path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
128010282/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd Data = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv') Data.head()
code
128010282/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd Data = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv') Data.shape Data.columns
code
128010282/cell_2
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split, GridSearchCV, cross_validate, cross_val_score, cross_val_predict from sklearn.linear_model import LinearRegression, Ridge from sklearn.svm import SVR from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error, accuracy_score
code
128010282/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd Data = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv') Data.shape Data.columns Data.isnull().sum().sum() Data.corr()
code
128010282/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd Data = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv') Data.shape Data.columns Data.describe()
code
128010282/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns Data = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv') Data.shape Data.columns Data.isnull().sum().sum() Data.corr() sns.barplot(Data)
code
128010282/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns Data = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv') Data.shape Data.columns Data.isnull().sum().sum() Data.corr() feature_name = list(Data.columns[:-1]) plt.figure(figsize=(30, 30)) for i in range(len(feature_name)): plt.subplot(7, 2, i + 1) sns.barplot(x=Data[feature_name[i]], y=Data['MEDV'])
code
128010282/cell_14
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns Data = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv') Data.shape Data.columns Data.isnull().sum().sum() Data.corr() Data.hist(figsize=(30, 30))
code
128010282/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.impute import SimpleImputer import matplotlib.pyplot as plt import pandas as pd import seaborn as sns Data = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv') Data.shape Data.columns Data.isnull().sum().sum() Data.corr() feature_name = list(Data.columns[:-1]) Data.drop('NOX', axis=1, inplace=True) Data_copy = SimpleImputer().fit_transform(Data) Data = pd.DataFrame(Data_copy, columns=Data.columns) Data.isnull().sum().sum() Data.shape
code
128010282/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd Data = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv') Data.shape Data.columns Data.isnull().sum().sum() plt.figure(figsize=(5, 5)) plt.pie([Data.shape[0], Data.isnull().sum().sum()], labels=['Not_Null', 'Null'], autopct='%1.2f%%')
code
128010282/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns Data = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv') Data.shape Data.columns Data.isnull().sum().sum() Data.corr() sns.heatmap(Data.corr(), cmap='hot', annot=True)
code
128010282/cell_5
[ "image_output_1.png" ]
import pandas as pd Data = pd.read_csv('/kaggle/input/boston-housing-dataset/HousingData.csv') Data.shape
code
34151195/cell_9
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt df = pd.read_csv('/kaggle/input/pima-indians-diabetes-database/diabetes.csv') data = df.iloc[:, 0:8] plt.tight_layout() colnames = data.columns.values plt.tight_layout() data.plot(kind='box', subplots=True, layout=(3, 3), sharex=False, figsize=(12, 10)) plt.tight_layout() plt.show()
code
34151195/cell_6
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt df = pd.read_csv('/kaggle/input/pima-indians-diabetes-database/diabetes.csv') data = df.iloc[:, 0:8] data.hist(figsize=(12, 10)) plt.tight_layout() plt.show()
code
34151195/cell_11
[ "text_html_output_1.png" ]
from pandas.plotting import scatter_matrix import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt df = pd.read_csv('/kaggle/input/pima-indians-diabetes-database/diabetes.csv') data = df.iloc[:, 0:8] plt.tight_layout() colnames = data.columns.values plt.tight_layout() plt.tight_layout() #Correlation Matrix Plot names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] correlations = data.corr() # plot correlation matrix fig = plt.figure(figsize=(16,12)) ax = fig.add_subplot(111) cax = ax.matshow(correlations, vmin=-1, vmax=1) fig.colorbar(cax) ticks = np.arange(0,9,1) ax.set_xticks(ticks) ax.set_yticks(ticks) ax.set_xticklabels(names) ax.set_yticklabels(names) plt.show() from pandas.plotting import scatter_matrix scatter_matrix(data, figsize=(16, 16)) plt.show()
code
34151195/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34151195/cell_8
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt df = pd.read_csv('/kaggle/input/pima-indians-diabetes-database/diabetes.csv') data = df.iloc[:, 0:8] plt.tight_layout() colnames = data.columns.values data.plot(kind='density', figsize=(12, 10), subplots=True, layout=(3, 3), sharex=False) plt.tight_layout() plt.show()
code
34151195/cell_3
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt df = pd.read_csv('/kaggle/input/pima-indians-diabetes-database/diabetes.csv') df.head()
code
34151195/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt df = pd.read_csv('/kaggle/input/pima-indians-diabetes-database/diabetes.csv') data = df.iloc[:, 0:8] plt.tight_layout() colnames = data.columns.values plt.tight_layout() plt.tight_layout() names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] correlations = data.corr() fig = plt.figure(figsize=(16, 12)) ax = fig.add_subplot(111) cax = ax.matshow(correlations, vmin=-1, vmax=1) fig.colorbar(cax) ticks = np.arange(0, 9, 1) ax.set_xticks(ticks) ax.set_yticks(ticks) ax.set_xticklabels(names) ax.set_yticklabels(names) plt.show()
code
34151195/cell_5
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt df = pd.read_csv('/kaggle/input/pima-indians-diabetes-database/diabetes.csv') data = df.iloc[:, 0:8] data.head()
code
128043001/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/classification-problem-uni/data_inlf_train.csv', encoding='gbk') train.head()
code
128043001/cell_7
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler import pandas as pd train = pd.read_csv('/kaggle/input/classification-problem-uni/data_inlf_train.csv', encoding='gbk') y = train['inlf'].values train.drop(['inlf'], axis=1, inplace=True) x = train.values scaler = StandardScaler() x = scaler.fit_transform(x) model = LogisticRegression(max_iter=10000) model.fit(x, y)
code
128043001/cell_8
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.preprocessing import StandardScaler import pandas as pd train = pd.read_csv('/kaggle/input/classification-problem-uni/data_inlf_train.csv', encoding='gbk') y = train['inlf'].values train.drop(['inlf'], axis=1, inplace=True) x = train.values scaler = StandardScaler() x = scaler.fit_transform(x) model = LogisticRegression(max_iter=10000) model.fit(x, y) y_pred_class = model.predict(x) accuracy_score(y, y_pred_class)
code
128043001/cell_12
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.preprocessing import StandardScaler import pandas as pd train = pd.read_csv('/kaggle/input/classification-problem-uni/data_inlf_train.csv', encoding='gbk') y = train['inlf'].values train.drop(['inlf'], axis=1, inplace=True) x = train.values scaler = StandardScaler() x = scaler.fit_transform(x) model = LogisticRegression(max_iter=10000) model.fit(x, y) y_pred_class = model.predict(x) accuracy_score(y, y_pred_class) test = pd.read_csv('/kaggle/input/classification-problem-uni/data_inlf_test.csv', encoding='gbk') x = test.values x = scaler.transform(x) y_pred_class = model.predict(x) y_pred_class
code
18153363/cell_25
[ "text_plain_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot from sklearn import metrics from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier from sklearn.model_selection import GridSearchCV from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC, LinearSVC, NuSVC from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt # Matlab-style plotting import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import seaborn as sns color = sns.color_palette() sns.set_style('darkgrid') import warnings def ignore_warn(*args, **kwargs): pass warnings.warn = ignore_warn from scipy import stats from scipy.stats import norm, skew pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) import os train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train_ID = train['id'] test_ID = test['id'] train.drop('id', axis=1, inplace=True) test.drop('id', axis=1, inplace=True) corrmat = train.corr() missing = train.isnull().sum() train_dummy = pd.get_dummies(pd.read_csv('../input/train.csv')) ghost_num = {'type': {'Ghoul': 1, 'Goblin': 2, 'Ghost': 3}} train.replace(ghost_num, inplace=True) ntrain = train.shape[0] ntest = test.shape[0] y = train.type.values all_data = pd.concat((train, test)).reset_index(drop=True) all_data.drop(['type'], axis=1, inplace=True) all_data.drop(['color'], axis=1, inplace=True) all_data_simple = pd.DataFrame() all_data_simple['bone_hair'] = all_data['bone_hair'] all_data_simple['rotting_flesh'] = all_data['rotting_flesh'] all_data_simple['bone_soul'] = all_data['bone_soul'] all_data_simple['hair_soul'] = all_data['hair_soul'] from sklearn.metrics import accuracy_score, log_loss from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC, LinearSVC, NuSVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis classifiers = [KNeighborsClassifier(3), SVC(kernel='rbf', C=0.025, probability=True), NuSVC(probability=True), DecisionTreeClassifier(), RandomForestClassifier(), AdaBoostClassifier(), GradientBoostingClassifier(), GaussianNB(), LinearDiscriminantAnalysis(), QuadraticDiscriminantAnalysis()] log_cols = ['Classifier', 'Accuracy', 'Log Loss'] log = pd.DataFrame(columns=log_cols) for clf in classifiers: clf.fit(train_X, train_y) name = clf.__class__.__name__ score = clf.score(val_X, val_y) from sklearn.model_selection import GridSearchCV from sklearn import metrics accuracy_scorer = metrics.make_scorer(metrics.accuracy_score) params = {'n_estimators': [10, 20, 50, 100], 'criterion': ['gini', 'entropy'], 'max_depth': [None, 5, 10, 25, 50]} rf = RandomForestClassifier(random_state=0) clf = GridSearchCV(rf, param_grid=params, scoring=accuracy_scorer, cv=5, n_jobs=-1) clf.fit(train_X, train_y) params = {'n_estimators': [10, 25, 50, 100], 'max_samples': [1, 3, 5, 10]} bag = BaggingClassifier(random_state=0) clf = GridSearchCV(bag, param_grid=params, scoring=accuracy_scorer, cv=5, n_jobs=-1) clf.fit(train_X, train_y) print('Best score: {}'.format(clf.best_score_)) print('Best parameters: {}'.format(clf.best_params_))
code
18153363/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import seaborn as sns color = sns.color_palette() sns.set_style('darkgrid') import warnings def ignore_warn(*args, **kwargs): pass warnings.warn = ignore_warn from scipy import stats from scipy.stats import norm, skew pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) import os train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') print('The train data size before dropping Id feature is : {} '.format(train.shape)) print('The test data size before dropping Id feature is : {} '.format(test.shape)) train_ID = train['id'] test_ID = test['id'] train.drop('id', axis=1, inplace=True) test.drop('id', axis=1, inplace=True) print('\nThe train data size after dropping Id feature is : {} '.format(train.shape)) print('The test data size after dropping Id feature is : {} '.format(test.shape))
code
18153363/cell_23
[ "text_html_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot from sklearn import metrics from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier from sklearn.model_selection import GridSearchCV from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC, LinearSVC, NuSVC from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt # Matlab-style plotting import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import seaborn as sns color = sns.color_palette() sns.set_style('darkgrid') import warnings def ignore_warn(*args, **kwargs): pass warnings.warn = ignore_warn from scipy import stats from scipy.stats import norm, skew pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) import os train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train_ID = train['id'] test_ID = test['id'] train.drop('id', axis=1, inplace=True) test.drop('id', axis=1, inplace=True) corrmat = train.corr() missing = train.isnull().sum() train_dummy = pd.get_dummies(pd.read_csv('../input/train.csv')) ghost_num = {'type': {'Ghoul': 1, 'Goblin': 2, 'Ghost': 3}} train.replace(ghost_num, inplace=True) ntrain = train.shape[0] ntest = test.shape[0] y = train.type.values all_data = pd.concat((train, test)).reset_index(drop=True) all_data.drop(['type'], axis=1, inplace=True) all_data.drop(['color'], axis=1, inplace=True) all_data_simple = pd.DataFrame() all_data_simple['bone_hair'] = all_data['bone_hair'] all_data_simple['rotting_flesh'] = all_data['rotting_flesh'] all_data_simple['bone_soul'] = all_data['bone_soul'] all_data_simple['hair_soul'] = all_data['hair_soul'] from sklearn.metrics import accuracy_score, log_loss from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC, LinearSVC, NuSVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis classifiers = [KNeighborsClassifier(3), SVC(kernel='rbf', C=0.025, probability=True), NuSVC(probability=True), DecisionTreeClassifier(), RandomForestClassifier(), AdaBoostClassifier(), GradientBoostingClassifier(), GaussianNB(), LinearDiscriminantAnalysis(), QuadraticDiscriminantAnalysis()] log_cols = ['Classifier', 'Accuracy', 'Log Loss'] log = pd.DataFrame(columns=log_cols) for clf in classifiers: clf.fit(train_X, train_y) name = clf.__class__.__name__ score = clf.score(val_X, val_y) from sklearn.model_selection import GridSearchCV from sklearn import metrics accuracy_scorer = metrics.make_scorer(metrics.accuracy_score) params = {'n_estimators': [10, 20, 50, 100], 'criterion': ['gini', 'entropy'], 'max_depth': [None, 5, 10, 25, 50]} rf = RandomForestClassifier(random_state=0) clf = GridSearchCV(rf, param_grid=params, scoring=accuracy_scorer, cv=5, n_jobs=-1) clf.fit(train_X, train_y) print('Best score: {}'.format(clf.best_score_)) print('Best parameters: {}'.format(clf.best_params_))
code
18153363/cell_33
[ "text_plain_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier from sklearn.ensemble import VotingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC, LinearSVC, NuSVC from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt # Matlab-style plotting import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import shap import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import seaborn as sns color = sns.color_palette() sns.set_style('darkgrid') import warnings def ignore_warn(*args, **kwargs): pass warnings.warn = ignore_warn from scipy import stats from scipy.stats import norm, skew pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) import os train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train_ID = train['id'] test_ID = test['id'] train.drop('id', axis=1, inplace=True) test.drop('id', axis=1, inplace=True) corrmat = train.corr() missing = train.isnull().sum() train_dummy = pd.get_dummies(pd.read_csv('../input/train.csv')) ghost_num = {'type': {'Ghoul': 1, 'Goblin': 2, 'Ghost': 3}} train.replace(ghost_num, inplace=True) ntrain = train.shape[0] ntest = test.shape[0] y = train.type.values all_data = pd.concat((train, test)).reset_index(drop=True) all_data.drop(['type'], axis=1, inplace=True) all_data.drop(['color'], axis=1, inplace=True) all_data_simple = pd.DataFrame() all_data_simple['bone_hair'] = all_data['bone_hair'] all_data_simple['rotting_flesh'] = all_data['rotting_flesh'] all_data_simple['bone_soul'] = all_data['bone_soul'] all_data_simple['hair_soul'] = all_data['hair_soul'] from sklearn.metrics import accuracy_score, log_loss from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC, LinearSVC, NuSVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis classifiers = [KNeighborsClassifier(3), SVC(kernel='rbf', C=0.025, probability=True), NuSVC(probability=True), DecisionTreeClassifier(), RandomForestClassifier(), AdaBoostClassifier(), GradientBoostingClassifier(), GaussianNB(), LinearDiscriminantAnalysis(), QuadraticDiscriminantAnalysis()] log_cols = ['Classifier', 'Accuracy', 'Log Loss'] log = pd.DataFrame(columns=log_cols) for clf in classifiers: clf.fit(train_X, train_y) name = clf.__class__.__name__ score = clf.score(val_X, val_y) rf_best = RandomForestClassifier(criterion='entropy', max_depth=5, n_estimators=50) bag_best = BaggingClassifier(max_samples=5, n_estimators=100, random_state=0) import shap explainer = shap.TreeExplainer(classifiers[1], train_X) shap_values = explainer.shap_values(train_X) shap.initjs() top_cols = train_X.columns[np.argsort(shap_values.std(0))[::-1]][:10] voting_clf = VotingClassifier(estimators=[('rf', rf_best), ('bag', bag_best)], voting='hard') voting_clf.fit(train_X, train_y) ghost_cat = {'type': {1: 'Ghoul', 2: 'Goblin', 3: 'Ghost'}} test = all_data_simple[ntrain:] sub = pd.DataFrame() sub['id'] = test_ID sub['type'] = voting_clf.predict(test) sub.replace(ghost_cat, inplace=True) sub.to_csv('subvoting_clf.csv', index=False) sub.head()
code
18153363/cell_29
[ "text_plain_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier from sklearn.ensemble import VotingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC, LinearSVC, NuSVC from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt # Matlab-style plotting import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import shap import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import seaborn as sns color = sns.color_palette() sns.set_style('darkgrid') import warnings def ignore_warn(*args, **kwargs): pass warnings.warn = ignore_warn from scipy import stats from scipy.stats import norm, skew pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) import os train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train_ID = train['id'] test_ID = test['id'] train.drop('id', axis=1, inplace=True) test.drop('id', axis=1, inplace=True) corrmat = train.corr() missing = train.isnull().sum() train_dummy = pd.get_dummies(pd.read_csv('../input/train.csv')) ghost_num = {'type': {'Ghoul': 1, 'Goblin': 2, 'Ghost': 3}} train.replace(ghost_num, inplace=True) ntrain = train.shape[0] ntest = test.shape[0] y = train.type.values all_data = pd.concat((train, test)).reset_index(drop=True) all_data.drop(['type'], axis=1, inplace=True) all_data.drop(['color'], axis=1, inplace=True) all_data_simple = pd.DataFrame() all_data_simple['bone_hair'] = all_data['bone_hair'] all_data_simple['rotting_flesh'] = all_data['rotting_flesh'] all_data_simple['bone_soul'] = all_data['bone_soul'] all_data_simple['hair_soul'] = all_data['hair_soul'] from sklearn.metrics import accuracy_score, log_loss from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC, LinearSVC, NuSVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis classifiers = [KNeighborsClassifier(3), SVC(kernel='rbf', C=0.025, probability=True), NuSVC(probability=True), DecisionTreeClassifier(), RandomForestClassifier(), AdaBoostClassifier(), GradientBoostingClassifier(), GaussianNB(), LinearDiscriminantAnalysis(), QuadraticDiscriminantAnalysis()] log_cols = ['Classifier', 'Accuracy', 'Log Loss'] log = pd.DataFrame(columns=log_cols) for clf in classifiers: clf.fit(train_X, train_y) name = clf.__class__.__name__ score = clf.score(val_X, val_y) rf_best = RandomForestClassifier(criterion='entropy', max_depth=5, n_estimators=50) bag_best = BaggingClassifier(max_samples=5, n_estimators=100, random_state=0) import shap explainer = shap.TreeExplainer(classifiers[1], train_X) shap_values = explainer.shap_values(train_X) shap.initjs() top_cols = train_X.columns[np.argsort(shap_values.std(0))[::-1]][:10] voting_clf = VotingClassifier(estimators=[('rf', rf_best), ('bag', bag_best)], voting='hard') voting_clf.fit(train_X, train_y) print('The accuracy for DecisionTree and Random Forest is:', voting_clf.score(val_X, val_y))
code
18153363/cell_11
[ "text_html_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot import matplotlib.pyplot as plt # Matlab-style plotting import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import seaborn as sns color = sns.color_palette() sns.set_style('darkgrid') import warnings def ignore_warn(*args, **kwargs): pass warnings.warn = ignore_warn from scipy import stats from scipy.stats import norm, skew pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) import os train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train_ID = train['id'] test_ID = test['id'] train.drop('id', axis=1, inplace=True) test.drop('id', axis=1, inplace=True) corrmat = train.corr() missing = train.isnull().sum() ghost_num = {'type': {'Ghoul': 1, 'Goblin': 2, 'Ghost': 3}} train.replace(ghost_num, inplace=True) train.head()
code
18153363/cell_19
[ "text_html_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot import matplotlib.pyplot as plt # Matlab-style plotting import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import seaborn as sns color = sns.color_palette() sns.set_style('darkgrid') import warnings def ignore_warn(*args, **kwargs): pass warnings.warn = ignore_warn from scipy import stats from scipy.stats import norm, skew pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) import os train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train_ID = train['id'] test_ID = test['id'] train.drop('id', axis=1, inplace=True) test.drop('id', axis=1, inplace=True) corrmat = train.corr() missing = train.isnull().sum() train_dummy = pd.get_dummies(pd.read_csv('../input/train.csv')) ghost_num = {'type': {'Ghoul': 1, 'Goblin': 2, 'Ghost': 3}} train.replace(ghost_num, inplace=True) ntrain = train.shape[0] ntest = test.shape[0] y = train.type.values all_data = pd.concat((train, test)).reset_index(drop=True) all_data.drop(['type'], axis=1, inplace=True) train[train['bone_length'] > 0.8]
code
18153363/cell_1
[ "text_plain_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import seaborn as sns color = sns.color_palette() sns.set_style('darkgrid') import warnings def ignore_warn(*args, **kwargs): pass warnings.warn = ignore_warn from scipy import stats from scipy.stats import norm, skew pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) import os print(os.listdir('../input'))
code
18153363/cell_7
[ "text_plain_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import seaborn as sns color = sns.color_palette() sns.set_style('darkgrid') import warnings def ignore_warn(*args, **kwargs): pass warnings.warn = ignore_warn from scipy import stats from scipy.stats import norm, skew pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) import os train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train_dummy = pd.get_dummies(pd.read_csv('../input/train.csv')) train_dummy.head()
code
18153363/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot import matplotlib.pyplot as plt # Matlab-style plotting import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import seaborn as sns color = sns.color_palette() sns.set_style('darkgrid') import warnings def ignore_warn(*args, **kwargs): pass warnings.warn = ignore_warn from scipy import stats from scipy.stats import norm, skew pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) import os train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train_ID = train['id'] test_ID = test['id'] train.drop('id', axis=1, inplace=True) test.drop('id', axis=1, inplace=True) corrmat = train.corr() missing = train.isnull().sum() train_dummy = pd.get_dummies(pd.read_csv('../input/train.csv')) ghost_num = {'type': {'Ghoul': 1, 'Goblin': 2, 'Ghost': 3}} train.replace(ghost_num, inplace=True) ntrain = train.shape[0] ntest = test.shape[0] y = train.type.values all_data = pd.concat((train, test)).reset_index(drop=True) all_data.drop(['type'], axis=1, inplace=True) all_data.drop(['color'], axis=1, inplace=True) all_data_simple = pd.DataFrame() all_data_simple['bone_hair'] = all_data['bone_hair'] all_data_simple['rotting_flesh'] = all_data['rotting_flesh'] all_data_simple['bone_soul'] = all_data['bone_soul'] all_data_simple['hair_soul'] = all_data['hair_soul'] all_data_simple.head()
code
18153363/cell_28
[ "text_html_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier from sklearn.ensemble import VotingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC, LinearSVC, NuSVC from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt # Matlab-style plotting import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import shap import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import seaborn as sns color = sns.color_palette() sns.set_style('darkgrid') import warnings def ignore_warn(*args, **kwargs): pass warnings.warn = ignore_warn from scipy import stats from scipy.stats import norm, skew pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) import os train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train_ID = train['id'] test_ID = test['id'] train.drop('id', axis=1, inplace=True) test.drop('id', axis=1, inplace=True) corrmat = train.corr() missing = train.isnull().sum() train_dummy = pd.get_dummies(pd.read_csv('../input/train.csv')) ghost_num = {'type': {'Ghoul': 1, 'Goblin': 2, 'Ghost': 3}} train.replace(ghost_num, inplace=True) ntrain = train.shape[0] ntest = test.shape[0] y = train.type.values all_data = pd.concat((train, test)).reset_index(drop=True) all_data.drop(['type'], axis=1, inplace=True) all_data.drop(['color'], axis=1, inplace=True) all_data_simple = pd.DataFrame() all_data_simple['bone_hair'] = all_data['bone_hair'] all_data_simple['rotting_flesh'] = all_data['rotting_flesh'] all_data_simple['bone_soul'] = all_data['bone_soul'] all_data_simple['hair_soul'] = all_data['hair_soul'] from sklearn.metrics import accuracy_score, log_loss from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC, LinearSVC, NuSVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis classifiers = [KNeighborsClassifier(3), SVC(kernel='rbf', C=0.025, probability=True), NuSVC(probability=True), DecisionTreeClassifier(), RandomForestClassifier(), AdaBoostClassifier(), GradientBoostingClassifier(), GaussianNB(), LinearDiscriminantAnalysis(), QuadraticDiscriminantAnalysis()] log_cols = ['Classifier', 'Accuracy', 'Log Loss'] log = pd.DataFrame(columns=log_cols) for clf in classifiers: clf.fit(train_X, train_y) name = clf.__class__.__name__ score = clf.score(val_X, val_y) import shap explainer = shap.TreeExplainer(classifiers[1], train_X) shap_values = explainer.shap_values(train_X) shap.initjs() top_cols = train_X.columns[np.argsort(shap_values.std(0))[::-1]][:10] from sklearn.ensemble import VotingClassifier ensemble = VotingClassifier(estimators=[('4', classifiers[4]), ('3', classifiers[3]), ('5', classifiers[5])], voting='soft', weights=[1, 1, 1]).fit(train_X, train_y) print('The accuracy for DecisionTree and Random Forest is:', ensemble.score(val_X, val_y))
code
18153363/cell_8
[ "text_html_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import seaborn as sns color = sns.color_palette() sns.set_style('darkgrid') import warnings def ignore_warn(*args, **kwargs): pass warnings.warn = ignore_warn from scipy import stats from scipy.stats import norm, skew pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) import os train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train_dummy = pd.get_dummies(pd.read_csv('../input/train.csv')) corrs = train_dummy.corr().abs().unstack().sort_values(kind='quicksort').reset_index() corrs = corrs[corrs['level_0'] != corrs['level_1']] corrs.tail(20)
code
18153363/cell_3
[ "text_plain_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import seaborn as sns color = sns.color_palette() sns.set_style('darkgrid') import warnings def ignore_warn(*args, **kwargs): pass warnings.warn = ignore_warn from scipy import stats from scipy.stats import norm, skew pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) import os train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.head(10)
code
18153363/cell_22
[ "text_html_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC, LinearSVC, NuSVC from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt # Matlab-style plotting import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import seaborn as sns color = sns.color_palette() sns.set_style('darkgrid') import warnings def ignore_warn(*args, **kwargs): pass warnings.warn = ignore_warn from scipy import stats from scipy.stats import norm, skew pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) import os train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train_ID = train['id'] test_ID = test['id'] train.drop('id', axis=1, inplace=True) test.drop('id', axis=1, inplace=True) corrmat = train.corr() missing = train.isnull().sum() train_dummy = pd.get_dummies(pd.read_csv('../input/train.csv')) ghost_num = {'type': {'Ghoul': 1, 'Goblin': 2, 'Ghost': 3}} train.replace(ghost_num, inplace=True) ntrain = train.shape[0] ntest = test.shape[0] y = train.type.values all_data = pd.concat((train, test)).reset_index(drop=True) all_data.drop(['type'], axis=1, inplace=True) all_data.drop(['color'], axis=1, inplace=True) all_data_simple = pd.DataFrame() all_data_simple['bone_hair'] = all_data['bone_hair'] all_data_simple['rotting_flesh'] = all_data['rotting_flesh'] all_data_simple['bone_soul'] = all_data['bone_soul'] all_data_simple['hair_soul'] = all_data['hair_soul'] from sklearn.metrics import accuracy_score, log_loss from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC, LinearSVC, NuSVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis classifiers = [KNeighborsClassifier(3), SVC(kernel='rbf', C=0.025, probability=True), NuSVC(probability=True), DecisionTreeClassifier(), RandomForestClassifier(), AdaBoostClassifier(), GradientBoostingClassifier(), GaussianNB(), LinearDiscriminantAnalysis(), QuadraticDiscriminantAnalysis()] log_cols = ['Classifier', 'Accuracy', 'Log Loss'] log = pd.DataFrame(columns=log_cols) for clf in classifiers: clf.fit(train_X, train_y) name = clf.__class__.__name__ print('=' * 30) print(name) print('****Results****') score = clf.score(val_X, val_y) print('Score: {:.4%}'.format(score)) print('=' * 30)
code
18153363/cell_27
[ "text_html_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC, LinearSVC, NuSVC from sklearn.tree import DecisionTreeClassifier import matplotlib.pyplot as plt # Matlab-style plotting import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import shap import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import seaborn as sns color = sns.color_palette() sns.set_style('darkgrid') import warnings def ignore_warn(*args, **kwargs): pass warnings.warn = ignore_warn from scipy import stats from scipy.stats import norm, skew pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) import os train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train_ID = train['id'] test_ID = test['id'] train.drop('id', axis=1, inplace=True) test.drop('id', axis=1, inplace=True) corrmat = train.corr() missing = train.isnull().sum() train_dummy = pd.get_dummies(pd.read_csv('../input/train.csv')) ghost_num = {'type': {'Ghoul': 1, 'Goblin': 2, 'Ghost': 3}} train.replace(ghost_num, inplace=True) ntrain = train.shape[0] ntest = test.shape[0] y = train.type.values all_data = pd.concat((train, test)).reset_index(drop=True) all_data.drop(['type'], axis=1, inplace=True) all_data.drop(['color'], axis=1, inplace=True) all_data_simple = pd.DataFrame() all_data_simple['bone_hair'] = all_data['bone_hair'] all_data_simple['rotting_flesh'] = all_data['rotting_flesh'] all_data_simple['bone_soul'] = all_data['bone_soul'] all_data_simple['hair_soul'] = all_data['hair_soul'] from sklearn.metrics import accuracy_score, log_loss from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC, LinearSVC, NuSVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis classifiers = [KNeighborsClassifier(3), SVC(kernel='rbf', C=0.025, probability=True), NuSVC(probability=True), DecisionTreeClassifier(), RandomForestClassifier(), AdaBoostClassifier(), GradientBoostingClassifier(), GaussianNB(), LinearDiscriminantAnalysis(), QuadraticDiscriminantAnalysis()] log_cols = ['Classifier', 'Accuracy', 'Log Loss'] log = pd.DataFrame(columns=log_cols) for clf in classifiers: clf.fit(train_X, train_y) name = clf.__class__.__name__ score = clf.score(val_X, val_y) import shap explainer = shap.TreeExplainer(classifiers[1], train_X) shap_values = explainer.shap_values(train_X) shap.summary_plot(shap_values, train_X) shap.initjs() shap.force_plot(explainer.expected_value[1], shap_values[1], train_X.iloc[:, 1:10]) top_cols = train_X.columns[np.argsort(shap_values.std(0))[::-1]][:10] for col in top_cols: shap.dependence_plot(col, shap_values, train_X)
code
18153363/cell_12
[ "text_plain_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot import matplotlib.pyplot as plt # Matlab-style plotting import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import seaborn as sns color = sns.color_palette() sns.set_style('darkgrid') import warnings def ignore_warn(*args, **kwargs): pass warnings.warn = ignore_warn from scipy import stats from scipy.stats import norm, skew pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) import os train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train_ID = train['id'] test_ID = test['id'] train.drop('id', axis=1, inplace=True) test.drop('id', axis=1, inplace=True) corrmat = train.corr() missing = train.isnull().sum() train_dummy = pd.get_dummies(pd.read_csv('../input/train.csv')) ghost_num = {'type': {'Ghoul': 1, 'Goblin': 2, 'Ghost': 3}} train.replace(ghost_num, inplace=True) ntrain = train.shape[0] ntest = test.shape[0] y = train.type.values all_data = pd.concat((train, test)).reset_index(drop=True) all_data.drop(['type'], axis=1, inplace=True) print('all_data size is : {}'.format(all_data.shape))
code
18153363/cell_5
[ "text_plain_output_1.png" ]
from plotly.offline import init_notebook_mode, iplot import matplotlib.pyplot as plt # Matlab-style plotting import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import seaborn as sns color = sns.color_palette() sns.set_style('darkgrid') import warnings def ignore_warn(*args, **kwargs): pass warnings.warn = ignore_warn from scipy import stats from scipy.stats import norm, skew pd.set_option('display.float_format', lambda x: '{:.3f}'.format(x)) import os train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train_ID = train['id'] test_ID = test['id'] train.drop('id', axis=1, inplace=True) test.drop('id', axis=1, inplace=True) corrmat = train.corr() plt.subplots(figsize=(12, 9)) sns.heatmap(corrmat, vmax=0.9, square=True, cbar=True, annot=True)
code
122245079/cell_21
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import os df = pd.read_csv(os.path.join(dirname, filename)) df.isnull().sum() df.columns def Price_Converter(string): lis = string.split() res = [eval(i) for i in lis] return np.prod(res) df.Price = df.Price.str.strip() df.Price = df.Price.str.replace(',', '') df.Price = df.Price.str.replace('Lakh', '100000') df.Price = df.Price.map(Price_Converter) df.Year = pd.to_datetime(df.Year, format='%Y') import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(5,5)) ax1 = sns.boxplot(y = df.Price, x= df['Fuel Type'],hue=df.Suspension) plt.figure(figsize=(5,5)) ax1 = sns.boxplot(y = df['kms Driven'], x= df['Fuel Type'],hue=df.Suspension) df.drop(df.loc[df['kms Driven'] >= 2000000.0].index, axis=0, inplace=True) df.drop(df.loc[df['kms Driven'] >= 600000.0].index, axis=0, inplace=True) sns.pairplot(df, hue='Fuel Type')
code
122245079/cell_13
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os df = pd.read_csv(os.path.join(dirname, filename)) df.isnull().sum() df.columns def Price_Converter(string): lis = string.split() res = [eval(i) for i in lis] return np.prod(res) df.Price = df.Price.str.strip() df.Price = df.Price.str.replace(',', '') df.Price = df.Price.str.replace('Lakh', '100000') df.Price = df.Price.map(Price_Converter) df.Year = pd.to_datetime(df.Year, format='%Y') df['Car Model'].value_counts()
code
122245079/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os df = pd.read_csv(os.path.join(dirname, filename)) df.isnull().sum()
code
122245079/cell_6
[ "image_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os df = pd.read_csv(os.path.join(dirname, filename)) df.isnull().sum() df.columns
code
122245079/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
122245079/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import os df = pd.read_csv(os.path.join(dirname, filename)) df.isnull().sum() df.columns def Price_Converter(string): lis = string.split() res = [eval(i) for i in lis] return np.prod(res) df.Price = df.Price.str.strip() df.Price = df.Price.str.replace(',', '') df.Price = df.Price.str.replace('Lakh', '100000') df.Price = df.Price.map(Price_Converter) df.Year = pd.to_datetime(df.Year, format='%Y') import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(5,5)) ax1 = sns.boxplot(y = df.Price, x= df['Fuel Type'],hue=df.Suspension) plt.figure(figsize=(5, 5)) ax1 = sns.boxplot(y=df['kms Driven'], x=df['Fuel Type'], hue=df.Suspension)
code
122245079/cell_15
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os df = pd.read_csv(os.path.join(dirname, filename)) df.isnull().sum() df.columns def Price_Converter(string): lis = string.split() res = [eval(i) for i in lis] return np.prod(res) df.Price = df.Price.str.strip() df.Price = df.Price.str.replace(',', '') df.Price = df.Price.str.replace('Lakh', '100000') df.Price = df.Price.map(Price_Converter) df.Year = pd.to_datetime(df.Year, format='%Y') df.head()
code
122245079/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import os df = pd.read_csv(os.path.join(dirname, filename)) df.isnull().sum() df.columns def Price_Converter(string): lis = string.split() res = [eval(i) for i in lis] return np.prod(res) df.Price = df.Price.str.strip() df.Price = df.Price.str.replace(',', '') df.Price = df.Price.str.replace('Lakh', '100000') df.Price = df.Price.map(Price_Converter) df.Year = pd.to_datetime(df.Year, format='%Y') import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(5, 5)) ax1 = sns.boxplot(y=df.Price, x=df['Fuel Type'], hue=df.Suspension)
code
122245079/cell_3
[ "image_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os df = pd.read_csv(os.path.join(dirname, filename)) df.head(10)
code
122245079/cell_24
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import os df = pd.read_csv(os.path.join(dirname, filename)) df.isnull().sum() df.columns def Price_Converter(string): lis = string.split() res = [eval(i) for i in lis] return np.prod(res) df.Price = df.Price.str.strip() df.Price = df.Price.str.replace(',', '') df.Price = df.Price.str.replace('Lakh', '100000') df.Price = df.Price.map(Price_Converter) df.Year = pd.to_datetime(df.Year, format='%Y') import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(5,5)) ax1 = sns.boxplot(y = df.Price, x= df['Fuel Type'],hue=df.Suspension) plt.figure(figsize=(5,5)) ax1 = sns.boxplot(y = df['kms Driven'], x= df['Fuel Type'],hue=df.Suspension) df.drop(df.loc[df['kms Driven'] >= 2000000.0].index, axis=0, inplace=True) df.drop(df.loc[df['kms Driven'] >= 600000.0].index, axis=0, inplace=True) df['Fuel Type'].unique()
code
122245079/cell_12
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os df = pd.read_csv(os.path.join(dirname, filename)) df.isnull().sum() df.columns def Price_Converter(string): lis = string.split() res = [eval(i) for i in lis] return np.prod(res) df.Price = df.Price.str.strip() df.Price = df.Price.str.replace(',', '') df.Price = df.Price.str.replace('Lakh', '100000') df.Price = df.Price.map(Price_Converter) df.Year = pd.to_datetime(df.Year, format='%Y') df.info()
code
122245079/cell_5
[ "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os df = pd.read_csv(os.path.join(dirname, filename)) df.isnull().sum() df.info()
code
106194409/cell_21
[ "image_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df2.describe(include='object').round().T df2.head()
code
106194409/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import missingno as msno import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df1.describe(include='object').round().T df2.describe(include='object').round().T round(df1.isna().sum() / df1.shape[0], 2) msno.matrix(df1) msno.heatmap(df1) plt.show()
code
106194409/cell_9
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df2.describe(include='object').round().T
code
106194409/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df1.info()
code
106194409/cell_23
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from catboost import CatBoostClassifier from lightgbm import LGBMClassifier from sklearn.impute import KNNImputer from xgboost import XGBClassifier import matplotlib.pyplot as plt import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df1.describe(include='object').round().T df2.describe(include='object').round().T round(df1.isna().sum() / df1.shape[0], 2) df1['Transported'] = df1['Transported'].astype(bool) quant_imputer = KNNImputer(n_neighbors=3) quant_features = ['RoomService', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck'] for df in [df1, df2]: df['HomePlanet'].fillna('Earth', inplace=True) df['CryoSleep'].fillna(False, inplace=True) df['Cabin'].fillna('Z/99999/Z', inplace=True) df['Destination'].fillna('TRAPPIST-1e', inplace=True) df['VIP'].fillna(False, inplace=True) df[quant_features + ['Age']] = pd.DataFrame(quant_imputer.fit_transform(df[quant_features + ['Age']])) df['TotalSpending'] = df[quant_features].sum(axis=1) df['Deck'] = df['Cabin'].apply(lambda x: x.split('/')[0]).astype(str) df['Num'] = df['Cabin'].apply(lambda x: x.split('/')[1]).astype(str) df['Side'] = df['Cabin'].apply(lambda x: x.split('/')[2]).astype(str) df['Passenger_Group'] = df['PassengerId'].apply(lambda x: x.split('_')[0]).astype(str) df['Passenger_Num'] = df['PassengerId'].apply(lambda x: x.split('_')[1]).astype(str) df['Passenger_Group'] = df['Passenger_Group'].astype('category') df['HomePlanet'] = df['HomePlanet'].astype('category') df['CryoSleep'] = df['CryoSleep'].astype(bool) df['Deck'] = df['Deck'].astype('category') df['Side'] = df['Side'].astype('category') df['Destination'] = df['Destination'].astype('category') for df in [df1, df2]: df['Group_Size'] = df['Passenger_Group'].map(lambda x: pd.concat([df1['Passenger_Group'], df2['Passenger_Group']]).value_counts()[x]) y_true_df1 = df1['Transported'] features = ['Group_Size', 'HomePlanet', 'CryoSleep', 'Destination', 'VIP', 'Deck', 'Side', 'Age', 'TotalSpending'] + quant_features x_df1 = pd.get_dummies(df1[features], drop_first=True) x_df2 = pd.get_dummies(df2[features], drop_first=True) lgbm_clf = LGBMClassifier(n_estimators=3000, random_state=0, learning_rate=0.0015, objective='binary') xgb_clf = XGBClassifier() catboost_clf = CatBoostClassifier() clf = VotingClassifier([('lgbm', lgbm_clf), ('xgm', xgb_clf), ('catboost', catboost_clf)], voting='hard') clf = clf.fit(x_df1, y_true_df1) y_predicted = clf.predict(x_df1) accuracy_score(y_true_df1, y_predicted)
code
106194409/cell_20
[ "image_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df2.describe(include='object').round().T df2.info()
code
106194409/cell_6
[ "text_html_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df1.describe()
code
106194409/cell_2
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df1.head()
code
106194409/cell_11
[ "text_html_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df1.describe(include='object').round().T print('Percentage of missing data per feature:\n') round(df1.isna().sum() / df1.shape[0], 2)
code
106194409/cell_19
[ "image_output_2.png", "image_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df1.describe(include='object').round().T round(df1.isna().sum() / df1.shape[0], 2) df1.head()
code
106194409/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df2.describe()
code
106194409/cell_18
[ "text_html_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df1.describe(include='object').round().T round(df1.isna().sum() / df1.shape[0], 2) df1.info()
code
106194409/cell_8
[ "text_html_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df1.describe(include='object').round().T
code
106194409/cell_15
[ "text_html_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df1.describe(include='object').round().T round(df1.isna().sum() / df1.shape[0], 2) print('Statistical Distribution of Passengers NOT in CryoSleep\n') round(df1[df1['CryoSleep'] == False].describe(), 3)
code
106194409/cell_16
[ "text_html_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df1.describe(include='object').round().T round(df1.isna().sum() / df1.shape[0], 2) df1[df1['CryoSleep'] == True][['Room Service', 'FoodCourt', 'ShoppingMall', 'Spa', 'VRDeck']] = 0.1
code
106194409/cell_3
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df2.head()
code
106194409/cell_14
[ "text_html_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df1.describe(include='object').round().T round(df1.isna().sum() / df1.shape[0], 2) print('Statistical Distribution of Passengers in CryoSleep\n') round(df1[df1['CryoSleep'] == True].describe(), 3)
code
106194409/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df1.describe(include='object').round().T df2.describe(include='object').round().T for df in [df1, df2]: df.isna().mean().plot(kind='barh', figsize=(10, 5)) plt.show() print('')
code
106194409/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import missingno as msno import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df1.describe(include='object').round().T df2.describe(include='object').round().T round(df1.isna().sum() / df1.shape[0], 2) msno.matrix(df1) plt.show()
code
106194409/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/spaceship-titanic/train.csv') df2 = pd.read_csv('../input/spaceship-titanic/test.csv') df2.info()
code
128047896/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd wp = pd.read_csv('https://raw.githubusercontent.com/kunal-mallick/Kaggle-Project/Working/Water%20Quality(Drinking%20Water%20Potability)/src/main/resources/water_potability.csv') wp wp_nrow = wp.shape[0] def lost_record(): wp_nrow_now = wp.shape[0] lost = wp_nrow - wp_nrow_now lost = lost / wp_nrow * 100 lost = round(lost, 2) return def missing_percentage(wp): m = wp.isna().sum() total = int(wp.shape[0]) for i in range(len(wp.columns)): percentage = round(m[i] / total * 100) wp.fillna(value={'ph': wp['ph'].median(), 'Sulfate': wp['Sulfate'].median(), 'Trihalomethanes': wp['Trihalomethanes'].median()}, inplace=True) missing_percentage(wp)
code
128047896/cell_13
[ "text_html_output_1.png" ]
import pandas as pd wp = pd.read_csv('https://raw.githubusercontent.com/kunal-mallick/Kaggle-Project/Working/Water%20Quality(Drinking%20Water%20Potability)/src/main/resources/water_potability.csv') wp wp_nrow = wp.shape[0] def lost_record(): wp_nrow_now = wp.shape[0] lost = wp_nrow - wp_nrow_now lost = lost / wp_nrow * 100 lost = round(lost, 2) return wp.info()
code
128047896/cell_30
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns wp = pd.read_csv('https://raw.githubusercontent.com/kunal-mallick/Kaggle-Project/Working/Water%20Quality(Drinking%20Water%20Potability)/src/main/resources/water_potability.csv') wp wp_nrow = wp.shape[0] def lost_record(): wp_nrow_now = wp.shape[0] lost = wp_nrow - wp_nrow_now lost = lost / wp_nrow * 100 lost = round(lost, 2) return def missing_percentage(wp): m = wp.isna().sum() total = int(wp.shape[0]) for i in range(len(wp.columns)): percentage = round(m[i] / total * 100) wp.fillna(value={'ph': wp['ph'].median(), 'Sulfate': wp['Sulfate'].median(), 'Trihalomethanes': wp['Trihalomethanes'].median()}, inplace=True) wp[wp.duplicated()] fig, ax = plt.subplots(3, 3, figsize=(15, 8)) plt.setp(ax[0, 0], title='PH') sns.boxplot(wp['ph'], orient='h', ax=ax[0, 0], color='#ffadad') plt.setp(ax[0, 1], title='Hardness') sns.boxplot(wp['Hardness'], orient='h', ax=ax[0, 1], color='#ffadad') plt.setp(ax[0, 2], title='Solids') sns.boxplot(wp['Solids'], orient='h', ax=ax[0, 2], color='#ffadad') plt.setp(ax[1, 0], title='Chloramines') sns.boxplot(wp['Chloramines'], orient='h', ax=ax[1, 0], color='#ffadad') plt.setp(ax[1, 1], title='Sulfate') sns.boxplot(wp['Sulfate'], orient='h', ax=ax[1, 1], color='#ffd6a5') plt.setp(ax[1, 2], title='Conductivity') sns.boxplot(wp['Conductivity'], orient='h', ax=ax[1, 2], color='#ffd6a5') plt.setp(ax[2, 0], title='Organic_carbon') sns.boxplot(wp['Organic_carbon'], orient='h', ax=ax[2, 0], color='#ffadad') plt.setp(ax[2, 1], title='Trihalomethanes') sns.boxplot(wp['Trihalomethanes'], orient='h', ax=ax[2, 1], color='#ffd6a5') plt.setp(ax[2, 2], title='Turbidity') sns.boxplot(wp['Turbidity'], orient='h', ax=ax[2, 2], color='#fdffb6') plt.tight_layout()
code
128047896/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd wp = pd.read_csv('https://raw.githubusercontent.com/kunal-mallick/Kaggle-Project/Working/Water%20Quality(Drinking%20Water%20Potability)/src/main/resources/water_potability.csv') wp wp_nrow = wp.shape[0] def lost_record(): wp_nrow_now = wp.shape[0] lost = wp_nrow - wp_nrow_now lost = lost / wp_nrow * 100 lost = round(lost, 2) return def missing_percentage(wp): m = wp.isna().sum() total = int(wp.shape[0]) for i in range(len(wp.columns)): percentage = round(m[i] / total * 100) wp.fillna(value={'ph': wp['ph'].median(), 'Sulfate': wp['Sulfate'].median(), 'Trihalomethanes': wp['Trihalomethanes'].median()}, inplace=True) wp[wp.duplicated()]
code
128047896/cell_11
[ "text_html_output_1.png" ]
import pandas as pd wp = pd.read_csv('https://raw.githubusercontent.com/kunal-mallick/Kaggle-Project/Working/Water%20Quality(Drinking%20Water%20Potability)/src/main/resources/water_potability.csv') wp wp_nrow = wp.shape[0] def lost_record(): wp_nrow_now = wp.shape[0] lost = wp_nrow - wp_nrow_now lost = lost / wp_nrow * 100 lost = round(lost, 2) return wp.describe()
code
128047896/cell_32
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns wp = pd.read_csv('https://raw.githubusercontent.com/kunal-mallick/Kaggle-Project/Working/Water%20Quality(Drinking%20Water%20Potability)/src/main/resources/water_potability.csv') wp wp_nrow = wp.shape[0] def lost_record(): wp_nrow_now = wp.shape[0] lost = wp_nrow - wp_nrow_now lost = lost / wp_nrow * 100 lost = round(lost, 2) return def missing_percentage(wp): m = wp.isna().sum() total = int(wp.shape[0]) for i in range(len(wp.columns)): percentage = round(m[i] / total * 100) wp.fillna(value={'ph': wp['ph'].median(), 'Sulfate': wp['Sulfate'].median(), 'Trihalomethanes': wp['Trihalomethanes'].median()}, inplace=True) wp[wp.duplicated()] fig, ax = plt.subplots(3, 3, figsize = (15,8)) plt.setp(ax[0,0], title = 'PH') sns.boxplot(wp['ph'], orient = 'h', ax = ax[0,0], color = '#ffadad') plt.setp(ax[0,1], title = 'Hardness') sns.boxplot(wp['Hardness'], orient = 'h', ax = ax[0,1], color = '#ffadad') plt.setp(ax[0,2], title = 'Solids') sns.boxplot(wp['Solids'], orient = 'h', ax = ax[0,2], color = '#ffadad') plt.setp(ax[1,0], title = 'Chloramines') sns.boxplot(wp['Chloramines'], orient = 'h', ax = ax[1,0], color = '#ffadad') plt.setp(ax[1,1], title = 'Sulfate') sns.boxplot(wp['Sulfate'], orient = 'h', ax = ax[1,1], color = '#ffd6a5') plt.setp(ax[1,2], title = 'Conductivity') sns.boxplot(wp['Conductivity'], orient = 'h', ax = ax[1,2], color = '#ffd6a5') plt.setp(ax[2,0], title = 'Organic_carbon') sns.boxplot(wp['Organic_carbon'], orient = 'h', ax = ax[2,0], color = '#ffadad') plt.setp(ax[2,1], title = 'Trihalomethanes') sns.boxplot(wp['Trihalomethanes'], orient = 'h', ax = ax[2,1], color = '#ffd6a5') plt.setp(ax[2,2], title = 'Turbidity') sns.boxplot(wp['Turbidity'], orient = 'h', ax = ax[2,2], color = '#fdffb6') plt.tight_layout() fig, ax = plt.subplots(3, 3, figsize=(15, 8)) plt.setp(ax[0, 0], title='PH') sns.distplot(wp['ph'], ax=ax[0, 0], color='#e9ff70') plt.setp(ax[0, 1], title='Hardness') sns.distplot(wp['Hardness'], ax=ax[0, 1], color='#ffd670') plt.setp(ax[0, 2], title='Solids') sns.distplot(wp['Solids'], ax=ax[0, 2], color='#ff9770') plt.setp(ax[1, 0], title='Chloramines') sns.distplot(wp['Chloramines'], ax=ax[1, 0], color='#ffd670') plt.setp(ax[1, 1], title='Sulfate') sns.distplot(wp['Sulfate'], ax=ax[1, 1], color='#ffd670') plt.setp(ax[1, 2], title='Conductivity') sns.distplot(wp['Conductivity'], ax=ax[1, 2], color='#ff9770') plt.setp(ax[2, 0], title='Organic_carbon') sns.distplot(wp['Organic_carbon'], ax=ax[2, 0], color='#ff9770') plt.setp(ax[2, 1], title='Trihalomethanes') sns.distplot(wp['Trihalomethanes'], ax=ax[2, 1], color='#ff9770') plt.setp(ax[2, 2], title='Turbidity') sns.distplot(wp['Turbidity'], ax=ax[2, 2], color='#ff9770') plt.tight_layout()
code
128047896/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd wp = pd.read_csv('https://raw.githubusercontent.com/kunal-mallick/Kaggle-Project/Working/Water%20Quality(Drinking%20Water%20Potability)/src/main/resources/water_potability.csv') wp wp_nrow = wp.shape[0] def lost_record(): wp_nrow_now = wp.shape[0] lost = wp_nrow - wp_nrow_now lost = lost / wp_nrow * 100 lost = round(lost, 2) return def missing_percentage(wp): m = wp.isna().sum() total = int(wp.shape[0]) for i in range(len(wp.columns)): percentage = round(m[i] / total * 100) missing_percentage(wp)
code
128047896/cell_24
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd wp = pd.read_csv('https://raw.githubusercontent.com/kunal-mallick/Kaggle-Project/Working/Water%20Quality(Drinking%20Water%20Potability)/src/main/resources/water_potability.csv') wp wp_nrow = wp.shape[0] def lost_record(): wp_nrow_now = wp.shape[0] lost = wp_nrow - wp_nrow_now lost = lost / wp_nrow * 100 lost = round(lost, 2) return def missing_percentage(wp): m = wp.isna().sum() total = int(wp.shape[0]) for i in range(len(wp.columns)): percentage = round(m[i] / total * 100) wp.fillna(value={'ph': wp['ph'].median(), 'Sulfate': wp['Sulfate'].median(), 'Trihalomethanes': wp['Trihalomethanes'].median()}, inplace=True) def uni(df): pass uni(wp)
code
128047896/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd wp = pd.read_csv('https://raw.githubusercontent.com/kunal-mallick/Kaggle-Project/Working/Water%20Quality(Drinking%20Water%20Potability)/src/main/resources/water_potability.csv') wp
code
328147/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.cross_validation import KFold from sklearn.metrics import log_loss from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd gatrain = pd.read_csv('../input/gender_age_train.csv') gatest = pd.read_csv('../input/gender_age_test.csv') letarget = LabelEncoder().fit(gatrain.group.values) y = letarget.transform(gatrain.group.values) n_classes = len(letarget.classes_) phone = pd.read_csv('../input/phone_brand_device_model.csv', encoding='utf-8') phone = phone.drop_duplicates('device_id', keep='first') lebrand = LabelEncoder().fit(phone.phone_brand) phone['brand'] = lebrand.transform(phone.phone_brand) m = phone.phone_brand.str.cat(phone.device_model) lemodel = LabelEncoder().fit(m) phone['model'] = lemodel.transform(m) train = gatrain.merge(phone[['device_id', 'brand', 'model']], how='left', on='device_id') class GenderAgeGroupProb(object): def __init__(self): pass def fit(self, df, by, n_smoothing, weights): self.by = by self.n_smoothing = n_smoothing self.weights = np.divide(weights, sum(weights)) self.classes_ = sorted(df['group'].unique()) self.n_classes_ = len(self.classes_) self.group_freq = df['group'].value_counts().sort_index() / df.shape[0] self.prob_by = [] for i, b in enumerate(self.by): c = df.groupby([b, 'group']).size().unstack().fillna(0) total = c.sum(axis=1) prob = c.add(self.n_smoothing[i] * self.group_freq).div(total + self.n_smoothing[i], axis=0) self.prob_by.append(prob) return self def predict_proba(self, df): pred = pd.DataFrame(np.zeros((len(df.index), self.n_classes_)), columns=self.classes_, index=df.index) pred_by = [] for i, b in enumerate(self.by): pred_by.append(df[[b]].merge(self.prob_by[i], how='left', left_on=b, right_index=True).fillna(self.group_freq)[self.classes_]) pred = pred.radd(pred_by[i].values * self.weights[i]) pred.loc[pred.iloc[:, 0].isnull(), :] = self.group_freq return pred[self.classes_].values def score(ptrain, by, n_smoothing, weights=[0.5, 0.5]): kf = KFold(ptrain.shape[0], n_folds=10, shuffle=True, random_state=0) pred = np.zeros((ptrain.shape[0], n_classes)) for itrain, itest in kf: train = ptrain.iloc[itrain, :] test = ptrain.iloc[itest, :] ytrain, ytest = (y[itrain], y[itest]) clf = GenderAgeGroupProb().fit(train, by, n_smoothing, weights) pred[itest, :] = clf.predict_proba(test) return log_loss(y, pred) test = gatest.merge(phone[['device_id', 'brand', 'model']], how='left', on='device_id') test.head(3)
code
328147/cell_6
[ "text_html_output_1.png" ]
import pandas as pd gatrain = pd.read_csv('../input/gender_age_train.csv') gatest = pd.read_csv('../input/gender_age_test.csv') phone = pd.read_csv('../input/phone_brand_device_model.csv', encoding='utf-8') phone.head(3)
code
328147/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import matplotlib.cm as cm import os from sklearn.preprocessing import LabelEncoder from sklearn.cross_validation import KFold from sklearn.metrics import log_loss
code
328147/cell_18
[ "text_html_output_1.png" ]
from sklearn.cross_validation import KFold from sklearn.metrics import log_loss from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import numpy as np import pandas as pd gatrain = pd.read_csv('../input/gender_age_train.csv') gatest = pd.read_csv('../input/gender_age_test.csv') letarget = LabelEncoder().fit(gatrain.group.values) y = letarget.transform(gatrain.group.values) n_classes = len(letarget.classes_) phone = pd.read_csv('../input/phone_brand_device_model.csv', encoding='utf-8') phone = phone.drop_duplicates('device_id', keep='first') lebrand = LabelEncoder().fit(phone.phone_brand) phone['brand'] = lebrand.transform(phone.phone_brand) m = phone.phone_brand.str.cat(phone.device_model) lemodel = LabelEncoder().fit(m) phone['model'] = lemodel.transform(m) train = gatrain.merge(phone[['device_id', 'brand', 'model']], how='left', on='device_id') class GenderAgeGroupProb(object): def __init__(self): pass def fit(self, df, by, n_smoothing, weights): self.by = by self.n_smoothing = n_smoothing self.weights = np.divide(weights, sum(weights)) self.classes_ = sorted(df['group'].unique()) self.n_classes_ = len(self.classes_) self.group_freq = df['group'].value_counts().sort_index() / df.shape[0] self.prob_by = [] for i, b in enumerate(self.by): c = df.groupby([b, 'group']).size().unstack().fillna(0) total = c.sum(axis=1) prob = c.add(self.n_smoothing[i] * self.group_freq).div(total + self.n_smoothing[i], axis=0) self.prob_by.append(prob) return self def predict_proba(self, df): pred = pd.DataFrame(np.zeros((len(df.index), self.n_classes_)), columns=self.classes_, index=df.index) pred_by = [] for i, b in enumerate(self.by): pred_by.append(df[[b]].merge(self.prob_by[i], how='left', left_on=b, right_index=True).fillna(self.group_freq)[self.classes_]) pred = pred.radd(pred_by[i].values * self.weights[i]) pred.loc[pred.iloc[:, 0].isnull(), :] = self.group_freq return pred[self.classes_].values def score(ptrain, by, n_smoothing, weights=[0.5, 0.5]): kf = KFold(ptrain.shape[0], n_folds=10, shuffle=True, random_state=0) pred = np.zeros((ptrain.shape[0], n_classes)) for itrain, itest in kf: train = ptrain.iloc[itrain, :] test = ptrain.iloc[itest, :] ytrain, ytest = (y[itrain], y[itest]) clf = GenderAgeGroupProb().fit(train, by, n_smoothing, weights) pred[itest, :] = clf.predict_proba(test) return log_loss(y, pred) n_smoothing = [1, 5, 10, 15, 20, 50, 100] res = [score(train, ['brand', 'model'], [s, s], [0.5, 0.5]) for s in n_smoothing] brand_weight = [0, 0.2, 0.4, 0.6, 0.8, 1.0] res = [score(train, ['brand', 'model'], [15, 15], [b, 1 - b]) for b in brand_weight] plt.plot(brand_weight, res) plt.title('Best score {:.5f} at brand_weight = {}'.format(np.min(res), brand_weight[np.argmin(res)])) plt.xlabel('brand_weight')
code
328147/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd gatrain = pd.read_csv('../input/gender_age_train.csv') gatest = pd.read_csv('../input/gender_age_test.csv') gatrain.head(3)
code
328147/cell_17
[ "text_html_output_1.png" ]
from sklearn.cross_validation import KFold from sklearn.metrics import log_loss from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt import numpy as np import pandas as pd gatrain = pd.read_csv('../input/gender_age_train.csv') gatest = pd.read_csv('../input/gender_age_test.csv') letarget = LabelEncoder().fit(gatrain.group.values) y = letarget.transform(gatrain.group.values) n_classes = len(letarget.classes_) phone = pd.read_csv('../input/phone_brand_device_model.csv', encoding='utf-8') phone = phone.drop_duplicates('device_id', keep='first') lebrand = LabelEncoder().fit(phone.phone_brand) phone['brand'] = lebrand.transform(phone.phone_brand) m = phone.phone_brand.str.cat(phone.device_model) lemodel = LabelEncoder().fit(m) phone['model'] = lemodel.transform(m) train = gatrain.merge(phone[['device_id', 'brand', 'model']], how='left', on='device_id') class GenderAgeGroupProb(object): def __init__(self): pass def fit(self, df, by, n_smoothing, weights): self.by = by self.n_smoothing = n_smoothing self.weights = np.divide(weights, sum(weights)) self.classes_ = sorted(df['group'].unique()) self.n_classes_ = len(self.classes_) self.group_freq = df['group'].value_counts().sort_index() / df.shape[0] self.prob_by = [] for i, b in enumerate(self.by): c = df.groupby([b, 'group']).size().unstack().fillna(0) total = c.sum(axis=1) prob = c.add(self.n_smoothing[i] * self.group_freq).div(total + self.n_smoothing[i], axis=0) self.prob_by.append(prob) return self def predict_proba(self, df): pred = pd.DataFrame(np.zeros((len(df.index), self.n_classes_)), columns=self.classes_, index=df.index) pred_by = [] for i, b in enumerate(self.by): pred_by.append(df[[b]].merge(self.prob_by[i], how='left', left_on=b, right_index=True).fillna(self.group_freq)[self.classes_]) pred = pred.radd(pred_by[i].values * self.weights[i]) pred.loc[pred.iloc[:, 0].isnull(), :] = self.group_freq return pred[self.classes_].values def score(ptrain, by, n_smoothing, weights=[0.5, 0.5]): kf = KFold(ptrain.shape[0], n_folds=10, shuffle=True, random_state=0) pred = np.zeros((ptrain.shape[0], n_classes)) for itrain, itest in kf: train = ptrain.iloc[itrain, :] test = ptrain.iloc[itest, :] ytrain, ytest = (y[itrain], y[itest]) clf = GenderAgeGroupProb().fit(train, by, n_smoothing, weights) pred[itest, :] = clf.predict_proba(test) return log_loss(y, pred) n_smoothing = [1, 5, 10, 15, 20, 50, 100] res = [score(train, ['brand', 'model'], [s, s], [0.5, 0.5]) for s in n_smoothing] plt.plot(n_smoothing, res) plt.title('Best score {:.5f} at n_smoothing = {}'.format(np.min(res), n_smoothing[np.argmin(res)])) plt.xlabel('n_smoothing')
code
128017162/cell_21
[ "text_plain_output_1.png" ]
from tensorflow.keras.callbacks import ModelCheckpoint,EarlyStopping, Callback from tensorflow.keras.layers import Dropout, Dense, Activation, Flatten, Conv2D, MaxPool2D, BatchNormalization from tensorflow.keras.models import Sequential from tensorflow.keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt import pandas as pd train_dir = '/kaggle/input/hackerearth/dataset/Train Images' test_dir = '/kaggle/input/hackerearth/dataset/Test Images' train = pd.read_csv('/kaggle/input/hackerearth/dataset/train.csv') num = len(train['Class'].unique()) datagen = ImageDataGenerator(rescale=1.0 / 255.0, validation_split=0.2) train_it = datagen.flow_from_dataframe(train, directory=train_dir, x_col='Image', y_col='Class', target_size=(150, 150), class_mode='categorical', batch_size=32, subset='training', shuffle=True) valid_it = datagen.flow_from_dataframe(train, directory=train_dir, x_col='Image', y_col='Class', target_size=(150, 150), class_mode='categorical', subset='validation', batch_size=32, shuffle=True) model = Sequential() model.add(Conv2D(16, kernel_size=(5, 5), activation='relu', input_shape=(150, 150, 3))) model.add(MaxPool2D((2, 2))) model.add(Conv2D(32, kernel_size=(5, 5), activation='relu')) model.add(MaxPool2D((2, 2))) model.add(Conv2D(64, kernel_size=(5, 5), activation='relu')) model.add(MaxPool2D((2, 2))) model.add(Conv2D(128, kernel_size=(3, 3), activation='relu')) model.add(MaxPool2D((2, 2))) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dense(128, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(num, activation='softmax')) model.summary() model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) class myCallback(Callback): def on_epoch_end(self, epoch, logs={}): if logs.get('accuracy') >= 0.98: self.model.stop_training = True callback = myCallback() hist = model.fit(train_it, epochs=1500, validation_data=valid_it, callbacks=callback) plt.figure() plt.plot(hist.history['accuracy'], label='Train Accuracy', color='black') plt.plot(hist.history['val_accuracy'], label='Validation Accuracy', color='mediumvioletred', linestyle='dashed', markeredgecolor='purple', markeredgewidth=2) plt.title('Model Accuracy', color='darkred', size=13) plt.legend() plt.show()
code
128017162/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/hackerearth/dataset/train.csv') train['Class'].value_counts()
code
128017162/cell_25
[ "text_plain_output_1.png" ]
from tensorflow.keras.callbacks import ModelCheckpoint,EarlyStopping, Callback from tensorflow.keras.layers import Dropout, Dense, Activation, Flatten, Conv2D, MaxPool2D, BatchNormalization from tensorflow.keras.models import Sequential from tensorflow.keras.preprocessing.image import ImageDataGenerator import pandas as pd train_dir = '/kaggle/input/hackerearth/dataset/Train Images' test_dir = '/kaggle/input/hackerearth/dataset/Test Images' train = pd.read_csv('/kaggle/input/hackerearth/dataset/train.csv') test = pd.read_csv('/kaggle/input/hackerearth/dataset/test.csv') num = len(train['Class'].unique()) datagen = ImageDataGenerator(rescale=1.0 / 255.0, validation_split=0.2) train_it = datagen.flow_from_dataframe(train, directory=train_dir, x_col='Image', y_col='Class', target_size=(150, 150), class_mode='categorical', batch_size=32, subset='training', shuffle=True) valid_it = datagen.flow_from_dataframe(train, directory=train_dir, x_col='Image', y_col='Class', target_size=(150, 150), class_mode='categorical', subset='validation', batch_size=32, shuffle=True) model = Sequential() model.add(Conv2D(16, kernel_size=(5, 5), activation='relu', input_shape=(150, 150, 3))) model.add(MaxPool2D((2, 2))) model.add(Conv2D(32, kernel_size=(5, 5), activation='relu')) model.add(MaxPool2D((2, 2))) model.add(Conv2D(64, kernel_size=(5, 5), activation='relu')) model.add(MaxPool2D((2, 2))) model.add(Conv2D(128, kernel_size=(3, 3), activation='relu')) model.add(MaxPool2D((2, 2))) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dense(128, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(num, activation='softmax')) model.summary() model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) class myCallback(Callback): def on_epoch_end(self, epoch, logs={}): if logs.get('accuracy') >= 0.98: self.model.stop_training = True callback = myCallback() hist = model.fit(train_it, epochs=1500, validation_data=valid_it, callbacks=callback) test_datagen = ImageDataGenerator(rescale=1.0 / 255.0) SIZE = (150, 150, 3) test_generator = test_datagen.flow_from_dataframe(test, directory=test_dir, x_col='Image', y_col=None, class_mode=None, target_size=(150, 150)) preds = model.predict(test_generator) print(preds)
code
128017162/cell_23
[ "image_output_1.png" ]
from tensorflow.keras.preprocessing.image import ImageDataGenerator import pandas as pd train_dir = '/kaggle/input/hackerearth/dataset/Train Images' test_dir = '/kaggle/input/hackerearth/dataset/Test Images' train = pd.read_csv('/kaggle/input/hackerearth/dataset/train.csv') test = pd.read_csv('/kaggle/input/hackerearth/dataset/test.csv') test_datagen = ImageDataGenerator(rescale=1.0 / 255.0) SIZE = (150, 150, 3) test_generator = test_datagen.flow_from_dataframe(test, directory=test_dir, x_col='Image', y_col=None, class_mode=None, target_size=(150, 150))
code
128017162/cell_30
[ "text_plain_output_1.png" ]
from tensorflow.keras.callbacks import ModelCheckpoint,EarlyStopping, Callback from tensorflow.keras.layers import Dropout, Dense, Activation, Flatten, Conv2D, MaxPool2D, BatchNormalization from tensorflow.keras.models import Sequential from tensorflow.keras.preprocessing.image import ImageDataGenerator import numpy as np import pandas as pd train_dir = '/kaggle/input/hackerearth/dataset/Train Images' test_dir = '/kaggle/input/hackerearth/dataset/Test Images' train = pd.read_csv('/kaggle/input/hackerearth/dataset/train.csv') test = pd.read_csv('/kaggle/input/hackerearth/dataset/test.csv') num = len(train['Class'].unique()) datagen = ImageDataGenerator(rescale=1.0 / 255.0, validation_split=0.2) train_it = datagen.flow_from_dataframe(train, directory=train_dir, x_col='Image', y_col='Class', target_size=(150, 150), class_mode='categorical', batch_size=32, subset='training', shuffle=True) valid_it = datagen.flow_from_dataframe(train, directory=train_dir, x_col='Image', y_col='Class', target_size=(150, 150), class_mode='categorical', subset='validation', batch_size=32, shuffle=True) model = Sequential() model.add(Conv2D(16, kernel_size=(5, 5), activation='relu', input_shape=(150, 150, 3))) model.add(MaxPool2D((2, 2))) model.add(Conv2D(32, kernel_size=(5, 5), activation='relu')) model.add(MaxPool2D((2, 2))) model.add(Conv2D(64, kernel_size=(5, 5), activation='relu')) model.add(MaxPool2D((2, 2))) model.add(Conv2D(128, kernel_size=(3, 3), activation='relu')) model.add(MaxPool2D((2, 2))) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dense(128, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(num, activation='softmax')) model.summary() model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) class myCallback(Callback): def on_epoch_end(self, epoch, logs={}): if logs.get('accuracy') >= 0.98: self.model.stop_training = True callback = myCallback() hist = model.fit(train_it, epochs=1500, validation_data=valid_it, callbacks=callback) test_datagen = ImageDataGenerator(rescale=1.0 / 255.0) SIZE = (150, 150, 3) test_generator = test_datagen.flow_from_dataframe(test, directory=test_dir, x_col='Image', y_col=None, class_mode=None, target_size=(150, 150)) preds = model.predict(test_generator) y_pred = [np.argmax(probas) for probas in preds] y_p = set(y_pred) y_p
code
128017162/cell_33
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/hackerearth/dataset/train.csv') test = pd.read_csv('/kaggle/input/hackerearth/dataset/test.csv') preds_list = test['Image'] preds_list preds_list
code
128017162/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/hackerearth/dataset/train.csv') train.head(5)
code
128017162/cell_11
[ "text_html_output_1.png" ]
from tensorflow.keras.preprocessing.image import ImageDataGenerator import pandas as pd train_dir = '/kaggle/input/hackerearth/dataset/Train Images' test_dir = '/kaggle/input/hackerearth/dataset/Test Images' train = pd.read_csv('/kaggle/input/hackerearth/dataset/train.csv') datagen = ImageDataGenerator(rescale=1.0 / 255.0, validation_split=0.2) train_it = datagen.flow_from_dataframe(train, directory=train_dir, x_col='Image', y_col='Class', target_size=(150, 150), class_mode='categorical', batch_size=32, subset='training', shuffle=True) valid_it = datagen.flow_from_dataframe(train, directory=train_dir, x_col='Image', y_col='Class', target_size=(150, 150), class_mode='categorical', subset='validation', batch_size=32, shuffle=True)
code
128017162/cell_19
[ "text_plain_output_1.png" ]
from tensorflow.keras.callbacks import ModelCheckpoint,EarlyStopping, Callback from tensorflow.keras.layers import Dropout, Dense, Activation, Flatten, Conv2D, MaxPool2D, BatchNormalization from tensorflow.keras.models import Sequential from tensorflow.keras.preprocessing.image import ImageDataGenerator import pandas as pd train_dir = '/kaggle/input/hackerearth/dataset/Train Images' test_dir = '/kaggle/input/hackerearth/dataset/Test Images' train = pd.read_csv('/kaggle/input/hackerearth/dataset/train.csv') num = len(train['Class'].unique()) datagen = ImageDataGenerator(rescale=1.0 / 255.0, validation_split=0.2) train_it = datagen.flow_from_dataframe(train, directory=train_dir, x_col='Image', y_col='Class', target_size=(150, 150), class_mode='categorical', batch_size=32, subset='training', shuffle=True) valid_it = datagen.flow_from_dataframe(train, directory=train_dir, x_col='Image', y_col='Class', target_size=(150, 150), class_mode='categorical', subset='validation', batch_size=32, shuffle=True) model = Sequential() model.add(Conv2D(16, kernel_size=(5, 5), activation='relu', input_shape=(150, 150, 3))) model.add(MaxPool2D((2, 2))) model.add(Conv2D(32, kernel_size=(5, 5), activation='relu')) model.add(MaxPool2D((2, 2))) model.add(Conv2D(64, kernel_size=(5, 5), activation='relu')) model.add(MaxPool2D((2, 2))) model.add(Conv2D(128, kernel_size=(3, 3), activation='relu')) model.add(MaxPool2D((2, 2))) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dense(128, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(num, activation='softmax')) model.summary() model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) class myCallback(Callback): def on_epoch_end(self, epoch, logs={}): if logs.get('accuracy') >= 0.98: self.model.stop_training = True callback = myCallback() hist = model.fit(train_it, epochs=1500, validation_data=valid_it, callbacks=callback)
code
128017162/cell_1
[ "text_plain_output_1.png" ]
# !pip install seaborn # !pip install tensorflow # !pip install keras # # !pip install sklearn !pip install visualkeras # !pip install pydot # !pip install opencv-python # !pip install numpy # !pip install pandas # !pip install matplotlib # !pip install tensorflow # !pip install keras
code
128017162/cell_7
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/hackerearth/dataset/train.csv') test = pd.read_csv('/kaggle/input/hackerearth/dataset/test.csv') test.head(5)
code
128017162/cell_32
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/hackerearth/dataset/train.csv') test = pd.read_csv('/kaggle/input/hackerearth/dataset/test.csv') test
code