path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
33106981/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hotel = pd.read_csv('/kaggle/input/hotel-booking-demand/hotel_bookings.csv') hotel.shape hotel.head().T hotel_num = hotel.dtypes[hotel.dtypes != 'object'] hotel_num = hotel_num.index.to_list() Date_Drop = {'is_canceled', 'company'} hotel_num = [ele for ele in hotel_num if ele not in Date_Drop] hotel_num hot_num = hotel[hotel_num].copy() for i in hot_num.columns: hot_num.boxplot(column=i) plt.show()
code
33106981/cell_15
[ "text_html_output_1.png" ]
from collections import Counter import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hotel = pd.read_csv('/kaggle/input/hotel-booking-demand/hotel_bookings.csv') hotel.shape hotel.head().T hotel_num = hotel.dtypes[hotel.dtypes != 'object'] hotel_num = hotel_num.index.to_list() Date_Drop = {'is_canceled', 'company'} hotel_num = [ele for ele in hotel_num if ele not in Date_Drop] hotel_num hot_num = hotel[hotel_num].copy() from collections import Counter def detect_outliers(df, features): """ Takes a dataframe df of features and returns a list of the indices corresponding to the observations containing more than n outliers according to the Tukey method. """ outlier_indices = [] for col in features: Q1 = np.percentile(df[col], 25) Q3 = np.percentile(df[col], 75) IQR = Q3 - Q1 outlier_step = 1.5 * IQR outlier_list_col = df[(df[col] < Q1 - outlier_step) | (df[col] > Q3 + outlier_step)].index outlier_indices.extend(outlier_list_col) outlier_indices = Counter(outlier_indices) return outlier_indices Outliers_to_drop = detect_outliers(hotel, hot_num) len(Outliers_to_drop) hotel = hotel.drop(Outliers_to_drop, axis=0).reset_index(drop=True) hotel.isna().sum() hotel[hotel['children'].isna()].T
code
33106981/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hotel = pd.read_csv('/kaggle/input/hotel-booking-demand/hotel_bookings.csv') hotel.shape
code
33106981/cell_22
[ "image_output_11.png", "image_output_17.png", "image_output_14.png", "image_output_13.png", "image_output_5.png", "image_output_18.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_16.png", "image_output_6.png", "image_output_12.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_15.png", "image_output_9.png" ]
from collections import Counter import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hotel = pd.read_csv('/kaggle/input/hotel-booking-demand/hotel_bookings.csv') hotel.shape hotel.head().T hotel_num = hotel.dtypes[hotel.dtypes != 'object'] hotel_num = hotel_num.index.to_list() Date_Drop = {'is_canceled', 'company'} hotel_num = [ele for ele in hotel_num if ele not in Date_Drop] hotel_num hot_num = hotel[hotel_num].copy() from collections import Counter def detect_outliers(df, features): """ Takes a dataframe df of features and returns a list of the indices corresponding to the observations containing more than n outliers according to the Tukey method. """ outlier_indices = [] for col in features: Q1 = np.percentile(df[col], 25) Q3 = np.percentile(df[col], 75) IQR = Q3 - Q1 outlier_step = 1.5 * IQR outlier_list_col = df[(df[col] < Q1 - outlier_step) | (df[col] > Q3 + outlier_step)].index outlier_indices.extend(outlier_list_col) outlier_indices = Counter(outlier_indices) return outlier_indices Outliers_to_drop = detect_outliers(hotel, hot_num) len(Outliers_to_drop) hotel = hotel.drop(Outliers_to_drop, axis=0).reset_index(drop=True) hotel.isna().sum() hotel.company = hotel.company.fillna(0) hotel.agent = hotel.agent.fillna(0) hotel.children = hotel.children.fillna(0) hotel.country = hotel.country.fillna('unknown') hotel.drop(hotel[(hotel['children'] == 0) & (hotel['babies'] == 0) & (hotel['adults'] == 0)].index, inplace=True) Cat_Var = hotel.dtypes[hotel.dtypes == 'object'] Cat_Var = Cat_Var.index.to_list() Date_Drop = {'arrival_date_month', 'reservation_status_date'} Cat_Var = [ele for ele in Cat_Var if ele not in Date_Drop] Cat_Var
code
33106981/cell_27
[ "text_plain_output_1.png" ]
from collections import Counter import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns hotel = pd.read_csv('/kaggle/input/hotel-booking-demand/hotel_bookings.csv') hotel.shape hotel.head().T hotel_num = hotel.dtypes[hotel.dtypes != 'object'] hotel_num = hotel_num.index.to_list() Date_Drop = {'is_canceled', 'company'} hotel_num = [ele for ele in hotel_num if ele not in Date_Drop] hotel_num hot_num = hotel[hotel_num].copy() from collections import Counter def detect_outliers(df, features): """ Takes a dataframe df of features and returns a list of the indices corresponding to the observations containing more than n outliers according to the Tukey method. """ outlier_indices = [] for col in features: Q1 = np.percentile(df[col], 25) Q3 = np.percentile(df[col], 75) IQR = Q3 - Q1 outlier_step = 1.5 * IQR outlier_list_col = df[(df[col] < Q1 - outlier_step) | (df[col] > Q3 + outlier_step)].index outlier_indices.extend(outlier_list_col) outlier_indices = Counter(outlier_indices) return outlier_indices Outliers_to_drop = detect_outliers(hotel, hot_num) len(Outliers_to_drop) hotel = hotel.drop(Outliers_to_drop, axis=0).reset_index(drop=True) hotel.isna().sum() hotel.company = hotel.company.fillna(0) hotel.agent = hotel.agent.fillna(0) hotel.children = hotel.children.fillna(0) hotel.country = hotel.country.fillna('unknown') hotel.drop(hotel[(hotel['children'] == 0) & (hotel['babies'] == 0) & (hotel['adults'] == 0)].index, inplace=True) def cnt_plot(a): col = hotel[a] title = 'Category wise count of' + ' ' + a Cat_Var = hotel.dtypes[hotel.dtypes == 'object'] Cat_Var = Cat_Var.index.to_list() Date_Drop = {'arrival_date_month', 'reservation_status_date'} Cat_Var = [ele for ele in Cat_Var if ele not in Date_Drop] Cat_Var corrmap = hotel.corr() hotel.columns
code
33106981/cell_5
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hotel = pd.read_csv('/kaggle/input/hotel-booking-demand/hotel_bookings.csv') hotel.shape hotel.head().T hotel.info()
code
34141447/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train_path = '/kaggle/input/digit-recognizer/train.csv' df_test_path = '/kaggle/input/digit-recognizer/test.csv' X_train = pd.read_csv(df_train_path) X_test = pd.read_csv(df_test_path) y_train = X_train['label'] X_train = X_train.drop('label', axis=1) X_test.isnull().any().describe()
code
34141447/cell_25
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
from torch import nn, optim from torch.autograd import Variable import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import torch import torch.nn.functional as F use_gpu = torch.cuda.is_available() use_gpu df_train_path = '/kaggle/input/digit-recognizer/train.csv' df_test_path = '/kaggle/input/digit-recognizer/test.csv' X_train = pd.read_csv(df_train_path) X_test = pd.read_csv(df_test_path) y_train = X_train['label'] X_train = X_train.drop('label', axis=1) sns.set_style('darkgrid') y_train.unique() X_train /= 255.0 X_test /= 255.0 X_train = X_train.values y_train = y_train.values X_test = X_test.values X_train = X_train.reshape(-1, 1, 28, 28) X_val = X_val.reshape(-1, 1, 28, 28) X_train = torch.from_numpy(X_train) X_val = torch.from_numpy(X_val) y_train = torch.from_numpy(y_train) y_val = torch.from_numpy(y_val) X_train.shape class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, (5, 5), padding=2) self.conv2 = nn.Conv2d(6, 16, (5, 5)) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) shape = x.size()[1:] features = 1 for s in shape: features *= s x = x.view(-1, features) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x net = LeNet() if use_gpu: net = net.cuda() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001) n_samples = X_train.shape[0] batch_size = 4 n_epochs = 2 for epoch in range(0, n_epochs): for i in range(0, n_samples, batch_size): if i + batch_size >= n_samples: mini_batch_data = Variable(X_train[i:n_samples, :, :, :].clone(), requires_grad=True) mini_batch_label = Variable(y_train[i:n_samples].clone(), requires_grad=False) else: mini_batch_data = Variable(X_train[i:i + batch_size, :, :, :].clone(), requires_grad=True) mini_batch_label = Variable(y_train[i:i + batch_size].clone(), requires_grad=False) mini_batch_data = mini_batch_data.type(torch.FloatTensor) mini_batch_label = mini_batch_label.type(torch.LongTensor) if use_gpu: mini_data = mini_batch_data.cuda() mini_label = mini_batch_label.cuda() optimizer.zero_grad() batch_output = net(mini_data) batch_loss = criterion(batch_output, mini_label) batch_loss.backward() optimizer.step() n_val_samples = X_val.shape[0] true_counter = 0 for val_idx in range(n_val_samples): val_sample = X_val[val_idx].clone().unsqueeze(dim=0) val_sample = val_sample.type(torch.FloatTensor) if use_gpu: val_sample = val_sample.cuda() pred = net(val_sample) _, pred = torch.max(pred, 1) if pred == y_val[val_idx]: true_counter += 1 true_counter /= 1.0 print(f'Accuracy: {true_counter / n_val_samples}')
code
34141447/cell_4
[ "text_plain_output_1.png" ]
import torch use_gpu = torch.cuda.is_available() use_gpu
code
34141447/cell_23
[ "text_plain_output_1.png" ]
from torch import nn, optim from torch.autograd import Variable import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import torch import torch.nn.functional as F use_gpu = torch.cuda.is_available() use_gpu df_train_path = '/kaggle/input/digit-recognizer/train.csv' df_test_path = '/kaggle/input/digit-recognizer/test.csv' X_train = pd.read_csv(df_train_path) X_test = pd.read_csv(df_test_path) y_train = X_train['label'] X_train = X_train.drop('label', axis=1) sns.set_style('darkgrid') y_train.unique() X_train /= 255.0 X_test /= 255.0 X_train = X_train.values y_train = y_train.values X_test = X_test.values X_train = X_train.reshape(-1, 1, 28, 28) X_val = X_val.reshape(-1, 1, 28, 28) X_train = torch.from_numpy(X_train) X_val = torch.from_numpy(X_val) y_train = torch.from_numpy(y_train) y_val = torch.from_numpy(y_val) X_train.shape class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, (5, 5), padding=2) self.conv2 = nn.Conv2d(6, 16, (5, 5)) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) shape = x.size()[1:] features = 1 for s in shape: features *= s x = x.view(-1, features) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x net = LeNet() if use_gpu: net = net.cuda() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001) n_samples = X_train.shape[0] batch_size = 4 n_epochs = 2 for epoch in range(0, n_epochs): for i in range(0, n_samples, batch_size): if i + batch_size >= n_samples: print('reaching end of data') mini_batch_data = Variable(X_train[i:n_samples, :, :, :].clone(), requires_grad=True) mini_batch_label = Variable(y_train[i:n_samples].clone(), requires_grad=False) else: mini_batch_data = Variable(X_train[i:i + batch_size, :, :, :].clone(), requires_grad=True) mini_batch_label = Variable(y_train[i:i + batch_size].clone(), requires_grad=False) mini_batch_data = mini_batch_data.type(torch.FloatTensor) mini_batch_label = mini_batch_label.type(torch.LongTensor) if use_gpu: mini_data = mini_batch_data.cuda() mini_label = mini_batch_label.cuda() optimizer.zero_grad() batch_output = net(mini_data) batch_loss = criterion(batch_output, mini_label) batch_loss.backward() optimizer.step() if i % 10000 == 0: print(f'epoch # {epoch}, iter # {i}:, loss {batch_loss}')
code
34141447/cell_29
[ "text_plain_output_1.png" ]
from torch import nn, optim from torch.autograd import Variable import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import torch import torch.nn.functional as F use_gpu = torch.cuda.is_available() use_gpu df_train_path = '/kaggle/input/digit-recognizer/train.csv' df_test_path = '/kaggle/input/digit-recognizer/test.csv' X_train = pd.read_csv(df_train_path) X_test = pd.read_csv(df_test_path) y_train = X_train['label'] X_train = X_train.drop('label', axis=1) sns.set_style('darkgrid') y_train.unique() X_train /= 255.0 X_test /= 255.0 X_train = X_train.values y_train = y_train.values X_test = X_test.values X_train = X_train.reshape(-1, 1, 28, 28) X_val = X_val.reshape(-1, 1, 28, 28) X_train = torch.from_numpy(X_train) X_val = torch.from_numpy(X_val) y_train = torch.from_numpy(y_train) y_val = torch.from_numpy(y_val) X_train.shape class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, (5, 5), padding=2) self.conv2 = nn.Conv2d(6, 16, (5, 5)) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) shape = x.size()[1:] features = 1 for s in shape: features *= s x = x.view(-1, features) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x net = LeNet() if use_gpu: net = net.cuda() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001) n_samples = X_train.shape[0] batch_size = 4 n_epochs = 2 for epoch in range(0, n_epochs): for i in range(0, n_samples, batch_size): if i + batch_size >= n_samples: mini_batch_data = Variable(X_train[i:n_samples, :, :, :].clone(), requires_grad=True) mini_batch_label = Variable(y_train[i:n_samples].clone(), requires_grad=False) else: mini_batch_data = Variable(X_train[i:i + batch_size, :, :, :].clone(), requires_grad=True) mini_batch_label = Variable(y_train[i:i + batch_size].clone(), requires_grad=False) mini_batch_data = mini_batch_data.type(torch.FloatTensor) mini_batch_label = mini_batch_label.type(torch.LongTensor) if use_gpu: mini_data = mini_batch_data.cuda() mini_label = mini_batch_label.cuda() optimizer.zero_grad() batch_output = net(mini_data) batch_loss = criterion(batch_output, mini_label) batch_loss.backward() optimizer.step() n_val_samples = X_val.shape[0] true_counter = 0 for val_idx in range(n_val_samples): val_sample = X_val[val_idx].clone().unsqueeze(dim=0) val_sample = val_sample.type(torch.FloatTensor) if use_gpu: val_sample = val_sample.cuda() pred = net(val_sample) _, pred = torch.max(pred, 1) if pred == y_val[val_idx]: true_counter += 1 true_counter /= 1.0 X_test = X_test.reshape(-1, 1, 28, 28) X_test = torch.from_numpy(X_test) n_test_samples = X_test.shape[0] net.eval() output_file = np.ndarray(shape=(n_test_samples, 2), dtype=int) for test_idx in range(n_test_samples): test_sample = X_test[test_idx].clone().unsqueeze(dim=1) test_sample = test_sample.type(torch.FloatTensor) if use_gpu: test_sample = test_sample.cuda() pred = net(test_sample) _, pred = torch.max(pred, 1) output_file[test_idx][0] = test_idx + 1 output_file[test_idx][1] = pred submission = pd.DataFrame(output_file, dtype=int, columns=['ImageId', 'Label']) sample = 150 plt.imshow(X_test[sample][0].numpy()) print(output_file[sample][1])
code
34141447/cell_18
[ "text_plain_output_1.png" ]
from torch import nn, optim import torch import torch.nn.functional as F use_gpu = torch.cuda.is_available() use_gpu class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, (5, 5), padding=2) self.conv2 = nn.Conv2d(6, 16, (5, 5)) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) shape = x.size()[1:] features = 1 for s in shape: features *= s x = x.view(-1, features) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x net = LeNet() print(net) if use_gpu: net = net.cuda()
code
34141447/cell_28
[ "text_plain_output_1.png" ]
from torch import nn, optim from torch.autograd import Variable import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import torch import torch.nn.functional as F use_gpu = torch.cuda.is_available() use_gpu df_train_path = '/kaggle/input/digit-recognizer/train.csv' df_test_path = '/kaggle/input/digit-recognizer/test.csv' X_train = pd.read_csv(df_train_path) X_test = pd.read_csv(df_test_path) y_train = X_train['label'] X_train = X_train.drop('label', axis=1) sns.set_style('darkgrid') y_train.unique() X_train /= 255.0 X_test /= 255.0 X_train = X_train.values y_train = y_train.values X_test = X_test.values X_train = X_train.reshape(-1, 1, 28, 28) X_val = X_val.reshape(-1, 1, 28, 28) X_train = torch.from_numpy(X_train) X_val = torch.from_numpy(X_val) y_train = torch.from_numpy(y_train) y_val = torch.from_numpy(y_val) X_train.shape class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, (5, 5), padding=2) self.conv2 = nn.Conv2d(6, 16, (5, 5)) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) shape = x.size()[1:] features = 1 for s in shape: features *= s x = x.view(-1, features) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x net = LeNet() if use_gpu: net = net.cuda() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001) n_samples = X_train.shape[0] batch_size = 4 n_epochs = 2 for epoch in range(0, n_epochs): for i in range(0, n_samples, batch_size): if i + batch_size >= n_samples: mini_batch_data = Variable(X_train[i:n_samples, :, :, :].clone(), requires_grad=True) mini_batch_label = Variable(y_train[i:n_samples].clone(), requires_grad=False) else: mini_batch_data = Variable(X_train[i:i + batch_size, :, :, :].clone(), requires_grad=True) mini_batch_label = Variable(y_train[i:i + batch_size].clone(), requires_grad=False) mini_batch_data = mini_batch_data.type(torch.FloatTensor) mini_batch_label = mini_batch_label.type(torch.LongTensor) if use_gpu: mini_data = mini_batch_data.cuda() mini_label = mini_batch_label.cuda() optimizer.zero_grad() batch_output = net(mini_data) batch_loss = criterion(batch_output, mini_label) batch_loss.backward() optimizer.step() n_val_samples = X_val.shape[0] true_counter = 0 for val_idx in range(n_val_samples): val_sample = X_val[val_idx].clone().unsqueeze(dim=0) val_sample = val_sample.type(torch.FloatTensor) if use_gpu: val_sample = val_sample.cuda() pred = net(val_sample) _, pred = torch.max(pred, 1) if pred == y_val[val_idx]: true_counter += 1 true_counter /= 1.0 X_test = X_test.reshape(-1, 1, 28, 28) X_test = torch.from_numpy(X_test) n_test_samples = X_test.shape[0] net.eval() output_file = np.ndarray(shape=(n_test_samples, 2), dtype=int) for test_idx in range(n_test_samples): test_sample = X_test[test_idx].clone().unsqueeze(dim=1) test_sample = test_sample.type(torch.FloatTensor) if use_gpu: test_sample = test_sample.cuda() pred = net(test_sample) _, pred = torch.max(pred, 1) output_file[test_idx][0] = test_idx + 1 output_file[test_idx][1] = pred if test_idx % 1000 == 0: print(f'testing sample #{test_idx}') submission = pd.DataFrame(output_file, dtype=int, columns=['ImageId', 'Label'])
code
34141447/cell_8
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_train_path = '/kaggle/input/digit-recognizer/train.csv' df_test_path = '/kaggle/input/digit-recognizer/test.csv' X_train = pd.read_csv(df_train_path) X_test = pd.read_csv(df_test_path) y_train = X_train['label'] X_train = X_train.drop('label', axis=1) sns.set_style('darkgrid') plt.figure(figsize=(12, 8)) sns.countplot(y_train) y_train.unique()
code
34141447/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import torch use_gpu = torch.cuda.is_available() use_gpu df_train_path = '/kaggle/input/digit-recognizer/train.csv' df_test_path = '/kaggle/input/digit-recognizer/test.csv' X_train = pd.read_csv(df_train_path) X_test = pd.read_csv(df_test_path) y_train = X_train['label'] X_train = X_train.drop('label', axis=1) sns.set_style('darkgrid') y_train.unique() X_train /= 255.0 X_test /= 255.0 X_train = X_train.values y_train = y_train.values X_test = X_test.values X_train = X_train.reshape(-1, 1, 28, 28) X_val = X_val.reshape(-1, 1, 28, 28) X_train = torch.from_numpy(X_train) X_val = torch.from_numpy(X_val) y_train = torch.from_numpy(y_train) y_val = torch.from_numpy(y_val) X_train.shape
code
34141447/cell_3
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import torch from torch import nn, optim import torch.nn.functional as F from torch.autograd import Variable import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34141447/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_train_path = '/kaggle/input/digit-recognizer/train.csv' df_test_path = '/kaggle/input/digit-recognizer/test.csv' X_train = pd.read_csv(df_train_path) X_test = pd.read_csv(df_test_path) y_train = X_train['label'] X_train = X_train.drop('label', axis=1) sns.set_style('darkgrid') y_train.unique() X_train /= 255.0 X_test /= 255.0 X_train = X_train.values y_train = y_train.values X_test = X_test.values X_train = X_train.reshape(-1, 1, 28, 28) X_val = X_val.reshape(-1, 1, 28, 28) print(X_train[34][0].shape) plt.imshow(X_train[0][0])
code
34141447/cell_27
[ "text_plain_output_1.png" ]
from torch import nn, optim from torch.autograd import Variable import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import torch import torch.nn.functional as F use_gpu = torch.cuda.is_available() use_gpu df_train_path = '/kaggle/input/digit-recognizer/train.csv' df_test_path = '/kaggle/input/digit-recognizer/test.csv' X_train = pd.read_csv(df_train_path) X_test = pd.read_csv(df_test_path) y_train = X_train['label'] X_train = X_train.drop('label', axis=1) sns.set_style('darkgrid') y_train.unique() X_train /= 255.0 X_test /= 255.0 X_train = X_train.values y_train = y_train.values X_test = X_test.values X_train = X_train.reshape(-1, 1, 28, 28) X_val = X_val.reshape(-1, 1, 28, 28) X_train = torch.from_numpy(X_train) X_val = torch.from_numpy(X_val) y_train = torch.from_numpy(y_train) y_val = torch.from_numpy(y_val) X_train.shape class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, (5, 5), padding=2) self.conv2 = nn.Conv2d(6, 16, (5, 5)) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) shape = x.size()[1:] features = 1 for s in shape: features *= s x = x.view(-1, features) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x net = LeNet() if use_gpu: net = net.cuda() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001) n_samples = X_train.shape[0] batch_size = 4 n_epochs = 2 for epoch in range(0, n_epochs): for i in range(0, n_samples, batch_size): if i + batch_size >= n_samples: mini_batch_data = Variable(X_train[i:n_samples, :, :, :].clone(), requires_grad=True) mini_batch_label = Variable(y_train[i:n_samples].clone(), requires_grad=False) else: mini_batch_data = Variable(X_train[i:i + batch_size, :, :, :].clone(), requires_grad=True) mini_batch_label = Variable(y_train[i:i + batch_size].clone(), requires_grad=False) mini_batch_data = mini_batch_data.type(torch.FloatTensor) mini_batch_label = mini_batch_label.type(torch.LongTensor) if use_gpu: mini_data = mini_batch_data.cuda() mini_label = mini_batch_label.cuda() optimizer.zero_grad() batch_output = net(mini_data) batch_loss = criterion(batch_output, mini_label) batch_loss.backward() optimizer.step() n_val_samples = X_val.shape[0] true_counter = 0 for val_idx in range(n_val_samples): val_sample = X_val[val_idx].clone().unsqueeze(dim=0) val_sample = val_sample.type(torch.FloatTensor) if use_gpu: val_sample = val_sample.cuda() pred = net(val_sample) _, pred = torch.max(pred, 1) if pred == y_val[val_idx]: true_counter += 1 true_counter /= 1.0 X_test = X_test.reshape(-1, 1, 28, 28) X_test = torch.from_numpy(X_test) n_test_samples = X_test.shape[0] net.eval()
code
34141447/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_train_path = '/kaggle/input/digit-recognizer/train.csv' df_test_path = '/kaggle/input/digit-recognizer/test.csv' X_train = pd.read_csv(df_train_path) X_test = pd.read_csv(df_test_path) y_train = X_train['label'] X_train = X_train.drop('label', axis=1) sns.set_style('darkgrid') y_train.unique() X_train /= 255.0 X_test /= 255.0 X_train = X_train.values y_train = y_train.values X_test = X_test.values print(X_train.shape) print(y_train.shape) print(X_val.shape) print(y_val.shape)
code
122255805/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ibutton2016/Temp2016.csv', skiprows=[i for i in range(1, 1096)], skipfooter=1112, engine='python', parse_dates=['Var1'], index_col=['Var1']) df.index.name = 'Date' df.index = pd.to_datetime(df.index) df = df.replace(0, np.nan) spat_mean = df.mean(axis=1).copy() print(spat_mean) spat_mean.groupby(spat_mean.index.hour).mean().plot() plt.title('Spatial mean: Diurnal cycle of summer 2021 absolute') plt.ylabel('Temperature ℃') plt.xlabel('Hour of the day') plt.show()
code
122255805/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
122255805/cell_3
[ "text_html_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/ibutton2016/Temp2016.csv', skiprows=[i for i in range(1, 1096)], skipfooter=1112, engine='python', parse_dates=['Var1'], index_col=['Var1']) df.index.name = 'Date' df.index = pd.to_datetime(df.index) df = df.replace(0, np.nan) df.head()
code
2016103/cell_4
[ "text_plain_output_1.png" ]
from plotly.offline import iplot, init_notebook_mode from scipy.stats import linregress from subprocess import check_output import numpy as np import pandas as pd import pandas as pd import numpy as np import plotly.plotly as py import plotly.graph_objs as go from plotly import tools from plotly.offline import iplot, init_notebook_mode init_notebook_mode() from subprocess import check_output SW = pd.read_csv('../input/seattleWeather_1948-2017.csv') SW.columns = SW.columns.str.lower() separate = SW.date.str.split('-') a, b, c = zip(*separate) SW['year'] = a SW['month'] = b SW_year = SW['year'].unique().astype(int) SW['avegareinday'] = (SW.tmax + SW.tmin) / 2 SW_avegareinmonth = SW.groupby([SW.year, SW.month])['avegareinday'].sum() / SW.groupby([SW.year, SW.month])['avegareinday'].count() SW_avegareinannualy = SW_avegareinmonth.groupby('year').sum() / 12 SW_5yearmovingaverage = np.convolve(SW_avegareinannualy, np.ones((5,)) / 5, mode='valid') from scipy.stats import linregress linregress(SW_year, SW_avegareinannualy.values)
code
2016103/cell_2
[ "text_plain_output_1.png" ]
from plotly.offline import iplot, init_notebook_mode from subprocess import check_output import pandas as pd import pandas as pd import numpy as np import plotly.plotly as py import plotly.graph_objs as go from plotly import tools from plotly.offline import iplot, init_notebook_mode init_notebook_mode() from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) SW = pd.read_csv('../input/seattleWeather_1948-2017.csv') SW.columns = SW.columns.str.lower() separate = SW.date.str.split('-') a, b, c = zip(*separate) SW['year'] = a SW['month'] = b SW_year = SW['year'].unique().astype(int)
code
2016103/cell_7
[ "text_html_output_1.png" ]
from plotly.offline import iplot, init_notebook_mode from scipy.stats import linregress from subprocess import check_output import numpy as np import pandas as pd import plotly.graph_objs as go import pandas as pd import numpy as np import plotly.plotly as py import plotly.graph_objs as go from plotly import tools from plotly.offline import iplot, init_notebook_mode init_notebook_mode() from subprocess import check_output SW = pd.read_csv('../input/seattleWeather_1948-2017.csv') SW.columns = SW.columns.str.lower() separate = SW.date.str.split('-') a, b, c = zip(*separate) SW['year'] = a SW['month'] = b SW_year = SW['year'].unique().astype(int) SW['avegareinday'] = (SW.tmax + SW.tmin) / 2 SW_avegareinmonth = SW.groupby([SW.year, SW.month])['avegareinday'].sum() / SW.groupby([SW.year, SW.month])['avegareinday'].count() SW_avegareinannualy = SW_avegareinmonth.groupby('year').sum() / 12 SW_5yearmovingaverage = np.convolve(SW_avegareinannualy, np.ones((5,)) / 5, mode='valid') from scipy.stats import linregress linregress(SW_year, SW_avegareinannualy.values) trace1 = dict(x=SW_year, y=SW_avegareinannualy, line=dict(color='rgb(255, 127, 14)', width=1), mode='lines+markers', name='annual average temp', type='scatter', uid='f5d9be') trace2 = dict(x=SW_year, y=SW_5yearmovingaverage, line=dict(color='rgb(51, 51, 255)', width=2), mode='lines', name='5-year moving average temp', type='scatter', uid='f5d9be') trace3 = dict(x=SW_year, y=0.04642 * SW_year - 40.055, line=dict(color='rgb(0, 153, 0)', width=2), mode='lines', name='long-term linear trend', type='scatter', uid='f5d9be') layout = go.Layout(title='Annualy avegare temperature in Seattle (1948-2017)', xaxis={'title': 'Years'}, yaxis={'title': '°C'}, annotations=[dict(x=2006, y=49, showarrow=False, text='y = 0.04642x-40.05572<br>R<sup>2</sup> =0.641239', font={'size': 20})]) data = [trace1, trace2, trace3] fig = dict(data=data, layout=layout) SW_rain = np.asarray(SW.groupby('year')['rain'].sum()) SW_dry = np.asarray(SW.groupby('year')['rain'].count()) - np.asarray(SW.groupby('year')['rain'].sum()) labels = ['Dryness', 'Rain'] colors = ['rgb(255, 51, 0)', 'rgb(0, 51, 204)'] x_data = SW_year y_data = [SW_rain, SW_dry] traces = [] for i in range(0, 2): traces.append(go.Scatter(x=x_data, y=y_data[i], mode='splines', name=labels[i], line=dict(color=colors[i], width=3))) layout = {'title': 'Rain and dry in Seattle (1948-2017)', 'xaxis': {'title': 'Years'}, 'yaxis': {'title': 'day'}} figure = dict(data=traces, layout=layout) iplot(figure)
code
2016103/cell_5
[ "text_html_output_1.png" ]
from plotly.offline import iplot, init_notebook_mode from scipy.stats import linregress from subprocess import check_output import numpy as np import pandas as pd import plotly.graph_objs as go import pandas as pd import numpy as np import plotly.plotly as py import plotly.graph_objs as go from plotly import tools from plotly.offline import iplot, init_notebook_mode init_notebook_mode() from subprocess import check_output SW = pd.read_csv('../input/seattleWeather_1948-2017.csv') SW.columns = SW.columns.str.lower() separate = SW.date.str.split('-') a, b, c = zip(*separate) SW['year'] = a SW['month'] = b SW_year = SW['year'].unique().astype(int) SW['avegareinday'] = (SW.tmax + SW.tmin) / 2 SW_avegareinmonth = SW.groupby([SW.year, SW.month])['avegareinday'].sum() / SW.groupby([SW.year, SW.month])['avegareinday'].count() SW_avegareinannualy = SW_avegareinmonth.groupby('year').sum() / 12 SW_5yearmovingaverage = np.convolve(SW_avegareinannualy, np.ones((5,)) / 5, mode='valid') from scipy.stats import linregress linregress(SW_year, SW_avegareinannualy.values) trace1 = dict(x=SW_year, y=SW_avegareinannualy, line=dict(color='rgb(255, 127, 14)', width=1), mode='lines+markers', name='annual average temp', type='scatter', uid='f5d9be') trace2 = dict(x=SW_year, y=SW_5yearmovingaverage, line=dict(color='rgb(51, 51, 255)', width=2), mode='lines', name='5-year moving average temp', type='scatter', uid='f5d9be') trace3 = dict(x=SW_year, y=0.04642 * SW_year - 40.055, line=dict(color='rgb(0, 153, 0)', width=2), mode='lines', name='long-term linear trend', type='scatter', uid='f5d9be') layout = go.Layout(title='Annualy avegare temperature in Seattle (1948-2017)', xaxis={'title': 'Years'}, yaxis={'title': '°C'}, annotations=[dict(x=2006, y=49, showarrow=False, text='y = 0.04642x-40.05572<br>R<sup>2</sup> =0.641239', font={'size': 20})]) data = [trace1, trace2, trace3] fig = dict(data=data, layout=layout) iplot(fig)
code
90102830/cell_5
[ "text_plain_output_5.png", "application_vnd.jupyter.stderr_output_4.png", "text_plain_output_6.png", "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
import gc import glob import multiprocessing import numpy as np import os import random import torch from tqdm.auto import tqdm import os import sys import random import numpy as np import pandas as pd import glob import gc gc.enable() from joblib import Parallel, delayed import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from pytorch_lightning import LightningModule, LightningDataModule from pytorch_lightning import Trainer import multiprocessing from transformers import AutoTokenizer, AutoModel, AutoConfig, AutoModelForTokenClassification from transformers.models.deberta_v2.tokenization_deberta_v2_fast import DebertaV2TokenizerFast def seed_everything(seed=42): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True os.environ['PYTHONHASHSEED'] = str(seed) target_id_map = {'O': 0, 'B-Lead': 1, 'I-Lead': 2, 'B-Position': 3, 'I-Position': 4, 'B-Claim': 5, 'I-Claim': 6, 'B-Counterclaim': 7, 'I-Counterclaim': 8, 'B-Rebuttal': 9, 'I-Rebuttal': 10, 'B-Evidence': 11, 'I-Evidence': 12, 'B-Concluding Statement': 13, 'I-Concluding Statement': 14, 'PAD': -100} '\ntarget_id_map2 = {\n "B-Lead": 0,\n "I-Lead": 1,\n "B-Position": 2,\n "I-Position": 3,\n "B-Evidence": 4,\n "I-Evidence": 5,\n "B-Claim": 6,\n "I-Claim": 7,\n "B-Concluding Statement": 8,\n "I-Concluding Statement": 9,\n "B-Counterclaim": 10,\n "I-Counterclaim": 11,\n "B-Rebuttal": 12,\n "I-Rebuttal": 13,\n "O": 14,\n "PAD": -100,\n}\n' length_threshold = {'Lead': 9, 'Position': 5, 'Claim': 3, 'Counterclaim': 6, 'Rebuttal': 4, 'Evidence': 14, 'Concluding Statement': 11} probability_threshold = {'Lead': 0.6, 'Position': 0.6, 'Claim': 0.6, 'Counterclaim': 0.6, 'Rebuttal': 0.6, 'Evidence': 0.6, 'Concluding Statement': 0.6} id_target_map = {v: k for k, v in target_id_map.items()} seed_everything(2022) os.environ['TOKENIZERS_PARALLELISM'] = 'false' def process(func): def worker(func, q): q.put(func()) out = None q = multiprocessing.Queue() p = multiprocessing.Process(target=worker, args=(func, q)) p.start() out = q.get() p.join() return out DEBUG = False if DEBUG: text_dir = '../input/feedback-prize-2021/train' valid_id = [f.split('/')[-1][:-4] for f in glob.glob(text_dir + '/*.txt')] valid_id = sorted(valid_id)[0:10000] num_valid = len(valid_id) print('len(valid_id)', len(valid_id)) else: text_dir = '../input/feedback-prize-2021/test' valid_id = [f.split('/')[-1][:-4] for f in glob.glob(text_dir + '/*.txt')] valid_id = sorted(valid_id) num_valid = len(valid_id) print('len(valid_id)', len(valid_id)) size = [os.path.getsize(text_dir + '/%s.txt' % id) for id in valid_id] valid_id = [id for id, s in sorted(zip(valid_id, size), key=lambda pair: -pair[1])] del size gc.collect() print('len(valid_id)', len(valid_id))
code
33102990/cell_13
[ "text_plain_output_1.png" ]
from glob import glob from keras import layers from keras.applications.vgg16 import VGG16 from keras.layers import Input, Dense from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img import matplotlib.pyplot as plt train_path = '/kaggle/input/signature/signature/Train/' test_path = '/kaggle/input/signature/signature/Test/' img = load_img(train_path + 'forged/f138.png') x = img_to_array(img) img = load_img(train_path + '/forged/f98.png') x = img_to_array(img) numberOfClass = len(glob(train_path + '/*')) train_data = ImageDataGenerator().flow_from_directory(train_path, target_size=(224, 224), class_mode='binary') test_data = ImageDataGenerator().flow_from_directory(test_path, target_size=(224, 224), class_mode='binary') vgg = VGG16() vgg_layer_list = vgg.layers model = Sequential() for i in range(len(vgg_layer_list) - 1): model.add(vgg_layer_list[i]) for layers in model.layers: layers.trainable = False model.add(Dense(numberOfClass, activation='softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer='SGD', metrics=['accuracy']) batch_size = 32 history = model.fit_generator(train_data, steps_per_epoch=1600 / batch_size, epochs=5, validation_data=test_data, validation_steps=800 / batch_size)
code
33102990/cell_4
[ "image_output_1.png" ]
from glob import glob from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img import matplotlib.pyplot as plt train_path = '/kaggle/input/signature/signature/Train/' test_path = '/kaggle/input/signature/signature/Test/' img = load_img(train_path + 'forged/f138.png') plt.figure() plt.imshow(img) plt.show() x = img_to_array(img) img = load_img(train_path + '/forged/f98.png') plt.figure() plt.imshow(img) plt.show() x = img_to_array(img) print(x.shape) numberOfClass = len(glob(train_path + '/*'))
code
33102990/cell_20
[ "text_plain_output_1.png" ]
from glob import glob from keras import layers from keras.applications.resnet50 import preprocess_input from keras.applications.vgg16 import VGG16 from keras.layers import Input, Dense from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img import matplotlib.pyplot as plt train_path = '/kaggle/input/signature/signature/Train/' test_path = '/kaggle/input/signature/signature/Test/' img = load_img(train_path + 'forged/f138.png') x = img_to_array(img) img = load_img(train_path + '/forged/f98.png') x = img_to_array(img) numberOfClass = len(glob(train_path + '/*')) train_data = ImageDataGenerator().flow_from_directory(train_path, target_size=(224, 224), class_mode='binary') test_data = ImageDataGenerator().flow_from_directory(test_path, target_size=(224, 224), class_mode='binary') train_datagen = ImageDataGenerator(shear_range=10, zoom_range=0.2, horizontal_flip=True, preprocessing_function=preprocess_input) train_generator = train_datagen.flow_from_directory(train_path, batch_size=32, class_mode='binary', target_size=(224, 224)) test_datagen = ImageDataGenerator(preprocessing_function=preprocess_input) test_generator = test_datagen.flow_from_directory(test_path, shuffle=False, class_mode='binary', target_size=(224, 224)) vgg = VGG16() vgg_layer_list = vgg.layers model = Sequential() for i in range(len(vgg_layer_list) - 1): model.add(vgg_layer_list[i]) for layers in model.layers: layers.trainable = False model.add(Dense(numberOfClass, activation='softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer='SGD', metrics=['accuracy']) batch_size = 32 history = model.fit_generator(train_data, steps_per_epoch=1600 / batch_size, epochs=5, validation_data=test_data, validation_steps=800 / batch_size) model.compile(loss='sparse_categorical_crossentropy', optimizer='SGD', metrics=['accuracy']) batch_size = 32 history = model.fit_generator(train_generator, steps_per_epoch=1600 / batch_size, epochs=5, validation_data=test_generator, validation_steps=800 / batch_size) model.compile(loss='sparse_categorical_crossentropy', optimizer='Adam', metrics=['accuracy']) batch_size = 32 history = model.fit_generator(train_data, steps_per_epoch=1600 / batch_size, epochs=5, validation_data=test_data, validation_steps=800 / batch_size) plt.figure(figsize=(30, 5)) plt.subplot(121) plt.suptitle('Model:VGG16 Epoch:5 Optimizer:Adam Veri Çoğaltma:Yok') plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('Model doğruluğu') plt.ylabel('Doğruluk') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.subplot(122) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model kaybı') plt.ylabel('Kayıp') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.savefig('Adam_5_0_vgg') plt.show()
code
33102990/cell_6
[ "text_plain_output_1.png" ]
from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img train_path = '/kaggle/input/signature/signature/Train/' test_path = '/kaggle/input/signature/signature/Test/' train_data = ImageDataGenerator().flow_from_directory(train_path, target_size=(224, 224), class_mode='binary') test_data = ImageDataGenerator().flow_from_directory(test_path, target_size=(224, 224), class_mode='binary')
code
33102990/cell_11
[ "text_plain_output_1.png" ]
from glob import glob from keras import layers from keras.applications.vgg16 import VGG16 from keras.layers import Input, Dense from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img from keras.utils import plot_model import matplotlib.pyplot as plt train_path = '/kaggle/input/signature/signature/Train/' test_path = '/kaggle/input/signature/signature/Test/' img = load_img(train_path + 'forged/f138.png') x = img_to_array(img) img = load_img(train_path + '/forged/f98.png') x = img_to_array(img) numberOfClass = len(glob(train_path + '/*')) vgg = VGG16() vgg_layer_list = vgg.layers model = Sequential() for i in range(len(vgg_layer_list) - 1): model.add(vgg_layer_list[i]) for layers in model.layers: layers.trainable = False model.add(Dense(numberOfClass, activation='softmax')) from keras.utils import plot_model plot_model(model)
code
33102990/cell_19
[ "image_output_1.png" ]
from glob import glob from keras import layers from keras.applications.resnet50 import preprocess_input from keras.applications.vgg16 import VGG16 from keras.layers import Input, Dense from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img import matplotlib.pyplot as plt train_path = '/kaggle/input/signature/signature/Train/' test_path = '/kaggle/input/signature/signature/Test/' img = load_img(train_path + 'forged/f138.png') x = img_to_array(img) img = load_img(train_path + '/forged/f98.png') x = img_to_array(img) numberOfClass = len(glob(train_path + '/*')) train_data = ImageDataGenerator().flow_from_directory(train_path, target_size=(224, 224), class_mode='binary') test_data = ImageDataGenerator().flow_from_directory(test_path, target_size=(224, 224), class_mode='binary') train_datagen = ImageDataGenerator(shear_range=10, zoom_range=0.2, horizontal_flip=True, preprocessing_function=preprocess_input) train_generator = train_datagen.flow_from_directory(train_path, batch_size=32, class_mode='binary', target_size=(224, 224)) test_datagen = ImageDataGenerator(preprocessing_function=preprocess_input) test_generator = test_datagen.flow_from_directory(test_path, shuffle=False, class_mode='binary', target_size=(224, 224)) vgg = VGG16() vgg_layer_list = vgg.layers model = Sequential() for i in range(len(vgg_layer_list) - 1): model.add(vgg_layer_list[i]) for layers in model.layers: layers.trainable = False model.add(Dense(numberOfClass, activation='softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer='SGD', metrics=['accuracy']) batch_size = 32 history = model.fit_generator(train_data, steps_per_epoch=1600 / batch_size, epochs=5, validation_data=test_data, validation_steps=800 / batch_size) model.compile(loss='sparse_categorical_crossentropy', optimizer='SGD', metrics=['accuracy']) batch_size = 32 history = model.fit_generator(train_generator, steps_per_epoch=1600 / batch_size, epochs=5, validation_data=test_generator, validation_steps=800 / batch_size) model.compile(loss='sparse_categorical_crossentropy', optimizer='Adam', metrics=['accuracy']) batch_size = 32 history = model.fit_generator(train_data, steps_per_epoch=1600 / batch_size, epochs=5, validation_data=test_data, validation_steps=800 / batch_size)
code
33102990/cell_1
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import os import sys import csv import os import math import json, codecs import numpy as np import pandas as pd import cv2 as cv import matplotlib.pyplot as plt from zipfile import ZipFile import shutil from glob import glob from PIL import Image from PIL import ImageFilter from sklearn.model_selection import train_test_split import keras from keras import layers from keras.models import Model from keras.layers import Input, Dense from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img from keras.models import Sequential from keras.applications.vgg16 import VGG16 from keras.preprocessing import image from keras.applications import ResNet50 from keras.applications.resnet50 import preprocess_input import torch for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
33102990/cell_8
[ "image_output_1.png" ]
from keras.applications.resnet50 import preprocess_input from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img train_path = '/kaggle/input/signature/signature/Train/' test_path = '/kaggle/input/signature/signature/Test/' train_datagen = ImageDataGenerator(shear_range=10, zoom_range=0.2, horizontal_flip=True, preprocessing_function=preprocess_input) train_generator = train_datagen.flow_from_directory(train_path, batch_size=32, class_mode='binary', target_size=(224, 224)) test_datagen = ImageDataGenerator(preprocessing_function=preprocess_input) test_generator = test_datagen.flow_from_directory(test_path, shuffle=False, class_mode='binary', target_size=(224, 224))
code
33102990/cell_16
[ "image_output_1.png" ]
from glob import glob from keras import layers from keras.applications.resnet50 import preprocess_input from keras.applications.vgg16 import VGG16 from keras.layers import Input, Dense from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img import matplotlib.pyplot as plt train_path = '/kaggle/input/signature/signature/Train/' test_path = '/kaggle/input/signature/signature/Test/' img = load_img(train_path + 'forged/f138.png') x = img_to_array(img) img = load_img(train_path + '/forged/f98.png') x = img_to_array(img) numberOfClass = len(glob(train_path + '/*')) train_data = ImageDataGenerator().flow_from_directory(train_path, target_size=(224, 224), class_mode='binary') test_data = ImageDataGenerator().flow_from_directory(test_path, target_size=(224, 224), class_mode='binary') train_datagen = ImageDataGenerator(shear_range=10, zoom_range=0.2, horizontal_flip=True, preprocessing_function=preprocess_input) train_generator = train_datagen.flow_from_directory(train_path, batch_size=32, class_mode='binary', target_size=(224, 224)) test_datagen = ImageDataGenerator(preprocessing_function=preprocess_input) test_generator = test_datagen.flow_from_directory(test_path, shuffle=False, class_mode='binary', target_size=(224, 224)) vgg = VGG16() vgg_layer_list = vgg.layers model = Sequential() for i in range(len(vgg_layer_list) - 1): model.add(vgg_layer_list[i]) for layers in model.layers: layers.trainable = False model.add(Dense(numberOfClass, activation='softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer='SGD', metrics=['accuracy']) batch_size = 32 history = model.fit_generator(train_data, steps_per_epoch=1600 / batch_size, epochs=5, validation_data=test_data, validation_steps=800 / batch_size) model.compile(loss='sparse_categorical_crossentropy', optimizer='SGD', metrics=['accuracy']) batch_size = 32 history = model.fit_generator(train_generator, steps_per_epoch=1600 / batch_size, epochs=5, validation_data=test_generator, validation_steps=800 / batch_size)
code
33102990/cell_17
[ "text_plain_output_1.png" ]
from glob import glob from keras import layers from keras.applications.resnet50 import preprocess_input from keras.applications.vgg16 import VGG16 from keras.layers import Input, Dense from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img import matplotlib.pyplot as plt train_path = '/kaggle/input/signature/signature/Train/' test_path = '/kaggle/input/signature/signature/Test/' img = load_img(train_path + 'forged/f138.png') x = img_to_array(img) img = load_img(train_path + '/forged/f98.png') x = img_to_array(img) numberOfClass = len(glob(train_path + '/*')) train_data = ImageDataGenerator().flow_from_directory(train_path, target_size=(224, 224), class_mode='binary') test_data = ImageDataGenerator().flow_from_directory(test_path, target_size=(224, 224), class_mode='binary') train_datagen = ImageDataGenerator(shear_range=10, zoom_range=0.2, horizontal_flip=True, preprocessing_function=preprocess_input) train_generator = train_datagen.flow_from_directory(train_path, batch_size=32, class_mode='binary', target_size=(224, 224)) test_datagen = ImageDataGenerator(preprocessing_function=preprocess_input) test_generator = test_datagen.flow_from_directory(test_path, shuffle=False, class_mode='binary', target_size=(224, 224)) vgg = VGG16() vgg_layer_list = vgg.layers model = Sequential() for i in range(len(vgg_layer_list) - 1): model.add(vgg_layer_list[i]) for layers in model.layers: layers.trainable = False model.add(Dense(numberOfClass, activation='softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer='SGD', metrics=['accuracy']) batch_size = 32 history = model.fit_generator(train_data, steps_per_epoch=1600 / batch_size, epochs=5, validation_data=test_data, validation_steps=800 / batch_size) model.compile(loss='sparse_categorical_crossentropy', optimizer='SGD', metrics=['accuracy']) batch_size = 32 history = model.fit_generator(train_generator, steps_per_epoch=1600 / batch_size, epochs=5, validation_data=test_generator, validation_steps=800 / batch_size) plt.figure(figsize=(30, 5)) plt.subplot(121) plt.suptitle('Model:VGG16 Epoch:5 Optimizer:SDG Veri Çoğaltma:Var') plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('Model doğruluğu') plt.ylabel('Doğruluk') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.subplot(122) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model kaybı') plt.ylabel('Kayıp') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.savefig('SGD_5_1_vgg') plt.show()
code
33102990/cell_14
[ "text_plain_output_1.png" ]
from glob import glob from keras import layers from keras.applications.vgg16 import VGG16 from keras.layers import Input, Dense from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img import matplotlib.pyplot as plt train_path = '/kaggle/input/signature/signature/Train/' test_path = '/kaggle/input/signature/signature/Test/' img = load_img(train_path + 'forged/f138.png') x = img_to_array(img) img = load_img(train_path + '/forged/f98.png') x = img_to_array(img) numberOfClass = len(glob(train_path + '/*')) train_data = ImageDataGenerator().flow_from_directory(train_path, target_size=(224, 224), class_mode='binary') test_data = ImageDataGenerator().flow_from_directory(test_path, target_size=(224, 224), class_mode='binary') vgg = VGG16() vgg_layer_list = vgg.layers model = Sequential() for i in range(len(vgg_layer_list) - 1): model.add(vgg_layer_list[i]) for layers in model.layers: layers.trainable = False model.add(Dense(numberOfClass, activation='softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer='SGD', metrics=['accuracy']) batch_size = 32 history = model.fit_generator(train_data, steps_per_epoch=1600 / batch_size, epochs=5, validation_data=test_data, validation_steps=800 / batch_size) plt.figure(figsize=(30, 5)) plt.subplot(121) plt.suptitle('Model:VGG16 Epoch:5 Optimizer:SDG Veri Çoğaltma:Yok') plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('Model doğruluğu') plt.ylabel('Doğruluk') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.subplot(122) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model kaybı') plt.ylabel('Kayıp') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.savefig('SGD_5_0_vgg') plt.show()
code
33102990/cell_22
[ "image_output_1.png" ]
from glob import glob from keras import layers from keras.applications.resnet50 import preprocess_input from keras.applications.vgg16 import VGG16 from keras.layers import Input, Dense from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img import matplotlib.pyplot as plt train_path = '/kaggle/input/signature/signature/Train/' test_path = '/kaggle/input/signature/signature/Test/' img = load_img(train_path + 'forged/f138.png') x = img_to_array(img) img = load_img(train_path + '/forged/f98.png') x = img_to_array(img) numberOfClass = len(glob(train_path + '/*')) train_data = ImageDataGenerator().flow_from_directory(train_path, target_size=(224, 224), class_mode='binary') test_data = ImageDataGenerator().flow_from_directory(test_path, target_size=(224, 224), class_mode='binary') train_datagen = ImageDataGenerator(shear_range=10, zoom_range=0.2, horizontal_flip=True, preprocessing_function=preprocess_input) train_generator = train_datagen.flow_from_directory(train_path, batch_size=32, class_mode='binary', target_size=(224, 224)) test_datagen = ImageDataGenerator(preprocessing_function=preprocess_input) test_generator = test_datagen.flow_from_directory(test_path, shuffle=False, class_mode='binary', target_size=(224, 224)) vgg = VGG16() vgg_layer_list = vgg.layers model = Sequential() for i in range(len(vgg_layer_list) - 1): model.add(vgg_layer_list[i]) for layers in model.layers: layers.trainable = False model.add(Dense(numberOfClass, activation='softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer='SGD', metrics=['accuracy']) batch_size = 32 history = model.fit_generator(train_data, steps_per_epoch=1600 / batch_size, epochs=5, validation_data=test_data, validation_steps=800 / batch_size) model.compile(loss='sparse_categorical_crossentropy', optimizer='SGD', metrics=['accuracy']) batch_size = 32 history = model.fit_generator(train_generator, steps_per_epoch=1600 / batch_size, epochs=5, validation_data=test_generator, validation_steps=800 / batch_size) model.compile(loss='sparse_categorical_crossentropy', optimizer='Adam', metrics=['accuracy']) batch_size = 32 history = model.fit_generator(train_data, steps_per_epoch=1600 / batch_size, epochs=5, validation_data=test_data, validation_steps=800 / batch_size) model.compile(loss='sparse_categorical_crossentropy', optimizer='Adam', metrics=['accuracy']) history = model.fit_generator(train_generator, steps_per_epoch=1600 / batch_size, epochs=5, validation_data=test_generator, validation_steps=800 / batch_size)
code
33102990/cell_10
[ "text_plain_output_1.png", "image_output_2.png", "image_output_1.png" ]
from glob import glob from keras import layers from keras.applications.vgg16 import VGG16 from keras.layers import Input, Dense from keras.models import Sequential from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img import matplotlib.pyplot as plt train_path = '/kaggle/input/signature/signature/Train/' test_path = '/kaggle/input/signature/signature/Test/' img = load_img(train_path + 'forged/f138.png') x = img_to_array(img) img = load_img(train_path + '/forged/f98.png') x = img_to_array(img) numberOfClass = len(glob(train_path + '/*')) vgg = VGG16() vgg_layer_list = vgg.layers model = Sequential() for i in range(len(vgg_layer_list) - 1): model.add(vgg_layer_list[i]) for layers in model.layers: layers.trainable = False model.add(Dense(numberOfClass, activation='softmax')) print(model.summary())
code
32071593/cell_13
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') submission_file = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/submission.csv') (train_data.shape, test_data.shape, submission_file.shape) train_data_covid = train_data.copy() test_data_covid = test_data.copy() test_data_covid = test_data_covid.fillna('NA') train_data_covid = train_data_covid.fillna('NA') train_series_cc = train_data_covid.fillna('NA').groupby(['Country_Region', 'Province_State', 'Date'])['ConfirmedCases'].sum().groupby(['Country_Region', 'Province_State']).max().sort_values().groupby('Country_Region').sum().sort_values(ascending=False) train_series_fatal = train_data_covid.fillna('NA').groupby(['Country_Region', 'Province_State', 'Date'])['Fatalities'].sum().groupby(['Country_Region', 'Province_State']).max().sort_values().groupby('Country_Region').sum().sort_values(ascending=False) train_series_date = train_data_covid.groupby(['Date'])[['ConfirmedCases']].sum().sort_values('ConfirmedCases') display(train_series_date.head()) train_series_date_fata = train_data_covid.groupby(['Date'])[['Fatalities']].sum().sort_values('Fatalities') display(train_series_date_fata.head())
code
32071593/cell_6
[ "text_html_output_2.png", "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') submission_file = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/submission.csv') (train_data.shape, test_data.shape, submission_file.shape)
code
32071593/cell_11
[ "text_html_output_2.png", "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') submission_file = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/submission.csv') (train_data.shape, test_data.shape, submission_file.shape) train_data_covid = train_data.copy() test_data_covid = test_data.copy() test_data_covid = test_data_covid.fillna('NA') train_data_covid = train_data_covid.fillna('NA') train_series_cc = train_data_covid.fillna('NA').groupby(['Country_Region', 'Province_State', 'Date'])['ConfirmedCases'].sum().groupby(['Country_Region', 'Province_State']).max().sort_values().groupby('Country_Region').sum().sort_values(ascending=False) train_series_fatal = train_data_covid.fillna('NA').groupby(['Country_Region', 'Province_State', 'Date'])['Fatalities'].sum().groupby(['Country_Region', 'Province_State']).max().sort_values().groupby('Country_Region').sum().sort_values(ascending=False) train_large10_cc = pd.DataFrame(train_series_cc).head(10) display(train_large10_cc.head()) train_large10_fatal = pd.DataFrame(train_series_fatal).head(10) display(train_large10_fatal.head()) print('Toal number of people infected by Coronavirus in the world from', min(train_data['Date']), 'to', max(train_data['Date']), 'are:', int(sum(train_series_cc))) print('Toal number of people deceased by cronavirus in the world from', min(train_data['Date']), 'to', max(train_data['Date']), 'are:', int(sum(train_series_fatal)))
code
32071593/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32071593/cell_7
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') submission_file = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/submission.csv') (train_data.shape, test_data.shape, submission_file.shape) display(test_data.head()) print('Test data are from', test_data['Date'].min(), 'to', test_data['Date'].max()) print('Number of days', pd.date_range(test_data['Date'].min(), test_data['Date'].max()).shape[0])
code
32071593/cell_8
[ "image_output_4.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') submission_file = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/submission.csv') (train_data.shape, test_data.shape, submission_file.shape) print(train_data.isna().any().any(), test_data.isna().any().any()) display(train_data.isna().any()) display(test_data.isna().any())
code
32071593/cell_14
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') submission_file = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/submission.csv') (train_data.shape, test_data.shape, submission_file.shape) train_data_covid = train_data.copy() test_data_covid = test_data.copy() test_data_covid = test_data_covid.fillna('NA') train_data_covid = train_data_covid.fillna('NA') train_series_cc = train_data_covid.fillna('NA').groupby(['Country_Region', 'Province_State', 'Date'])['ConfirmedCases'].sum().groupby(['Country_Region', 'Province_State']).max().sort_values().groupby('Country_Region').sum().sort_values(ascending=False) train_series_fatal = train_data_covid.fillna('NA').groupby(['Country_Region', 'Province_State', 'Date'])['Fatalities'].sum().groupby(['Country_Region', 'Province_State']).max().sort_values().groupby('Country_Region').sum().sort_values(ascending=False) train_large10_cc = pd.DataFrame(train_series_cc).head(10) display(train_large10_cc.head()) train_large10_fatal= pd.DataFrame(train_series_fatal).head(10) display(train_large10_fatal.head()) print("Toal number of people infected by Coronavirus in the world from", min(train_data['Date']), \ "to", max(train_data['Date']), 'are:', \ int(sum(train_series_cc))) print("Toal number of people deceased by cronavirus in the world from", min(train_data['Date']), \ "to", max(train_data['Date']), 'are:', \ int(sum(train_series_fatal))) fig, (ax1, ax2) = plt.subplots(1,2, figsize = (24,8)) fig.suptitle('Number of Confirmed Cases and Fatalities in the World', fontsize = 30) #Left plot ax1.bar(train_large10_cc.index, train_large10_cc['ConfirmedCases'], color = 'purple') ax1.set(xlabel = 'Countries', ylabel = 'Number of ConfirmedCases') ax1.legend(['ConfirmedCases']) ax1.grid() #Right plot ax2.bar(train_large10_fatal.index, train_large10_fatal['Fatalities'], color = 'orange') ax2.set(xlabel = 'Countries', ylabel = 'Number of Fatalities') ax2.legend(['Fatalities']) ax2.grid() plt.rcParams["font.family"] = "Times New Roman" plt.rcParams["font.size"] = "20" plt.show() train_series_date = train_data_covid.groupby(['Date'])[['ConfirmedCases']].sum().sort_values('ConfirmedCases') train_series_date_fata = train_data_covid.groupby(['Date'])[['Fatalities']].sum().sort_values('Fatalities') fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 8)) fig.suptitle('Trends of Confirmed Cases and Fatalities in the World', fontsize=30) ax1.plot(train_series_date.index, train_series_date['ConfirmedCases'], color='purple', marker='o', linewidth=2) ax1.set(xlabel='Date', ylabel='ConfirmedCases') ax1.set_xticks(np.arange(0, 80, step=12)) ax1.legend(['ConfirmedCases']) ax1.grid() ax2.plot(train_series_date_fata.index, train_series_date_fata['Fatalities'], color='orange', marker='o', linewidth=2) ax2.set(xlabel='Date', ylabel='Fatalities') ax2.set_xticks(np.arange(0, 80, step=12)) ax2.legend(['Fatalities']) ax2.grid() plt.rcParams['font.family'] = 'Times New Roman' plt.rcParams['font.size'] = '16' plt.show()
code
32071593/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') submission_file = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/submission.csv') (train_data.shape, test_data.shape, submission_file.shape) train_data_covid = train_data.copy() test_data_covid = test_data.copy() test_data_covid = test_data_covid.fillna('NA') train_data_covid = train_data_covid.fillna('NA') train_series_cc = train_data_covid.fillna('NA').groupby(['Country_Region', 'Province_State', 'Date'])['ConfirmedCases'].sum().groupby(['Country_Region', 'Province_State']).max().sort_values().groupby('Country_Region').sum().sort_values(ascending=False) train_series_fatal = train_data_covid.fillna('NA').groupby(['Country_Region', 'Province_State', 'Date'])['Fatalities'].sum().groupby(['Country_Region', 'Province_State']).max().sort_values().groupby('Country_Region').sum().sort_values(ascending=False) train_large10_cc = pd.DataFrame(train_series_cc).head(10) display(train_large10_cc.head()) train_large10_fatal= pd.DataFrame(train_series_fatal).head(10) display(train_large10_fatal.head()) print("Toal number of people infected by Coronavirus in the world from", min(train_data['Date']), \ "to", max(train_data['Date']), 'are:', \ int(sum(train_series_cc))) print("Toal number of people deceased by cronavirus in the world from", min(train_data['Date']), \ "to", max(train_data['Date']), 'are:', \ int(sum(train_series_fatal))) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 8)) fig.suptitle('Number of Confirmed Cases and Fatalities in the World', fontsize=30) ax1.bar(train_large10_cc.index, train_large10_cc['ConfirmedCases'], color='purple') ax1.set(xlabel='Countries', ylabel='Number of ConfirmedCases') ax1.legend(['ConfirmedCases']) ax1.grid() ax2.bar(train_large10_fatal.index, train_large10_fatal['Fatalities'], color='orange') ax2.set(xlabel='Countries', ylabel='Number of Fatalities') ax2.legend(['Fatalities']) ax2.grid() plt.rcParams['font.family'] = 'Times New Roman' plt.rcParams['font.size'] = '20' plt.show()
code
32071593/cell_5
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv') test_data = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv') submission_file = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/submission.csv') display(train_data.head()) display(train_data.describe()) print('Number of countries:', train_data['Country_Region'].nunique()) print('Training data are from', min(train_data['Date']), 'to', max(train_data['Date'])) print('Total number of days: ', train_data['Date'].nunique())
code
2036553/cell_4
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import keras from keras import Sequential from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout from keras.optimizers import Adam from keras.callbacks import TensorBoard df_train = pd.read_csv('../input/fashion-mnist_train.csv') df_test = pd.read_csv('../input/fashion-mnist_test.csv') train_data = np.array(df_train, dtype='float32') test_data = np.array(df_test, dtype='float32') X_train = train_data[:, 1:] / 255 y_train = train_data[:, 0] X_test = test_data[:, 1:] / 255 y_test = test_data[:, 0] im_rows = 28 im_cols = 28 batch_size = 512 im_shape = (im_rows, im_cols, 1) X_train = X_train.reshape(X_train.shape[0], *im_shape) X_test = X_test.reshape(X_test.shape[0], *im_shape) X_validate = X_validate.reshape(X_validate.shape[0], *im_shape) print(X_train.shape) print(X_test.shape)
code
2036553/cell_6
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from keras import Sequential from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout from keras.optimizers import Adam import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import keras from keras import Sequential from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout from keras.optimizers import Adam from keras.callbacks import TensorBoard df_train = pd.read_csv('../input/fashion-mnist_train.csv') df_test = pd.read_csv('../input/fashion-mnist_test.csv') train_data = np.array(df_train, dtype='float32') test_data = np.array(df_test, dtype='float32') X_train = train_data[:, 1:] / 255 y_train = train_data[:, 0] X_test = test_data[:, 1:] / 255 y_test = test_data[:, 0] im_rows = 28 im_cols = 28 batch_size = 512 im_shape = (im_rows, im_cols, 1) X_train = X_train.reshape(X_train.shape[0], *im_shape) X_test = X_test.reshape(X_test.shape[0], *im_shape) X_validate = X_validate.reshape(X_validate.shape[0], *im_shape) cnn = Sequential([Conv2D(filters=32, kernel_size=3, activation='relu', input_shape=im_shape), MaxPooling2D(pool_size=2), Dropout(0.2), Flatten(), Dense(32, activation='relu'), Dense(10, activation='softmax')]) cnn.compile(loss='sparse_categorical_crossentropy', optimizer=Adam(lr=0.001), metrics=['accuracy']) cnn.fit(X_train, y_train, batch_size=batch_size, epochs=10, verbose=1, validation_data=(X_validate, y_validate))
code
2036553/cell_1
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import keras from keras import Sequential from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout from keras.optimizers import Adam from keras.callbacks import TensorBoard df_train = pd.read_csv('../input/fashion-mnist_train.csv') df_test = pd.read_csv('../input/fashion-mnist_test.csv') print(df_train.head())
code
2036553/cell_3
[ "image_output_1.png" ]
from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import keras from keras import Sequential from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout from keras.optimizers import Adam from keras.callbacks import TensorBoard df_train = pd.read_csv('../input/fashion-mnist_train.csv') df_test = pd.read_csv('../input/fashion-mnist_test.csv') train_data = np.array(df_train, dtype='float32') test_data = np.array(df_test, dtype='float32') X_train = train_data[:, 1:] / 255 y_train = train_data[:, 0] X_test = test_data[:, 1:] / 255 y_test = test_data[:, 0] X_train, X_validate, y_train, y_validate = train_test_split(X_train, y_train, test_size=0.2, random_state=42) image = X_train[100, :].reshape((28, 28)) plt.imshow(image) plt.show()
code
128002832/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') df.isna().sum().sum() def plot_features(df): fig, axs = plt.subplots(figsize=(16, 10), ncols=3, nrows=6) for count, col in enumerate(df.columns): sns.boxplot(data=df, x=col, ax=axs[count // 3][count % 3]) plt.tight_layout() plt.show() plot_features(df) def plot_corr(df): plt.figure(figsize=(16, 10)) corr = df.drop(columns=['id', 'yield']).corr() cmap = sns.diverging_palette(230, 20, as_cmap=True) sns.heatmap(corr,cmap=cmap, center=0, annot=True, square=True, linewidths=.5, cbar_kws={"shrink": .5}) plt.title('Correlation matrix of features') plt.show() return corr corr = plot_corr(df) upper = corr.where(np.triu(np.ones(corr.shape), k=1).astype(np.bool)) to_drop = [column for column in upper.columns if any(upper[column] > 0.9)] df.drop(to_drop, axis=1, inplace=True) corr = plot_corr(df)
code
128002832/cell_9
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') df.isna().sum().sum() def plot_features(df): fig, axs = plt.subplots(figsize=(16, 10), ncols=3, nrows=6) for count, col in enumerate(df.columns): sns.boxplot(data=df, x=col, ax=axs[count // 3][count % 3]) plt.tight_layout() plt.show() plot_features(df) def plot_corr(df): plt.figure(figsize=(16, 10)) corr = df.drop(columns=['id', 'yield']).corr() cmap = sns.diverging_palette(230, 20, as_cmap=True) sns.heatmap(corr, cmap=cmap, center=0, annot=True, square=True, linewidths=0.5, cbar_kws={'shrink': 0.5}) plt.title('Correlation matrix of features') plt.show() return corr corr = plot_corr(df)
code
128002832/cell_4
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') df.head(2)
code
128002832/cell_6
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') df.isna().sum().sum() def plot_features(df): fig, axs = plt.subplots(figsize=(16, 10), ncols=3, nrows=6) for count, col in enumerate(df.columns): sns.boxplot(data=df, x=col, ax=axs[count // 3][count % 3]) plt.tight_layout() plt.show() plot_features(df)
code
128002832/cell_19
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') df.isna().sum().sum() def plot_features(df): fig, axs = plt.subplots(figsize=(16, 10), ncols=3, nrows=6) for count, col in enumerate(df.columns): sns.boxplot(data=df, x=col, ax=axs[count // 3][count % 3]) plt.tight_layout() plt.show() plot_features(df) def plot_corr(df): plt.figure(figsize=(16, 10)) corr = df.drop(columns=['id', 'yield']).corr() cmap = sns.diverging_palette(230, 20, as_cmap=True) sns.heatmap(corr,cmap=cmap, center=0, annot=True, square=True, linewidths=.5, cbar_kws={"shrink": .5}) plt.title('Correlation matrix of features') plt.show() return corr corr = plot_corr(df) upper = corr.where(np.triu(np.ones(corr.shape), k=1).astype(np.bool)) to_drop = [column for column in upper.columns if any(upper[column] > 0.9)] df.drop(to_drop, axis=1, inplace=True) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) model = LinearRegression() model.fit(X_train, y_train) predictions = model.predict(X_test) model = LinearRegression() X_train = np.concatenate((X_train, X_test)) y_train = np.concatenate((y_train, y_test)) model.fit(X_train, y_train)
code
128002832/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns
code
128002832/cell_18
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) model = LinearRegression() model.fit(X_train, y_train) predictions = model.predict(X_test) print('mean_absolute_error : ', mean_absolute_error(y_test, predictions))
code
128002832/cell_8
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') df.isna().sum().sum() def plot_features(df): fig, axs = plt.subplots(figsize=(16, 10), ncols=3, nrows=6) for count, col in enumerate(df.columns): sns.boxplot(data=df, x=col, ax=axs[count // 3][count % 3]) plt.tight_layout() plt.show() plot_features(df) sns.displot(df, x='yield') plt.title('Distribution of target variable') plt.show()
code
128002832/cell_15
[ "image_output_1.png" ]
from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') df.isna().sum().sum() def plot_features(df): fig, axs = plt.subplots(figsize=(16, 10), ncols=3, nrows=6) for count, col in enumerate(df.columns): sns.boxplot(data=df, x=col, ax=axs[count // 3][count % 3]) plt.tight_layout() plt.show() plot_features(df) def plot_corr(df): plt.figure(figsize=(16, 10)) corr = df.drop(columns=['id', 'yield']).corr() cmap = sns.diverging_palette(230, 20, as_cmap=True) sns.heatmap(corr,cmap=cmap, center=0, annot=True, square=True, linewidths=.5, cbar_kws={"shrink": .5}) plt.title('Correlation matrix of features') plt.show() return corr corr = plot_corr(df) upper = corr.where(np.triu(np.ones(corr.shape), k=1).astype(np.bool)) to_drop = [column for column in upper.columns if any(upper[column] > 0.9)] df.drop(to_drop, axis=1, inplace=True) X = df.drop(columns=['id', 'yield']) y = df['yield'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) (len(X_train), len(X_test))
code
128002832/cell_24
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') df.isna().sum().sum() def plot_features(df): fig, axs = plt.subplots(figsize=(16, 10), ncols=3, nrows=6) for count, col in enumerate(df.columns): sns.boxplot(data=df, x=col, ax=axs[count // 3][count % 3]) plt.tight_layout() plt.show() plot_features(df) def plot_corr(df): plt.figure(figsize=(16, 10)) corr = df.drop(columns=['id', 'yield']).corr() cmap = sns.diverging_palette(230, 20, as_cmap=True) sns.heatmap(corr,cmap=cmap, center=0, annot=True, square=True, linewidths=.5, cbar_kws={"shrink": .5}) plt.title('Correlation matrix of features') plt.show() return corr corr = plot_corr(df) upper = corr.where(np.triu(np.ones(corr.shape), k=1).astype(np.bool)) to_drop = [column for column in upper.columns if any(upper[column] > 0.9)] df.drop(to_drop, axis=1, inplace=True) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) model = LinearRegression() model.fit(X_train, y_train) predictions = model.predict(X_test) model = LinearRegression() X_train = np.concatenate((X_train, X_test)) y_train = np.concatenate((y_train, y_test)) model.fit(X_train, y_train) df_test = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') to_drop.append('id') df_test.drop(to_drop, axis=1, inplace=True) df_test = scaler.transform(df_test) final_predictions = model.predict(df_test) df_submission = pd.read_csv('/kaggle/input/playground-series-s3e14/sample_submission.csv') df_submission['yield'] = final_predictions df_submission
code
128002832/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') df.isna().sum().sum() def plot_features(df): fig, axs = plt.subplots(figsize=(16, 10), ncols=3, nrows=6) for count, col in enumerate(df.columns): sns.boxplot(data=df, x=col, ax=axs[count // 3][count % 3]) plt.tight_layout() plt.show() plot_features(df) def plot_corr(df): plt.figure(figsize=(16, 10)) corr = df.drop(columns=['id', 'yield']).corr() cmap = sns.diverging_palette(230, 20, as_cmap=True) sns.heatmap(corr,cmap=cmap, center=0, annot=True, square=True, linewidths=.5, cbar_kws={"shrink": .5}) plt.title('Correlation matrix of features') plt.show() return corr corr = plot_corr(df) upper = corr.where(np.triu(np.ones(corr.shape), k=1).astype(np.bool)) to_drop = [column for column in upper.columns if any(upper[column] > 0.9)] df.drop(to_drop, axis=1, inplace=True)
code
128002832/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') df.isna().sum().sum()
code
90134529/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
from bq_helper import BigQueryHelper from datetime import datetime from google.cloud import bigquery import numpy as np import pandas as pd from google.cloud import bigquery from bq_helper import BigQueryHelper client = bigquery.Client() query = '\n #standardSQL\n SELECT\n timestamp\n FROM \n `bigquery-public-data.bitcoin_blockchain.blocks`\n ORDER BY\n timestamp\n ' bq_assistant = BigQueryHelper('bigquery-public-data', 'bitcoin_blockchain') df = bq_assistant.query_to_pandas_safe(query, max_gb_scanned=1000) original = df.copy() from datetime import datetime df = original.copy() df = df.sort_values(by=['timestamp'], ascending=True) ts_col = df['timestamp'].div(1000.0) df['timestamp'] = ts_col.apply(datetime.fromtimestamp) print(df.describe()) summary = df.diff().describe() print(summary) df.diff().plot(kind='line') maxidx = df.idxmax() print(df['timestamp'][maxidx['timestamp']])
code
90134529/cell_6
[ "text_plain_output_1.png" ]
from bq_helper import BigQueryHelper from datetime import datetime from datetime import datetime, timedelta from google.cloud import bigquery from scipy.stats import norm import numpy as np import pandas as pd from google.cloud import bigquery from bq_helper import BigQueryHelper client = bigquery.Client() query = '\n #standardSQL\n SELECT\n timestamp\n FROM \n `bigquery-public-data.bitcoin_blockchain.blocks`\n ORDER BY\n timestamp\n ' bq_assistant = BigQueryHelper('bigquery-public-data', 'bitcoin_blockchain') df = bq_assistant.query_to_pandas_safe(query, max_gb_scanned=1000) original = df.copy() from datetime import datetime df = original.copy() df = df.sort_values(by=['timestamp'], ascending=True) ts_col = df['timestamp'].div(1000.0) df['timestamp'] = ts_col.apply(datetime.fromtimestamp) print(df.describe()) summary = df.diff().describe() print(summary) maxidx = df.idxmax() from scipy.stats import norm from datetime import datetime, timedelta import numpy as np df = df.diff() df = df.dropna() print(df.head()) print(df.describe()) print(df.dtypes) # convert timedelta type to a float (seconds) print(df['timestamp'][2].total_seconds()) df['timestamp'] = df['timestamp'].apply(lambda x: x.total_seconds()) float_summary = df.describe() print(float_summary) time_threshold = timedelta(hours=2).total_seconds() print(float_summary["timestamp"][1]) # mean print(float_summary["timestamp"][2]) # std df_cdf = norm.cdf(time_threshold, float_summary['timestamp'][1], float_summary['timestamp'][2]) print(1 - df_cdf) print((1 - df_cdf) * df.shape[0]) print(df.shape[0]) print(len(df[df['timestamp'] > time_threshold])) print(df.timestamp.quantile(0.99)) print(df.timestamp.quantile(0.1))
code
90134529/cell_1
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_html_output_1.png", "text_plain_output_1.png" ]
from bq_helper import BigQueryHelper from google.cloud import bigquery import numpy as np import pandas as pd from google.cloud import bigquery from bq_helper import BigQueryHelper client = bigquery.Client() query = '\n #standardSQL\n SELECT\n timestamp\n FROM \n `bigquery-public-data.bitcoin_blockchain.blocks`\n ORDER BY\n timestamp\n ' bq_assistant = BigQueryHelper('bigquery-public-data', 'bitcoin_blockchain') df = bq_assistant.query_to_pandas_safe(query, max_gb_scanned=1000) print('Size of dataframe: {} Bytes'.format(int(df.memory_usage(index=True, deep=True).sum()))) df.head(10)
code
90134529/cell_3
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from bq_helper import BigQueryHelper from datetime import datetime from google.cloud import bigquery import numpy as np import pandas as pd from google.cloud import bigquery from bq_helper import BigQueryHelper client = bigquery.Client() query = '\n #standardSQL\n SELECT\n timestamp\n FROM \n `bigquery-public-data.bitcoin_blockchain.blocks`\n ORDER BY\n timestamp\n ' bq_assistant = BigQueryHelper('bigquery-public-data', 'bitcoin_blockchain') df = bq_assistant.query_to_pandas_safe(query, max_gb_scanned=1000) original = df.copy() from datetime import datetime df = original.copy() df = df.sort_values(by=['timestamp'], ascending=True) ts_col = df['timestamp'].div(1000.0) df['timestamp'] = ts_col.apply(datetime.fromtimestamp) print(df.describe()) summary = df.diff().describe() print(summary)
code
90134529/cell_5
[ "text_plain_output_1.png" ]
from bq_helper import BigQueryHelper from datetime import datetime from datetime import datetime, timedelta from google.cloud import bigquery import numpy as np import pandas as pd from google.cloud import bigquery from bq_helper import BigQueryHelper client = bigquery.Client() query = '\n #standardSQL\n SELECT\n timestamp\n FROM \n `bigquery-public-data.bitcoin_blockchain.blocks`\n ORDER BY\n timestamp\n ' bq_assistant = BigQueryHelper('bigquery-public-data', 'bitcoin_blockchain') df = bq_assistant.query_to_pandas_safe(query, max_gb_scanned=1000) original = df.copy() from datetime import datetime df = original.copy() df = df.sort_values(by=['timestamp'], ascending=True) ts_col = df['timestamp'].div(1000.0) df['timestamp'] = ts_col.apply(datetime.fromtimestamp) print(df.describe()) summary = df.diff().describe() print(summary) maxidx = df.idxmax() from scipy.stats import norm from datetime import datetime, timedelta import numpy as np df = df.diff() df = df.dropna() print(df.head()) print(df.describe()) print(df.dtypes) print(df['timestamp'][2].total_seconds()) df['timestamp'] = df['timestamp'].apply(lambda x: x.total_seconds()) float_summary = df.describe() print(float_summary) time_threshold = timedelta(hours=2).total_seconds() print(float_summary['timestamp'][1]) print(float_summary['timestamp'][2])
code
2002221/cell_4
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) medals = pd.read_csv('../input/.csv') print(medals.info()) medals.head()
code
2002221/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) medals = pd.read_csv('../input/.csv') medal_counts = medals['NOC'].value_counts() print('The total medals: %d' % medal_counts.sum()) print('\nTop 15 countries:\n', medal_counts.head(15))
code
2019264/cell_21
[ "image_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split,cross_val_score, cross_val_predict import missingno as msno # plotting missing data import pandas as pd # data processing import numpy as np import pandas as pd import matplotlib.pyplot as plt import missingno as msno import seaborn as sns from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0)) dataset = dataset.drop(['Id', 'LotFrontage', 'Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) len(dataset.columns) dataset = dataset.dropna(thresh=70) msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0)) X = dataset.iloc[:, 0:-1] y = dataset.iloc[:, -1] X = pd.get_dummies(data=X, columns=['MSZoning', 'Street', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'SaleType', 'SaleCondition', 'KitchenQual', 'Functional', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive'], drop_first=True) X = X.fillna(X.median()) lin_reg = LinearRegression() lin_reg.fit(X_train, y_train) y_pred_lr = lin_reg.predict(X_test) accuracy_lf = metrics.r2_score(y_test, y_pred_lr) print('Mutiple Linear Regression Accuracy: ', accuracy_lf) y_pred_kf_lr = cross_val_predict(lin_reg, X, y, cv=10) accuracy_lf = metrics.r2_score(y, y_pred_kf_lr) print('Cross-Predicted(KFold) Mutiple Linear Regression Accuracy: ', accuracy_lf)
code
2019264/cell_13
[ "text_plain_output_1.png" ]
import missingno as msno # plotting missing data import pandas as pd # data processing import numpy as np import pandas as pd import matplotlib.pyplot as plt import missingno as msno import seaborn as sns from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0)) dataset = dataset.drop(['Id', 'LotFrontage', 'Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) len(dataset.columns) dataset = dataset.dropna(thresh=70) msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0)) X = dataset.iloc[:, 0:-1] y = dataset.iloc[:, -1] y[0:5]
code
2019264/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing import numpy as np import pandas as pd import matplotlib.pyplot as plt import missingno as msno import seaborn as sns from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() dataset = dataset.drop(['Id', 'LotFrontage', 'Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) len(dataset.columns)
code
2019264/cell_4
[ "text_plain_output_1.png" ]
dataset.hist(bins=50, figsize=(20, 20)) plt.show()
code
2019264/cell_30
[ "text_html_output_1.png" ]
from sklearn import metrics from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split,cross_val_score, cross_val_predict from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor import missingno as msno # plotting missing data import pandas as pd # data processing import numpy as np import pandas as pd import matplotlib.pyplot as plt import missingno as msno import seaborn as sns from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0)) dataset = dataset.drop(['Id', 'LotFrontage', 'Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) len(dataset.columns) dataset = dataset.dropna(thresh=70) msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0)) X = dataset.iloc[:, 0:-1] y = dataset.iloc[:, -1] X = pd.get_dummies(data=X, columns=['MSZoning', 'Street', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'SaleType', 'SaleCondition', 'KitchenQual', 'Functional', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive'], drop_first=True) X = X.fillna(X.median()) lin_reg = LinearRegression() lin_reg.fit(X_train, y_train) y_pred_lr = lin_reg.predict(X_test) accuracy_lf = metrics.r2_score(y_test, y_pred_lr) y_pred_kf_lr = cross_val_predict(lin_reg, X, y, cv=10) accuracy_lf = metrics.r2_score(y, y_pred_kf_lr) poly_reg = PolynomialFeatures(degree=2) X_poly = poly_reg.fit_transform(X) lin_reg_pl = LinearRegression() y_pred_pl = cross_val_predict(lin_reg_pl, X_poly, y, cv=10) accuracy_pl = metrics.r2_score(y, y_pred_pl) dt_regressor = DecisionTreeRegressor(random_state=0) dt_regressor.fit(X_train, y_train) y_pred_dt = dt_regressor.predict(X_test) y_pred_dt = cross_val_predict(dt_regressor, X, y, cv=10) accuracy_dt = metrics.r2_score(y, y_pred_dt) rf_regressor = RandomForestRegressor(n_estimators=300, random_state=0) rf_regressor.fit(X_train, y_train) y_pred_rf = rf_regressor.predict(X_test) print('Random Forest Regression Accuracy: ', rf_regressor.score(X_test, y_test)) y_pred_rf = cross_val_predict(rf_regressor, X, y, cv=10) accuracy_rf = metrics.r2_score(y, y_pred_rf) print('Cross-Predicted(KFold) Random Forest Regression Accuracy: ', accuracy_rf)
code
2019264/cell_33
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split,cross_val_score, cross_val_predict from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt # plotting library import missingno as msno # plotting missing data import numpy as np # linear algebra import pandas as pd # data processing import seaborn as sns # plotting library import numpy as np import pandas as pd import matplotlib.pyplot as plt import missingno as msno import seaborn as sns from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0)) dataset = dataset.drop(['Id', 'LotFrontage', 'Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) len(dataset.columns) dataset = dataset.dropna(thresh=70) msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0)) X = dataset.iloc[:, 0:-1] y = dataset.iloc[:, -1] X = pd.get_dummies(data=X, columns=['MSZoning', 'Street', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'SaleType', 'SaleCondition', 'KitchenQual', 'Functional', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive'], drop_first=True) X = X.fillna(X.median()) lin_reg = LinearRegression() lin_reg.fit(X_train, y_train) y_pred_lr = lin_reg.predict(X_test) accuracy_lf = metrics.r2_score(y_test, y_pred_lr) y_pred_kf_lr = cross_val_predict(lin_reg, X, y, cv=10) accuracy_lf = metrics.r2_score(y, y_pred_kf_lr) poly_reg = PolynomialFeatures(degree=2) X_poly = poly_reg.fit_transform(X) lin_reg_pl = LinearRegression() y_pred_pl = cross_val_predict(lin_reg_pl, X_poly, y, cv=10) accuracy_pl = metrics.r2_score(y, y_pred_pl) dt_regressor = DecisionTreeRegressor(random_state=0) dt_regressor.fit(X_train, y_train) y_pred_dt = dt_regressor.predict(X_test) y_pred_dt = cross_val_predict(dt_regressor, X, y, cv=10) accuracy_dt = metrics.r2_score(y, y_pred_dt) rf_regressor = RandomForestRegressor(n_estimators=300, random_state=0) rf_regressor.fit(X_train, y_train) y_pred_rf = rf_regressor.predict(X_test) y_pred_rf = cross_val_predict(rf_regressor, X, y, cv=10) accuracy_rf = metrics.r2_score(y, y_pred_rf) ranking = np.argsort(-rf_regressor.feature_importances_) f, ax = plt.subplots(figsize=(15, 100)) sns.barplot(x=rf_regressor.feature_importances_[ranking], y=X_train.columns.values[ranking], orient='h') ax.set_xlabel('feature importance') plt.tight_layout() plt.show()
code
2019264/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing import numpy as np import pandas as pd import matplotlib.pyplot as plt import missingno as msno import seaborn as sns from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum()
code
2019264/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing import numpy as np import pandas as pd import matplotlib.pyplot as plt import missingno as msno import seaborn as sns from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.head()
code
2019264/cell_11
[ "text_html_output_1.png" ]
import missingno as msno # plotting missing data import pandas as pd # data processing import numpy as np import pandas as pd import matplotlib.pyplot as plt import missingno as msno import seaborn as sns from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0)) dataset = dataset.drop(['Id', 'LotFrontage', 'Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) len(dataset.columns) dataset = dataset.dropna(thresh=70) msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0))
code
2019264/cell_7
[ "image_output_1.png" ]
import missingno as msno # plotting missing data import pandas as pd # data processing import numpy as np import pandas as pd import matplotlib.pyplot as plt import missingno as msno import seaborn as sns from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0))
code
2019264/cell_24
[ "text_html_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split,cross_val_score, cross_val_predict from sklearn.preprocessing import PolynomialFeatures import missingno as msno # plotting missing data import pandas as pd # data processing import numpy as np import pandas as pd import matplotlib.pyplot as plt import missingno as msno import seaborn as sns from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0)) dataset = dataset.drop(['Id', 'LotFrontage', 'Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) len(dataset.columns) dataset = dataset.dropna(thresh=70) msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0)) X = dataset.iloc[:, 0:-1] y = dataset.iloc[:, -1] X = pd.get_dummies(data=X, columns=['MSZoning', 'Street', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'SaleType', 'SaleCondition', 'KitchenQual', 'Functional', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive'], drop_first=True) X = X.fillna(X.median()) lin_reg = LinearRegression() lin_reg.fit(X_train, y_train) y_pred_lr = lin_reg.predict(X_test) accuracy_lf = metrics.r2_score(y_test, y_pred_lr) y_pred_kf_lr = cross_val_predict(lin_reg, X, y, cv=10) accuracy_lf = metrics.r2_score(y, y_pred_kf_lr) poly_reg = PolynomialFeatures(degree=2) X_poly = poly_reg.fit_transform(X) lin_reg_pl = LinearRegression() y_pred_pl = cross_val_predict(lin_reg_pl, X_poly, y, cv=10) accuracy_pl = metrics.r2_score(y, y_pred_pl) print('Cross-Predicted(KFold) Polynominal Regression Accuracy: ', accuracy_pl)
code
2019264/cell_14
[ "image_output_1.png" ]
import missingno as msno # plotting missing data import pandas as pd # data processing import numpy as np import pandas as pd import matplotlib.pyplot as plt import missingno as msno import seaborn as sns from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0)) dataset = dataset.drop(['Id', 'LotFrontage', 'Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) len(dataset.columns) dataset = dataset.dropna(thresh=70) msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0)) X = dataset.iloc[:, 0:-1] y = dataset.iloc[:, -1] X = pd.get_dummies(data=X, columns=['MSZoning', 'Street', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'SaleType', 'SaleCondition', 'KitchenQual', 'Functional', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive'], drop_first=True) X.head()
code
2019264/cell_27
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split,cross_val_score, cross_val_predict from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor import missingno as msno # plotting missing data import pandas as pd # data processing import numpy as np import pandas as pd import matplotlib.pyplot as plt import missingno as msno import seaborn as sns from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0)) dataset = dataset.drop(['Id', 'LotFrontage', 'Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) len(dataset.columns) dataset = dataset.dropna(thresh=70) msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0)) X = dataset.iloc[:, 0:-1] y = dataset.iloc[:, -1] X = pd.get_dummies(data=X, columns=['MSZoning', 'Street', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'SaleType', 'SaleCondition', 'KitchenQual', 'Functional', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive'], drop_first=True) X = X.fillna(X.median()) lin_reg = LinearRegression() lin_reg.fit(X_train, y_train) y_pred_lr = lin_reg.predict(X_test) accuracy_lf = metrics.r2_score(y_test, y_pred_lr) y_pred_kf_lr = cross_val_predict(lin_reg, X, y, cv=10) accuracy_lf = metrics.r2_score(y, y_pred_kf_lr) poly_reg = PolynomialFeatures(degree=2) X_poly = poly_reg.fit_transform(X) lin_reg_pl = LinearRegression() y_pred_pl = cross_val_predict(lin_reg_pl, X_poly, y, cv=10) accuracy_pl = metrics.r2_score(y, y_pred_pl) dt_regressor = DecisionTreeRegressor(random_state=0) dt_regressor.fit(X_train, y_train) y_pred_dt = dt_regressor.predict(X_test) print('Decision Tree Regression Accuracy: ', dt_regressor.score(X_test, y_test)) y_pred_dt = cross_val_predict(dt_regressor, X, y, cv=10) accuracy_dt = metrics.r2_score(y, y_pred_dt) print('Cross-Predicted(KFold) Decision Tree Regression Accuracy: ', accuracy_dt)
code
2019264/cell_37
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split,cross_val_score, cross_val_predict from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt # plotting library import missingno as msno # plotting missing data import numpy as np # linear algebra import pandas as pd # data processing import seaborn as sns # plotting library import numpy as np import pandas as pd import matplotlib.pyplot as plt import missingno as msno import seaborn as sns from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0)) dataset = dataset.drop(['Id', 'LotFrontage', 'Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) len(dataset.columns) dataset = dataset.dropna(thresh=70) msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0)) X = dataset.iloc[:, 0:-1] y = dataset.iloc[:, -1] X = pd.get_dummies(data=X, columns=['MSZoning', 'Street', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'SaleType', 'SaleCondition', 'KitchenQual', 'Functional', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive'], drop_first=True) X = X.fillna(X.median()) lin_reg = LinearRegression() lin_reg.fit(X_train, y_train) y_pred_lr = lin_reg.predict(X_test) accuracy_lf = metrics.r2_score(y_test, y_pred_lr) y_pred_kf_lr = cross_val_predict(lin_reg, X, y, cv=10) accuracy_lf = metrics.r2_score(y, y_pred_kf_lr) poly_reg = PolynomialFeatures(degree=2) X_poly = poly_reg.fit_transform(X) lin_reg_pl = LinearRegression() y_pred_pl = cross_val_predict(lin_reg_pl, X_poly, y, cv=10) accuracy_pl = metrics.r2_score(y, y_pred_pl) dt_regressor = DecisionTreeRegressor(random_state=0) dt_regressor.fit(X_train, y_train) y_pred_dt = dt_regressor.predict(X_test) y_pred_dt = cross_val_predict(dt_regressor, X, y, cv=10) accuracy_dt = metrics.r2_score(y, y_pred_dt) rf_regressor = RandomForestRegressor(n_estimators=300, random_state=0) rf_regressor.fit(X_train, y_train) y_pred_rf = rf_regressor.predict(X_test) y_pred_rf = cross_val_predict(rf_regressor, X, y, cv=10) accuracy_rf = metrics.r2_score(y, y_pred_rf) ranking = np.argsort(-rf_regressor.feature_importances_) f, ax = plt.subplots(figsize=(15, 100)) sns.barplot(x=rf_regressor.feature_importances_[ranking], y=X_train.columns.values[ranking], orient='h') ax.set_xlabel("feature importance") plt.tight_layout() plt.show() X_train = X_train.iloc[:, ranking[:30]] X_test = X_test.iloc[:, ranking[:30]] lin_reg = LinearRegression() lin_reg.fit(X_train, y_train) y_pred_lr = lin_reg.predict(X_test) accuracy_lf = metrics.r2_score(y_test, y_pred_lr) print('Mutiple Linear Regression Accuracy: ', accuracy_lf) y_pred_kf_lr = cross_val_predict(lin_reg, X, y, cv=10) accuracy_lf = metrics.r2_score(y, y_pred_kf_lr) print('Cross-Predicted(KFold) Mutiple Linear Regression Accuracy: ', accuracy_lf)
code
2019264/cell_12
[ "image_output_1.png" ]
import missingno as msno # plotting missing data import pandas as pd # data processing import numpy as np import pandas as pd import matplotlib.pyplot as plt import missingno as msno import seaborn as sns from sklearn.model_selection import train_test_split, cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0)) dataset = dataset.drop(['Id', 'LotFrontage', 'Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) len(dataset.columns) dataset = dataset.dropna(thresh=70) msno.matrix(df=dataset, figsize=(20, 14), color=(0.5, 0, 0)) X = dataset.iloc[:, 0:-1] y = dataset.iloc[:, -1] X.head()
code
106208751/cell_21
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/video-game-sales-with-ratings/Video_Games_Sales_as_at_22_Dec_2016.csv') col_remove = ['Critic_Score', 'Critic_Count', 'User_Score', 'User_Count', 'Developer', 'Rating'] data_clear = data.drop(labels=col_remove, axis=1) data_clear.isnull().sum() data_clear = data_clear.dropna(axis=0) data_sales_sort = data_clear.sort_values(by=['Global_Sales'], ascending=False) #Ten best games data_sales_sort_hd = data_sales_sort.head(10).sort_values(by=['Global_Sales'], ascending = True) top10_games_gs = data_sales_sort_hd['Name'].head(10) top10_sales_gs = data_sales_sort_hd['Global_Sales'].head(10) fig, ax = plt.subplots() p1 = ax.barh(top10_games_gs, top10_sales_gs) ax.set_title('Top 10 global selling video games') ax.set_xlabel('Sales [million units]') ax.set_ylabel('Video game names') ax.bar_label(p1, label_type='center') plt.show() sales_regions = ['NA_Sales','EU_Sales','JP_Sales','Other_Sales'] fig,axes = plt.subplots(int(len(sales_regions)/2),int(len(sales_regions)/2), figsize=(16,10)) axes = axes.ravel() #Required for array typing ??? for index, region in enumerate(sales_regions): data_sales_sort = data_clear.sort_values(by=region, ascending=True) sns.barplot(x=data_sales_sort[region].tail(10),y=data_sales_sort['Name'].tail(10), ax=axes[index]) axes[index].set_title(f'Top 10 {region} Video games', fontsize = 14) axes[index].set_xlabel(f'{region} [million units]', fontsize = 14) axes[index].set_ylabel('Video game Name', fontsize = 14) axes[index].bar_label(axes[index].containers[0], label_type='center') plt.suptitle('10 top sellers per region', fontsize = 18) plt.tight_layout() plt.show() corr_m = data_clear.corr() corr_m = corr_m.drop(['Year_of_Release'], axis=1) corr_m.head(6) corr_m = corr_m.drop(corr_m.index[0], axis=0) corr_m.head(6)
code
106208751/cell_9
[ "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/video-game-sales-with-ratings/Video_Games_Sales_as_at_22_Dec_2016.csv') col_remove = ['Critic_Score', 'Critic_Count', 'User_Score', 'User_Count', 'Developer', 'Rating'] data_clear = data.drop(labels=col_remove, axis=1) data_clear.isnull().sum() data_clear = data_clear.dropna(axis=0) data_clear.info()
code
106208751/cell_25
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/video-game-sales-with-ratings/Video_Games_Sales_as_at_22_Dec_2016.csv') col_remove = ['Critic_Score', 'Critic_Count', 'User_Score', 'User_Count', 'Developer', 'Rating'] data_clear = data.drop(labels=col_remove, axis=1) data_clear.isnull().sum() data_clear = data_clear.dropna(axis=0) data_sales_sort = data_clear.sort_values(by=['Global_Sales'], ascending=False) #Ten best games data_sales_sort_hd = data_sales_sort.head(10).sort_values(by=['Global_Sales'], ascending = True) top10_games_gs = data_sales_sort_hd['Name'].head(10) top10_sales_gs = data_sales_sort_hd['Global_Sales'].head(10) fig, ax = plt.subplots() p1 = ax.barh(top10_games_gs, top10_sales_gs) ax.set_title('Top 10 global selling video games') ax.set_xlabel('Sales [million units]') ax.set_ylabel('Video game names') ax.bar_label(p1, label_type='center') plt.show() sales_regions = ['NA_Sales','EU_Sales','JP_Sales','Other_Sales'] fig,axes = plt.subplots(int(len(sales_regions)/2),int(len(sales_regions)/2), figsize=(16,10)) axes = axes.ravel() #Required for array typing ??? for index, region in enumerate(sales_regions): data_sales_sort = data_clear.sort_values(by=region, ascending=True) sns.barplot(x=data_sales_sort[region].tail(10),y=data_sales_sort['Name'].tail(10), ax=axes[index]) axes[index].set_title(f'Top 10 {region} Video games', fontsize = 14) axes[index].set_xlabel(f'{region} [million units]', fontsize = 14) axes[index].set_ylabel('Video game Name', fontsize = 14) axes[index].bar_label(axes[index].containers[0], label_type='center') plt.suptitle('10 top sellers per region', fontsize = 18) plt.tight_layout() plt.show() corr_m = data_clear.corr() data_clear.info()
code
106208751/cell_30
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('../input/video-game-sales-with-ratings/Video_Games_Sales_as_at_22_Dec_2016.csv') col_remove = ['Critic_Score', 'Critic_Count', 'User_Score', 'User_Count', 'Developer', 'Rating'] data_clear = data.drop(labels=col_remove, axis=1) data_clear.isnull().sum() data_clear = data_clear.dropna(axis=0) data_sales_sort = data_clear.sort_values(by=['Global_Sales'], ascending=False) #Ten best games data_sales_sort_hd = data_sales_sort.head(10).sort_values(by=['Global_Sales'], ascending = True) top10_games_gs = data_sales_sort_hd['Name'].head(10) top10_sales_gs = data_sales_sort_hd['Global_Sales'].head(10) fig, ax = plt.subplots() p1 = ax.barh(top10_games_gs, top10_sales_gs) ax.set_title('Top 10 global selling video games') ax.set_xlabel('Sales [million units]') ax.set_ylabel('Video game names') ax.bar_label(p1, label_type='center') plt.show() sales_regions = ['NA_Sales','EU_Sales','JP_Sales','Other_Sales'] fig,axes = plt.subplots(int(len(sales_regions)/2),int(len(sales_regions)/2), figsize=(16,10)) axes = axes.ravel() #Required for array typing ??? for index, region in enumerate(sales_regions): data_sales_sort = data_clear.sort_values(by=region, ascending=True) sns.barplot(x=data_sales_sort[region].tail(10),y=data_sales_sort['Name'].tail(10), ax=axes[index]) axes[index].set_title(f'Top 10 {region} Video games', fontsize = 14) axes[index].set_xlabel(f'{region} [million units]', fontsize = 14) axes[index].set_ylabel('Video game Name', fontsize = 14) axes[index].bar_label(axes[index].containers[0], label_type='center') plt.suptitle('10 top sellers per region', fontsize = 18) plt.tight_layout() plt.show() corr_m = data_clear.corr() corr_m = corr_m.drop(['Year_of_Release'], axis=1) corr_m = corr_m.drop(corr_m.index[0], axis=0) fig,ax = plt.subplots() sns.heatmap(corr_m, annot=True, ax = ax) ax.set_title('World sales correlation Matrix', fontsize=15) plt.show() publishers_df = pd.DataFrame() sales_regions = ['NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales', 'Global_Sales'] for region in sales_regions: sales_pub = data_clear.groupby('Publisher')[region].sum() publishers_df[region] = sales_pub publishers = data_clear['Publisher'].unique() publishers_df['Publisher'] = np.sort(publishers) fig = plt.figure(figsize=(16,10)) axes=[None]*5 axes[0] = plt.subplot2grid(shape=(3,2), loc=(0,0), colspan=1) axes[1] = plt.subplot2grid(shape=(3,2), loc=(0,1), colspan=1) axes[2] = plt.subplot2grid(shape=(3,2), loc=(1,0), colspan=1) axes[3] = plt.subplot2grid(shape=(3,2), loc=(1,1), colspan=1) axes[4] = plt.subplot2grid(shape=(3,2), loc=(2,0), colspan=2) # axes = axes.ravel() #Required for array typing ??? for index, region in enumerate(sales_regions): data_sales_sort = publishers_df.sort_values(by=region, ascending=True) sns.barplot(x=data_sales_sort[region].tail(10),y=data_sales_sort['Publisher'].tail(10), ax=axes[index]) axes[index].set_title(f'Top 10 {region} Video games editor', fontsize = 14) axes[index].set_xlabel(f'{region} [million units]', fontsize = 14) axes[index].set_ylabel('Publisher Name', fontsize = 14) axes[index].bar_label(axes[index].containers[0], label_type='center', fontsize = 10) plt.suptitle('10 top sellers per region', fontsize = 18) plt.tight_layout() plt.show() for region in sales_regions: publishers_df[region] = (100 * publishers_df[region] / data_clear[region].sum()).round(1) publishers_df.head(10)
code
106208751/cell_20
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/video-game-sales-with-ratings/Video_Games_Sales_as_at_22_Dec_2016.csv') col_remove = ['Critic_Score', 'Critic_Count', 'User_Score', 'User_Count', 'Developer', 'Rating'] data_clear = data.drop(labels=col_remove, axis=1) data_clear.isnull().sum() data_clear = data_clear.dropna(axis=0) data_sales_sort = data_clear.sort_values(by=['Global_Sales'], ascending=False) #Ten best games data_sales_sort_hd = data_sales_sort.head(10).sort_values(by=['Global_Sales'], ascending = True) top10_games_gs = data_sales_sort_hd['Name'].head(10) top10_sales_gs = data_sales_sort_hd['Global_Sales'].head(10) fig, ax = plt.subplots() p1 = ax.barh(top10_games_gs, top10_sales_gs) ax.set_title('Top 10 global selling video games') ax.set_xlabel('Sales [million units]') ax.set_ylabel('Video game names') ax.bar_label(p1, label_type='center') plt.show() sales_regions = ['NA_Sales','EU_Sales','JP_Sales','Other_Sales'] fig,axes = plt.subplots(int(len(sales_regions)/2),int(len(sales_regions)/2), figsize=(16,10)) axes = axes.ravel() #Required for array typing ??? for index, region in enumerate(sales_regions): data_sales_sort = data_clear.sort_values(by=region, ascending=True) sns.barplot(x=data_sales_sort[region].tail(10),y=data_sales_sort['Name'].tail(10), ax=axes[index]) axes[index].set_title(f'Top 10 {region} Video games', fontsize = 14) axes[index].set_xlabel(f'{region} [million units]', fontsize = 14) axes[index].set_ylabel('Video game Name', fontsize = 14) axes[index].bar_label(axes[index].containers[0], label_type='center') plt.suptitle('10 top sellers per region', fontsize = 18) plt.tight_layout() plt.show() corr_m = data_clear.corr() corr_m.head(6)
code
106208751/cell_26
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('../input/video-game-sales-with-ratings/Video_Games_Sales_as_at_22_Dec_2016.csv') col_remove = ['Critic_Score', 'Critic_Count', 'User_Score', 'User_Count', 'Developer', 'Rating'] data_clear = data.drop(labels=col_remove, axis=1) data_clear.isnull().sum() data_clear = data_clear.dropna(axis=0) data_sales_sort = data_clear.sort_values(by=['Global_Sales'], ascending=False) #Ten best games data_sales_sort_hd = data_sales_sort.head(10).sort_values(by=['Global_Sales'], ascending = True) top10_games_gs = data_sales_sort_hd['Name'].head(10) top10_sales_gs = data_sales_sort_hd['Global_Sales'].head(10) fig, ax = plt.subplots() p1 = ax.barh(top10_games_gs, top10_sales_gs) ax.set_title('Top 10 global selling video games') ax.set_xlabel('Sales [million units]') ax.set_ylabel('Video game names') ax.bar_label(p1, label_type='center') plt.show() sales_regions = ['NA_Sales','EU_Sales','JP_Sales','Other_Sales'] fig,axes = plt.subplots(int(len(sales_regions)/2),int(len(sales_regions)/2), figsize=(16,10)) axes = axes.ravel() #Required for array typing ??? for index, region in enumerate(sales_regions): data_sales_sort = data_clear.sort_values(by=region, ascending=True) sns.barplot(x=data_sales_sort[region].tail(10),y=data_sales_sort['Name'].tail(10), ax=axes[index]) axes[index].set_title(f'Top 10 {region} Video games', fontsize = 14) axes[index].set_xlabel(f'{region} [million units]', fontsize = 14) axes[index].set_ylabel('Video game Name', fontsize = 14) axes[index].bar_label(axes[index].containers[0], label_type='center') plt.suptitle('10 top sellers per region', fontsize = 18) plt.tight_layout() plt.show() corr_m = data_clear.corr() publishers_df = pd.DataFrame() sales_regions = ['NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales', 'Global_Sales'] for region in sales_regions: sales_pub = data_clear.groupby('Publisher')[region].sum() publishers_df[region] = sales_pub publishers = data_clear['Publisher'].unique() publishers_df['Publisher'] = np.sort(publishers) publishers_df.head()
code
106208751/cell_7
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/video-game-sales-with-ratings/Video_Games_Sales_as_at_22_Dec_2016.csv') col_remove = ['Critic_Score', 'Critic_Count', 'User_Score', 'User_Count', 'Developer', 'Rating'] data_clear = data.drop(labels=col_remove, axis=1) data_clear.info() data_clear.isnull().sum()
code
106208751/cell_28
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('../input/video-game-sales-with-ratings/Video_Games_Sales_as_at_22_Dec_2016.csv') col_remove = ['Critic_Score', 'Critic_Count', 'User_Score', 'User_Count', 'Developer', 'Rating'] data_clear = data.drop(labels=col_remove, axis=1) data_clear.isnull().sum() data_clear = data_clear.dropna(axis=0) data_sales_sort = data_clear.sort_values(by=['Global_Sales'], ascending=False) #Ten best games data_sales_sort_hd = data_sales_sort.head(10).sort_values(by=['Global_Sales'], ascending = True) top10_games_gs = data_sales_sort_hd['Name'].head(10) top10_sales_gs = data_sales_sort_hd['Global_Sales'].head(10) fig, ax = plt.subplots() p1 = ax.barh(top10_games_gs, top10_sales_gs) ax.set_title('Top 10 global selling video games') ax.set_xlabel('Sales [million units]') ax.set_ylabel('Video game names') ax.bar_label(p1, label_type='center') plt.show() sales_regions = ['NA_Sales','EU_Sales','JP_Sales','Other_Sales'] fig,axes = plt.subplots(int(len(sales_regions)/2),int(len(sales_regions)/2), figsize=(16,10)) axes = axes.ravel() #Required for array typing ??? for index, region in enumerate(sales_regions): data_sales_sort = data_clear.sort_values(by=region, ascending=True) sns.barplot(x=data_sales_sort[region].tail(10),y=data_sales_sort['Name'].tail(10), ax=axes[index]) axes[index].set_title(f'Top 10 {region} Video games', fontsize = 14) axes[index].set_xlabel(f'{region} [million units]', fontsize = 14) axes[index].set_ylabel('Video game Name', fontsize = 14) axes[index].bar_label(axes[index].containers[0], label_type='center') plt.suptitle('10 top sellers per region', fontsize = 18) plt.tight_layout() plt.show() corr_m = data_clear.corr() corr_m = corr_m.drop(['Year_of_Release'], axis=1) corr_m = corr_m.drop(corr_m.index[0], axis=0) fig,ax = plt.subplots() sns.heatmap(corr_m, annot=True, ax = ax) ax.set_title('World sales correlation Matrix', fontsize=15) plt.show() publishers_df = pd.DataFrame() sales_regions = ['NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales', 'Global_Sales'] for region in sales_regions: sales_pub = data_clear.groupby('Publisher')[region].sum() publishers_df[region] = sales_pub publishers = data_clear['Publisher'].unique() publishers_df['Publisher'] = np.sort(publishers) fig = plt.figure(figsize=(16, 10)) axes = [None] * 5 axes[0] = plt.subplot2grid(shape=(3, 2), loc=(0, 0), colspan=1) axes[1] = plt.subplot2grid(shape=(3, 2), loc=(0, 1), colspan=1) axes[2] = plt.subplot2grid(shape=(3, 2), loc=(1, 0), colspan=1) axes[3] = plt.subplot2grid(shape=(3, 2), loc=(1, 1), colspan=1) axes[4] = plt.subplot2grid(shape=(3, 2), loc=(2, 0), colspan=2) for index, region in enumerate(sales_regions): data_sales_sort = publishers_df.sort_values(by=region, ascending=True) sns.barplot(x=data_sales_sort[region].tail(10), y=data_sales_sort['Publisher'].tail(10), ax=axes[index]) axes[index].set_title(f'Top 10 {region} Video games editor', fontsize=14) axes[index].set_xlabel(f'{region} [million units]', fontsize=14) axes[index].set_ylabel('Publisher Name', fontsize=14) axes[index].bar_label(axes[index].containers[0], label_type='center', fontsize=10) plt.suptitle('10 top sellers per region', fontsize=18) plt.tight_layout() plt.show()
code
106208751/cell_15
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/video-game-sales-with-ratings/Video_Games_Sales_as_at_22_Dec_2016.csv') col_remove = ['Critic_Score', 'Critic_Count', 'User_Score', 'User_Count', 'Developer', 'Rating'] data_clear = data.drop(labels=col_remove, axis=1) data_clear.isnull().sum() data_clear = data_clear.dropna(axis=0) data_sales_sort = data_clear.sort_values(by=['Global_Sales'], ascending=False) data_sales_sort_hd = data_sales_sort.head(10).sort_values(by=['Global_Sales'], ascending=True) top10_games_gs = data_sales_sort_hd['Name'].head(10) top10_sales_gs = data_sales_sort_hd['Global_Sales'].head(10) fig, ax = plt.subplots() p1 = ax.barh(top10_games_gs, top10_sales_gs) ax.set_title('Top 10 global selling video games') ax.set_xlabel('Sales [million units]') ax.set_ylabel('Video game names') ax.bar_label(p1, label_type='center') plt.show()
code
106208751/cell_3
[ "image_output_1.png" ]
#Installing the libraries !pip install pandas !pip install seaborn !pip install numpy !pip install matplotlib
code
106208751/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/video-game-sales-with-ratings/Video_Games_Sales_as_at_22_Dec_2016.csv') col_remove = ['Critic_Score', 'Critic_Count', 'User_Score', 'User_Count', 'Developer', 'Rating'] data_clear = data.drop(labels=col_remove, axis=1) data_clear.isnull().sum() data_clear = data_clear.dropna(axis=0) data_sales_sort = data_clear.sort_values(by=['Global_Sales'], ascending=False) #Ten best games data_sales_sort_hd = data_sales_sort.head(10).sort_values(by=['Global_Sales'], ascending = True) top10_games_gs = data_sales_sort_hd['Name'].head(10) top10_sales_gs = data_sales_sort_hd['Global_Sales'].head(10) fig, ax = plt.subplots() p1 = ax.barh(top10_games_gs, top10_sales_gs) ax.set_title('Top 10 global selling video games') ax.set_xlabel('Sales [million units]') ax.set_ylabel('Video game names') ax.bar_label(p1, label_type='center') plt.show() sales_regions = ['NA_Sales', 'EU_Sales', 'JP_Sales', 'Other_Sales'] fig, axes = plt.subplots(int(len(sales_regions) / 2), int(len(sales_regions) / 2), figsize=(16, 10)) axes = axes.ravel() for index, region in enumerate(sales_regions): data_sales_sort = data_clear.sort_values(by=region, ascending=True) sns.barplot(x=data_sales_sort[region].tail(10), y=data_sales_sort['Name'].tail(10), ax=axes[index]) axes[index].set_title(f'Top 10 {region} Video games', fontsize=14) axes[index].set_xlabel(f'{region} [million units]', fontsize=14) axes[index].set_ylabel('Video game Name', fontsize=14) axes[index].bar_label(axes[index].containers[0], label_type='center') plt.suptitle('10 top sellers per region', fontsize=18) plt.tight_layout() plt.show()
code
106208751/cell_14
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/video-game-sales-with-ratings/Video_Games_Sales_as_at_22_Dec_2016.csv') col_remove = ['Critic_Score', 'Critic_Count', 'User_Score', 'User_Count', 'Developer', 'Rating'] data_clear = data.drop(labels=col_remove, axis=1) data_clear.isnull().sum() data_clear = data_clear.dropna(axis=0) data_sales_sort = data_clear.sort_values(by=['Global_Sales'], ascending=False) data_sales_sort.head(10)
code
106208751/cell_22
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/video-game-sales-with-ratings/Video_Games_Sales_as_at_22_Dec_2016.csv') col_remove = ['Critic_Score', 'Critic_Count', 'User_Score', 'User_Count', 'Developer', 'Rating'] data_clear = data.drop(labels=col_remove, axis=1) data_clear.isnull().sum() data_clear = data_clear.dropna(axis=0) data_sales_sort = data_clear.sort_values(by=['Global_Sales'], ascending=False) #Ten best games data_sales_sort_hd = data_sales_sort.head(10).sort_values(by=['Global_Sales'], ascending = True) top10_games_gs = data_sales_sort_hd['Name'].head(10) top10_sales_gs = data_sales_sort_hd['Global_Sales'].head(10) fig, ax = plt.subplots() p1 = ax.barh(top10_games_gs, top10_sales_gs) ax.set_title('Top 10 global selling video games') ax.set_xlabel('Sales [million units]') ax.set_ylabel('Video game names') ax.bar_label(p1, label_type='center') plt.show() sales_regions = ['NA_Sales','EU_Sales','JP_Sales','Other_Sales'] fig,axes = plt.subplots(int(len(sales_regions)/2),int(len(sales_regions)/2), figsize=(16,10)) axes = axes.ravel() #Required for array typing ??? for index, region in enumerate(sales_regions): data_sales_sort = data_clear.sort_values(by=region, ascending=True) sns.barplot(x=data_sales_sort[region].tail(10),y=data_sales_sort['Name'].tail(10), ax=axes[index]) axes[index].set_title(f'Top 10 {region} Video games', fontsize = 14) axes[index].set_xlabel(f'{region} [million units]', fontsize = 14) axes[index].set_ylabel('Video game Name', fontsize = 14) axes[index].bar_label(axes[index].containers[0], label_type='center') plt.suptitle('10 top sellers per region', fontsize = 18) plt.tight_layout() plt.show() corr_m = data_clear.corr() corr_m = corr_m.drop(['Year_of_Release'], axis=1) corr_m = corr_m.drop(corr_m.index[0], axis=0) fig, ax = plt.subplots() sns.heatmap(corr_m, annot=True, ax=ax) ax.set_title('World sales correlation Matrix', fontsize=15) plt.show()
code