = list(training_set.source_city) + list(test_set.source_city) departure_times = list(training_set.departure_time) + list(test_set.departure_time) stops = list(training_set.stops) + list(test_set.stops) arrival_times = list(training_set.arrival_time) + list(test_set.arrival_time) destination_cities = list(training_set.destination_city) + list(test_set.destination_city) classes = list(training_set['class']) + list(test_set['class']) training_set.nunique() training_set.drop(['id'], axis=1, inplace=True) training_set.drop(['flight'], axis=1, inplace=True) training_set
code
128039607/cell_8
[ "image_output_1.png" ]
import pandas as pd training_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/train_data.csv') test_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/test_data.csv') print('\n\nDatasetlarning qatorlar soni :\n', '#' * 40) print('\nTraining Set : ', len(training_set)) print('Test Set : ', len(test_set)) print('\n\nDatasetlarning ustunlar soni :\n', '#' * 40) print('\nTraining Set : ', len(training_set.columns)) print('Test Set : ', len(test_set.columns)) print('\n\nDatasetning ustunlari nomi :\n', '#' * 40) print('\nTraining Set : ', list(training_set.columns)) print('Test Set : ', list(test_set.columns)) print('\n\nDataset ustunlari turi :\n', '#' * 40) print('\nTraining Set : ', training_set.dtypes) print('\nTest Set : ', test_set.dtypes) print("\n\nNaN qiymat yoki bo'sh yachaykalar :\n", '#' * 40) print('\nTraining Set : ', training_set.isnull().values.any()) print('\nTest Set : ', test_set.isnull().values.any()) print('\n\nInfo:\n', '#' * 40) training_set.info()
code
128039607/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd training_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/train_data.csv') test_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/test_data.csv') airlines = list(training_set.airline) + list(test_set.airline) flights = list(training_set.flight) + list(test_set.flight) source_cities = list(training_set.source_city) + list(test_set.source_city) departure_times = list(training_set.departure_time) + list(test_set.departure_time) stops = list(training_set.stops) + list(test_set.stops) arrival_times = list(training_set.arrival_time) + list(test_set.arrival_time) destination_cities = list(training_set.destination_city) + list(test_set.destination_city) classes = list(training_set['class']) + list(test_set['class']) training_set.nunique() for col in training_set: if training_set[col].dtype == 'object': print(training_set[col].unique())
code
128039607/cell_10
[ "text_html_output_1.png" ]
import pandas as pd training_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/train_data.csv') test_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/test_data.csv') print(f"Raqamli ustunlar: \n {training_set.select_dtypes(['int', 'float']).columns} \n") print(f"Harfli ustunlar: \n {training_set.select_dtypes('object').columns}")
code
128039607/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd training_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/train_data.csv') test_set = pd.read_csv('/kaggle/input/aviachipta-narxini-bashorat-qilish/test_data.csv') airlines = list(training_set.airline) + list(test_set.airline) flights = list(training_set.flight) + list(test_set.flight) source_cities = list(training_set.source_city) + list(test_set.source_city) departure_times = list(training_set.departure_time) + list(test_set.departure_time) stops = list(training_set.stops) + list(test_set.stops) arrival_times = list(training_set.arrival_time) + list(test_set.arrival_time) destination_cities = list(training_set.destination_city) + list(test_set.destination_city) classes = list(training_set['class']) + list(test_set['class']) print('\nAirlanes ustunidagi jami takrorlanmas qymatlar soni : \n ', len(set(airlines))) print('\nAirlanes ustunidagi takrorlanmas qymatlar : \n ', set(airlines)) print('\nFlights ustunidagi jami takrorlanmas qymatlar soni: \n ', len(set(flights))) print('\nSource_cities ustunidagi jami takrorlanmas qymatlar soni : \n ', len(set(source_cities))) print('\nSource_cities ustunidagi takrorlanmas qymatlar : \n ', set(source_cities)) print('\nDeparture_time ustunidagi jami takrorlanmas qymatlar soni : \n ', len(set(departure_times))) print('\nDeparture_time ustunidagi takrorlanmas qymatlar : \n ', set(departure_times)) print('\nStops ustunidagi jami takrorlanmas qymatlar soni : \n ', len(set(stops))) print('\nStops ustunidagi takrorlanmas qymatlar : \n ', set(stops)) print('\nArrival_time ustunidagi jami takrorlanmas qymatlar soni : \n ', len(set(arrival_times))) print('\nArrival_time ustunidagi takrorlanmas qymatlar : \n ', set(arrival_times)) print('\nDestination_citiy ustunidagi jami takrorlanmas qymatlar soni : \n ', len(set(destination_cities))) print('\nDestination_citiy ustunidagi takrorlanmas qymatlar : \n ', set(destination_cities)) print('\nClass ustunidagi jami takrorlanmas qymatlar soni : \n ', len(set(classes))) print('\nClass ustunidagi takrorlanmas qymatlar : \n ', set(classes))
code
32068026/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd meta = pd.read_csv('/kaggle/input/CORD-19-research-challenge/metadata.csv') print('Cols names: {}'.format(meta.columns)) meta.head(7)
code
32068026/cell_30
[ "text_plain_output_1.png" ]
from gensim.parsing.preprocessing import remove_stopwords from gensim.similarities import Similarity from gensim.test.utils import datapath, get_tmpfile from nltk.stem import LancasterStemmer from nltk.stem import PorterStemmer from nltk.tokenize import word_tokenize, sent_tokenize import gensim import pandas as pd import string meta = pd.read_csv('/kaggle/input/CORD-19-research-challenge/metadata.csv') meta_dropped = meta.drop(['Microsoft Academic Paper ID', 'WHO #Covidence'], axis=1) miss = meta['abstract'].isna().sum() abstracts_papers = meta[meta['abstract'].notna()] missing_doi = abstracts_papers['doi'].isna().sum() missing_url = abstracts_papers['url'].isna().sum() abstracts_papers = abstracts_papers[abstracts_papers['publish_time'].notna()] abstracts_papers['year'] = pd.DatetimeIndex(abstracts_papers['publish_time']).year abstracts_papers = abstracts_papers[abstracts_papers['url'].notna() | abstracts_papers['doi']] porter = PorterStemmer() lancaster = LancasterStemmer() abstracts_only = abstracts_papers['abstract'] tokenized_abs = [] for abst in abstracts_only: tokens_without_stop_words = remove_stopwords(abst) tokens_cleaned = sent_tokenize(tokens_without_stop_words) words = [porter.stem(w.lower()) for text in tokens_cleaned for w in word_tokenize(text) if w.translate(str.maketrans('', '', string.punctuation)).isalnum()] tokenized_abs.append(words) dictionary = [] dictionary = gensim.corpora.Dictionary(tokenized_abs) corpus = [dictionary.doc2bow(abstract) for abstract in tokenized_abs] tf_idf = gensim.models.TfidfModel(corpus) query = 'COVID-19 (corona) non-pharmaceutical interventions, Methods to control the spread in communities, barriers to compliance and how these vary among different populations' query_without_stop_words = remove_stopwords(query) tokens = sent_tokenize(query_without_stop_words) query_doc = [porter.stem(w.lower()) for text in tokens for w in word_tokenize(text) if w.translate(str.maketrans('', '', string.punctuation)).isalnum()] query_doc_bow = dictionary.doc2bow(query_doc) query_doc_tf_idf = tf_idf[query_doc_bow] index_temp = get_tmpfile('index') index = Similarity(index_temp, tf_idf[corpus], num_features=len(dictionary)) similarities = index[query_doc_tf_idf] abstracts_papers['similarity'] = similarities abstracts_papers = abstracts_papers.sort_values(by='similarity', ascending=False) abstracts_papers.reset_index(inplace=True) top20 = abstracts_papers.head(20) norm_range = top20['year'].max() - top20['year'].min() top20["similarity"] -= (abs(top20['year'] - top20['year'].max()) / norm_range)*0.1 top20 = top20.sort_values(by ='similarity' , ascending=False) top20.reset_index(inplace = True) for abstract in range(10): print(top20.abstract[abstract]) print('\n>>>>>>>>>>>>>>>>>>>>>>\n')
code
32068026/cell_28
[ "text_plain_output_1.png" ]
from gensim.parsing.preprocessing import remove_stopwords from gensim.similarities import Similarity from gensim.test.utils import datapath, get_tmpfile from nltk.stem import LancasterStemmer from nltk.stem import PorterStemmer from nltk.tokenize import word_tokenize, sent_tokenize import gensim import pandas as pd import string meta = pd.read_csv('/kaggle/input/CORD-19-research-challenge/metadata.csv') meta_dropped = meta.drop(['Microsoft Academic Paper ID', 'WHO #Covidence'], axis=1) miss = meta['abstract'].isna().sum() abstracts_papers = meta[meta['abstract'].notna()] missing_doi = abstracts_papers['doi'].isna().sum() missing_url = abstracts_papers['url'].isna().sum() abstracts_papers = abstracts_papers[abstracts_papers['publish_time'].notna()] abstracts_papers['year'] = pd.DatetimeIndex(abstracts_papers['publish_time']).year abstracts_papers = abstracts_papers[abstracts_papers['url'].notna() | abstracts_papers['doi']] porter = PorterStemmer() lancaster = LancasterStemmer() abstracts_only = abstracts_papers['abstract'] tokenized_abs = [] for abst in abstracts_only: tokens_without_stop_words = remove_stopwords(abst) tokens_cleaned = sent_tokenize(tokens_without_stop_words) words = [porter.stem(w.lower()) for text in tokens_cleaned for w in word_tokenize(text) if w.translate(str.maketrans('', '', string.punctuation)).isalnum()] tokenized_abs.append(words) dictionary = [] dictionary = gensim.corpora.Dictionary(tokenized_abs) corpus = [dictionary.doc2bow(abstract) for abstract in tokenized_abs] tf_idf = gensim.models.TfidfModel(corpus) query = 'COVID-19 (corona) non-pharmaceutical interventions, Methods to control the spread in communities, barriers to compliance and how these vary among different populations' query_without_stop_words = remove_stopwords(query) tokens = sent_tokenize(query_without_stop_words) query_doc = [porter.stem(w.lower()) for text in tokens for w in word_tokenize(text) if w.translate(str.maketrans('', '', string.punctuation)).isalnum()] query_doc_bow = dictionary.doc2bow(query_doc) query_doc_tf_idf = tf_idf[query_doc_bow] index_temp = get_tmpfile('index') index = Similarity(index_temp, tf_idf[corpus], num_features=len(dictionary)) similarities = index[query_doc_tf_idf] abstracts_papers['similarity'] = similarities abstracts_papers = abstracts_papers.sort_values(by='similarity', ascending=False) abstracts_papers.reset_index(inplace=True) top20 = abstracts_papers.head(20) norm_range = top20['year'].max() - top20['year'].min() top20['similarity'] -= abs(top20['year'] - top20['year'].max()) / norm_range * 0.1 top20 = top20.sort_values(by='similarity', ascending=False) top20.reset_index(inplace=True)
code
32068026/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd meta = pd.read_csv('/kaggle/input/CORD-19-research-challenge/metadata.csv') meta_dropped = meta.drop(['Microsoft Academic Paper ID', 'WHO #Covidence'], axis=1) plt.figure(figsize=(20, 10)) meta_dropped.isna().sum().plot(kind='bar', stacked=True)
code
32068026/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd meta = pd.read_csv('/kaggle/input/CORD-19-research-challenge/metadata.csv') meta_dropped = meta.drop(['Microsoft Academic Paper ID', 'WHO #Covidence'], axis=1) miss = meta['abstract'].isna().sum() abstracts_papers = meta[meta['abstract'].notna()] missing_doi = abstracts_papers['doi'].isna().sum() missing_url = abstracts_papers['url'].isna().sum() abstracts_papers = abstracts_papers[abstracts_papers['publish_time'].notna()] abstracts_papers['year'] = pd.DatetimeIndex(abstracts_papers['publish_time']).year missing_url_data = abstracts_papers[abstracts_papers['url'].notna()] print('The total number of papers with abstracts but missing url and missing doi = {:.0f}'.format(missing_url_data.doi.isna().sum()))
code
32068026/cell_31
[ "text_plain_output_1.png" ]
from gensim.parsing.preprocessing import remove_stopwords from gensim.similarities import Similarity from gensim.test.utils import datapath, get_tmpfile from nltk.stem import LancasterStemmer from nltk.stem import PorterStemmer from nltk.tokenize import word_tokenize, sent_tokenize import gensim import pandas as pd import string meta = pd.read_csv('/kaggle/input/CORD-19-research-challenge/metadata.csv') meta_dropped = meta.drop(['Microsoft Academic Paper ID', 'WHO #Covidence'], axis=1) miss = meta['abstract'].isna().sum() abstracts_papers = meta[meta['abstract'].notna()] missing_doi = abstracts_papers['doi'].isna().sum() missing_url = abstracts_papers['url'].isna().sum() abstracts_papers = abstracts_papers[abstracts_papers['publish_time'].notna()] abstracts_papers['year'] = pd.DatetimeIndex(abstracts_papers['publish_time']).year abstracts_papers = abstracts_papers[abstracts_papers['url'].notna() | abstracts_papers['doi']] porter = PorterStemmer() lancaster = LancasterStemmer() abstracts_only = abstracts_papers['abstract'] tokenized_abs = [] for abst in abstracts_only: tokens_without_stop_words = remove_stopwords(abst) tokens_cleaned = sent_tokenize(tokens_without_stop_words) words = [porter.stem(w.lower()) for text in tokens_cleaned for w in word_tokenize(text) if w.translate(str.maketrans('', '', string.punctuation)).isalnum()] tokenized_abs.append(words) dictionary = [] dictionary = gensim.corpora.Dictionary(tokenized_abs) corpus = [dictionary.doc2bow(abstract) for abstract in tokenized_abs] tf_idf = gensim.models.TfidfModel(corpus) query = 'COVID-19 (corona) non-pharmaceutical interventions, Methods to control the spread in communities, barriers to compliance and how these vary among different populations' query_without_stop_words = remove_stopwords(query) tokens = sent_tokenize(query_without_stop_words) query_doc = [porter.stem(w.lower()) for text in tokens for w in word_tokenize(text) if w.translate(str.maketrans('', '', string.punctuation)).isalnum()] query_doc_bow = dictionary.doc2bow(query_doc) query_doc_tf_idf = tf_idf[query_doc_bow] index_temp = get_tmpfile('index') index = Similarity(index_temp, tf_idf[corpus], num_features=len(dictionary)) similarities = index[query_doc_tf_idf] abstracts_papers['similarity'] = similarities abstracts_papers = abstracts_papers.sort_values(by='similarity', ascending=False) abstracts_papers.reset_index(inplace=True) top20 = abstracts_papers.head(20) norm_range = top20['year'].max() - top20['year'].min() top20["similarity"] -= (abs(top20['year'] - top20['year'].max()) / norm_range)*0.1 top20 = top20.sort_values(by ='similarity' , ascending=False) top20.reset_index(inplace = True) for paper in range(10): print(top20.url[paper])
code
32068026/cell_10
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd meta = pd.read_csv('/kaggle/input/CORD-19-research-challenge/metadata.csv') meta_dropped = meta.drop(['Microsoft Academic Paper ID', 'WHO #Covidence'], axis=1) miss = meta['abstract'].isna().sum() print('The number of papers without abstracts is {:0.0f} which represents {:.2f}% of the total number of papers'.format(miss, 100 * (miss / meta.shape[0])))
code
32068026/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd meta = pd.read_csv('/kaggle/input/CORD-19-research-challenge/metadata.csv') meta_dropped = meta.drop(['Microsoft Academic Paper ID', 'WHO #Covidence'], axis=1) miss = meta['abstract'].isna().sum() abstracts_papers = meta[meta['abstract'].notna()] print('The total number of papers is {:0.0f}'.format(abstracts_papers.shape[0])) missing_doi = abstracts_papers['doi'].isna().sum() print('The number of papers without doi is {:0.0f}'.format(missing_doi)) missing_url = abstracts_papers['url'].isna().sum() print('The number of papers without url is {:0.0f}'.format(missing_url))
code
32068026/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd meta = pd.read_csv('/kaggle/input/CORD-19-research-challenge/metadata.csv') plt.figure(figsize=(20, 10)) meta.isna().sum().plot(kind='bar', stacked=True)
code
106212426/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/islamabad-house-prices/isb_data.csv') df.shape df.isnull().sum() df.dtypes temp = pd.DataFrame(index=df.columns) temp['data_type'] = df.dtypes temp['null_count'] = df.isnull().sum() temp['unique_count'] = df.nunique() df['bedrooms'].value_counts().plot(kind='bar') plt.title('Number of Bedrooms') plt.xlabel('Bedrooms') plt.ylabel('Count')
code
106212426/cell_25
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X_train, y_train) print(lr.intercept_)
code
106212426/cell_6
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/islamabad-house-prices/isb_data.csv') df.shape df.isnull().sum()
code
106212426/cell_26
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/islamabad-house-prices/isb_data.csv') df.shape df.isnull().sum() df.dtypes temp = pd.DataFrame(index=df.columns) temp['data_type'] = df.dtypes temp['null_count'] = df.isnull().sum() temp['unique_count'] = df.nunique() X = df[['Total_Area', 'price', 'bedrooms', 'baths']] y = df['price'] lr = LinearRegression() lr.fit(X_train, y_train) coeff_df = pd.DataFrame(lr.coef_, X.columns, columns=['Coefficient']) coeff_df
code
106212426/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/islamabad-house-prices/isb_data.csv') df.shape
code
106212426/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/islamabad-house-prices/isb_data.csv') df.shape df.isnull().sum() df.dtypes
code
106212426/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/islamabad-house-prices/isb_data.csv') df.shape df.isnull().sum() df.dtypes temp = pd.DataFrame(index=df.columns) temp['data_type'] = df.dtypes temp['null_count'] = df.isnull().sum() temp['unique_count'] = df.nunique() ax = plt.figure(figsize=(6, 6)).add_subplot(111) ax.set_title('Price for Houses') bp = ax.boxplot([df['bedrooms'], df['baths']])
code
106212426/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/islamabad-house-prices/isb_data.csv') df.shape df.isnull().sum() df.dtypes temp = pd.DataFrame(index=df.columns) temp['data_type'] = df.dtypes temp['null_count'] = df.isnull().sum() temp['unique_count'] = df.nunique() ax = plt.figure(figsize=(6,6)).add_subplot(111) ax.set_title('Price for Houses') bp = ax.boxplot([df['bedrooms'], df['baths']]) X = df[['Total_Area', 'price', 'bedrooms', 'baths']] y = df['price'] lr = LinearRegression() lr.fit(X_train, y_train) coeff_df = pd.DataFrame(lr.coef_, X.columns, columns=['Coefficient']) coeff_df predictions = lr.predict(X_test) plt.scatter(y_test, predictions)
code
106212426/cell_8
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/islamabad-house-prices/isb_data.csv') df.shape df.isnull().sum() df.dtypes df['location'].nunique
code
106212426/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/islamabad-house-prices/isb_data.csv') df.shape df.isnull().sum() df.dtypes temp = pd.DataFrame(index=df.columns) temp['data_type'] = df.dtypes temp['null_count'] = df.isnull().sum() temp['unique_count'] = df.nunique() plt.scatter(df.bedrooms, df.price) plt.title('Bedroom and Price ') plt.xlabel('Bedrooms') plt.ylabel('Price') plt.show()
code
106212426/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/islamabad-house-prices/isb_data.csv') df.shape df.isnull().sum() df.dtypes temp = pd.DataFrame(index=df.columns) temp['data_type'] = df.dtypes temp['null_count'] = df.isnull().sum() temp['unique_count'] = df.nunique() plt.scatter(df.baths, df.price) plt.title('Bathrooms and Price ') plt.xlabel('Bathrooms') plt.ylabel('Price') plt.show()
code
106212426/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/islamabad-house-prices/isb_data.csv') df.shape df.head()
code
106212426/cell_17
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/islamabad-house-prices/isb_data.csv') df.shape df.isnull().sum() df.dtypes temp = pd.DataFrame(index=df.columns) temp['data_type'] = df.dtypes temp['null_count'] = df.isnull().sum() temp['unique_count'] = df.nunique() df.plot.scatter('price', 'Total_Area')
code
106212426/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.linear_model import LinearRegression lr = LinearRegression() lr.fit(X_train, y_train)
code
106212426/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/islamabad-house-prices/isb_data.csv') df.shape df.isnull().sum() df.dtypes temp = pd.DataFrame(index=df.columns) temp['data_type'] = df.dtypes temp['null_count'] = df.isnull().sum() temp['unique_count'] = df.nunique() df['baths'].value_counts().plot(kind='bar') plt.title('number of Bathrooms') plt.xlabel('baths') plt.ylabel('Count')
code
106212426/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/islamabad-house-prices/isb_data.csv') df.shape df.isnull().sum() df.dtypes temp = pd.DataFrame(index=df.columns) temp['data_type'] = df.dtypes temp['null_count'] = df.isnull().sum() temp['unique_count'] = df.nunique() temp
code
106212426/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('../input/islamabad-house-prices/isb_data.csv') df.shape df.isnull().sum() df.dtypes temp = pd.DataFrame(index=df.columns) temp['data_type'] = df.dtypes temp['null_count'] = df.isnull().sum() temp['unique_count'] = df.nunique() plt.figure(figsize=(20, 6)) df['location'].value_counts().plot(kind='bar') plt.title('Location and House frequency') plt.xlabel('Location') plt.ylabel('Value Count')
code
106212426/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/islamabad-house-prices/isb_data.csv') df.shape df.describe(include='all')
code
74046533/cell_9
[ "text_html_output_1.png" ]
import os import pandas as pd import numpy as np import pandas as pd import matplotlib as plt import os df = pd.read_csv('../input/amrc-data/Efaecium_AMRC.csv') df.dtypes df.shape df.AMR.value_counts(ascending=True) df.CRISPR_Cas.value_counts(ascending=True)
code
74046533/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import os import pandas as pd import numpy as np import pandas as pd import matplotlib as plt import os df = pd.read_csv('../input/amrc-data/Efaecium_AMRC.csv') df.dtypes
code
74046533/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import os import pandas as pd import numpy as np import pandas as pd import matplotlib as plt import os df = pd.read_csv('../input/amrc-data/Efaecium_AMRC.csv') df.dtypes df.shape df.AMR.plot()
code
74046533/cell_2
[ "text_plain_output_1.png" ]
import os import pandas as pd import numpy as np import pandas as pd import matplotlib as plt import os df = pd.read_csv('../input/amrc-data/Efaecium_AMRC.csv') df.head()
code
74046533/cell_11
[ "text_html_output_1.png" ]
import os import pandas as pd import numpy as np import pandas as pd import matplotlib as plt import os df = pd.read_csv('../input/amrc-data/Efaecium_AMRC.csv') df.dtypes df.shape df.AMR.value_counts(ascending=True) df.CRISPR_Cas.value_counts(ascending=True) df.corr()
code
74046533/cell_1
[ "text_plain_output_1.png" ]
import os import pandas as pd import numpy as np import pandas as pd import matplotlib as plt import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) df = pd.read_csv('../input/amrc-data/Efaecium_AMRC.csv')
code
74046533/cell_7
[ "text_plain_output_1.png" ]
import os import pandas as pd import numpy as np import pandas as pd import matplotlib as plt import os df = pd.read_csv('../input/amrc-data/Efaecium_AMRC.csv') df.dtypes df.shape df.AMR.value_counts(ascending=True)
code
74046533/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import os import pandas as pd import numpy as np import pandas as pd import matplotlib as plt import os df = pd.read_csv('../input/amrc-data/Efaecium_AMRC.csv') df.dtypes df.shape df.AMR.value_counts(ascending=True) df.CRISPR_Cas.plot()
code
74046533/cell_3
[ "text_plain_output_1.png" ]
import os import pandas as pd import numpy as np import pandas as pd import matplotlib as plt import os df = pd.read_csv('../input/amrc-data/Efaecium_AMRC.csv') df.describe()
code
74046533/cell_10
[ "text_html_output_1.png" ]
import os import pandas as pd import numpy as np import pandas as pd import matplotlib as plt import os df = pd.read_csv('../input/amrc-data/Efaecium_AMRC.csv') df.dtypes df.shape df.AMR.value_counts(ascending=True) df.CRISPR_Cas.value_counts(ascending=True) df.boxplot()
code
74046533/cell_5
[ "text_plain_output_1.png" ]
import os import pandas as pd import numpy as np import pandas as pd import matplotlib as plt import os df = pd.read_csv('../input/amrc-data/Efaecium_AMRC.csv') df.dtypes df.shape
code
2008232/cell_13
[ "image_output_1.png" ]
from mpl_toolkits.basemap import Basemap import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np import pandas as pd import sqlite3 input = sqlite3.connect('../input/FPA_FOD_20170508.sqlite') df = pd.read_sql_query("SELECT * FROM 'Fires'", input) epoch = pd.to_datetime(0, unit='s').to_julian_date() df.DISCOVERY_DATE = pd.to_datetime(df.DISCOVERY_DATE - epoch, unit='D') df.CONT_DATE = pd.to_datetime(df.CONT_DATE - epoch, unit='D') df.index = pd.to_datetime(df.DISCOVERY_DATE) df_wa = df[df.STATE == 'WA'] # analysis for yearly burn area y=df_wa.FIRE_SIZE.resample('AS').sum().fillna(0) ax = y.plot(kind='bar',figsize=(10,6)) # set xaxis major labels # Make most of the ticklabels empty so the labels don't get too crowded ticklabels = ['']*len(y.index) # Every 4th ticklable shows the month and day #ticklabels[::5] = [item.strftime('%b %d') for item in y.index[::4]] # Every 12th ticklabel includes the year #ticklabels[::5] = [item.strftime('%b %d\n%Y') for item in y.index[::5]] ticklabels[::1] = [item.strftime('%Y') for item in y.index[::1]] ax.xaxis.set_major_formatter(ticker.FixedFormatter(ticklabels)) plt.gcf().autofmt_xdate() plt.xlabel('Year') plt.ylabel('Acres Burned'); plt.title('Acres Burned by Year'); # Extract the data we're interested in lat = df_wa['LATITUDE'].values lon = df_wa['LONGITUDE'].values fsize = df_wa['FIRE_SIZE'].values # Draw the map background fig = plt.figure(figsize=(17, 10)) m = Basemap(projection='mill',llcrnrlon=-124. ,llcrnrlat=45.3,urcrnrlon=-117 ,urcrnrlat=49.1, resolution = 'h', epsg = 4269) # do not know how to download the following background image with kaggel kernel, so I had to # comment out the command #m.arcgisimage(service='World_Physical_Map', xpixels = 5000, verbose= False) m.drawcoastlines(color='blue') m.drawcountries(color='blue') m.drawstates(color='blue') # scatter plot m.scatter(lon, lat, latlon=True, c=np.log10(fsize), s=fsize*.01, cmap='Set1', alpha=0.5) # create colorbar and legend plt.colorbar(label=r'$\log_{10}({\rm Size Acres})$',fraction=0.02, pad=0.04) plt.clim(3, 7) cause = df_wa.STAT_CAUSE_DESCR.value_counts() # plot pie chart for cause distribution fig,ax = plt.subplots(figsize=(10,10)) ax.pie(x=cause,labels=cause.index,rotatelabels=False, autopct='%.2f%%'); plt.title('Fire Cause Distribution'); df_wa_cause = df_wa.groupby(pd.Grouper(key='DISCOVERY_DATE', freq='2AS'))['STAT_CAUSE_DESCR'].value_counts() ticklabels = ['1992 - 1993', '1994 - 1995', '1996 - 1997', '1998 - 1999', '2000 - 2001', '2002 - 2003', '2004 - 2005', '2006 - 2007', '2008 - 2009', '2010 - 2011', '2012 - 2013', '2014 - 2015'] df_wa_cause df_wa_cause_us = df_wa_cause.unstack() ax = df_wa_cause_us.plot(kind='bar', x=df_wa_cause_us.index, stacked=True, figsize=(10, 6)) plt.title('Fire Cause Distribution 2 Year Window') plt.xlabel('2 Year Window') plt.ylabel('Number Fires') ax.xaxis.set_major_formatter(ticker.FixedFormatter(ticklabels)) ax.yaxis.grid(False, 'minor') ax.yaxis.grid(True, 'major') plt.gcf().autofmt_xdate()
code