path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
130004668/cell_29 | [
"image_output_1.png"
] | from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.tree import DecisionTreeClassifier
param_grid = [{'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random']}]
grid = GridSearchCV(estimator=DecisionTreeClassifier(random_state=42), param_grid=param_grid, cv=5)
grid.fit(X_train, y_train) | code |
130004668/cell_26 | [
"application_vnd.jupyter.stderr_output_2.png",
"application_vnd.jupyter.stderr_output_4.png",
"text_plain_output_3.png",
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import StandardScaler, OrdinalEncoder
from tqdm import tqdm
import pandas as pd
df_reviews_raw = pd.read_csv('/kaggle/input/dataset-of-malicious-and-benign-webpages/Webpages_Classification_train_data.csv/Webpages_Classification_train_data.csv').drop(['Unnamed: 0'], axis=1)
df_reviews_raw.isna().sum()
df_reviews_raw.dtypes
df_reviews_untrimmed_sample = df_reviews_raw.groupby('label').apply(lambda x: x.sample(25000, random_state=42)).reset_index(drop=True)
df_reviews_trimmed = df_reviews_untrimmed_sample[df_reviews_untrimmed_sample.content.str.split().str.len().ge(60)]
df_reviews_sampled = df_reviews_trimmed.groupby('label').apply(lambda x: x.sample(2000, random_state=42)).reset_index(drop=True)
df_reviews = df_reviews_sampled.sample(frac=1, random_state=42).reset_index(drop=True)
df_reviews['geo_loc'] = OrdinalEncoder().fit_transform(df_reviews.geo_loc.values.reshape(-1, 1))
df_reviews['tld'] = OrdinalEncoder().fit_transform(df_reviews.tld.values.reshape(-1, 1))
df_reviews['who_is'] = OrdinalEncoder().fit_transform(df_reviews.who_is.values.reshape(-1, 1))
df_reviews['https'] = OrdinalEncoder().fit_transform(df_reviews.https.values.reshape(-1, 1))
df_reviews['label'] = OrdinalEncoder().fit_transform(df_reviews.label.values.reshape(-1, 1))
df_reviews['url'] = df_reviews.url.apply(lambda x: ' '.join(x.split('://')[1].strip('www.').replace('.', '/').split('/')))
tqdm.pandas()
stop = stopwords.words()
df_reviews.content = df_reviews.content.str.replace('[^\\w\\s]', '').str.lower()
df_reviews.content = df_reviews.content.progress_apply(lambda x: ' '.join([item for item in x.split() if item not in stop]))
df_reviews.url = df_reviews.url.str.replace('[^\\w\\s]', '').str.lower()
df_reviews.url = df_reviews.url.progress_apply(lambda x: ' '.join([item for item in x.split() if item not in stop]))
tfidf = TfidfVectorizer(min_df=5, max_df=0.95, max_features=8000, stop_words='english')
tfidf.fit(df_reviews.url)
url_tfidf = tfidf.transform(df_reviews.url)
tfidf.fit(df_reviews.content)
content_tfidf = tfidf.transform(df_reviews.content)
label_true = df_reviews[df_reviews['label'] == 1.0]
label_false = df_reviews[df_reviews['label'] == 0.0]
print(label_true.shape, label_false.shape, df_reviews.shape) | code |
130004668/cell_11 | [
"text_plain_output_1.png"
] | import pandas as pd
df_reviews_raw = pd.read_csv('/kaggle/input/dataset-of-malicious-and-benign-webpages/Webpages_Classification_train_data.csv/Webpages_Classification_train_data.csv').drop(['Unnamed: 0'], axis=1)
df_reviews_raw.isna().sum()
df_reviews_raw.dtypes
df_reviews_untrimmed_sample = df_reviews_raw.groupby('label').apply(lambda x: x.sample(25000, random_state=42)).reset_index(drop=True)
df_reviews_trimmed = df_reviews_untrimmed_sample[df_reviews_untrimmed_sample.content.str.split().str.len().ge(60)]
df_reviews_sampled = df_reviews_trimmed.groupby('label').apply(lambda x: x.sample(2000, random_state=42)).reset_index(drop=True)
df_reviews = df_reviews_sampled.sample(frac=1, random_state=42).reset_index(drop=True)
df_reviews.label.describe() | code |
130004668/cell_1 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import warnings
import nltk
import string
import re
import sklearn
import pandas as pd
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler, OrdinalEncoder
from sklearn.cluster import MiniBatchKMeans
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.pipeline import Pipeline
from scipy import stats
import tensorflow as tf
from tensorflow.keras.layers import Embedding, Conv1D, LSTM, Dense, GlobalMaxPooling1D
from tensorflow.keras.models import Sequential
from sklearn.model_selection import train_test_split
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning) | code |
130004668/cell_18 | [
"text_html_output_1.png"
] | from nltk.corpus import stopwords
from sklearn.preprocessing import StandardScaler, OrdinalEncoder
from tqdm import tqdm
import pandas as pd
df_reviews_raw = pd.read_csv('/kaggle/input/dataset-of-malicious-and-benign-webpages/Webpages_Classification_train_data.csv/Webpages_Classification_train_data.csv').drop(['Unnamed: 0'], axis=1)
df_reviews_raw.isna().sum()
df_reviews_raw.dtypes
df_reviews_untrimmed_sample = df_reviews_raw.groupby('label').apply(lambda x: x.sample(25000, random_state=42)).reset_index(drop=True)
df_reviews_trimmed = df_reviews_untrimmed_sample[df_reviews_untrimmed_sample.content.str.split().str.len().ge(60)]
df_reviews_sampled = df_reviews_trimmed.groupby('label').apply(lambda x: x.sample(2000, random_state=42)).reset_index(drop=True)
df_reviews = df_reviews_sampled.sample(frac=1, random_state=42).reset_index(drop=True)
df_reviews['geo_loc'] = OrdinalEncoder().fit_transform(df_reviews.geo_loc.values.reshape(-1, 1))
df_reviews['tld'] = OrdinalEncoder().fit_transform(df_reviews.tld.values.reshape(-1, 1))
df_reviews['who_is'] = OrdinalEncoder().fit_transform(df_reviews.who_is.values.reshape(-1, 1))
df_reviews['https'] = OrdinalEncoder().fit_transform(df_reviews.https.values.reshape(-1, 1))
df_reviews['label'] = OrdinalEncoder().fit_transform(df_reviews.label.values.reshape(-1, 1))
df_reviews['url'] = df_reviews.url.apply(lambda x: ' '.join(x.split('://')[1].strip('www.').replace('.', '/').split('/')))
print('Before Preprocessing:')
print(df_reviews.content.head())
tqdm.pandas()
stop = stopwords.words()
df_reviews.content = df_reviews.content.str.replace('[^\\w\\s]', '').str.lower()
df_reviews.content = df_reviews.content.progress_apply(lambda x: ' '.join([item for item in x.split() if item not in stop]))
df_reviews.url = df_reviews.url.str.replace('[^\\w\\s]', '').str.lower()
df_reviews.url = df_reviews.url.progress_apply(lambda x: ' '.join([item for item in x.split() if item not in stop]))
print('After Preprocessing:')
print(df_reviews.content.head()) | code |
130004668/cell_32 | [
"text_html_output_1.png"
] | from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.tree import DecisionTreeClassifier
param_grid = [{'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random']}]
grid = GridSearchCV(estimator=DecisionTreeClassifier(random_state=42), param_grid=param_grid, cv=5)
grid.fit(X_train, y_train)
grid.best_params_
grid.score(X_train, y_train)
grid.score(X_test, y_test) | code |
130004668/cell_16 | [
"text_plain_output_1.png"
] | from sklearn.preprocessing import StandardScaler, OrdinalEncoder
import pandas as pd
df_reviews_raw = pd.read_csv('/kaggle/input/dataset-of-malicious-and-benign-webpages/Webpages_Classification_train_data.csv/Webpages_Classification_train_data.csv').drop(['Unnamed: 0'], axis=1)
df_reviews_raw.isna().sum()
df_reviews_raw.dtypes
df_reviews_untrimmed_sample = df_reviews_raw.groupby('label').apply(lambda x: x.sample(25000, random_state=42)).reset_index(drop=True)
df_reviews_trimmed = df_reviews_untrimmed_sample[df_reviews_untrimmed_sample.content.str.split().str.len().ge(60)]
df_reviews_sampled = df_reviews_trimmed.groupby('label').apply(lambda x: x.sample(2000, random_state=42)).reset_index(drop=True)
df_reviews = df_reviews_sampled.sample(frac=1, random_state=42).reset_index(drop=True)
df_reviews['geo_loc'] = OrdinalEncoder().fit_transform(df_reviews.geo_loc.values.reshape(-1, 1))
df_reviews['tld'] = OrdinalEncoder().fit_transform(df_reviews.tld.values.reshape(-1, 1))
df_reviews['who_is'] = OrdinalEncoder().fit_transform(df_reviews.who_is.values.reshape(-1, 1))
df_reviews['https'] = OrdinalEncoder().fit_transform(df_reviews.https.values.reshape(-1, 1))
df_reviews['label'] = OrdinalEncoder().fit_transform(df_reviews.label.values.reshape(-1, 1))
df_reviews['url'] = df_reviews.url.apply(lambda x: ' '.join(x.split('://')[1].strip('www.').replace('.', '/').split('/')))
df_reviews.head() | code |
130004668/cell_35 | [
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler, OrdinalEncoder
from sklearn.tree import DecisionTreeClassifier
from tqdm import tqdm
import pandas as pd
df_reviews_raw = pd.read_csv('/kaggle/input/dataset-of-malicious-and-benign-webpages/Webpages_Classification_train_data.csv/Webpages_Classification_train_data.csv').drop(['Unnamed: 0'], axis=1)
df_reviews_raw.isna().sum()
df_reviews_raw.dtypes
df_reviews_untrimmed_sample = df_reviews_raw.groupby('label').apply(lambda x: x.sample(25000, random_state=42)).reset_index(drop=True)
df_reviews_trimmed = df_reviews_untrimmed_sample[df_reviews_untrimmed_sample.content.str.split().str.len().ge(60)]
df_reviews_sampled = df_reviews_trimmed.groupby('label').apply(lambda x: x.sample(2000, random_state=42)).reset_index(drop=True)
df_reviews = df_reviews_sampled.sample(frac=1, random_state=42).reset_index(drop=True)
df_reviews['geo_loc'] = OrdinalEncoder().fit_transform(df_reviews.geo_loc.values.reshape(-1, 1))
df_reviews['tld'] = OrdinalEncoder().fit_transform(df_reviews.tld.values.reshape(-1, 1))
df_reviews['who_is'] = OrdinalEncoder().fit_transform(df_reviews.who_is.values.reshape(-1, 1))
df_reviews['https'] = OrdinalEncoder().fit_transform(df_reviews.https.values.reshape(-1, 1))
df_reviews['label'] = OrdinalEncoder().fit_transform(df_reviews.label.values.reshape(-1, 1))
df_reviews['url'] = df_reviews.url.apply(lambda x: ' '.join(x.split('://')[1].strip('www.').replace('.', '/').split('/')))
tqdm.pandas()
stop = stopwords.words()
df_reviews.content = df_reviews.content.str.replace('[^\\w\\s]', '').str.lower()
df_reviews.content = df_reviews.content.progress_apply(lambda x: ' '.join([item for item in x.split() if item not in stop]))
df_reviews.url = df_reviews.url.str.replace('[^\\w\\s]', '').str.lower()
df_reviews.url = df_reviews.url.progress_apply(lambda x: ' '.join([item for item in x.split() if item not in stop]))
param_grid = [{'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random']}]
grid = GridSearchCV(estimator=DecisionTreeClassifier(random_state=42), param_grid=param_grid, cv=5)
grid.fit(X_train, y_train)
grid.best_params_
grid.score(X_train, y_train)
grid.score(X_test, y_test)
param_grid = [{'n_estimators': [x for x in range(10, 120, 10)], 'criterion': ['gini', 'entropy']}]
grid = GridSearchCV(estimator=RandomForestClassifier(random_state=42), param_grid=param_grid, cv=5)
grid.fit(X_train, y_train)
grid.best_params_ | code |
130004668/cell_31 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.tree import DecisionTreeClassifier
param_grid = [{'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random']}]
grid = GridSearchCV(estimator=DecisionTreeClassifier(random_state=42), param_grid=param_grid, cv=5)
grid.fit(X_train, y_train)
grid.best_params_
grid.score(X_train, y_train) | code |
130004668/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd
df_reviews_raw = pd.read_csv('/kaggle/input/dataset-of-malicious-and-benign-webpages/Webpages_Classification_train_data.csv/Webpages_Classification_train_data.csv').drop(['Unnamed: 0'], axis=1)
df_reviews_raw.isna().sum()
df_reviews_raw.dtypes
df_reviews_untrimmed_sample = df_reviews_raw.groupby('label').apply(lambda x: x.sample(25000, random_state=42)).reset_index(drop=True)
df_reviews_trimmed = df_reviews_untrimmed_sample[df_reviews_untrimmed_sample.content.str.split().str.len().ge(60)]
df_reviews_trimmed.label.describe() | code |
130004668/cell_37 | [
"text_html_output_1.png"
] | from nltk.corpus import stopwords
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler, OrdinalEncoder
from sklearn.tree import DecisionTreeClassifier
from tqdm import tqdm
import pandas as pd
df_reviews_raw = pd.read_csv('/kaggle/input/dataset-of-malicious-and-benign-webpages/Webpages_Classification_train_data.csv/Webpages_Classification_train_data.csv').drop(['Unnamed: 0'], axis=1)
df_reviews_raw.isna().sum()
df_reviews_raw.dtypes
df_reviews_untrimmed_sample = df_reviews_raw.groupby('label').apply(lambda x: x.sample(25000, random_state=42)).reset_index(drop=True)
df_reviews_trimmed = df_reviews_untrimmed_sample[df_reviews_untrimmed_sample.content.str.split().str.len().ge(60)]
df_reviews_sampled = df_reviews_trimmed.groupby('label').apply(lambda x: x.sample(2000, random_state=42)).reset_index(drop=True)
df_reviews = df_reviews_sampled.sample(frac=1, random_state=42).reset_index(drop=True)
df_reviews['geo_loc'] = OrdinalEncoder().fit_transform(df_reviews.geo_loc.values.reshape(-1, 1))
df_reviews['tld'] = OrdinalEncoder().fit_transform(df_reviews.tld.values.reshape(-1, 1))
df_reviews['who_is'] = OrdinalEncoder().fit_transform(df_reviews.who_is.values.reshape(-1, 1))
df_reviews['https'] = OrdinalEncoder().fit_transform(df_reviews.https.values.reshape(-1, 1))
df_reviews['label'] = OrdinalEncoder().fit_transform(df_reviews.label.values.reshape(-1, 1))
df_reviews['url'] = df_reviews.url.apply(lambda x: ' '.join(x.split('://')[1].strip('www.').replace('.', '/').split('/')))
tqdm.pandas()
stop = stopwords.words()
df_reviews.content = df_reviews.content.str.replace('[^\\w\\s]', '').str.lower()
df_reviews.content = df_reviews.content.progress_apply(lambda x: ' '.join([item for item in x.split() if item not in stop]))
df_reviews.url = df_reviews.url.str.replace('[^\\w\\s]', '').str.lower()
df_reviews.url = df_reviews.url.progress_apply(lambda x: ' '.join([item for item in x.split() if item not in stop]))
param_grid = [{'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random']}]
grid = GridSearchCV(estimator=DecisionTreeClassifier(random_state=42), param_grid=param_grid, cv=5)
grid.fit(X_train, y_train)
grid.best_params_
grid.score(X_train, y_train)
grid.score(X_test, y_test)
param_grid = [{'n_estimators': [x for x in range(10, 120, 10)], 'criterion': ['gini', 'entropy']}]
grid = GridSearchCV(estimator=RandomForestClassifier(random_state=42), param_grid=param_grid, cv=5)
grid.fit(X_train, y_train)
grid.best_params_
grid.score(X_train, y_train)
grid.score(X_test, y_test) | code |
130004668/cell_12 | [
"text_plain_output_1.png"
] | import pandas as pd
df_reviews_raw = pd.read_csv('/kaggle/input/dataset-of-malicious-and-benign-webpages/Webpages_Classification_train_data.csv/Webpages_Classification_train_data.csv').drop(['Unnamed: 0'], axis=1)
df_reviews_raw.isna().sum()
df_reviews_raw.dtypes
df_reviews_untrimmed_sample = df_reviews_raw.groupby('label').apply(lambda x: x.sample(25000, random_state=42)).reset_index(drop=True)
df_reviews_trimmed = df_reviews_untrimmed_sample[df_reviews_untrimmed_sample.content.str.split().str.len().ge(60)]
df_reviews_sampled = df_reviews_trimmed.groupby('label').apply(lambda x: x.sample(2000, random_state=42)).reset_index(drop=True)
df_reviews = df_reviews_sampled.sample(frac=1, random_state=42).reset_index(drop=True)
df_reviews.head() | code |
130004668/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
df_reviews_raw = pd.read_csv('/kaggle/input/dataset-of-malicious-and-benign-webpages/Webpages_Classification_train_data.csv/Webpages_Classification_train_data.csv').drop(['Unnamed: 0'], axis=1)
df_reviews_raw.isna().sum() | code |
130004668/cell_36 | [
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler, OrdinalEncoder
from sklearn.tree import DecisionTreeClassifier
from tqdm import tqdm
import pandas as pd
df_reviews_raw = pd.read_csv('/kaggle/input/dataset-of-malicious-and-benign-webpages/Webpages_Classification_train_data.csv/Webpages_Classification_train_data.csv').drop(['Unnamed: 0'], axis=1)
df_reviews_raw.isna().sum()
df_reviews_raw.dtypes
df_reviews_untrimmed_sample = df_reviews_raw.groupby('label').apply(lambda x: x.sample(25000, random_state=42)).reset_index(drop=True)
df_reviews_trimmed = df_reviews_untrimmed_sample[df_reviews_untrimmed_sample.content.str.split().str.len().ge(60)]
df_reviews_sampled = df_reviews_trimmed.groupby('label').apply(lambda x: x.sample(2000, random_state=42)).reset_index(drop=True)
df_reviews = df_reviews_sampled.sample(frac=1, random_state=42).reset_index(drop=True)
df_reviews['geo_loc'] = OrdinalEncoder().fit_transform(df_reviews.geo_loc.values.reshape(-1, 1))
df_reviews['tld'] = OrdinalEncoder().fit_transform(df_reviews.tld.values.reshape(-1, 1))
df_reviews['who_is'] = OrdinalEncoder().fit_transform(df_reviews.who_is.values.reshape(-1, 1))
df_reviews['https'] = OrdinalEncoder().fit_transform(df_reviews.https.values.reshape(-1, 1))
df_reviews['label'] = OrdinalEncoder().fit_transform(df_reviews.label.values.reshape(-1, 1))
df_reviews['url'] = df_reviews.url.apply(lambda x: ' '.join(x.split('://')[1].strip('www.').replace('.', '/').split('/')))
tqdm.pandas()
stop = stopwords.words()
df_reviews.content = df_reviews.content.str.replace('[^\\w\\s]', '').str.lower()
df_reviews.content = df_reviews.content.progress_apply(lambda x: ' '.join([item for item in x.split() if item not in stop]))
df_reviews.url = df_reviews.url.str.replace('[^\\w\\s]', '').str.lower()
df_reviews.url = df_reviews.url.progress_apply(lambda x: ' '.join([item for item in x.split() if item not in stop]))
param_grid = [{'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random']}]
grid = GridSearchCV(estimator=DecisionTreeClassifier(random_state=42), param_grid=param_grid, cv=5)
grid.fit(X_train, y_train)
grid.best_params_
grid.score(X_train, y_train)
grid.score(X_test, y_test)
param_grid = [{'n_estimators': [x for x in range(10, 120, 10)], 'criterion': ['gini', 'entropy']}]
grid = GridSearchCV(estimator=RandomForestClassifier(random_state=42), param_grid=param_grid, cv=5)
grid.fit(X_train, y_train)
grid.best_params_
grid.score(X_train, y_train) | code |
105200358/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/penguins/penguins.csv')
df.describe() | code |
105200358/cell_6 | [
"application_vnd.jupyter.stderr_output_1.png"
] | print(data) | code |
105200358/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
105200358/cell_3 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/penguins/penguins.csv')
df.head() | code |
105200358/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/penguins/penguins.csv')
df.info() | code |
106196903/cell_21 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import re
import seaborn as sns
import string
import tqdm
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
plt.yticks(np.arange(0, 550, 50))
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape)
plt.yticks(np.arange(0, 550, 50))
plt.yticks(np.arange(0, 150, 20))
y_train = x_train['category']
x_train = x_train['text']
y_test = x_test['category']
x_test = x_test['text']
import re
import string
def remove_punch(data):
cleaned_data = []
for sentences in data:
new_sentence = sentences.translate(str.maketrans('', '', string.punctuation))
new_sentence = re.sub('[\\n\\t]*', '', new_sentence)
new_sentence = re.sub(' ', '', new_sentence)
cleaned_data.append(new_sentence)
return np.array(cleaned_data)
removed_punch_x_train = remove_punch(x_train)
(x_train.shape, removed_punch_x_train.shape)
removed_punch_x_test = remove_punch(x_test)
(x_test.shape, removed_punch_x_test.shape)
import tqdm
def text_vizual(category, data_train):
text = ''
for txt in tqdm.tqdm(data_train[y_train == f'{category}']):
text += txt
wordcloud_spam = WordCloud(background_color='white').generate(text)
plt.axis('off')
text_vizual('tech', removed_punch_x_train) | code |
106196903/cell_13 | [
"text_html_output_1.png"
] | from sklearn.model_selection import train_test_split
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape)
y_train = x_train['category']
x_train = x_train['text']
y_train | code |
106196903/cell_9 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
plt.yticks(np.arange(0, 550, 50))
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape)
plt.yticks(np.arange(0, 550, 50))
sns.countplot(x_test['category'])
plt.grid(True, axis='y')
plt.yticks(np.arange(0, 150, 20))
plt.title('Count of X_test Categories')
plt.show() | code |
106196903/cell_4 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum() | code |
106196903/cell_6 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
sns.countplot(df['category'])
plt.grid(True, axis='y')
plt.yticks(np.arange(0, 550, 50))
plt.title('Count of Categories')
plt.show() | code |
106196903/cell_40 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape)
y_train = x_train['category']
x_train = x_train['text']
le = LabelEncoder()
le.fit(y_train)
le.classes_ | code |
106196903/cell_29 | [
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from sklearn.model_selection import train_test_split
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import re
import seaborn as sns
import string
import string
import tqdm
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
plt.yticks(np.arange(0, 550, 50))
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape)
plt.yticks(np.arange(0, 550, 50))
plt.yticks(np.arange(0, 150, 20))
y_train = x_train['category']
x_train = x_train['text']
y_test = x_test['category']
x_test = x_test['text']
import re
import string
def remove_punch(data):
cleaned_data = []
for sentences in data:
new_sentence = sentences.translate(str.maketrans('', '', string.punctuation))
new_sentence = re.sub('[\\n\\t]*', '', new_sentence)
new_sentence = re.sub(' ', '', new_sentence)
cleaned_data.append(new_sentence)
return np.array(cleaned_data)
removed_punch_x_train = remove_punch(x_train)
(x_train.shape, removed_punch_x_train.shape)
removed_punch_x_test = remove_punch(x_test)
(x_test.shape, removed_punch_x_test.shape)
import tqdm
def text_vizual(category, data_train):
text = ''
for txt in tqdm.tqdm(data_train[y_train == f'{category}']):
text += txt
wordcloud_spam = WordCloud(background_color='white').generate(text)
plt.axis('off')
from nltk.tokenize import word_tokenize
import string
def remove_stop_words(data):
cleaned_data = []
for sentences in data:
tokenized = word_tokenize(sentences, 'english')
new_sentence = [token for token in tokenized if token not in stopwords.words('english')]
sent = ''
for text in new_sentence:
sent += text + ' '
cleaned_data.append(sent)
return np.array(cleaned_data)
cleaned_x_train = remove_stop_words(removed_punch_x_train)
cleaned_x_test = remove_stop_words(removed_punch_x_test)
(cleaned_x_train.shape, cleaned_x_test.shape)
text_vizual('tech', cleaned_x_train) | code |
106196903/cell_39 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape)
y_train = x_train['category']
x_train = x_train['text']
le = LabelEncoder()
le.fit(y_train) | code |
106196903/cell_48 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from sklearn.model_selection import train_test_split
from tensorflow.keras.preprocessing.text import Tokenizer
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import re
import seaborn as sns
import string
import string
import tqdm
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
plt.yticks(np.arange(0, 550, 50))
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape)
plt.yticks(np.arange(0, 550, 50))
plt.yticks(np.arange(0, 150, 20))
y_train = x_train['category']
x_train = x_train['text']
y_test = x_test['category']
x_test = x_test['text']
import re
import string
def remove_punch(data):
cleaned_data = []
for sentences in data:
new_sentence = sentences.translate(str.maketrans('', '', string.punctuation))
new_sentence = re.sub('[\\n\\t]*', '', new_sentence)
new_sentence = re.sub(' ', '', new_sentence)
cleaned_data.append(new_sentence)
return np.array(cleaned_data)
removed_punch_x_train = remove_punch(x_train)
(x_train.shape, removed_punch_x_train.shape)
removed_punch_x_test = remove_punch(x_test)
(x_test.shape, removed_punch_x_test.shape)
import tqdm
def text_vizual(category, data_train):
text = ''
for txt in tqdm.tqdm(data_train[y_train == f'{category}']):
text += txt
wordcloud_spam = WordCloud(background_color='white').generate(text)
plt.axis('off')
from nltk.tokenize import word_tokenize
import string
def remove_stop_words(data):
cleaned_data = []
for sentences in data:
tokenized = word_tokenize(sentences, 'english')
new_sentence = [token for token in tokenized if token not in stopwords.words('english')]
sent = ''
for text in new_sentence:
sent += text + ' '
cleaned_data.append(sent)
return np.array(cleaned_data)
cleaned_x_train = remove_stop_words(removed_punch_x_train)
cleaned_x_test = remove_stop_words(removed_punch_x_test)
(cleaned_x_train.shape, cleaned_x_test.shape)
tokenizer = Tokenizer()
allDocs = list(cleaned_x_train) + list(cleaned_x_test)
tokenizer.fit_on_texts(allDocs)
tokenizer.document_count
document_count = tokenizer.document_count
vocab_size = len(tokenizer.word_index)
print(f'document_count: {document_count}\nvocab_size: {vocab_size}') | code |
106196903/cell_2 | [
"text_plain_output_1.png"
] | from warnings import filterwarnings
import nltk
import pandas as pd
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import seaborn as sns
import plotly_express as px
from sklearn.model_selection import train_test_split
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
from warnings import filterwarnings
from tensorflow.keras.utils import to_categorical
import nltk
from nltk.corpus import stopwords
nltk.download('stopwords')
filterwarnings('ignore') | code |
106196903/cell_19 | [
"image_output_1.png"
] | from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import re
import seaborn as sns
import string
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
plt.yticks(np.arange(0, 550, 50))
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape)
plt.yticks(np.arange(0, 550, 50))
plt.yticks(np.arange(0, 150, 20))
y_train = x_train['category']
x_train = x_train['text']
y_test = x_test['category']
x_test = x_test['text']
import re
import string
def remove_punch(data):
cleaned_data = []
for sentences in data:
new_sentence = sentences.translate(str.maketrans('', '', string.punctuation))
new_sentence = re.sub('[\\n\\t]*', '', new_sentence)
new_sentence = re.sub(' ', '', new_sentence)
cleaned_data.append(new_sentence)
return np.array(cleaned_data)
removed_punch_x_train = remove_punch(x_train)
(x_train.shape, removed_punch_x_train.shape)
removed_punch_x_test = remove_punch(x_test)
(x_test.shape, removed_punch_x_test.shape)
print(f'train: {removed_punch_x_train.shape},\ntest:, {removed_punch_x_test.shape}') | code |
106196903/cell_7 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape) | code |
106196903/cell_49 | [
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from sklearn.model_selection import train_test_split
from tensorflow.keras.preprocessing.text import Tokenizer
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import re
import seaborn as sns
import string
import string
import tqdm
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
plt.yticks(np.arange(0, 550, 50))
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape)
plt.yticks(np.arange(0, 550, 50))
plt.yticks(np.arange(0, 150, 20))
y_train = x_train['category']
x_train = x_train['text']
y_test = x_test['category']
x_test = x_test['text']
import re
import string
def remove_punch(data):
cleaned_data = []
for sentences in data:
new_sentence = sentences.translate(str.maketrans('', '', string.punctuation))
new_sentence = re.sub('[\\n\\t]*', '', new_sentence)
new_sentence = re.sub(' ', '', new_sentence)
cleaned_data.append(new_sentence)
return np.array(cleaned_data)
removed_punch_x_train = remove_punch(x_train)
(x_train.shape, removed_punch_x_train.shape)
removed_punch_x_test = remove_punch(x_test)
(x_test.shape, removed_punch_x_test.shape)
import tqdm
def text_vizual(category, data_train):
text = ''
for txt in tqdm.tqdm(data_train[y_train == f'{category}']):
text += txt
wordcloud_spam = WordCloud(background_color='white').generate(text)
plt.axis('off')
from nltk.tokenize import word_tokenize
import string
def remove_stop_words(data):
cleaned_data = []
for sentences in data:
tokenized = word_tokenize(sentences, 'english')
new_sentence = [token for token in tokenized if token not in stopwords.words('english')]
sent = ''
for text in new_sentence:
sent += text + ' '
cleaned_data.append(sent)
return np.array(cleaned_data)
cleaned_x_train = remove_stop_words(removed_punch_x_train)
cleaned_x_test = remove_stop_words(removed_punch_x_test)
(cleaned_x_train.shape, cleaned_x_test.shape)
tokenizer = Tokenizer()
allDocs = list(cleaned_x_train) + list(cleaned_x_test)
tokenizer.fit_on_texts(allDocs)
tokenizer.document_count
document_count = tokenizer.document_count
vocab_size = len(tokenizer.word_index)
allDocs_sequence = tokenizer.texts_to_sequences(allDocs)
max_length = max([len(x) for x in allDocs_sequence])
max_length | code |
106196903/cell_18 | [
"image_output_1.png"
] | from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import re
import seaborn as sns
import string
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
plt.yticks(np.arange(0, 550, 50))
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape)
plt.yticks(np.arange(0, 550, 50))
plt.yticks(np.arange(0, 150, 20))
y_test = x_test['category']
x_test = x_test['text']
import re
import string
def remove_punch(data):
cleaned_data = []
for sentences in data:
new_sentence = sentences.translate(str.maketrans('', '', string.punctuation))
new_sentence = re.sub('[\\n\\t]*', '', new_sentence)
new_sentence = re.sub(' ', '', new_sentence)
cleaned_data.append(new_sentence)
return np.array(cleaned_data)
removed_punch_x_test = remove_punch(x_test)
(x_test.shape, removed_punch_x_test.shape)
(x_test[1664][:350], '........................', removed_punch_x_test[0][:350]) | code |
106196903/cell_8 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
plt.yticks(np.arange(0, 550, 50))
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape)
sns.countplot(x_train['category'])
plt.grid(True, axis='y')
plt.yticks(np.arange(0, 550, 50))
plt.title('Count of X_train Categories')
plt.show() | code |
106196903/cell_15 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import re
import seaborn as sns
import string
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
plt.yticks(np.arange(0, 550, 50))
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape)
plt.yticks(np.arange(0, 550, 50))
plt.yticks(np.arange(0, 150, 20))
y_train = x_train['category']
x_train = x_train['text']
import re
import string
def remove_punch(data):
cleaned_data = []
for sentences in data:
new_sentence = sentences.translate(str.maketrans('', '', string.punctuation))
new_sentence = re.sub('[\\n\\t]*', '', new_sentence)
new_sentence = re.sub(' ', '', new_sentence)
cleaned_data.append(new_sentence)
return np.array(cleaned_data)
removed_punch_x_train = remove_punch(x_train)
(x_train.shape, removed_punch_x_train.shape) | code |
106196903/cell_16 | [
"image_output_1.png"
] | from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import re
import seaborn as sns
import string
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
plt.yticks(np.arange(0, 550, 50))
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape)
plt.yticks(np.arange(0, 550, 50))
plt.yticks(np.arange(0, 150, 20))
y_test = x_test['category']
x_test = x_test['text']
import re
import string
def remove_punch(data):
cleaned_data = []
for sentences in data:
new_sentence = sentences.translate(str.maketrans('', '', string.punctuation))
new_sentence = re.sub('[\\n\\t]*', '', new_sentence)
new_sentence = re.sub(' ', '', new_sentence)
cleaned_data.append(new_sentence)
return np.array(cleaned_data)
removed_punch_x_test = remove_punch(x_test)
(x_test.shape, removed_punch_x_test.shape) | code |
106196903/cell_47 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from sklearn.model_selection import train_test_split
from tensorflow.keras.preprocessing.text import Tokenizer
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import re
import seaborn as sns
import string
import string
import tqdm
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
plt.yticks(np.arange(0, 550, 50))
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape)
plt.yticks(np.arange(0, 550, 50))
plt.yticks(np.arange(0, 150, 20))
y_train = x_train['category']
x_train = x_train['text']
y_test = x_test['category']
x_test = x_test['text']
import re
import string
def remove_punch(data):
cleaned_data = []
for sentences in data:
new_sentence = sentences.translate(str.maketrans('', '', string.punctuation))
new_sentence = re.sub('[\\n\\t]*', '', new_sentence)
new_sentence = re.sub(' ', '', new_sentence)
cleaned_data.append(new_sentence)
return np.array(cleaned_data)
removed_punch_x_train = remove_punch(x_train)
(x_train.shape, removed_punch_x_train.shape)
removed_punch_x_test = remove_punch(x_test)
(x_test.shape, removed_punch_x_test.shape)
import tqdm
def text_vizual(category, data_train):
text = ''
for txt in tqdm.tqdm(data_train[y_train == f'{category}']):
text += txt
wordcloud_spam = WordCloud(background_color='white').generate(text)
plt.axis('off')
from nltk.tokenize import word_tokenize
import string
def remove_stop_words(data):
cleaned_data = []
for sentences in data:
tokenized = word_tokenize(sentences, 'english')
new_sentence = [token for token in tokenized if token not in stopwords.words('english')]
sent = ''
for text in new_sentence:
sent += text + ' '
cleaned_data.append(sent)
return np.array(cleaned_data)
cleaned_x_train = remove_stop_words(removed_punch_x_train)
cleaned_x_test = remove_stop_words(removed_punch_x_test)
(cleaned_x_train.shape, cleaned_x_test.shape)
tokenizer = Tokenizer()
allDocs = list(cleaned_x_train) + list(cleaned_x_test)
tokenizer.fit_on_texts(allDocs)
tokenizer.document_count | code |
106196903/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df | code |
106196903/cell_17 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import re
import seaborn as sns
import string
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
plt.yticks(np.arange(0, 550, 50))
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape)
plt.yticks(np.arange(0, 550, 50))
plt.yticks(np.arange(0, 150, 20))
y_test = x_test['category']
x_test = x_test['text']
import re
import string
def remove_punch(data):
cleaned_data = []
for sentences in data:
new_sentence = sentences.translate(str.maketrans('', '', string.punctuation))
new_sentence = re.sub('[\\n\\t]*', '', new_sentence)
new_sentence = re.sub(' ', '', new_sentence)
cleaned_data.append(new_sentence)
return np.array(cleaned_data)
removed_punch_x_test = remove_punch(x_test)
(x_test.shape, removed_punch_x_test.shape)
x_test | code |
106196903/cell_31 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import re
import seaborn as sns
import string
import string
import tqdm
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
plt.yticks(np.arange(0, 550, 50))
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape)
plt.yticks(np.arange(0, 550, 50))
plt.yticks(np.arange(0, 150, 20))
y_train = x_train['category']
x_train = x_train['text']
y_test = x_test['category']
x_test = x_test['text']
import re
import string
def remove_punch(data):
cleaned_data = []
for sentences in data:
new_sentence = sentences.translate(str.maketrans('', '', string.punctuation))
new_sentence = re.sub('[\\n\\t]*', '', new_sentence)
new_sentence = re.sub(' ', '', new_sentence)
cleaned_data.append(new_sentence)
return np.array(cleaned_data)
removed_punch_x_train = remove_punch(x_train)
(x_train.shape, removed_punch_x_train.shape)
removed_punch_x_test = remove_punch(x_test)
(x_test.shape, removed_punch_x_test.shape)
import tqdm
def text_vizual(category, data_train):
text = ''
for txt in tqdm.tqdm(data_train[y_train == f'{category}']):
text += txt
wordcloud_spam = WordCloud(background_color='white').generate(text)
plt.axis('off')
text_vizual('tech', removed_punch_x_train) | code |
106196903/cell_22 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import re
import seaborn as sns
import string
import tqdm
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
plt.yticks(np.arange(0, 550, 50))
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape)
plt.yticks(np.arange(0, 550, 50))
plt.yticks(np.arange(0, 150, 20))
y_train = x_train['category']
x_train = x_train['text']
y_test = x_test['category']
x_test = x_test['text']
import re
import string
def remove_punch(data):
cleaned_data = []
for sentences in data:
new_sentence = sentences.translate(str.maketrans('', '', string.punctuation))
new_sentence = re.sub('[\\n\\t]*', '', new_sentence)
new_sentence = re.sub(' ', '', new_sentence)
cleaned_data.append(new_sentence)
return np.array(cleaned_data)
removed_punch_x_train = remove_punch(x_train)
(x_train.shape, removed_punch_x_train.shape)
removed_punch_x_test = remove_punch(x_test)
(x_test.shape, removed_punch_x_test.shape)
import tqdm
def text_vizual(category, data_train):
text = ''
for txt in tqdm.tqdm(data_train[y_train == f'{category}']):
text += txt
wordcloud_spam = WordCloud(background_color='white').generate(text)
plt.axis('off')
text_vizual('business', removed_punch_x_train) | code |
106196903/cell_27 | [
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from sklearn.model_selection import train_test_split
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import re
import seaborn as sns
import string
import string
import tqdm
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
plt.yticks(np.arange(0, 550, 50))
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape)
plt.yticks(np.arange(0, 550, 50))
plt.yticks(np.arange(0, 150, 20))
y_train = x_train['category']
x_train = x_train['text']
y_test = x_test['category']
x_test = x_test['text']
import re
import string
def remove_punch(data):
cleaned_data = []
for sentences in data:
new_sentence = sentences.translate(str.maketrans('', '', string.punctuation))
new_sentence = re.sub('[\\n\\t]*', '', new_sentence)
new_sentence = re.sub(' ', '', new_sentence)
cleaned_data.append(new_sentence)
return np.array(cleaned_data)
removed_punch_x_train = remove_punch(x_train)
(x_train.shape, removed_punch_x_train.shape)
removed_punch_x_test = remove_punch(x_test)
(x_test.shape, removed_punch_x_test.shape)
import tqdm
def text_vizual(category, data_train):
text = ''
for txt in tqdm.tqdm(data_train[y_train == f'{category}']):
text += txt
wordcloud_spam = WordCloud(background_color='white').generate(text)
plt.axis('off')
from nltk.tokenize import word_tokenize
import string
def remove_stop_words(data):
cleaned_data = []
for sentences in data:
tokenized = word_tokenize(sentences, 'english')
new_sentence = [token for token in tokenized if token not in stopwords.words('english')]
sent = ''
for text in new_sentence:
sent += text + ' '
cleaned_data.append(sent)
return np.array(cleaned_data)
cleaned_x_train = remove_stop_words(removed_punch_x_train)
cleaned_x_test = remove_stop_words(removed_punch_x_test)
(cleaned_x_train.shape, cleaned_x_test.shape) | code |
106196903/cell_12 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.model_selection import train_test_split
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/bbc-fulltext-and-category/bbc-text.csv')
df
df.isna().sum()
x_train, x_test = train_test_split(df, random_state=1, test_size=0.2)
(x_train.shape, x_test.shape)
y_train = x_train['category']
x_train = x_train['text']
x_train | code |
73064882/cell_4 | [
"text_html_output_2.png"
] | import pandas as pd
import plotly.express as px
glass = pd.read_csv('/kaggle/input/glass/glass.csv')
fig = px.scatter(glass, x='Mg', y='Fe', color='Type', color_continuous_scale='portland')
fig.show() | code |
73064882/cell_3 | [
"text_html_output_1.png"
] | import pandas as pd
glass = pd.read_csv('/kaggle/input/glass/glass.csv')
glass | code |
73064882/cell_5 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from plotly.subplots import make_subplots
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
glass = pd.read_csv('/kaggle/input/glass/glass.csv')
fig = px.scatter(glass, x="Mg", y="Fe", color='Type',
color_continuous_scale='portland')
fig.show()
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
lda_model = LinearDiscriminantAnalysis()
lda_model.fit(X, y)
fig = make_subplots(rows=1, cols=1)
fig.add_trace(go.Contour(x=X['Mg'], y=X['Fe'], z=lda_model.predict(X), showscale=False, opacity=0.4, colorscale='portland'), row=1, col=1)
fig.add_trace(go.Scatter(x=X['Mg'], y=X['Fe'], text=y, mode='markers', marker_symbol=y, marker=dict(color=y, colorscale='portland')), row=1, col=1)
fig.update_layout(showlegend=False)
fig.show() | code |
73089893/cell_21 | [
"text_plain_output_1.png"
] | import matplotlib.style as style
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.io as pio
import warnings
import pandas as pd
pd.set_option('display.max_columns', None)
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.style as style
import seaborn as sns
style.use('fivethirtyeight')
import plotly.express as px
import plotly.graph_objs as go
import plotly.offline as py
import plotly.io as pio
pio.renderers.default = 'iframe'
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import MinMaxScaler, StandardScaler, PowerTransformer, RobustScaler, OrdinalEncoder
from scipy.stats import chi2_contingency
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsRegressor
from xgboost import XGBRegressor
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv')
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv')
test['target'] = 0
test['train_or_test'] = 'ts'
train['train_or_test'] = 'tr'
combine = pd.concat([train, test])
combine.duplicated().sum()
combine.duplicated(subset='id').sum() | code |
73089893/cell_13 | [
"text_html_output_1.png"
] | import matplotlib.style as style
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.io as pio
import warnings
import pandas as pd
pd.set_option('display.max_columns', None)
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.style as style
import seaborn as sns
style.use('fivethirtyeight')
import plotly.express as px
import plotly.graph_objs as go
import plotly.offline as py
import plotly.io as pio
pio.renderers.default = 'iframe'
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import MinMaxScaler, StandardScaler, PowerTransformer, RobustScaler, OrdinalEncoder
from scipy.stats import chi2_contingency
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsRegressor
from xgboost import XGBRegressor
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv')
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv')
test.head() | code |
73089893/cell_25 | [
"text_plain_output_1.png"
] | import matplotlib.style as style
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.io as pio
import warnings
import pandas as pd
pd.set_option('display.max_columns', None)
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.style as style
import seaborn as sns
style.use('fivethirtyeight')
import plotly.express as px
import plotly.graph_objs as go
import plotly.offline as py
import plotly.io as pio
pio.renderers.default = 'iframe'
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import MinMaxScaler, StandardScaler, PowerTransformer, RobustScaler, OrdinalEncoder
from scipy.stats import chi2_contingency
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsRegressor
from xgboost import XGBRegressor
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv')
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv')
test['target'] = 0
test['train_or_test'] = 'ts'
train['train_or_test'] = 'tr'
combine = pd.concat([train, test])
combine.duplicated().sum()
combine.duplicated(subset='id').sum()
nums = combine.select_dtypes(exclude='object').keys().tolist()
cats = combine.select_dtypes(include='object').keys().tolist()
print('List of Numerical Columns :\n', nums, '\n')
print('List of Categorical Columns :\n', cats, '\n') | code |
73089893/cell_30 | [
"text_html_output_1.png"
] | import matplotlib.style as style
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.io as pio
import warnings
import pandas as pd
pd.set_option('display.max_columns', None)
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.style as style
import seaborn as sns
style.use('fivethirtyeight')
import plotly.express as px
import plotly.graph_objs as go
import plotly.offline as py
import plotly.io as pio
pio.renderers.default = 'iframe'
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import MinMaxScaler, StandardScaler, PowerTransformer, RobustScaler, OrdinalEncoder
from scipy.stats import chi2_contingency
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsRegressor
from xgboost import XGBRegressor
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv')
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv')
test['target'] = 0
test['train_or_test'] = 'ts'
train['train_or_test'] = 'tr'
combine = pd.concat([train, test])
combine.duplicated().sum()
combine.duplicated(subset='id').sum()
nums = combine.select_dtypes(exclude='object').keys().tolist()
cats = combine.select_dtypes(include='object').keys().tolist()
nums.remove('id')
cats.remove('train_or_test')
train[nums].describe() | code |
73089893/cell_44 | [
"image_output_5.png",
"image_output_7.png",
"image_output_4.png",
"image_output_8.png",
"image_output_6.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png",
"image_output_10.png",
"image_output_9.png"
] | import matplotlib.pyplot as plt
import matplotlib.style as style
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.io as pio
import seaborn as sns
import warnings
import pandas as pd
pd.set_option('display.max_columns', None)
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.style as style
import seaborn as sns
style.use('fivethirtyeight')
import plotly.express as px
import plotly.graph_objs as go
import plotly.offline as py
import plotly.io as pio
pio.renderers.default = 'iframe'
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import MinMaxScaler, StandardScaler, PowerTransformer, RobustScaler, OrdinalEncoder
from scipy.stats import chi2_contingency
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsRegressor
from xgboost import XGBRegressor
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv')
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv')
test['target'] = 0
test['train_or_test'] = 'ts'
train['train_or_test'] = 'tr'
combine = pd.concat([train, test])
combine.duplicated().sum()
combine.duplicated(subset='id').sum()
nums = combine.select_dtypes(exclude='object').keys().tolist()
cats = combine.select_dtypes(include='object').keys().tolist()
nums.remove('id')
cats.remove('train_or_test')
for i in range(0, len(nums)):
plt.tight_layout()
for i in range(0, len(nums)):
plt.tight_layout()
for col in cats:
plt.figure(figsize=(20, 5))
plt.subplot(141)
ax = sns.countplot(y=train[col], order=train[col].value_counts().index)
for p in ax.patches:
value = format(p.get_width(), '.0f')
x = p.get_x() + 10 + p.get_width()
y = p.get_y() + p.get_height() / 2 + 0.05
ax.annotate(value, (x, y), size=14)
plt.xlabel('')
plt.ylabel('')
plt.xticks([], [])
plt.title(col, size=16, weight='bold')
plt.tight_layout()
plt.subplot(142)
train[col].value_counts().plot.pie(autopct='%1.1f%%', textprops={'fontsize': 12})
plt.title('Percentage of ' + col, size=16, weight='bold')
plt.ylabel('') | code |
73089893/cell_20 | [
"text_plain_output_1.png"
] | import matplotlib.style as style
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.io as pio
import warnings
import pandas as pd
pd.set_option('display.max_columns', None)
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.style as style
import seaborn as sns
style.use('fivethirtyeight')
import plotly.express as px
import plotly.graph_objs as go
import plotly.offline as py
import plotly.io as pio
pio.renderers.default = 'iframe'
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import MinMaxScaler, StandardScaler, PowerTransformer, RobustScaler, OrdinalEncoder
from scipy.stats import chi2_contingency
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsRegressor
from xgboost import XGBRegressor
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv')
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv')
test['target'] = 0
test['train_or_test'] = 'ts'
train['train_or_test'] = 'tr'
combine = pd.concat([train, test])
combine.duplicated().sum() | code |
73089893/cell_39 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import matplotlib.style as style
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.io as pio
import seaborn as sns
import warnings
import pandas as pd
pd.set_option('display.max_columns', None)
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.style as style
import seaborn as sns
style.use('fivethirtyeight')
import plotly.express as px
import plotly.graph_objs as go
import plotly.offline as py
import plotly.io as pio
pio.renderers.default = 'iframe'
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import MinMaxScaler, StandardScaler, PowerTransformer, RobustScaler, OrdinalEncoder
from scipy.stats import chi2_contingency
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsRegressor
from xgboost import XGBRegressor
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv')
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv')
test['target'] = 0
test['train_or_test'] = 'ts'
train['train_or_test'] = 'tr'
combine = pd.concat([train, test])
combine.duplicated().sum()
combine.duplicated(subset='id').sum()
nums = combine.select_dtypes(exclude='object').keys().tolist()
cats = combine.select_dtypes(include='object').keys().tolist()
nums.remove('id')
cats.remove('train_or_test')
for i in range(0, len(nums)):
plt.tight_layout()
plt.figure(figsize=(20, 15))
for i in range(0, len(nums)):
plt.subplot(3, len(nums) / 3, i + 1)
sns.boxplot(y=train[nums[i]])
plt.tight_layout() | code |
73089893/cell_41 | [
"text_plain_output_1.png"
] | import matplotlib.style as style
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.io as pio
import warnings
import pandas as pd
pd.set_option('display.max_columns', None)
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.style as style
import seaborn as sns
style.use('fivethirtyeight')
import plotly.express as px
import plotly.graph_objs as go
import plotly.offline as py
import plotly.io as pio
pio.renderers.default = 'iframe'
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import MinMaxScaler, StandardScaler, PowerTransformer, RobustScaler, OrdinalEncoder
from scipy.stats import chi2_contingency
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsRegressor
from xgboost import XGBRegressor
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv')
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv')
test['target'] = 0
test['train_or_test'] = 'ts'
train['train_or_test'] = 'tr'
combine = pd.concat([train, test])
combine.duplicated().sum()
combine.duplicated(subset='id').sum()
nums = combine.select_dtypes(exclude='object').keys().tolist()
cats = combine.select_dtypes(include='object').keys().tolist()
nums.remove('id')
cats.remove('train_or_test')
for col in nums:
Q1 = train[col].quantile(0.25)
Q3 = train[col].quantile(0.75)
IQR = Q3 - Q1
nilai_min = train[col].min()
nilai_max = train[col].max()
lower_lim = Q1 - 1.5 * IQR
upper_lim = Q3 + 1.5 * IQR
if nilai_min < lower_lim:
print('Low outlier is found in column', col, '<', lower_lim, '\n')
print('Total of Low Outlier in column', col, ':', len(list(train[train[col] < lower_lim].index)), '\n')
elif nilai_max > upper_lim:
print('High outlier is found in column', col, '>', upper_lim, '\n')
print('Total of High Outlier in column', col, ':', len(list(train[train[col] > upper_lim].index)), '\n')
else:
print('Outlier is not found in column', col, '\n') | code |
73089893/cell_2 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
73089893/cell_32 | [
"text_html_output_1.png"
] | import matplotlib.style as style
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.io as pio
import warnings
import pandas as pd
pd.set_option('display.max_columns', None)
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.style as style
import seaborn as sns
style.use('fivethirtyeight')
import plotly.express as px
import plotly.graph_objs as go
import plotly.offline as py
import plotly.io as pio
pio.renderers.default = 'iframe'
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import MinMaxScaler, StandardScaler, PowerTransformer, RobustScaler, OrdinalEncoder
from scipy.stats import chi2_contingency
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsRegressor
from xgboost import XGBRegressor
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv')
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv')
test['target'] = 0
test['train_or_test'] = 'ts'
train['train_or_test'] = 'tr'
combine = pd.concat([train, test])
combine.duplicated().sum()
combine.duplicated(subset='id').sum()
nums = combine.select_dtypes(exclude='object').keys().tolist()
cats = combine.select_dtypes(include='object').keys().tolist()
nums.remove('id')
cats.remove('train_or_test')
train[cats].describe() | code |
73089893/cell_17 | [
"text_html_output_1.png"
] | import matplotlib.style as style
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.io as pio
import warnings
import pandas as pd
pd.set_option('display.max_columns', None)
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.style as style
import seaborn as sns
style.use('fivethirtyeight')
import plotly.express as px
import plotly.graph_objs as go
import plotly.offline as py
import plotly.io as pio
pio.renderers.default = 'iframe'
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import MinMaxScaler, StandardScaler, PowerTransformer, RobustScaler, OrdinalEncoder
from scipy.stats import chi2_contingency
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsRegressor
from xgboost import XGBRegressor
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv')
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv')
test['target'] = 0
test['train_or_test'] = 'ts'
train['train_or_test'] = 'tr'
combine = pd.concat([train, test])
combine.info() | code |
73089893/cell_35 | [
"text_plain_output_1.png"
] | import matplotlib.style as style
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.io as pio
import warnings
import pandas as pd
pd.set_option('display.max_columns', None)
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.style as style
import seaborn as sns
style.use('fivethirtyeight')
import plotly.express as px
import plotly.graph_objs as go
import plotly.offline as py
import plotly.io as pio
pio.renderers.default = 'iframe'
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import MinMaxScaler, StandardScaler, PowerTransformer, RobustScaler, OrdinalEncoder
from scipy.stats import chi2_contingency
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsRegressor
from xgboost import XGBRegressor
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv')
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv')
test['target'] = 0
test['train_or_test'] = 'ts'
train['train_or_test'] = 'tr'
combine = pd.concat([train, test])
combine.duplicated().sum()
combine.duplicated(subset='id').sum()
nums = combine.select_dtypes(exclude='object').keys().tolist()
cats = combine.select_dtypes(include='object').keys().tolist()
nums.remove('id')
cats.remove('train_or_test')
len(nums) | code |
73089893/cell_12 | [
"text_plain_output_1.png"
] | import matplotlib.style as style
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.io as pio
import warnings
import pandas as pd
pd.set_option('display.max_columns', None)
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.style as style
import seaborn as sns
style.use('fivethirtyeight')
import plotly.express as px
import plotly.graph_objs as go
import plotly.offline as py
import plotly.io as pio
pio.renderers.default = 'iframe'
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import MinMaxScaler, StandardScaler, PowerTransformer, RobustScaler, OrdinalEncoder
from scipy.stats import chi2_contingency
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsRegressor
from xgboost import XGBRegressor
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv')
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv')
train.head() | code |
73089893/cell_36 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import matplotlib.style as style
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.io as pio
import seaborn as sns
import warnings
import pandas as pd
pd.set_option('display.max_columns', None)
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.style as style
import seaborn as sns
style.use('fivethirtyeight')
import plotly.express as px
import plotly.graph_objs as go
import plotly.offline as py
import plotly.io as pio
pio.renderers.default = 'iframe'
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import MinMaxScaler, StandardScaler, PowerTransformer, RobustScaler, OrdinalEncoder
from scipy.stats import chi2_contingency
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsRegressor
from xgboost import XGBRegressor
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv')
test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv')
test['target'] = 0
test['train_or_test'] = 'ts'
train['train_or_test'] = 'tr'
combine = pd.concat([train, test])
combine.duplicated().sum()
combine.duplicated(subset='id').sum()
nums = combine.select_dtypes(exclude='object').keys().tolist()
cats = combine.select_dtypes(include='object').keys().tolist()
nums.remove('id')
cats.remove('train_or_test')
plt.figure(figsize=(20, 13))
for i in range(0, len(nums)):
plt.subplot(3, len(nums) / 3, i + 1)
sns.histplot(train[nums[i]], kde=True)
plt.tight_layout() | code |
17102352/cell_13 | [
"text_plain_output_1.png"
] | from PIL import Image
from PIL import Image
from keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint
from keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import os
import pandas as pd
import random # Randomly select a filename for viewing
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import random
from keras.preprocessing.image import load_img
from PIL import Image
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization
from keras.optimizers import RMSprop
from keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint
from keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split
main_folder = '../input'
input_file_train = 'train/train'
input_file_test = 'test1/test1'
filenames = os.listdir(os.path.join(main_folder, input_file_train))
categories = []
for file in filenames:
category = file.split('.')[0].lower()
categories.append(category)
dataframe = pd.DataFrame({'filename': filenames, 'categories': categories})
sample = random.choice(filenames)
from PIL import Image
im = Image.open(os.path.join(main_folder, input_file_train, sample))
im.size
random_seed = 10
batch_size = 100
image_height, image_width, image_channels = (128, 128, 3)
train_df, val_df = train_test_split(dataframe, test_size=0.2, random_state=random_seed)
train_df.reset_index(inplace=True, drop=True)
val_df.reset_index(inplace=True, drop=True)
train_datagen = ImageDataGenerator(rotation_range=15, rescale=1.0 / 255, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True, shear_range=0.2, zoom_range=0.2)
train_generator = train_datagen.flow_from_dataframe(dataframe=train_df, directory=os.path.join(main_folder, input_file_train), x_col='filename', y_col='categories', target_size=(image_height, image_width), class_mode='categorical', batch_size=batch_size)
val_datagen = ImageDataGenerator(rescale=1.0 / 255)
val_generator = val_datagen.flow_from_dataframe(dataframe=val_df, directory=os.path.join(main_folder, input_file_train), x_col='filename', y_col='categories', target_size=(image_height, image_width), class_mode='categorical', batch_size=batch_size)
earlystop = EarlyStopping(monitor='val_acc', patience=10)
reduce_lr = ReduceLROnPlateau(monitor='val_acc', factor=0.75, verbose=1, patience=2, min_lr=1e-05)
checkpoint = ModelCheckpoint(filepath=os.path.join(main_folder, 'best weights.h5'), monitor='val_acc', save_best_only=True)
callbacks = [earlystop, reduce_lr]
test_files = os.listdir(os.path.join(main_folder, input_file_test))
test_df = pd.DataFrame({'filename': test_files})
test_datagen = ImageDataGenerator(rescale=1.0 / 255)
test_generator = test_datagen.flow_from_dataframe(dataframe=test_df, directory=os.path.join(main_folder, input_file_test), x_col='filename', y_col=None, target_size=(image_height, image_width), class_mode=None, batch_size=batch_size, shuffle=False) | code |
17102352/cell_1 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import random
from keras.preprocessing.image import load_img
from PIL import Image
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization
from keras.optimizers import RMSprop
from keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint
from keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split
main_folder = '../input'
input_file_train = 'train/train'
input_file_test = 'test1/test1' | code |
17102352/cell_7 | [
"text_plain_output_1.png"
] | from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization
from keras.models import Sequential
dropout_rate = 0.25
fc_units_1 = 512
fc_units_2 = 256
output_units = 2
epochs = 50
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=3, strides=1, padding='same', input_shape=(image_height, image_width, image_channels), data_format='channels_last'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Dropout(rate=dropout_rate))
model.add(Conv2D(filters=64, kernel_size=3, strides=1, padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Dropout(rate=dropout_rate))
model.add(Conv2D(filters=128, kernel_size=3, strides=1, padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Dropout(rate=dropout_rate))
model.add(Flatten())
model.add(Dense(units=fc_units_1, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(rate=dropout_rate))
model.add(Dense(units=fc_units_2, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(rate=dropout_rate))
model.add(Dense(units=output_units, activation='softmax'))
model.summary() | code |
17102352/cell_3 | [
"text_plain_output_1.png"
] | from PIL import Image
from PIL import Image
import matplotlib.pyplot as plt
import os
import pandas as pd
import random # Randomly select a filename for viewing
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import random
from keras.preprocessing.image import load_img
from PIL import Image
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization
from keras.optimizers import RMSprop
from keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint
from keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split
main_folder = '../input'
input_file_train = 'train/train'
input_file_test = 'test1/test1'
filenames = os.listdir(os.path.join(main_folder, input_file_train))
categories = []
for file in filenames:
category = file.split('.')[0].lower()
categories.append(category)
dataframe = pd.DataFrame({'filename': filenames, 'categories': categories})
sample = random.choice(filenames)
plt.imshow(load_img(os.path.join(main_folder, input_file_train, sample)))
from PIL import Image
im = Image.open(os.path.join(main_folder, input_file_train, sample))
im.size | code |
17102352/cell_10 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from PIL import Image
from PIL import Image
from keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint
from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization
from keras.models import Sequential
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import os
import pandas as pd
import random # Randomly select a filename for viewing
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import random
from keras.preprocessing.image import load_img
from PIL import Image
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization
from keras.optimizers import RMSprop
from keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint
from keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split
main_folder = '../input'
input_file_train = 'train/train'
input_file_test = 'test1/test1'
filenames = os.listdir(os.path.join(main_folder, input_file_train))
categories = []
for file in filenames:
category = file.split('.')[0].lower()
categories.append(category)
dataframe = pd.DataFrame({'filename': filenames, 'categories': categories})
sample = random.choice(filenames)
from PIL import Image
im = Image.open(os.path.join(main_folder, input_file_train, sample))
im.size
random_seed = 10
batch_size = 100
image_height, image_width, image_channels = (128, 128, 3)
train_df, val_df = train_test_split(dataframe, test_size=0.2, random_state=random_seed)
train_df.reset_index(inplace=True, drop=True)
val_df.reset_index(inplace=True, drop=True)
train_datagen = ImageDataGenerator(rotation_range=15, rescale=1.0 / 255, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True, shear_range=0.2, zoom_range=0.2)
train_generator = train_datagen.flow_from_dataframe(dataframe=train_df, directory=os.path.join(main_folder, input_file_train), x_col='filename', y_col='categories', target_size=(image_height, image_width), class_mode='categorical', batch_size=batch_size)
val_datagen = ImageDataGenerator(rescale=1.0 / 255)
val_generator = val_datagen.flow_from_dataframe(dataframe=val_df, directory=os.path.join(main_folder, input_file_train), x_col='filename', y_col='categories', target_size=(image_height, image_width), class_mode='categorical', batch_size=batch_size)
dropout_rate = 0.25
fc_units_1 = 512
fc_units_2 = 256
output_units = 2
epochs = 50
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=3, strides=1, padding='same', input_shape=(image_height, image_width, image_channels), data_format='channels_last'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Dropout(rate=dropout_rate))
model.add(Conv2D(filters=64, kernel_size=3, strides=1, padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Dropout(rate=dropout_rate))
model.add(Conv2D(filters=128, kernel_size=3, strides=1, padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Dropout(rate=dropout_rate))
model.add(Flatten())
model.add(Dense(units=fc_units_1, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(rate=dropout_rate))
model.add(Dense(units=fc_units_2, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(rate=dropout_rate))
model.add(Dense(units=output_units, activation='softmax'))
model.summary()
optimizer = RMSprop()
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
earlystop = EarlyStopping(monitor='val_acc', patience=10)
reduce_lr = ReduceLROnPlateau(monitor='val_acc', factor=0.75, verbose=1, patience=2, min_lr=1e-05)
checkpoint = ModelCheckpoint(filepath=os.path.join(main_folder, 'best weights.h5'), monitor='val_acc', save_best_only=True)
callbacks = [earlystop, reduce_lr]
history = model.fit_generator(generator=train_generator, steps_per_epoch=len(train_df) // batch_size, epochs=epochs, callbacks=callbacks, validation_data=val_generator, validation_steps=len(val_df) // batch_size) | code |
17102352/cell_12 | [
"text_plain_output_1.png"
] | from PIL import Image
from PIL import Image
from keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint
from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization
from keras.models import Sequential
from keras.optimizers import RMSprop
from keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import random # Randomly select a filename for viewing
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import random
from keras.preprocessing.image import load_img
from PIL import Image
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization
from keras.optimizers import RMSprop
from keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint
from keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split
main_folder = '../input'
input_file_train = 'train/train'
input_file_test = 'test1/test1'
filenames = os.listdir(os.path.join(main_folder, input_file_train))
categories = []
for file in filenames:
category = file.split('.')[0].lower()
categories.append(category)
dataframe = pd.DataFrame({'filename': filenames, 'categories': categories})
sample = random.choice(filenames)
from PIL import Image
im = Image.open(os.path.join(main_folder, input_file_train, sample))
im.size
random_seed = 10
batch_size = 100
image_height, image_width, image_channels = (128, 128, 3)
train_df, val_df = train_test_split(dataframe, test_size=0.2, random_state=random_seed)
train_df.reset_index(inplace=True, drop=True)
val_df.reset_index(inplace=True, drop=True)
train_datagen = ImageDataGenerator(rotation_range=15, rescale=1.0 / 255, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True, shear_range=0.2, zoom_range=0.2)
train_generator = train_datagen.flow_from_dataframe(dataframe=train_df, directory=os.path.join(main_folder, input_file_train), x_col='filename', y_col='categories', target_size=(image_height, image_width), class_mode='categorical', batch_size=batch_size)
val_datagen = ImageDataGenerator(rescale=1.0 / 255)
val_generator = val_datagen.flow_from_dataframe(dataframe=val_df, directory=os.path.join(main_folder, input_file_train), x_col='filename', y_col='categories', target_size=(image_height, image_width), class_mode='categorical', batch_size=batch_size)
dropout_rate = 0.25
fc_units_1 = 512
fc_units_2 = 256
output_units = 2
epochs = 50
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=3, strides=1, padding='same', input_shape=(image_height, image_width, image_channels), data_format='channels_last'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Dropout(rate=dropout_rate))
model.add(Conv2D(filters=64, kernel_size=3, strides=1, padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Dropout(rate=dropout_rate))
model.add(Conv2D(filters=128, kernel_size=3, strides=1, padding='same'))
model.add(BatchNormalization())
model.add(MaxPooling2D())
model.add(Dropout(rate=dropout_rate))
model.add(Flatten())
model.add(Dense(units=fc_units_1, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(rate=dropout_rate))
model.add(Dense(units=fc_units_2, activation='relu'))
model.add(BatchNormalization())
model.add(Dropout(rate=dropout_rate))
model.add(Dense(units=output_units, activation='softmax'))
model.summary()
optimizer = RMSprop()
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
earlystop = EarlyStopping(monitor='val_acc', patience=10)
reduce_lr = ReduceLROnPlateau(monitor='val_acc', factor=0.75, verbose=1, patience=2, min_lr=1e-05)
checkpoint = ModelCheckpoint(filepath=os.path.join(main_folder, 'best weights.h5'), monitor='val_acc', save_best_only=True)
callbacks = [earlystop, reduce_lr]
history = model.fit_generator(generator=train_generator, steps_per_epoch=len(train_df) // batch_size, epochs=epochs, callbacks=callbacks, validation_data=val_generator, validation_steps=len(val_df) // batch_size)
fig, ax = plt.subplots(2, 1, figsize=(12, 12))
ax[0].plot(history.history['loss'], color='b', label='Training loss')
ax[0].plot(history.history['val_loss'], color='r', label='Validation loss')
ax[0].set_xticks(np.arange(1, epochs, 1))
ax[0].set_yticks(np.arange(0, 2.3, 0.2))
ax[0].legend(loc='best', shadow=True)
ax[1].plot(history.history['acc'], color='b', label='Training accuracy')
ax[1].plot(history.history['val_acc'], color='r', label='Valication accuracy')
ax[1].set_xticks(np.arange(1, epochs))
ax[1].legend(loc='best', shadow=True)
plt.tight_layout()
plt.show() | code |
17102352/cell_5 | [
"image_output_1.png"
] | from PIL import Image
from PIL import Image
from keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import os
import pandas as pd
import random # Randomly select a filename for viewing
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import random
from keras.preprocessing.image import load_img
from PIL import Image
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, BatchNormalization
from keras.optimizers import RMSprop
from keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint
from keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split
main_folder = '../input'
input_file_train = 'train/train'
input_file_test = 'test1/test1'
filenames = os.listdir(os.path.join(main_folder, input_file_train))
categories = []
for file in filenames:
category = file.split('.')[0].lower()
categories.append(category)
dataframe = pd.DataFrame({'filename': filenames, 'categories': categories})
sample = random.choice(filenames)
from PIL import Image
im = Image.open(os.path.join(main_folder, input_file_train, sample))
im.size
random_seed = 10
batch_size = 100
image_height, image_width, image_channels = (128, 128, 3)
train_df, val_df = train_test_split(dataframe, test_size=0.2, random_state=random_seed)
train_df.reset_index(inplace=True, drop=True)
val_df.reset_index(inplace=True, drop=True)
train_datagen = ImageDataGenerator(rotation_range=15, rescale=1.0 / 255, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True, shear_range=0.2, zoom_range=0.2)
train_generator = train_datagen.flow_from_dataframe(dataframe=train_df, directory=os.path.join(main_folder, input_file_train), x_col='filename', y_col='categories', target_size=(image_height, image_width), class_mode='categorical', batch_size=batch_size)
val_datagen = ImageDataGenerator(rescale=1.0 / 255)
val_generator = val_datagen.flow_from_dataframe(dataframe=val_df, directory=os.path.join(main_folder, input_file_train), x_col='filename', y_col='categories', target_size=(image_height, image_width), class_mode='categorical', batch_size=batch_size) | code |
2037446/cell_21 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.pipeline import Pipeline
from sklearn.preprocessing import Imputer
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import Imputer
num_pipeline = Pipeline([('imputer', Imputer(strategy='median')), ('attributes_adder', CombinedAttributesAdder()), ('std_scaler', StandardScaler())])
housing_num_tr = num_pipeline.fit_transform(housing_num) | code |
2037446/cell_13 | [
"text_html_output_1.png"
] | from sklearn.model_selection import StratifiedShuffleSplit
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
housing = pd.read_csv('../input/housing.csv')
housing['income_cat'] = np.ceil(housing['median_income'] / 1.5)
housing['income_cat'].where(housing['income_cat'] < 5, 5.0, inplace=True)
from sklearn.model_selection import StratifiedShuffleSplit
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing, housing['income_cat']):
strat_train_set = housing.loc[train_index]
strat_test_set = housing.loc[test_index]
housing = strat_train_set.copy()
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False)
housing.plot(kind='scatter', x='median_income', y='median_house_value', alpha=0.1) | code |
2037446/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
housing = pd.read_csv('../input/housing.csv')
housing['ocean_proximity'].value_counts() | code |
2037446/cell_23 | [
"text_plain_output_1.png"
] | from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.pipeline import FeatureUnion
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import Imputer
from sklearn.preprocessing import LabelBinarizer
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
housing = pd.read_csv('../input/housing.csv')
housing['income_cat'] = np.ceil(housing['median_income'] / 1.5)
housing['income_cat'].where(housing['income_cat'] < 5, 5.0, inplace=True)
from sklearn.model_selection import StratifiedShuffleSplit
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing, housing['income_cat']):
strat_train_set = housing.loc[train_index]
strat_test_set = housing.loc[test_index]
housing = strat_train_set.copy()
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False)
housing['rooms_per_household'] = housing['total_rooms'] / housing['households']
housing['bedrooms_per_room'] = housing['total_bedrooms'] / housing['total_rooms']
housing['population_per_household'] = housing['population'] / housing['households']
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False)
housing = strat_train_set.drop('median_house_value', axis=1)
housing_labels = strat_train_set['median_house_value'].copy()
median = housing['total_bedrooms'].median()
housing['total_bedrooms'].fillna(median)
from sklearn.base import BaseEstimator, TransformerMixin
rooms_ix, bedroom_ix, population_ix, household_ix = (3, 4, 5, 6)
class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
def __init__(self, add_bedrooms_per_room=True):
self.add_bedrooms_per_room = add_bedrooms_per_room
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
rooms_per_household = X[:, rooms_ix] / X[:, household_ix]
population_per_household = X[:, population_ix] / X[:, household_ix]
if self.add_bedrooms_per_room:
bedrooms_per_room = X[:, bedroom_ix] / X[:, rooms_ix]
return np.c_[X, rooms_per_household, population_per_household, bedrooms_per_room]
else:
return np.c_[X, rooms_per_household, population_per_household]
attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False)
housing_extra_attribs = attr_adder.transform(housing.values)
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import Imputer
num_pipeline = Pipeline([('imputer', Imputer(strategy='median')), ('attributes_adder', CombinedAttributesAdder()), ('std_scaler', StandardScaler())])
housing_num_tr = num_pipeline.fit_transform(housing_num)
from sklearn.pipeline import FeatureUnion
class DataFrameSelector(BaseEstimator, TransformerMixin):
def __init__(self, attribute_names):
self.attribute_names = attribute_names
def fit(self, X, y=None):
return self
def transform(self, X):
return X[self.attribute_names].values
class CustomBinarizer(BaseEstimator, TransformerMixin):
def fit(self, X, y=None, **fit_params):
return self
def transform(self, X):
return LabelBinarizer().fit(X).transform(X)
num_attribs = list(housing_num)
cat_attribs = ['ocean_proximity']
num_pipeline = Pipeline([('selector', DataFrameSelector(num_attribs)), ('imputer', Imputer(strategy='median')), ('attributes_adder', CombinedAttributesAdder()), ('std_scaler', StandardScaler())])
cat_pipeline = Pipeline([('selector', DataFrameSelector(cat_attribs)), ('custom_binarizer', CustomBinarizer())])
full_pipeline = FeatureUnion(transformer_list=[('num_pipeline', num_pipeline), ('cat_pipeline', cat_pipeline)])
housing_prepared = full_pipeline.fit_transform(housing)
housing_prepared[0, :]
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(housing_prepared, housing_labels)
some_data = housing.iloc[:5]
some_labels = housing_labels.iloc[:5]
some_data_prepared = full_pipeline.fit_transform(some_data)
some_data_prepared | code |
2037446/cell_6 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import matplotlib.pyplot as plt
housing.hist(bins=50, figsize=(20, 15))
plt.show() | code |
2037446/cell_2 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
housing = pd.read_csv('../input/housing.csv')
housing.head() | code |
2037446/cell_11 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import StratifiedShuffleSplit
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
housing = pd.read_csv('../input/housing.csv')
housing['income_cat'] = np.ceil(housing['median_income'] / 1.5)
housing['income_cat'].where(housing['income_cat'] < 5, 5.0, inplace=True)
from sklearn.model_selection import StratifiedShuffleSplit
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing, housing['income_cat']):
strat_train_set = housing.loc[train_index]
strat_test_set = housing.loc[test_index]
housing = strat_train_set.copy()
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False) | code |
2037446/cell_19 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.preprocessing import LabelBinarizer
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
housing = pd.read_csv('../input/housing.csv')
housing['income_cat'] = np.ceil(housing['median_income'] / 1.5)
housing['income_cat'].where(housing['income_cat'] < 5, 5.0, inplace=True)
from sklearn.model_selection import StratifiedShuffleSplit
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing, housing['income_cat']):
strat_train_set = housing.loc[train_index]
strat_test_set = housing.loc[test_index]
housing = strat_train_set.copy()
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False)
housing['rooms_per_household'] = housing['total_rooms'] / housing['households']
housing['bedrooms_per_room'] = housing['total_bedrooms'] / housing['total_rooms']
housing['population_per_household'] = housing['population'] / housing['households']
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False)
housing = strat_train_set.drop('median_house_value', axis=1)
housing_labels = strat_train_set['median_house_value'].copy()
median = housing['total_bedrooms'].median()
housing['total_bedrooms'].fillna(median)
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
housing_cat = housing['ocean_proximity']
housing_cat_encoded = encoder.fit_transform(housing_cat)
housing_cat_encoded
housing_cat.shape
from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder()
housing_cat_1hot = encoder.fit_transform(housing_cat_encoded.reshape(-1, 1))
housing_cat_1hot
housing_cat_1hot.toarray()
from sklearn.preprocessing import LabelBinarizer
encoder = LabelBinarizer()
housing_cat_1hot = encoder.fit_transform(housing_cat)
housing_cat_1hot | code |
2037446/cell_1 | [
"text_plain_output_1.png"
] | from subprocess import check_output
import numpy as np
import pandas as pd
from subprocess import check_output
print(check_output(['ls', '../input']).decode('utf8')) | code |
2037446/cell_7 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.model_selection import train_test_split
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
housing = pd.read_csv('../input/housing.csv')
from sklearn.model_selection import train_test_split
train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)
print(len(train_set), 'train +', len(test_set), 'test') | code |
2037446/cell_18 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
housing = pd.read_csv('../input/housing.csv')
housing['income_cat'] = np.ceil(housing['median_income'] / 1.5)
housing['income_cat'].where(housing['income_cat'] < 5, 5.0, inplace=True)
from sklearn.model_selection import StratifiedShuffleSplit
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing, housing['income_cat']):
strat_train_set = housing.loc[train_index]
strat_test_set = housing.loc[test_index]
housing = strat_train_set.copy()
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False)
housing['rooms_per_household'] = housing['total_rooms'] / housing['households']
housing['bedrooms_per_room'] = housing['total_bedrooms'] / housing['total_rooms']
housing['population_per_household'] = housing['population'] / housing['households']
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False)
housing = strat_train_set.drop('median_house_value', axis=1)
housing_labels = strat_train_set['median_house_value'].copy()
median = housing['total_bedrooms'].median()
housing['total_bedrooms'].fillna(median)
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
housing_cat = housing['ocean_proximity']
housing_cat_encoded = encoder.fit_transform(housing_cat)
housing_cat_encoded
housing_cat.shape
from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder()
housing_cat_1hot = encoder.fit_transform(housing_cat_encoded.reshape(-1, 1))
housing_cat_1hot
housing_cat_1hot.toarray() | code |
2037446/cell_8 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.model_selection import StratifiedShuffleSplit
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
housing = pd.read_csv('../input/housing.csv')
housing['income_cat'] = np.ceil(housing['median_income'] / 1.5)
housing['income_cat'].where(housing['income_cat'] < 5, 5.0, inplace=True)
from sklearn.model_selection import StratifiedShuffleSplit
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing, housing['income_cat']):
strat_train_set = housing.loc[train_index]
strat_test_set = housing.loc[test_index]
strat_train_set.head() | code |
2037446/cell_16 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import StratifiedShuffleSplit
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
housing = pd.read_csv('../input/housing.csv')
housing['income_cat'] = np.ceil(housing['median_income'] / 1.5)
housing['income_cat'].where(housing['income_cat'] < 5, 5.0, inplace=True)
from sklearn.model_selection import StratifiedShuffleSplit
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing, housing['income_cat']):
strat_train_set = housing.loc[train_index]
strat_test_set = housing.loc[test_index]
housing = strat_train_set.copy()
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False)
housing['rooms_per_household'] = housing['total_rooms'] / housing['households']
housing['bedrooms_per_room'] = housing['total_bedrooms'] / housing['total_rooms']
housing['population_per_household'] = housing['population'] / housing['households']
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False)
housing = strat_train_set.drop('median_house_value', axis=1)
housing_labels = strat_train_set['median_house_value'].copy()
median = housing['total_bedrooms'].median()
housing['total_bedrooms'].fillna(median)
housing.info()
print(median) | code |
2037446/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
housing = pd.read_csv('../input/housing.csv')
housing.info() | code |
2037446/cell_17 | [
"text_html_output_1.png"
] | from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
housing = pd.read_csv('../input/housing.csv')
housing['income_cat'] = np.ceil(housing['median_income'] / 1.5)
housing['income_cat'].where(housing['income_cat'] < 5, 5.0, inplace=True)
from sklearn.model_selection import StratifiedShuffleSplit
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing, housing['income_cat']):
strat_train_set = housing.loc[train_index]
strat_test_set = housing.loc[test_index]
housing = strat_train_set.copy()
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False)
housing['rooms_per_household'] = housing['total_rooms'] / housing['households']
housing['bedrooms_per_room'] = housing['total_bedrooms'] / housing['total_rooms']
housing['population_per_household'] = housing['population'] / housing['households']
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False)
housing = strat_train_set.drop('median_house_value', axis=1)
housing_labels = strat_train_set['median_house_value'].copy()
median = housing['total_bedrooms'].median()
housing['total_bedrooms'].fillna(median)
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
housing_cat = housing['ocean_proximity']
housing_cat_encoded = encoder.fit_transform(housing_cat)
housing_cat_encoded
housing_cat.shape | code |
2037446/cell_14 | [
"image_output_1.png"
] | from sklearn.model_selection import StratifiedShuffleSplit
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
housing = pd.read_csv('../input/housing.csv')
housing['income_cat'] = np.ceil(housing['median_income'] / 1.5)
housing['income_cat'].where(housing['income_cat'] < 5, 5.0, inplace=True)
from sklearn.model_selection import StratifiedShuffleSplit
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing, housing['income_cat']):
strat_train_set = housing.loc[train_index]
strat_test_set = housing.loc[test_index]
housing = strat_train_set.copy()
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False)
housing['rooms_per_household'] = housing['total_rooms'] / housing['households']
housing['bedrooms_per_room'] = housing['total_bedrooms'] / housing['total_rooms']
housing['population_per_household'] = housing['population'] / housing['households']
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False) | code |
2037446/cell_22 | [
"text_plain_output_1.png"
] | from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.pipeline import FeatureUnion
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import Imputer
from sklearn.preprocessing import LabelBinarizer
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
housing = pd.read_csv('../input/housing.csv')
housing['income_cat'] = np.ceil(housing['median_income'] / 1.5)
housing['income_cat'].where(housing['income_cat'] < 5, 5.0, inplace=True)
from sklearn.model_selection import StratifiedShuffleSplit
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing, housing['income_cat']):
strat_train_set = housing.loc[train_index]
strat_test_set = housing.loc[test_index]
housing = strat_train_set.copy()
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False)
housing['rooms_per_household'] = housing['total_rooms'] / housing['households']
housing['bedrooms_per_room'] = housing['total_bedrooms'] / housing['total_rooms']
housing['population_per_household'] = housing['population'] / housing['households']
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False)
housing = strat_train_set.drop('median_house_value', axis=1)
housing_labels = strat_train_set['median_house_value'].copy()
median = housing['total_bedrooms'].median()
housing['total_bedrooms'].fillna(median)
from sklearn.base import BaseEstimator, TransformerMixin
rooms_ix, bedroom_ix, population_ix, household_ix = (3, 4, 5, 6)
class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
def __init__(self, add_bedrooms_per_room=True):
self.add_bedrooms_per_room = add_bedrooms_per_room
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
rooms_per_household = X[:, rooms_ix] / X[:, household_ix]
population_per_household = X[:, population_ix] / X[:, household_ix]
if self.add_bedrooms_per_room:
bedrooms_per_room = X[:, bedroom_ix] / X[:, rooms_ix]
return np.c_[X, rooms_per_household, population_per_household, bedrooms_per_room]
else:
return np.c_[X, rooms_per_household, population_per_household]
attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False)
housing_extra_attribs = attr_adder.transform(housing.values)
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import Imputer
num_pipeline = Pipeline([('imputer', Imputer(strategy='median')), ('attributes_adder', CombinedAttributesAdder()), ('std_scaler', StandardScaler())])
housing_num_tr = num_pipeline.fit_transform(housing_num)
from sklearn.pipeline import FeatureUnion
class DataFrameSelector(BaseEstimator, TransformerMixin):
def __init__(self, attribute_names):
self.attribute_names = attribute_names
def fit(self, X, y=None):
return self
def transform(self, X):
return X[self.attribute_names].values
class CustomBinarizer(BaseEstimator, TransformerMixin):
def fit(self, X, y=None, **fit_params):
return self
def transform(self, X):
return LabelBinarizer().fit(X).transform(X)
num_attribs = list(housing_num)
cat_attribs = ['ocean_proximity']
num_pipeline = Pipeline([('selector', DataFrameSelector(num_attribs)), ('imputer', Imputer(strategy='median')), ('attributes_adder', CombinedAttributesAdder()), ('std_scaler', StandardScaler())])
cat_pipeline = Pipeline([('selector', DataFrameSelector(cat_attribs)), ('custom_binarizer', CustomBinarizer())])
full_pipeline = FeatureUnion(transformer_list=[('num_pipeline', num_pipeline), ('cat_pipeline', cat_pipeline)])
housing_prepared = full_pipeline.fit_transform(housing)
housing_prepared[0, :] | code |
2037446/cell_10 | [
"text_html_output_1.png"
] | from sklearn.model_selection import StratifiedShuffleSplit
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
housing = pd.read_csv('../input/housing.csv')
housing['income_cat'] = np.ceil(housing['median_income'] / 1.5)
housing['income_cat'].where(housing['income_cat'] < 5, 5.0, inplace=True)
from sklearn.model_selection import StratifiedShuffleSplit
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing, housing['income_cat']):
strat_train_set = housing.loc[train_index]
strat_test_set = housing.loc[test_index]
housing = strat_train_set.copy()
housing.plot(kind='scatter', x='longitude', y='latitude', alpha=0.4, s=housing['population'] / 100, label='population', c='median_house_value', cmap=plt.get_cmap('jet'), colorbar=True)
plt.legend() | code |
2037446/cell_12 | [
"text_plain_output_1.png"
] | from pandas.tools.plotting import scatter_matrix
from sklearn.model_selection import StratifiedShuffleSplit
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
housing = pd.read_csv('../input/housing.csv')
housing['income_cat'] = np.ceil(housing['median_income'] / 1.5)
housing['income_cat'].where(housing['income_cat'] < 5, 5.0, inplace=True)
from sklearn.model_selection import StratifiedShuffleSplit
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing, housing['income_cat']):
strat_train_set = housing.loc[train_index]
strat_test_set = housing.loc[test_index]
housing = strat_train_set.copy()
corr_matrix = housing.corr()
corr_matrix['median_house_value'].sort_values(ascending=False)
from pandas.tools.plotting import scatter_matrix
attributes = ['median_house_value', 'median_income', 'total_rooms', 'housing_median_age']
scatter_matrix(housing[attributes], figsize=(12, 8)) | code |
2037446/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
housing = pd.read_csv('../input/housing.csv')
housing.describe() | code |
17097145/cell_13 | [
"text_plain_output_1.png"
] | from PIL import Image
import cv2 as cv
import numpy as np # linear algebra
import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import torch
import torchvision.transforms as transforms
train_df = pd.read_csv('../input/train.csv')
test_df = pd.read_csv('../input/test.csv')
target_dict = {0: 'No DR(Diabetic Retinopathy)', 1: 'Mild', 2: 'Moderate', 3: 'Severe', 4: 'Proliferative DR(Diabetic Retinopathy)'}
class MyDataset(torch.utils.data.Dataset):
def __init__(self, dir_img_path=None, dir_csv_path=None, Usage=None, transform=None):
super().__init__()
'\n Usage:\n '
self.DIR_PATH = '../input'
self.df = pd.read_csv(dir_csv_path)
self.dir_img_path = dir_img_path
self.images = self.loadImage(self.dir_img_path)
self.Usage = Usage
self.transform = transform
def loadImage(self, path):
return os.listdir(path)
def __getitem__(self, pos):
obj = self.df.loc[pos]
img_id = obj['id_code']
if self.Usage == 'Training':
label = obj['diagnosis']
img_id = '{}.png'.format(img_id)
img = cv.imread(os.path.join(self.dir_img_path, img_id))
img = Image.fromarray(img)
if self.transform:
img = self.transform(img)
if self.Usage == 'Training':
return (img, label)
return (img, obj['id_code'])
def change_type(self, img, label):
return (img.astype(np.float32), label.astype(np.long))
def read(self, image):
return cv.imread(image)
def reshape(self, image):
return cv.resize(image, (244, 244))
def __len__(self):
return len(self.df)
transformation = transforms.Compose([transforms.Resize((224, 224)), transforms.ColorJitter(0.1), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
myDataset = MyDataset('../input/train_images', '../input/train.csv', transform=transformation, Usage='Training')
testData = MyDataset('../input/test_images', '../input/test.csv', transform=transformation, Usage='Testing') | code |
17097145/cell_9 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from PIL import Image
from sklearn.metrics import accuracy_score
import cv2 as cv
import numpy as np # linear algebra
import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data.sampler as sampler
import torchvision.transforms as transforms
train_df = pd.read_csv('../input/train.csv')
test_df = pd.read_csv('../input/test.csv')
target_dict = {0: 'No DR(Diabetic Retinopathy)', 1: 'Mild', 2: 'Moderate', 3: 'Severe', 4: 'Proliferative DR(Diabetic Retinopathy)'}
class MyDataset(torch.utils.data.Dataset):
def __init__(self, dir_img_path=None, dir_csv_path=None, Usage=None, transform=None):
super().__init__()
'\n Usage:\n '
self.DIR_PATH = '../input'
self.df = pd.read_csv(dir_csv_path)
self.dir_img_path = dir_img_path
self.images = self.loadImage(self.dir_img_path)
self.Usage = Usage
self.transform = transform
def loadImage(self, path):
return os.listdir(path)
def __getitem__(self, pos):
obj = self.df.loc[pos]
img_id = obj['id_code']
if self.Usage == 'Training':
label = obj['diagnosis']
img_id = '{}.png'.format(img_id)
img = cv.imread(os.path.join(self.dir_img_path, img_id))
img = Image.fromarray(img)
if self.transform:
img = self.transform(img)
if self.Usage == 'Training':
return (img, label)
return (img, obj['id_code'])
def change_type(self, img, label):
return (img.astype(np.float32), label.astype(np.long))
def read(self, image):
return cv.imread(image)
def reshape(self, image):
return cv.resize(image, (244, 244))
def __len__(self):
return len(self.df)
transformation = transforms.Compose([transforms.Resize((224, 224)), transforms.ColorJitter(0.1), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
myDataset = MyDataset('../input/train_images', '../input/train.csv', transform=transformation, Usage='Training')
test_size = 0.2
samples = len(myDataset)
indices = list(range(samples))
np.random.shuffle(indices)
train_len = int(np.floor(samples * test_size))
train_idx, valid_idx = (indices[train_len:], indices[:train_len])
train_sampler = sampler.SubsetRandomSampler(train_idx)
valid_sampler = sampler.SubsetRandomSampler(valid_idx)
train_loader = torch.utils.data.DataLoader(myDataset, sampler=train_sampler, batch_size=32, shuffle=False)
test_loader = torch.utils.data.DataLoader(myDataset, sampler=valid_sampler, batch_size=32, shuffle=False)
use_cuda = torch.cuda.is_available()
device = torch.device('cuda' if use_cuda else 'cpu')
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=7, padding=3)
self.conv1_1 = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=7, padding=3)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=7, padding=3)
self.conv2_1 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=7, padding=3)
self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5, padding=2)
self.conv3_1 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=5, padding=2)
self.conv4 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=5, padding=2)
self.conv4_1 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=5, padding=2)
self.conv5 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=5, padding=2)
self.conv5_1 = nn.Conv2d(in_channels=512, out_channels=512, kernel_size=5, padding=2)
self.fc1 = nn.Linear(in_features=512 * 7 * 7, out_features=1024)
self.fc2 = nn.Linear(in_features=1024, out_features=1024)
self.fc3 = nn.Linear(in_features=1024, out_features=512)
self.out = nn.Linear(in_features=1024, out_features=5)
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv1_1(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.dropout(x)
x = F.relu(self.conv2(x))
x = F.relu(self.conv2_1(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.dropout(x)
x = F.relu(self.conv3(x))
x = F.relu(self.conv3_1(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.dropout(x)
x = F.relu(self.conv4(x))
x = F.relu(self.conv4_1(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.dropout(x)
x = F.relu(self.conv5(x))
x = F.relu(self.conv5_1(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.dropout(x)
x = x.reshape(-1, 512 * 7 * 7)
x = F.relu(self.fc1(x))
x = self.dropout(x)
x = F.log_softmax(self.out(x), dim=1)
return x
net = Net().to(device)
criterion = torch.nn.NLLLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.0001)
lr_step = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.3)
for epoch in range(20):
running_loss = 0.0
valid_loss = []
valid_auc = []
train_loss = []
train_auc = []
net.train()
for i, (image, label) in enumerate(train_loader):
image, label = (image.to(device), label.to(device))
optimizer.zero_grad()
output = net(image)
loss = criterion(output, label)
_, output = torch.max(output, 1)
loss.backward()
optimizer.step()
running_loss += loss.item()
train_loss.append(loss.item())
train_auc.append(accuracy_score(torch.Tensor.cpu(output), torch.Tensor.cpu(label)))
if i % 10 == 9:
running_loss = 0.0
net.eval()
for i, (image, label) in enumerate(test_loader):
image, label = (image.to(device), label.to(device))
output = net(image)
loss = criterion(output, label)
_, output = torch.max(output, 1)
valid_loss.append(loss.item())
valid_auc.append(accuracy_score(output.cpu().detach().numpy(), label.cpu().detach().numpy()))
print('The state dict keys: \n\n', net.state_dict().keys()) | code |
17097145/cell_4 | [
"text_plain_output_1.png"
] | from PIL import Image
import cv2 as cv
import numpy as np # linear algebra
import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import torch
import torchvision.transforms as transforms
train_df = pd.read_csv('../input/train.csv')
test_df = pd.read_csv('../input/test.csv')
target_dict = {0: 'No DR(Diabetic Retinopathy)', 1: 'Mild', 2: 'Moderate', 3: 'Severe', 4: 'Proliferative DR(Diabetic Retinopathy)'}
class MyDataset(torch.utils.data.Dataset):
def __init__(self, dir_img_path=None, dir_csv_path=None, Usage=None, transform=None):
super().__init__()
'\n Usage:\n '
self.DIR_PATH = '../input'
self.df = pd.read_csv(dir_csv_path)
self.dir_img_path = dir_img_path
self.images = self.loadImage(self.dir_img_path)
self.Usage = Usage
self.transform = transform
print('{} Data length of image {}:'.format(Usage, len(self.images)))
print('{} Data length of csv file {}:'.format(Usage, len(self.df)))
def loadImage(self, path):
return os.listdir(path)
def __getitem__(self, pos):
obj = self.df.loc[pos]
img_id = obj['id_code']
if self.Usage == 'Training':
label = obj['diagnosis']
img_id = '{}.png'.format(img_id)
img = cv.imread(os.path.join(self.dir_img_path, img_id))
img = Image.fromarray(img)
if self.transform:
img = self.transform(img)
if self.Usage == 'Training':
return (img, label)
return (img, obj['id_code'])
def change_type(self, img, label):
return (img.astype(np.float32), label.astype(np.long))
def read(self, image):
return cv.imread(image)
def reshape(self, image):
return cv.resize(image, (244, 244))
def __len__(self):
return len(self.df)
transformation = transforms.Compose([transforms.Resize((224, 224)), transforms.ColorJitter(0.1), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
myDataset = MyDataset('../input/train_images', '../input/train.csv', transform=transformation, Usage='Training') | code |
17097145/cell_1 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import cv2 as cv
import os
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
import torch.utils.data.dataloader as DataLoader
import torch.utils.data.sampler as sampler
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim
from PIL import Image
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
import os
print(os.listdir('../input')) | code |
17097145/cell_8 | [
"text_plain_output_1.png"
] | from PIL import Image
from sklearn.metrics import accuracy_score
import cv2 as cv
import numpy as np # linear algebra
import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data.sampler as sampler
import torchvision.transforms as transforms
train_df = pd.read_csv('../input/train.csv')
test_df = pd.read_csv('../input/test.csv')
target_dict = {0: 'No DR(Diabetic Retinopathy)', 1: 'Mild', 2: 'Moderate', 3: 'Severe', 4: 'Proliferative DR(Diabetic Retinopathy)'}
class MyDataset(torch.utils.data.Dataset):
def __init__(self, dir_img_path=None, dir_csv_path=None, Usage=None, transform=None):
super().__init__()
'\n Usage:\n '
self.DIR_PATH = '../input'
self.df = pd.read_csv(dir_csv_path)
self.dir_img_path = dir_img_path
self.images = self.loadImage(self.dir_img_path)
self.Usage = Usage
self.transform = transform
def loadImage(self, path):
return os.listdir(path)
def __getitem__(self, pos):
obj = self.df.loc[pos]
img_id = obj['id_code']
if self.Usage == 'Training':
label = obj['diagnosis']
img_id = '{}.png'.format(img_id)
img = cv.imread(os.path.join(self.dir_img_path, img_id))
img = Image.fromarray(img)
if self.transform:
img = self.transform(img)
if self.Usage == 'Training':
return (img, label)
return (img, obj['id_code'])
def change_type(self, img, label):
return (img.astype(np.float32), label.astype(np.long))
def read(self, image):
return cv.imread(image)
def reshape(self, image):
return cv.resize(image, (244, 244))
def __len__(self):
return len(self.df)
transformation = transforms.Compose([transforms.Resize((224, 224)), transforms.ColorJitter(0.1), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
myDataset = MyDataset('../input/train_images', '../input/train.csv', transform=transformation, Usage='Training')
test_size = 0.2
samples = len(myDataset)
indices = list(range(samples))
np.random.shuffle(indices)
train_len = int(np.floor(samples * test_size))
train_idx, valid_idx = (indices[train_len:], indices[:train_len])
train_sampler = sampler.SubsetRandomSampler(train_idx)
valid_sampler = sampler.SubsetRandomSampler(valid_idx)
train_loader = torch.utils.data.DataLoader(myDataset, sampler=train_sampler, batch_size=32, shuffle=False)
test_loader = torch.utils.data.DataLoader(myDataset, sampler=valid_sampler, batch_size=32, shuffle=False)
use_cuda = torch.cuda.is_available()
device = torch.device('cuda' if use_cuda else 'cpu')
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=7, padding=3)
self.conv1_1 = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=7, padding=3)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=7, padding=3)
self.conv2_1 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=7, padding=3)
self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5, padding=2)
self.conv3_1 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=5, padding=2)
self.conv4 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=5, padding=2)
self.conv4_1 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=5, padding=2)
self.conv5 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=5, padding=2)
self.conv5_1 = nn.Conv2d(in_channels=512, out_channels=512, kernel_size=5, padding=2)
self.fc1 = nn.Linear(in_features=512 * 7 * 7, out_features=1024)
self.fc2 = nn.Linear(in_features=1024, out_features=1024)
self.fc3 = nn.Linear(in_features=1024, out_features=512)
self.out = nn.Linear(in_features=1024, out_features=5)
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv1_1(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.dropout(x)
x = F.relu(self.conv2(x))
x = F.relu(self.conv2_1(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.dropout(x)
x = F.relu(self.conv3(x))
x = F.relu(self.conv3_1(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.dropout(x)
x = F.relu(self.conv4(x))
x = F.relu(self.conv4_1(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.dropout(x)
x = F.relu(self.conv5(x))
x = F.relu(self.conv5_1(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.dropout(x)
x = x.reshape(-1, 512 * 7 * 7)
x = F.relu(self.fc1(x))
x = self.dropout(x)
x = F.log_softmax(self.out(x), dim=1)
return x
net = Net().to(device)
criterion = torch.nn.NLLLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.0001)
lr_step = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.3)
for epoch in range(20):
running_loss = 0.0
valid_loss = []
valid_auc = []
train_loss = []
train_auc = []
net.train()
for i, (image, label) in enumerate(train_loader):
image, label = (image.to(device), label.to(device))
optimizer.zero_grad()
output = net(image)
loss = criterion(output, label)
_, output = torch.max(output, 1)
loss.backward()
optimizer.step()
running_loss += loss.item()
train_loss.append(loss.item())
train_auc.append(accuracy_score(torch.Tensor.cpu(output), torch.Tensor.cpu(label)))
if i % 10 == 9:
print('[%d, %5d] loss: %.5f Accuracy:%.5f' % (epoch + 1, i + 1, running_loss / 100, accuracy_score(torch.Tensor.cpu(output), torch.Tensor.cpu(label))))
running_loss = 0.0
net.eval()
for i, (image, label) in enumerate(test_loader):
image, label = (image.to(device), label.to(device))
output = net(image)
loss = criterion(output, label)
_, output = torch.max(output, 1)
valid_loss.append(loss.item())
valid_auc.append(accuracy_score(output.cpu().detach().numpy(), label.cpu().detach().numpy()))
print('Epoch {}, train loss: {}, train accuracy: {}\tvalid loss: {}, valid accuracy: {}'.format(epoch + 1, np.mean(train_loss), np.mean(train_auc), np.mean(valid_loss), np.mean(valid_auc))) | code |
17097145/cell_10 | [
"text_plain_output_1.png"
] | from PIL import Image
from sklearn.metrics import accuracy_score
import cv2 as cv
import numpy as np # linear algebra
import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data.sampler as sampler
import torchvision.transforms as transforms
train_df = pd.read_csv('../input/train.csv')
test_df = pd.read_csv('../input/test.csv')
target_dict = {0: 'No DR(Diabetic Retinopathy)', 1: 'Mild', 2: 'Moderate', 3: 'Severe', 4: 'Proliferative DR(Diabetic Retinopathy)'}
class MyDataset(torch.utils.data.Dataset):
def __init__(self, dir_img_path=None, dir_csv_path=None, Usage=None, transform=None):
super().__init__()
'\n Usage:\n '
self.DIR_PATH = '../input'
self.df = pd.read_csv(dir_csv_path)
self.dir_img_path = dir_img_path
self.images = self.loadImage(self.dir_img_path)
self.Usage = Usage
self.transform = transform
def loadImage(self, path):
return os.listdir(path)
def __getitem__(self, pos):
obj = self.df.loc[pos]
img_id = obj['id_code']
if self.Usage == 'Training':
label = obj['diagnosis']
img_id = '{}.png'.format(img_id)
img = cv.imread(os.path.join(self.dir_img_path, img_id))
img = Image.fromarray(img)
if self.transform:
img = self.transform(img)
if self.Usage == 'Training':
return (img, label)
return (img, obj['id_code'])
def change_type(self, img, label):
return (img.astype(np.float32), label.astype(np.long))
def read(self, image):
return cv.imread(image)
def reshape(self, image):
return cv.resize(image, (244, 244))
def __len__(self):
return len(self.df)
transformation = transforms.Compose([transforms.Resize((224, 224)), transforms.ColorJitter(0.1), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
myDataset = MyDataset('../input/train_images', '../input/train.csv', transform=transformation, Usage='Training')
test_size = 0.2
samples = len(myDataset)
indices = list(range(samples))
np.random.shuffle(indices)
train_len = int(np.floor(samples * test_size))
train_idx, valid_idx = (indices[train_len:], indices[:train_len])
train_sampler = sampler.SubsetRandomSampler(train_idx)
valid_sampler = sampler.SubsetRandomSampler(valid_idx)
train_loader = torch.utils.data.DataLoader(myDataset, sampler=train_sampler, batch_size=32, shuffle=False)
test_loader = torch.utils.data.DataLoader(myDataset, sampler=valid_sampler, batch_size=32, shuffle=False)
use_cuda = torch.cuda.is_available()
device = torch.device('cuda' if use_cuda else 'cpu')
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=7, padding=3)
self.conv1_1 = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=7, padding=3)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=7, padding=3)
self.conv2_1 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=7, padding=3)
self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5, padding=2)
self.conv3_1 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=5, padding=2)
self.conv4 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=5, padding=2)
self.conv4_1 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=5, padding=2)
self.conv5 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=5, padding=2)
self.conv5_1 = nn.Conv2d(in_channels=512, out_channels=512, kernel_size=5, padding=2)
self.fc1 = nn.Linear(in_features=512 * 7 * 7, out_features=1024)
self.fc2 = nn.Linear(in_features=1024, out_features=1024)
self.fc3 = nn.Linear(in_features=1024, out_features=512)
self.out = nn.Linear(in_features=1024, out_features=5)
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv1_1(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.dropout(x)
x = F.relu(self.conv2(x))
x = F.relu(self.conv2_1(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.dropout(x)
x = F.relu(self.conv3(x))
x = F.relu(self.conv3_1(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.dropout(x)
x = F.relu(self.conv4(x))
x = F.relu(self.conv4_1(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.dropout(x)
x = F.relu(self.conv5(x))
x = F.relu(self.conv5_1(x))
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.dropout(x)
x = x.reshape(-1, 512 * 7 * 7)
x = F.relu(self.fc1(x))
x = self.dropout(x)
x = F.log_softmax(self.out(x), dim=1)
return x
net = Net().to(device)
criterion = torch.nn.NLLLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.0001)
lr_step = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2, gamma=0.3)
for epoch in range(20):
running_loss = 0.0
valid_loss = []
valid_auc = []
train_loss = []
train_auc = []
net.train()
for i, (image, label) in enumerate(train_loader):
image, label = (image.to(device), label.to(device))
optimizer.zero_grad()
output = net(image)
loss = criterion(output, label)
_, output = torch.max(output, 1)
loss.backward()
optimizer.step()
running_loss += loss.item()
train_loss.append(loss.item())
train_auc.append(accuracy_score(torch.Tensor.cpu(output), torch.Tensor.cpu(label)))
if i % 10 == 9:
running_loss = 0.0
net.eval()
for i, (image, label) in enumerate(test_loader):
image, label = (image.to(device), label.to(device))
output = net(image)
loss = criterion(output, label)
_, output = torch.max(output, 1)
valid_loss.append(loss.item())
valid_auc.append(accuracy_score(output.cpu().detach().numpy(), label.cpu().detach().numpy()))
checkpoint = {'model': Net(), 'state_dict': net.state_dict(), 'optimizer': optimizer.state_dict()}
torch.save(checkpoint, 'checkpoint.pth') | code |
17097145/cell_5 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from PIL import Image
import cv2 as cv
import numpy as np # linear algebra
import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import torch
import torch.utils.data.sampler as sampler
import torchvision.transforms as transforms
train_df = pd.read_csv('../input/train.csv')
test_df = pd.read_csv('../input/test.csv')
target_dict = {0: 'No DR(Diabetic Retinopathy)', 1: 'Mild', 2: 'Moderate', 3: 'Severe', 4: 'Proliferative DR(Diabetic Retinopathy)'}
class MyDataset(torch.utils.data.Dataset):
def __init__(self, dir_img_path=None, dir_csv_path=None, Usage=None, transform=None):
super().__init__()
'\n Usage:\n '
self.DIR_PATH = '../input'
self.df = pd.read_csv(dir_csv_path)
self.dir_img_path = dir_img_path
self.images = self.loadImage(self.dir_img_path)
self.Usage = Usage
self.transform = transform
def loadImage(self, path):
return os.listdir(path)
def __getitem__(self, pos):
obj = self.df.loc[pos]
img_id = obj['id_code']
if self.Usage == 'Training':
label = obj['diagnosis']
img_id = '{}.png'.format(img_id)
img = cv.imread(os.path.join(self.dir_img_path, img_id))
img = Image.fromarray(img)
if self.transform:
img = self.transform(img)
if self.Usage == 'Training':
return (img, label)
return (img, obj['id_code'])
def change_type(self, img, label):
return (img.astype(np.float32), label.astype(np.long))
def read(self, image):
return cv.imread(image)
def reshape(self, image):
return cv.resize(image, (244, 244))
def __len__(self):
return len(self.df)
transformation = transforms.Compose([transforms.Resize((224, 224)), transforms.ColorJitter(0.1), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
myDataset = MyDataset('../input/train_images', '../input/train.csv', transform=transformation, Usage='Training')
test_size = 0.2
samples = len(myDataset)
indices = list(range(samples))
np.random.shuffle(indices)
train_len = int(np.floor(samples * test_size))
train_idx, valid_idx = (indices[train_len:], indices[:train_len])
train_sampler = sampler.SubsetRandomSampler(train_idx)
valid_sampler = sampler.SubsetRandomSampler(valid_idx)
print(len(train_sampler), len(valid_sampler))
train_loader = torch.utils.data.DataLoader(myDataset, sampler=train_sampler, batch_size=32, shuffle=False)
test_loader = torch.utils.data.DataLoader(myDataset, sampler=valid_sampler, batch_size=32, shuffle=False)
use_cuda = torch.cuda.is_available()
device = torch.device('cuda' if use_cuda else 'cpu') | code |
306027/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd
import sqlite3
import pandas as pd
import sqlite3
con = sqlite3.connect('../input/database.sqlite')
scripts = pd.read_sql_query('\n\nSELECT s.Id,\n\n cv.Title,\n\n COUNT(DISTINCT vo.Id) NumVotes,\n\n COUNT(DISTINCT CASE WHEN vo.UserId!=s.AuthorUserId THEN vo.Id ELSE NULL END) NumNonSelfVotes,\n\n CASE WHEN COUNT(DISTINCT CASE WHEN vo.UserId!=s.AuthorUserId THEN vo.Id ELSE NULL END)>0 THEN 1 ELSE 0 END HasNonSelfVotes,\n\n COUNT(DISTINCT v.Id) NumVersions,\n\n SUM(CASE WHEN r.WorkerStatus=2 THEN 1 ELSE 0 END) NumSuccessfulRuns,\n\n SUM(CASE WHEN r.WorkerStatus=3 THEN 1 ELSE 0 END) NumErroredRuns,\n\n SUM(CASE WHEN v.IsChange=1 THEN 1 ELSE 0 END) NumChangedVersions,\n\n SUM(v.LinesInsertedFromPrevious-v.LinesDeletedFromPrevious) Lines,\n\n SUM(v.LinesInsertedFromPrevious+v.LinesChangedFromPrevious) LinesAddedOrChanged,\n\n l.Name\n\nFROM Scripts s\n\nINNER JOIN ScriptVersions v ON v.ScriptId=s.Id\n\nINNER JOIN ScriptVersions cv ON s.CurrentScriptVersionId=cv.Id\n\nINNER JOIN ScriptRuns r ON r.ScriptVersionId=v.Id\n\nINNER JOIN ScriptLanguages l ON v.ScriptLanguageId=l.Id\n\nLEFT OUTER JOIN ScriptVotes vo ON vo.ScriptVersionId=v.Id\n\nWHERE r.WorkerStatus != 4\n\n AND r.WorkerStatus != 5\n\nGROUP BY s.Id,\n\n cv.Title,\n\n cv.Id,\n\n l.Name\n\nORDER BY cv.Id DESC\n\n', con)
scripts
pd.read_sql_query('\nSELECT *\nFROM ScriptLanguages\nLIMIT 100\n', con) | code |
306027/cell_2 | [
"text_html_output_1.png"
] | import pandas as pd
import sqlite3
import pandas as pd
import sqlite3
con = sqlite3.connect('../input/database.sqlite')
scripts = pd.read_sql_query('\nSELECT s.Id,\n cv.Title,\n COUNT(DISTINCT vo.Id) NumVotes,\n COUNT(DISTINCT CASE WHEN vo.UserId!=s.AuthorUserId THEN vo.Id ELSE NULL END) NumNonSelfVotes,\n CASE WHEN COUNT(DISTINCT CASE WHEN vo.UserId!=s.AuthorUserId THEN vo.Id ELSE NULL END)>0 THEN 1 ELSE 0 END HasNonSelfVotes,\n COUNT(DISTINCT v.Id) NumVersions,\n SUM(CASE WHEN r.WorkerStatus=2 THEN 1 ELSE 0 END) NumSuccessfulRuns,\n SUM(CASE WHEN r.WorkerStatus=3 THEN 1 ELSE 0 END) NumErroredRuns,\n SUM(CASE WHEN v.IsChange=1 THEN 1 ELSE 0 END) NumChangedVersions,\n SUM(v.LinesInsertedFromPrevious-v.LinesDeletedFromPrevious) Lines,\n SUM(v.LinesInsertedFromPrevious+v.LinesChangedFromPrevious) LinesAddedOrChanged,\n l.Name\nFROM Scripts s\nINNER JOIN ScriptVersions v ON v.ScriptId=s.Id\nINNER JOIN ScriptVersions cv ON s.CurrentScriptVersionId=cv.Id\nINNER JOIN ScriptRuns r ON r.ScriptVersionId=v.Id\nINNER JOIN ScriptLanguages l ON v.ScriptLanguageId=l.Id\nLEFT OUTER JOIN ScriptVotes vo ON vo.ScriptVersionId=v.Id\nWHERE r.WorkerStatus != 4\n AND r.WorkerStatus != 5\nGROUP BY s.Id,\n cv.Title,\n cv.Id,\n l.Name\nORDER BY cv.Id DESC\n', con)
scripts | code |
306027/cell_3 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | from sklearn.cross_validation import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import Pipeline, FeatureUnion
import pandas as pd
import sqlite3
import pandas as pd
import sqlite3
con = sqlite3.connect('../input/database.sqlite')
scripts = pd.read_sql_query('\n\nSELECT s.Id,\n\n cv.Title,\n\n COUNT(DISTINCT vo.Id) NumVotes,\n\n COUNT(DISTINCT CASE WHEN vo.UserId!=s.AuthorUserId THEN vo.Id ELSE NULL END) NumNonSelfVotes,\n\n CASE WHEN COUNT(DISTINCT CASE WHEN vo.UserId!=s.AuthorUserId THEN vo.Id ELSE NULL END)>0 THEN 1 ELSE 0 END HasNonSelfVotes,\n\n COUNT(DISTINCT v.Id) NumVersions,\n\n SUM(CASE WHEN r.WorkerStatus=2 THEN 1 ELSE 0 END) NumSuccessfulRuns,\n\n SUM(CASE WHEN r.WorkerStatus=3 THEN 1 ELSE 0 END) NumErroredRuns,\n\n SUM(CASE WHEN v.IsChange=1 THEN 1 ELSE 0 END) NumChangedVersions,\n\n SUM(v.LinesInsertedFromPrevious-v.LinesDeletedFromPrevious) Lines,\n\n SUM(v.LinesInsertedFromPrevious+v.LinesChangedFromPrevious) LinesAddedOrChanged,\n\n l.Name\n\nFROM Scripts s\n\nINNER JOIN ScriptVersions v ON v.ScriptId=s.Id\n\nINNER JOIN ScriptVersions cv ON s.CurrentScriptVersionId=cv.Id\n\nINNER JOIN ScriptRuns r ON r.ScriptVersionId=v.Id\n\nINNER JOIN ScriptLanguages l ON v.ScriptLanguageId=l.Id\n\nLEFT OUTER JOIN ScriptVotes vo ON vo.ScriptVersionId=v.Id\n\nWHERE r.WorkerStatus != 4\n\n AND r.WorkerStatus != 5\n\nGROUP BY s.Id,\n\n cv.Title,\n\n cv.Id,\n\n l.Name\n\nORDER BY cv.Id DESC\n\n', con)
scripts
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.cross_validation import train_test_split
from sklearn.ensemble import RandomForestClassifier
class RawColumnExtractor:
def __init__(self, column):
self.column = column
def fit(self, *_):
return self
def transform(self, data):
return data[[self.column]]
features = FeatureUnion([('NumSuccessfulRuns', RawColumnExtractor('NumSuccessfulRuns')), ('NumChangedVersions', RawColumnExtractor('NumChangedVersions'))])
pipeline = Pipeline([('feature_union', features), ('predictor', RandomForestClassifier())])
train = scripts
target_name = 'HasNonSelfVotes'
x_train, x_test, y_train, y_test = train_test_split(train, train[target_name], test_size=0.4, random_state=0)
pipeline.fit(x_train, y_train)
score = pipeline.score(x_test, y_test)
print('Score %f' % score) | code |
90133854/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd
ge = pd.read_csv('../input/gender-classification-dataset/gender_classification_v7.csv')
ge
x = 0
for i in ge.columns:
print(f'{i},"coulmn_value_count"' + f'num_of_coulmn=\t{x}' + f'\tnum_of_items_in_each_coulmn\t{len(ge[i].value_counts())})')
print(ge[i].value_counts().to_frame)
x = x + 1
print('*******************') | code |
90133854/cell_20 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
ge = pd.read_csv('../input/gender-classification-dataset/gender_classification_v7.csv')
ge
x = 0
for i in ge.columns:
x = x + 1
ge.describe().round(2).T
ge.isnull().sum()
ge1 = ge.copy()
cat_ge = list(ge.select_dtypes(exclude='float64').columns)
num_ge = list(ge.select_dtypes(include='float64').columns)
i = ['gender']
num_ge = num_ge + i
col = ge1.columns
fgi, ax = plt.subplots(len(num_ge), 1, figsize=(15, 15))
for ind, axi in enumerate(ax.flat):
axi.boxplot(ge1[num_ge[ind]], vert=False)
axi.set_title(num_ge[ind], size=12) | code |
90133854/cell_6 | [
"image_output_5.png",
"image_output_4.png",
"image_output_6.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | import pandas as pd
ge = pd.read_csv('../input/gender-classification-dataset/gender_classification_v7.csv')
ge
x = 0
for i in ge.columns:
x = x + 1
ge.describe().round(2).T
ge.info() | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.