path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
129005548/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/diabetes-prediction-dataset/diabetes_prediction_dataset.csv') df.describe()
code
16109895/cell_63
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) vector_row.T
code
16109895/cell_21
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) vector_row[:]
code
16109895/cell_13
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) print(matrix_sparse)
code
16109895/cell_25
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) matrix[:1, :]
code
16109895/cell_4
[ "text_plain_output_1.png" ]
import numpy as np vector_row = np.array([1, 2, 3]) vector_row
code
16109895/cell_57
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix.min() matrix.max() matrix.size matrix.reshape(6, 2)
code
16109895/cell_56
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix.min() matrix.max() matrix.size
code
16109895/cell_34
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape
code
16109895/cell_23
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) vector_row[-1]
code
16109895/cell_30
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) matrix[:, 2]
code
16109895/cell_33
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix
code
16109895/cell_44
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix
code
16109895/cell_20
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) vector_row[0]
code
16109895/cell_55
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix3d = np.array([[[2, 3, 4, 5], [1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 3, 2]]]) add_10 = lambda i: i + 10 vectorized = np.vectorize(add_10) matrix.min() matrix.max() np.mean(matrix) np.var(matrix) np.std(matrix) np.mean(matrix, axis=1) np.mean(matrix, axis=0)
code
16109895/cell_6
[ "text_plain_output_1.png" ]
import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) vector_col
code
16109895/cell_40
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix
code
16109895/cell_29
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) matrix[:, :1]
code
16109895/cell_39
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix3d = np.array([[[2, 3, 4, 5], [1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 3, 2]]]) matrix3d.ndim matrix3d[0][1][2]
code
16109895/cell_26
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) matrix[:, :]
code
16109895/cell_48
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix3d = np.array([[[2, 3, 4, 5], [1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 3, 2]]]) add_10 = lambda i: i + 10 vectorized = np.vectorize(add_10) matrix.min() matrix.max() print(np.max(matrix, axis=0)) print(np.min(matrix, axis=0))
code
16109895/cell_61
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix.min() matrix.max() matrix.size matrix.reshape(6, 2) matrix.reshape(1, -1) matrix.reshape(-1, 1) matrix.T
code
16109895/cell_54
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix3d = np.array([[[2, 3, 4, 5], [1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 3, 2]]]) add_10 = lambda i: i + 10 vectorized = np.vectorize(add_10) matrix.min() matrix.max() np.mean(matrix) np.var(matrix) np.std(matrix) np.mean(matrix, axis=1)
code
16109895/cell_11
[ "text_plain_output_1.png" ]
import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) type(matrix_object)
code
16109895/cell_60
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix.min() matrix.max() matrix.size matrix.reshape(6, 2) matrix.reshape(1, -1) matrix.reshape(-1, 1) matrix
code
16109895/cell_19
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) vector_row
code
16109895/cell_50
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix.min() matrix.max() matrix
code
16109895/cell_52
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix3d = np.array([[[2, 3, 4, 5], [1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 3, 2]]]) add_10 = lambda i: i + 10 vectorized = np.vectorize(add_10) matrix.min() matrix.max() np.mean(matrix) np.var(matrix)
code
16109895/cell_45
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix + 10
code
16109895/cell_49
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix3d = np.array([[[2, 3, 4, 5], [1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 3, 2]]]) add_10 = lambda i: i + 10 vectorized = np.vectorize(add_10) matrix.min() matrix.max() print(np.min(matrix, axis=1)) print(np.max(matrix, axis=1))
code
16109895/cell_51
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix3d = np.array([[[2, 3, 4, 5], [1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 3, 2]]]) add_10 = lambda i: i + 10 vectorized = np.vectorize(add_10) matrix.min() matrix.max() np.mean(matrix)
code
16109895/cell_62
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) vector_row
code
16109895/cell_59
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix.min() matrix.max() matrix.size matrix.reshape(6, 2) matrix.reshape(1, -1) matrix.reshape(-1, 1)
code
16109895/cell_58
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix.min() matrix.max() matrix.size matrix.reshape(6, 2) matrix.reshape(1, -1)
code
16109895/cell_28
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) matrix[:, 1:2]
code
16109895/cell_8
[ "text_plain_output_1.png" ]
import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix
code
16109895/cell_15
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) matrix[1, 2]
code
16109895/cell_16
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) matrix[0, 0]
code
16109895/cell_38
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix3d = np.array([[[2, 3, 4, 5], [1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 3, 2]]]) matrix3d.ndim
code
16109895/cell_47
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix.min() matrix.max()
code
16109895/cell_17
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) matrix[1, 1]
code
16109895/cell_35
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size
code
16109895/cell_43
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix3d = np.array([[[2, 3, 4, 5], [1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 3, 2]]]) add_10 = lambda i: i + 10 vectorized = np.vectorize(add_10) vectorized(matrix)
code
16109895/cell_31
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) matrix[:, :2]
code
16109895/cell_46
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix.min()
code
16109895/cell_24
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) matrix[:2, :]
code
16109895/cell_22
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) vector_row[:3]
code
16109895/cell_53
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim matrix3d = np.array([[[2, 3, 4, 5], [1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 3, 2]]]) add_10 = lambda i: i + 10 vectorized = np.vectorize(add_10) matrix.min() matrix.max() np.mean(matrix) np.var(matrix) np.std(matrix)
code
16109895/cell_10
[ "text_plain_output_1.png" ]
import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) matrix_object
code
16109895/cell_27
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) matrix[:1]
code
16109895/cell_36
[ "text_plain_output_1.png" ]
from scipy import sparse import numpy as np vector_row = np.array([1, 2, 3]) vector_col = np.array([[1], [2], [3]]) matrix = np.array([[1, 2, 3], [4, 5, 6]]) matrix_object = np.mat([[1, 2], [3, 4]]) from scipy import sparse matrix = np.array([[1, 0, 2, 0], [1, 0, 0, 1], [0, 0, 1, 0]]) matrix_sparse = sparse.csr_matrix(matrix) matrix = np.array([[1, 2, 3], [1, 4, 5]]) vector_row = np.array([1, 2, 3]) matrix = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) matrix.shape matrix.size matrix.ndim
code
33105736/cell_6
[ "text_plain_output_1.png" ]
import os import pandas as pd root = '../input/104-flowers-garden-of-eden' train_df = pd.DataFrame() folder = os.listdir(root) for f in folder: classes = os.listdir(os.path.join(root, f, 'train')) for c in classes: images = os.listdir(os.path.join(root, f, 'train', c)) tmp_df = pd.DataFrame(images, columns=['image_name']) tmp_df['class'] = c tmp_df['folder'] = f tmp_df['type'] = 'train' train_df = train_df.append(tmp_df, ignore_index=True) val_df = pd.DataFrame() folder = os.listdir(root) for f in folder: classes = os.listdir(os.path.join(root, f, 'val')) for c in classes: images = os.listdir(os.path.join(root, f, 'val', c)) tmp_df = pd.DataFrame(images, columns=['image_name']) tmp_df['class'] = c tmp_df['folder'] = f tmp_df['type'] = 'val' val_df = val_df.append(tmp_df, ignore_index=True) classes = list(train_df['class'].unique()) train_df['label'] = train_df['class'].apply(lambda x: classes.index(x)) val_df['label'] = val_df['class'].apply(lambda x: classes.index(x)) test_df = pd.DataFrame() f = 'jpeg-224x224' images = os.listdir(os.path.join(root, f, 'test')) tmp_df = pd.DataFrame(images, columns=['image_name']) tmp_df['class'] = 'unknown' tmp_df['folder'] = f tmp_df['type'] = 'test' test_df = test_df.append(tmp_df, ignore_index=True) print('test:', test_df.shape)
code
33105736/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
!curl https://raw.githubusercontent.com/pytorch/xla/master/contrib/scripts/env-setup.py -o pytorch-xla-env-setup.py !python pytorch-xla-env-setup.py --apt-packages libomp5 libopenblas-dev
code
33105736/cell_8
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from torch.utils.data import Dataset, DataLoader import matplotlib.pyplot as plt import numpy as np import os import pandas as pd root = '../input/104-flowers-garden-of-eden' train_df = pd.DataFrame() folder = os.listdir(root) for f in folder: classes = os.listdir(os.path.join(root, f, 'train')) for c in classes: images = os.listdir(os.path.join(root, f, 'train', c)) tmp_df = pd.DataFrame(images, columns=['image_name']) tmp_df['class'] = c tmp_df['folder'] = f tmp_df['type'] = 'train' train_df = train_df.append(tmp_df, ignore_index=True) val_df = pd.DataFrame() folder = os.listdir(root) for f in folder: classes = os.listdir(os.path.join(root, f, 'val')) for c in classes: images = os.listdir(os.path.join(root, f, 'val', c)) tmp_df = pd.DataFrame(images, columns=['image_name']) tmp_df['class'] = c tmp_df['folder'] = f tmp_df['type'] = 'val' val_df = val_df.append(tmp_df, ignore_index=True) classes = list(train_df['class'].unique()) train_df['label'] = train_df['class'].apply(lambda x: classes.index(x)) val_df['label'] = val_df['class'].apply(lambda x: classes.index(x)) test_df = pd.DataFrame() f = 'jpeg-224x224' images = os.listdir(os.path.join(root, f, 'test')) tmp_df = pd.DataFrame(images, columns=['image_name']) tmp_df['class'] = 'unknown' tmp_df['folder'] = f tmp_df['type'] = 'test' test_df = test_df.append(tmp_df, ignore_index=True) train_dataset = flowerDataset(train_df) print(train_dataset.__len__()) train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, drop_last=True) train_iter = iter(train_loader) images, labels = next(train_iter) print(images.size()) print(labels.size()) plot_size = 32 fig = plt.figure(figsize=(25, 10)) for idx in np.arange(plot_size): ax = fig.add_subplot(4, plot_size / 4, idx + 1, xticks=[], yticks=[]) ax.imshow(np.transpose(images[idx], (1, 2, 0))) ax.set_title(classes[labels[idx].item()])
code
33105736/cell_16
[ "text_plain_output_1.png" ]
from PIL import Image from collections import deque from torch.utils.data import Dataset, DataLoader from torch.utils.data.distributed import DistributedSampler import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import time import torch import torch.nn as nn import torch.optim as optim import torch_xla.core.xla_model as xm import torch_xla.distributed.parallel_loader as pl import torchvision.models as models import torchvision.transforms as T root = '../input/104-flowers-garden-of-eden' train_df = pd.DataFrame() folder = os.listdir(root) for f in folder: classes = os.listdir(os.path.join(root, f, 'train')) for c in classes: images = os.listdir(os.path.join(root, f, 'train', c)) tmp_df = pd.DataFrame(images, columns=['image_name']) tmp_df['class'] = c tmp_df['folder'] = f tmp_df['type'] = 'train' train_df = train_df.append(tmp_df, ignore_index=True) val_df = pd.DataFrame() folder = os.listdir(root) for f in folder: classes = os.listdir(os.path.join(root, f, 'val')) for c in classes: images = os.listdir(os.path.join(root, f, 'val', c)) tmp_df = pd.DataFrame(images, columns=['image_name']) tmp_df['class'] = c tmp_df['folder'] = f tmp_df['type'] = 'val' val_df = val_df.append(tmp_df, ignore_index=True) classes = list(train_df['class'].unique()) train_df['label'] = train_df['class'].apply(lambda x: classes.index(x)) val_df['label'] = val_df['class'].apply(lambda x: classes.index(x)) test_df = pd.DataFrame() f = 'jpeg-224x224' images = os.listdir(os.path.join(root, f, 'test')) tmp_df = pd.DataFrame(images, columns=['image_name']) tmp_df['class'] = 'unknown' tmp_df['folder'] = f tmp_df['type'] = 'test' test_df = test_df.append(tmp_df, ignore_index=True) class flowerDataset(Dataset): def __init__(self, df, root='../input/104-flowers-garden-of-eden'): self.df = df self.root = root self.transforms = T.Compose([T.Resize((224, 224)), T.ToTensor()]) def __getitem__(self, idx): img_path = os.path.join(self.root, self.df.iloc[idx]['folder'], self.df.iloc[idx]['type'], self.df.iloc[idx]['class'], self.df.iloc[idx]['image_name']) img = Image.open(img_path) img_tensor = self.transforms(img) target_tensor = torch.tensor(self.df.iloc[idx]['label'], dtype=torch.long) return (img_tensor, target_tensor) def __len__(self): return len(self.df) class testDataset(Dataset): def __init__(self, df, root='../input/104-flowers-garden-of-eden'): self.df = df self.root = root self.transforms = T.Compose([T.Resize((224, 224)), T.ToTensor()]) def __getitem__(self, idx): img_path = os.path.join(self.root, self.df.iloc[idx]['folder'], self.df.iloc[idx]['type'], self.df.iloc[idx]['image_name']) img = Image.open(img_path) img_tensor = self.transforms(img) return (img_tensor, self.df.iloc[idx]['image_name'][:-5]) def __len__(self): return len(self.df) train_dataset = flowerDataset(train_df) print(train_dataset.__len__()) train_loader = DataLoader(train_dataset, batch_size = 32, shuffle = True, drop_last = True) train_iter = iter(train_loader) images, labels = next(train_iter) print(images.size()) print(labels.size()) plot_size = 32 fig = plt.figure(figsize=(25, 10)) for idx in np.arange(plot_size): ax = fig.add_subplot(4, plot_size/4, idx+1, xticks=[], yticks=[]) ax.imshow(np.transpose(images[idx], (1, 2, 0))) ax.set_title(classes[labels[idx].item()]) def train_net(): torch.manual_seed(FLAGS['seed']) device = xm.xla_device() world_size = xm.xrt_world_size() train_dataset = flowerDataset(train_df) train_sampler = DistributedSampler(train_dataset, num_replicas=world_size, rank=xm.get_ordinal(), shuffle=True) train_loader = DataLoader(train_dataset, batch_size=FLAGS['batch_size'], sampler=train_sampler, num_workers=FLAGS['num_workers'], drop_last=True) val_dataset = flowerDataset(val_df) val_sampler = DistributedSampler(val_dataset, num_replicas=world_size, rank=xm.get_ordinal(), shuffle=True) val_loader = DataLoader(val_dataset, batch_size=FLAGS['batch_size'], sampler=val_sampler, num_workers=FLAGS['num_workers'], drop_last=True) model = models.resnet18() model.load_state_dict(torch.load('/kaggle/input/resnet18/resnet18.pth')) model.fc = nn.Linear(512, 104) model.to(device) optimizer = optim.SGD(model.parameters(), lr=FLAGS['learning_rate'] * world_size, momentum=FLAGS['momentum'], weight_decay=0.0005) loss_fn = torch.nn.CrossEntropyLoss() def train_loop_fn(loader): tracker = xm.RateTracker() model.train() loss_window = deque(maxlen=FLAGS['log_steps']) for x, (data, target) in enumerate(loader): optimizer.zero_grad() output = model(data) loss = loss_fn(output, target) loss_window.append(loss.item()) loss.backward() xm.optimizer_step(optimizer) tracker.add(FLAGS['batch_size']) def val_loop_fn(loader): total_samples, correct = (0, 0) model.eval() for data, target in loader: with torch.no_grad(): output = model(data) pred = output.max(1, keepdim=True)[1] correct += pred.eq(target.view_as(pred)).sum().item() total_samples += data.size()[0] accuracy = 100.0 * correct / total_samples return accuracy for epoch in range(1, FLAGS['num_epochs'] + 1): para_loader = pl.ParallelLoader(train_loader, [device]) train_loop_fn(para_loader.per_device_loader(device)) para_loader = pl.ParallelLoader(val_loader, [device]) accuracy = val_loop_fn(para_loader.per_device_loader(device)) best_accuracy = 0.0 if accuracy > best_accuracy: xm.save(model.state_dict(), 'trained_resnet18_model.pth') best_accuracy = accuracy def _mp_fn(rank, flags): global FLAGS FLAGS = flags torch.set_default_tensor_type('torch.FloatTensor') train_start = time.time() train_net() elapsed_train_time = time.time() - train_start model = models.resnet18() model.fc = nn.Linear(512, 104) model.load_state_dict(torch.load('trained_resnet18_model.pth')) device = xm.xla_device() model.to(device) model.eval() batch_size = 32 test_dataset = testDataset(test_df) test_loader = DataLoader(test_dataset, batch_size=batch_size) n = test_dataset.__len__() predictions = pd.DataFrame() for x, (images, names) in enumerate(test_loader): images = images.to(device) with torch.no_grad(): output = model(images) pred = output.max(1)[1].cpu().numpy() predictions = predictions.append(pd.DataFrame(data={'id': names, 'label': pred}), ignore_index=True) print('\rProcess {} %'.format(round(100 * x * batch_size / n)), end='') predictions.head()
code
33105736/cell_14
[ "text_plain_output_1.png" ]
from PIL import Image from collections import deque from torch.utils.data import Dataset, DataLoader from torch.utils.data.distributed import DistributedSampler import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import time import torch import torch.nn as nn import torch.optim as optim import torch_xla.core.xla_model as xm import torch_xla.distributed.parallel_loader as pl import torchvision.models as models import torchvision.transforms as T root = '../input/104-flowers-garden-of-eden' train_df = pd.DataFrame() folder = os.listdir(root) for f in folder: classes = os.listdir(os.path.join(root, f, 'train')) for c in classes: images = os.listdir(os.path.join(root, f, 'train', c)) tmp_df = pd.DataFrame(images, columns=['image_name']) tmp_df['class'] = c tmp_df['folder'] = f tmp_df['type'] = 'train' train_df = train_df.append(tmp_df, ignore_index=True) val_df = pd.DataFrame() folder = os.listdir(root) for f in folder: classes = os.listdir(os.path.join(root, f, 'val')) for c in classes: images = os.listdir(os.path.join(root, f, 'val', c)) tmp_df = pd.DataFrame(images, columns=['image_name']) tmp_df['class'] = c tmp_df['folder'] = f tmp_df['type'] = 'val' val_df = val_df.append(tmp_df, ignore_index=True) classes = list(train_df['class'].unique()) train_df['label'] = train_df['class'].apply(lambda x: classes.index(x)) val_df['label'] = val_df['class'].apply(lambda x: classes.index(x)) test_df = pd.DataFrame() f = 'jpeg-224x224' images = os.listdir(os.path.join(root, f, 'test')) tmp_df = pd.DataFrame(images, columns=['image_name']) tmp_df['class'] = 'unknown' tmp_df['folder'] = f tmp_df['type'] = 'test' test_df = test_df.append(tmp_df, ignore_index=True) class flowerDataset(Dataset): def __init__(self, df, root='../input/104-flowers-garden-of-eden'): self.df = df self.root = root self.transforms = T.Compose([T.Resize((224, 224)), T.ToTensor()]) def __getitem__(self, idx): img_path = os.path.join(self.root, self.df.iloc[idx]['folder'], self.df.iloc[idx]['type'], self.df.iloc[idx]['class'], self.df.iloc[idx]['image_name']) img = Image.open(img_path) img_tensor = self.transforms(img) target_tensor = torch.tensor(self.df.iloc[idx]['label'], dtype=torch.long) return (img_tensor, target_tensor) def __len__(self): return len(self.df) class testDataset(Dataset): def __init__(self, df, root='../input/104-flowers-garden-of-eden'): self.df = df self.root = root self.transforms = T.Compose([T.Resize((224, 224)), T.ToTensor()]) def __getitem__(self, idx): img_path = os.path.join(self.root, self.df.iloc[idx]['folder'], self.df.iloc[idx]['type'], self.df.iloc[idx]['image_name']) img = Image.open(img_path) img_tensor = self.transforms(img) return (img_tensor, self.df.iloc[idx]['image_name'][:-5]) def __len__(self): return len(self.df) train_dataset = flowerDataset(train_df) print(train_dataset.__len__()) train_loader = DataLoader(train_dataset, batch_size = 32, shuffle = True, drop_last = True) train_iter = iter(train_loader) images, labels = next(train_iter) print(images.size()) print(labels.size()) plot_size = 32 fig = plt.figure(figsize=(25, 10)) for idx in np.arange(plot_size): ax = fig.add_subplot(4, plot_size/4, idx+1, xticks=[], yticks=[]) ax.imshow(np.transpose(images[idx], (1, 2, 0))) ax.set_title(classes[labels[idx].item()]) def train_net(): torch.manual_seed(FLAGS['seed']) device = xm.xla_device() world_size = xm.xrt_world_size() train_dataset = flowerDataset(train_df) train_sampler = DistributedSampler(train_dataset, num_replicas=world_size, rank=xm.get_ordinal(), shuffle=True) train_loader = DataLoader(train_dataset, batch_size=FLAGS['batch_size'], sampler=train_sampler, num_workers=FLAGS['num_workers'], drop_last=True) val_dataset = flowerDataset(val_df) val_sampler = DistributedSampler(val_dataset, num_replicas=world_size, rank=xm.get_ordinal(), shuffle=True) val_loader = DataLoader(val_dataset, batch_size=FLAGS['batch_size'], sampler=val_sampler, num_workers=FLAGS['num_workers'], drop_last=True) model = models.resnet18() model.load_state_dict(torch.load('/kaggle/input/resnet18/resnet18.pth')) model.fc = nn.Linear(512, 104) model.to(device) optimizer = optim.SGD(model.parameters(), lr=FLAGS['learning_rate'] * world_size, momentum=FLAGS['momentum'], weight_decay=0.0005) loss_fn = torch.nn.CrossEntropyLoss() def train_loop_fn(loader): tracker = xm.RateTracker() model.train() loss_window = deque(maxlen=FLAGS['log_steps']) for x, (data, target) in enumerate(loader): optimizer.zero_grad() output = model(data) loss = loss_fn(output, target) loss_window.append(loss.item()) loss.backward() xm.optimizer_step(optimizer) tracker.add(FLAGS['batch_size']) def val_loop_fn(loader): total_samples, correct = (0, 0) model.eval() for data, target in loader: with torch.no_grad(): output = model(data) pred = output.max(1, keepdim=True)[1] correct += pred.eq(target.view_as(pred)).sum().item() total_samples += data.size()[0] accuracy = 100.0 * correct / total_samples return accuracy for epoch in range(1, FLAGS['num_epochs'] + 1): para_loader = pl.ParallelLoader(train_loader, [device]) train_loop_fn(para_loader.per_device_loader(device)) para_loader = pl.ParallelLoader(val_loader, [device]) accuracy = val_loop_fn(para_loader.per_device_loader(device)) best_accuracy = 0.0 if accuracy > best_accuracy: xm.save(model.state_dict(), 'trained_resnet18_model.pth') best_accuracy = accuracy def _mp_fn(rank, flags): global FLAGS FLAGS = flags torch.set_default_tensor_type('torch.FloatTensor') train_start = time.time() train_net() elapsed_train_time = time.time() - train_start model = models.resnet18() model.fc = nn.Linear(512, 104) model.load_state_dict(torch.load('trained_resnet18_model.pth')) device = xm.xla_device() model.to(device) model.eval() print(device)
code
33105736/cell_12
[ "text_plain_output_1.png" ]
from PIL import Image from collections import deque from torch.utils.data import Dataset, DataLoader from torch.utils.data.distributed import DistributedSampler import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import time import torch import torch.nn as nn import torch.optim as optim import torch_xla.core.xla_model as xm import torch_xla.distributed.parallel_loader as pl import torch_xla.distributed.xla_multiprocessing as xmp import torchvision.models as models import torchvision.transforms as T root = '../input/104-flowers-garden-of-eden' train_df = pd.DataFrame() folder = os.listdir(root) for f in folder: classes = os.listdir(os.path.join(root, f, 'train')) for c in classes: images = os.listdir(os.path.join(root, f, 'train', c)) tmp_df = pd.DataFrame(images, columns=['image_name']) tmp_df['class'] = c tmp_df['folder'] = f tmp_df['type'] = 'train' train_df = train_df.append(tmp_df, ignore_index=True) val_df = pd.DataFrame() folder = os.listdir(root) for f in folder: classes = os.listdir(os.path.join(root, f, 'val')) for c in classes: images = os.listdir(os.path.join(root, f, 'val', c)) tmp_df = pd.DataFrame(images, columns=['image_name']) tmp_df['class'] = c tmp_df['folder'] = f tmp_df['type'] = 'val' val_df = val_df.append(tmp_df, ignore_index=True) classes = list(train_df['class'].unique()) train_df['label'] = train_df['class'].apply(lambda x: classes.index(x)) val_df['label'] = val_df['class'].apply(lambda x: classes.index(x)) test_df = pd.DataFrame() f = 'jpeg-224x224' images = os.listdir(os.path.join(root, f, 'test')) tmp_df = pd.DataFrame(images, columns=['image_name']) tmp_df['class'] = 'unknown' tmp_df['folder'] = f tmp_df['type'] = 'test' test_df = test_df.append(tmp_df, ignore_index=True) class flowerDataset(Dataset): def __init__(self, df, root='../input/104-flowers-garden-of-eden'): self.df = df self.root = root self.transforms = T.Compose([T.Resize((224, 224)), T.ToTensor()]) def __getitem__(self, idx): img_path = os.path.join(self.root, self.df.iloc[idx]['folder'], self.df.iloc[idx]['type'], self.df.iloc[idx]['class'], self.df.iloc[idx]['image_name']) img = Image.open(img_path) img_tensor = self.transforms(img) target_tensor = torch.tensor(self.df.iloc[idx]['label'], dtype=torch.long) return (img_tensor, target_tensor) def __len__(self): return len(self.df) class testDataset(Dataset): def __init__(self, df, root='../input/104-flowers-garden-of-eden'): self.df = df self.root = root self.transforms = T.Compose([T.Resize((224, 224)), T.ToTensor()]) def __getitem__(self, idx): img_path = os.path.join(self.root, self.df.iloc[idx]['folder'], self.df.iloc[idx]['type'], self.df.iloc[idx]['image_name']) img = Image.open(img_path) img_tensor = self.transforms(img) return (img_tensor, self.df.iloc[idx]['image_name'][:-5]) def __len__(self): return len(self.df) train_dataset = flowerDataset(train_df) print(train_dataset.__len__()) train_loader = DataLoader(train_dataset, batch_size = 32, shuffle = True, drop_last = True) train_iter = iter(train_loader) images, labels = next(train_iter) print(images.size()) print(labels.size()) plot_size = 32 fig = plt.figure(figsize=(25, 10)) for idx in np.arange(plot_size): ax = fig.add_subplot(4, plot_size/4, idx+1, xticks=[], yticks=[]) ax.imshow(np.transpose(images[idx], (1, 2, 0))) ax.set_title(classes[labels[idx].item()]) def train_net(): torch.manual_seed(FLAGS['seed']) device = xm.xla_device() world_size = xm.xrt_world_size() train_dataset = flowerDataset(train_df) train_sampler = DistributedSampler(train_dataset, num_replicas=world_size, rank=xm.get_ordinal(), shuffle=True) train_loader = DataLoader(train_dataset, batch_size=FLAGS['batch_size'], sampler=train_sampler, num_workers=FLAGS['num_workers'], drop_last=True) val_dataset = flowerDataset(val_df) val_sampler = DistributedSampler(val_dataset, num_replicas=world_size, rank=xm.get_ordinal(), shuffle=True) val_loader = DataLoader(val_dataset, batch_size=FLAGS['batch_size'], sampler=val_sampler, num_workers=FLAGS['num_workers'], drop_last=True) model = models.resnet18() model.load_state_dict(torch.load('/kaggle/input/resnet18/resnet18.pth')) model.fc = nn.Linear(512, 104) model.to(device) optimizer = optim.SGD(model.parameters(), lr=FLAGS['learning_rate'] * world_size, momentum=FLAGS['momentum'], weight_decay=0.0005) loss_fn = torch.nn.CrossEntropyLoss() def train_loop_fn(loader): tracker = xm.RateTracker() model.train() loss_window = deque(maxlen=FLAGS['log_steps']) for x, (data, target) in enumerate(loader): optimizer.zero_grad() output = model(data) loss = loss_fn(output, target) loss_window.append(loss.item()) loss.backward() xm.optimizer_step(optimizer) tracker.add(FLAGS['batch_size']) def val_loop_fn(loader): total_samples, correct = (0, 0) model.eval() for data, target in loader: with torch.no_grad(): output = model(data) pred = output.max(1, keepdim=True)[1] correct += pred.eq(target.view_as(pred)).sum().item() total_samples += data.size()[0] accuracy = 100.0 * correct / total_samples return accuracy for epoch in range(1, FLAGS['num_epochs'] + 1): para_loader = pl.ParallelLoader(train_loader, [device]) train_loop_fn(para_loader.per_device_loader(device)) para_loader = pl.ParallelLoader(val_loader, [device]) accuracy = val_loop_fn(para_loader.per_device_loader(device)) best_accuracy = 0.0 if accuracy > best_accuracy: xm.save(model.state_dict(), 'trained_resnet18_model.pth') best_accuracy = accuracy def _mp_fn(rank, flags): global FLAGS FLAGS = flags torch.set_default_tensor_type('torch.FloatTensor') train_start = time.time() train_net() elapsed_train_time = time.time() - train_start FLAGS = {} FLAGS['seed'] = 1 FLAGS['num_workers'] = 4 FLAGS['num_cores'] = 8 FLAGS['num_epochs'] = 10 FLAGS['log_steps'] = 50 FLAGS['batch_size'] = 16 FLAGS['learning_rate'] = 0.0001 FLAGS['momentum'] = 0.9 xmp.spawn(_mp_fn, args=(FLAGS,), nprocs=FLAGS['num_cores'], start_method='fork')
code
33105736/cell_5
[ "text_plain_output_1.png" ]
import os import pandas as pd root = '../input/104-flowers-garden-of-eden' train_df = pd.DataFrame() folder = os.listdir(root) for f in folder: classes = os.listdir(os.path.join(root, f, 'train')) for c in classes: images = os.listdir(os.path.join(root, f, 'train', c)) tmp_df = pd.DataFrame(images, columns=['image_name']) tmp_df['class'] = c tmp_df['folder'] = f tmp_df['type'] = 'train' train_df = train_df.append(tmp_df, ignore_index=True) print('train:', train_df.shape) val_df = pd.DataFrame() folder = os.listdir(root) for f in folder: classes = os.listdir(os.path.join(root, f, 'val')) for c in classes: images = os.listdir(os.path.join(root, f, 'val', c)) tmp_df = pd.DataFrame(images, columns=['image_name']) tmp_df['class'] = c tmp_df['folder'] = f tmp_df['type'] = 'val' val_df = val_df.append(tmp_df, ignore_index=True) print('val:', val_df.shape) classes = list(train_df['class'].unique()) print('num class:', len(classes)) train_df['label'] = train_df['class'].apply(lambda x: classes.index(x)) val_df['label'] = val_df['class'].apply(lambda x: classes.index(x))
code
16119155/cell_9
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns import os df = pd.read_csv('../input/rural_urban.csv') df = df.drop(df.index[:7]) df.groupby('area')['transgender'].agg('sum').sort_values(ascending=False).head(10).plot(kind='bar') df.groupby('area')['average annual growth rate'].agg('sum').sort_values(ascending=False).head(10).plot(kind='bar') df1 = df.loc[df['female'] >= df['male']] df1['no of women greater'] = df1['female'] - df1['male'] df1.groupby('area')['no of women greater'].agg('sum').sort_values(ascending=False).head(10).plot(kind='bar')
code
16119155/cell_1
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns import os df = pd.read_csv('../input/rural_urban.csv') df.head(10)
code
16119155/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns import os df = pd.read_csv('../input/rural_urban.csv') df = df.drop(df.index[:7]) df.groupby('area')['transgender'].agg('sum').sort_values(ascending=False).head(10).plot(kind='bar') df.groupby('area')['average annual growth rate'].agg('sum').sort_values(ascending=False).head(10).plot(kind='bar')
code
16119155/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns import os df = pd.read_csv('../input/rural_urban.csv') df = df.drop(df.index[:7]) df.head()
code
16119155/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns import os df = pd.read_csv('../input/rural_urban.csv') df = df.drop(df.index[:7]) df.groupby('area')['transgender'].agg('sum').sort_values(ascending=False).head(10).plot(kind='bar')
code
89126682/cell_21
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression,LinearRegression from sklearn.metrics import confusion_matrix, classification_report,accuracy_score import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/facebook-ads/Facebook_Ads_2.csv', encoding='ISO-8859-1') lr = LogisticRegression(random_state=0) lr.fit(X_train, y_train) y_pred_train = lr.predict(X_train) y_pred_train cm = confusion_matrix(y_train, y_pred_train) y_pred_test = lr.predict(X_test) cm = confusion_matrix(y_test, y_pred_test) sns.heatmap(cm, annot=True, fmt='d')
code
89126682/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/facebook-ads/Facebook_Ads_2.csv', encoding='ISO-8859-1') plt.figure(figsize=(10, 8)) sns.histplot(df['Salary'], kde=True, bins=40) plt.show()
code
89126682/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/facebook-ads/Facebook_Ads_2.csv', encoding='ISO-8859-1') df.head()
code
89126682/cell_34
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.linear_model import LogisticRegression,LinearRegression from sklearn.metrics import confusion_matrix, classification_report,accuracy_score from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/facebook-ads/Facebook_Ads_2.csv', encoding='ISO-8859-1') lr = LogisticRegression(random_state=0) lr.fit(X_train, y_train) y_pred_train = lr.predict(X_train) y_pred_train cm = confusion_matrix(y_train, y_pred_train) y_pred_test = lr.predict(X_test) cm = confusion_matrix(y_test, y_pred_test) linR = LinearRegression().fit(X_train, y_train) y_pred_train = linR.predict(X_train) cm = confusion_matrix(y_train, y_pred_train) y_pred_test = lr.predict(X_test) cm = confusion_matrix(y_test, y_pred_test) KNN = KNeighborsClassifier(n_neighbors=2).fit(X_train, y_train) y_pred_train = KNN.predict(X_train) y_pred_test = KNN.predict(X_test) print('Accuracy on Train Data: ' + str(accuracy_score(y_train, y_pred_train) * 100) + ' %') print('Accuracy on Test Data: ' + str(accuracy_score(y_test, y_pred_test) * 100) + ' %')
code
89126682/cell_23
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression,LinearRegression from sklearn.metrics import confusion_matrix, classification_report,accuracy_score lr = LogisticRegression(random_state=0) lr.fit(X_train, y_train) y_pred_train = lr.predict(X_train) y_pred_train y_pred_test = lr.predict(X_test) print(classification_report(y_test, y_pred_test))
code
89126682/cell_30
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression,LinearRegression from sklearn.metrics import confusion_matrix, classification_report,accuracy_score lr = LogisticRegression(random_state=0) lr.fit(X_train, y_train) y_pred_train = lr.predict(X_train) y_pred_train linR = LinearRegression().fit(X_train, y_train) y_pred_train = linR.predict(X_train) print('Accuracy on Training: ' + str(accuracy_score(y_train, y_pred_train)))
code
89126682/cell_29
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression,LinearRegression from sklearn.metrics import confusion_matrix, classification_report,accuracy_score import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/facebook-ads/Facebook_Ads_2.csv', encoding='ISO-8859-1') lr = LogisticRegression(random_state=0) lr.fit(X_train, y_train) y_pred_train = lr.predict(X_train) y_pred_train cm = confusion_matrix(y_train, y_pred_train) y_pred_test = lr.predict(X_test) cm = confusion_matrix(y_test, y_pred_test) linR = LinearRegression().fit(X_train, y_train) y_pred_train = linR.predict(X_train) cm = confusion_matrix(y_train, y_pred_train) sns.heatmap(cm, annot=True, fmt='d')
code
89126682/cell_39
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression,LinearRegression from sklearn.metrics import confusion_matrix, classification_report,accuracy_score from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/facebook-ads/Facebook_Ads_2.csv', encoding='ISO-8859-1') lr = LogisticRegression(random_state=0) lr.fit(X_train, y_train) y_pred_train = lr.predict(X_train) y_pred_train cm = confusion_matrix(y_train, y_pred_train) y_pred_test = lr.predict(X_test) cm = confusion_matrix(y_test, y_pred_test) linR = LinearRegression().fit(X_train, y_train) y_pred_train = linR.predict(X_train) cm = confusion_matrix(y_train, y_pred_train) y_pred_test = lr.predict(X_test) cm = confusion_matrix(y_test, y_pred_test) KNN = KNeighborsClassifier(n_neighbors=2).fit(X_train, y_train) y_pred_train = KNN.predict(X_train) y_pred_test = KNN.predict(X_test) cm = confusion_matrix(y_train, y_pred_train) cm = confusion_matrix(y_test, y_pred_test) sns.heatmap(cm, annot=True, fmt='d')
code
89126682/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.linear_model import LogisticRegression,LinearRegression lr = LogisticRegression(random_state=0) lr.fit(X_train, y_train) y_pred_train = lr.predict(X_train) y_pred_train linR = LinearRegression().fit(X_train, y_train) y_pred_train = linR.predict(X_train) sum(y_pred_train) / len(y_pred_train)
code
89126682/cell_11
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/facebook-ads/Facebook_Ads_2.csv', encoding='ISO-8859-1') df.columns
code
89126682/cell_19
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression,LinearRegression from sklearn.metrics import confusion_matrix, classification_report,accuracy_score import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/facebook-ads/Facebook_Ads_2.csv', encoding='ISO-8859-1') lr = LogisticRegression(random_state=0) lr.fit(X_train, y_train) y_pred_train = lr.predict(X_train) y_pred_train cm = confusion_matrix(y_train, y_pred_train) sns.heatmap(cm, annot=True, fmt='d')
code
89126682/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/facebook-ads/Facebook_Ads_2.csv', encoding='ISO-8859-1') clicked = df[df['Clicked'] == 1] no_clicked = df[df['Clicked'] == 0] print('Total=', len(df)) print('Number of customers clicked = ', len(clicked)) print('Number of customers not clicked = ', len(no_clicked))
code
89126682/cell_18
[ "image_output_1.png" ]
from sklearn.linear_model import LogisticRegression,LinearRegression lr = LogisticRegression(random_state=0) lr.fit(X_train, y_train) y_pred_train = lr.predict(X_train) y_pred_train
code
89126682/cell_32
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression,LinearRegression from sklearn.metrics import confusion_matrix, classification_report,accuracy_score import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/facebook-ads/Facebook_Ads_2.csv', encoding='ISO-8859-1') lr = LogisticRegression(random_state=0) lr.fit(X_train, y_train) y_pred_train = lr.predict(X_train) y_pred_train cm = confusion_matrix(y_train, y_pred_train) y_pred_test = lr.predict(X_test) cm = confusion_matrix(y_test, y_pred_test) linR = LinearRegression().fit(X_train, y_train) y_pred_train = linR.predict(X_train) cm = confusion_matrix(y_train, y_pred_train) y_pred_test = lr.predict(X_test) cm = confusion_matrix(y_test, y_pred_test) print('Accuracy: ' + str(accuracy_score(y_test, y_pred_test) * 100) + '%') print(classification_report(y_test, y_pred_test))
code
89126682/cell_28
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression,LinearRegression lr = LogisticRegression(random_state=0) lr.fit(X_train, y_train) y_pred_train = lr.predict(X_train) y_pred_train linR = LinearRegression().fit(X_train, y_train) y_pred_train = linR.predict(X_train) sum(y_pred_train) / len(y_pred_train)
code
89126682/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/facebook-ads/Facebook_Ads_2.csv', encoding='ISO-8859-1') sns.scatterplot(data=df, x=df['Time Spent on Site'], y=df['Salary'], hue=df['Clicked']) plt.show()
code
89126682/cell_17
[ "image_output_1.png" ]
from sklearn.linear_model import LogisticRegression,LinearRegression lr = LogisticRegression(random_state=0) lr.fit(X_train, y_train)
code
89126682/cell_35
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression,LinearRegression from sklearn.metrics import confusion_matrix, classification_report,accuracy_score from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/facebook-ads/Facebook_Ads_2.csv', encoding='ISO-8859-1') lr = LogisticRegression(random_state=0) lr.fit(X_train, y_train) y_pred_train = lr.predict(X_train) y_pred_train cm = confusion_matrix(y_train, y_pred_train) y_pred_test = lr.predict(X_test) cm = confusion_matrix(y_test, y_pred_test) linR = LinearRegression().fit(X_train, y_train) y_pred_train = linR.predict(X_train) cm = confusion_matrix(y_train, y_pred_train) y_pred_test = lr.predict(X_test) cm = confusion_matrix(y_test, y_pred_test) KNN = KNeighborsClassifier(n_neighbors=2).fit(X_train, y_train) y_pred_train = KNN.predict(X_train) y_pred_test = KNN.predict(X_test) print('Classification Report:') print(classification_report(y_test, y_pred_test))
code
89126682/cell_31
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression,LinearRegression from sklearn.metrics import confusion_matrix, classification_report,accuracy_score import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/facebook-ads/Facebook_Ads_2.csv', encoding='ISO-8859-1') lr = LogisticRegression(random_state=0) lr.fit(X_train, y_train) y_pred_train = lr.predict(X_train) y_pred_train cm = confusion_matrix(y_train, y_pred_train) y_pred_test = lr.predict(X_test) cm = confusion_matrix(y_test, y_pred_test) linR = LinearRegression().fit(X_train, y_train) y_pred_train = linR.predict(X_train) cm = confusion_matrix(y_train, y_pred_train) y_pred_test = lr.predict(X_test) print(y_pred_test) cm = confusion_matrix(y_test, y_pred_test) sns.heatmap(cm, annot=True, fmt='d')
code
89126682/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/facebook-ads/Facebook_Ads_2.csv', encoding='ISO-8859-1') df.columns df = df.drop(['Names', 'emails'], axis=1) df = df.drop(['Country'], axis=1) df.head()
code
89126682/cell_22
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression,LinearRegression from sklearn.metrics import confusion_matrix, classification_report,accuracy_score lr = LogisticRegression(random_state=0) lr.fit(X_train, y_train) y_pred_train = lr.predict(X_train) y_pred_train y_pred_test = lr.predict(X_test) print('Accuracy: ' + str(accuracy_score(y_test, y_pred_test) * 100) + '%')
code
89126682/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.linear_model import LogisticRegression,LinearRegression lr = LogisticRegression(random_state=0) lr.fit(X_train, y_train) y_pred_train = lr.predict(X_train) y_pred_train linR = LinearRegression().fit(X_train, y_train) y_pred_train = linR.predict(X_train) for i in range(0, len(y_pred_train)): if y_pred_train[i] > 0.51: y_pred_train[i] = 1 else: y_pred_train[i] = 0 print(y_pred_train)
code
89126682/cell_37
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.linear_model import LogisticRegression,LinearRegression from sklearn.metrics import confusion_matrix, classification_report,accuracy_score from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/facebook-ads/Facebook_Ads_2.csv', encoding='ISO-8859-1') lr = LogisticRegression(random_state=0) lr.fit(X_train, y_train) y_pred_train = lr.predict(X_train) y_pred_train cm = confusion_matrix(y_train, y_pred_train) y_pred_test = lr.predict(X_test) cm = confusion_matrix(y_test, y_pred_test) linR = LinearRegression().fit(X_train, y_train) y_pred_train = linR.predict(X_train) cm = confusion_matrix(y_train, y_pred_train) y_pred_test = lr.predict(X_test) cm = confusion_matrix(y_test, y_pred_test) KNN = KNeighborsClassifier(n_neighbors=2).fit(X_train, y_train) y_pred_train = KNN.predict(X_train) y_pred_test = KNN.predict(X_test) cm = confusion_matrix(y_train, y_pred_train) sns.heatmap(cm, annot=True, fmt='d')
code
311174/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/cdc_zika.csv', parse_dates=['report_date'], infer_datetime_format=True, index_col=0) df.location.value_counts()[:30].plot(kind='bar', figsize=(12, 7)) plt.title('Number of locations reported - Top 30')
code
311174/cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sbn from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
311174/cell_3
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/cdc_zika.csv', parse_dates=['report_date'], infer_datetime_format=True, index_col=0) df.head(3)
code
311174/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/cdc_zika.csv', parse_dates=['report_date'], infer_datetime_format=True, index_col=0) df[df.data_field == 'confirmed_male'].value.plot() df[df.data_field == 'confirmed_female'].value.plot().legend(('Male', 'Female'), loc='best') plt.title('Confirmed Male vs Female cases')
code
2008393/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd sales = pd.read_csv('../input/transactions.csv', parse_dates=['date'], dtype={'store_nbr': np.uint8, 'transactions': np.uint16}) items = pd.read_csv('../input/items.csv', dtype={'item_nbr': np.uint32, 'class': np.uint16, 'perishable': np.bool}) stores = pd.read_csv('../input/stores.csv') oil = pd.read_csv('../input/oil.csv', parse_dates=['date'], dtype={'dcoilwtico': np.float16}) holidays = pd.read_csv('../input/holidays_events.csv', parse_dates=['date']) train = pd.read_csv('../input/train.csv', nrows=6000000, parse_dates=['date'], dtype={'id': np.uint32, 'store_nbr': np.uint8, 'item_nbr': np.uint32, 'onpromotion': np.bool, 'unit_sales': np.float32}) items.groupby(['family']).size().plot(kind='bar', stacked=True, figsize=(13, 6), grid=False)
code
2008393/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import math import numpy as np import pandas as pd sales = pd.read_csv('../input/transactions.csv', parse_dates=['date'], dtype={'store_nbr': np.uint8, 'transactions': np.uint16}) items = pd.read_csv('../input/items.csv', dtype={'item_nbr': np.uint32, 'class': np.uint16, 'perishable': np.bool}) stores = pd.read_csv('../input/stores.csv') oil = pd.read_csv('../input/oil.csv', parse_dates=['date'], dtype={'dcoilwtico': np.float16}) holidays = pd.read_csv('../input/holidays_events.csv', parse_dates=['date']) train = pd.read_csv('../input/train.csv', nrows=6000000, parse_dates=['date'], dtype={'id': np.uint32, 'store_nbr': np.uint8, 'item_nbr': np.uint32, 'onpromotion': np.bool, 'unit_sales': np.float32}) train_items = train.merge(items, right_on='item_nbr', left_on='item_nbr', how='left') train_items_stores = train_items.merge(stores, right_on='store_nbr', left_on='store_nbr', how='left') train_items_stores_sales = train_items.merge(sales, right_on=['store_nbr', 'date'], left_on=['store_nbr', 'date'], how='left') def calc_percent(row): total = row.sum() percents = [] for sales in row: if math.isnan(sales): percents.append(0.0) else: percents.append(sales / total * 100) return percents train_items_stores.groupby(['type', 'family']).size().unstack().apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False)
code
2008393/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
import math import numpy as np import pandas as pd sales = pd.read_csv('../input/transactions.csv', parse_dates=['date'], dtype={'store_nbr': np.uint8, 'transactions': np.uint16}) items = pd.read_csv('../input/items.csv', dtype={'item_nbr': np.uint32, 'class': np.uint16, 'perishable': np.bool}) stores = pd.read_csv('../input/stores.csv') oil = pd.read_csv('../input/oil.csv', parse_dates=['date'], dtype={'dcoilwtico': np.float16}) holidays = pd.read_csv('../input/holidays_events.csv', parse_dates=['date']) train = pd.read_csv('../input/train.csv', nrows=6000000, parse_dates=['date'], dtype={'id': np.uint32, 'store_nbr': np.uint8, 'item_nbr': np.uint32, 'onpromotion': np.bool, 'unit_sales': np.float32}) train_items = train.merge(items, right_on='item_nbr', left_on='item_nbr', how='left') train_items_stores = train_items.merge(stores, right_on='store_nbr', left_on='store_nbr', how='left') train_items_stores_sales = train_items.merge(sales, right_on=['store_nbr', 'date'], left_on=['store_nbr', 'date'], how='left') def calc_percent(row): total = row.sum() percents = [] for sales in row: if math.isnan(sales): percents.append(0.0) else: percents.append(sales / total * 100) return percents train_items_stores.groupby(['type', 'family']).size().unstack().apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False) train_items_stores.groupby(['cluster', 'family']).size().unstack().apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False) train_items_stores.groupby(['state', 'family']).size().unstack().apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False) train_items_stores.groupby(['type', 'family']).size().unstack().drop('GROCERY I', 1).apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False) train_items_stores.groupby(['cluster', 'family']).size().unstack().drop('GROCERY I', 1).apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False)
code
2008393/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import math import numpy as np import pandas as pd sales = pd.read_csv('../input/transactions.csv', parse_dates=['date'], dtype={'store_nbr': np.uint8, 'transactions': np.uint16}) items = pd.read_csv('../input/items.csv', dtype={'item_nbr': np.uint32, 'class': np.uint16, 'perishable': np.bool}) stores = pd.read_csv('../input/stores.csv') oil = pd.read_csv('../input/oil.csv', parse_dates=['date'], dtype={'dcoilwtico': np.float16}) holidays = pd.read_csv('../input/holidays_events.csv', parse_dates=['date']) train = pd.read_csv('../input/train.csv', nrows=6000000, parse_dates=['date'], dtype={'id': np.uint32, 'store_nbr': np.uint8, 'item_nbr': np.uint32, 'onpromotion': np.bool, 'unit_sales': np.float32}) train_items = train.merge(items, right_on='item_nbr', left_on='item_nbr', how='left') train_items_stores = train_items.merge(stores, right_on='store_nbr', left_on='store_nbr', how='left') train_items_stores_sales = train_items.merge(sales, right_on=['store_nbr', 'date'], left_on=['store_nbr', 'date'], how='left') def calc_percent(row): total = row.sum() percents = [] for sales in row: if math.isnan(sales): percents.append(0.0) else: percents.append(sales / total * 100) return percents train_items_stores.groupby(['type', 'family']).size().unstack().apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False) train_items_stores.groupby(['cluster', 'family']).size().unstack().apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False) train_items_stores.groupby(['state', 'family']).size().unstack().apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False) train_items_stores.groupby(['type', 'family']).size().unstack().drop('GROCERY I', 1).apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False) train_items_stores.groupby(['cluster', 'family']).size().unstack().drop('GROCERY I', 1).apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False) train_items_stores.groupby(['state', 'family']).size().unstack().drop('GROCERY I', 1).apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False)
code
2008393/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
import math import numpy as np import pandas as pd sales = pd.read_csv('../input/transactions.csv', parse_dates=['date'], dtype={'store_nbr': np.uint8, 'transactions': np.uint16}) items = pd.read_csv('../input/items.csv', dtype={'item_nbr': np.uint32, 'class': np.uint16, 'perishable': np.bool}) stores = pd.read_csv('../input/stores.csv') oil = pd.read_csv('../input/oil.csv', parse_dates=['date'], dtype={'dcoilwtico': np.float16}) holidays = pd.read_csv('../input/holidays_events.csv', parse_dates=['date']) train = pd.read_csv('../input/train.csv', nrows=6000000, parse_dates=['date'], dtype={'id': np.uint32, 'store_nbr': np.uint8, 'item_nbr': np.uint32, 'onpromotion': np.bool, 'unit_sales': np.float32}) train_items = train.merge(items, right_on='item_nbr', left_on='item_nbr', how='left') train_items_stores = train_items.merge(stores, right_on='store_nbr', left_on='store_nbr', how='left') train_items_stores_sales = train_items.merge(sales, right_on=['store_nbr', 'date'], left_on=['store_nbr', 'date'], how='left') def calc_percent(row): total = row.sum() percents = [] for sales in row: if math.isnan(sales): percents.append(0.0) else: percents.append(sales / total * 100) return percents train_items_stores.groupby(['type', 'family']).size().unstack().apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False) train_items_stores.groupby(['cluster', 'family']).size().unstack().apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False) train_items_stores.groupby(['state', 'family']).size().unstack().apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False) train_items_stores.groupby(['type', 'family']).size().unstack().drop('GROCERY I', 1).apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False)
code
2008393/cell_10
[ "text_plain_output_1.png", "image_output_1.png" ]
import math import numpy as np import pandas as pd sales = pd.read_csv('../input/transactions.csv', parse_dates=['date'], dtype={'store_nbr': np.uint8, 'transactions': np.uint16}) items = pd.read_csv('../input/items.csv', dtype={'item_nbr': np.uint32, 'class': np.uint16, 'perishable': np.bool}) stores = pd.read_csv('../input/stores.csv') oil = pd.read_csv('../input/oil.csv', parse_dates=['date'], dtype={'dcoilwtico': np.float16}) holidays = pd.read_csv('../input/holidays_events.csv', parse_dates=['date']) train = pd.read_csv('../input/train.csv', nrows=6000000, parse_dates=['date'], dtype={'id': np.uint32, 'store_nbr': np.uint8, 'item_nbr': np.uint32, 'onpromotion': np.bool, 'unit_sales': np.float32}) train_items = train.merge(items, right_on='item_nbr', left_on='item_nbr', how='left') train_items_stores = train_items.merge(stores, right_on='store_nbr', left_on='store_nbr', how='left') train_items_stores_sales = train_items.merge(sales, right_on=['store_nbr', 'date'], left_on=['store_nbr', 'date'], how='left') def calc_percent(row): total = row.sum() percents = [] for sales in row: if math.isnan(sales): percents.append(0.0) else: percents.append(sales / total * 100) return percents train_items_stores.groupby(['type', 'family']).size().unstack().apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False) train_items_stores.groupby(['cluster', 'family']).size().unstack().apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False)
code
2008393/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
import math import numpy as np import pandas as pd sales = pd.read_csv('../input/transactions.csv', parse_dates=['date'], dtype={'store_nbr': np.uint8, 'transactions': np.uint16}) items = pd.read_csv('../input/items.csv', dtype={'item_nbr': np.uint32, 'class': np.uint16, 'perishable': np.bool}) stores = pd.read_csv('../input/stores.csv') oil = pd.read_csv('../input/oil.csv', parse_dates=['date'], dtype={'dcoilwtico': np.float16}) holidays = pd.read_csv('../input/holidays_events.csv', parse_dates=['date']) train = pd.read_csv('../input/train.csv', nrows=6000000, parse_dates=['date'], dtype={'id': np.uint32, 'store_nbr': np.uint8, 'item_nbr': np.uint32, 'onpromotion': np.bool, 'unit_sales': np.float32}) train_items = train.merge(items, right_on='item_nbr', left_on='item_nbr', how='left') train_items_stores = train_items.merge(stores, right_on='store_nbr', left_on='store_nbr', how='left') train_items_stores_sales = train_items.merge(sales, right_on=['store_nbr', 'date'], left_on=['store_nbr', 'date'], how='left') def calc_percent(row): total = row.sum() percents = [] for sales in row: if math.isnan(sales): percents.append(0.0) else: percents.append(sales / total * 100) return percents train_items_stores.groupby(['type', 'family']).size().unstack().apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False) train_items_stores.groupby(['cluster', 'family']).size().unstack().apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False) train_items_stores.groupby(['state', 'family']).size().unstack().apply(calc_percent, axis=1).plot(kind='bar', stacked=True, colormap='tab20c', figsize=(12, 10), grid=False)
code
128010282/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.impute import SimpleImputer import matplotlib.pyplot as plt import pandas as pd import seaborn as sns Data = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv') Data.shape Data.columns Data.isnull().sum().sum() Data.corr() feature_name = list(Data.columns[:-1]) Data.drop('NOX', axis=1, inplace=True) Data_copy = SimpleImputer().fit_transform(Data) Data = pd.DataFrame(Data_copy, columns=Data.columns) Data.isnull().sum().sum()
code
128010282/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns Data = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv') Data.shape Data.columns Data.isnull().sum().sum() Data.corr() sns.lineplot(x=Data['NOX'], y=Data['MEDV'], c='r')
code
128010282/cell_9
[ "text_html_output_1.png" ]
import pandas as pd Data = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv') Data.shape Data.columns Data.isnull().sum().sum()
code