path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
50244797/cell_9
[ "image_output_1.png" ]
from nltk.corpus import stopwords from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) print(stop_words)
code
50244797/cell_23
[ "text_html_output_1.png" ]
print(x_train.shape) print(y_train.shape) print(x_test.shape) print(y_test.shape) print(x_cv.shape) print(y_cv.shape)
code
50244797/cell_30
[ "image_output_1.png" ]
"""in this what we are doing as it is told that we have to use log loss for comparing and the thing is while using auc we know that for random numbers auc is 0.5 so we have to make our model with accuracy more than 0.5 same thing here as we are using log loss so first we will determine log loss for random numbers with this datasets and then we will try to built our model with log loss less than that random log loss""" "we will take probablities of each class for all data points(for which we will divide class by total classes) \nIn a 'Random' Model, we generate the NINE class probabilites randomly such that they sum to 1."
code
50244797/cell_33
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
"""by both obervation we can say that thershold is approximately 2.5 which means we have to build our model having log loss less than 2.5"""
code
50244797/cell_44
[ "image_output_1.png" ]
x_train['Gene'].shape
code
50244797/cell_55
[ "text_plain_output_1.png" ]
"""now by looking at all the three log losses we can say that we have to keep gene feature as log loss is less by keeping only this feature as compared to random log loss"""
code
50244797/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) variant = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_variants.zip') text_data = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_text.zip', sep='\\|\\|', engine='python', names=['ID', 'TEXT'], skiprows=1) text_data
code
50244797/cell_40
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from sklearn.metrics.classification import accuracy_score, log_loss from sklearn.metrics.classification import accuracy_score, log_loss import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re variant = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_variants.zip') text_data = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_text.zip', sep='\\|\\|', engine='python', names=['ID', 'TEXT'], skiprows=1) from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) import re def cleaning(text, index, column): if type(text) is not int: string = '' text = re.sub('[^a-zA-Z0-9\n]', ' ', text) text = re.sub('\\s+', ' ', text) text = text.lower() for word in text.split(): if word not in stop_words: string += word + ' ' text_data[column][index] = string for index, row in text_data.iterrows(): if type(row['TEXT']) is str: cleaning(row['TEXT'], index, 'TEXT') result = pd.merge(variant, text_data, on='ID', how='left') result[result.isnull().any(axis=1)] result.loc[result['TEXT'].isnull(), 'TEXT'] = result['Gene'] + '' + result['Variation'] y_true = result['Class'].values result.Gene = result.Gene.str.replace('\\s+', '_') result.Variation = result.Variation.str.replace('\\s+', '_') x = result.drop('Class', axis=1) y = result.iloc[:, 3:4] train_class_distribution = y_train['Class'].value_counts() from sklearn.metrics.classification import accuracy_score, log_loss cross_validation_size = y_cv.shape[0] random_cross_validation = np.zeros((cross_validation_size, 9)) for i in range(cross_validation_size): random_prob = np.random.rand(1, 9) random_cross_validation[i] = (random_prob / sum(sum(random_prob)))[0] from sklearn.metrics.classification import accuracy_score, log_loss test_size = y_test.shape[0] random_test_data = np.zeros((test_size, 9)) for i in range(test_size): random_prob = np.random.rand(1, 9) random_test_data[i] = (random_prob / sum(sum(random_prob)))[0] unique_gene = result['Gene'].value_counts() s = sum(unique_gene.values) h = unique_gene / s h f, ax = plt.subplots(figsize=(10,6)) plt.plot(h, label="Histrogram of Genes") plt.xlabel('Index of a Gene') plt.ylabel('Number of Occurances') plt.legend() plt.show() c = np.cumsum(h) plt.plot(c, label='Cumulative distribution of Genes') plt.grid() plt.legend() plt.show()
code
50244797/cell_39
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re variant = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_variants.zip') text_data = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_text.zip', sep='\\|\\|', engine='python', names=['ID', 'TEXT'], skiprows=1) from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) import re def cleaning(text, index, column): if type(text) is not int: string = '' text = re.sub('[^a-zA-Z0-9\n]', ' ', text) text = re.sub('\\s+', ' ', text) text = text.lower() for word in text.split(): if word not in stop_words: string += word + ' ' text_data[column][index] = string for index, row in text_data.iterrows(): if type(row['TEXT']) is str: cleaning(row['TEXT'], index, 'TEXT') result = pd.merge(variant, text_data, on='ID', how='left') result[result.isnull().any(axis=1)] result.loc[result['TEXT'].isnull(), 'TEXT'] = result['Gene'] + '' + result['Variation'] y_true = result['Class'].values result.Gene = result.Gene.str.replace('\\s+', '_') result.Variation = result.Variation.str.replace('\\s+', '_') x = result.drop('Class', axis=1) y = result.iloc[:, 3:4] train_class_distribution = y_train['Class'].value_counts() unique_gene = result['Gene'].value_counts() s = sum(unique_gene.values) h = unique_gene / s h f, ax = plt.subplots(figsize=(10, 6)) plt.plot(h, label='Histrogram of Genes') plt.xlabel('Index of a Gene') plt.ylabel('Number of Occurances') plt.legend() plt.show()
code
50244797/cell_26
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt train_class_distribution = y_train['Class'].value_counts() train_class_distribution.plot(kind='bar') plt.grid()
code
50244797/cell_48
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import CountVectorizer gene_vectorizer = CountVectorizer() train_gene_feature_onehotCoding = gene_vectorizer.fit_transform(x_train['Gene']) test_gene_feature_onehotCoding = gene_vectorizer.transform(x_test['Gene']) cv_gene_feature_onehotCoding = gene_vectorizer.transform(x_cv['Gene']) print(train_gene_feature_onehotCoding.shape) print(test_gene_feature_onehotCoding.shape) print(cv_gene_feature_onehotCoding.shape)
code
50244797/cell_2
[ "text_html_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
50244797/cell_54
[ "application_vnd.jupyter.stderr_output_9.png", "application_vnd.jupyter.stderr_output_7.png", "application_vnd.jupyter.stderr_output_11.png", "text_plain_output_4.png", "text_plain_output_10.png", "text_plain_output_6.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "text_plain_output_8.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "text_plain_output_12.png" ]
from nltk.corpus import stopwords from sklearn.calibration import CalibratedClassifierCV from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import SGDClassifier from sklearn.metrics.classification import accuracy_score, log_loss from sklearn.metrics.classification import accuracy_score, log_loss import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re variant = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_variants.zip') text_data = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_text.zip', sep='\\|\\|', engine='python', names=['ID', 'TEXT'], skiprows=1) from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) import re def cleaning(text, index, column): if type(text) is not int: string = '' text = re.sub('[^a-zA-Z0-9\n]', ' ', text) text = re.sub('\\s+', ' ', text) text = text.lower() for word in text.split(): if word not in stop_words: string += word + ' ' text_data[column][index] = string for index, row in text_data.iterrows(): if type(row['TEXT']) is str: cleaning(row['TEXT'], index, 'TEXT') result = pd.merge(variant, text_data, on='ID', how='left') result[result.isnull().any(axis=1)] result.loc[result['TEXT'].isnull(), 'TEXT'] = result['Gene'] + '' + result['Variation'] y_true = result['Class'].values result.Gene = result.Gene.str.replace('\\s+', '_') result.Variation = result.Variation.str.replace('\\s+', '_') x = result.drop('Class', axis=1) y = result.iloc[:, 3:4] train_class_distribution = y_train['Class'].value_counts() from sklearn.metrics.classification import accuracy_score, log_loss cross_validation_size = y_cv.shape[0] random_cross_validation = np.zeros((cross_validation_size, 9)) for i in range(cross_validation_size): random_prob = np.random.rand(1, 9) random_cross_validation[i] = (random_prob / sum(sum(random_prob)))[0] from sklearn.metrics.classification import accuracy_score, log_loss test_size = y_test.shape[0] random_test_data = np.zeros((test_size, 9)) for i in range(test_size): random_prob = np.random.rand(1, 9) random_test_data[i] = (random_prob / sum(sum(random_prob)))[0] unique_gene = result['Gene'].value_counts() s = sum(unique_gene.values) h = unique_gene / s h f, ax = plt.subplots(figsize=(10,6)) plt.plot(h, label="Histrogram of Genes") plt.xlabel('Index of a Gene') plt.ylabel('Number of Occurances') plt.legend() plt.show() c = np.cumsum(h) from sklearn.feature_extraction.text import CountVectorizer gene_vectorizer = CountVectorizer() train_gene_feature_onehotCoding = gene_vectorizer.fit_transform(x_train['Gene']) test_gene_feature_onehotCoding = gene_vectorizer.transform(x_test['Gene']) cv_gene_feature_onehotCoding = gene_vectorizer.transform(x_cv['Gene']) from sklearn.linear_model import SGDClassifier from sklearn.calibration import CalibratedClassifierCV alpha = [10 ** i for i in range(-5, 1)] cv_log_error_array = [] for i in alpha: clf = SGDClassifier(loss='log', alpha=i, random_state=42) clf.fit(train_gene_feature_onehotCoding, y_train) calibration = CalibratedClassifierCV(clf, method='sigmoid') calibration.fit(train_gene_feature_onehotCoding, y_train) y_cv_predict = calibration.predict_proba(cv_gene_feature_onehotCoding) cv_log_error_array.append(log_loss(y_cv, y_cv_predict)) min_log_loss_position = np.argmin(cv_log_error_array) clf = SGDClassifier(loss='log', alpha=alpha[min_log_loss_position], random_state=42) clf.fit(train_gene_feature_onehotCoding, y_train) calibration = CalibratedClassifierCV(clf, method='sigmoid') calibration.fit(train_gene_feature_onehotCoding, y_train) y_train_predict = calibration.predict_proba(train_gene_feature_onehotCoding) y_cv_predict = calibration.predict_proba(cv_gene_feature_onehotCoding) y_test_predict = calibration.predict_proba(test_gene_feature_onehotCoding) print('For values of alpha as', alpha[min_log_loss_position], 'The log loss for train data is:', log_loss(y_train, y_train_predict)) print('For values of alpha as', alpha[min_log_loss_position], 'The log loss for cv data is:', log_loss(y_cv, y_cv_predict)) print('For values of alpha as', alpha[min_log_loss_position], 'The log loss for test data is:', log_loss(y_test, y_test_predict))
code
50244797/cell_11
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re variant = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_variants.zip') text_data = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_text.zip', sep='\\|\\|', engine='python', names=['ID', 'TEXT'], skiprows=1) from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) import re def cleaning(text, index, column): if type(text) is not int: string = '' text = re.sub('[^a-zA-Z0-9\n]', ' ', text) text = re.sub('\\s+', ' ', text) text = text.lower() for word in text.split(): if word not in stop_words: string += word + ' ' text_data[column][index] = string for index, row in text_data.iterrows(): if type(row['TEXT']) is str: cleaning(row['TEXT'], index, 'TEXT') else: print('there is no text description for id:', index)
code
50244797/cell_19
[ "text_html_output_1.png" ]
from nltk.corpus import stopwords import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re variant = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_variants.zip') text_data = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_text.zip', sep='\\|\\|', engine='python', names=['ID', 'TEXT'], skiprows=1) from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) import re def cleaning(text, index, column): if type(text) is not int: string = '' text = re.sub('[^a-zA-Z0-9\n]', ' ', text) text = re.sub('\\s+', ' ', text) text = text.lower() for word in text.split(): if word not in stop_words: string += word + ' ' text_data[column][index] = string for index, row in text_data.iterrows(): if type(row['TEXT']) is str: cleaning(row['TEXT'], index, 'TEXT') result = pd.merge(variant, text_data, on='ID', how='left') result[result.isnull().any(axis=1)] result.loc[result['TEXT'].isnull(), 'TEXT'] = result['Gene'] + '' + result['Variation'] y_true = result['Class'].values result.Gene = result.Gene.str.replace('\\s+', '_') result.Variation = result.Variation.str.replace('\\s+', '_') result.head()
code
50244797/cell_45
[ "image_output_1.png" ]
x_test['Gene'].shape
code
50244797/cell_49
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import CountVectorizer gene_vectorizer = CountVectorizer() train_gene_feature_onehotCoding = gene_vectorizer.fit_transform(x_train['Gene']) test_gene_feature_onehotCoding = gene_vectorizer.transform(x_test['Gene']) cv_gene_feature_onehotCoding = gene_vectorizer.transform(x_cv['Gene']) print(train_gene_feature_onehotCoding.toarray())
code
50244797/cell_32
[ "text_plain_output_1.png" ]
from sklearn.metrics.classification import accuracy_score, log_loss from sklearn.metrics.classification import accuracy_score, log_loss import numpy as np import numpy as np # linear algebra from sklearn.metrics.classification import accuracy_score, log_loss cross_validation_size = y_cv.shape[0] random_cross_validation = np.zeros((cross_validation_size, 9)) for i in range(cross_validation_size): random_prob = np.random.rand(1, 9) random_cross_validation[i] = (random_prob / sum(sum(random_prob)))[0] from sklearn.metrics.classification import accuracy_score, log_loss test_size = y_test.shape[0] random_test_data = np.zeros((test_size, 9)) for i in range(test_size): random_prob = np.random.rand(1, 9) random_test_data[i] = (random_prob / sum(sum(random_prob)))[0] print('log loss for random test data is', log_loss(y_test, random_test_data))
code
50244797/cell_51
[ "text_plain_output_1.png" ]
from sklearn.calibration import CalibratedClassifierCV from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import SGDClassifier from sklearn.metrics.classification import accuracy_score, log_loss from sklearn.metrics.classification import accuracy_score, log_loss import numpy as np import numpy as np # linear algebra from sklearn.metrics.classification import accuracy_score, log_loss cross_validation_size = y_cv.shape[0] random_cross_validation = np.zeros((cross_validation_size, 9)) for i in range(cross_validation_size): random_prob = np.random.rand(1, 9) random_cross_validation[i] = (random_prob / sum(sum(random_prob)))[0] from sklearn.feature_extraction.text import CountVectorizer gene_vectorizer = CountVectorizer() train_gene_feature_onehotCoding = gene_vectorizer.fit_transform(x_train['Gene']) test_gene_feature_onehotCoding = gene_vectorizer.transform(x_test['Gene']) cv_gene_feature_onehotCoding = gene_vectorizer.transform(x_cv['Gene']) from sklearn.linear_model import SGDClassifier from sklearn.calibration import CalibratedClassifierCV alpha = [10 ** i for i in range(-5, 1)] cv_log_error_array = [] for i in alpha: clf = SGDClassifier(loss='log', alpha=i, random_state=42) clf.fit(train_gene_feature_onehotCoding, y_train) calibration = CalibratedClassifierCV(clf, method='sigmoid') calibration.fit(train_gene_feature_onehotCoding, y_train) y_cv_predict = calibration.predict_proba(cv_gene_feature_onehotCoding) cv_log_error_array.append(log_loss(y_cv, y_cv_predict)) print('For values of alpha = ', i, 'The log loss is:', log_loss(y_cv, y_cv_predict))
code
50244797/cell_58
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from nltk.corpus import stopwords import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re variant = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_variants.zip') text_data = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_text.zip', sep='\\|\\|', engine='python', names=['ID', 'TEXT'], skiprows=1) from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) import re def cleaning(text, index, column): if type(text) is not int: string = '' text = re.sub('[^a-zA-Z0-9\n]', ' ', text) text = re.sub('\\s+', ' ', text) text = text.lower() for word in text.split(): if word not in stop_words: string += word + ' ' text_data[column][index] = string for index, row in text_data.iterrows(): if type(row['TEXT']) is str: cleaning(row['TEXT'], index, 'TEXT') result = pd.merge(variant, text_data, on='ID', how='left') result[result.isnull().any(axis=1)] result.loc[result['TEXT'].isnull(), 'TEXT'] = result['Gene'] + '' + result['Variation'] y_true = result['Class'].values result.Gene = result.Gene.str.replace('\\s+', '_') result.Variation = result.Variation.str.replace('\\s+', '_') x = result.drop('Class', axis=1) y = result.iloc[:, 3:4] unique_variant = result['Variation'].value_counts() unique_variant
code
50244797/cell_15
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from nltk.corpus import stopwords import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re variant = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_variants.zip') text_data = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_text.zip', sep='\\|\\|', engine='python', names=['ID', 'TEXT'], skiprows=1) from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) import re def cleaning(text, index, column): if type(text) is not int: string = '' text = re.sub('[^a-zA-Z0-9\n]', ' ', text) text = re.sub('\\s+', ' ', text) text = text.lower() for word in text.split(): if word not in stop_words: string += word + ' ' text_data[column][index] = string for index, row in text_data.iterrows(): if type(row['TEXT']) is str: cleaning(row['TEXT'], index, 'TEXT') result = pd.merge(variant, text_data, on='ID', how='left') result[result.isnull().any(axis=1)] result.loc[result['TEXT'].isnull(), 'TEXT'] = result['Gene'] + '' + result['Variation'] result[result['ID'] == 1109]
code
50244797/cell_38
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re variant = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_variants.zip') text_data = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_text.zip', sep='\\|\\|', engine='python', names=['ID', 'TEXT'], skiprows=1) from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) import re def cleaning(text, index, column): if type(text) is not int: string = '' text = re.sub('[^a-zA-Z0-9\n]', ' ', text) text = re.sub('\\s+', ' ', text) text = text.lower() for word in text.split(): if word not in stop_words: string += word + ' ' text_data[column][index] = string for index, row in text_data.iterrows(): if type(row['TEXT']) is str: cleaning(row['TEXT'], index, 'TEXT') result = pd.merge(variant, text_data, on='ID', how='left') result[result.isnull().any(axis=1)] result.loc[result['TEXT'].isnull(), 'TEXT'] = result['Gene'] + '' + result['Variation'] y_true = result['Class'].values result.Gene = result.Gene.str.replace('\\s+', '_') result.Variation = result.Variation.str.replace('\\s+', '_') x = result.drop('Class', axis=1) y = result.iloc[:, 3:4] unique_gene = result['Gene'].value_counts() s = sum(unique_gene.values) h = unique_gene / s h
code
50244797/cell_17
[ "text_html_output_1.png" ]
from nltk.corpus import stopwords import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re variant = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_variants.zip') text_data = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_text.zip', sep='\\|\\|', engine='python', names=['ID', 'TEXT'], skiprows=1) from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) import re def cleaning(text, index, column): if type(text) is not int: string = '' text = re.sub('[^a-zA-Z0-9\n]', ' ', text) text = re.sub('\\s+', ' ', text) text = text.lower() for word in text.split(): if word not in stop_words: string += word + ' ' text_data[column][index] = string for index, row in text_data.iterrows(): if type(row['TEXT']) is str: cleaning(row['TEXT'], index, 'TEXT') result = pd.merge(variant, text_data, on='ID', how='left') result[result.isnull().any(axis=1)] result.loc[result['TEXT'].isnull(), 'TEXT'] = result['Gene'] + '' + result['Variation'] result
code
50244797/cell_31
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.metrics.classification import accuracy_score, log_loss import numpy as np import numpy as np # linear algebra from sklearn.metrics.classification import accuracy_score, log_loss cross_validation_size = y_cv.shape[0] random_cross_validation = np.zeros((cross_validation_size, 9)) for i in range(cross_validation_size): random_prob = np.random.rand(1, 9) random_cross_validation[i] = (random_prob / sum(sum(random_prob)))[0] print('log loss for random cross validation is', log_loss(y_cv, random_cross_validation))
code
50244797/cell_46
[ "text_plain_output_1.png" ]
x_cv['Gene'].shape
code
50244797/cell_24
[ "text_plain_output_1.png" ]
print('total training data = ', x_train.shape[0]) print('total cross validating data = ', x_cv.shape[0]) print('total testing data = ', x_test.shape[0])
code
50244797/cell_22
[ "text_html_output_1.png" ]
print(x_tr.shape) print(x_test.shape) print(y_tr.shape) print(y_test.shape)
code
50244797/cell_53
[ "text_plain_output_1.png" ]
from sklearn.calibration import CalibratedClassifierCV from sklearn.feature_extraction.text import CountVectorizer from sklearn.linear_model import SGDClassifier from sklearn.metrics.classification import accuracy_score, log_loss from sklearn.metrics.classification import accuracy_score, log_loss import numpy as np import numpy as np # linear algebra from sklearn.metrics.classification import accuracy_score, log_loss cross_validation_size = y_cv.shape[0] random_cross_validation = np.zeros((cross_validation_size, 9)) for i in range(cross_validation_size): random_prob = np.random.rand(1, 9) random_cross_validation[i] = (random_prob / sum(sum(random_prob)))[0] from sklearn.feature_extraction.text import CountVectorizer gene_vectorizer = CountVectorizer() train_gene_feature_onehotCoding = gene_vectorizer.fit_transform(x_train['Gene']) test_gene_feature_onehotCoding = gene_vectorizer.transform(x_test['Gene']) cv_gene_feature_onehotCoding = gene_vectorizer.transform(x_cv['Gene']) from sklearn.linear_model import SGDClassifier from sklearn.calibration import CalibratedClassifierCV alpha = [10 ** i for i in range(-5, 1)] cv_log_error_array = [] for i in alpha: clf = SGDClassifier(loss='log', alpha=i, random_state=42) clf.fit(train_gene_feature_onehotCoding, y_train) calibration = CalibratedClassifierCV(clf, method='sigmoid') calibration.fit(train_gene_feature_onehotCoding, y_train) y_cv_predict = calibration.predict_proba(cv_gene_feature_onehotCoding) cv_log_error_array.append(log_loss(y_cv, y_cv_predict)) print(cv_log_error_array)
code
50244797/cell_27
[ "text_plain_output_1.png" ]
test_class_distribution = y_test['Class'].value_counts() test_class_distribution.plot(kind='bar')
code
50244797/cell_37
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re variant = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_variants.zip') text_data = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_text.zip', sep='\\|\\|', engine='python', names=['ID', 'TEXT'], skiprows=1) from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) import re def cleaning(text, index, column): if type(text) is not int: string = '' text = re.sub('[^a-zA-Z0-9\n]', ' ', text) text = re.sub('\\s+', ' ', text) text = text.lower() for word in text.split(): if word not in stop_words: string += word + ' ' text_data[column][index] = string for index, row in text_data.iterrows(): if type(row['TEXT']) is str: cleaning(row['TEXT'], index, 'TEXT') result = pd.merge(variant, text_data, on='ID', how='left') result[result.isnull().any(axis=1)] result.loc[result['TEXT'].isnull(), 'TEXT'] = result['Gene'] + '' + result['Variation'] y_true = result['Class'].values result.Gene = result.Gene.str.replace('\\s+', '_') result.Variation = result.Variation.str.replace('\\s+', '_') x = result.drop('Class', axis=1) y = result.iloc[:, 3:4] unique_gene = result['Gene'].value_counts() unique_gene.head(20)
code
50244797/cell_12
[ "text_html_output_1.png" ]
from nltk.corpus import stopwords import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re variant = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_variants.zip') text_data = pd.read_csv('/kaggle/input/msk-redefining-cancer-treatment/training_text.zip', sep='\\|\\|', engine='python', names=['ID', 'TEXT'], skiprows=1) from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) import re def cleaning(text, index, column): if type(text) is not int: string = '' text = re.sub('[^a-zA-Z0-9\n]', ' ', text) text = re.sub('\\s+', ' ', text) text = text.lower() for word in text.split(): if word not in stop_words: string += word + ' ' text_data[column][index] = string for index, row in text_data.iterrows(): if type(row['TEXT']) is str: cleaning(row['TEXT'], index, 'TEXT') result = pd.merge(variant, text_data, on='ID', how='left') result.head()
code
50244797/cell_36
[ "text_plain_output_1.png" ]
"""now we will do analysis of each feature one by one so lets start with gene"""
code
72065978/cell_13
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns hotel_data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') hotel_data hotel_data.shape sns.countplot(data=hotel_data, x='hotel', hue='is_canceled')
code
72065978/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hotel_data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') hotel_data hotel_data.head()
code
72065978/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hotel_data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') hotel_data hotel_data.shape
code
72065978/cell_2
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns print('Set Up')
code
72065978/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns hotel_data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') hotel_data hotel_data.shape sns.countplot(data=hotel_data, x='hotel')
code
72065978/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
72065978/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hotel_data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') hotel_data hotel_data.shape hotel_data.info()
code
72065978/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hotel_data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') hotel_data hotel_data.shape hotel_data.describe()
code
72065978/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hotel_data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') hotel_data hotel_data.shape hotel_data['reserved_room_type'].unique()
code
72065978/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hotel_data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') hotel_data
code
72065978/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns hotel_data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') hotel_data hotel_data.shape fig = plt.figure(figsize=(12, 5)) sns.countplot(data=hotel_data, x='arrival_date_month') plt.xlabel('Months')
code
72065978/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hotel_data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') hotel_data hotel_data.shape hotel_data['hotel'].unique()
code
72065978/cell_12
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns hotel_data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') hotel_data hotel_data.shape sns.countplot(data=hotel_data, x='is_canceled', hue='is_repeated_guest')
code
72065978/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) hotel_data = pd.read_csv('../input/hotel-booking-demand/hotel_bookings.csv') hotel_data hotel_data.tail()
code
1004498/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) def load_colls(load_dict, df): for item in load_dict: file_name = load_dict[item][0] entry = load_dict[item][1] index = load_dict[item][2] temp_dict = pd.read_csv(file_name, index_col=entry).to_dict() temp_dict = temp_dict[index] if entry == 'hs4%0': entry = 'hs4' df[item] = df[entry].map(temp_dict) return df load_map = {'Country_name': ['../input/country_eng.csv', 'Country', 'Country_name'], 'hs2_name': ['../input/hs2_eng.csv', 'hs2', 'hs2_name'], 'hs4_name': ['../input/hs4_eng.csv', 'hs4%0', 'hs4_name'], 'hs6_name': ['../input/hs6_eng.csv', 'hs6', 'hs6_name'], 'hs9_name': ['../input/hs9_eng.csv', 'hs9', 'hs9_name']} trade_hist = pd.read_csv('../input/year_1988_2015.csv') trade_hist = load_colls(load_map, trade_hist) trade_jpbg_hist = trade_hist[trade_hist['Country_name'] == 'Bulgaria'] trade_2016 = pd.read_csv('../input/ym_custom_2016.csv') trade_2016 = load_colls(load_map, trade_2016) trade_jpbg_2016 = trade_2016[trade_2016['Country_name'] == 'Bulgaria']
code
1004498/cell_8
[ "text_plain_output_1.png" ]
from subprocess import check_output import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt from subprocess import check_output def load_colls(load_dict, df): for item in load_dict: file_name = load_dict[item][0] entry = load_dict[item][1] index = load_dict[item][2] temp_dict = pd.read_csv(file_name, index_col=entry).to_dict() temp_dict = temp_dict[index] if entry == 'hs4%0': entry = 'hs4' df[item] = df[entry].map(temp_dict) return df load_map = {'Country_name': ['../input/country_eng.csv', 'Country', 'Country_name'], 'hs2_name': ['../input/hs2_eng.csv', 'hs2', 'hs2_name'], 'hs4_name': ['../input/hs4_eng.csv', 'hs4%0', 'hs4_name'], 'hs6_name': ['../input/hs6_eng.csv', 'hs6', 'hs6_name'], 'hs9_name': ['../input/hs9_eng.csv', 'hs9', 'hs9_name']} trade_hist = pd.read_csv('../input/year_1988_2015.csv') trade_hist = load_colls(load_map, trade_hist) trade_jpbg_hist = trade_hist[trade_hist['Country_name'] == 'Bulgaria'] trade_2016 = pd.read_csv('../input/ym_custom_2016.csv') trade_2016 = load_colls(load_map, trade_2016) trade_jpbg_2016 = trade_2016[trade_2016['Country_name'] == 'Bulgaria'] trjpbg_gb_year = trade_jpbg_hist.groupby(by=['Year'], as_index=False)['VY'].sum() plt.plot(trjpbg_gb_year['Year'], trjpbg_gb_year['VY']) plt.xlabel('Year') plt.ylabel('VY') plt.title('Japan-Bulgaria Trade over the years, grouped by year')
code
1004498/cell_10
[ "text_plain_output_1.png" ]
from subprocess import check_output import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import matplotlib.pyplot as plt from subprocess import check_output def load_colls(load_dict, df): for item in load_dict: file_name = load_dict[item][0] entry = load_dict[item][1] index = load_dict[item][2] temp_dict = pd.read_csv(file_name, index_col=entry).to_dict() temp_dict = temp_dict[index] if entry == 'hs4%0': entry = 'hs4' df[item] = df[entry].map(temp_dict) return df load_map = {'Country_name': ['../input/country_eng.csv', 'Country', 'Country_name'], 'hs2_name': ['../input/hs2_eng.csv', 'hs2', 'hs2_name'], 'hs4_name': ['../input/hs4_eng.csv', 'hs4%0', 'hs4_name'], 'hs6_name': ['../input/hs6_eng.csv', 'hs6', 'hs6_name'], 'hs9_name': ['../input/hs9_eng.csv', 'hs9', 'hs9_name']} trade_hist = pd.read_csv('../input/year_1988_2015.csv') trade_hist = load_colls(load_map, trade_hist) trade_jpbg_hist = trade_hist[trade_hist['Country_name'] == 'Bulgaria'] trade_2016 = pd.read_csv('../input/ym_custom_2016.csv') trade_2016 = load_colls(load_map, trade_2016) trade_jpbg_2016 = trade_2016[trade_2016['Country_name'] == 'Bulgaria'] trjpbg_gb_year = trade_jpbg_hist.groupby(by=['Year'], as_index=False)['VY'].sum() print('Minimum trade:', trjpbg_gb_year['VY'].min()) print('Maximum trade:', trjpbg_gb_year['VY'].max()) print('Mean trade:', trjpbg_gb_year['VY'].mean())
code
72069892/cell_9
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') (train.shape, test.shape, submission.shape) train.drop('id', axis=1, inplace=True) test.drop('id', axis=1, inplace=True) train.nunique()
code
72069892/cell_4
[ "image_output_1.png" ]
import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') from pycaret.regression import setup, compare_models, blend_models, finalize_model, predict_model
code
72069892/cell_6
[ "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') (train.shape, test.shape, submission.shape)
code
72069892/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') (train.shape, test.shape, submission.shape) train.drop('id', axis=1, inplace=True) test.drop('id', axis=1, inplace=True) train.nunique() plt.figure(figsize=(15, 5)) sns.kdeplot(train['target'], shade=True, alpha=0.9, linewidth=1.5, facecolor=(1, 1, 1, 0), edgecolor='.2') plt.title('Target', fontdict={'fontsize': 20}) plt.show()
code
72069892/cell_7
[ "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') (train.shape, test.shape, submission.shape) train.head()
code
72069892/cell_16
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') (train.shape, test.shape, submission.shape) train.drop('id', axis=1, inplace=True) test.drop('id', axis=1, inplace=True) train.nunique() fig, axes =plt.subplots(5,2, figsize=(15,15), sharex=True) axes = axes.flatten() object_bol = train.dtypes == 'object' for ax, catplot in zip(axes, train.dtypes[object_bol].index): sns.countplot(y=catplot, data=train, ax=ax) plt.tight_layout() plt.show() fig = plt.figure(figsize=(15, 60)) for i in range(len(train.columns.tolist()[10:24])): plt.subplot(20, 5, i + 1) sns.set_style('white') plt.title(train.columns.tolist()[10:24][i], size=12, fontname='monospace') a = sns.kdeplot(train[train.columns.tolist()[10:24][i]], shade=True, alpha=0.9, linewidth=1.5, facecolor=(1, 1, 1, 0), edgecolor='.2') plt.ylabel('') plt.xlabel('') plt.xticks(fontname='monospace') plt.yticks([]) for j in ['right', 'left', 'top']: a.spines[j].set_visible(False) a.spines['bottom'].set_linewidth(1.2) fig.tight_layout(h_pad=3) plt.show()
code
72069892/cell_3
[ "image_output_1.png" ]
! pip install pycaret
code
72069892/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') (train.shape, test.shape, submission.shape) train.drop('id', axis=1, inplace=True) test.drop('id', axis=1, inplace=True) train.nunique() fig, axes =plt.subplots(5,2, figsize=(15,15), sharex=True) axes = axes.flatten() object_bol = train.dtypes == 'object' for ax, catplot in zip(axes, train.dtypes[object_bol].index): sns.countplot(y=catplot, data=train, ax=ax) plt.tight_layout() plt.show() fig = plt.figure(figsize = (15, 60)) for i in range(len(train.columns.tolist()[10:24])): plt.subplot(20,5,i+1) sns.set_style("white") plt.title(train.columns.tolist()[10:24][i], size = 12, fontname = 'monospace') a = sns.kdeplot(train[train.columns.tolist()[10:24][i]], shade = True, alpha = 0.9, linewidth = 1.5, facecolor=(1, 1, 1, 0), edgecolor=".2") plt.ylabel('') plt.xlabel('') plt.xticks(fontname = 'monospace') plt.yticks([]) for j in ['right', 'left', 'top']: a.spines[j].set_visible(False) a.spines['bottom'].set_linewidth(1.2) fig.tight_layout(h_pad = 3) plt.show() fig = plt.figure(figsize=(15, 60)) for i in range(len(train.columns.tolist()[10:24])): plt.subplot(20, 5, i + 1) sns.set_style('white') plt.title(train.columns.tolist()[10:24][i], size=12, fontname='monospace') a = sns.boxplot(train[train.columns.tolist()[10:24][i]], linewidth=2.5, color='white') plt.ylabel('') plt.xlabel('') plt.xticks(fontname='monospace') plt.yticks([]) for j in ['right', 'left', 'top']: a.spines[j].set_visible(False) a.spines['bottom'].set_linewidth(1.2) fig.tight_layout(h_pad=3) plt.show()
code
72069892/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') (train.shape, test.shape, submission.shape) train.drop('id', axis=1, inplace=True) test.drop('id', axis=1, inplace=True) train.nunique() fig, axes = plt.subplots(5, 2, figsize=(15, 15), sharex=True) axes = axes.flatten() object_bol = train.dtypes == 'object' for ax, catplot in zip(axes, train.dtypes[object_bol].index): sns.countplot(y=catplot, data=train, ax=ax) plt.tight_layout() plt.show()
code
90157177/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd eqLosses = pd.read_csv('/kaggle/input/2022-ukraine-russian-war/russia_losses_equipment.csv') personnelLosses = pd.read_csv('/kaggle/input/2022-ukraine-russian-war/russia_losses_personnel.csv')
code
130006594/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd path = '/kaggle/input/breast-cancer-wisconsin-data/data.csv' df = pd.read_csv(path, index_col=0) df.shape df.columns df.isnull().values.any() df.isnull().sum() df.drop('Unnamed: 32', axis=1, inplace=True) df.isnull().values.any() dup = df.loc[df.duplicated(), :] len(dup) corr = df.corr() corr
code
130006594/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd path = '/kaggle/input/breast-cancer-wisconsin-data/data.csv' df = pd.read_csv(path, index_col=0) df.shape df.columns df.isnull().values.any()
code
130006594/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd path = '/kaggle/input/breast-cancer-wisconsin-data/data.csv' df = pd.read_csv(path, index_col=0) df.shape df.info()
code
130006594/cell_25
[ "image_output_1.png" ]
import pandas as pd path = '/kaggle/input/breast-cancer-wisconsin-data/data.csv' df = pd.read_csv(path, index_col=0) df.shape df.columns df.isnull().values.any() df.isnull().sum() df.drop('Unnamed: 32', axis=1, inplace=True) df.isnull().values.any() dup = df.loc[df.duplicated(), :] len(dup) corr = df.corr() corr labels = ['B', 'M'] df['diagnosis'].value_counts().plot(kind='bar', figsize=(4, 3))
code
130006594/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd path = '/kaggle/input/breast-cancer-wisconsin-data/data.csv' df = pd.read_csv(path, index_col=0) df.shape df.columns df.isnull().values.any() df.isnull().sum() df.drop('Unnamed: 32', axis=1, inplace=True) df.isnull().values.any() dup = df.loc[df.duplicated(), :] len(dup) corr = df.corr() corr df[170:180]
code
130006594/cell_33
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, confusion_matrix, f1_score, precision_score, recall_score model = LogisticRegression() model.fit(X_train, y_train) X_train_prediction = model.predict(X_train) training_data_accuracy = accuracy_score(y_train, X_train_prediction) training_data_accuracy X_test_prediction = model.predict(X_test) test_data_accuracy = accuracy_score(y_test, X_test_prediction) test_data_accuracy
code
130006594/cell_11
[ "text_html_output_1.png" ]
import pandas as pd path = '/kaggle/input/breast-cancer-wisconsin-data/data.csv' df = pd.read_csv(path, index_col=0) df.shape df.columns df.describe()
code
130006594/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd path = '/kaggle/input/breast-cancer-wisconsin-data/data.csv' df = pd.read_csv(path, index_col=0) df.shape df.columns df.isnull().values.any() df.isnull().sum() df.drop('Unnamed: 32', axis=1, inplace=True) df.isnull().values.any() dup = df.loc[df.duplicated(), :] len(dup)
code
130006594/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd path = '/kaggle/input/breast-cancer-wisconsin-data/data.csv' df = pd.read_csv(path, index_col=0) df.shape
code
130006594/cell_32
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, confusion_matrix, f1_score, precision_score, recall_score model = LogisticRegression() model.fit(X_train, y_train) X_train_prediction = model.predict(X_train) training_data_accuracy = accuracy_score(y_train, X_train_prediction) training_data_accuracy
code
130006594/cell_28
[ "image_output_1.png" ]
import pandas as pd path = '/kaggle/input/breast-cancer-wisconsin-data/data.csv' df = pd.read_csv(path, index_col=0) df.shape df.columns df.isnull().values.any() df.isnull().sum() df.drop('Unnamed: 32', axis=1, inplace=True) df.isnull().values.any() dup = df.loc[df.duplicated(), :] len(dup) corr = df.corr() corr labels = ['B', 'M'] label = [labels.index(i) for i in df['diagnosis']] (label[:5], df['diagnosis'][:5]) X = df.drop(columns='diagnosis', axis=1) y = label X
code
130006594/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd path = '/kaggle/input/breast-cancer-wisconsin-data/data.csv' df = pd.read_csv(path, index_col=0) df.shape df.head()
code
130006594/cell_17
[ "text_html_output_1.png" ]
import pandas as pd path = '/kaggle/input/breast-cancer-wisconsin-data/data.csv' df = pd.read_csv(path, index_col=0) df.shape df.columns df.isnull().values.any() df.isnull().sum() df.drop('Unnamed: 32', axis=1, inplace=True) df.isnull().values.any()
code
130006594/cell_35
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, confusion_matrix, f1_score, precision_score, recall_score import matplotlib.pyplot as plt import pandas as pd import seaborn as sns path = '/kaggle/input/breast-cancer-wisconsin-data/data.csv' df = pd.read_csv(path, index_col=0) df.shape df.columns df.isnull().values.any() df.isnull().sum() df.drop('Unnamed: 32', axis=1, inplace=True) df.isnull().values.any() dup = df.loc[df.duplicated(), :] len(dup) corr = df.corr() corr sns.set(rc={'figure.figsize': (7, 7)}) fig, ax = plt.subplots(figsize=(7, 3)) sns.barplot(x="radius_mean", y="texture_mean", ax=ax, data=df[170:180]) plt.title("Radius Mean vs Texture Mean",fontsize=15) plt.xlabel("Radius Mean") plt.ylabel("Texture Mean") plt.show() plt.style.use("ggplot") model = LogisticRegression() model.fit(X_train, y_train) X_train_prediction = model.predict(X_train) training_data_accuracy = accuracy_score(y_train, X_train_prediction) training_data_accuracy X_test_prediction = model.predict(X_test) test_data_accuracy = accuracy_score(y_test, X_test_prediction) test_data_accuracy fig, ax = plt.subplots(figsize=(4, 4)) sns.heatmap(confusion_matrix(y_test, X_test_prediction), annot=True, ax=ax)
code
130006594/cell_31
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X_train, y_train)
code
130006594/cell_24
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns path = '/kaggle/input/breast-cancer-wisconsin-data/data.csv' df = pd.read_csv(path, index_col=0) df.shape df.columns df.isnull().values.any() df.isnull().sum() df.drop('Unnamed: 32', axis=1, inplace=True) df.isnull().values.any() dup = df.loc[df.duplicated(), :] len(dup) corr = df.corr() corr sns.set(rc={'figure.figsize': (7, 7)}) fig, ax = plt.subplots(figsize=(7, 3)) sns.barplot(x='radius_mean', y='texture_mean', ax=ax, data=df[170:180]) plt.title('Radius Mean vs Texture Mean', fontsize=15) plt.xlabel('Radius Mean') plt.ylabel('Texture Mean') plt.show() plt.style.use('ggplot')
code
130006594/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd path = '/kaggle/input/breast-cancer-wisconsin-data/data.csv' df = pd.read_csv(path, index_col=0) df.shape df.columns df.isnull().values.any() df.isnull().sum()
code
130006594/cell_22
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns path = '/kaggle/input/breast-cancer-wisconsin-data/data.csv' df = pd.read_csv(path, index_col=0) df.shape df.columns df.isnull().values.any() df.isnull().sum() df.drop('Unnamed: 32', axis=1, inplace=True) df.isnull().values.any() dup = df.loc[df.duplicated(), :] len(dup) corr = df.corr() corr sns.set(rc={'figure.figsize': (7, 7)}) sns.heatmap(corr, cmap='RdBu') plt.show()
code
130006594/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd path = '/kaggle/input/breast-cancer-wisconsin-data/data.csv' df = pd.read_csv(path, index_col=0) df.shape df.columns
code
130006594/cell_27
[ "text_html_output_1.png" ]
import pandas as pd path = '/kaggle/input/breast-cancer-wisconsin-data/data.csv' df = pd.read_csv(path, index_col=0) df.shape df.columns df.isnull().values.any() df.isnull().sum() df.drop('Unnamed: 32', axis=1, inplace=True) df.isnull().values.any() dup = df.loc[df.duplicated(), :] len(dup) corr = df.corr() corr labels = ['B', 'M'] label = [labels.index(i) for i in df['diagnosis']] (label[:5], df['diagnosis'][:5])
code
130006594/cell_36
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, confusion_matrix, f1_score, precision_score, recall_score model = LogisticRegression() model.fit(X_train, y_train) X_train_prediction = model.predict(X_train) training_data_accuracy = accuracy_score(y_train, X_train_prediction) training_data_accuracy X_test_prediction = model.predict(X_test) test_data_accuracy = accuracy_score(y_test, X_test_prediction) test_data_accuracy f1s = f1_score(y_test, X_test_prediction) ps = precision_score(y_test, X_test_prediction) rs = recall_score(y_test, X_test_prediction) print('The evaluation metrics are given below: \nf1_score:', f1s, '\nprecision_score:', ps, '\nrecall_score:', rs)
code
48162513/cell_13
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.graph_objs as go import plotly.offline as py data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') questions = data.iloc[0, :].T data = data.iloc[1:, :] data.rename({'Q1': 'AGE GROUP'}, axis=1, inplace=True) data.rename({'Q2': 'GENDER'}, axis=1, inplace=True) data.rename({'Q3': 'COUNTRY'}, axis=1, inplace=True) data.rename({'Q4': 'EDUCATION'}, axis=1, inplace=True) data.rename({'Q5': 'TITLE'}, axis=1, inplace=True) data.rename({'Q6': 'CODING EXP'}, axis=1, inplace=True) data.rename({'Q8': '1ST LANG'}, axis=1, inplace=True) idata = data[data['COUNTRY'] == 'India'] imale = idata[idata['GENDER'] == 'Man'] ifemale = idata[idata['GENDER'] == 'Woman'] country_wise_distribution = data['COUNTRY'].value_counts() fig = px.choropleth(country_wise_distribution.values, locations=country_wise_distribution.index, locationmode='country names', color=country_wise_distribution.values, labels={'color': 'Count', 'locations': 'Location'}, color_continuous_scale=px.colors.sequential.OrRd) fig.update_layout(title='COUNTRYWISE DISTRIBUTION') fig = px.histogram(data, y="COUNTRY", histnorm='percent') fig.update_layout(xaxis={"ticksuffix":"%"}) fig.update_layout(xaxis_title="COUNT PERCENTAGE") fig.update_traces(marker_color='rgb(255,128,128)', marker_line_color='rgb(255,128,128)', marker_line_width=1.5, opacity=1) fig.show() counts = data['GENDER'].value_counts(sort=True) labels = counts.index values = counts.values o_pie = go.Pie(labels=labels, values=values, name='Overall', hole=0.3, domain={'x': [0, 0.46]}) icounts = idata['GENDER'].value_counts(sort=True) ilabels = icounts.index ivalues = icounts.values i_pie = go.Pie(labels=ilabels, values=ivalues, name='India', hole=0.3, domain={'x': [0.52, 1]}) layout = dict(title='GENDER DISTRIBUTION', font=dict(size=12), legend=dict(orientation='h'), annotations=[dict(x=0.17, y=0.5, text='Overall', showarrow=False, font=dict(size=20)), dict(x=0.8, y=0.5, text='India', showarrow=False, font=dict(size=20))]) fig = dict(data=[o_pie, i_pie], layout=layout) labels = ['18-21', '22-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-69', '70+'] o_values = data['AGE GROUP'].value_counts(sort=True).values o_pie = go.Pie(labels=labels, values=o_values, name='Overall', hole=0.3, domain={'x': [0, 0.46]}) i_values = idata['AGE GROUP'].value_counts(sort=True).values i_pie = go.Pie(labels=labels, values=i_values, name='India', hole=0.3, domain={'x': [0.52, 1]}) layout = dict(title='AGE GROUPWISE DISTRIBUTION', font=dict(size=10), legend=dict(orientation='h'), annotations=[dict(x=0.17, y=0.5, text='Overall', showarrow=False, font=dict(size=20)), dict(x=0.8, y=0.5, text='India', showarrow=False, font=dict(size=20))]) fig = dict(data=[o_pie, i_pie], layout=layout) py.iplot(fig)
code
48162513/cell_6
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') questions = data.iloc[0, :].T data = data.iloc[1:, :] data.rename({'Q1': 'AGE GROUP'}, axis=1, inplace=True) data.rename({'Q2': 'GENDER'}, axis=1, inplace=True) data.rename({'Q3': 'COUNTRY'}, axis=1, inplace=True) data.rename({'Q4': 'EDUCATION'}, axis=1, inplace=True) data.rename({'Q5': 'TITLE'}, axis=1, inplace=True) data.rename({'Q6': 'CODING EXP'}, axis=1, inplace=True) data.rename({'Q8': '1ST LANG'}, axis=1, inplace=True) idata = data[data['COUNTRY'] == 'India'] imale = idata[idata['GENDER'] == 'Man'] ifemale = idata[idata['GENDER'] == 'Woman'] country_wise_distribution = data['COUNTRY'].value_counts() fig = px.choropleth(country_wise_distribution.values, locations=country_wise_distribution.index, locationmode='country names', color=country_wise_distribution.values, labels={'color': 'Count', 'locations': 'Location'}, color_continuous_scale=px.colors.sequential.OrRd) fig.update_layout(title='COUNTRYWISE DISTRIBUTION') fig.show()
code
48162513/cell_19
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.graph_objs as go import plotly.offline as py data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') questions = data.iloc[0, :].T data = data.iloc[1:, :] data.rename({'Q1': 'AGE GROUP'}, axis=1, inplace=True) data.rename({'Q2': 'GENDER'}, axis=1, inplace=True) data.rename({'Q3': 'COUNTRY'}, axis=1, inplace=True) data.rename({'Q4': 'EDUCATION'}, axis=1, inplace=True) data.rename({'Q5': 'TITLE'}, axis=1, inplace=True) data.rename({'Q6': 'CODING EXP'}, axis=1, inplace=True) data.rename({'Q8': '1ST LANG'}, axis=1, inplace=True) idata = data[data['COUNTRY'] == 'India'] imale = idata[idata['GENDER'] == 'Man'] ifemale = idata[idata['GENDER'] == 'Woman'] country_wise_distribution = data['COUNTRY'].value_counts() fig = px.choropleth(country_wise_distribution.values, locations=country_wise_distribution.index, locationmode='country names', color=country_wise_distribution.values, labels={'color': 'Count', 'locations': 'Location'}, color_continuous_scale=px.colors.sequential.OrRd) fig.update_layout(title='COUNTRYWISE DISTRIBUTION') fig = px.histogram(data, y="COUNTRY", histnorm='percent') fig.update_layout(xaxis={"ticksuffix":"%"}) fig.update_layout(xaxis_title="COUNT PERCENTAGE") fig.update_traces(marker_color='rgb(255,128,128)', marker_line_color='rgb(255,128,128)', marker_line_width=1.5, opacity=1) fig.show() counts = data['GENDER'].value_counts(sort=True) labels = counts.index values = counts.values o_pie = go.Pie(labels=labels, values=values, name='Overall', hole=0.3, domain={'x': [0, 0.46]}) icounts = idata['GENDER'].value_counts(sort=True) ilabels = icounts.index ivalues = icounts.values i_pie = go.Pie(labels=ilabels, values=ivalues, name='India', hole=0.3, domain={'x': [0.52, 1]}) layout = dict(title='GENDER DISTRIBUTION', font=dict(size=12), legend=dict(orientation='h'), annotations=[dict(x=0.17, y=0.5, text='Overall', showarrow=False, font=dict(size=20)), dict(x=0.8, y=0.5, text='India', showarrow=False, font=dict(size=20))]) fig = dict(data=[o_pie, i_pie], layout=layout) labels = ['18-21', '22-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-69', '70+'] o_values = data['AGE GROUP'].value_counts(sort=True).values o_pie = go.Pie(labels=labels, values=o_values, name='Overall', hole=0.3, domain={'x': [0, 0.46]}) i_values = idata['AGE GROUP'].value_counts(sort=True).values i_pie = go.Pie(labels=labels, values=i_values, name='India', hole=0.3, domain={'x': [0.52, 1]}) layout = dict(title='AGE GROUPWISE DISTRIBUTION', font=dict(size=10), legend=dict(orientation='h'), annotations=[dict(x=0.17, y=0.5, text='Overall', showarrow=False, font=dict(size=20)), dict(x=0.8, y=0.5, text='India', showarrow=False, font=dict(size=20))]) fig = dict(data=[o_pie, i_pie], layout=layout) counts = data['EDUCATION'].value_counts(sort=True) labels = counts.index values = counts.values o_pie = go.Pie(labels=labels, values=values, name='Overall', hole=0.3, domain={'x': [0, 0.46]}) icounts = idata['EDUCATION'].value_counts(sort=True) ilabels = icounts.index ivalues = icounts.values i_pie = go.Pie(labels=ilabels, values=ivalues, name='India', hole=0.3, domain={'x': [0.52, 1]}) layout = dict(title='HIGHER EDUCATION', font=dict(size=12), legend=dict(orientation='h'), annotations=[dict(x=0.17, y=0.5, text='Overall', showarrow=False, font=dict(size=20)), dict(x=0.8, y=0.5, text='India', showarrow=False, font=dict(size=20))]) fig = dict(data=[o_pie, i_pie], layout=layout) fig = px.histogram(idata, y="EDUCATION", color="AGE GROUP") fig.update_layout(title = "AGE GROUPWISE HIGHER EDUCATION DISTRIBUTION - INDIA") fig.show() count_male = imale['EDUCATION'].value_counts().reset_index() count_female = ifemale['EDUCATION'].value_counts().reset_index() pie_men = go.Pie(labels=count_male['index'], values=count_male['EDUCATION'], name='Men', hole=0.4, domain={'x': [0, 0.46]}) pie_women = go.Pie(labels=count_female['index'], values=count_female['EDUCATION'], name='Women', hole=0.5, domain={'x': [0.52, 1]}) layout = dict(title='GENDERWISE HIGHER EDUCATION - INDIA', font=dict(size=12), legend=dict(orientation='h'), annotations=[dict(x=0.19, y=0.5, text='Men', showarrow=False, font=dict(size=20)), dict(x=0.81, y=0.5, text='Women', showarrow=False, font=dict(size=20))]) fig = dict(data=[pie_men, pie_women], layout=layout) py.iplot(fig)
code
48162513/cell_7
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') questions = data.iloc[0, :].T data = data.iloc[1:, :] data.rename({'Q1': 'AGE GROUP'}, axis=1, inplace=True) data.rename({'Q2': 'GENDER'}, axis=1, inplace=True) data.rename({'Q3': 'COUNTRY'}, axis=1, inplace=True) data.rename({'Q4': 'EDUCATION'}, axis=1, inplace=True) data.rename({'Q5': 'TITLE'}, axis=1, inplace=True) data.rename({'Q6': 'CODING EXP'}, axis=1, inplace=True) data.rename({'Q8': '1ST LANG'}, axis=1, inplace=True) idata = data[data['COUNTRY'] == 'India'] imale = idata[idata['GENDER'] == 'Man'] ifemale = idata[idata['GENDER'] == 'Woman'] country_wise_distribution = data['COUNTRY'].value_counts() fig = px.choropleth(country_wise_distribution.values, locations=country_wise_distribution.index, locationmode='country names', color=country_wise_distribution.values, labels={'color': 'Count', 'locations': 'Location'}, color_continuous_scale=px.colors.sequential.OrRd) fig.update_layout(title='COUNTRYWISE DISTRIBUTION') fig = px.histogram(data, y='COUNTRY', histnorm='percent') fig.update_layout(xaxis={'ticksuffix': '%'}) fig.update_layout(xaxis_title='COUNT PERCENTAGE') fig.update_traces(marker_color='rgb(255,128,128)', marker_line_color='rgb(255,128,128)', marker_line_width=1.5, opacity=1) fig.show()
code
48162513/cell_16
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.graph_objs as go import plotly.offline as py data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') questions = data.iloc[0, :].T data = data.iloc[1:, :] data.rename({'Q1': 'AGE GROUP'}, axis=1, inplace=True) data.rename({'Q2': 'GENDER'}, axis=1, inplace=True) data.rename({'Q3': 'COUNTRY'}, axis=1, inplace=True) data.rename({'Q4': 'EDUCATION'}, axis=1, inplace=True) data.rename({'Q5': 'TITLE'}, axis=1, inplace=True) data.rename({'Q6': 'CODING EXP'}, axis=1, inplace=True) data.rename({'Q8': '1ST LANG'}, axis=1, inplace=True) idata = data[data['COUNTRY'] == 'India'] imale = idata[idata['GENDER'] == 'Man'] ifemale = idata[idata['GENDER'] == 'Woman'] country_wise_distribution = data['COUNTRY'].value_counts() fig = px.choropleth(country_wise_distribution.values, locations=country_wise_distribution.index, locationmode='country names', color=country_wise_distribution.values, labels={'color': 'Count', 'locations': 'Location'}, color_continuous_scale=px.colors.sequential.OrRd) fig.update_layout(title='COUNTRYWISE DISTRIBUTION') fig = px.histogram(data, y="COUNTRY", histnorm='percent') fig.update_layout(xaxis={"ticksuffix":"%"}) fig.update_layout(xaxis_title="COUNT PERCENTAGE") fig.update_traces(marker_color='rgb(255,128,128)', marker_line_color='rgb(255,128,128)', marker_line_width=1.5, opacity=1) fig.show() counts = data['GENDER'].value_counts(sort=True) labels = counts.index values = counts.values o_pie = go.Pie(labels=labels, values=values, name='Overall', hole=0.3, domain={'x': [0, 0.46]}) icounts = idata['GENDER'].value_counts(sort=True) ilabels = icounts.index ivalues = icounts.values i_pie = go.Pie(labels=ilabels, values=ivalues, name='India', hole=0.3, domain={'x': [0.52, 1]}) layout = dict(title='GENDER DISTRIBUTION', font=dict(size=12), legend=dict(orientation='h'), annotations=[dict(x=0.17, y=0.5, text='Overall', showarrow=False, font=dict(size=20)), dict(x=0.8, y=0.5, text='India', showarrow=False, font=dict(size=20))]) fig = dict(data=[o_pie, i_pie], layout=layout) labels = ['18-21', '22-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-69', '70+'] o_values = data['AGE GROUP'].value_counts(sort=True).values o_pie = go.Pie(labels=labels, values=o_values, name='Overall', hole=0.3, domain={'x': [0, 0.46]}) i_values = idata['AGE GROUP'].value_counts(sort=True).values i_pie = go.Pie(labels=labels, values=i_values, name='India', hole=0.3, domain={'x': [0.52, 1]}) layout = dict(title='AGE GROUPWISE DISTRIBUTION', font=dict(size=10), legend=dict(orientation='h'), annotations=[dict(x=0.17, y=0.5, text='Overall', showarrow=False, font=dict(size=20)), dict(x=0.8, y=0.5, text='India', showarrow=False, font=dict(size=20))]) fig = dict(data=[o_pie, i_pie], layout=layout) counts = data['EDUCATION'].value_counts(sort=True) labels = counts.index values = counts.values o_pie = go.Pie(labels=labels, values=values, name='Overall', hole=0.3, domain={'x': [0, 0.46]}) icounts = idata['EDUCATION'].value_counts(sort=True) ilabels = icounts.index ivalues = icounts.values i_pie = go.Pie(labels=ilabels, values=ivalues, name='India', hole=0.3, domain={'x': [0.52, 1]}) layout = dict(title='HIGHER EDUCATION', font=dict(size=12), legend=dict(orientation='h'), annotations=[dict(x=0.17, y=0.5, text='Overall', showarrow=False, font=dict(size=20)), dict(x=0.8, y=0.5, text='India', showarrow=False, font=dict(size=20))]) fig = dict(data=[o_pie, i_pie], layout=layout) py.iplot(fig)
code
48162513/cell_17
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.graph_objs as go import plotly.offline as py data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') questions = data.iloc[0, :].T data = data.iloc[1:, :] data.rename({'Q1': 'AGE GROUP'}, axis=1, inplace=True) data.rename({'Q2': 'GENDER'}, axis=1, inplace=True) data.rename({'Q3': 'COUNTRY'}, axis=1, inplace=True) data.rename({'Q4': 'EDUCATION'}, axis=1, inplace=True) data.rename({'Q5': 'TITLE'}, axis=1, inplace=True) data.rename({'Q6': 'CODING EXP'}, axis=1, inplace=True) data.rename({'Q8': '1ST LANG'}, axis=1, inplace=True) idata = data[data['COUNTRY'] == 'India'] imale = idata[idata['GENDER'] == 'Man'] ifemale = idata[idata['GENDER'] == 'Woman'] country_wise_distribution = data['COUNTRY'].value_counts() fig = px.choropleth(country_wise_distribution.values, locations=country_wise_distribution.index, locationmode='country names', color=country_wise_distribution.values, labels={'color': 'Count', 'locations': 'Location'}, color_continuous_scale=px.colors.sequential.OrRd) fig.update_layout(title='COUNTRYWISE DISTRIBUTION') fig = px.histogram(data, y="COUNTRY", histnorm='percent') fig.update_layout(xaxis={"ticksuffix":"%"}) fig.update_layout(xaxis_title="COUNT PERCENTAGE") fig.update_traces(marker_color='rgb(255,128,128)', marker_line_color='rgb(255,128,128)', marker_line_width=1.5, opacity=1) fig.show() counts = data['GENDER'].value_counts(sort=True) labels = counts.index values = counts.values o_pie = go.Pie(labels=labels, values=values, name='Overall', hole=0.3, domain={'x': [0, 0.46]}) icounts = idata['GENDER'].value_counts(sort=True) ilabels = icounts.index ivalues = icounts.values i_pie = go.Pie(labels=ilabels, values=ivalues, name='India', hole=0.3, domain={'x': [0.52, 1]}) layout = dict(title='GENDER DISTRIBUTION', font=dict(size=12), legend=dict(orientation='h'), annotations=[dict(x=0.17, y=0.5, text='Overall', showarrow=False, font=dict(size=20)), dict(x=0.8, y=0.5, text='India', showarrow=False, font=dict(size=20))]) fig = dict(data=[o_pie, i_pie], layout=layout) labels = ['18-21', '22-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-69', '70+'] o_values = data['AGE GROUP'].value_counts(sort=True).values o_pie = go.Pie(labels=labels, values=o_values, name='Overall', hole=0.3, domain={'x': [0, 0.46]}) i_values = idata['AGE GROUP'].value_counts(sort=True).values i_pie = go.Pie(labels=labels, values=i_values, name='India', hole=0.3, domain={'x': [0.52, 1]}) layout = dict(title='AGE GROUPWISE DISTRIBUTION', font=dict(size=10), legend=dict(orientation='h'), annotations=[dict(x=0.17, y=0.5, text='Overall', showarrow=False, font=dict(size=20)), dict(x=0.8, y=0.5, text='India', showarrow=False, font=dict(size=20))]) fig = dict(data=[o_pie, i_pie], layout=layout) counts = data['EDUCATION'].value_counts(sort=True) labels = counts.index values = counts.values o_pie = go.Pie(labels=labels, values=values, name='Overall', hole=0.3, domain={'x': [0, 0.46]}) icounts = idata['EDUCATION'].value_counts(sort=True) ilabels = icounts.index ivalues = icounts.values i_pie = go.Pie(labels=ilabels, values=ivalues, name='India', hole=0.3, domain={'x': [0.52, 1]}) layout = dict(title='HIGHER EDUCATION', font=dict(size=12), legend=dict(orientation='h'), annotations=[dict(x=0.17, y=0.5, text='Overall', showarrow=False, font=dict(size=20)), dict(x=0.8, y=0.5, text='India', showarrow=False, font=dict(size=20))]) fig = dict(data=[o_pie, i_pie], layout=layout) fig = px.histogram(idata, y='EDUCATION', color='AGE GROUP') fig.update_layout(title='AGE GROUPWISE HIGHER EDUCATION DISTRIBUTION - INDIA') fig.show()
code
48162513/cell_22
[ "text_html_output_1.png" ]
import pandas as pd import plotly.express as px import plotly.graph_objs as go import plotly.offline as py data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') questions = data.iloc[0, :].T data = data.iloc[1:, :] data.rename({'Q1': 'AGE GROUP'}, axis=1, inplace=True) data.rename({'Q2': 'GENDER'}, axis=1, inplace=True) data.rename({'Q3': 'COUNTRY'}, axis=1, inplace=True) data.rename({'Q4': 'EDUCATION'}, axis=1, inplace=True) data.rename({'Q5': 'TITLE'}, axis=1, inplace=True) data.rename({'Q6': 'CODING EXP'}, axis=1, inplace=True) data.rename({'Q8': '1ST LANG'}, axis=1, inplace=True) idata = data[data['COUNTRY'] == 'India'] imale = idata[idata['GENDER'] == 'Man'] ifemale = idata[idata['GENDER'] == 'Woman'] country_wise_distribution = data['COUNTRY'].value_counts() fig = px.choropleth(country_wise_distribution.values, locations=country_wise_distribution.index, locationmode='country names', color=country_wise_distribution.values, labels={'color': 'Count', 'locations': 'Location'}, color_continuous_scale=px.colors.sequential.OrRd) fig.update_layout(title='COUNTRYWISE DISTRIBUTION') fig = px.histogram(data, y="COUNTRY", histnorm='percent') fig.update_layout(xaxis={"ticksuffix":"%"}) fig.update_layout(xaxis_title="COUNT PERCENTAGE") fig.update_traces(marker_color='rgb(255,128,128)', marker_line_color='rgb(255,128,128)', marker_line_width=1.5, opacity=1) fig.show() counts = data['GENDER'].value_counts(sort=True) labels = counts.index values = counts.values o_pie = go.Pie(labels=labels, values=values, name='Overall', hole=0.3, domain={'x': [0, 0.46]}) icounts = idata['GENDER'].value_counts(sort=True) ilabels = icounts.index ivalues = icounts.values i_pie = go.Pie(labels=ilabels, values=ivalues, name='India', hole=0.3, domain={'x': [0.52, 1]}) layout = dict(title='GENDER DISTRIBUTION', font=dict(size=12), legend=dict(orientation='h'), annotations=[dict(x=0.17, y=0.5, text='Overall', showarrow=False, font=dict(size=20)), dict(x=0.8, y=0.5, text='India', showarrow=False, font=dict(size=20))]) fig = dict(data=[o_pie, i_pie], layout=layout) labels = ['18-21', '22-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-69', '70+'] o_values = data['AGE GROUP'].value_counts(sort=True).values o_pie = go.Pie(labels=labels, values=o_values, name='Overall', hole=0.3, domain={'x': [0, 0.46]}) i_values = idata['AGE GROUP'].value_counts(sort=True).values i_pie = go.Pie(labels=labels, values=i_values, name='India', hole=0.3, domain={'x': [0.52, 1]}) layout = dict(title='AGE GROUPWISE DISTRIBUTION', font=dict(size=10), legend=dict(orientation='h'), annotations=[dict(x=0.17, y=0.5, text='Overall', showarrow=False, font=dict(size=20)), dict(x=0.8, y=0.5, text='India', showarrow=False, font=dict(size=20))]) fig = dict(data=[o_pie, i_pie], layout=layout) counts = data['EDUCATION'].value_counts(sort=True) labels = counts.index values = counts.values o_pie = go.Pie(labels=labels, values=values, name='Overall', hole=0.3, domain={'x': [0, 0.46]}) icounts = idata['EDUCATION'].value_counts(sort=True) ilabels = icounts.index ivalues = icounts.values i_pie = go.Pie(labels=ilabels, values=ivalues, name='India', hole=0.3, domain={'x': [0.52, 1]}) layout = dict(title='HIGHER EDUCATION', font=dict(size=12), legend=dict(orientation='h'), annotations=[dict(x=0.17, y=0.5, text='Overall', showarrow=False, font=dict(size=20)), dict(x=0.8, y=0.5, text='India', showarrow=False, font=dict(size=20))]) fig = dict(data=[o_pie, i_pie], layout=layout) fig = px.histogram(idata, y="EDUCATION", color="AGE GROUP") fig.update_layout(title = "AGE GROUPWISE HIGHER EDUCATION DISTRIBUTION - INDIA") fig.show() count_male = imale['EDUCATION'].value_counts().reset_index() count_female = ifemale['EDUCATION'].value_counts().reset_index() pie_men = go.Pie(labels=count_male['index'], values=count_male['EDUCATION'], name='Men', hole=0.4, domain={'x': [0, 0.46]}) pie_women = go.Pie(labels=count_female['index'], values=count_female['EDUCATION'], name='Women', hole=0.5, domain={'x': [0.52, 1]}) layout = dict(title='GENDERWISE HIGHER EDUCATION - INDIA', font=dict(size=12), legend=dict(orientation='h'), annotations=[dict(x=0.19, y=0.5, text='Men', showarrow=False, font=dict(size=20)), dict(x=0.81, y=0.5, text='Women', showarrow=False, font=dict(size=20))]) fig = dict(data=[pie_men, pie_women], layout=layout) fig = px.histogram(idata, y='TITLE', color='AGE GROUP') fig.update_layout(title='AGE GROUPWISE CURRENT ROLE/ TITLE - INDIA') fig.show()
code
48162513/cell_10
[ "text_html_output_2.png" ]
import pandas as pd import plotly.express as px import plotly.graph_objs as go import plotly.offline as py data = pd.read_csv('/kaggle/input/kaggle-survey-2020/kaggle_survey_2020_responses.csv') questions = data.iloc[0, :].T data = data.iloc[1:, :] data.rename({'Q1': 'AGE GROUP'}, axis=1, inplace=True) data.rename({'Q2': 'GENDER'}, axis=1, inplace=True) data.rename({'Q3': 'COUNTRY'}, axis=1, inplace=True) data.rename({'Q4': 'EDUCATION'}, axis=1, inplace=True) data.rename({'Q5': 'TITLE'}, axis=1, inplace=True) data.rename({'Q6': 'CODING EXP'}, axis=1, inplace=True) data.rename({'Q8': '1ST LANG'}, axis=1, inplace=True) idata = data[data['COUNTRY'] == 'India'] imale = idata[idata['GENDER'] == 'Man'] ifemale = idata[idata['GENDER'] == 'Woman'] country_wise_distribution = data['COUNTRY'].value_counts() fig = px.choropleth(country_wise_distribution.values, locations=country_wise_distribution.index, locationmode='country names', color=country_wise_distribution.values, labels={'color': 'Count', 'locations': 'Location'}, color_continuous_scale=px.colors.sequential.OrRd) fig.update_layout(title='COUNTRYWISE DISTRIBUTION') fig = px.histogram(data, y="COUNTRY", histnorm='percent') fig.update_layout(xaxis={"ticksuffix":"%"}) fig.update_layout(xaxis_title="COUNT PERCENTAGE") fig.update_traces(marker_color='rgb(255,128,128)', marker_line_color='rgb(255,128,128)', marker_line_width=1.5, opacity=1) fig.show() counts = data['GENDER'].value_counts(sort=True) labels = counts.index values = counts.values o_pie = go.Pie(labels=labels, values=values, name='Overall', hole=0.3, domain={'x': [0, 0.46]}) icounts = idata['GENDER'].value_counts(sort=True) ilabels = icounts.index ivalues = icounts.values i_pie = go.Pie(labels=ilabels, values=ivalues, name='India', hole=0.3, domain={'x': [0.52, 1]}) layout = dict(title='GENDER DISTRIBUTION', font=dict(size=12), legend=dict(orientation='h'), annotations=[dict(x=0.17, y=0.5, text='Overall', showarrow=False, font=dict(size=20)), dict(x=0.8, y=0.5, text='India', showarrow=False, font=dict(size=20))]) fig = dict(data=[o_pie, i_pie], layout=layout) py.iplot(fig)
code
50222118/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def create_mean_std_df(df): means = df.mean() stds = df.std() ret_df = pd.concat([means, stds], axis=1).reset_index() ret_df.columns = ['index', 'mean', 'std'] ret_df['pref'] = ret_df['index'].apply(lambda x: x.split('-')[0]) ret_df['post'] = ret_df['index'].apply(lambda x: x.split('-')[1]) return ret_df def scatter(y, x=None, color= None): fig, ax = plt.subplots() un_c = color.unique() for i, col in enumerate(un_c): y_i = y[color == col] if type(x) != pd.core.series.Series: x_i = range(0 + i * (y.shape[0] - y_i.shape[0]), (1 - i)*y_i.shape[0] + i * y.shape[0]) else: x_i = x[color == col] ax.scatter(x_i, y_i, c=col, label=col, alpha=0.3) ax.set_ylabel(y.name) ax.legend() ax.grid(True) plt.show() tr = create_mean_std_df(train_features.iloc[:, 4:]) corrMatrix = train_features.corr() corrMatrix.tail(10)
code
50222118/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def create_mean_std_df(df): means = df.mean() stds = df.std() ret_df = pd.concat([means, stds], axis=1).reset_index() ret_df.columns = ['index', 'mean', 'std'] ret_df['pref'] = ret_df['index'].apply(lambda x: x.split('-')[0]) ret_df['post'] = ret_df['index'].apply(lambda x: x.split('-')[1]) return ret_df def scatter(y, x=None, color= None): fig, ax = plt.subplots() un_c = color.unique() for i, col in enumerate(un_c): y_i = y[color == col] if type(x) != pd.core.series.Series: x_i = range(0 + i * (y.shape[0] - y_i.shape[0]), (1 - i)*y_i.shape[0] + i * y.shape[0]) else: x_i = x[color == col] ax.scatter(x_i, y_i, c=col, label=col, alpha=0.3) ax.set_ylabel(y.name) ax.legend() ax.grid(True) plt.show() tr = create_mean_std_df(train_features.iloc[:, 4:]) scatter(y=tr['mean'], color=tr['pref'])
code
50222118/cell_25
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from tqdm import tqdm import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def create_mean_std_df(df): means = df.mean() stds = df.std() ret_df = pd.concat([means, stds], axis=1).reset_index() ret_df.columns = ['index', 'mean', 'std'] ret_df['pref'] = ret_df['index'].apply(lambda x: x.split('-')[0]) ret_df['post'] = ret_df['index'].apply(lambda x: x.split('-')[1]) return ret_df def scatter(y, x=None, color= None): fig, ax = plt.subplots() un_c = color.unique() for i, col in enumerate(un_c): y_i = y[color == col] if type(x) != pd.core.series.Series: x_i = range(0 + i * (y.shape[0] - y_i.shape[0]), (1 - i)*y_i.shape[0] + i * y.shape[0]) else: x_i = x[color == col] ax.scatter(x_i, y_i, c=col, label=col, alpha=0.3) ax.set_ylabel(y.name) ax.legend() ax.grid(True) plt.show() tr = create_mean_std_df(train_features.iloc[:, 4:]) corrMatrix = train_features.corr() def mul_lab_logreg(test, train_X, train_y): sub = pd.DataFrame(test['sig_id']) col = train_y.columns.drop('sig_id') train_X.set_index('sig_id', inplace=True) df = pd.concat([train_X.iloc[:, 0], train_y.set_index('sig_id')], axis=1) for c in tqdm(col): y = df.loc[:, c] clf = LogisticRegression(random_state=0, class_weight=y.mean(), n_jobs=6).fit(train_X, y) clf.fit(train_X, y) sub[c] = clf.predict_proba(test.drop('sig_id', axis=1)).T[1] return sub clf = RandomForestClassifier(n_estimators=15, criterion='entropy', max_depth=15, max_samples=150, max_features=0.3, verbose=1, n_jobs=-1, random_state=1998, ccp_alpha=0.0) clf.fit(train_features.set_index('sig_id'), train_targets_scored.set_index('sig_id')) preds = clf.predict_proba(test_features.drop('sig_id', axis=1))
code
50222118/cell_4
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
set(test_features['sig_id']) & set(train_features['sig_id'])
code
50222118/cell_30
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from tqdm import tqdm import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def create_mean_std_df(df): means = df.mean() stds = df.std() ret_df = pd.concat([means, stds], axis=1).reset_index() ret_df.columns = ['index', 'mean', 'std'] ret_df['pref'] = ret_df['index'].apply(lambda x: x.split('-')[0]) ret_df['post'] = ret_df['index'].apply(lambda x: x.split('-')[1]) return ret_df def scatter(y, x=None, color= None): fig, ax = plt.subplots() un_c = color.unique() for i, col in enumerate(un_c): y_i = y[color == col] if type(x) != pd.core.series.Series: x_i = range(0 + i * (y.shape[0] - y_i.shape[0]), (1 - i)*y_i.shape[0] + i * y.shape[0]) else: x_i = x[color == col] ax.scatter(x_i, y_i, c=col, label=col, alpha=0.3) ax.set_ylabel(y.name) ax.legend() ax.grid(True) plt.show() tr = create_mean_std_df(train_features.iloc[:, 4:]) corrMatrix = train_features.corr() def mul_lab_logreg(test, train_X, train_y): sub = pd.DataFrame(test['sig_id']) col = train_y.columns.drop('sig_id') train_X.set_index('sig_id', inplace=True) df = pd.concat([train_X.iloc[:, 0], train_y.set_index('sig_id')], axis=1) for c in tqdm(col): y = df.loc[:, c] clf = LogisticRegression(random_state=0, class_weight=y.mean(), n_jobs=6).fit(train_X, y) clf.fit(train_X, y) sub[c] = clf.predict_proba(test.drop('sig_id', axis=1)).T[1] return sub clf = RandomForestClassifier(n_estimators=15, criterion='entropy', max_depth=15, max_samples=150, max_features=0.3, verbose=1, n_jobs=-1, random_state=1998, ccp_alpha=0.0) clf.fit(train_features.set_index('sig_id'), train_targets_scored.set_index('sig_id')) preds = clf.predict_proba(test_features.drop('sig_id', axis=1)) sub = pd.DataFrame(test_features['sig_id']) col = train_targets_scored.columns.drop('sig_id') col = train_targets_scored.columns.drop('sig_id') plt.bar(train_targets_scored.mean().index, train_targets_scored.mean())
code
50222118/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
train_features[['cp_dose']].value_counts()
code
50222118/cell_29
[ "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from tqdm import tqdm import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def create_mean_std_df(df): means = df.mean() stds = df.std() ret_df = pd.concat([means, stds], axis=1).reset_index() ret_df.columns = ['index', 'mean', 'std'] ret_df['pref'] = ret_df['index'].apply(lambda x: x.split('-')[0]) ret_df['post'] = ret_df['index'].apply(lambda x: x.split('-')[1]) return ret_df def scatter(y, x=None, color= None): fig, ax = plt.subplots() un_c = color.unique() for i, col in enumerate(un_c): y_i = y[color == col] if type(x) != pd.core.series.Series: x_i = range(0 + i * (y.shape[0] - y_i.shape[0]), (1 - i)*y_i.shape[0] + i * y.shape[0]) else: x_i = x[color == col] ax.scatter(x_i, y_i, c=col, label=col, alpha=0.3) ax.set_ylabel(y.name) ax.legend() ax.grid(True) plt.show() tr = create_mean_std_df(train_features.iloc[:, 4:]) corrMatrix = train_features.corr() def mul_lab_logreg(test, train_X, train_y): sub = pd.DataFrame(test['sig_id']) col = train_y.columns.drop('sig_id') train_X.set_index('sig_id', inplace=True) df = pd.concat([train_X.iloc[:, 0], train_y.set_index('sig_id')], axis=1) for c in tqdm(col): y = df.loc[:, c] clf = LogisticRegression(random_state=0, class_weight=y.mean(), n_jobs=6).fit(train_X, y) clf.fit(train_X, y) sub[c] = clf.predict_proba(test.drop('sig_id', axis=1)).T[1] return sub clf = RandomForestClassifier(n_estimators=15, criterion='entropy', max_depth=15, max_samples=150, max_features=0.3, verbose=1, n_jobs=-1, random_state=1998, ccp_alpha=0.0) clf.fit(train_features.set_index('sig_id'), train_targets_scored.set_index('sig_id')) preds = clf.predict_proba(test_features.drop('sig_id', axis=1)) sub = pd.DataFrame(test_features['sig_id']) col = train_targets_scored.columns.drop('sig_id') plt.bar(sub.mean().index, sub.mean())
code
50222118/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def create_mean_std_df(df): means = df.mean() stds = df.std() ret_df = pd.concat([means, stds], axis=1).reset_index() ret_df.columns = ['index', 'mean', 'std'] ret_df['pref'] = ret_df['index'].apply(lambda x: x.split('-')[0]) ret_df['post'] = ret_df['index'].apply(lambda x: x.split('-')[1]) return ret_df def scatter(y, x=None, color= None): fig, ax = plt.subplots() un_c = color.unique() for i, col in enumerate(un_c): y_i = y[color == col] if type(x) != pd.core.series.Series: x_i = range(0 + i * (y.shape[0] - y_i.shape[0]), (1 - i)*y_i.shape[0] + i * y.shape[0]) else: x_i = x[color == col] ax.scatter(x_i, y_i, c=col, label=col, alpha=0.3) ax.set_ylabel(y.name) ax.legend() ax.grid(True) plt.show() tr = create_mean_std_df(train_features.iloc[:, 4:]) scatter(y=tr['std'], x=tr['mean'], color=tr['pref'])
code
50222118/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
50222118/cell_32
[ "application_vnd.jupyter.stderr_output_1.png" ]
submit.reset_index().to_csv('submission.csv', index=None)
code
50222118/cell_28
[ "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from tqdm import tqdm import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def create_mean_std_df(df): means = df.mean() stds = df.std() ret_df = pd.concat([means, stds], axis=1).reset_index() ret_df.columns = ['index', 'mean', 'std'] ret_df['pref'] = ret_df['index'].apply(lambda x: x.split('-')[0]) ret_df['post'] = ret_df['index'].apply(lambda x: x.split('-')[1]) return ret_df def scatter(y, x=None, color= None): fig, ax = plt.subplots() un_c = color.unique() for i, col in enumerate(un_c): y_i = y[color == col] if type(x) != pd.core.series.Series: x_i = range(0 + i * (y.shape[0] - y_i.shape[0]), (1 - i)*y_i.shape[0] + i * y.shape[0]) else: x_i = x[color == col] ax.scatter(x_i, y_i, c=col, label=col, alpha=0.3) ax.set_ylabel(y.name) ax.legend() ax.grid(True) plt.show() tr = create_mean_std_df(train_features.iloc[:, 4:]) corrMatrix = train_features.corr() def mul_lab_logreg(test, train_X, train_y): sub = pd.DataFrame(test['sig_id']) col = train_y.columns.drop('sig_id') train_X.set_index('sig_id', inplace=True) df = pd.concat([train_X.iloc[:, 0], train_y.set_index('sig_id')], axis=1) for c in tqdm(col): y = df.loc[:, c] clf = LogisticRegression(random_state=0, class_weight=y.mean(), n_jobs=6).fit(train_X, y) clf.fit(train_X, y) sub[c] = clf.predict_proba(test.drop('sig_id', axis=1)).T[1] return sub def score(preds, true_y): log_preds = np.log(preds + 1e-08) log_inv_preds = np.log(1 - preds) total = true_y * log_preds + (1 - true_y) * log_inv_preds return total.sum().sum() / (preds.shape[0] * preds.shape[1]) clf = RandomForestClassifier(n_estimators=15, criterion='entropy', max_depth=15, max_samples=150, max_features=0.3, verbose=1, n_jobs=-1, random_state=1998, ccp_alpha=0.0) clf.fit(train_features.set_index('sig_id'), train_targets_scored.set_index('sig_id')) preds = clf.predict_proba(test_features.drop('sig_id', axis=1)) sub = pd.DataFrame(test_features['sig_id']) col = train_targets_scored.columns.drop('sig_id') col = train_targets_scored.columns.drop('sig_id') for p, c in tqdm(zip(preds, col)): print(c) sub[c] = p.T[1]
code
50222118/cell_16
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def create_mean_std_df(df): means = df.mean() stds = df.std() ret_df = pd.concat([means, stds], axis=1).reset_index() ret_df.columns = ['index', 'mean', 'std'] ret_df['pref'] = ret_df['index'].apply(lambda x: x.split('-')[0]) ret_df['post'] = ret_df['index'].apply(lambda x: x.split('-')[1]) return ret_df def scatter(y, x=None, color= None): fig, ax = plt.subplots() un_c = color.unique() for i, col in enumerate(un_c): y_i = y[color == col] if type(x) != pd.core.series.Series: x_i = range(0 + i * (y.shape[0] - y_i.shape[0]), (1 - i)*y_i.shape[0] + i * y.shape[0]) else: x_i = x[color == col] ax.scatter(x_i, y_i, c=col, label=col, alpha=0.3) ax.set_ylabel(y.name) ax.legend() ax.grid(True) plt.show() tr = create_mean_std_df(train_features.iloc[:, 4:]) corrMatrix = train_features.corr() plt.imshow(corrMatrix.sort_values(by=list(corrMatrix.columns))) plt.show()
code