path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
90133854/cell_11
[ "text_html_output_1.png" ]
import pandas as pd ge = pd.read_csv('../input/gender-classification-dataset/gender_classification_v7.csv') ge x = 0 for i in ge.columns: x = x + 1 ge.describe().round(2).T ge.isnull().sum() ge1 = ge.copy() cat_ge = list(ge.select_dtypes(exclude='float64').columns) cat_ge
code
90133854/cell_7
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd ge = pd.read_csv('../input/gender-classification-dataset/gender_classification_v7.csv') ge x = 0 for i in ge.columns: x = x + 1 ge.describe().round(2).T ge.isnull().sum()
code
90133854/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns ge = pd.read_csv('../input/gender-classification-dataset/gender_classification_v7.csv') ge x = 0 for i in ge.columns: x = x + 1 ge.describe().round(2).T ge.isnull().sum() ge1 = ge.copy() cat_ge = list(ge.select_dtypes(exclude='float64').columns) num_ge = list(ge.select_dtypes(include='float64').columns) i = ['gender'] num_ge = num_ge + i for i in cat_ge: plt.figure() sns.countplot(x=i, data=ge1[cat_ge], hue='gender') plt.title(i)
code
90133854/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd ge = pd.read_csv('../input/gender-classification-dataset/gender_classification_v7.csv') ge x = 0 for i in ge.columns: x = x + 1 ge.describe().round(2).T ge.isnull().sum() ge1 = ge.copy() cat_ge = list(ge.select_dtypes(exclude='float64').columns) num_ge = list(ge.select_dtypes(include='float64').columns) i = ['gender'] num_ge = num_ge + i num_ge
code
90133854/cell_16
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns ge = pd.read_csv('../input/gender-classification-dataset/gender_classification_v7.csv') ge x = 0 for i in ge.columns: x = x + 1 ge.describe().round(2).T ge.isnull().sum() ge1 = ge.copy() cat_ge = list(ge.select_dtypes(exclude='float64').columns) num_ge = list(ge.select_dtypes(include='float64').columns) i = ['gender'] num_ge = num_ge + i sns.pairplot(data=ge1[num_ge], hue='gender', diag_kind='kde')
code
90133854/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd ge = pd.read_csv('../input/gender-classification-dataset/gender_classification_v7.csv') ge
code
90133854/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd ge = pd.read_csv('../input/gender-classification-dataset/gender_classification_v7.csv') ge x = 0 for i in ge.columns: x = x + 1 ge.describe().round(2).T
code
2022945/cell_21
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv', index_col=0) test = pd.read_csv('../input/test.csv', index_col=0) train = train[train['GrLivArea'] < 4000] labels = train['SalePrice'] train = train.drop('SalePrice', axis=1) all_data = pd.concat([train, test]) nums = all_data.select_dtypes(exclude=['object']).columns cat = all_data.select_dtypes(include=['object']).columns all_data.loc[2611, 'MasVnrType'] = 'BrkFace' all_data['MasVnrType'].fillna('None', inplace=True) all_data['MasVnrArea'].fillna(0, inplace=True) bsmt_num_features = ['BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath'] all_data[all_data['BsmtFullBath'].isnull()][bsmt_num_features] all_data.loc[[2121, 2189], bsmt_num_features] = 0 all_data.loc[[2041, 2186, 2525, 2218, 2219]][bsmt_num_features] all_data.loc[[2041, 2186, 2525], 'BsmtCond'] = all_data.loc[[2041, 2186, 2525], 'BsmtQual'] all_data.loc[[2218, 2219], 'BsmtQual'] = all_data.loc[[2218, 2219], 'BsmtCond'] all_data.loc[[949, 1488, 2349]][bsmt_num_features]
code
2022945/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv', index_col=0) test = pd.read_csv('../input/test.csv', index_col=0) train = train[train['GrLivArea'] < 4000] labels = train['SalePrice'] train = train.drop('SalePrice', axis=1) all_data = pd.concat([train, test]) nums = all_data.select_dtypes(exclude=['object']).columns cat = all_data.select_dtypes(include=['object']).columns all_data.loc[2611, 'MasVnrType'] = 'BrkFace' all_data['MasVnrType'].fillna('None', inplace=True) all_data['MasVnrArea'].fillna(0, inplace=True) bsmt_num_features = ['BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath'] all_data[all_data['BsmtFullBath'].isnull()][bsmt_num_features] all_data.loc[[2121, 2189], bsmt_num_features] = 0 all_data.loc[[2041, 2186, 2525, 2218, 2219]][bsmt_num_features] all_data.loc[[2041, 2186, 2525], 'BsmtCond'] = all_data.loc[[2041, 2186, 2525], 'BsmtQual'] all_data.loc[[2218, 2219], 'BsmtQual'] = all_data.loc[[2218, 2219], 'BsmtCond'] all_data.loc[[949, 1488, 2349]][bsmt_num_features] all_data.loc[[949, 1488, 2349], 'BsmtExposure'] = 'Av' all_data.loc[333][bsmt_num_features]
code
2022945/cell_30
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv', index_col=0) test = pd.read_csv('../input/test.csv', index_col=0) train = train[train['GrLivArea'] < 4000] labels = train['SalePrice'] train = train.drop('SalePrice', axis=1) all_data = pd.concat([train, test]) nums = all_data.select_dtypes(exclude=['object']).columns cat = all_data.select_dtypes(include=['object']).columns all_data.loc[2611, 'MasVnrType'] = 'BrkFace' all_data['MasVnrType'].fillna('None', inplace=True) all_data['MasVnrArea'].fillna(0, inplace=True) bsmt_num_features = ['BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath'] all_data[all_data['BsmtFullBath'].isnull()][bsmt_num_features] all_data.loc[[2121, 2189], bsmt_num_features] = 0 all_data.loc[[2041, 2186, 2525, 2218, 2219]][bsmt_num_features] all_data.loc[[2041, 2186, 2525], 'BsmtCond'] = all_data.loc[[2041, 2186, 2525], 'BsmtQual'] all_data.loc[[2218, 2219], 'BsmtQual'] = all_data.loc[[2218, 2219], 'BsmtCond'] all_data.loc[[949, 1488, 2349]][bsmt_num_features] all_data.loc[[949, 1488, 2349], 'BsmtExposure'] = 'Av' all_data.loc[333][bsmt_num_features] all_data.loc[333, 'BsmtFinType2'] = 'Unf' print(all_data[all_data['MiscFeature'] == 'Gar2'].index) print(all_data[all_data['SaleCondition'] == 'Alloca'].index)
code
2022945/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv', index_col=0) test = pd.read_csv('../input/test.csv', index_col=0) train = train[train['GrLivArea'] < 4000] labels = train['SalePrice'] train = train.drop('SalePrice', axis=1) all_data = pd.concat([train, test]) nums = all_data.select_dtypes(exclude=['object']).columns cat = all_data.select_dtypes(include=['object']).columns all_data.loc[2611, 'MasVnrType'] = 'BrkFace' all_data['MasVnrType'].fillna('None', inplace=True) all_data['MasVnrArea'].fillna(0, inplace=True) bsmt_num_features = ['BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath'] all_data[all_data['BsmtFullBath'].isnull()][bsmt_num_features] all_data.loc[[2121, 2189], bsmt_num_features] = 0 bsmt_cat_features = ['BsmtCond', 'BsmtQual', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2'] all_data.loc[[2041, 2186, 2525, 2218, 2219]][bsmt_num_features] all_data.loc[[2041, 2186, 2525], 'BsmtCond'] = all_data.loc[[2041, 2186, 2525], 'BsmtQual'] all_data.loc[[2218, 2219], 'BsmtQual'] = all_data.loc[[2218, 2219], 'BsmtCond'] print(all_data[all_data['BsmtExposure'].isnull() & all_data['BsmtCond'].notnull()][bsmt_cat_features])
code
2022945/cell_29
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv', index_col=0) test = pd.read_csv('../input/test.csv', index_col=0) train = train[train['GrLivArea'] < 4000] labels = train['SalePrice'] train = train.drop('SalePrice', axis=1) all_data = pd.concat([train, test]) nums = all_data.select_dtypes(exclude=['object']).columns cat = all_data.select_dtypes(include=['object']).columns all_data.loc[2611, 'MasVnrType'] = 'BrkFace' all_data['MasVnrType'].fillna('None', inplace=True) all_data['MasVnrArea'].fillna(0, inplace=True) bsmt_num_features = ['BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath'] all_data[all_data['BsmtFullBath'].isnull()][bsmt_num_features] all_data.loc[[2121, 2189], bsmt_num_features] = 0 all_data.loc[[2041, 2186, 2525, 2218, 2219]][bsmt_num_features] all_data.loc[[2041, 2186, 2525], 'BsmtCond'] = all_data.loc[[2041, 2186, 2525], 'BsmtQual'] all_data.loc[[2218, 2219], 'BsmtQual'] = all_data.loc[[2218, 2219], 'BsmtCond'] all_data.loc[[949, 1488, 2349]][bsmt_num_features] all_data.loc[[949, 1488, 2349], 'BsmtExposure'] = 'Av' all_data.loc[333][bsmt_num_features] all_data.loc[333, 'BsmtFinType2'] = 'Unf' grg_num_features = ['GarageCars', 'GarageArea', 'GarageYrBlt'] grg_cat_features = ['GarageType', 'GarageFinish', 'GarageQual', 'GarageCond'] all_data[all_data['GarageYrBlt'].isnull() & all_data['GarageType'].notnull()][grg_cat_features + grg_num_features]
code
2022945/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv', index_col=0) test = pd.read_csv('../input/test.csv', index_col=0) train = train[train['GrLivArea'] < 4000] labels = train['SalePrice'] train = train.drop('SalePrice', axis=1) all_data = pd.concat([train, test]) nums = all_data.select_dtypes(exclude=['object']).columns cat = all_data.select_dtypes(include=['object']).columns all_data['MasVnrType'].value_counts()
code
2022945/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv', index_col=0) test = pd.read_csv('../input/test.csv', index_col=0) train = train[train['GrLivArea'] < 4000] labels = train['SalePrice'] train = train.drop('SalePrice', axis=1) all_data = pd.concat([train, test]) nums = all_data.select_dtypes(exclude=['object']).columns cat = all_data.select_dtypes(include=['object']).columns for n in nums: if all_data[n].isnull().values.sum() > 0: print(n, all_data[n].isnull().sum())
code
2022945/cell_18
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv', index_col=0) test = pd.read_csv('../input/test.csv', index_col=0) train = train[train['GrLivArea'] < 4000] labels = train['SalePrice'] train = train.drop('SalePrice', axis=1) all_data = pd.concat([train, test]) nums = all_data.select_dtypes(exclude=['object']).columns cat = all_data.select_dtypes(include=['object']).columns all_data.loc[2611, 'MasVnrType'] = 'BrkFace' all_data['MasVnrType'].fillna('None', inplace=True) all_data['MasVnrArea'].fillna(0, inplace=True) bsmt_num_features = ['BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath'] all_data[all_data['BsmtFullBath'].isnull()][bsmt_num_features] all_data.loc[[2121, 2189], bsmt_num_features] = 0 all_data.loc[[2041, 2186, 2525, 2218, 2219]][bsmt_num_features]
code
2022945/cell_8
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv', index_col=0) test = pd.read_csv('../input/test.csv', index_col=0) train = train[train['GrLivArea'] < 4000] labels = train['SalePrice'] train = train.drop('SalePrice', axis=1) all_data = pd.concat([train, test]) nums = all_data.select_dtypes(exclude=['object']).columns cat = all_data.select_dtypes(include=['object']).columns for c in cat: if all_data[c].isnull().values.sum() > 0: print(c, all_data[c].isnull().sum())
code
2022945/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv', index_col=0) test = pd.read_csv('../input/test.csv', index_col=0) train = train[train['GrLivArea'] < 4000] labels = train['SalePrice'] train = train.drop('SalePrice', axis=1) all_data = pd.concat([train, test]) nums = all_data.select_dtypes(exclude=['object']).columns cat = all_data.select_dtypes(include=['object']).columns all_data.loc[2611, 'MasVnrType'] = 'BrkFace' all_data['MasVnrType'].fillna('None', inplace=True) all_data['MasVnrArea'].fillna(0, inplace=True) bsmt_num_features = ['BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath'] all_data[all_data['BsmtFullBath'].isnull()][bsmt_num_features] all_data.loc[[2121, 2189], bsmt_num_features] = 0 bsmt_cat_features = ['BsmtCond', 'BsmtQual', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2'] print(all_data[all_data['BsmtCond'].isnull() & all_data['BsmtQual'].notnull()][bsmt_cat_features]) print(all_data[all_data['BsmtCond'].notnull() & all_data['BsmtQual'].isnull()][bsmt_cat_features])
code
2022945/cell_24
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv', index_col=0) test = pd.read_csv('../input/test.csv', index_col=0) train = train[train['GrLivArea'] < 4000] labels = train['SalePrice'] train = train.drop('SalePrice', axis=1) all_data = pd.concat([train, test]) nums = all_data.select_dtypes(exclude=['object']).columns cat = all_data.select_dtypes(include=['object']).columns all_data.loc[2611, 'MasVnrType'] = 'BrkFace' all_data['MasVnrType'].fillna('None', inplace=True) all_data['MasVnrArea'].fillna(0, inplace=True) bsmt_num_features = ['BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath'] all_data[all_data['BsmtFullBath'].isnull()][bsmt_num_features] all_data.loc[[2121, 2189], bsmt_num_features] = 0 bsmt_cat_features = ['BsmtCond', 'BsmtQual', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2'] all_data.loc[[2041, 2186, 2525, 2218, 2219]][bsmt_num_features] all_data.loc[[2041, 2186, 2525], 'BsmtCond'] = all_data.loc[[2041, 2186, 2525], 'BsmtQual'] all_data.loc[[2218, 2219], 'BsmtQual'] = all_data.loc[[2218, 2219], 'BsmtCond'] all_data.loc[[949, 1488, 2349]][bsmt_num_features] all_data.loc[[949, 1488, 2349], 'BsmtExposure'] = 'Av' all_data[all_data['BsmtFinType2'].isnull() & all_data['BsmtFinType1'].notnull()][bsmt_cat_features]
code
2022945/cell_14
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv', index_col=0) test = pd.read_csv('../input/test.csv', index_col=0) train = train[train['GrLivArea'] < 4000] labels = train['SalePrice'] train = train.drop('SalePrice', axis=1) all_data = pd.concat([train, test]) nums = all_data.select_dtypes(exclude=['object']).columns cat = all_data.select_dtypes(include=['object']).columns all_data.loc[2611, 'MasVnrType'] = 'BrkFace' all_data['MasVnrType'].fillna('None', inplace=True) all_data['MasVnrArea'].fillna(0, inplace=True) bsmt_num_features = ['BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath'] all_data[all_data['BsmtFullBath'].isnull()][bsmt_num_features]
code
2022945/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv', index_col=0) test = pd.read_csv('../input/test.csv', index_col=0) train = train[train['GrLivArea'] < 4000] labels = train['SalePrice'] train = train.drop('SalePrice', axis=1) all_data = pd.concat([train, test]) nums = all_data.select_dtypes(exclude=['object']).columns cat = all_data.select_dtypes(include=['object']).columns all_data.loc[2611, 'MasVnrType'] = 'BrkFace' all_data['MasVnrType'].fillna('None', inplace=True) all_data['MasVnrArea'].fillna(0, inplace=True) bsmt_num_features = ['BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath'] all_data[all_data['BsmtFullBath'].isnull()][bsmt_num_features] all_data.loc[[2121, 2189], bsmt_num_features] = 0 all_data.loc[[2041, 2186, 2525, 2218, 2219]][bsmt_num_features] all_data.loc[[2041, 2186, 2525], 'BsmtCond'] = all_data.loc[[2041, 2186, 2525], 'BsmtQual'] all_data.loc[[2218, 2219], 'BsmtQual'] = all_data.loc[[2218, 2219], 'BsmtCond'] all_data.loc[[949, 1488, 2349]][bsmt_num_features] all_data[all_data['BsmtExposure'].notnull() & (all_data['BsmtExposure'] != 'No')]['BsmtExposure'].value_counts()
code
2022945/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv', index_col=0) test = pd.read_csv('../input/test.csv', index_col=0) train = train[train['GrLivArea'] < 4000] labels = train['SalePrice'] train = train.drop('SalePrice', axis=1) all_data = pd.concat([train, test]) nums = all_data.select_dtypes(exclude=['object']).columns cat = all_data.select_dtypes(include=['object']).columns all_data[all_data['MasVnrType'].isnull() & all_data['MasVnrArea'].notnull()][['MasVnrType', 'MasVnrArea']]
code
106196332/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd pokemon = pd.read_csv('../input/pokemon/Pokemon.csv') print(pokemon.info()) print(pokemon.describe())
code
72063406/cell_13
[ "text_plain_output_1.png" ]
from lightgbm import LGBMRegressor from sklearn import model_selection from sklearn.metrics import mean_squared_error import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') categorical_cols = [col for col in train.columns if 'cat' in col] new_train = pd.get_dummies(train, columns=categorical_cols, prefix_sep='_') new_test = pd.get_dummies(test, columns=categorical_cols, prefix_sep='_') new_test = new_test.drop('id', axis=1) new_train['kfold'] = -1 kf = model_selection.KFold(n_splits=5, shuffle=True, random_state=47) for k, (train_idx, valid_idx) in enumerate(kf.split(X=new_train)): new_train.loc[valid_idx, 'kfold'] = k def train_test_data(df, fold): x_train = df[df.kfold != fold].reset_index(drop=True) x_valid = df[df.kfold == fold].reset_index(drop=True) y_train = x_train.target y_valid = x_valid.target x_train = x_train.drop(['id', 'target', 'kfold'], axis=1) x_valid = x_valid.drop(['id', 'target', 'kfold'], axis=1) return {'x_train': x_train, 'y_train': y_train, 'x_valid': x_valid, 'y_valid': y_valid} def n_trees_get_models(): models = dict() n_trees = [10, 50, 100, 500, 1000] for n in n_trees: models[str(n)] = LGBMRegressor(n_estimators=n) return models def n_depth_get_models(): models = dict() for i in range(1, 11): models[str(i)] = LGBMRegressor(max_depth=i, num_leaves=2 ** i) return models def n_lr_get_models(): models = dict() rates = [0.0001, 0.001, 0.01, 0.1, 1.0] for r in rates: key = '%.4f' % r models[key] = LGBMRegressor(learning_rate=r) return models def n_boosting_types_get_models(): models = dict() boosting_types = ['gbdt', 'dart', 'goss'] for t in boosting_types: models[t] = LGBMRegressor(boosting_type=t) return models for fold in range(5): datasets = train_test_data(new_train, fold) x_train = datasets['x_train'] y_train = datasets['y_train'] x_valid = datasets['x_valid'] y_valid = datasets['y_valid'] models = n_trees_get_models() for name, model in models.items(): model.fit(x_train, y_train) preds = model.predict(x_valid) preds_test = model.predict(new_test) rmse = mean_squared_error(y_valid, preds, squared=False) for fold in range(5): datasets = train_test_data(new_train, fold) x_train = datasets['x_train'] y_train = datasets['y_train'] x_valid = datasets['x_valid'] y_valid = datasets['y_valid'] models = n_depth_get_models() for name, model in models.items(): model.fit(x_train, y_train) preds = model.predict(x_valid) preds_test = model.predict(new_test) rmse = mean_squared_error(y_valid, preds, squared=False) for fold in range(5): datasets = train_test_data(new_train, fold) x_train = datasets['x_train'] y_train = datasets['y_train'] x_valid = datasets['x_valid'] y_valid = datasets['y_valid'] models = n_lr_get_models() print('************ FOLD: ' + str(fold + 1) + ' ************') for name, model in models.items(): model.fit(x_train, y_train) preds = model.predict(x_valid) preds_test = model.predict(new_test) rmse = mean_squared_error(y_valid, preds, squared=False) print('For learning rate: ' + str(name)) print('RMSE Error for fold', fold + 1, ': ', rmse)
code
72063406/cell_11
[ "text_plain_output_1.png" ]
from lightgbm import LGBMRegressor from sklearn import model_selection from sklearn.metrics import mean_squared_error import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') categorical_cols = [col for col in train.columns if 'cat' in col] new_train = pd.get_dummies(train, columns=categorical_cols, prefix_sep='_') new_test = pd.get_dummies(test, columns=categorical_cols, prefix_sep='_') new_test = new_test.drop('id', axis=1) new_train['kfold'] = -1 kf = model_selection.KFold(n_splits=5, shuffle=True, random_state=47) for k, (train_idx, valid_idx) in enumerate(kf.split(X=new_train)): new_train.loc[valid_idx, 'kfold'] = k def train_test_data(df, fold): x_train = df[df.kfold != fold].reset_index(drop=True) x_valid = df[df.kfold == fold].reset_index(drop=True) y_train = x_train.target y_valid = x_valid.target x_train = x_train.drop(['id', 'target', 'kfold'], axis=1) x_valid = x_valid.drop(['id', 'target', 'kfold'], axis=1) return {'x_train': x_train, 'y_train': y_train, 'x_valid': x_valid, 'y_valid': y_valid} def n_trees_get_models(): models = dict() n_trees = [10, 50, 100, 500, 1000] for n in n_trees: models[str(n)] = LGBMRegressor(n_estimators=n) return models def n_depth_get_models(): models = dict() for i in range(1, 11): models[str(i)] = LGBMRegressor(max_depth=i, num_leaves=2 ** i) return models def n_lr_get_models(): models = dict() rates = [0.0001, 0.001, 0.01, 0.1, 1.0] for r in rates: key = '%.4f' % r models[key] = LGBMRegressor(learning_rate=r) return models def n_boosting_types_get_models(): models = dict() boosting_types = ['gbdt', 'dart', 'goss'] for t in boosting_types: models[t] = LGBMRegressor(boosting_type=t) return models for fold in range(5): datasets = train_test_data(new_train, fold) x_train = datasets['x_train'] y_train = datasets['y_train'] x_valid = datasets['x_valid'] y_valid = datasets['y_valid'] models = n_trees_get_models() print('************ FOLD: ' + str(fold + 1) + ' ************') for name, model in models.items(): model.fit(x_train, y_train) preds = model.predict(x_valid) preds_test = model.predict(new_test) rmse = mean_squared_error(y_valid, preds, squared=False) print('For ' + str(name) + ' trees: ') print('RMSE Error for fold', fold + 1, ': ', rmse)
code
72063406/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
72063406/cell_12
[ "text_plain_output_1.png" ]
from lightgbm import LGBMRegressor from sklearn import model_selection from sklearn.metrics import mean_squared_error import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_sub = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') categorical_cols = [col for col in train.columns if 'cat' in col] new_train = pd.get_dummies(train, columns=categorical_cols, prefix_sep='_') new_test = pd.get_dummies(test, columns=categorical_cols, prefix_sep='_') new_test = new_test.drop('id', axis=1) new_train['kfold'] = -1 kf = model_selection.KFold(n_splits=5, shuffle=True, random_state=47) for k, (train_idx, valid_idx) in enumerate(kf.split(X=new_train)): new_train.loc[valid_idx, 'kfold'] = k def train_test_data(df, fold): x_train = df[df.kfold != fold].reset_index(drop=True) x_valid = df[df.kfold == fold].reset_index(drop=True) y_train = x_train.target y_valid = x_valid.target x_train = x_train.drop(['id', 'target', 'kfold'], axis=1) x_valid = x_valid.drop(['id', 'target', 'kfold'], axis=1) return {'x_train': x_train, 'y_train': y_train, 'x_valid': x_valid, 'y_valid': y_valid} def n_trees_get_models(): models = dict() n_trees = [10, 50, 100, 500, 1000] for n in n_trees: models[str(n)] = LGBMRegressor(n_estimators=n) return models def n_depth_get_models(): models = dict() for i in range(1, 11): models[str(i)] = LGBMRegressor(max_depth=i, num_leaves=2 ** i) return models def n_lr_get_models(): models = dict() rates = [0.0001, 0.001, 0.01, 0.1, 1.0] for r in rates: key = '%.4f' % r models[key] = LGBMRegressor(learning_rate=r) return models def n_boosting_types_get_models(): models = dict() boosting_types = ['gbdt', 'dart', 'goss'] for t in boosting_types: models[t] = LGBMRegressor(boosting_type=t) return models for fold in range(5): datasets = train_test_data(new_train, fold) x_train = datasets['x_train'] y_train = datasets['y_train'] x_valid = datasets['x_valid'] y_valid = datasets['y_valid'] models = n_trees_get_models() for name, model in models.items(): model.fit(x_train, y_train) preds = model.predict(x_valid) preds_test = model.predict(new_test) rmse = mean_squared_error(y_valid, preds, squared=False) for fold in range(5): datasets = train_test_data(new_train, fold) x_train = datasets['x_train'] y_train = datasets['y_train'] x_valid = datasets['x_valid'] y_valid = datasets['y_valid'] models = n_depth_get_models() print('************ FOLD: ' + str(fold + 1) + ' ************') for name, model in models.items(): model.fit(x_train, y_train) preds = model.predict(x_valid) preds_test = model.predict(new_test) rmse = mean_squared_error(y_valid, preds, squared=False) print('For ' + str(name) + ' depth: ') print('RMSE Error for fold', fold + 1, ': ', rmse)
code
18144904/cell_6
[ "image_output_1.png" ]
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.layers import Dense, Conv2D, Flatten from keras.models import Sequential, Model from keras.optimizers import Adagrad from keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt train_datagen = ImageDataGenerator(rescale=1.0 / 255, horizontal_flip=True, vertical_flip=True, validation_split=0.2) def get_generator(path, subset): return train_datagen.flow_from_directory(path, target_size=(200, 400), batch_size=32, class_mode='categorical', subset=subset, color_mode='grayscale') train_generator = get_generator('../input/transmittancy/transmittancy/', 'training') validation_generator = get_generator('../input/transmittancy/transmittancy/', 'validation') from keras.optimizers import Adagrad from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau adagrad = Adagrad(decay=0.001, lr=0.005) earlyStopping = EarlyStopping(monitor='val_acc', patience=8, verbose=1, mode='min') mcp_save = ModelCheckpoint('best_model.hdf5', save_best_only=True, monitor='val_loss', mode='min') from keras.models import Sequential, Model from keras.layers import Dense, Conv2D, Flatten model = Sequential() model.add(Conv2D(128, kernel_size=3, activation='relu', strides=(2, 4), input_shape=(200, 400, 1))) model.add(Conv2D(64, kernel_size=3, activation='relu', strides=(2, 4))) model.add(Conv2D(32, kernel_size=3, activation='relu', strides=(2, 4))) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=adagrad, metrics=['acc']) model.summary() history = model.fit_generator(train_generator, steps_per_epoch=150, epochs=40, validation_data=validation_generator, validation_steps=15) import matplotlib.pyplot as plt plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('Model accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['train', 'validation'], loc='upper left') plt.show()
code
18144904/cell_2
[ "text_plain_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator(rescale=1.0 / 255, horizontal_flip=True, vertical_flip=True, validation_split=0.2) def get_generator(path, subset): return train_datagen.flow_from_directory(path, target_size=(200, 400), batch_size=32, class_mode='categorical', subset=subset, color_mode='grayscale') train_generator = get_generator('../input/transmittancy/transmittancy/', 'training') validation_generator = get_generator('../input/transmittancy/transmittancy/', 'validation')
code
18144904/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator
code
18144904/cell_8
[ "image_output_1.png" ]
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.layers import Dense, Conv2D, Flatten from keras.models import Sequential, Model from keras.optimizers import Adagrad from keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt train_datagen = ImageDataGenerator(rescale=1.0 / 255, horizontal_flip=True, vertical_flip=True, validation_split=0.2) def get_generator(path, subset): return train_datagen.flow_from_directory(path, target_size=(200, 400), batch_size=32, class_mode='categorical', subset=subset, color_mode='grayscale') train_generator = get_generator('../input/transmittancy/transmittancy/', 'training') validation_generator = get_generator('../input/transmittancy/transmittancy/', 'validation') from keras.optimizers import Adagrad from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau adagrad = Adagrad(decay=0.001, lr=0.005) earlyStopping = EarlyStopping(monitor='val_acc', patience=8, verbose=1, mode='min') mcp_save = ModelCheckpoint('best_model.hdf5', save_best_only=True, monitor='val_loss', mode='min') from keras.models import Sequential, Model from keras.layers import Dense, Conv2D, Flatten model = Sequential() model.add(Conv2D(128, kernel_size=3, activation='relu', strides=(2, 4), input_shape=(200, 400, 1))) model.add(Conv2D(64, kernel_size=3, activation='relu', strides=(2, 4))) model.add(Conv2D(32, kernel_size=3, activation='relu', strides=(2, 4))) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=adagrad, metrics=['acc']) model.summary() history = model.fit_generator(train_generator, steps_per_epoch=150, epochs=40, validation_data=validation_generator, validation_steps=15) import matplotlib.pyplot as plt def plot_batch(batch): fig, axes = plt.subplots(4, 8, sharex=True, sharey=True, figsize=(16, 8)) for ind, ax in enumerate(axes.flatten()): ax.imshow(batch[ind].reshape(200, 400), vmin=0, vmax=1, interpolation=None, cmap='gray') fig.tight_layout() plt.show() batch, _ = train_generator.next() plot_batch(batch)
code
18144904/cell_5
[ "text_plain_output_1.png" ]
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.layers import Dense, Conv2D, Flatten from keras.models import Sequential, Model from keras.optimizers import Adagrad from keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator(rescale=1.0 / 255, horizontal_flip=True, vertical_flip=True, validation_split=0.2) def get_generator(path, subset): return train_datagen.flow_from_directory(path, target_size=(200, 400), batch_size=32, class_mode='categorical', subset=subset, color_mode='grayscale') train_generator = get_generator('../input/transmittancy/transmittancy/', 'training') validation_generator = get_generator('../input/transmittancy/transmittancy/', 'validation') from keras.optimizers import Adagrad from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau adagrad = Adagrad(decay=0.001, lr=0.005) earlyStopping = EarlyStopping(monitor='val_acc', patience=8, verbose=1, mode='min') mcp_save = ModelCheckpoint('best_model.hdf5', save_best_only=True, monitor='val_loss', mode='min') from keras.models import Sequential, Model from keras.layers import Dense, Conv2D, Flatten model = Sequential() model.add(Conv2D(128, kernel_size=3, activation='relu', strides=(2, 4), input_shape=(200, 400, 1))) model.add(Conv2D(64, kernel_size=3, activation='relu', strides=(2, 4))) model.add(Conv2D(32, kernel_size=3, activation='relu', strides=(2, 4))) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=adagrad, metrics=['acc']) model.summary() history = model.fit_generator(train_generator, steps_per_epoch=150, epochs=40, validation_data=validation_generator, validation_steps=15)
code
128034943/cell_4
[ "text_plain_output_4.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCV import glob import librosa import numpy as np import os import pandas as pd import random def load_metadata(file_path): return pd.read_csv(file_path) def process_audio_file(filename, species, train_audio_path, segment_duration=5): file_path = os.path.join(train_audio_path, species, filename) try: audio_data, sr = librosa.load(file_path) except Exception as e: print(f'Não foi possível carregar o arquivo {file_path}: {e}') return None segment_length = segment_duration * sr segments = [audio_data[i:i + segment_length] for i in range(0, len(audio_data), segment_length)] results = [] for segment in segments: spectrogram = librosa.feature.melspectrogram(y=segment, sr=sr, n_mels=32) mfccs = librosa.feature.mfcc(y=segment, sr=sr, n_mfcc=12) mean_mfccs = mfccs.mean(axis=1) file_features = np.concatenate([spectrogram.flatten(), mean_mfccs]) results.append((species, filename, file_features)) return results def load_and_process_audio_files(metadata_df, selected_species_list, train_audio_path, sample_size=60): audio_files = [] for species in selected_species_list: species_path = os.path.join(train_audio_path, species, '*.ogg') species_audio_files = glob.glob(species_path) audio_files.extend([(os.path.basename(f), species) for f in species_audio_files]) if len(audio_files) < sample_size: audio_files_sample = audio_files else: audio_files_sample = random.sample(audio_files, sample_size) results = [] with concurrent.futures.ThreadPoolExecutor() as executor: results_list = list(executor.map(lambda x: process_audio_file(x[0], x[1], train_audio_path), audio_files_sample)) for result in results_list: if result is not None: results.extend(result) species_list, filenames, features_list = zip(*results) max_features = max([len(features) for features in features_list]) padded_features = [] for features in features_list: padding_length = max(0, max_features - len(features)) padded_features.append(np.pad(features, (0, padding_length), mode='constant')) results_df = pd.DataFrame({'primary_label': species_list, 'filename': filenames}) features_df = pd.DataFrame(padded_features, columns=[f'feature_{i}' for i in range(len(padded_features[0]))]) metadata_features_df = pd.concat([results_df, features_df], axis=1) X = metadata_features_df.drop(['primary_label', 'filename'], axis=1) y = metadata_features_df['primary_label'] return (X, y) def train_model(X_train, y_train, param_dist, stratified_kfold, n_iter=300, n_jobs=-1): clf = RandomForestClassifier(random_state=42) random_search = RandomizedSearchCV(estimator=clf, param_distributions=param_dist, n_iter=n_iter, cv=stratified_kfold, verbose=2, random_state=42, n_jobs=n_jobs) random_search.fit(X_train, y_train) best_clf = random_search.best_estimator_ return best_clf def evaluate_model(model, X_test, y_test): y_pred = model.predict(X_test) return accuracy_score(y_test, y_pred) def process_test_audio_file(filename, test_audio_path, segment_duration=5): file_path = os.path.join(test_audio_path, filename) try: audio_data, sr = librosa.load(file_path) except Exception as e: print(f'Não foi possível carregar o arquivo {file_path}: {e}') return None segment_length = segment_duration * sr segments = [audio_data[i:i + segment_length] for i in range(0, len(audio_data), segment_length)] results = [] for segment in segments: spectrogram = librosa.feature.melspectrogram(y=segment, sr=sr, n_mels=32) mfccs = librosa.feature.mfcc(y=segment, sr=sr, n_mfcc=12) mean_mfccs = mfccs.mean(axis=1) file_features = np.concatenate([spectrogram.flatten(), mean_mfccs]) results.append(file_features) return results def predict(model, test_features, max_features, species_columns): test_padding_length = max(0, max_features - len(test_features)) test_features_padded = np.pad(test_features, (0, test_padding_length), mode='constant') predictions = model.predict_proba(test_features_padded.reshape(1, -1))[0] class_probabilities = dict(zip(model.classes_, predictions)) predictions_aligned = [class_probabilities.get(species, 0) for species in species_columns] return predictions_aligned def main(): metadata_file_path = os.path.join('/kaggle/input/birdclef-2023/train_metadata.csv') metadata_df = load_metadata(metadata_file_path) selected_species_list = metadata_df['primary_label'].unique() train_audio_path = os.path.join('/kaggle/input/birdclef-2023/train_audio') X, y = load_and_process_audio_files(metadata_df, selected_species_list, train_audio_path) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) param_dist = {'n_estimators': range(20, 400), 'max_depth': [None] + list(range(1, 10)), 'min_samples_split': range(2, 11), 'min_samples_leaf': range(1, 5), 'bootstrap': [True, False]} stratified_kfold = StratifiedKFold(n_splits=4, shuffle=True, random_state=42) best_clf = train_model(X_train, y_train, param_dist, stratified_kfold) acc = evaluate_model(best_clf, X_test, y_test) print('Acurácia do modelo:', acc) test_audio_path = os.path.join('/kaggle/input/birdclef-2023/test_soundscapes') test_filename = 'soundscape_29201.ogg' test_features_list = process_test_audio_file(test_filename, test_audio_path) species_columns = sorted(metadata_df['primary_label'].unique()) submission_df = pd.DataFrame(columns=['row_id'] + species_columns) for i, test_features in enumerate(test_features_list): if test_features is not None: predictions = predict(best_clf, test_features, X.shape[1], species_columns) temp_df = pd.DataFrame([predictions], columns=species_columns) test_filename_no_ext = os.path.splitext(test_filename)[0] temp_df.insert(0, 'row_id', f'{test_filename_no_ext}_{(i + 1) * 5}') submission_df = submission_df.append(temp_df, ignore_index=True) else: print(f'Não foi possível processar o segmento {i + 1} do arquivo de áudio de teste.') submission_df.to_csv('submission.csv', index=False) if __name__ == '__main__': main()
code
128034943/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import os import glob import random import concurrent.futures import numpy as np import pandas as pd import librosa from sklearn.model_selection import train_test_split, StratifiedKFold, RandomizedSearchCV from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from joblib import dump, load
code
122257222/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/car-price-prediction/car_price.csv') data.shape data.describe()
code
122257222/cell_25
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/car-price-prediction/car_price.csv') data.shape data.sample() data[data.duplicated()] data.nunique() features = data.copy() features.drop(columns=['fueltype', 'aspiration', 'doornumber', 'drivewheel', 'enginelocation', 'symboling'], inplace=True) features.columns corr = features.select_dtypes('number').drop(columns=['price']).corr() features.drop(columns=['wheelbase', 'enginesize', 'boreratio', 'highwaympg'], inplace=True) features.columns corr = features.select_dtypes('number').drop(columns=['price']).corr() target = features['price'] target.head()
code
122257222/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/car-price-prediction/car_price.csv') data.shape data.sample() data[data.duplicated()] data.nunique() features = data.copy() features.drop(columns=['fueltype', 'aspiration', 'doornumber', 'drivewheel', 'enginelocation', 'symboling'], inplace=True) features.columns corr = features.select_dtypes('number').drop(columns=['price']).corr() features.drop(columns=['wheelbase', 'enginesize', 'boreratio', 'highwaympg'], inplace=True) features.columns corr = features.select_dtypes('number').drop(columns=['price']).corr() sns.heatmap(corr)
code
122257222/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/car-price-prediction/car_price.csv') data.head()
code
122257222/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.linear_model import Ridge from sklearn.pipeline import Pipeline, make_pipeline from sklearn.preprocessing import OneHotEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/car-price-prediction/car_price.csv') data.shape data.sample() data[data.duplicated()] data.nunique() features = data.copy() features.drop(columns=['fueltype', 'aspiration', 'doornumber', 'drivewheel', 'enginelocation', 'symboling'], inplace=True) features.columns corr = features.select_dtypes('number').drop(columns=['price']).corr() features.drop(columns=['wheelbase', 'enginesize', 'boreratio', 'highwaympg'], inplace=True) features.columns corr = features.select_dtypes('number').drop(columns=['price']).corr() target = features['price'] features.drop(columns=['price'], inplace=True) from sklearn.pipeline import Pipeline, make_pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.linear_model import Ridge model = make_pipeline(OneHotEncoder(), Ridge()) model.fit(features, target)
code
122257222/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/car-price-prediction/car_price.csv') data.shape data.sample() data.info()
code
122257222/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/car-price-prediction/car_price.csv') data.shape data.sample() data[data.duplicated()] data.nunique() features = data.copy() features.drop(columns=['fueltype', 'aspiration', 'doornumber', 'drivewheel', 'enginelocation', 'symboling'], inplace=True) features.columns corr = features.select_dtypes('number').drop(columns=['price']).corr() sns.heatmap(corr)
code
122257222/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
122257222/cell_7
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/car-price-prediction/car_price.csv') data.tail()
code
122257222/cell_18
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/car-price-prediction/car_price.csv') data.shape data.sample() data[data.duplicated()] data.nunique() features = data.copy() features.drop(columns=['fueltype', 'aspiration', 'doornumber', 'drivewheel', 'enginelocation', 'symboling'], inplace=True) features.columns features.select_dtypes('object').head()
code
122257222/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/car-price-prediction/car_price.csv') data.shape
code
122257222/cell_15
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/car-price-prediction/car_price.csv') data.shape data.sample() data[data.duplicated()] data.nunique()
code
122257222/cell_16
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/car-price-prediction/car_price.csv') data.shape data.sample() data[data.duplicated()] data.nunique() features = data.copy() features.head()
code
122257222/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/car-price-prediction/car_price.csv') data.shape data.sample() data[data.duplicated()] data.nunique() features = data.copy() features.drop(columns=['fueltype', 'aspiration', 'doornumber', 'drivewheel', 'enginelocation', 'symboling'], inplace=True) features.columns
code
122257222/cell_24
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/car-price-prediction/car_price.csv') data.shape data.sample() data[data.duplicated()] data.nunique() features = data.copy() features.drop(columns=['fueltype', 'aspiration', 'doornumber', 'drivewheel', 'enginelocation', 'symboling'], inplace=True) features.columns corr = features.select_dtypes('number').drop(columns=['price']).corr() features.drop(columns=['wheelbase', 'enginesize', 'boreratio', 'highwaympg'], inplace=True) features.columns corr = features.select_dtypes('number').drop(columns=['price']).corr() features.info()
code
122257222/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/car-price-prediction/car_price.csv') data.shape data.sample() data[data.duplicated()]
code
122257222/cell_22
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/car-price-prediction/car_price.csv') data.shape data.sample() data[data.duplicated()] data.nunique() features = data.copy() features.drop(columns=['fueltype', 'aspiration', 'doornumber', 'drivewheel', 'enginelocation', 'symboling'], inplace=True) features.columns corr = features.select_dtypes('number').drop(columns=['price']).corr() features.drop(columns=['wheelbase', 'enginesize', 'boreratio', 'highwaympg'], inplace=True) features.columns
code
122257222/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/car-price-prediction/car_price.csv') data.shape data.sample()
code
122257222/cell_27
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/car-price-prediction/car_price.csv') data.shape data.sample() data[data.duplicated()] data.nunique() features = data.copy() features.drop(columns=['fueltype', 'aspiration', 'doornumber', 'drivewheel', 'enginelocation', 'symboling'], inplace=True) features.columns corr = features.select_dtypes('number').drop(columns=['price']).corr() features.drop(columns=['wheelbase', 'enginesize', 'boreratio', 'highwaympg'], inplace=True) features.columns corr = features.select_dtypes('number').drop(columns=['price']).corr() features.drop(columns=['price'], inplace=True) features.head()
code
128020140/cell_6
[ "image_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split, StratifiedKFold, KFold, cross_val_score, GridSearchCV import pandas as pd learning_rate = 0.001 weight_decay = 0.0001 batch_size = 256 num_epochs = 1000 image_size = 72 patch_size = 6 num_patches = (image_size // patch_size) ** 2 projection_dim = 64 num_heads = 4 transformer_units = [projection_dim * 2, projection_dim] transformer_layers = 8 mlp_head_units = [2048, 1024] input_shape = (72, 72, 3) num_classes = 7 image_dir = '/kaggle/input/balanced-datasets/Smote_dataset' df = pd.read_csv('/kaggle/input/balanced-datasets/Smote_dataset/labels.csv') train_val_df, test_df = train_test_split(df, stratify=df['label'], test_size=0.1, random_state=42) train_df, validation_df = train_test_split(train_val_df, stratify=train_val_df['label'], test_size=0.2, random_state=42) augmented_datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = augmented_datagen.flow_from_dataframe(train_df, directory=image_dir, batch_size=batch_size, target_size=(image_size, image_size), x_col='filename', y_col='label', class_mode='categorical', shuffle=True) val_generator = datagen.flow_from_dataframe(validation_df, directory=image_dir, batch_size=batch_size, target_size=(image_size, image_size), x_col='filename', y_col='label', class_mode='categorical', shuffle=True) test_generator = datagen.flow_from_dataframe(test_df, directory=image_dir, x_col='filename', y_col='label', target_size=(image_size, image_size), batch_size=20, class_mode='categorical')
code
128020140/cell_16
[ "text_plain_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split, StratifiedKFold, KFold, cross_val_score, GridSearchCV from tensorflow import keras from tensorflow.keras import layers import pandas as pd import tensorflow as tf import tensorflow_addons as tfa learning_rate = 0.001 weight_decay = 0.0001 batch_size = 256 num_epochs = 1000 image_size = 72 patch_size = 6 num_patches = (image_size // patch_size) ** 2 projection_dim = 64 num_heads = 4 transformer_units = [projection_dim * 2, projection_dim] transformer_layers = 8 mlp_head_units = [2048, 1024] input_shape = (72, 72, 3) num_classes = 7 image_dir = '/kaggle/input/balanced-datasets/Smote_dataset' df = pd.read_csv('/kaggle/input/balanced-datasets/Smote_dataset/labels.csv') train_val_df, test_df = train_test_split(df, stratify=df['label'], test_size=0.1, random_state=42) train_df, validation_df = train_test_split(train_val_df, stratify=train_val_df['label'], test_size=0.2, random_state=42) augmented_datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = augmented_datagen.flow_from_dataframe(train_df, directory=image_dir, batch_size=batch_size, target_size=(image_size, image_size), x_col='filename', y_col='label', class_mode='categorical', shuffle=True) val_generator = datagen.flow_from_dataframe(validation_df, directory=image_dir, batch_size=batch_size, target_size=(image_size, image_size), x_col='filename', y_col='label', class_mode='categorical', shuffle=True) test_generator = datagen.flow_from_dataframe(test_df, directory=image_dir, x_col='filename', y_col='label', target_size=(image_size, image_size), batch_size=20, class_mode='categorical') def mlp(x, hidden_units, dropout_rate): for units in hidden_units: x = layers.Dense(units, activation=tf.nn.gelu)(x) x = layers.Dropout(dropout_rate)(x) return x class Patches(layers.Layer): def __init__(self, patch_size): super().__init__() self.patch_size = patch_size def call(self, images): batch_size = tf.shape(images)[0] patches = tf.image.extract_patches(images=images, sizes=[1, self.patch_size, self.patch_size, 1], strides=[1, self.patch_size, self.patch_size, 1], rates=[1, 1, 1, 1], padding='VALID') patch_dims = patches.shape[-1] patches = tf.reshape(patches, [batch_size, -1, patch_dims]) return patches class PatchEncoder(layers.Layer): def __init__(self, num_patches, projection_dim): super().__init__() self.num_patches = num_patches self.projection = layers.Dense(units=projection_dim) self.position_embedding = layers.Embedding(input_dim=num_patches, output_dim=projection_dim) def call(self, patch): positions = tf.range(start=0, limit=self.num_patches, delta=1) encoded = self.projection(patch) + self.position_embedding(positions) return encoded def create_vit_classifier(): inputs = layers.Input(shape=input_shape) patches = Patches(patch_size)(inputs) encoded_patches = PatchEncoder(num_patches, projection_dim)(patches) for _ in range(transformer_layers): x1 = layers.LayerNormalization(epsilon=1e-06)(encoded_patches) attention_output = layers.MultiHeadAttention(num_heads=num_heads, key_dim=projection_dim, dropout=0.1)(x1, x1) x2 = layers.Add()([attention_output, encoded_patches]) x3 = layers.LayerNormalization(epsilon=1e-06)(x2) x3 = mlp(x3, hidden_units=transformer_units, dropout_rate=0.1) encoded_patches = layers.Add()([x3, x2]) representation = layers.LayerNormalization(epsilon=1e-06)(encoded_patches) representation = layers.Flatten()(representation) representation = layers.Dropout(0.5)(representation) features = mlp(representation, hidden_units=mlp_head_units, dropout_rate=0.5) logits = layers.Dense(num_classes)(features) model = keras.Model(inputs=inputs, outputs=logits) return model def run_experiment(model): optimizer = tfa.optimizers.AdamW(learning_rate=learning_rate, weight_decay=weight_decay) model.compile(optimizer=optimizer, loss=keras.losses.CategoricalCrossentropy(from_logits=True), metrics=[keras.metrics.CategoricalAccuracy(name='accuracy'), keras.metrics.TopKCategoricalAccuracy(3, name='top-3-accuracy')]) mc = keras.callbacks.ModelCheckpoint(filepath='/tmp/checkpoint', monitor='val_accuracy', save_best_only=True, save_weights_only=True) cb = [mc] history = model.fit(train_generator, steps_per_epoch=len(train_df) // batch_size, epochs=num_epochs, validation_data=val_generator, validation_steps=len(validation_df) // batch_size, callbacks=cb) model.load_weights('/tmp/checkpoint') _, accuracy, top_5_accuracy = model.evaluate(test_generator) print(f'Test accuracy: {round(accuracy * 100, 2)}%') print(f'Test top 5 accuracy: {round(top_5_accuracy * 100, 2)}%') return history vit_classifier = create_vit_classifier() history = run_experiment(vit_classifier)
code
128020140/cell_17
[ "text_plain_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import train_test_split, StratifiedKFold, KFold, cross_val_score, GridSearchCV from tensorflow import keras from tensorflow.keras import layers import matplotlib.pyplot as plt import pandas as pd import tensorflow as tf import tensorflow_addons as tfa learning_rate = 0.001 weight_decay = 0.0001 batch_size = 256 num_epochs = 1000 image_size = 72 patch_size = 6 num_patches = (image_size // patch_size) ** 2 projection_dim = 64 num_heads = 4 transformer_units = [projection_dim * 2, projection_dim] transformer_layers = 8 mlp_head_units = [2048, 1024] input_shape = (72, 72, 3) num_classes = 7 image_dir = '/kaggle/input/balanced-datasets/Smote_dataset' df = pd.read_csv('/kaggle/input/balanced-datasets/Smote_dataset/labels.csv') train_val_df, test_df = train_test_split(df, stratify=df['label'], test_size=0.1, random_state=42) train_df, validation_df = train_test_split(train_val_df, stratify=train_val_df['label'], test_size=0.2, random_state=42) augmented_datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') datagen = ImageDataGenerator(rescale=1.0 / 255) train_generator = augmented_datagen.flow_from_dataframe(train_df, directory=image_dir, batch_size=batch_size, target_size=(image_size, image_size), x_col='filename', y_col='label', class_mode='categorical', shuffle=True) val_generator = datagen.flow_from_dataframe(validation_df, directory=image_dir, batch_size=batch_size, target_size=(image_size, image_size), x_col='filename', y_col='label', class_mode='categorical', shuffle=True) test_generator = datagen.flow_from_dataframe(test_df, directory=image_dir, x_col='filename', y_col='label', target_size=(image_size, image_size), batch_size=20, class_mode='categorical') def mlp(x, hidden_units, dropout_rate): for units in hidden_units: x = layers.Dense(units, activation=tf.nn.gelu)(x) x = layers.Dropout(dropout_rate)(x) return x class Patches(layers.Layer): def __init__(self, patch_size): super().__init__() self.patch_size = patch_size def call(self, images): batch_size = tf.shape(images)[0] patches = tf.image.extract_patches(images=images, sizes=[1, self.patch_size, self.patch_size, 1], strides=[1, self.patch_size, self.patch_size, 1], rates=[1, 1, 1, 1], padding='VALID') patch_dims = patches.shape[-1] patches = tf.reshape(patches, [batch_size, -1, patch_dims]) return patches class PatchEncoder(layers.Layer): def __init__(self, num_patches, projection_dim): super().__init__() self.num_patches = num_patches self.projection = layers.Dense(units=projection_dim) self.position_embedding = layers.Embedding(input_dim=num_patches, output_dim=projection_dim) def call(self, patch): positions = tf.range(start=0, limit=self.num_patches, delta=1) encoded = self.projection(patch) + self.position_embedding(positions) return encoded def create_vit_classifier(): inputs = layers.Input(shape=input_shape) patches = Patches(patch_size)(inputs) encoded_patches = PatchEncoder(num_patches, projection_dim)(patches) for _ in range(transformer_layers): x1 = layers.LayerNormalization(epsilon=1e-06)(encoded_patches) attention_output = layers.MultiHeadAttention(num_heads=num_heads, key_dim=projection_dim, dropout=0.1)(x1, x1) x2 = layers.Add()([attention_output, encoded_patches]) x3 = layers.LayerNormalization(epsilon=1e-06)(x2) x3 = mlp(x3, hidden_units=transformer_units, dropout_rate=0.1) encoded_patches = layers.Add()([x3, x2]) representation = layers.LayerNormalization(epsilon=1e-06)(encoded_patches) representation = layers.Flatten()(representation) representation = layers.Dropout(0.5)(representation) features = mlp(representation, hidden_units=mlp_head_units, dropout_rate=0.5) logits = layers.Dense(num_classes)(features) model = keras.Model(inputs=inputs, outputs=logits) return model def run_experiment(model): optimizer = tfa.optimizers.AdamW(learning_rate=learning_rate, weight_decay=weight_decay) model.compile(optimizer=optimizer, loss=keras.losses.CategoricalCrossentropy(from_logits=True), metrics=[keras.metrics.CategoricalAccuracy(name='accuracy'), keras.metrics.TopKCategoricalAccuracy(3, name='top-3-accuracy')]) mc = keras.callbacks.ModelCheckpoint(filepath='/tmp/checkpoint', monitor='val_accuracy', save_best_only=True, save_weights_only=True) cb = [mc] history = model.fit(train_generator, steps_per_epoch=len(train_df) // batch_size, epochs=num_epochs, validation_data=val_generator, validation_steps=len(validation_df) // batch_size, callbacks=cb) model.load_weights('/tmp/checkpoint') _, accuracy, top_5_accuracy = model.evaluate(test_generator) return history vit_classifier = create_vit_classifier() history = run_experiment(vit_classifier) history_dict = history.history loss_values = history_dict['loss'] val_loss_values = history_dict['val_loss'] acc_values = history_dict['accuracy'] val_acc_values = history_dict['val_accuracy'] def smooth_curve(points, factor=0.8): smoothed_points = [] for point in points: if smoothed_points: previous = smoothed_points[-1] smoothed_points.append(previous * factor + point * (1 - factor)) else: smoothed_points.append(point) return smoothed_points epochs = range(1, len(loss_values) + 1) plt.subplot(1, 2, 1) plt.plot(epochs, smooth_curve(loss_values), 'bo', label='training loss') plt.plot(epochs, smooth_curve(val_loss_values), 'b', label='validation loss') plt.title('training and validation loss') plt.xlabel('epochs') plt.ylabel('loss') plt.legend() plt.subplot(1, 2, 2) plt.plot(epochs, smooth_curve(acc_values), 'ro', label='taining accuracy') plt.plot(epochs, smooth_curve(val_acc_values), 'r', label='validation accuracy') plt.title('training and validation accuracy') plt.xlabel('epochs') plt.ylabel('accuracy') plt.legend() plt.show()
code
121153835/cell_13
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split, KFold import lightgbm as lgbm import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv') df.drop(columns='id', inplace=True) df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv') df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True) df = pd.concat([df, df_add]) df_test = pd.read_csv('/kaggle/input/playground-series-s3e9/test.csv') df_test.drop(columns='id', inplace=True) y = df.pop('Strength') df['tot_comp'] = df.iloc[:, :7].sum(axis=1) df['coarse_fine'] = df.CoarseAggregateComponent / df.FineAggregateComponent df['Aggregate'] = df['CoarseAggregateComponent'] + df['FineAggregateComponent'] df['Slag_Cement'] = df['BlastFurnaceSlag'] / df['CementComponent'] df['Ash_Cement'] = df['FlyAshComponent'] / df['CementComponent'] df['Plastic_Cement'] = df['SuperplasticizerComponent'] / df['CementComponent'] df['Age_Water'] = df['AgeInDays'] / df['WaterComponent'] df_test['tot_comp'] = df_test.iloc[:, :7].sum(axis=1) df_test['coarse_fine'] = df_test.CoarseAggregateComponent / df_test.FineAggregateComponent df_test['Aggregate'] = df_test['CoarseAggregateComponent'] + df_test['FineAggregateComponent'] df_test['Slag_Cement'] = df_test['BlastFurnaceSlag'] / df_test['CementComponent'] df_test['Ash_Cement'] = df_test['FlyAshComponent'] / df_test['CementComponent'] df_test['Plastic_Cement'] = df_test['SuperplasticizerComponent'] / df_test['CementComponent'] df_test['Age_Water'] = df_test['AgeInDays'] / df_test['WaterComponent'] splitter = KFold(n_splits=5, shuffle=True, random_state=231) df_lgbm = lgbm.Dataset(df, label=y) model_cv = lgbm.cv({'random_state': 97}, train_set=df_lgbm, num_boost_round=50, folds=splitter, nfold=5, metrics='rmse', return_cvbooster=True, eval_train_metric=True) predictions = pd.DataFrame(np.array(model_cv['cvbooster'].predict(df_test)).T) sns.kdeplot(y, label='true value') sns.kdeplot(predictions.mean(axis=1), label='prediction') plt.legend()
code
121153835/cell_4
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv') df.drop(columns='id', inplace=True) df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv') df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True) df = pd.concat([df, df_add]) df_test = pd.read_csv('/kaggle/input/playground-series-s3e9/test.csv') df_test.drop(columns='id', inplace=True) df_test.head()
code
121153835/cell_2
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv') df.drop(columns='id', inplace=True) print(f'the competition dataset shape is {df.shape}')
code
121153835/cell_11
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split, KFold import lightgbm as lgbm import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv') df.drop(columns='id', inplace=True) df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv') df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True) df = pd.concat([df, df_add]) df_test = pd.read_csv('/kaggle/input/playground-series-s3e9/test.csv') df_test.drop(columns='id', inplace=True) y = df.pop('Strength') df['tot_comp'] = df.iloc[:, :7].sum(axis=1) df['coarse_fine'] = df.CoarseAggregateComponent / df.FineAggregateComponent df['Aggregate'] = df['CoarseAggregateComponent'] + df['FineAggregateComponent'] df['Slag_Cement'] = df['BlastFurnaceSlag'] / df['CementComponent'] df['Ash_Cement'] = df['FlyAshComponent'] / df['CementComponent'] df['Plastic_Cement'] = df['SuperplasticizerComponent'] / df['CementComponent'] df['Age_Water'] = df['AgeInDays'] / df['WaterComponent'] df_test['tot_comp'] = df_test.iloc[:, :7].sum(axis=1) df_test['coarse_fine'] = df_test.CoarseAggregateComponent / df_test.FineAggregateComponent df_test['Aggregate'] = df_test['CoarseAggregateComponent'] + df_test['FineAggregateComponent'] df_test['Slag_Cement'] = df_test['BlastFurnaceSlag'] / df_test['CementComponent'] df_test['Ash_Cement'] = df_test['FlyAshComponent'] / df_test['CementComponent'] df_test['Plastic_Cement'] = df_test['SuperplasticizerComponent'] / df_test['CementComponent'] df_test['Age_Water'] = df_test['AgeInDays'] / df_test['WaterComponent'] splitter = KFold(n_splits=5, shuffle=True, random_state=231) df_lgbm = lgbm.Dataset(df, label=y) model_cv = lgbm.cv({'random_state': 97}, train_set=df_lgbm, num_boost_round=50, folds=splitter, nfold=5, metrics='rmse', return_cvbooster=True, eval_train_metric=True) plt.plot(model_cv['train rmse-mean'], label='train RMSE') plt.plot(model_cv['valid rmse-mean'], label='valid RMSE') plt.xlabel('no. iteration') plt.ylabel('score') plt.legend()
code
121153835/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split, KFold from sklearn.metrics import mean_squared_error import lightgbm as lgbm import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
121153835/cell_7
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv') df.drop(columns='id', inplace=True) df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv') df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True) df = pd.concat([df, df_add]) df_test = pd.read_csv('/kaggle/input/playground-series-s3e9/test.csv') df_test.drop(columns='id', inplace=True) y = df.pop('Strength') df['tot_comp'] = df.iloc[:, :7].sum(axis=1) df['coarse_fine'] = df.CoarseAggregateComponent / df.FineAggregateComponent df['Aggregate'] = df['CoarseAggregateComponent'] + df['FineAggregateComponent'] df['Slag_Cement'] = df['BlastFurnaceSlag'] / df['CementComponent'] df['Ash_Cement'] = df['FlyAshComponent'] / df['CementComponent'] df['Plastic_Cement'] = df['SuperplasticizerComponent'] / df['CementComponent'] df['Age_Water'] = df['AgeInDays'] / df['WaterComponent'] df_test['tot_comp'] = df_test.iloc[:, :7].sum(axis=1) df_test['coarse_fine'] = df_test.CoarseAggregateComponent / df_test.FineAggregateComponent df_test['Aggregate'] = df_test['CoarseAggregateComponent'] + df_test['FineAggregateComponent'] df_test['Slag_Cement'] = df_test['BlastFurnaceSlag'] / df_test['CementComponent'] df_test['Ash_Cement'] = df_test['FlyAshComponent'] / df_test['CementComponent'] df_test['Plastic_Cement'] = df_test['SuperplasticizerComponent'] / df_test['CementComponent'] df_test['Age_Water'] = df_test['AgeInDays'] / df_test['WaterComponent'] df.head()
code
121153835/cell_15
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split, KFold import lightgbm as lgbm import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv') df.drop(columns='id', inplace=True) df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv') df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True) df = pd.concat([df, df_add]) df_test = pd.read_csv('/kaggle/input/playground-series-s3e9/test.csv') df_test.drop(columns='id', inplace=True) y = df.pop('Strength') df['tot_comp'] = df.iloc[:, :7].sum(axis=1) df['coarse_fine'] = df.CoarseAggregateComponent / df.FineAggregateComponent df['Aggregate'] = df['CoarseAggregateComponent'] + df['FineAggregateComponent'] df['Slag_Cement'] = df['BlastFurnaceSlag'] / df['CementComponent'] df['Ash_Cement'] = df['FlyAshComponent'] / df['CementComponent'] df['Plastic_Cement'] = df['SuperplasticizerComponent'] / df['CementComponent'] df['Age_Water'] = df['AgeInDays'] / df['WaterComponent'] df_test['tot_comp'] = df_test.iloc[:, :7].sum(axis=1) df_test['coarse_fine'] = df_test.CoarseAggregateComponent / df_test.FineAggregateComponent df_test['Aggregate'] = df_test['CoarseAggregateComponent'] + df_test['FineAggregateComponent'] df_test['Slag_Cement'] = df_test['BlastFurnaceSlag'] / df_test['CementComponent'] df_test['Ash_Cement'] = df_test['FlyAshComponent'] / df_test['CementComponent'] df_test['Plastic_Cement'] = df_test['SuperplasticizerComponent'] / df_test['CementComponent'] df_test['Age_Water'] = df_test['AgeInDays'] / df_test['WaterComponent'] splitter = KFold(n_splits=5, shuffle=True, random_state=231) df_lgbm = lgbm.Dataset(df, label=y) model_cv = lgbm.cv({'random_state': 97}, train_set=df_lgbm, num_boost_round=50, folds=splitter, nfold=5, metrics='rmse', return_cvbooster=True, eval_train_metric=True) predictions = pd.DataFrame(np.array(model_cv['cvbooster'].predict(df_test)).T) subs = pd.read_csv('/kaggle/input/playground-series-s3e9/sample_submission.csv') subs['Strength'] = predictions.mean(axis=1) subs.head()
code
121153835/cell_3
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv') df.drop(columns='id', inplace=True) df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv') df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True) print(f'the addition dataset shape is {df_add.shape}') df = pd.concat([df, df_add]) print(f'the new dataset shape is {df.shape}')
code
121153835/cell_14
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split, KFold import lightgbm as lgbm import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv') df.drop(columns='id', inplace=True) df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv') df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True) df = pd.concat([df, df_add]) df_test = pd.read_csv('/kaggle/input/playground-series-s3e9/test.csv') df_test.drop(columns='id', inplace=True) y = df.pop('Strength') df['tot_comp'] = df.iloc[:, :7].sum(axis=1) df['coarse_fine'] = df.CoarseAggregateComponent / df.FineAggregateComponent df['Aggregate'] = df['CoarseAggregateComponent'] + df['FineAggregateComponent'] df['Slag_Cement'] = df['BlastFurnaceSlag'] / df['CementComponent'] df['Ash_Cement'] = df['FlyAshComponent'] / df['CementComponent'] df['Plastic_Cement'] = df['SuperplasticizerComponent'] / df['CementComponent'] df['Age_Water'] = df['AgeInDays'] / df['WaterComponent'] df_test['tot_comp'] = df_test.iloc[:, :7].sum(axis=1) df_test['coarse_fine'] = df_test.CoarseAggregateComponent / df_test.FineAggregateComponent df_test['Aggregate'] = df_test['CoarseAggregateComponent'] + df_test['FineAggregateComponent'] df_test['Slag_Cement'] = df_test['BlastFurnaceSlag'] / df_test['CementComponent'] df_test['Ash_Cement'] = df_test['FlyAshComponent'] / df_test['CementComponent'] df_test['Plastic_Cement'] = df_test['SuperplasticizerComponent'] / df_test['CementComponent'] df_test['Age_Water'] = df_test['AgeInDays'] / df_test['WaterComponent'] splitter = KFold(n_splits=5, shuffle=True, random_state=231) df_lgbm = lgbm.Dataset(df, label=y) model_cv = lgbm.cv({'random_state': 97}, train_set=df_lgbm, num_boost_round=50, folds=splitter, nfold=5, metrics='rmse', return_cvbooster=True, eval_train_metric=True) predictions = pd.DataFrame(np.array(model_cv['cvbooster'].predict(df_test)).T) subs = pd.read_csv('/kaggle/input/playground-series-s3e9/sample_submission.csv') subs.head()
code
121153835/cell_10
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split, KFold import lightgbm as lgbm import pandas as pd df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv') df.drop(columns='id', inplace=True) df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv') df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True) df = pd.concat([df, df_add]) df_test = pd.read_csv('/kaggle/input/playground-series-s3e9/test.csv') df_test.drop(columns='id', inplace=True) y = df.pop('Strength') df['tot_comp'] = df.iloc[:, :7].sum(axis=1) df['coarse_fine'] = df.CoarseAggregateComponent / df.FineAggregateComponent df['Aggregate'] = df['CoarseAggregateComponent'] + df['FineAggregateComponent'] df['Slag_Cement'] = df['BlastFurnaceSlag'] / df['CementComponent'] df['Ash_Cement'] = df['FlyAshComponent'] / df['CementComponent'] df['Plastic_Cement'] = df['SuperplasticizerComponent'] / df['CementComponent'] df['Age_Water'] = df['AgeInDays'] / df['WaterComponent'] df_test['tot_comp'] = df_test.iloc[:, :7].sum(axis=1) df_test['coarse_fine'] = df_test.CoarseAggregateComponent / df_test.FineAggregateComponent df_test['Aggregate'] = df_test['CoarseAggregateComponent'] + df_test['FineAggregateComponent'] df_test['Slag_Cement'] = df_test['BlastFurnaceSlag'] / df_test['CementComponent'] df_test['Ash_Cement'] = df_test['FlyAshComponent'] / df_test['CementComponent'] df_test['Plastic_Cement'] = df_test['SuperplasticizerComponent'] / df_test['CementComponent'] df_test['Age_Water'] = df_test['AgeInDays'] / df_test['WaterComponent'] splitter = KFold(n_splits=5, shuffle=True, random_state=231) df_lgbm = lgbm.Dataset(df, label=y) model_cv = lgbm.cv({'random_state': 97}, train_set=df_lgbm, num_boost_round=50, folds=splitter, nfold=5, metrics='rmse', return_cvbooster=True, eval_train_metric=True)
code
121153835/cell_12
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split, KFold import lightgbm as lgbm import numpy as np import pandas as pd df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv') df.drop(columns='id', inplace=True) df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv') df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True) df = pd.concat([df, df_add]) df_test = pd.read_csv('/kaggle/input/playground-series-s3e9/test.csv') df_test.drop(columns='id', inplace=True) y = df.pop('Strength') df['tot_comp'] = df.iloc[:, :7].sum(axis=1) df['coarse_fine'] = df.CoarseAggregateComponent / df.FineAggregateComponent df['Aggregate'] = df['CoarseAggregateComponent'] + df['FineAggregateComponent'] df['Slag_Cement'] = df['BlastFurnaceSlag'] / df['CementComponent'] df['Ash_Cement'] = df['FlyAshComponent'] / df['CementComponent'] df['Plastic_Cement'] = df['SuperplasticizerComponent'] / df['CementComponent'] df['Age_Water'] = df['AgeInDays'] / df['WaterComponent'] df_test['tot_comp'] = df_test.iloc[:, :7].sum(axis=1) df_test['coarse_fine'] = df_test.CoarseAggregateComponent / df_test.FineAggregateComponent df_test['Aggregate'] = df_test['CoarseAggregateComponent'] + df_test['FineAggregateComponent'] df_test['Slag_Cement'] = df_test['BlastFurnaceSlag'] / df_test['CementComponent'] df_test['Ash_Cement'] = df_test['FlyAshComponent'] / df_test['CementComponent'] df_test['Plastic_Cement'] = df_test['SuperplasticizerComponent'] / df_test['CementComponent'] df_test['Age_Water'] = df_test['AgeInDays'] / df_test['WaterComponent'] splitter = KFold(n_splits=5, shuffle=True, random_state=231) df_lgbm = lgbm.Dataset(df, label=y) model_cv = lgbm.cv({'random_state': 97}, train_set=df_lgbm, num_boost_round=50, folds=splitter, nfold=5, metrics='rmse', return_cvbooster=True, eval_train_metric=True) predictions = pd.DataFrame(np.array(model_cv['cvbooster'].predict(df_test)).T) predictions.head()
code
121153835/cell_5
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/playground-series-s3e9/train.csv') df.drop(columns='id', inplace=True) df_add = pd.read_csv('/kaggle/input/predict-concrete-strength/ConcreteStrengthData.csv') df_add.rename(columns={'CementComponent ': 'CementComponent'}, inplace=True) df = pd.concat([df, df_add]) df.head()
code
106198993/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/a-dataset-of-art-and-history-book-pruchases/ArtHistBooks.csv') df.describe()
code
106198993/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
106198993/cell_8
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from scipy.stats import binom import numpy as np # linear algebra import seaborn as sns import matplotlib.pyplot as plt import seaborn as sns sns.set(color_codes=True) sns.set(rc={'figure.figsize': (1.6 * 8, 8)}) from scipy.stats import binom x = np.arange(0, 1, 0.01) L = binom.pmf(k=301, n=1000, p=x) prior_prob = 1 / len(L) delta_theta = 0.01 D = np.sum(L * prior_prob * delta_theta) P = L * prior_prob / D ax = sns.lineplot(x, P) ax.set(xlabel='x', ylabel='f(x)', title=f'Probability Density Function for p (constant prior)')
code
106198993/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/a-dataset-of-art-and-history-book-pruchases/ArtHistBooks.csv') df
code
106198993/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/a-dataset-of-art-and-history-book-pruchases/ArtHistBooks.csv') df_ArtPurchase = df.loc[df['ArtBooks'] > 0] df_ArtPurchase
code
72094873/cell_4
[ "image_output_1.png" ]
import os flairs = t1ws = t2ws = t1gds = 0 study = {} for p in os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train'): for i in os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p): study[p] = {} if i == 'FLAIR': flairs = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) elif i == 'T1w': t1ws = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) elif i == 'T2w': t2ws = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) elif i == 'T1wCE': t1gds = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) study[p]['FLAIR'] = flairs study[p]['T1w'] = t1ws study[p]['T2w'] = t2ws study[p]['T1wCE'] = t1gds print(f"Total of {len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train'))} patients") print('Study Directory Created')
code
72094873/cell_18
[ "text_html_output_1.png" ]
from ipywidgets import interact import matplotlib.pyplot as plt import os import pandas as pd import pydicom as dcm import seaborn as sns flairs = t1ws = t2ws = t1gds = 0 study = {} for p in os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train'): for i in os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p): study[p] = {} if i == 'FLAIR': flairs = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) elif i == 'T1w': t1ws = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) elif i == 'T2w': t2ws = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) elif i == 'T1wCE': t1gds = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) study[p]['FLAIR'] = flairs study[p]['T1w'] = t1ws study[p]['T2w'] = t2ws study[p]['T1wCE'] = t1gds study = pd.DataFrame(study).transpose() tmp = study.sort_values('FLAIR', ascending=False)['FLAIR'][:10] tmp = study.sort_values('T1w', ascending=False)['T1w'][:10] tmp = study.sort_values('T2w', ascending=False)['T2w'][:10] tmp = study.sort_values('T1wCE', ascending=False)['T1wCE'][:10] tmp = ['FLAIR', 'T1w', 'T2w', 'T1wCE'] tmp2 = [] for col in tmp: tmp2.append(sum(study[col])) df = pd.read_csv('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train_labels.csv') df.columns = ['id', 'mgmt'] df['id'] = df['id'].apply(lambda x: str(x).zfill(5)) df = df.set_index('id') def crit(x): return int(x.split('-')[1].split('.')[0]) def imread(path): return dcm.dcmread(path) def imshow(arr): plt.axis('off') s = Study('00000') s = Study('00000') arr3d = s.get_3d('FLAIR') def explore_3d(layer): imshow(arr3d[:, :, layer]) return layer interact(explore_3d, layer=(1, 400))
code
72094873/cell_8
[ "image_png_output_1.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd import seaborn as sns flairs = t1ws = t2ws = t1gds = 0 study = {} for p in os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train'): for i in os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p): study[p] = {} if i == 'FLAIR': flairs = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) elif i == 'T1w': t1ws = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) elif i == 'T2w': t2ws = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) elif i == 'T1wCE': t1gds = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) study[p]['FLAIR'] = flairs study[p]['T1w'] = t1ws study[p]['T2w'] = t2ws study[p]['T1wCE'] = t1gds study = pd.DataFrame(study).transpose() tmp = study.sort_values('FLAIR', ascending=False)['FLAIR'][:10] tmp = study.sort_values('T1w', ascending=False)['T1w'][:10] tmp = study.sort_values('T2w', ascending=False)['T2w'][:10] tmp = study.sort_values('T1wCE', ascending=False)['T1wCE'][:10] tmp = ['FLAIR', 'T1w', 'T2w', 'T1wCE'] tmp2 = [] for col in tmp: tmp2.append(sum(study[col])) df = pd.read_csv('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train_labels.csv') df.columns = ['id', 'mgmt'] df['id'] = df['id'].apply(lambda x: str(x).zfill(5)) df = df.set_index('id') df.head()
code
72094873/cell_17
[ "image_output_2.png", "image_output_1.png" ]
s = Study('00000') s.show('FLAIR', 100)
code
72094873/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd import seaborn as sns flairs = t1ws = t2ws = t1gds = 0 study = {} for p in os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train'): for i in os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p): study[p] = {} if i == 'FLAIR': flairs = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) elif i == 'T1w': t1ws = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) elif i == 'T2w': t2ws = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) elif i == 'T1wCE': t1gds = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) study[p]['FLAIR'] = flairs study[p]['T1w'] = t1ws study[p]['T2w'] = t2ws study[p]['T1wCE'] = t1gds study = pd.DataFrame(study).transpose() tmp = study.sort_values('FLAIR', ascending=False)['FLAIR'][:10] tmp = study.sort_values('T1w', ascending=False)['T1w'][:10] tmp = study.sort_values('T2w', ascending=False)['T2w'][:10] tmp = study.sort_values('T1wCE', ascending=False)['T1wCE'][:10] tmp = ['FLAIR', 'T1w', 'T2w', 'T1wCE'] tmp2 = [] for col in tmp: tmp2.append(sum(study[col])) df = pd.read_csv('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train_labels.csv') df.columns = ['id', 'mgmt'] df['id'] = df['id'].apply(lambda x: str(x).zfill(5)) df = df.set_index('id') sns.countplot(x=df['mgmt']) plt.show()
code
72094873/cell_5
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd import seaborn as sns flairs = t1ws = t2ws = t1gds = 0 study = {} for p in os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train'): for i in os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p): study[p] = {} if i == 'FLAIR': flairs = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) elif i == 'T1w': t1ws = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) elif i == 'T2w': t2ws = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) elif i == 'T1wCE': t1gds = len(os.listdir('../input/rsna-miccai-brain-tumor-radiogenomic-classification/train/' + p + '/' + i)) study[p]['FLAIR'] = flairs study[p]['T1w'] = t1ws study[p]['T2w'] = t2ws study[p]['T1wCE'] = t1gds study = pd.DataFrame(study).transpose() plt.figure(figsize=(30, 5)) tmp = study.sort_values('FLAIR', ascending=False)['FLAIR'][:10] plt.subplot(141) sns.barplot(x=tmp.index, y=tmp) plt.title('FLAIR TOP 10') tmp = study.sort_values('T1w', ascending=False)['T1w'][:10] plt.subplot(142) sns.barplot(x=tmp.index, y=tmp) plt.title('T1w TOP 10') tmp = study.sort_values('T2w', ascending=False)['T2w'][:10] plt.subplot(143) sns.barplot(x=tmp.index, y=tmp) plt.title('T2w TOP 10') tmp = study.sort_values('T1wCE', ascending=False)['T1wCE'][:10] plt.subplot(144) sns.barplot(x=tmp.index, y=tmp) plt.title('T1wCE TOP 10') plt.show() plt.figure(figsize=(20, 5)) tmp = ['FLAIR', 'T1w', 'T2w', 'T1wCE'] tmp2 = [] for col in tmp: tmp2.append(sum(study[col])) sns.barplot(x=tmp, y=tmp2) plt.show()
code
88099239/cell_13
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer import numpy as np import pandas as pd payments = pd.read_csv('../input/credit-risk-classification-dataset/payment_data.csv') payments = payments.set_index('id') customers = pd.read_csv('../input/credit-risk-classification-dataset/customer_data.csv') customers = customers.set_index('id') customer_data = customers.join(payments) customer_data customer_data.isnull().sum(axis=0) customer_data = customer_data.drop(['prod_limit', 'report_date', 'update_date', 'prod_code', 'fea_1', 'fea_3', 'fea_5', 'fea_6', 'fea_7', 'fea_9'], axis=1) data = customer_data.to_numpy(na_value=np.nan).astype(float) imputer = SimpleImputer(verbose=1) data = imputer.fit_transform(data) data
code
88099239/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd payments = pd.read_csv('../input/credit-risk-classification-dataset/payment_data.csv') payments = payments.set_index('id') customers = pd.read_csv('../input/credit-risk-classification-dataset/customer_data.csv') customers = customers.set_index('id') customer_data = customers.join(payments) customer_data customer_data.isnull().sum(axis=0) print('max missing = {}\n min missing = {}\n mean missing = {}'.format(customer_data.isnull().sum(axis=1).max(), customer_data.isnull().sum(axis=1).min(), customer_data.isnull().sum(axis=1).mean()))
code
88099239/cell_25
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer from sklearn.metrics import confusion_matrix from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn.preprocessing import MinMaxScaler from sklearn.svm import LinearSVC, SVC # Linear Support Vector Classification import numpy as np import pandas as pd import pandas as pd import numpy as np from sklearn.impute import SimpleImputer from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import confusion_matrix from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn.svm import LinearSVC, SVC RANDOM_STATE = 1234 payments = pd.read_csv('../input/credit-risk-classification-dataset/payment_data.csv') payments = payments.set_index('id') customers = pd.read_csv('../input/credit-risk-classification-dataset/customer_data.csv') customers = customers.set_index('id') customer_data = customers.join(payments) customer_data customer_data.isnull().sum(axis=0) customer_data = customer_data.drop(['prod_limit', 'report_date', 'update_date', 'prod_code', 'fea_1', 'fea_3', 'fea_5', 'fea_6', 'fea_7', 'fea_9'], axis=1) data = customer_data.to_numpy(na_value=np.nan).astype(float) imputer = SimpleImputer(verbose=1) data = imputer.fit_transform(data) data scaler = MinMaxScaler() data = scaler.fit_transform(data) X = data[:, 1:] y = data[:, 0] linear_model = LinearSVC(random_state=RANDOM_STATE) cross_val_score(linear_model, X, y, cv=3, n_jobs=-1, scoring='accuracy') pred_tags = cross_val_predict(linear_model, X, y, cv=3, n_jobs=-1, method='predict') poly_svc = SVC(kernel='poly', random_state=RANDOM_STATE) pred_tags = cross_val_predict(poly_svc, X, y, cv=3, n_jobs=-1, method='predict') confusion_matrix(y, pred_tags) gaussian_svc = SVC(kernel='rbf', random_state=RANDOM_STATE) pred_tags = cross_val_predict(gaussian_svc, X, y, cv=3, n_jobs=-1, method='predict') confusion_matrix(y, pred_tags)
code
88099239/cell_20
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn.preprocessing import MinMaxScaler from sklearn.svm import LinearSVC, SVC # Linear Support Vector Classification import numpy as np import pandas as pd import pandas as pd import numpy as np from sklearn.impute import SimpleImputer from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import confusion_matrix from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn.svm import LinearSVC, SVC RANDOM_STATE = 1234 payments = pd.read_csv('../input/credit-risk-classification-dataset/payment_data.csv') payments = payments.set_index('id') customers = pd.read_csv('../input/credit-risk-classification-dataset/customer_data.csv') customers = customers.set_index('id') customer_data = customers.join(payments) customer_data customer_data.isnull().sum(axis=0) customer_data = customer_data.drop(['prod_limit', 'report_date', 'update_date', 'prod_code', 'fea_1', 'fea_3', 'fea_5', 'fea_6', 'fea_7', 'fea_9'], axis=1) data = customer_data.to_numpy(na_value=np.nan).astype(float) imputer = SimpleImputer(verbose=1) data = imputer.fit_transform(data) data scaler = MinMaxScaler() data = scaler.fit_transform(data) X = data[:, 1:] y = data[:, 0] linear_model = LinearSVC(random_state=RANDOM_STATE) cross_val_score(linear_model, X, y, cv=3, n_jobs=-1, scoring='accuracy')
code
88099239/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd payments = pd.read_csv('../input/credit-risk-classification-dataset/payment_data.csv') payments = payments.set_index('id') customers = pd.read_csv('../input/credit-risk-classification-dataset/customer_data.csv') customers = customers.set_index('id') customer_data = customers.join(payments) customer_data customer_data.isnull().sum(axis=0) for prod_code in customer_data['prod_code'].unique(): customer_data['prod_code_{}'.format(prod_code)] = customer_data['prod_code'] == prod_code for feature_id in [1, 3, 5, 6, 7, 9]: for value in customer_data['fea_{}'.format(feature_id)].unique(): customer_data['feature_{}_{}'.format(feature_id, value)] = customer_data['fea_{}'.format(feature_id)] == value customer_data
code
88099239/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd payments = pd.read_csv('../input/credit-risk-classification-dataset/payment_data.csv') payments = payments.set_index('id') customers = pd.read_csv('../input/credit-risk-classification-dataset/customer_data.csv') customers = customers.set_index('id') customer_data = customers.join(payments) customer_data customer_data['label'].value_counts()
code
88099239/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd payments = pd.read_csv('../input/credit-risk-classification-dataset/payment_data.csv') payments = payments.set_index('id') customers = pd.read_csv('../input/credit-risk-classification-dataset/customer_data.csv') customers = customers.set_index('id') customer_data = customers.join(payments) customer_data customer_data.isnull().sum(axis=0)
code
88099239/cell_24
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer from sklearn.metrics import confusion_matrix from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn.preprocessing import MinMaxScaler from sklearn.svm import LinearSVC, SVC # Linear Support Vector Classification import numpy as np import pandas as pd import pandas as pd import numpy as np from sklearn.impute import SimpleImputer from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import confusion_matrix from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn.svm import LinearSVC, SVC RANDOM_STATE = 1234 payments = pd.read_csv('../input/credit-risk-classification-dataset/payment_data.csv') payments = payments.set_index('id') customers = pd.read_csv('../input/credit-risk-classification-dataset/customer_data.csv') customers = customers.set_index('id') customer_data = customers.join(payments) customer_data customer_data.isnull().sum(axis=0) customer_data = customer_data.drop(['prod_limit', 'report_date', 'update_date', 'prod_code', 'fea_1', 'fea_3', 'fea_5', 'fea_6', 'fea_7', 'fea_9'], axis=1) data = customer_data.to_numpy(na_value=np.nan).astype(float) imputer = SimpleImputer(verbose=1) data = imputer.fit_transform(data) data scaler = MinMaxScaler() data = scaler.fit_transform(data) X = data[:, 1:] y = data[:, 0] linear_model = LinearSVC(random_state=RANDOM_STATE) cross_val_score(linear_model, X, y, cv=3, n_jobs=-1, scoring='accuracy') pred_tags = cross_val_predict(linear_model, X, y, cv=3, n_jobs=-1, method='predict') poly_svc = SVC(kernel='poly', random_state=RANDOM_STATE) pred_tags = cross_val_predict(poly_svc, X, y, cv=3, n_jobs=-1, method='predict') confusion_matrix(y, pred_tags)
code
88099239/cell_14
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer import numpy as np import pandas as pd payments = pd.read_csv('../input/credit-risk-classification-dataset/payment_data.csv') payments = payments.set_index('id') customers = pd.read_csv('../input/credit-risk-classification-dataset/customer_data.csv') customers = customers.set_index('id') customer_data = customers.join(payments) customer_data customer_data.isnull().sum(axis=0) customer_data = customer_data.drop(['prod_limit', 'report_date', 'update_date', 'prod_code', 'fea_1', 'fea_3', 'fea_5', 'fea_6', 'fea_7', 'fea_9'], axis=1) data = customer_data.to_numpy(na_value=np.nan).astype(float) imputer = SimpleImputer(verbose=1) data = imputer.fit_transform(data) data (data == np.nan).any()
code
88099239/cell_22
[ "text_html_output_1.png" ]
from sklearn.impute import SimpleImputer from sklearn.metrics import confusion_matrix from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn.preprocessing import MinMaxScaler from sklearn.svm import LinearSVC, SVC # Linear Support Vector Classification import numpy as np import pandas as pd import pandas as pd import numpy as np from sklearn.impute import SimpleImputer from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import confusion_matrix from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn.svm import LinearSVC, SVC RANDOM_STATE = 1234 payments = pd.read_csv('../input/credit-risk-classification-dataset/payment_data.csv') payments = payments.set_index('id') customers = pd.read_csv('../input/credit-risk-classification-dataset/customer_data.csv') customers = customers.set_index('id') customer_data = customers.join(payments) customer_data customer_data.isnull().sum(axis=0) customer_data = customer_data.drop(['prod_limit', 'report_date', 'update_date', 'prod_code', 'fea_1', 'fea_3', 'fea_5', 'fea_6', 'fea_7', 'fea_9'], axis=1) data = customer_data.to_numpy(na_value=np.nan).astype(float) imputer = SimpleImputer(verbose=1) data = imputer.fit_transform(data) data scaler = MinMaxScaler() data = scaler.fit_transform(data) X = data[:, 1:] y = data[:, 0] linear_model = LinearSVC(random_state=RANDOM_STATE) cross_val_score(linear_model, X, y, cv=3, n_jobs=-1, scoring='accuracy') pred_tags = cross_val_predict(linear_model, X, y, cv=3, n_jobs=-1, method='predict') confusion_matrix(y, pred_tags)
code
88099239/cell_10
[ "text_html_output_1.png" ]
import pandas as pd payments = pd.read_csv('../input/credit-risk-classification-dataset/payment_data.csv') payments = payments.set_index('id') customers = pd.read_csv('../input/credit-risk-classification-dataset/customer_data.csv') customers = customers.set_index('id') customer_data = customers.join(payments) customer_data customer_data.isnull().sum(axis=0) customer_data['prod_code'].value_counts()
code
88099239/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd payments = pd.read_csv('../input/credit-risk-classification-dataset/payment_data.csv') payments = payments.set_index('id') customers = pd.read_csv('../input/credit-risk-classification-dataset/customer_data.csv') customers = customers.set_index('id') customer_data = customers.join(payments) customer_data
code
72068232/cell_25
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os df = pd.read_csv('/kaggle/input/emotion-detection-from-text/tweet_emotions.csv') df.content.iloc[-10:] df.sentiment.value_counts() df = df[df.sentiment != 'anger'] df = df[df.sentiment != 'boredom'] df = df[df.sentiment != 'enthusiasm'] df = df[df.sentiment != 'empty'] df = df[df.sentiment != 'sentiment'] df.sentiment.value_counts() possible_labels = df.sentiment.unique() label_dict = {} for index, possible_label in enumerate(possible_labels): label_dict[possible_label] = index df['label'] = df.sentiment.replace(label_dict) X_train, X_val, y_train, y_val = train_test_split(df.index.values, df.label.values, test_size=0.15, stratify=df.label.values) df['data_type'] = ['not_set'] * df.shape[0] df.loc[X_train, 'data_type'] = 'train' df.loc[X_val, 'data_type'] = 'val' df.groupby(['sentiment', 'label', 'data_type']).count()
code
72068232/cell_34
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
from gingerit.gingerit import GingerIt from tqdm.notebook import tqdm from symspellpy.symspellpy import SymSpell, Verbosity import pkg_resources import re, string, json import spacy def normalization_pipeline(sentences): sentences = simplify_punctuation_and_whitespace(sentences) sentences = normalize_contractions(sentences) return sentences def simplify_punctuation_and_whitespace(sentence_list): """ using more than 4 ALLCAPS words will add EMPW and puntuation like !!!!! will get EMPP """ norm_sents = [] for sentence in tqdm(sentence_list): sent = _replace_urls(sentence) sent = _mention_hash(sent) sent = _simplify_punctuation(sent) sent = _reduce_repetitions(sent) sent = _normalize_whitespace(sent) norm_sents.append(sent) return norm_sents def _replace_urls(text): url_regex = '(https?:\\/\\/(?:www\\.|(?!www))[a-zA-Z0-9][a-zA-Z0-9-]+[a-zA-Z0-9]\\.[^\\s]{2,}|www\\.[a-zA-Z0-9][a-zA-Z0-9-]+[a-zA-Z0-9]\\.[^\\s]{2,}|https?:\\/\\/(?:www\\.|(?!www))[a-zA-Z0-9]+\\.[^\\s]{2,}|www\\.[a-zA-Z0-9]+\\.[^\\s]{2,})' text = re.sub(url_regex, '-URL-', text) return text def _mention_hash(in_str): """ replacing @MENTION and #HASHTAG BEWARE OF USES OF # AND @ AND SPACES BETWEEN THEM """ in_str = str(in_str) in_str = re.sub('@', '@MEN ', in_str, flags=re.IGNORECASE) in_str = re.sub('#', '#HAS ', in_str, flags=re.IGNORECASE) return in_str.strip() def _simplify_punctuation(text): """ This function simplifies doubled or more complex punctuation. The exception is '...'. #?! ??? !!! """ corrected = str(text) corrected = re.sub('([!?,;])\\1+', '\\1\\1 <-EMPP', corrected) corrected = re.sub('\\.{2,}', '...', corrected) return corrected def _reduce_repetitions(text): """ Auxiliary function to help with exxagerated words. Examples: woooooords -> woords yaaaaaaaaaaaaaaay -> yaay door -> dor """ correction = str(text) for index, words in enumerate(str(text).split()): if _is_EMP_word(words) == True: correction = correction.replace(words, words + ' <-EMPW') if (len(words) > 4) & words.isupper() == True: correction = correction.replace(words, words + ' <-EMPU') return re.sub('([\\w])\\1+', '\\1\\1', correction) def _is_EMP_word(word): """ True/ False: checks if the word has 3 consecutive characters""" count = 1 if len(word) > 1: for i in range(1, len(word)): if word[i] in string.punctuation: return False if word[i - 1] == word[i]: count += 1 if count >= 3: return True else: if count >= 3: return True count = 1 else: return False return False def _normalize_whitespace(text): """ This function normalizes whitespaces, removing duplicates. """ corrected = str(text) corrected = re.sub('//t', '\\t', corrected) corrected = re.sub('( )\\1+', '\\1', corrected) corrected = re.sub('(\\n)\\1+', '\\1', corrected) corrected = re.sub('(\\r)\\1+', '\\1', corrected) corrected = re.sub('(\\t)\\1+', '\\1', corrected) return corrected.strip(' ') def normalize_contractions(sentence_list): contraction_list = json.loads(open('/kaggle/input/english-contractions/english_contractions.json.txt', 'r').read()) character_entity = {'&lt;3': 'heart', '&amp': 'and', '&quot;': ' quote '} contraction_list = {**contraction_list, **character_entity} norm_sents = [] for sentence in tqdm(sentence_list): norm_sents.append(_normalize_contractions_slang_emoji_entity(sentence, contraction_list)) return norm_sents def _normalize_contractions_slang_emoji_entity(text, contractions): """ part1:normalizes english contractions. """ for word in text.split(): if word.lower() in contractions: text = text.replace(word, contractions[word.lower()]) '\n part 2: using gingerit slang correction:\n ' parser = GingerIt() result = parser.parse(text) sentence = result['result'] '\n part3: emoji and character entity reference conversion to meaning\n ' emoticons = emot_obj.emoticons(sentence) printing = False for i in range(0, len(emoticons['value'])): sentence = sentence.replace(emoticons['value'][i], emoticons['mean'][i]) return sentence original_examples = ['hi @someone WATCH me #proud :) ;) ...... !!!!! wanna go tHeRe bc my finls clooooose &quot;bananas&quot; &amp; '] preprocessed_examples = normalization_pipeline(original_examples) for example_index, example in enumerate(preprocessed_examples): print(original_examples[example_index]) print(example)
code
72068232/cell_23
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os df = pd.read_csv('/kaggle/input/emotion-detection-from-text/tweet_emotions.csv') df.content.iloc[-10:] df.sentiment.value_counts() df = df[df.sentiment != 'anger'] df = df[df.sentiment != 'boredom'] df = df[df.sentiment != 'enthusiasm'] df = df[df.sentiment != 'empty'] df = df[df.sentiment != 'sentiment'] df.sentiment.value_counts() possible_labels = df.sentiment.unique() label_dict = {} for index, possible_label in enumerate(possible_labels): label_dict[possible_label] = index df['label'] = df.sentiment.replace(label_dict) X_train, X_val, y_train, y_val = train_test_split(df.index.values, df.label.values, test_size=0.15, stratify=df.label.values) df['data_type'] = ['not_set'] * df.shape[0] df.head()
code
72068232/cell_39
[ "application_vnd.jupyter.stderr_output_1.png" ]
from collections import Counter from gingerit.gingerit import GingerIt from sklearn.model_selection import train_test_split from tqdm.notebook import tqdm import matplotlib.pyplot as plt import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os df = pd.read_csv('/kaggle/input/emotion-detection-from-text/tweet_emotions.csv') df.content.iloc[-10:] df.sentiment.value_counts() df = df[df.sentiment != 'anger'] df = df[df.sentiment != 'boredom'] df = df[df.sentiment != 'enthusiasm'] df = df[df.sentiment != 'empty'] df = df[df.sentiment != 'sentiment'] df.sentiment.value_counts() possible_labels = df.sentiment.unique() label_dict = {} for index, possible_label in enumerate(possible_labels): label_dict[possible_label] = index df['label'] = df.sentiment.replace(label_dict) X_train, X_val, y_train, y_val = train_test_split(df.index.values, df.label.values, test_size=0.15, stratify=df.label.values) df['data_type'] = ['not_set'] * df.shape[0] df.loc[X_train, 'data_type'] = 'train' df.loc[X_val, 'data_type'] = 'val' df.groupby(['sentiment', 'label', 'data_type']).count() from symspellpy.symspellpy import SymSpell, Verbosity import pkg_resources import re, string, json import spacy def normalization_pipeline(sentences): sentences = simplify_punctuation_and_whitespace(sentences) sentences = normalize_contractions(sentences) return sentences def simplify_punctuation_and_whitespace(sentence_list): """ using more than 4 ALLCAPS words will add EMPW and puntuation like !!!!! will get EMPP """ norm_sents = [] for sentence in tqdm(sentence_list): sent = _replace_urls(sentence) sent = _mention_hash(sent) sent = _simplify_punctuation(sent) sent = _reduce_repetitions(sent) sent = _normalize_whitespace(sent) norm_sents.append(sent) return norm_sents def _replace_urls(text): url_regex = '(https?:\\/\\/(?:www\\.|(?!www))[a-zA-Z0-9][a-zA-Z0-9-]+[a-zA-Z0-9]\\.[^\\s]{2,}|www\\.[a-zA-Z0-9][a-zA-Z0-9-]+[a-zA-Z0-9]\\.[^\\s]{2,}|https?:\\/\\/(?:www\\.|(?!www))[a-zA-Z0-9]+\\.[^\\s]{2,}|www\\.[a-zA-Z0-9]+\\.[^\\s]{2,})' text = re.sub(url_regex, '-URL-', text) return text def _mention_hash(in_str): """ replacing @MENTION and #HASHTAG BEWARE OF USES OF # AND @ AND SPACES BETWEEN THEM """ in_str = str(in_str) in_str = re.sub('@', '@MEN ', in_str, flags=re.IGNORECASE) in_str = re.sub('#', '#HAS ', in_str, flags=re.IGNORECASE) return in_str.strip() def _simplify_punctuation(text): """ This function simplifies doubled or more complex punctuation. The exception is '...'. #?! ??? !!! """ corrected = str(text) corrected = re.sub('([!?,;])\\1+', '\\1\\1 <-EMPP', corrected) corrected = re.sub('\\.{2,}', '...', corrected) return corrected def _reduce_repetitions(text): """ Auxiliary function to help with exxagerated words. Examples: woooooords -> woords yaaaaaaaaaaaaaaay -> yaay door -> dor """ correction = str(text) for index, words in enumerate(str(text).split()): if _is_EMP_word(words) == True: correction = correction.replace(words, words + ' <-EMPW') if (len(words) > 4) & words.isupper() == True: correction = correction.replace(words, words + ' <-EMPU') return re.sub('([\\w])\\1+', '\\1\\1', correction) def _is_EMP_word(word): """ True/ False: checks if the word has 3 consecutive characters""" count = 1 if len(word) > 1: for i in range(1, len(word)): if word[i] in string.punctuation: return False if word[i - 1] == word[i]: count += 1 if count >= 3: return True else: if count >= 3: return True count = 1 else: return False return False def _normalize_whitespace(text): """ This function normalizes whitespaces, removing duplicates. """ corrected = str(text) corrected = re.sub('//t', '\\t', corrected) corrected = re.sub('( )\\1+', '\\1', corrected) corrected = re.sub('(\\n)\\1+', '\\1', corrected) corrected = re.sub('(\\r)\\1+', '\\1', corrected) corrected = re.sub('(\\t)\\1+', '\\1', corrected) return corrected.strip(' ') def normalize_contractions(sentence_list): contraction_list = json.loads(open('/kaggle/input/english-contractions/english_contractions.json.txt', 'r').read()) character_entity = {'&lt;3': 'heart', '&amp': 'and', '&quot;': ' quote '} contraction_list = {**contraction_list, **character_entity} norm_sents = [] for sentence in tqdm(sentence_list): norm_sents.append(_normalize_contractions_slang_emoji_entity(sentence, contraction_list)) return norm_sents def _normalize_contractions_slang_emoji_entity(text, contractions): """ part1:normalizes english contractions. """ for word in text.split(): if word.lower() in contractions: text = text.replace(word, contractions[word.lower()]) '\n part 2: using gingerit slang correction:\n ' parser = GingerIt() result = parser.parse(text) sentence = result['result'] '\n part3: emoji and character entity reference conversion to meaning\n ' emoticons = emot_obj.emoticons(sentence) printing = False for i in range(0, len(emoticons['value'])): sentence = sentence.replace(emoticons['value'][i], emoticons['mean'][i]) return sentence import matplotlib.pyplot as plt from collections import Counter tokenizee = [] for words in tqdm(range(1, len(df.content) - 1)): tokenizee.append(spacy_process(df.content[words])) words = Counter() for s in tokenizee: for w in s: words[w] += 1 sorted_words = list(words.keys()) sorted_words.sort(key=lambda w: words[w], reverse=True) print(f'Number of different Tokens in our Dataset: {len(sorted_words)}') print(sorted_words[:100]) count_occurences = sum(words.values()) accumulated = 0 counter = 0 while accumulated < count_occurences * 0.8: accumulated += words[sorted_words[counter]] counter += 1 print(f'The {counter * 100 / len(words)}% most common words account for the {accumulated * 100 / count_occurences}% of the occurrences') plt.bar(range(100), [words[w] for w in sorted_words[:100]]) plt.show()
code
72068232/cell_11
[ "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os df = pd.read_csv('/kaggle/input/emotion-detection-from-text/tweet_emotions.csv') df.content.iloc[-10:]
code
72068232/cell_18
[ "text_html_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os df = pd.read_csv('/kaggle/input/emotion-detection-from-text/tweet_emotions.csv') df.content.iloc[-10:] df.sentiment.value_counts() df = df[df.sentiment != 'anger'] df = df[df.sentiment != 'boredom'] df = df[df.sentiment != 'enthusiasm'] df = df[df.sentiment != 'empty'] df = df[df.sentiment != 'sentiment'] df.sentiment.value_counts() possible_labels = df.sentiment.unique() label_dict = {} for index, possible_label in enumerate(possible_labels): label_dict[possible_label] = index df['label'] = df.sentiment.replace(label_dict) df.head()
code
72068232/cell_28
[ "text_plain_output_1.png" ]
# Install spaCy (run in terminal/prompt) import sys !{sys.executable} -m pip install spacy # Download spaCy's 'en' Model !{sys.executable} -m spacy download en !pip install -U symspellpy !pip install gingerit from gingerit.gingerit import GingerIt #emoticons !pip install emot --upgrade import emot emot_obj = emot.core.emot()
code
72068232/cell_17
[ "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os df = pd.read_csv('/kaggle/input/emotion-detection-from-text/tweet_emotions.csv') df.content.iloc[-10:] df.sentiment.value_counts() df = df[df.sentiment != 'anger'] df = df[df.sentiment != 'boredom'] df = df[df.sentiment != 'enthusiasm'] df = df[df.sentiment != 'empty'] df = df[df.sentiment != 'sentiment'] df.sentiment.value_counts() possible_labels = df.sentiment.unique() label_dict = {} for index, possible_label in enumerate(possible_labels): label_dict[possible_label] = index label_dict
code
72068232/cell_14
[ "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os df = pd.read_csv('/kaggle/input/emotion-detection-from-text/tweet_emotions.csv') df.content.iloc[-10:] df.sentiment.value_counts() df = df[df.sentiment != 'anger'] df = df[df.sentiment != 'boredom'] df = df[df.sentiment != 'enthusiasm'] df = df[df.sentiment != 'empty'] df = df[df.sentiment != 'sentiment'] df.sentiment.value_counts()
code
72068232/cell_10
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) df = pd.read_csv('/kaggle/input/emotion-detection-from-text/tweet_emotions.csv') df.head()
code