path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
104124784/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') df = pd.concat([train, test], axis=0).reset_index(drop=True) df = df.drop(['PassengerId', 'Survived', 'Name', 'Ticket', 'Cabin'], axis=1) df.describe()
code
104124784/cell_4
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') test.head()
code
104124784/cell_34
[ "image_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder, StandardScaler import pandas as pd train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') df = pd.concat([train, test], axis=0).reset_index(drop=True) df = df.drop(['PassengerId', 'Survived', 'Name', 'Ticket', 'Cabin'], axis=1) df.isnull().sum().sort_values(ascending=False) * 100 / df.shape[0] df.isnull().sum() ohe = OneHotEncoder(sparse=False, handle_unknown='ignore') transformed_f = ohe.fit_transform(df[['Sex', 'Embarked']]) transformed_f = pd.DataFrame(transformed_f, columns=['Sex0', 'Sex1', 'Embarked0', 'Embarked1', 'Embarked2']) df = df.join(transformed_f) df = df.drop(['Sex', 'Embarked'], axis=1) train_final = df.loc[:train.index.max(), :].copy() test_final = df.loc[:test.index.max()].copy() print(train_final.shape) print(test_final.shape)
code
104124784/cell_23
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') df = pd.concat([train, test], axis=0).reset_index(drop=True) df = df.drop(['PassengerId', 'Survived', 'Name', 'Ticket', 'Cabin'], axis=1) df.isnull().sum().sort_values(ascending=False) * 100 / df.shape[0] df.isnull().sum() df.head()
code
104124784/cell_6
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') df = pd.concat([train, test], axis=0).reset_index(drop=True) df.head()
code
104124784/cell_2
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') print('train', train.shape) print('test', test.shape)
code
104124784/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') df = pd.concat([train, test], axis=0).reset_index(drop=True) df = df.drop(['PassengerId', 'Survived', 'Name', 'Ticket', 'Cabin'], axis=1) df.isnull().sum().sort_values(ascending=False) * 100 / df.shape[0]
code
104124784/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') df = pd.concat([train, test], axis=0).reset_index(drop=True) df = df.drop(['PassengerId', 'Survived', 'Name', 'Ticket', 'Cabin'], axis=1) df.head()
code
104124784/cell_18
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import seaborn as sns sns.set() import matplotlib.pyplot as plt from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') df = pd.concat([train, test], axis=0).reset_index(drop=True) df = df.drop(['PassengerId', 'Survived', 'Name', 'Ticket', 'Cabin'], axis=1) df.isnull().sum().sort_values(ascending=False) * 100 / df.shape[0] sns.histplot(data=df['Fare'], color='teal', kde=True) plt.show()
code
104124784/cell_32
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder, StandardScaler import pandas as pd train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') df = pd.concat([train, test], axis=0).reset_index(drop=True) df = df.drop(['PassengerId', 'Survived', 'Name', 'Ticket', 'Cabin'], axis=1) df.isnull().sum().sort_values(ascending=False) * 100 / df.shape[0] df.isnull().sum() ohe = OneHotEncoder(sparse=False, handle_unknown='ignore') transformed_f = ohe.fit_transform(df[['Sex', 'Embarked']]) transformed_f = pd.DataFrame(transformed_f, columns=['Sex0', 'Sex1', 'Embarked0', 'Embarked1', 'Embarked2']) df = df.join(transformed_f) df = df.drop(['Sex', 'Embarked'], axis=1) print(df.shape) print(train.shape) print(test.shape)
code
104124784/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') df = pd.concat([train, test], axis=0).reset_index(drop=True) df = df.drop(['PassengerId', 'Survived', 'Name', 'Ticket', 'Cabin'], axis=1) df.info()
code
104124784/cell_16
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') df = pd.concat([train, test], axis=0).reset_index(drop=True) df = df.drop(['PassengerId', 'Survived', 'Name', 'Ticket', 'Cabin'], axis=1) df.isnull().sum().sort_values(ascending=False) * 100 / df.shape[0] df['Embarked'].mode()
code
104124784/cell_3
[ "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') train.head()
code
104124784/cell_27
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder, StandardScaler import pandas as pd train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') df = pd.concat([train, test], axis=0).reset_index(drop=True) df = df.drop(['PassengerId', 'Survived', 'Name', 'Ticket', 'Cabin'], axis=1) df.isnull().sum().sort_values(ascending=False) * 100 / df.shape[0] df.isnull().sum() ohe = OneHotEncoder(sparse=False, handle_unknown='ignore') transformed_f = ohe.fit_transform(df[['Sex', 'Embarked']]) transformed_f = pd.DataFrame(transformed_f, columns=['Sex0', 'Sex1', 'Embarked0', 'Embarked1', 'Embarked2']) df = df.join(transformed_f) df = df.drop(['Sex', 'Embarked'], axis=1) df.head()
code
34144131/cell_7
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from multiprocessing import cpu_count from multiprocessing.dummy import Pool import cv2 import gluoncv as gcv import gluoncv as gcv import gluoncv as gcv import json import mxnet as mx import mxnet as mx import mxnet as mx import numpy as np import os import os import pandas as pd import pandas as pd import random import random import time import os import cv2 import json import random import numpy as np import mxnet as mx import pandas as pd import gluoncv as gcv from multiprocessing import cpu_count from multiprocessing.dummy import Pool def load_dataset(root): csv = pd.read_csv(os.path.join(root, 'train.csv')) data = {} for i in csv.index: key = csv['image_id'][i] bbox = json.loads(csv['bbox'][i]) bbox = [bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3], 0.0] if key in data: data[key].append(bbox) else: data[key] = [bbox] return sorted([(k, os.path.join(root, 'train', k + '.jpg'), v) for k, v in data.items()], key=lambda x: x[0]) def load_image(path): with open(path, 'rb') as f: buf = f.read() return mx.image.imdecode(buf) def get_batches(dataset, batch_size, width=512, height=512, net=None, ctx=mx.cpu()): batches = len(dataset) // batch_size if batches * batch_size < len(dataset): batches += 1 sampler = Sampler(width, height, net) with Pool(cpu_count() * 2) as p: for i in range(batches): start = i * batch_size samples = p.map(sampler, dataset[start:start + batch_size]) stack_fn = [gcv.data.batchify.Stack()] pad_fn = [gcv.data.batchify.Pad(pad_val=-1)] if net is None: batch = gcv.data.batchify.Tuple(*stack_fn + pad_fn)(samples) else: batch = gcv.data.batchify.Tuple(*stack_fn * 6 + pad_fn)(samples) yield [x.as_in_context(ctx) for x in batch] def gauss_blur(image, level): return cv2.blur(image, (level * 2 + 1, level * 2 + 1)) def gauss_noise(image): for i in range(image.shape[2]): c = image[:, :, i] diff = 255 - c.max() noise = np.random.normal(0, random.randint(1, 6), c.shape) noise = (noise - noise.min()) / (noise.max() - noise.min()) noise = diff * noise image[:, :, i] = c + noise.astype(np.uint8) return image class Sampler: def __init__(self, width, height, net=None, **kwargs): self._net = net if net is None: self._transform = gcv.data.transforms.presets.yolo.YOLO3DefaultValTransform(width, height, **kwargs) else: self._transform = gcv.data.transforms.presets.yolo.YOLO3DefaultTrainTransform(width, height, net=net, **kwargs) def __call__(self, data): raw = load_image(data[1]) bboxes = np.array(data[2]) if not self._net is None: raw = raw.asnumpy() blur = random.randint(0, 3) if blur > 0: raw = gauss_blur(raw, blur) raw = gauss_noise(raw) raw = mx.nd.array(raw) h, w, _ = raw.shape raw, flips = gcv.data.transforms.image.random_flip(raw, py=0.5) bboxes = gcv.data.transforms.bbox.flip(bboxes, (w, h), flip_y=flips[1]) res = self._transform(raw, bboxes) return [mx.nd.array(x) for x in res] import mxnet as mx import gluoncv as gcv def load_model(path, ctx=mx.cpu()): net = gcv.model_zoo.yolo3_darknet53_custom(['wheat'], pretrained_base=False) net.set_nms(post_nms=150) net.load_parameters(path, ctx=ctx) return net import os import time import random import mxnet as mx import pandas as pd import gluoncv as gcv max_epochs = 4 learning_rate = 0.001 batch_size = 16 img_s = 512 threshold = 0.1 context = mx.gpu() print('Loading model...') model = load_model('/kaggle/input/global-wheat-detection-models/global-wheat-yolo3-darknet53.params', ctx=context) print('Loading test images...') test_images = [(os.path.join(dirname, filename), os.path.splitext(filename)[0]) for dirname, _, filenames in os.walk('/kaggle/input/global-wheat-detection/test') for filename in filenames] print('Pseudo labaling...') pseudo_set = [] for path, image_id in test_images: print(path) raw = load_image(path) x, _ = gcv.data.transforms.presets.yolo.transform_test(raw, short=img_s) classes, scores, bboxes = model(x.as_in_context(context)) bboxes[0, :, 0::2] = (bboxes[0, :, 0::2] / x.shape[3]).clip(0.0, 1.0) * raw.shape[1] bboxes[0, :, 1::2] = (bboxes[0, :, 1::2] / x.shape[2]).clip(0.0, 1.0) * raw.shape[0] pseudo_set.append((image_id, path, [[round(x) for x in bboxes[0, i].asnumpy().tolist()] + [0.0] for i in range(classes.shape[1]) if model.classes[int(classes[0, i].asscalar())] == 'wheat' and scores[0, i].asscalar() > threshold])) print('Loading training set...') training_set = load_dataset('/kaggle/input/global-wheat-detection') + pseudo_set print('Re-training...') trainer = mx.gluon.Trainer(model.collect_params(), 'Nadam', {'learning_rate': learning_rate}) for epoch in range(max_epochs): ts = time.time() random.shuffle(training_set) training_total_L = 0.0 training_batches = 0 for x, objectness, center_targets, scale_targets, weights, class_targets, gt_bboxes in get_batches(training_set, batch_size, width=img_s, height=img_s, net=model, ctx=context): training_batches += 1 with mx.autograd.record(): obj_loss, center_loss, scale_loss, cls_loss = model(x, gt_bboxes, objectness, center_targets, scale_targets, weights, class_targets) L = obj_loss + center_loss + scale_loss + cls_loss L.backward() trainer.step(x.shape[0]) training_batch_L = mx.nd.mean(L).asscalar() if training_batch_L != training_batch_L: raise ValueError() training_total_L += training_batch_L print('[Epoch %d Batch %d] batch_loss %.10f average_loss %.10f elapsed %.2fs' % (epoch, training_batches, training_batch_L, training_total_L / training_batches, time.time() - ts)) training_avg_L = training_total_L / training_batches print('[Epoch %d] training_loss %.10f duration %.2fs' % (epoch + 1, training_avg_L, time.time() - ts)) print('Inference...') results = [] for path, image_id in test_images: print(path) raw = load_image(path) x, _ = gcv.data.transforms.presets.yolo.transform_test(raw, short=img_s) classes, scores, bboxes = model(x.as_in_context(context)) bboxes[0, :, 0::2] = (bboxes[0, :, 0::2] / x.shape[3]).clip(0.0, 1.0) * raw.shape[1] bboxes[0, :, 1::2] = (bboxes[0, :, 1::2] / x.shape[2]).clip(0.0, 1.0) * raw.shape[0] bboxes[0, :, 2:4] -= bboxes[0, :, 0:2] results.append({'image_id': image_id, 'PredictionString': ' '.join([' '.join([str(x) for x in [scores[0, i].asscalar()] + [round(x) for x in bboxes[0, i].asnumpy().tolist()]]) for i in range(classes.shape[1]) if model.classes[int(classes[0, i].asscalar())] == 'wheat' and scores[0, i].asscalar() > threshold])}) pd.DataFrame(results, columns=['image_id', 'PredictionString']).to_csv('submission.csv', index=False)
code
73070153/cell_21
[ "text_plain_output_1.png" ]
from gensim.corpora import Dictionary from gensim.models import TfidfModel, LsiModel, Word2Vec from nltk import sent_tokenize, word_tokenize from nltk.corpus import stopwords import re stop_words = stopwords.words('english') def clean_text(txt: str): """Clean and lower case text.""" txt = re.sub('[^A-Za-z0-9]+', ' ', str(txt).lower()) txt = re.sub('\\b\\d+\\b', '', txt).strip() return txt def tokenizer(txt: str): """Custom tokenizer.""" tokens = [] for sent in sent_tokenize(txt, language='english'): for word in word_tokenize(clean_text(sent), language='english'): if len(word) < 2: continue if word in stop_words: continue tokens.append(word) return tokens tokenized_data = [tokenizer(doc) for doc in data] dct = Dictionary(tokenized_data) rare_ids = [tokenid for tokenid, wordfreq in dct.cfs.items() if wordfreq < 2] dct.filter_tokens(rare_ids) corpus = [dct.doc2bow(line) for line in tokenized_data] tfidf_model = TfidfModel(corpus, id2word=dct) tfidf_matrix = tfidf_model[corpus] print('Size of LSI vocab.:', len(dct.keys())) print('Size of w2v vocab.:', len(w2v_model.wv.key_to_index.keys()))
code
73070153/cell_44
[ "text_plain_output_1.png" ]
w2v_model = Word2Vec(vector_size=dim_w2v, alpha=alpha, min_alpha=alpha_min, window=wnd, min_count=mincount, sample=sample, sg=sg, negative=ngt, workers=threads) word_freq = {dct[k]: v for k, v in dct.cfs.items()} w2v_model.build_vocab_from_freq(word_freq) num_samples = dct.num_docs w2v_model.train(corpus_w2v, total_examples=num_samples, epochs=epochs)
code
73070153/cell_39
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
lsi_model = LsiModel(corpus=tfidf_model[corpus], id2word=dct, num_topics=dim_lsi)
code
73070153/cell_26
[ "text_plain_output_1.png" ]
word_freq = {dct[k]: v for k, v in dct.cfs.items()} w2v_model.build_vocab_from_freq(word_freq) num_samples = dct.num_docs w2v_model.train(tokenized_data, total_examples=num_samples, epochs=epochs)
code
73070153/cell_19
[ "text_plain_output_1.png" ]
w2v_model = Word2Vec(sentences=tokenized_data, vector_size=dim_w2v, alpha=alpha, min_alpha=alpha_min, window=wnd, min_count=mincount, sample=sample, sg=sg, negative=ngt, epochs=epochs, workers=threads)
code
73070153/cell_7
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import nltk nltk.download('stopwords') nltk.download('punkt')
code
73070153/cell_15
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
dim_lsi = 200 lsi_model = LsiModel(corpus=tfidf_matrix, id2word=dct, num_topics=dim_lsi)
code
16129109/cell_2
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import random import os from PIL import Image from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from keras.models import Sequential, Model from keras.layers import Dense, Conv1D, MaxPooling1D, Flatten from keras.utils import to_categorical
code
16129109/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image import numpy as np import os import pandas as pd def get_pixel_data(filepath): """ Get the pixel data from an image as a pandas DataFrame. """ image = Image.open(filepath) pixel_data = np.array(image.getdata()) pixel_data = pixel_data.mean(axis=1) pixel_data = pixel_data.reshape(1, 32 * 32) pixel_data = pd.DataFrame(pixel_data, columns=np.arange(32 * 32)) image.close() return pixel_data path = '../input/train/train/' train = pd.DataFrame() for file in sorted(os.listdir(path)): image = get_pixel_data(path + file) train = train.append(image, ignore_index=True) labels_train = pd.read_csv('../input/train.csv').sort_values('id') path = '../input/test/test/' test = pd.DataFrame() test_id = [] for file in sorted(os.listdir(path)): image = get_pixel_data(path + file) test = test.append(image, ignore_index=True) test_id.append(file) print('TRAIN---------------------') print('Shape: {}'.format(train.shape)) print('Label 0 (False): {}'.format(np.sum(labels_train.has_cactus == 0))) print('Label 1 (True): {}'.format(np.sum(labels_train.has_cactus == 1))) print('TEST----------------------') print('Shape: {}'.format(test.shape))
code
16129109/cell_15
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from keras.layers import Dense, Conv1D, MaxPooling1D, Flatten from keras.models import Sequential, Model from keras.utils import to_categorical from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression import numpy as np import os import pandas as pd import random def get_pixel_data(filepath): """ Get the pixel data from an image as a pandas DataFrame. """ image = Image.open(filepath) pixel_data = np.array(image.getdata()) pixel_data = pixel_data.mean(axis=1) pixel_data = pixel_data.reshape(1, 32 * 32) pixel_data = pd.DataFrame(pixel_data, columns=np.arange(32 * 32)) image.close() return pixel_data path = '../input/train/train/' train = pd.DataFrame() for file in sorted(os.listdir(path)): image = get_pixel_data(path + file) train = train.append(image, ignore_index=True) labels_train = pd.read_csv('../input/train.csv').sort_values('id') path = '../input/test/test/' test = pd.DataFrame() test_id = [] for file in sorted(os.listdir(path)): image = get_pixel_data(path + file) test = test.append(image, ignore_index=True) test_id.append(file) random.seed(0) idx = random.choices(range(17500), k=10000) X_train = train.iloc[idx] X_test = train.drop(idx, axis=0) y_train = labels_train.iloc[idx, 1] y_test = labels_train.drop(idx, axis=0).iloc[:, 1] model = LogisticRegression(solver='lbfgs', random_state=0) model.fit(X_train, y_train) model.score(X_test, y_test) model = RandomForestClassifier(n_estimators=100, criterion='entropy', random_state=0) model.fit(X_train, y_train) model.score(X_test, y_test) model = Sequential() model.add(Dense(5, activation='sigmoid', input_shape=(1024,))) model.add(Dense(10, activation='sigmoid')) model.add(Dense(2, activation='sigmoid')) model.summary() model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(X_train, to_categorical(y_train), epochs=10)
code
16129109/cell_17
[ "text_plain_output_1.png" ]
from PIL import Image from keras.layers import Dense, Conv1D, MaxPooling1D, Flatten from keras.models import Sequential, Model from keras.utils import to_categorical from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression import numpy as np import os import pandas as pd import random def get_pixel_data(filepath): """ Get the pixel data from an image as a pandas DataFrame. """ image = Image.open(filepath) pixel_data = np.array(image.getdata()) pixel_data = pixel_data.mean(axis=1) pixel_data = pixel_data.reshape(1, 32 * 32) pixel_data = pd.DataFrame(pixel_data, columns=np.arange(32 * 32)) image.close() return pixel_data path = '../input/train/train/' train = pd.DataFrame() for file in sorted(os.listdir(path)): image = get_pixel_data(path + file) train = train.append(image, ignore_index=True) labels_train = pd.read_csv('../input/train.csv').sort_values('id') path = '../input/test/test/' test = pd.DataFrame() test_id = [] for file in sorted(os.listdir(path)): image = get_pixel_data(path + file) test = test.append(image, ignore_index=True) test_id.append(file) random.seed(0) idx = random.choices(range(17500), k=10000) X_train = train.iloc[idx] X_test = train.drop(idx, axis=0) y_train = labels_train.iloc[idx, 1] y_test = labels_train.drop(idx, axis=0).iloc[:, 1] model = LogisticRegression(solver='lbfgs', random_state=0) model.fit(X_train, y_train) model.score(X_test, y_test) model = RandomForestClassifier(n_estimators=100, criterion='entropy', random_state=0) model.fit(X_train, y_train) model.score(X_test, y_test) model = Sequential() model.add(Dense(5, activation='sigmoid', input_shape=(1024,))) model.add(Dense(10, activation='sigmoid')) model.add(Dense(2, activation='sigmoid')) model.summary() model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(X_train, to_categorical(y_train), epochs=10) model = Sequential() model.add(Conv1D(filters=4, kernel_size=4, input_shape=(32, 32))) model.add(MaxPooling1D(pool_size=4)) model.add(Flatten()) model.add(Dense(2, activation='sigmoid')) model.summary() model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(np.array(X_train).reshape((10000, 32, 32)), to_categorical(y_train), epochs=10)
code
16129109/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from sklearn.linear_model import LogisticRegression import numpy as np import os import pandas as pd import random def get_pixel_data(filepath): """ Get the pixel data from an image as a pandas DataFrame. """ image = Image.open(filepath) pixel_data = np.array(image.getdata()) pixel_data = pixel_data.mean(axis=1) pixel_data = pixel_data.reshape(1, 32 * 32) pixel_data = pd.DataFrame(pixel_data, columns=np.arange(32 * 32)) image.close() return pixel_data path = '../input/train/train/' train = pd.DataFrame() for file in sorted(os.listdir(path)): image = get_pixel_data(path + file) train = train.append(image, ignore_index=True) labels_train = pd.read_csv('../input/train.csv').sort_values('id') path = '../input/test/test/' test = pd.DataFrame() test_id = [] for file in sorted(os.listdir(path)): image = get_pixel_data(path + file) test = test.append(image, ignore_index=True) test_id.append(file) random.seed(0) idx = random.choices(range(17500), k=10000) X_train = train.iloc[idx] X_test = train.drop(idx, axis=0) y_train = labels_train.iloc[idx, 1] y_test = labels_train.drop(idx, axis=0).iloc[:, 1] model = LogisticRegression(solver='lbfgs', random_state=0) model.fit(X_train, y_train) model.score(X_test, y_test)
code
16129109/cell_12
[ "text_plain_output_1.png" ]
from PIL import Image from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression import numpy as np import os import pandas as pd import random def get_pixel_data(filepath): """ Get the pixel data from an image as a pandas DataFrame. """ image = Image.open(filepath) pixel_data = np.array(image.getdata()) pixel_data = pixel_data.mean(axis=1) pixel_data = pixel_data.reshape(1, 32 * 32) pixel_data = pd.DataFrame(pixel_data, columns=np.arange(32 * 32)) image.close() return pixel_data path = '../input/train/train/' train = pd.DataFrame() for file in sorted(os.listdir(path)): image = get_pixel_data(path + file) train = train.append(image, ignore_index=True) labels_train = pd.read_csv('../input/train.csv').sort_values('id') path = '../input/test/test/' test = pd.DataFrame() test_id = [] for file in sorted(os.listdir(path)): image = get_pixel_data(path + file) test = test.append(image, ignore_index=True) test_id.append(file) random.seed(0) idx = random.choices(range(17500), k=10000) X_train = train.iloc[idx] X_test = train.drop(idx, axis=0) y_train = labels_train.iloc[idx, 1] y_test = labels_train.drop(idx, axis=0).iloc[:, 1] model = LogisticRegression(solver='lbfgs', random_state=0) model.fit(X_train, y_train) model.score(X_test, y_test) model = RandomForestClassifier(n_estimators=100, criterion='entropy', random_state=0) model.fit(X_train, y_train) model.score(X_test, y_test)
code
128017800/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns track_csv = pd.read_table('/kaggle/input/-spotify-tracks-dataset/dataset.csv', sep=',') track_csv = track_csv.rename(columns={'duration_ms': 'duration'}) track_csv['duration'] = track_csv['duration'] / 60000 popularityByGenre = track_csv.groupby([track_csv['track_genre']])['popularity'].mean().sort_values(ascending=False) popularityByArtist = track_csv.groupby(track_csv['artists'])['popularity'].mean().sort_values(ascending=False) sadSet = track_csv[track_csv['track_genre'] == 'sad'] pagodeSet = track_csv[track_csv['track_genre'] == 'pagode'] metalSet = track_csv[track_csv['track_genre'] == 'metal'] sns.relplot(data=metalSet, x='energy', y='liveness')
code
128017800/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns track_csv = pd.read_table('/kaggle/input/-spotify-tracks-dataset/dataset.csv', sep=',') track_csv = track_csv.rename(columns={'duration_ms': 'duration'}) track_csv['duration'] = track_csv['duration'] / 60000 popularityByGenre = track_csv.groupby([track_csv['track_genre']])['popularity'].mean().sort_values(ascending=False) popularityByArtist = track_csv.groupby(track_csv['artists'])['popularity'].mean().sort_values(ascending=False) sadSet = track_csv[track_csv['track_genre'] == 'sad'] sns.relplot(data=sadSet, x='duration', y='popularity', hue='key')
code
128017800/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) track_csv = pd.read_table('/kaggle/input/-spotify-tracks-dataset/dataset.csv', sep=',') track_csv = track_csv.rename(columns={'duration_ms': 'duration'}) track_csv['duration'] = track_csv['duration'] / 60000 popularityByGenre = track_csv.groupby([track_csv['track_genre']])['popularity'].mean().sort_values(ascending=False) popularityByGenre.head(20)
code
128017800/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns track_csv = pd.read_table('/kaggle/input/-spotify-tracks-dataset/dataset.csv', sep=',') track_csv = track_csv.rename(columns={'duration_ms': 'duration'}) track_csv['duration'] = track_csv['duration'] / 60000 popularityByGenre = track_csv.groupby([track_csv['track_genre']])['popularity'].mean().sort_values(ascending=False) popularityByArtist = track_csv.groupby(track_csv['artists'])['popularity'].mean().sort_values(ascending=False) sadSet = track_csv[track_csv['track_genre'] == 'sad'] pagodeSet = track_csv[track_csv['track_genre'] == 'pagode'] sns.countplot(data=pagodeSet, x='mode')
code
128017800/cell_1
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import os import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
128017800/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) track_csv = pd.read_table('/kaggle/input/-spotify-tracks-dataset/dataset.csv', sep=',') track_csv = track_csv.rename(columns={'duration_ms': 'duration'}) track_csv['duration'] = track_csv['duration'] / 60000 popularityByGenre = track_csv.groupby([track_csv['track_genre']])['popularity'].mean().sort_values(ascending=False) popularityByArtist = track_csv.groupby(track_csv['artists'])['popularity'].mean().sort_values(ascending=False) popularityByArtist.head(20)
code
128017800/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) track_csv = pd.read_table('/kaggle/input/-spotify-tracks-dataset/dataset.csv', sep=',') track_csv = track_csv.rename(columns={'duration_ms': 'duration'}) track_csv['duration'] = track_csv['duration'] / 60000 popularityByGenre = track_csv.groupby([track_csv['track_genre']])['popularity'].mean().sort_values(ascending=False) popularityByArtist = track_csv.groupby(track_csv['artists'])['popularity'].mean().sort_values(ascending=False) metallicaSet = track_csv[track_csv['artists'] == 'Metallica'] metallicaSet.shape[0]
code
128017800/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns track_csv = pd.read_table('/kaggle/input/-spotify-tracks-dataset/dataset.csv', sep=',') track_csv = track_csv.rename(columns={'duration_ms': 'duration'}) track_csv['duration'] = track_csv['duration'] / 60000 popularityByGenre = track_csv.groupby([track_csv['track_genre']])['popularity'].mean().sort_values(ascending=False) popularityByArtist = track_csv.groupby(track_csv['artists'])['popularity'].mean().sort_values(ascending=False) sadSet = track_csv[track_csv['track_genre'] == 'sad'] pagodeSet = track_csv[track_csv['track_genre'] == 'pagode'] metalSet = track_csv[track_csv['track_genre'] == 'metal'] metallicaSet = track_csv[track_csv['artists'] == 'Metallica'] metallicaSet.shape[0] metallicaAlbumSorted = metallicaSet.groupby(metallicaSet['album_name'])['popularity'].mean().sort_values(ascending=False).reset_index() sns.barplot(data=metallicaAlbumSorted, x='popularity', y='album_name')
code
128017800/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) track_csv = pd.read_table('/kaggle/input/-spotify-tracks-dataset/dataset.csv', sep=',') track_csv = track_csv.rename(columns={'duration_ms': 'duration'}) track_csv['duration'] = track_csv['duration'] / 60000 track_csv.head()
code
128017800/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns track_csv = pd.read_table('/kaggle/input/-spotify-tracks-dataset/dataset.csv', sep=',') track_csv = track_csv.rename(columns={'duration_ms': 'duration'}) track_csv['duration'] = track_csv['duration'] / 60000 popularityByGenre = track_csv.groupby([track_csv['track_genre']])['popularity'].mean().sort_values(ascending=False) popularityByArtist = track_csv.groupby(track_csv['artists'])['popularity'].mean().sort_values(ascending=False) sadSet = track_csv[track_csv['track_genre'] == 'sad'] pagodeSet = track_csv[track_csv['track_genre'] == 'pagode'] metalSet = track_csv[track_csv['track_genre'] == 'metal'] metallicaSet = track_csv[track_csv['artists'] == 'Metallica'] metallicaSet.shape[0] metallicaAlbumSorted = metallicaSet.groupby(metallicaSet['album_name'])['popularity'].mean().sort_values(ascending=False).reset_index() sns.countplot(data=metallicaSet, x='key')
code
128017800/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) track_csv = pd.read_table('/kaggle/input/-spotify-tracks-dataset/dataset.csv', sep=',') track_csv = track_csv.rename(columns={'duration_ms': 'duration'}) track_csv['duration'] = track_csv['duration'] / 60000 track_csv['time_signature'].value_counts()
code
73096770/cell_9
[ "image_output_1.png" ]
import os import pandas as pd product_name_dictionary = {} product_name_dictionary2 = {} for dirname, _, filenames in os.walk('/kaggle/input/learnplatform-covid19-impact-on-digital-learning/engagement_data/'): for filename in filenames: engagement_data_path = os.path.join(dirname, filename) df_temp = pd.read_csv(engagement_data_path, dtype={'lp_id': str}) df_temp = df_temp.fillna(0) df_temp = df_temp.groupby(by='lp_id', as_index=False).sum() for index, row in df_temp.iterrows(): if row['lp_id'] in product_name_dictionary.keys(): product_name_dictionary[row['lp_id']] += row['pct_access'] product_name_dictionary2[row['lp_id']] += row['engagement_index'] else: product_name_dictionary[row['lp_id']] = row['pct_access'] product_name_dictionary2[row['lp_id']] = row['engagement_index'] def dict_val(x): return x[1] sorted_product_name_dictionary = sorted(product_name_dictionary.items(), key=dict_val, reverse=True) product_df = pd.read_csv('/kaggle/input/learnplatform-covid19-impact-on-digital-learning/products_info.csv', dtype={'LP ID': str}) i = 1 name_count = [] for key, val in sorted_product_name_dictionary[:11]: product_name = product_df[product_df['LP ID'] == key]['Product Name'].values if product_name != None: name_count.append((product_name[0], val)) print(str(i) + ' :' + product_name[0]) i += 1
code
73096770/cell_11
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd product_name_dictionary = {} product_name_dictionary2 = {} for dirname, _, filenames in os.walk('/kaggle/input/learnplatform-covid19-impact-on-digital-learning/engagement_data/'): for filename in filenames: engagement_data_path = os.path.join(dirname, filename) df_temp = pd.read_csv(engagement_data_path, dtype={'lp_id': str}) df_temp = df_temp.fillna(0) df_temp = df_temp.groupby(by='lp_id', as_index=False).sum() for index, row in df_temp.iterrows(): if row['lp_id'] in product_name_dictionary.keys(): product_name_dictionary[row['lp_id']] += row['pct_access'] product_name_dictionary2[row['lp_id']] += row['engagement_index'] else: product_name_dictionary[row['lp_id']] = row['pct_access'] product_name_dictionary2[row['lp_id']] = row['engagement_index'] def dict_val(x): return x[1] sorted_product_name_dictionary = sorted(product_name_dictionary.items(), key=dict_val, reverse=True) product_df = pd.read_csv('/kaggle/input/learnplatform-covid19-impact-on-digital-learning/products_info.csv', dtype={'LP ID': str}) i = 1 name_count = [] for key, val in sorted_product_name_dictionary[:11]: product_name = product_df[product_df['LP ID'] == key]['Product Name'].values if product_name != None: name_count.append((product_name[0], val)) i += 1 name_count1 = pd.DataFrame([]) name_count1['products'] = [name[0] for name in name_count] name_count1['percentage_of_access'] = [name[1] for name in name_count] plt.figure(figsize=(20, 10)) plt.bar(name_count1['products'].values, name_count1['percentage_of_access'].values, color=['orange', 'blue']) plt.xlabel('Top Product name') plt.ylabel('Sum of percentage of access') plt.show()
code
73096770/cell_16
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd product_name_dictionary = {} product_name_dictionary2 = {} for dirname, _, filenames in os.walk('/kaggle/input/learnplatform-covid19-impact-on-digital-learning/engagement_data/'): for filename in filenames: engagement_data_path = os.path.join(dirname, filename) df_temp = pd.read_csv(engagement_data_path, dtype={'lp_id': str}) df_temp = df_temp.fillna(0) df_temp = df_temp.groupby(by='lp_id', as_index=False).sum() for index, row in df_temp.iterrows(): if row['lp_id'] in product_name_dictionary.keys(): product_name_dictionary[row['lp_id']] += row['pct_access'] product_name_dictionary2[row['lp_id']] += row['engagement_index'] else: product_name_dictionary[row['lp_id']] = row['pct_access'] product_name_dictionary2[row['lp_id']] = row['engagement_index'] def dict_val(x): return x[1] sorted_product_name_dictionary = sorted(product_name_dictionary.items(), key=dict_val, reverse=True) product_df = pd.read_csv('/kaggle/input/learnplatform-covid19-impact-on-digital-learning/products_info.csv', dtype={'LP ID': str}) i = 1 name_count = [] for key, val in sorted_product_name_dictionary[:11]: product_name = product_df[product_df['LP ID'] == key]['Product Name'].values if product_name != None: name_count.append((product_name[0], val)) i += 1 name_count1 = pd.DataFrame([]) name_count1['products'] = [name[0] for name in name_count] name_count1['percentage_of_access'] = [name[1] for name in name_count] def dict_val(x): return x[1] sorted_product_name_dictionary2 = sorted(product_name_dictionary2.items(), key=dict_val, reverse=True) i = 1 name_count = [] for key, val in sorted_product_name_dictionary2[:11]: product_name = product_df[product_df['LP ID'] == key]['Product Name'].values if product_name != None: name_count.append((product_name[0], val)) i += 1 name_count1 = pd.DataFrame([]) name_count1['products'] = [name[0] for name in name_count] name_count1['pageload_per1000_student'] = [name[1] for name in name_count] plt.figure(figsize=(20, 10)) plt.bar(name_count1['products'].values, name_count1['pageload_per1000_student'].values, color=['orange', 'blue']) plt.xlabel('Top Product name') plt.ylabel('Sum of district based Page Load Count Per 1000 Student') plt.show()
code
73096770/cell_14
[ "image_output_1.png" ]
import os import pandas as pd product_name_dictionary = {} product_name_dictionary2 = {} for dirname, _, filenames in os.walk('/kaggle/input/learnplatform-covid19-impact-on-digital-learning/engagement_data/'): for filename in filenames: engagement_data_path = os.path.join(dirname, filename) df_temp = pd.read_csv(engagement_data_path, dtype={'lp_id': str}) df_temp = df_temp.fillna(0) df_temp = df_temp.groupby(by='lp_id', as_index=False).sum() for index, row in df_temp.iterrows(): if row['lp_id'] in product_name_dictionary.keys(): product_name_dictionary[row['lp_id']] += row['pct_access'] product_name_dictionary2[row['lp_id']] += row['engagement_index'] else: product_name_dictionary[row['lp_id']] = row['pct_access'] product_name_dictionary2[row['lp_id']] = row['engagement_index'] def dict_val(x): return x[1] sorted_product_name_dictionary = sorted(product_name_dictionary.items(), key=dict_val, reverse=True) product_df = pd.read_csv('/kaggle/input/learnplatform-covid19-impact-on-digital-learning/products_info.csv', dtype={'LP ID': str}) i = 1 name_count = [] for key, val in sorted_product_name_dictionary[:11]: product_name = product_df[product_df['LP ID'] == key]['Product Name'].values if product_name != None: name_count.append((product_name[0], val)) i += 1 def dict_val(x): return x[1] sorted_product_name_dictionary2 = sorted(product_name_dictionary2.items(), key=dict_val, reverse=True) i = 1 name_count = [] for key, val in sorted_product_name_dictionary2[:11]: product_name = product_df[product_df['LP ID'] == key]['Product Name'].values if product_name != None: name_count.append((product_name[0], val)) print(str(i) + ' :' + product_name[0]) i += 1
code
105197461/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/train.csv') test_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/test.csv') sample_submission_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/sample_submission.csv') test_df.describe()
code
105197461/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/train.csv') test_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/test.csv') sample_submission_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/sample_submission.csv') train_df.dtypes test_df.dtypes train_df.columns test_df.columns train_null_count = train_df.isna().sum().to_dict() df_train = pd.DataFrame([train_null_count.keys(), train_null_count.values()]).T df_train.rename(columns={0: 'FeatureName', 1: 'NullCountTrain'}, inplace=True) df_train test_null_count = test_df.isna().sum().to_dict() df_test = pd.DataFrame([test_null_count.keys(), test_null_count.values()]).T df_test.rename(columns={0: 'FeatureName', 1: 'NullCountTest'}, inplace=True) df_test merged_dataset_null_counts = df_train.merge(df_test, how='outer').dropna() merged_dataset_null_counts
code
105197461/cell_4
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/train.csv') test_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/test.csv') sample_submission_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/sample_submission.csv') train_df.head(n=10)
code
105197461/cell_34
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/train.csv') test_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/test.csv') sample_submission_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/sample_submission.csv') train_df.dtypes test_df.dtypes train_df.columns test_df.columns train_null_count = train_df.isna().sum().to_dict() df_train = pd.DataFrame([train_null_count.keys(), train_null_count.values()]).T df_train.rename(columns={0: 'FeatureName', 1: 'NullCountTrain'}, inplace=True) df_train test_null_count = test_df.isna().sum().to_dict() df_test = pd.DataFrame([test_null_count.keys(), test_null_count.values()]).T df_test.rename(columns={0: 'FeatureName', 1: 'NullCountTest'}, inplace=True) df_test object_columns = list(train_df.select_dtypes(include=['object']).columns) numeric_columns = [item for item in train_df.columns if item not in object_columns + ['failure']] (train_df[object_columns].dtypes, test_df[numeric_columns].dtypes)
code
105197461/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/train.csv') test_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/test.csv') sample_submission_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/sample_submission.csv') train_df.dtypes test_df.dtypes train_df.columns test_df.columns train_null_count = train_df.isna().sum().to_dict() df_train = pd.DataFrame([train_null_count.keys(), train_null_count.values()]).T df_train.rename(columns={0: 'FeatureName', 1: 'NullCountTrain'}, inplace=True) df_train test_null_count = test_df.isna().sum().to_dict() df_test = pd.DataFrame([test_null_count.keys(), test_null_count.values()]).T df_test.rename(columns={0: 'FeatureName', 1: 'NullCountTest'}, inplace=True) df_test
code
105197461/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/train.csv') test_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/test.csv') sample_submission_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/sample_submission.csv') train_df.dtypes test_df.dtypes train_df.columns test_df.columns print(f'Trainin data percentage: {train_df.shape[0] / (train_df.shape[0] + test_df.shape[0])}') print(f'Test data percentage: {test_df.shape[0] / (train_df.shape[0] + test_df.shape[0])}')
code
105197461/cell_29
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/train.csv') test_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/test.csv') sample_submission_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/sample_submission.csv') train_df.dtypes test_df.dtypes train_df.columns test_df.columns train_null_count = train_df.isna().sum().to_dict() df_train = pd.DataFrame([train_null_count.keys(), train_null_count.values()]).T df_train.rename(columns={0: 'FeatureName', 1: 'NullCountTrain'}, inplace=True) df_train test_null_count = test_df.isna().sum().to_dict() df_test = pd.DataFrame([test_null_count.keys(), test_null_count.values()]).T df_test.rename(columns={0: 'FeatureName', 1: 'NullCountTest'}, inplace=True) df_test merged_dataset_null_counts = df_train.merge(df_test, how='outer').dropna() merged_dataset_null_counts df_train_temp = df_train.copy().rename(columns={'NullCountTrain': 'NullCount'}) df_train_temp['dataset'] = 'train' df_train_temp = df_train_temp[df_train_temp['FeatureName'] != 'failure'] df_test_temp = df_test.copy().rename(columns={'NullCountTest': 'NullCount'}) df_test_temp['dataset'] = 'test' df_temp = pd.concat([df_train_temp, df_test_temp], axis=0) import seaborn as sns sns.set(rc={'figure.figsize': (20, 4)}) sns.set_theme(style='whitegrid') ax = sns.barplot(x='FeatureName', y='NullCount', hue='dataset', data=df_temp[df_temp['NullCount'] != 0]) ax.set_xticklabels(ax.get_xticklabels(), rotation=45, horizontalalignment='right')
code
105197461/cell_41
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/train.csv') test_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/test.csv') sample_submission_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/sample_submission.csv') train_df.dtypes test_df.dtypes train_df.columns test_df.columns train_null_count = train_df.isna().sum().to_dict() df_train = pd.DataFrame([train_null_count.keys(), train_null_count.values()]).T df_train.rename(columns={0: 'FeatureName', 1: 'NullCountTrain'}, inplace=True) df_train test_null_count = test_df.isna().sum().to_dict() df_test = pd.DataFrame([test_null_count.keys(), test_null_count.values()]).T df_test.rename(columns={0: 'FeatureName', 1: 'NullCountTest'}, inplace=True) df_test merged_dataset_null_counts = df_train.merge(df_test, how='outer').dropna() merged_dataset_null_counts df_train_temp = df_train.copy().rename(columns={'NullCountTrain': 'NullCount'}) df_train_temp['dataset'] = 'train' df_train_temp = df_train_temp[df_train_temp['FeatureName'] != 'failure'] df_test_temp = df_test.copy().rename(columns={'NullCountTest': 'NullCount'}) df_test_temp['dataset'] = 'test' df_temp = pd.concat([df_train_temp, df_test_temp], axis=0) object_columns = list(train_df.select_dtypes(include=['object']).columns) numeric_columns = [item for item in train_df.columns if item not in object_columns + ['failure']] columns_with_not_null_values = [col for col in train_df.notnull().columns if col != 'failure'] df_tmp = pd.DataFrame(train_df.isna().any(), columns=['isnan']) NaN_columns = list(df_tmp[df_tmp['isnan'] == True].T.columns) del df_tmp label_column = 'failure' def null_value_handling(df, columns, train=True, mean_values=None): if train: df[columns].fillna(pd.DataFrame(df[columns].mean()), axis='columns', inplace=True) return (df[columns], df[columns].mean()) elif train == False and mean_values is not None: return (df[columns].fillna(pd.DataFrame(mean_values), axis='columns'), None) else: raise 'Inputs are not correct!' df_tmp = pd.DataFrame(train_df.isna().any(), columns=['isnan']) train_df[NaN_columns], mean_values = null_value_handling(df=train_df, columns=NaN_columns, train=True) test_df[NaN_columns], _ = null_value_handling(df=test_df, columns=NaN_columns, train=False, mean_values=mean_values)
code
105197461/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/train.csv') test_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/test.csv') sample_submission_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/sample_submission.csv') train_df.dtypes
code
105197461/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105197461/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/train.csv') test_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/test.csv') sample_submission_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/sample_submission.csv') train_df.describe()
code
105197461/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/train.csv') test_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/test.csv') sample_submission_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/sample_submission.csv') train_df.dtypes test_df.dtypes train_df.columns test_df.columns print(f'Train shape: {train_df.shape}') print(f'Test shape: {test_df.shape}')
code
105197461/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/train.csv') test_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/test.csv') sample_submission_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/sample_submission.csv') test_df.dtypes test_df.columns
code
105197461/cell_43
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/train.csv') test_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/test.csv') sample_submission_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/sample_submission.csv') train_df.dtypes test_df.dtypes train_df.columns test_df.columns train_null_count = train_df.isna().sum().to_dict() df_train = pd.DataFrame([train_null_count.keys(), train_null_count.values()]).T df_train.rename(columns={0: 'FeatureName', 1: 'NullCountTrain'}, inplace=True) df_train test_null_count = test_df.isna().sum().to_dict() df_test = pd.DataFrame([test_null_count.keys(), test_null_count.values()]).T df_test.rename(columns={0: 'FeatureName', 1: 'NullCountTest'}, inplace=True) df_test merged_dataset_null_counts = df_train.merge(df_test, how='outer').dropna() merged_dataset_null_counts df_train_temp = df_train.copy().rename(columns={'NullCountTrain': 'NullCount'}) df_train_temp['dataset'] = 'train' df_train_temp = df_train_temp[df_train_temp['FeatureName'] != 'failure'] df_test_temp = df_test.copy().rename(columns={'NullCountTest': 'NullCount'}) df_test_temp['dataset'] = 'test' df_temp = pd.concat([df_train_temp, df_test_temp], axis=0) object_columns = list(train_df.select_dtypes(include=['object']).columns) numeric_columns = [item for item in train_df.columns if item not in object_columns + ['failure']] columns_with_not_null_values = [col for col in train_df.notnull().columns if col != 'failure'] df_tmp = pd.DataFrame(train_df.isna().any(), columns=['isnan']) NaN_columns = list(df_tmp[df_tmp['isnan'] == True].T.columns) del df_tmp label_column = 'failure' def null_value_handling(df, columns, train=True, mean_values=None): if train: df[columns].fillna(pd.DataFrame(df[columns].mean()), axis='columns', inplace=True) return (df[columns], df[columns].mean()) elif train == False and mean_values is not None: return (df[columns].fillna(pd.DataFrame(mean_values), axis='columns'), None) else: raise 'Inputs are not correct!' df_tmp = pd.DataFrame(train_df.isna().any(), columns=['isnan']) df_tmp = pd.DataFrame(train_df.isna().any(), columns=['isnan']) NaN_columns = list(df_tmp[df_tmp['isnan'] == True].T.columns) del df_tmp print(f'Train - Colums with NaN values -> {NaN_columns}') df_tmp = pd.DataFrame(test_df.isna().any(), columns=['isnan']) NaN_columns = list(df_tmp[df_tmp['isnan'] == True].T.columns) del df_tmp print(f'Test - Colums with NaN values -> {NaN_columns}')
code
105197461/cell_14
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/train.csv') test_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/test.csv') sample_submission_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/sample_submission.csv') train_df.dtypes train_df.columns
code
105197461/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/train.csv') test_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/test.csv') sample_submission_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/sample_submission.csv') train_df.dtypes test_df.dtypes train_df.columns test_df.columns train_null_count = train_df.isna().sum().to_dict() df_train = pd.DataFrame([train_null_count.keys(), train_null_count.values()]).T df_train.rename(columns={0: 'FeatureName', 1: 'NullCountTrain'}, inplace=True) df_train
code
105197461/cell_37
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/train.csv') test_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/test.csv') sample_submission_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/sample_submission.csv') train_df.dtypes test_df.dtypes train_df.columns test_df.columns train_null_count = train_df.isna().sum().to_dict() df_train = pd.DataFrame([train_null_count.keys(), train_null_count.values()]).T df_train.rename(columns={0: 'FeatureName', 1: 'NullCountTrain'}, inplace=True) df_train test_null_count = test_df.isna().sum().to_dict() df_test = pd.DataFrame([test_null_count.keys(), test_null_count.values()]).T df_test.rename(columns={0: 'FeatureName', 1: 'NullCountTest'}, inplace=True) df_test merged_dataset_null_counts = df_train.merge(df_test, how='outer').dropna() merged_dataset_null_counts df_train_temp = df_train.copy().rename(columns={'NullCountTrain': 'NullCount'}) df_train_temp['dataset'] = 'train' df_train_temp = df_train_temp[df_train_temp['FeatureName'] != 'failure'] df_test_temp = df_test.copy().rename(columns={'NullCountTest': 'NullCount'}) df_test_temp['dataset'] = 'test' df_temp = pd.concat([df_train_temp, df_test_temp], axis=0) object_columns = list(train_df.select_dtypes(include=['object']).columns) numeric_columns = [item for item in train_df.columns if item not in object_columns + ['failure']] columns_with_not_null_values = [col for col in train_df.notnull().columns if col != 'failure'] df_tmp = pd.DataFrame(train_df.isna().any(), columns=['isnan']) NaN_columns = list(df_tmp[df_tmp['isnan'] == True].T.columns) del df_tmp label_column = 'failure' print(f'Colums -> {columns_with_not_null_values}\nLabel Column -> {label_column}\n NaN Columns -> {NaN_columns}')
code
105197461/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/train.csv') test_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/test.csv') sample_submission_df = pd.read_csv('/kaggle/input/tabular-playground-series-aug-2022/sample_submission.csv') test_df.dtypes
code
105204825/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_comp = pd.read_csv('../input/big-data-derby-2022/nyra_2019_complete.csv') df_race = pd.read_csv('../input/big-data-derby-2022/nyra_race_table.csv') df_stsrt = pd.read_csv('../input/big-data-derby-2022/nyra_start_table.csv') df_track = pd.read_csv('../input/big-data-derby-2022/nyra_tracking_table.csv') df_race.head(2)
code
105204825/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
df_tracj.head(2)
code
105204825/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_comp = pd.read_csv('../input/big-data-derby-2022/nyra_2019_complete.csv') df_race = pd.read_csv('../input/big-data-derby-2022/nyra_race_table.csv') df_stsrt = pd.read_csv('../input/big-data-derby-2022/nyra_start_table.csv') df_track = pd.read_csv('../input/big-data-derby-2022/nyra_tracking_table.csv')
code
105204825/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105204825/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_comp = pd.read_csv('../input/big-data-derby-2022/nyra_2019_complete.csv') df_race = pd.read_csv('../input/big-data-derby-2022/nyra_race_table.csv') df_stsrt = pd.read_csv('../input/big-data-derby-2022/nyra_start_table.csv') df_track = pd.read_csv('../input/big-data-derby-2022/nyra_tracking_table.csv') df_comp.head(2)
code
105204825/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_comp = pd.read_csv('../input/big-data-derby-2022/nyra_2019_complete.csv') df_race = pd.read_csv('../input/big-data-derby-2022/nyra_race_table.csv') df_stsrt = pd.read_csv('../input/big-data-derby-2022/nyra_start_table.csv') df_track = pd.read_csv('../input/big-data-derby-2022/nyra_tracking_table.csv') df_stsrt.head(2)
code
1005892/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') train_df.info()
code
1005892/cell_23
[ "text_plain_output_1.png" ]
from sklearn.linear_model import SGDClassifier import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') model_cols = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Cabin', 'Embarked'] train_x = pd.get_dummies(train_df[model_cols], columns=['Pclass', 'Sex', 'SibSp', 'Cabin', 'Embarked']) train_y = train_df['Survived'] from sklearn.linear_model import SGDClassifier clf = SGDClassifier(loss='log') clf.fit(train_x, train_y) test_df = pd.read_csv('../input/test.csv') test_x = pd.get_dummies(test_df[model_cols], columns=['Pclass', 'Sex', 'SibSp', 'Cabin', 'Embarked']) test_x['Age'].fillna(train_x['Age'].median(), inplace=True) test_x['Fare'].fillna(train_x['Fare'].median(), inplace=True) train_cols = train_x.columns test_cols_all = test_x.columns test_cols = [x for x in train_cols if x in test_cols_all] test_xx = test_x[test_cols] lc = len(train_x.columns) j = 0 for i in range(lc): if train_cols[i] == test_cols[j]: j += 1 continue else: test_xx.insert(i, train_cols[i], 0) test_xx.columns[1:].append(pd.Index(['Age'])) def cmp(a, b): return (a > b) - (a < b) cmp(test_xx.columns, train_x.columns) train_x.columns test_pred = clf.predict_proba(test_xx) feat_coef = list(zip(train_x.columns, clf.coef_[0])) feat_coef.sort(key=lambda x: -x[1]) train_x.columns[6]
code
1005892/cell_20
[ "text_html_output_1.png" ]
from sklearn.linear_model import SGDClassifier import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') model_cols = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Cabin', 'Embarked'] train_x = pd.get_dummies(train_df[model_cols], columns=['Pclass', 'Sex', 'SibSp', 'Cabin', 'Embarked']) train_y = train_df['Survived'] from sklearn.linear_model import SGDClassifier clf = SGDClassifier(loss='log') clf.fit(train_x, train_y) test_df = pd.read_csv('../input/test.csv') test_x = pd.get_dummies(test_df[model_cols], columns=['Pclass', 'Sex', 'SibSp', 'Cabin', 'Embarked']) test_x['Age'].fillna(train_x['Age'].median(), inplace=True) test_x['Fare'].fillna(train_x['Fare'].median(), inplace=True) train_cols = train_x.columns test_cols_all = test_x.columns test_cols = [x for x in train_cols if x in test_cols_all] test_xx = test_x[test_cols] lc = len(train_x.columns) j = 0 for i in range(lc): if train_cols[i] == test_cols[j]: j += 1 continue else: test_xx.insert(i, train_cols[i], 0) test_xx.columns[1:].append(pd.Index(['Age'])) def cmp(a, b): return (a > b) - (a < b) cmp(test_xx.columns, train_x.columns) test_pred = clf.predict_proba(test_xx) test_pred
code
1005892/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
1005892/cell_11
[ "text_plain_output_1.png" ]
from sklearn.linear_model import SGDClassifier import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') model_cols = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Cabin', 'Embarked'] train_x = pd.get_dummies(train_df[model_cols], columns=['Pclass', 'Sex', 'SibSp', 'Cabin', 'Embarked']) train_y = train_df['Survived'] from sklearn.linear_model import SGDClassifier clf = SGDClassifier(loss='log') clf.fit(train_x, train_y)
code
1005892/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') model_cols = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Cabin', 'Embarked'] train_x = pd.get_dummies(train_df[model_cols], columns=['Pclass', 'Sex', 'SibSp', 'Cabin', 'Embarked']) train_y = train_df['Survived'] test_df = pd.read_csv('../input/test.csv') test_x = pd.get_dummies(test_df[model_cols], columns=['Pclass', 'Sex', 'SibSp', 'Cabin', 'Embarked']) test_x['Age'].fillna(train_x['Age'].median(), inplace=True) test_x['Fare'].fillna(train_x['Fare'].median(), inplace=True) train_cols = train_x.columns test_cols_all = test_x.columns test_cols = [x for x in train_cols if x in test_cols_all] test_xx = test_x[test_cols] lc = len(train_x.columns) j = 0 for i in range(lc): if train_cols[i] == test_cols[j]: j += 1 continue else: test_xx.insert(i, train_cols[i], 0) test_xx.columns[1:].append(pd.Index(['Age'])) def cmp(a, b): return (a > b) - (a < b) cmp(test_xx.columns, train_x.columns) test_xx
code
1005892/cell_18
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import SGDClassifier import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') model_cols = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Cabin', 'Embarked'] train_x = pd.get_dummies(train_df[model_cols], columns=['Pclass', 'Sex', 'SibSp', 'Cabin', 'Embarked']) train_y = train_df['Survived'] from sklearn.linear_model import SGDClassifier clf = SGDClassifier(loss='log') clf.fit(train_x, train_y) test_df = pd.read_csv('../input/test.csv') test_x = pd.get_dummies(test_df[model_cols], columns=['Pclass', 'Sex', 'SibSp', 'Cabin', 'Embarked']) test_x['Age'].fillna(train_x['Age'].median(), inplace=True) test_x['Fare'].fillna(train_x['Fare'].median(), inplace=True) train_cols = train_x.columns test_cols_all = test_x.columns test_cols = [x for x in train_cols if x in test_cols_all] test_xx = test_x[test_cols] lc = len(train_x.columns) j = 0 for i in range(lc): if train_cols[i] == test_cols[j]: j += 1 continue else: test_xx.insert(i, train_cols[i], 0) test_xx.columns[1:].append(pd.Index(['Age'])) def cmp(a, b): return (a > b) - (a < b) cmp(test_xx.columns, train_x.columns) test_pred = clf.predict_proba(test_xx)
code
1005892/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') model_cols = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Cabin', 'Embarked'] train_x = pd.get_dummies(train_df[model_cols], columns=['Pclass', 'Sex', 'SibSp', 'Cabin', 'Embarked']) train_y = train_df['Survived'] test_df = pd.read_csv('../input/test.csv') test_x = pd.get_dummies(test_df[model_cols], columns=['Pclass', 'Sex', 'SibSp', 'Cabin', 'Embarked']) test_x['Age'].fillna(train_x['Age'].median(), inplace=True) test_x['Fare'].fillna(train_x['Fare'].median(), inplace=True) train_cols = train_x.columns test_cols_all = test_x.columns test_cols = [x for x in train_cols if x in test_cols_all] test_xx = test_x[test_cols] lc = len(train_x.columns) j = 0 for i in range(lc): if train_cols[i] == test_cols[j]: j += 1 continue else: test_xx.insert(i, train_cols[i], 0) test_xx.columns[1:].append(pd.Index(['Age']))
code
1005892/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') model_cols = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Cabin', 'Embarked'] train_x = pd.get_dummies(train_df[model_cols], columns=['Pclass', 'Sex', 'SibSp', 'Cabin', 'Embarked']) train_y = train_df['Survived'] test_df = pd.read_csv('../input/test.csv') test_x = pd.get_dummies(test_df[model_cols], columns=['Pclass', 'Sex', 'SibSp', 'Cabin', 'Embarked']) test_x['Age'].fillna(train_x['Age'].median(), inplace=True) test_x['Fare'].fillna(train_x['Fare'].median(), inplace=True) train_cols = train_x.columns test_cols_all = test_x.columns test_cols = [x for x in train_cols if x in test_cols_all] test_xx = test_x[test_cols] lc = len(train_x.columns) j = 0 for i in range(lc): if train_cols[i] == test_cols[j]: j += 1 continue else: test_xx.insert(i, train_cols[i], 0) test_xx.columns[1:].append(pd.Index(['Age'])) def cmp(a, b): return (a > b) - (a < b) cmp(test_xx.columns, train_x.columns)
code
1005892/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') model_cols = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Cabin', 'Embarked'] train_x = pd.get_dummies(train_df[model_cols], columns=['Pclass', 'Sex', 'SibSp', 'Cabin', 'Embarked']) train_y = train_df['Survived'] test_df = pd.read_csv('../input/test.csv') test_x = pd.get_dummies(test_df[model_cols], columns=['Pclass', 'Sex', 'SibSp', 'Cabin', 'Embarked']) test_x['Age'].fillna(train_x['Age'].median(), inplace=True) test_x['Fare'].fillna(train_x['Fare'].median(), inplace=True) train_cols = train_x.columns test_cols_all = test_x.columns test_cols = [x for x in train_cols if x in test_cols_all] test_xx = test_x[test_cols] lc = len(train_x.columns) j = 0 for i in range(lc): if train_cols[i] == test_cols[j]: j += 1 continue else: test_xx.insert(i, train_cols[i], 0) test_xx.columns[1:].append(pd.Index(['Age'])) def cmp(a, b): return (a > b) - (a < b) cmp(test_xx.columns, train_x.columns) train_x.columns
code
1005892/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') train_df[['Sex', 'Survived']].groupby(['Sex', 'Survived']).size()
code
1005892/cell_22
[ "text_plain_output_1.png" ]
from sklearn.linear_model import SGDClassifier import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('../input/train.csv') model_cols = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Cabin', 'Embarked'] train_x = pd.get_dummies(train_df[model_cols], columns=['Pclass', 'Sex', 'SibSp', 'Cabin', 'Embarked']) train_y = train_df['Survived'] from sklearn.linear_model import SGDClassifier clf = SGDClassifier(loss='log') clf.fit(train_x, train_y) test_df = pd.read_csv('../input/test.csv') test_x = pd.get_dummies(test_df[model_cols], columns=['Pclass', 'Sex', 'SibSp', 'Cabin', 'Embarked']) test_x['Age'].fillna(train_x['Age'].median(), inplace=True) test_x['Fare'].fillna(train_x['Fare'].median(), inplace=True) train_cols = train_x.columns test_cols_all = test_x.columns test_cols = [x for x in train_cols if x in test_cols_all] test_xx = test_x[test_cols] lc = len(train_x.columns) j = 0 for i in range(lc): if train_cols[i] == test_cols[j]: j += 1 continue else: test_xx.insert(i, train_cols[i], 0) test_xx.columns[1:].append(pd.Index(['Age'])) def cmp(a, b): return (a > b) - (a < b) cmp(test_xx.columns, train_x.columns) train_x.columns test_pred = clf.predict_proba(test_xx) feat_coef = list(zip(train_x.columns, clf.coef_[0])) feat_coef.sort(key=lambda x: -x[1]) feat_coef
code
106202249/cell_1
[ "text_plain_output_1.png" ]
!pip install -q timm !pip install -q einops
code
129021628/cell_21
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import warnings warnings.simplefilter('ignore') plt.style.use('seaborn') Data = pd.read_csv('/kaggle/input/country-dataset/Country_Dataset.csv') df = pd.DataFrame(Data) df # Noise detection df1 = pd.DataFrame(Data, columns = ['child_mort','exports','health','imports','income','inflation','life_expec','total_fer','gdpp']) columns = ['child_mort','exports','health','imports','income','inflation','life_expec','total_fer','gdpp'] plt.figure(figsize=(15,20)) for i, col in enumerate (df1.columns): ax= plt.subplot(5,2,i+1) sns.boxplot(x= columns[i], data=df1, color='magenta' ) plt.title(df1.columns[i]) plt.tight_layout() plt.show() df1 = pd.DataFrame(Data, columns=['child_mort', 'exports', 'health', 'imports', 'income', 'inflation', 'life_expec', 'total_fer', 'gdpp']) i = 1 for col in df1.columns: i = i + 1 plt.tight_layout() df1 = Data.drop(['Country'], axis=1) df1.head()
code
129021628/cell_13
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Data = pd.read_csv('/kaggle/input/country-dataset/Country_Dataset.csv') df = pd.DataFrame(Data) df df.describe().T is_nan = df.isna().sum().to_frame(name='Count of nan') is_nan
code
129021628/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Data = pd.read_csv('/kaggle/input/country-dataset/Country_Dataset.csv') df = pd.DataFrame(Data) df
code
129021628/cell_25
[ "text_html_output_10.png", "text_html_output_4.png", "text_html_output_6.png", "text_html_output_2.png", "text_html_output_5.png", "text_html_output_9.png", "text_html_output_8.png", "text_html_output_3.png", "text_html_output_7.png" ]
pip install kneed
code
129021628/cell_20
[ "image_output_1.png" ]
from termcolor import colored import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import seaborn as sns import warnings import warnings warnings.simplefilter('ignore') plt.style.use('seaborn') Data = pd.read_csv('/kaggle/input/country-dataset/Country_Dataset.csv') df = pd.DataFrame(Data) df df.describe().T is_nan = df.isna().sum().to_frame(name='Count of nan') is_nan # Noise detection df1 = pd.DataFrame(Data, columns = ['child_mort','exports','health','imports','income','inflation','life_expec','total_fer','gdpp']) columns = ['child_mort','exports','health','imports','income','inflation','life_expec','total_fer','gdpp'] plt.figure(figsize=(15,20)) for i, col in enumerate (df1.columns): ax= plt.subplot(5,2,i+1) sns.boxplot(x= columns[i], data=df1, color='magenta' ) plt.title(df1.columns[i]) plt.tight_layout() plt.show() df1 = pd.DataFrame(Data, columns=['child_mort', 'exports', 'health', 'imports', 'income', 'inflation', 'life_expec', 'total_fer', 'gdpp']) i = 1 for col in df1.columns: i = i + 1 for i in df.drop('Country', axis=1).columns: fig = px.choropleth(df, locationmode='country names', locations='Country', title=i + ' per Country in the World', color=i, color_continuous_scale='Greens') fig.update_geos(fitbounds='locations', visible=True) for i in df.drop('Country', axis=1).columns: fig = px.choropleth(df, locationmode='country names', locations='Country', color=i, title=i + ' per country in Africa continent', scope='africa', color_continuous_scale='YlOrBr') fig.update_geos(fitbounds='locations', visible=True) fig.show(engine='kaleido')
code
129021628/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from termcolor import colored import plotly.express as px import kaleido from sklearn.preprocessing import StandardScaler import matplotlib.image as mpimg from sklearn.cluster import KMeans from sklearn.cluster import DBSCAN from sklearn.metrics import silhouette_score
code
129021628/cell_26
[ "text_html_output_4.png", "text_html_output_6.png", "text_html_output_2.png", "text_html_output_5.png", "text_html_output_9.png", "text_html_output_1.png", "text_html_output_8.png", "text_html_output_3.png", "text_html_output_7.png" ]
from kneed import KneeLocator from sklearn.cluster import KMeans from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import warnings warnings.simplefilter('ignore') plt.style.use('seaborn') Data = pd.read_csv('/kaggle/input/country-dataset/Country_Dataset.csv') df = pd.DataFrame(Data) df # Noise detection df1 = pd.DataFrame(Data, columns = ['child_mort','exports','health','imports','income','inflation','life_expec','total_fer','gdpp']) columns = ['child_mort','exports','health','imports','income','inflation','life_expec','total_fer','gdpp'] plt.figure(figsize=(15,20)) for i, col in enumerate (df1.columns): ax= plt.subplot(5,2,i+1) sns.boxplot(x= columns[i], data=df1, color='magenta' ) plt.title(df1.columns[i]) plt.tight_layout() plt.show() df1 = pd.DataFrame(Data, columns=['child_mort', 'exports', 'health', 'imports', 'income', 'inflation', 'life_expec', 'total_fer', 'gdpp']) i = 1 for col in df1.columns: i = i + 1 plt.tight_layout() df1 = Data.drop(['Country'], axis=1) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_features = scaler.fit_transform(df1) from sklearn.cluster import KMeans List = [] for k in range(1, 11): kmeans = KMeans(n_clusters=k, init='random', max_iter=300, random_state=1, n_init=10) kmeans.fit(scaled_features) List.append(kmeans.inertia_) from kneed import KneeLocator kl = KneeLocator(range(1, 11), List, curve='convex', direction='decreasing') kl.elbow plt.style.use('fivethirtyeight') plt.plot(range(1, 11), List) plt.xticks(range(1, 11)) plt.xlabel('Number of Clusters', labelpad=20) plt.ylabel('Interia') plt.axvline(x=kl.elbow, color='b', label='axvline - full height', ls='--') plt.show()
code
129021628/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Data = pd.read_csv('/kaggle/input/country-dataset/Country_Dataset.csv') df = pd.DataFrame(Data) df df.describe().T df.info()
code
129021628/cell_19
[ "image_output_1.png" ]
from termcolor import colored import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.express as px import seaborn as sns import warnings import warnings warnings.simplefilter('ignore') plt.style.use('seaborn') Data = pd.read_csv('/kaggle/input/country-dataset/Country_Dataset.csv') df = pd.DataFrame(Data) df df.describe().T is_nan = df.isna().sum().to_frame(name='Count of nan') is_nan # Noise detection df1 = pd.DataFrame(Data, columns = ['child_mort','exports','health','imports','income','inflation','life_expec','total_fer','gdpp']) columns = ['child_mort','exports','health','imports','income','inflation','life_expec','total_fer','gdpp'] plt.figure(figsize=(15,20)) for i, col in enumerate (df1.columns): ax= plt.subplot(5,2,i+1) sns.boxplot(x= columns[i], data=df1, color='magenta' ) plt.title(df1.columns[i]) plt.tight_layout() plt.show() df1 = pd.DataFrame(Data, columns=['child_mort', 'exports', 'health', 'imports', 'income', 'inflation', 'life_expec', 'total_fer', 'gdpp']) i = 1 for col in df1.columns: i = i + 1 for i in df.drop('Country', axis=1).columns: fig = px.choropleth(df, locationmode='country names', locations='Country', title=i + ' per Country in the World', color=i, color_continuous_scale='Greens') fig.update_geos(fitbounds='locations', visible=True) fig.show(engine='kaleido')
code
129021628/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
129021628/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import warnings warnings.simplefilter('ignore') plt.style.use('seaborn') Data = pd.read_csv('/kaggle/input/country-dataset/Country_Dataset.csv') df = pd.DataFrame(Data) df # Noise detection df1 = pd.DataFrame(Data, columns = ['child_mort','exports','health','imports','income','inflation','life_expec','total_fer','gdpp']) columns = ['child_mort','exports','health','imports','income','inflation','life_expec','total_fer','gdpp'] plt.figure(figsize=(15,20)) for i, col in enumerate (df1.columns): ax= plt.subplot(5,2,i+1) sns.boxplot(x= columns[i], data=df1, color='magenta' ) plt.title(df1.columns[i]) plt.tight_layout() plt.show() df1 = pd.DataFrame(Data, columns=['child_mort', 'exports', 'health', 'imports', 'income', 'inflation', 'life_expec', 'total_fer', 'gdpp']) i = 1 for col in df1.columns: i = i + 1 plt.figure(figsize=(10, 5), dpi=100) sns.heatmap(df1.corr(), annot=True, cmap='YlOrBr') plt.suptitle(f'Correlation Between Features') plt.tight_layout() plt.show()
code
129021628/cell_15
[ "text_html_output_1.png" ]
from termcolor import colored import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Data = pd.read_csv('/kaggle/input/country-dataset/Country_Dataset.csv') df = pd.DataFrame(Data) df df.describe().T is_nan = df.isna().sum().to_frame(name='Count of nan') is_nan print(colored(f'Number of dupilcated data: {df.duplicated().sum()}'))
code
129021628/cell_16
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import warnings warnings.simplefilter('ignore') plt.style.use('seaborn') Data = pd.read_csv('/kaggle/input/country-dataset/Country_Dataset.csv') df = pd.DataFrame(Data) df df1 = pd.DataFrame(Data, columns=['child_mort', 'exports', 'health', 'imports', 'income', 'inflation', 'life_expec', 'total_fer', 'gdpp']) columns = ['child_mort', 'exports', 'health', 'imports', 'income', 'inflation', 'life_expec', 'total_fer', 'gdpp'] plt.figure(figsize=(15, 20)) for i, col in enumerate(df1.columns): ax = plt.subplot(5, 2, i + 1) sns.boxplot(x=columns[i], data=df1, color='magenta') plt.title(df1.columns[i]) plt.tight_layout() plt.show()
code
129021628/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import warnings warnings.simplefilter('ignore') plt.style.use('seaborn') Data = pd.read_csv('/kaggle/input/country-dataset/Country_Dataset.csv') df = pd.DataFrame(Data) df # Noise detection df1 = pd.DataFrame(Data, columns = ['child_mort','exports','health','imports','income','inflation','life_expec','total_fer','gdpp']) columns = ['child_mort','exports','health','imports','income','inflation','life_expec','total_fer','gdpp'] plt.figure(figsize=(15,20)) for i, col in enumerate (df1.columns): ax= plt.subplot(5,2,i+1) sns.boxplot(x= columns[i], data=df1, color='magenta' ) plt.title(df1.columns[i]) plt.tight_layout() plt.show() df1 = pd.DataFrame(Data, columns=['child_mort', 'exports', 'health', 'imports', 'income', 'inflation', 'life_expec', 'total_fer', 'gdpp']) i = 1 plt.figure(figsize=(20, 40)) for col in df1.columns: plt.subplot(5, 2, i) sns.distplot(df1[col], hist=True, hist_kws={'edgecolor': 'w', 'linewidth': 3}, kde_kws={'linewidth': 3}) sns.rugplot(df1[col], height=0.1, clip_on=False, color='red') i = i + 1 plt.show()
code
129021628/cell_14
[ "text_plain_output_1.png" ]
from termcolor import colored import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Data = pd.read_csv('/kaggle/input/country-dataset/Country_Dataset.csv') df = pd.DataFrame(Data) df df.describe().T is_nan = df.isna().sum().to_frame(name='Count of nan') is_nan print(colored(f'Number of dupilcated data: {df.duplicated().sum()}'))
code
129021628/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Data = pd.read_csv('/kaggle/input/country-dataset/Country_Dataset.csv') df = pd.DataFrame(Data) df df.describe().T
code
129021628/cell_27
[ "text_html_output_1.png" ]
from kneed import KneeLocator from sklearn.cluster import KMeans from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from sklearn.metrics import silhouette_score from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import warnings warnings.simplefilter('ignore') plt.style.use('seaborn') Data = pd.read_csv('/kaggle/input/country-dataset/Country_Dataset.csv') df = pd.DataFrame(Data) df # Noise detection df1 = pd.DataFrame(Data, columns = ['child_mort','exports','health','imports','income','inflation','life_expec','total_fer','gdpp']) columns = ['child_mort','exports','health','imports','income','inflation','life_expec','total_fer','gdpp'] plt.figure(figsize=(15,20)) for i, col in enumerate (df1.columns): ax= plt.subplot(5,2,i+1) sns.boxplot(x= columns[i], data=df1, color='magenta' ) plt.title(df1.columns[i]) plt.tight_layout() plt.show() df1 = pd.DataFrame(Data, columns=['child_mort', 'exports', 'health', 'imports', 'income', 'inflation', 'life_expec', 'total_fer', 'gdpp']) i = 1 for col in df1.columns: i = i + 1 plt.tight_layout() df1 = Data.drop(['Country'], axis=1) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_features = scaler.fit_transform(df1) from sklearn.cluster import KMeans List = [] for k in range(1, 11): kmeans = KMeans(n_clusters=k, init='random', max_iter=300, random_state=1, n_init=10) kmeans.fit(scaled_features) List.append(kmeans.inertia_) from kneed import KneeLocator kl = KneeLocator(range(1, 11), List, curve='convex', direction='decreasing') kl.elbow plt.style.use('fivethirtyeight') plt.xticks(range(1, 11)) from sklearn.metrics import silhouette_score silhouette_coefficients = [] for k in range(2, 11): kmeans = KMeans(n_clusters=k, init='random', random_state=1) kmeans.fit(scaled_features) score = silhouette_score(scaled_features, kmeans.labels_) silhouette_coefficients.append(score) plt.style.use('fivethirtyeight') plt.plot(range(2, 11), silhouette_coefficients) plt.xticks(range(2, 11)) plt.xlabel('Number of Clusters') plt.ylabel('silhouette coefficients') plt.show() print('max silhouette score:', max(silhouette_coefficients))
code
129021628/cell_12
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) Data = pd.read_csv('/kaggle/input/country-dataset/Country_Dataset.csv') df = pd.DataFrame(Data) df df.describe().T df.describe(include=['object'])
code
129021628/cell_5
[ "image_output_1.png" ]
pip install kaleido
code
16111583/cell_6
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import scipy.stats as st import unittest import numpy as np import scipy.stats as st import matplotlib.pyplot as plt import pandas as pd from collections import defaultdict import time import unittest t = unittest.TestCase() SPACE_DIMENSIONS = 2 class Points(np.ndarray): """ndarray sized (SPACE_DIMENSIONS,...) with named coordinates x,y""" @staticmethod def of(coords): p = np.asarray(coords).view(Points) assert p.shape[0] == SPACE_DIMENSIONS return p @property def x(self): return self[0] @property def y(self): return self[1] class Lines(np.ndarray): """ndarray shaped (3,...) with named line parameters a,b,c""" @staticmethod def of(abc): lp = np.asarray(abc).view(Lines) assert lp.shape[0] == 3 return lp @property def a(self): return self[0] @property def b(self): return self[1] @property def c(self): return self[2] def intersections(self, hyperplanes) -> Points: """ https://stackoverflow.com/a/20679579/2082707 answered Dec 19 '13 at 10:46 by rook Adapted for numpy matrix operations by Subota Intersection points of lines from the first set with hyperplanes from the second set. Currently only 2D sapce supported, e.g. the second lanes is lines, too. @hyperplanes parametrical equation coeffs. For 2D it is also Lines @return array of intersection coordinates as Points, sized: - SPACE_DIMENSIONS for intersection coordinates - n1 for the number of lines passed in L1 - n2 for the number of lines passed in L2 """ l1 = np.reshape(self, (*self.shape, 1)) l2 = hyperplanes d = l1.a * l2.b - l1.b * l2.a dx = l1.c * l2.b - l1.b * l2.c dy = l1.a * l2.c - l1.c * l2.a d[d == 0.0] = np.nan x = dx / d y = dy / d return Points.of((x, y)) class LineSegments(np.ndarray): """Wrapper around ndarray((2,SPACE_DIMENSIONS)) to access endPoint1, endPoint2 and coordinates x,y by names""" @staticmethod def of(point_coords): ls = np.asarray(point_coords).view(LineSegments) assert ls.shape[0] == 2 assert ls.shape[1] == SPACE_DIMENSIONS return ls @property def endPoint1(self): return Points.of(self[0]) @property def endPoint2(self): return Points.of(self[1]) @property def x(self): return self[:, 0] @property def y(self): return self[:, 1] def length(self) -> np.array: dif = self.endPoint1 - self.endPoint2 return np.sqrt(dif.x * dif.x + dif.y * dif.y).view(np.ndarray) def lines(self) -> Lines: """ https://stackoverflow.com/a/20679579/2082707 answered Dec 19 '13 at 10:46 by rook Adapted for numpy matrix operations by Subota Calculates the line equation Ay + Bx - C = 0, given two points on a line. Horizontal and vertical lines are Ok @return returns an array of Lines parameters sized: - 3 for the parameters A, B, and C - n for the number of lines calculated """ p1, p2 = (self.endPoint1, self.endPoint2) a = p1.y - p2.y b = p2.x - p1.x c = -(p1.x * p2.y - p2.x * p1.y) return Lines.of((a, b, c)) def intersections(self, other) -> Points: """ Returns intersection points for line sets, along with the true/false matrix for do intersections lie within the segments or not. @other LineSegments to find intersections with. Sized: - 2 for the endPoint1 and endPoint2 - SPACE_DIMENSIONS - n1 for the number of segments in the first set Generally speaking these must be hyper-planes in N-dimensional space @return a tuple with two elements 0. boolean matrix sized(n1,n2), True the intersection to fall within the segments, False otherwise. 1. intersection Points sized (SPACE_DIMENSIONS, n1, n2) """ s1, s2 = (self, other) l1, l2 = (self.lines(), other.lines()) il = l1.intersections(l2) s1 = s1.reshape((2, SPACE_DIMENSIONS, -1, 1)) s1p1, s1p2 = (s1.endPoint1, s1.endPoint2) s2p1, s2p2 = (s2.endPoint1, s2.endPoint2) ROUNDING_THRESHOLD = np.array(1e-10) which_intersect = (il.x <= np.maximum(s1p1.x, s1p2.x) + ROUNDING_THRESHOLD) & (il.x >= np.minimum(s1p1.x, s1p2.x) - ROUNDING_THRESHOLD) & (il.y <= np.maximum(s1p1.y, s1p2.y) + ROUNDING_THRESHOLD) & (il.y >= np.minimum(s1p1.y, s1p2.y) - ROUNDING_THRESHOLD) & (il.x <= np.maximum(s2p1.x, s2p2.x) + ROUNDING_THRESHOLD) & (il.x >= np.minimum(s2p1.x, s2p2.x) - ROUNDING_THRESHOLD) & (il.y <= np.maximum(s2p1.y, s2p2.y) + ROUNDING_THRESHOLD) & (il.y >= np.minimum(s2p1.y, s2p2.y) - ROUNDING_THRESHOLD) return (which_intersect, il) t.assertTrue(np.allclose(LineSegments.of([[[-1.0], [-1]], [[1], [1]]]).lines().flat, np.array([-2, 2, 0]))) t.assertTrue(np.allclose(LineSegments.of([[[0.0], [-1]], [[0], [1]]]).lines().flat, np.array([-2, 0, 0]))) t.assertTrue(np.allclose(LineSegments.of([[[3.0], [1]], [[-4], [1]]]).lines().flat, np.array([0, -7, -7]))) t.assertEqual(LineSegments.of([Points.of([0, 0]), Points.of([3, 4])]).length(), 5) def demo_intersect_lines(): seg1 = LineSegments.of(st.uniform.rvs(size=(2, SPACE_DIMENSIONS, 2), random_state=19)) seg2 = LineSegments.of(st.uniform.rvs(size=(2, SPACE_DIMENSIONS, 3), random_state=15) + 1) l1, l2 = (seg1.lines(), seg2.lines()) i = l1.intersections(l2) plt.plot(seg1.x, seg1.y, '-', c='green') plt.plot(seg2.x, seg2.y, '-', c='blue') plt.plot(i.x, i.y, '+', c='red', markersize=20) plt.title('Extended Line Intersections') plt.axis('off') def demo_intersect_segments(): seg1 = LineSegments.of(st.uniform.rvs(size=(2, SPACE_DIMENSIONS, 4), random_state=1)) seg2 = LineSegments.of(st.uniform.rvs(size=(2, SPACE_DIMENSIONS, 5), random_state=2)) plt.plot(seg1.x, seg1.y, '-', c='black') plt.plot(seg2.x, seg2.y, '-', c='lightgrey') w, i = seg1.intersections(seg2) plt.plot(i.x[w], i.y[w], '+', c='red', markersize=20) plt.title('Segment Intersections') plt.axis('off') f, ax = plt.subplots(ncols=2) f.set_size_inches(12, 4) plt.sca(ax[0]) demo_intersect_lines() plt.sca(ax[1]) demo_intersect_segments()
code