path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
17139134/cell_12 | [
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/IMDB-Movie-Data.csv')
data.rename({'Runtime (Minutes)': 'Duration', 'Revenue (Millions)': 'Revenue'}, axis='columns', inplace=True)
for col in data.columns:
nans = pd.value_counts(data[col].isnull())
Nans = data[pd.isnull(data).any(axis=1)]
print(Nans.head()) | code |
17139134/cell_5 | [
"image_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/IMDB-Movie-Data.csv')
print(data.columns)
print(50 * '-')
print(data.dtypes)
print(50 * '-')
print(data.shape) | code |
90108657/cell_13 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import os
import tensorflow as tf
config = {'SEED': 42, 'DEBUG': False, 'test_size': 0.1, 'img_size': 128, 'batch_size': 32, 'num_labels': 0, 'epochs': 10, 'device': 'GPU'}
debug_config = {}
def set_seed(SEED):
os.environ['PYTHONHASHSEED'] = str(SEED)
np.random.seed(SEED)
tf.random.set_seed(SEED)
set_seed(config['SEED'])
def get_device(device):
if device == 'TPU':
try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect()
strategy = tf.distribute.TPUStrategy(tpu)
except ValueError:
if device == 'GPU':
strategy = tf.distribute.MirroredStrategy()
return strategy
strategy = get_device(config['device'])
config['batch_size'] = config['batch_size'] * strategy.num_replicas_in_sync
train_ds = tf.data.Dataset.from_tensor_slices((X_train.spec_path.values, X_train.genre_id.values))
valid_ds = tf.data.Dataset.from_tensor_slices((X_valid.spec_path.values, X_valid.genre_id.values))
AUTOTUNE = tf.data.experimental.AUTOTUNE
def process_data_train(image_path, label):
img = tf.io.read_file(image_path)
img = tf.image.decode_jpeg(img, channels=3)
img = tf.image.random_brightness(img, 0.1)
img = tf.image.resize(img, [config['img_size'], config['img_size']])
return (img, label)
def process_data_valid(image_path, label):
img = tf.io.read_file(image_path)
img = tf.image.decode_jpeg(img, channels=3)
img = tf.image.resize(img, [config['img_size'], config['img_size']])
return (img, label)
train_ds = train_ds.map(process_data_train, num_parallel_calls=AUTOTUNE)
valid_ds = valid_ds.map(process_data_valid, num_parallel_calls=AUTOTUNE)
def configure_for_performance(ds, batch_size = 32):
ds = ds.cache('/kaggle/dump.tfcache')
ds = ds.shuffle(buffer_size=32)
ds = ds.batch(batch_size)
ds = ds.prefetch(buffer_size=AUTOTUNE)
return ds
train_ds_batch = configure_for_performance(train_ds, config['batch_size'])
valid_ds_batch = valid_ds.batch(config['batch_size']*2)
image_batch, label_batch = next(iter(train_ds_batch))
plt.figure(figsize=(10, 10))
for i in range(8):
ax = plt.subplot(4, 4, i + 1)
plt.imshow(image_batch[i].numpy().astype('uint8'))
label = label_batch[i].numpy()
plt.title(label)
plt.axis('off') | code |
90108657/cell_9 | [
"text_plain_output_100.png",
"text_plain_output_84.png",
"text_plain_output_56.png",
"text_plain_output_137.png",
"text_plain_output_139.png",
"text_plain_output_35.png",
"text_plain_output_130.png",
"text_plain_output_117.png",
"text_plain_output_98.png",
"text_plain_output_43.png",
"text_plain_output_78.png",
"text_plain_output_106.png",
"text_plain_output_37.png",
"text_plain_output_138.png",
"text_plain_output_90.png",
"text_plain_output_79.png",
"text_plain_output_5.png",
"text_plain_output_75.png",
"text_plain_output_48.png",
"text_plain_output_116.png",
"text_plain_output_128.png",
"text_plain_output_30.png",
"text_plain_output_73.png",
"text_plain_output_126.png",
"text_plain_output_115.png",
"text_plain_output_15.png",
"text_plain_output_133.png",
"text_plain_output_114.png",
"text_plain_output_70.png",
"text_plain_output_9.png",
"text_plain_output_44.png",
"text_plain_output_119.png",
"text_plain_output_86.png",
"text_plain_output_118.png",
"text_plain_output_131.png",
"text_plain_output_40.png",
"text_plain_output_123.png",
"text_plain_output_74.png",
"text_plain_output_31.png",
"text_plain_output_20.png",
"text_plain_output_102.png",
"text_plain_output_111.png",
"text_plain_output_101.png",
"text_plain_output_132.png",
"text_plain_output_60.png",
"text_plain_output_68.png",
"text_plain_output_4.png",
"text_plain_output_65.png",
"text_plain_output_64.png",
"text_plain_output_13.png",
"text_plain_output_107.png",
"text_plain_output_52.png",
"text_plain_output_66.png",
"text_plain_output_45.png",
"text_plain_output_14.png",
"text_plain_output_32.png",
"text_plain_output_88.png",
"text_plain_output_29.png",
"text_plain_output_140.png",
"text_plain_output_129.png",
"text_plain_output_58.png",
"text_plain_output_49.png",
"text_plain_output_63.png",
"text_plain_output_27.png",
"text_plain_output_76.png",
"text_plain_output_108.png",
"text_plain_output_54.png",
"text_plain_output_10.png",
"text_plain_output_6.png",
"text_plain_output_92.png",
"text_plain_output_57.png",
"text_plain_output_120.png",
"text_plain_output_24.png",
"text_plain_output_21.png",
"text_plain_output_104.png",
"text_plain_output_47.png",
"text_plain_output_121.png",
"text_plain_output_25.png",
"text_plain_output_134.png",
"text_plain_output_77.png",
"text_plain_output_18.png",
"text_plain_output_50.png",
"text_plain_output_36.png",
"text_plain_output_96.png",
"text_plain_output_87.png",
"text_plain_output_141.png",
"text_plain_output_112.png",
"application_vnd.jupyter.stderr_output_3.png",
"text_plain_output_113.png",
"text_plain_output_22.png",
"text_plain_output_81.png",
"text_plain_output_69.png",
"text_plain_output_125.png",
"text_plain_output_38.png",
"text_plain_output_7.png",
"text_plain_output_91.png",
"text_plain_output_16.png",
"text_plain_output_59.png",
"text_plain_output_103.png",
"text_plain_output_71.png",
"text_plain_output_8.png",
"text_plain_output_122.png",
"text_plain_output_26.png",
"text_plain_output_109.png",
"text_plain_output_41.png",
"text_plain_output_34.png",
"text_plain_output_85.png",
"text_plain_output_42.png",
"text_plain_output_110.png",
"text_plain_output_67.png",
"text_plain_output_53.png",
"text_plain_output_23.png",
"text_plain_output_89.png",
"text_plain_output_51.png",
"text_plain_output_28.png",
"text_plain_output_72.png",
"text_plain_output_99.png",
"text_plain_output_136.png",
"text_plain_output_2.png",
"text_plain_output_127.png",
"text_plain_output_97.png",
"text_plain_output_33.png",
"application_vnd.jupyter.stderr_output_1.png",
"text_plain_output_39.png",
"text_plain_output_55.png",
"text_plain_output_82.png",
"text_plain_output_93.png",
"text_plain_output_19.png",
"text_plain_output_105.png",
"text_plain_output_80.png",
"text_plain_output_94.png",
"text_plain_output_124.png",
"text_plain_output_17.png",
"text_plain_output_11.png",
"text_plain_output_12.png",
"text_plain_output_62.png",
"text_plain_output_95.png",
"text_plain_output_61.png",
"text_plain_output_83.png",
"text_plain_output_135.png",
"text_plain_output_46.png"
] | import numpy as np
import os
import tensorflow as tf
config = {'SEED': 42, 'DEBUG': False, 'test_size': 0.1, 'img_size': 128, 'batch_size': 32, 'num_labels': 0, 'epochs': 10, 'device': 'GPU'}
debug_config = {}
def set_seed(SEED):
os.environ['PYTHONHASHSEED'] = str(SEED)
np.random.seed(SEED)
tf.random.set_seed(SEED)
set_seed(config['SEED'])
def get_device(device):
if device == 'TPU':
try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect()
strategy = tf.distribute.TPUStrategy(tpu)
except ValueError:
if device == 'GPU':
strategy = tf.distribute.MirroredStrategy()
return strategy
strategy = get_device(config['device'])
config['batch_size'] = config['batch_size'] * strategy.num_replicas_in_sync
train_ds = tf.data.Dataset.from_tensor_slices((X_train.spec_path.values, X_train.genre_id.values))
valid_ds = tf.data.Dataset.from_tensor_slices((X_valid.spec_path.values, X_valid.genre_id.values))
for path, label in train_ds.take(5):
print('Path: {}, Label: {}'.format(path, label)) | code |
90108657/cell_4 | [
"text_plain_output_1.png"
] | import numpy as np
import os
import tensorflow as tf
config = {'SEED': 42, 'DEBUG': False, 'test_size': 0.1, 'img_size': 128, 'batch_size': 32, 'num_labels': 0, 'epochs': 10, 'device': 'GPU'}
debug_config = {}
def set_seed(SEED):
os.environ['PYTHONHASHSEED'] = str(SEED)
np.random.seed(SEED)
tf.random.set_seed(SEED)
set_seed(config['SEED'])
def get_device(device):
if device == 'TPU':
try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect()
strategy = tf.distribute.TPUStrategy(tpu)
except ValueError:
print('Cannot initialize TPU')
if device == 'GPU':
strategy = tf.distribute.MirroredStrategy()
print('Number of accelerators: ', strategy.num_replicas_in_sync)
return strategy
strategy = get_device(config['device'])
config['batch_size'] = config['batch_size'] * strategy.num_replicas_in_sync | code |
90108657/cell_6 | [
"text_plain_output_1.png"
] | import glob
import pandas as pd
config = {'SEED': 42, 'DEBUG': False, 'test_size': 0.1, 'img_size': 128, 'batch_size': 32, 'num_labels': 0, 'epochs': 10, 'device': 'GPU'}
debug_config = {}
df_train = pd.read_csv('../input/kaggle-pog-series-s01e02/train.csv')
df_test = pd.read_csv('../input/kaggle-pog-series-s01e02/test.csv')
df_train['ID'] = df_train['filename'].str.split('.').str[0]
df_test['ID'] = df_test['filename'].str.split('.').str[0]
train_files = pd.DataFrame(glob.glob('../input/pog-train-and-test-spectograms/kaggle/spectograms/train/*.jpg'), columns=['spec_path'])
test_files = pd.DataFrame(glob.glob('../input/pog-train-and-test-spectograms/kaggle/spectograms/test/*.jpg'), columns=['spec_path'])
train_files['ID'] = train_files['spec_path'].str.split('/').str[-1].str.split('.').str[0]
test_files['ID'] = test_files['spec_path'].str.split('/').str[-1].str.split('.').str[0]
df_train_spec = pd.merge(df_train, train_files, how='right', on='ID')
df_test_spec = pd.merge(df_test, test_files, how='right', on='ID')
config['num_labels'] = df_train_spec['genre_id'].nunique()
df_train_spec.genre_id.value_counts(normalize=True) * 100 | code |
90108657/cell_11 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import os
import tensorflow as tf
config = {'SEED': 42, 'DEBUG': False, 'test_size': 0.1, 'img_size': 128, 'batch_size': 32, 'num_labels': 0, 'epochs': 10, 'device': 'GPU'}
debug_config = {}
def set_seed(SEED):
os.environ['PYTHONHASHSEED'] = str(SEED)
np.random.seed(SEED)
tf.random.set_seed(SEED)
set_seed(config['SEED'])
def get_device(device):
if device == 'TPU':
try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect()
strategy = tf.distribute.TPUStrategy(tpu)
except ValueError:
if device == 'GPU':
strategy = tf.distribute.MirroredStrategy()
return strategy
strategy = get_device(config['device'])
config['batch_size'] = config['batch_size'] * strategy.num_replicas_in_sync
train_ds = tf.data.Dataset.from_tensor_slices((X_train.spec_path.values, X_train.genre_id.values))
valid_ds = tf.data.Dataset.from_tensor_slices((X_valid.spec_path.values, X_valid.genre_id.values))
AUTOTUNE = tf.data.experimental.AUTOTUNE
def process_data_train(image_path, label):
img = tf.io.read_file(image_path)
img = tf.image.decode_jpeg(img, channels=3)
img = tf.image.random_brightness(img, 0.1)
img = tf.image.resize(img, [config['img_size'], config['img_size']])
return (img, label)
def process_data_valid(image_path, label):
img = tf.io.read_file(image_path)
img = tf.image.decode_jpeg(img, channels=3)
img = tf.image.resize(img, [config['img_size'], config['img_size']])
return (img, label)
train_ds = train_ds.map(process_data_train, num_parallel_calls=AUTOTUNE)
valid_ds = valid_ds.map(process_data_valid, num_parallel_calls=AUTOTUNE)
for image, label in train_ds.take(1):
plt.imshow(image.numpy().astype('uint8'))
plt.show()
print('Image shape: ', image.numpy().shape)
print('Label: ', label.numpy()) | code |
90108657/cell_18 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import os
import tensorflow as tf
config = {'SEED': 42, 'DEBUG': False, 'test_size': 0.1, 'img_size': 128, 'batch_size': 32, 'num_labels': 0, 'epochs': 10, 'device': 'GPU'}
debug_config = {}
def set_seed(SEED):
os.environ['PYTHONHASHSEED'] = str(SEED)
np.random.seed(SEED)
tf.random.set_seed(SEED)
set_seed(config['SEED'])
def get_device(device):
if device == 'TPU':
try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect()
strategy = tf.distribute.TPUStrategy(tpu)
except ValueError:
if device == 'GPU':
strategy = tf.distribute.MirroredStrategy()
return strategy
strategy = get_device(config['device'])
config['batch_size'] = config['batch_size'] * strategy.num_replicas_in_sync
train_ds = tf.data.Dataset.from_tensor_slices((X_train.spec_path.values, X_train.genre_id.values))
valid_ds = tf.data.Dataset.from_tensor_slices((X_valid.spec_path.values, X_valid.genre_id.values))
AUTOTUNE = tf.data.experimental.AUTOTUNE
def process_data_train(image_path, label):
img = tf.io.read_file(image_path)
img = tf.image.decode_jpeg(img, channels=3)
img = tf.image.random_brightness(img, 0.1)
img = tf.image.resize(img, [config['img_size'], config['img_size']])
return (img, label)
def process_data_valid(image_path, label):
img = tf.io.read_file(image_path)
img = tf.image.decode_jpeg(img, channels=3)
img = tf.image.resize(img, [config['img_size'], config['img_size']])
return (img, label)
train_ds = train_ds.map(process_data_train, num_parallel_calls=AUTOTUNE)
valid_ds = valid_ds.map(process_data_valid, num_parallel_calls=AUTOTUNE)
def configure_for_performance(ds, batch_size = 32):
ds = ds.cache('/kaggle/dump.tfcache')
ds = ds.shuffle(buffer_size=32)
ds = ds.batch(batch_size)
ds = ds.prefetch(buffer_size=AUTOTUNE)
return ds
train_ds_batch = configure_for_performance(train_ds, config['batch_size'])
valid_ds_batch = valid_ds.batch(config['batch_size']*2)
with strategy.scope():
model = tf.keras.models.Sequential([tf.keras.layers.Conv2D(16, kernel_size=5, activation='relu', input_shape=(config['img_size'], config['img_size'], 3)), tf.keras.layers.Conv2D(32, kernel_size=3, activation='relu'), tf.keras.layers.Conv2D(64, kernel_size=3, strides=2, activation='relu'), tf.keras.layers.Conv2D(128, kernel_size=3, activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(config['num_labels'], activation='softmax')])
model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(), optimizer='adam', metrics='accuracy')
model.summary()
best_weight_path = 'best_model.hdf5'
last_weight_path = 'last_model.hdf5'
checkpoint = tf.keras.callbacks.ModelCheckpoint(best_weight_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min', save_weights_only=False)
checkpoint_last = tf.keras.callbacks.ModelCheckpoint(last_weight_path, monitor='val_loss', verbose=1, save_best_only=False, mode='min', save_weights_only=False)
early = tf.keras.callbacks.EarlyStopping(monitor='val_loss', mode='min', patience=5)
reduceLROnPlat = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.8, patience=2, verbose=1, mode='auto', epsilon=0.0001, cooldown=5, min_lr=1e-05)
callbacks_list = [checkpoint, checkpoint_last, early, reduceLROnPlat]
history = model.fit(train_ds_batch, callbacks=callbacks_list, epochs=config['epochs'], validation_data=valid_ds_batch) | code |
90108657/cell_15 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import os
import tensorflow as tf
config = {'SEED': 42, 'DEBUG': False, 'test_size': 0.1, 'img_size': 128, 'batch_size': 32, 'num_labels': 0, 'epochs': 10, 'device': 'GPU'}
debug_config = {}
def set_seed(SEED):
os.environ['PYTHONHASHSEED'] = str(SEED)
np.random.seed(SEED)
tf.random.set_seed(SEED)
set_seed(config['SEED'])
def get_device(device):
if device == 'TPU':
try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect()
strategy = tf.distribute.TPUStrategy(tpu)
except ValueError:
if device == 'GPU':
strategy = tf.distribute.MirroredStrategy()
return strategy
strategy = get_device(config['device'])
config['batch_size'] = config['batch_size'] * strategy.num_replicas_in_sync
train_ds = tf.data.Dataset.from_tensor_slices((X_train.spec_path.values, X_train.genre_id.values))
valid_ds = tf.data.Dataset.from_tensor_slices((X_valid.spec_path.values, X_valid.genre_id.values))
AUTOTUNE = tf.data.experimental.AUTOTUNE
def process_data_train(image_path, label):
img = tf.io.read_file(image_path)
img = tf.image.decode_jpeg(img, channels=3)
img = tf.image.random_brightness(img, 0.1)
img = tf.image.resize(img, [config['img_size'], config['img_size']])
return (img, label)
def process_data_valid(image_path, label):
img = tf.io.read_file(image_path)
img = tf.image.decode_jpeg(img, channels=3)
img = tf.image.resize(img, [config['img_size'], config['img_size']])
return (img, label)
train_ds = train_ds.map(process_data_train, num_parallel_calls=AUTOTUNE)
valid_ds = valid_ds.map(process_data_valid, num_parallel_calls=AUTOTUNE)
with strategy.scope():
model = tf.keras.models.Sequential([tf.keras.layers.Conv2D(16, kernel_size=5, activation='relu', input_shape=(config['img_size'], config['img_size'], 3)), tf.keras.layers.Conv2D(32, kernel_size=3, activation='relu'), tf.keras.layers.Conv2D(64, kernel_size=3, strides=2, activation='relu'), tf.keras.layers.Conv2D(128, kernel_size=3, activation='relu'), tf.keras.layers.GlobalAveragePooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(config['num_labels'], activation='softmax')])
model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(), optimizer='adam', metrics='accuracy')
model.summary() | code |
90108657/cell_17 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | !nvidia-smi | code |
74057413/cell_9 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
AMR_data = pd.read_csv('../input/antibiotic-resistance-genes/Efaecium_AMRC.csv')
AMR_data.dtypes
print(AMR_data.shape)
print('*****************')
print(AMR_data.nunique())
print('*****************')
print(AMR_data[AMR_data['CRISPR_Cas'] == 1]['AMR'].count())
print(AMR_data[AMR_data['CRISPR_Cas'] == 0]['AMR'].count()) | code |
74057413/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
AMR_data = pd.read_csv('../input/antibiotic-resistance-genes/Efaecium_AMRC.csv')
AMR_data.dtypes | code |
74057413/cell_11 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
AMR_data = pd.read_csv('../input/antibiotic-resistance-genes/Efaecium_AMRC.csv')
AMR_data.dtypes
sns.displot(AMR_data, x='CRISPR_Cas') | code |
74057413/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
74057413/cell_8 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
AMR_data = pd.read_csv('../input/antibiotic-resistance-genes/Efaecium_AMRC.csv')
AMR_data.dtypes
AMR_data.describe(include='all') | code |
74057413/cell_14 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
AMR_data = pd.read_csv('../input/antibiotic-resistance-genes/Efaecium_AMRC.csv')
AMR_data.dtypes
sns.set(style='darkgrid')
sns.jointplot(y=AMR_data['CRISPR_Cas'], x=AMR_data['AMR']) | code |
74057413/cell_5 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
AMR_data = pd.read_csv('../input/antibiotic-resistance-genes/Efaecium_AMRC.csv')
AMR_data.head(15) | code |
16153001/cell_4 | [
"application_vnd.jupyter.stderr_output_1.png"
] | summarizeColumns(transactions) | code |
16153001/cell_1 | [
"application_vnd.jupyter.stderr_output_1.png"
] | library(data.table)
library(mlr) | code |
16153001/cell_3 | [
"text_html_output_1.png"
] | head(image) | code |
129012879/cell_4 | [
"application_vnd.jupyter.stderr_output_7.png",
"text_plain_output_4.png",
"text_plain_output_6.png",
"application_vnd.jupyter.stderr_output_3.png",
"application_vnd.jupyter.stderr_output_5.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | !pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.11/index.html | code |
129012879/cell_23 | [
"image_output_1.png"
] | from PIL import Image
from mmcv import Config
from mmseg.apis import inference_segmentor, init_segmentor, show_result_pyplot
from mmseg.apis import set_random_seed
from mmseg.apis import train_segmentor
from mmseg.datasets import build_dataset
from mmseg.datasets.builder import DATASETS
from mmseg.datasets.custom import CustomDataset
from mmseg.models import build_segmentor
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import mmcv
import numpy as np
import os.path as osp
import mmcv
import matplotlib.pyplot as plt
img = mmcv.imread('nails/images/2C29D473-CCB4-458C-926B-99D0042161E6.jpg')
import os.path as osp
import numpy as np
from PIL import Image
data_root = 'nails'
img_dir = 'images'
ann_dir = 'labels'
classes = ('background', 'nails')
palette = [[0, 0, 0], [225, 25, 38]]
for file in mmcv.scandir(osp.join(data_root, ann_dir), suffix='.jpg'):
seg_img = Image.open(osp.join(data_root, ann_dir, file)).convert('P')
seg_img.putpalette(np.array(palette, dtype=np.uint8))
seg_img.save(osp.join(data_root, ann_dir, file.replace('.jpg', '.png')))
# Let's take a look at the segmentation map we got
import matplotlib.patches as mpatches
img = Image.open('/content/mmsegmentation/nails/labels/09aefeec-e05f-11e8-87a6-0242ac1c0002.png')
plt.figure(figsize=(8, 6))
im = plt.imshow(np.array(img.convert('RGB')))
# create a patch (proxy artist) for every color
patches = [mpatches.Patch(color=np.array(palette[i])/255.,
label=classes[i]) for i in range(2)]
# put those patched as legend-handles into the legend
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.,
fontsize='large')
plt.show()
split_dir = 'splits'
mmcv.mkdir_or_exist(osp.join(data_root, split_dir))
filename_list = [osp.splitext(filename)[0] for filename in mmcv.scandir(osp.join(data_root, ann_dir), suffix='.png')]
with open(osp.join(data_root, split_dir, 'train.txt'), 'w') as f:
train_length = int(len(filename_list) * 0.85)
f.writelines((line + '\n' for line in filename_list[:train_length]))
with open(osp.join(data_root, split_dir, 'val.txt'), 'w') as f:
f.writelines((line + '\n' for line in filename_list[train_length:]))
from mmseg.datasets.builder import DATASETS
from mmseg.datasets.custom import CustomDataset
@DATASETS.register_module()
class NailsDataset(CustomDataset):
CLASSES = classes
PALETTE = palette
def __init__(self, split, **kwargs):
super().__init__(img_suffix='.jpg', seg_map_suffix='.png', split=split, **kwargs)
assert osp.exists(self.img_dir) and self.split is not None
from mmcv import Config
cfg = Config.fromfile('configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py ')
from mmseg.apis import set_random_seed
cfg.norm_cfg = dict(type='BN', requires_grad=True)
cfg.model.backbone.norm_cfg = cfg.norm_cfg
cfg.model.decode_head.norm_cfg = cfg.norm_cfg
cfg.model.auxiliary_head.norm_cfg = cfg.norm_cfg
cfg.model.decode_head.num_classes = 2
cfg.model.auxiliary_head.num_classes = 2
cfg.model.decode_head.loss_decode = [dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=0.5), dict(type='DiceLoss', loss_name='loss_dice', loss_weight=0.5)]
cfg.model.auxiliary_head.loss_decode = [dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=0.5), dict(type='DiceLoss', loss_name='loss_dice', loss_weight=0.5)]
cfg.dataset_type = 'NailsDataset'
cfg.data_root = data_root
cfg.data.samples_per_gpu = 8
cfg.data.workers_per_gpu = 8
cfg.img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
cfg.crop_size = (256, 256)
cfg.train_pipeline = [dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(320, 240), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=cfg.crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', flip_ratio=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **cfg.img_norm_cfg), dict(type='Pad', size=cfg.crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg'])]
cfg.test_pipeline = [dict(type='LoadImageFromFile'), dict(type='MultiScaleFlipAug', img_scale=(320, 240), flip=False, transforms=[dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **cfg.img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img'])])]
cfg.data.train.type = cfg.dataset_type
cfg.data.train.data_root = cfg.data_root
cfg.data.train.img_dir = img_dir
cfg.data.train.ann_dir = ann_dir
cfg.data.train.pipeline = cfg.train_pipeline
cfg.data.train.split = 'splits/train.txt'
cfg.data.val.type = cfg.dataset_type
cfg.data.val.data_root = cfg.data_root
cfg.data.val.img_dir = img_dir
cfg.data.val.ann_dir = ann_dir
cfg.data.val.pipeline = cfg.test_pipeline
cfg.data.val.split = 'splits/val.txt'
cfg.data.test.type = cfg.dataset_type
cfg.data.test.data_root = cfg.data_root
cfg.data.test.img_dir = img_dir
cfg.data.test.ann_dir = ann_dir
cfg.data.test.pipeline = cfg.test_pipeline
cfg.data.test.split = 'splits/val.txt'
cfg.load_from = 'checkpoints/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200605_094614-3769eecf.pth'
cfg.work_dir = './work_dirs/nails'
cfg.optimizer.lr = 0.01 / 8
cfg.runner.max_iters = 600
cfg.log_config.interval = 10
cfg.evaluation.interval = 200
cfg.checkpoint_config.interval = 200
cfg.seed = 1111
set_random_seed(1111, deterministic=False)
cfg.gpu_ids = range(1)
from mmseg.datasets import build_dataset
from mmseg.models import build_segmentor
from mmseg.apis import train_segmentor
datasets = [build_dataset(cfg.data.train)]
model = build_segmentor(cfg.model)
model.CLASSES = datasets[0].CLASSES
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
train_segmentor(model, datasets, cfg, distributed=False, validate=True, meta=dict())
img = mmcv.imread('/content/mmsegmentation/nails/images/09aefeec-e05f-11e8-87a6-0242ac1c0002.jpg')
model.cfg = cfg
result = inference_segmentor(model, img)
img = mmcv.imread('/content/mmsegmentation/nails/nails_segmentation/images/d62b0cd8-db67-11e8-9658-0242ac1c0002.jpg')
model.cfg = cfg
result = inference_segmentor(model, img)
plt.figure(figsize=(8, 6))
show_result_pyplot(model, img, result, palette) | code |
129012879/cell_20 | [
"image_output_1.png"
] | from PIL import Image
from mmcv import Config
from mmseg.apis import set_random_seed
from mmseg.apis import train_segmentor
from mmseg.datasets import build_dataset
from mmseg.datasets.builder import DATASETS
from mmseg.datasets.custom import CustomDataset
from mmseg.models import build_segmentor
import matplotlib.pyplot as plt
import mmcv
import numpy as np
import os.path as osp
import mmcv
import matplotlib.pyplot as plt
img = mmcv.imread('nails/images/2C29D473-CCB4-458C-926B-99D0042161E6.jpg')
import os.path as osp
import numpy as np
from PIL import Image
data_root = 'nails'
img_dir = 'images'
ann_dir = 'labels'
classes = ('background', 'nails')
palette = [[0, 0, 0], [225, 25, 38]]
for file in mmcv.scandir(osp.join(data_root, ann_dir), suffix='.jpg'):
seg_img = Image.open(osp.join(data_root, ann_dir, file)).convert('P')
seg_img.putpalette(np.array(palette, dtype=np.uint8))
seg_img.save(osp.join(data_root, ann_dir, file.replace('.jpg', '.png')))
split_dir = 'splits'
mmcv.mkdir_or_exist(osp.join(data_root, split_dir))
filename_list = [osp.splitext(filename)[0] for filename in mmcv.scandir(osp.join(data_root, ann_dir), suffix='.png')]
with open(osp.join(data_root, split_dir, 'train.txt'), 'w') as f:
train_length = int(len(filename_list) * 0.85)
f.writelines((line + '\n' for line in filename_list[:train_length]))
with open(osp.join(data_root, split_dir, 'val.txt'), 'w') as f:
f.writelines((line + '\n' for line in filename_list[train_length:]))
from mmseg.datasets.builder import DATASETS
from mmseg.datasets.custom import CustomDataset
@DATASETS.register_module()
class NailsDataset(CustomDataset):
CLASSES = classes
PALETTE = palette
def __init__(self, split, **kwargs):
super().__init__(img_suffix='.jpg', seg_map_suffix='.png', split=split, **kwargs)
assert osp.exists(self.img_dir) and self.split is not None
from mmcv import Config
cfg = Config.fromfile('configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py ')
from mmseg.apis import set_random_seed
cfg.norm_cfg = dict(type='BN', requires_grad=True)
cfg.model.backbone.norm_cfg = cfg.norm_cfg
cfg.model.decode_head.norm_cfg = cfg.norm_cfg
cfg.model.auxiliary_head.norm_cfg = cfg.norm_cfg
cfg.model.decode_head.num_classes = 2
cfg.model.auxiliary_head.num_classes = 2
cfg.model.decode_head.loss_decode = [dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=0.5), dict(type='DiceLoss', loss_name='loss_dice', loss_weight=0.5)]
cfg.model.auxiliary_head.loss_decode = [dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=0.5), dict(type='DiceLoss', loss_name='loss_dice', loss_weight=0.5)]
cfg.dataset_type = 'NailsDataset'
cfg.data_root = data_root
cfg.data.samples_per_gpu = 8
cfg.data.workers_per_gpu = 8
cfg.img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
cfg.crop_size = (256, 256)
cfg.train_pipeline = [dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(320, 240), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=cfg.crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', flip_ratio=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **cfg.img_norm_cfg), dict(type='Pad', size=cfg.crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg'])]
cfg.test_pipeline = [dict(type='LoadImageFromFile'), dict(type='MultiScaleFlipAug', img_scale=(320, 240), flip=False, transforms=[dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **cfg.img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img'])])]
cfg.data.train.type = cfg.dataset_type
cfg.data.train.data_root = cfg.data_root
cfg.data.train.img_dir = img_dir
cfg.data.train.ann_dir = ann_dir
cfg.data.train.pipeline = cfg.train_pipeline
cfg.data.train.split = 'splits/train.txt'
cfg.data.val.type = cfg.dataset_type
cfg.data.val.data_root = cfg.data_root
cfg.data.val.img_dir = img_dir
cfg.data.val.ann_dir = ann_dir
cfg.data.val.pipeline = cfg.test_pipeline
cfg.data.val.split = 'splits/val.txt'
cfg.data.test.type = cfg.dataset_type
cfg.data.test.data_root = cfg.data_root
cfg.data.test.img_dir = img_dir
cfg.data.test.ann_dir = ann_dir
cfg.data.test.pipeline = cfg.test_pipeline
cfg.data.test.split = 'splits/val.txt'
cfg.load_from = 'checkpoints/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200605_094614-3769eecf.pth'
cfg.work_dir = './work_dirs/nails'
cfg.optimizer.lr = 0.01 / 8
cfg.runner.max_iters = 600
cfg.log_config.interval = 10
cfg.evaluation.interval = 200
cfg.checkpoint_config.interval = 200
cfg.seed = 1111
set_random_seed(1111, deterministic=False)
cfg.gpu_ids = range(1)
from mmseg.datasets import build_dataset
from mmseg.models import build_segmentor
from mmseg.apis import train_segmentor
datasets = [build_dataset(cfg.data.train)]
model = build_segmentor(cfg.model)
model.CLASSES = datasets[0].CLASSES
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
train_segmentor(model, datasets, cfg, distributed=False, validate=True, meta=dict()) | code |
129012879/cell_6 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | import mmseg
import mmseg
print(mmseg.__version__) | code |
129012879/cell_2 | [
"text_plain_output_1.png"
] | # Check nvcc version
!nvcc -V
# Check GCC version
!gcc --version | code |
129012879/cell_11 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import mmcv
import mmcv
import matplotlib.pyplot as plt
img = mmcv.imread('nails/images/2C29D473-CCB4-458C-926B-99D0042161E6.jpg')
plt.figure(figsize=(8, 6))
plt.imshow(mmcv.bgr2rgb(img))
plt.show() | code |
129012879/cell_19 | [
"text_plain_output_1.png"
] | from PIL import Image
from mmcv import Config
from mmseg.apis import set_random_seed
import matplotlib.pyplot as plt
import mmcv
import numpy as np
import os.path as osp
import mmcv
import matplotlib.pyplot as plt
img = mmcv.imread('nails/images/2C29D473-CCB4-458C-926B-99D0042161E6.jpg')
import os.path as osp
import numpy as np
from PIL import Image
data_root = 'nails'
img_dir = 'images'
ann_dir = 'labels'
classes = ('background', 'nails')
palette = [[0, 0, 0], [225, 25, 38]]
for file in mmcv.scandir(osp.join(data_root, ann_dir), suffix='.jpg'):
seg_img = Image.open(osp.join(data_root, ann_dir, file)).convert('P')
seg_img.putpalette(np.array(palette, dtype=np.uint8))
seg_img.save(osp.join(data_root, ann_dir, file.replace('.jpg', '.png')))
from mmcv import Config
cfg = Config.fromfile('configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py ')
from mmseg.apis import set_random_seed
cfg.norm_cfg = dict(type='BN', requires_grad=True)
cfg.model.backbone.norm_cfg = cfg.norm_cfg
cfg.model.decode_head.norm_cfg = cfg.norm_cfg
cfg.model.auxiliary_head.norm_cfg = cfg.norm_cfg
cfg.model.decode_head.num_classes = 2
cfg.model.auxiliary_head.num_classes = 2
cfg.model.decode_head.loss_decode = [dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=0.5), dict(type='DiceLoss', loss_name='loss_dice', loss_weight=0.5)]
cfg.model.auxiliary_head.loss_decode = [dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=0.5), dict(type='DiceLoss', loss_name='loss_dice', loss_weight=0.5)]
cfg.dataset_type = 'NailsDataset'
cfg.data_root = data_root
cfg.data.samples_per_gpu = 8
cfg.data.workers_per_gpu = 8
cfg.img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
cfg.crop_size = (256, 256)
cfg.train_pipeline = [dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(320, 240), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=cfg.crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', flip_ratio=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **cfg.img_norm_cfg), dict(type='Pad', size=cfg.crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg'])]
cfg.test_pipeline = [dict(type='LoadImageFromFile'), dict(type='MultiScaleFlipAug', img_scale=(320, 240), flip=False, transforms=[dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **cfg.img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img'])])]
cfg.data.train.type = cfg.dataset_type
cfg.data.train.data_root = cfg.data_root
cfg.data.train.img_dir = img_dir
cfg.data.train.ann_dir = ann_dir
cfg.data.train.pipeline = cfg.train_pipeline
cfg.data.train.split = 'splits/train.txt'
cfg.data.val.type = cfg.dataset_type
cfg.data.val.data_root = cfg.data_root
cfg.data.val.img_dir = img_dir
cfg.data.val.ann_dir = ann_dir
cfg.data.val.pipeline = cfg.test_pipeline
cfg.data.val.split = 'splits/val.txt'
cfg.data.test.type = cfg.dataset_type
cfg.data.test.data_root = cfg.data_root
cfg.data.test.img_dir = img_dir
cfg.data.test.ann_dir = ann_dir
cfg.data.test.pipeline = cfg.test_pipeline
cfg.data.test.split = 'splits/val.txt'
cfg.load_from = 'checkpoints/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200605_094614-3769eecf.pth'
cfg.work_dir = './work_dirs/nails'
cfg.optimizer.lr = 0.01 / 8
cfg.runner.max_iters = 600
cfg.log_config.interval = 10
cfg.evaluation.interval = 200
cfg.checkpoint_config.interval = 200
cfg.seed = 1111
set_random_seed(1111, deterministic=False)
cfg.gpu_ids = range(1)
print(f'Config:\n{cfg.pretty_text}') | code |
129012879/cell_1 | [
"text_plain_output_1.png"
] | from google.colab import drive
from google.colab import drive
drive.mount('/content/drive') | code |
129012879/cell_18 | [
"text_plain_output_1.png"
] | from mmcv import Config
from mmcv import Config
cfg = Config.fromfile('configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py ')
print(cfg.dataset_type) | code |
129012879/cell_8 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | !mkdir checkpoints
# !wget https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth -P checkpoints
!wget https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614-3769eecf.pth -P checkpoints | code |
129012879/cell_15 | [
"text_plain_output_1.png"
] | from PIL import Image
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import mmcv
import numpy as np
import os.path as osp
import mmcv
import matplotlib.pyplot as plt
img = mmcv.imread('nails/images/2C29D473-CCB4-458C-926B-99D0042161E6.jpg')
import os.path as osp
import numpy as np
from PIL import Image
data_root = 'nails'
img_dir = 'images'
ann_dir = 'labels'
classes = ('background', 'nails')
palette = [[0, 0, 0], [225, 25, 38]]
for file in mmcv.scandir(osp.join(data_root, ann_dir), suffix='.jpg'):
seg_img = Image.open(osp.join(data_root, ann_dir, file)).convert('P')
seg_img.putpalette(np.array(palette, dtype=np.uint8))
seg_img.save(osp.join(data_root, ann_dir, file.replace('.jpg', '.png')))
import matplotlib.patches as mpatches
img = Image.open('/content/mmsegmentation/nails/labels/09aefeec-e05f-11e8-87a6-0242ac1c0002.png')
plt.figure(figsize=(8, 6))
im = plt.imshow(np.array(img.convert('RGB')))
patches = [mpatches.Patch(color=np.array(palette[i]) / 255.0, label=classes[i]) for i in range(2)]
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.0, fontsize='large')
plt.show() | code |
129012879/cell_3 | [
"text_plain_output_1.png"
] | import torch, torchvision
print(torch.__version__, torch.cuda.is_available())
print(torchvision.__version__) | code |
129012879/cell_22 | [
"text_plain_output_1.png"
] | from PIL import Image
from mmcv import Config
from mmseg.apis import inference_segmentor, init_segmentor, show_result_pyplot
from mmseg.apis import set_random_seed
from mmseg.apis import train_segmentor
from mmseg.datasets import build_dataset
from mmseg.datasets.builder import DATASETS
from mmseg.datasets.custom import CustomDataset
from mmseg.models import build_segmentor
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import mmcv
import numpy as np
import os.path as osp
import mmcv
import matplotlib.pyplot as plt
img = mmcv.imread('nails/images/2C29D473-CCB4-458C-926B-99D0042161E6.jpg')
import os.path as osp
import numpy as np
from PIL import Image
data_root = 'nails'
img_dir = 'images'
ann_dir = 'labels'
classes = ('background', 'nails')
palette = [[0, 0, 0], [225, 25, 38]]
for file in mmcv.scandir(osp.join(data_root, ann_dir), suffix='.jpg'):
seg_img = Image.open(osp.join(data_root, ann_dir, file)).convert('P')
seg_img.putpalette(np.array(palette, dtype=np.uint8))
seg_img.save(osp.join(data_root, ann_dir, file.replace('.jpg', '.png')))
# Let's take a look at the segmentation map we got
import matplotlib.patches as mpatches
img = Image.open('/content/mmsegmentation/nails/labels/09aefeec-e05f-11e8-87a6-0242ac1c0002.png')
plt.figure(figsize=(8, 6))
im = plt.imshow(np.array(img.convert('RGB')))
# create a patch (proxy artist) for every color
patches = [mpatches.Patch(color=np.array(palette[i])/255.,
label=classes[i]) for i in range(2)]
# put those patched as legend-handles into the legend
plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.,
fontsize='large')
plt.show()
split_dir = 'splits'
mmcv.mkdir_or_exist(osp.join(data_root, split_dir))
filename_list = [osp.splitext(filename)[0] for filename in mmcv.scandir(osp.join(data_root, ann_dir), suffix='.png')]
with open(osp.join(data_root, split_dir, 'train.txt'), 'w') as f:
train_length = int(len(filename_list) * 0.85)
f.writelines((line + '\n' for line in filename_list[:train_length]))
with open(osp.join(data_root, split_dir, 'val.txt'), 'w') as f:
f.writelines((line + '\n' for line in filename_list[train_length:]))
from mmseg.datasets.builder import DATASETS
from mmseg.datasets.custom import CustomDataset
@DATASETS.register_module()
class NailsDataset(CustomDataset):
CLASSES = classes
PALETTE = palette
def __init__(self, split, **kwargs):
super().__init__(img_suffix='.jpg', seg_map_suffix='.png', split=split, **kwargs)
assert osp.exists(self.img_dir) and self.split is not None
from mmcv import Config
cfg = Config.fromfile('configs/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes.py ')
from mmseg.apis import set_random_seed
cfg.norm_cfg = dict(type='BN', requires_grad=True)
cfg.model.backbone.norm_cfg = cfg.norm_cfg
cfg.model.decode_head.norm_cfg = cfg.norm_cfg
cfg.model.auxiliary_head.norm_cfg = cfg.norm_cfg
cfg.model.decode_head.num_classes = 2
cfg.model.auxiliary_head.num_classes = 2
cfg.model.decode_head.loss_decode = [dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=0.5), dict(type='DiceLoss', loss_name='loss_dice', loss_weight=0.5)]
cfg.model.auxiliary_head.loss_decode = [dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=0.5), dict(type='DiceLoss', loss_name='loss_dice', loss_weight=0.5)]
cfg.dataset_type = 'NailsDataset'
cfg.data_root = data_root
cfg.data.samples_per_gpu = 8
cfg.data.workers_per_gpu = 8
cfg.img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
cfg.crop_size = (256, 256)
cfg.train_pipeline = [dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=(320, 240), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=cfg.crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', flip_ratio=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **cfg.img_norm_cfg), dict(type='Pad', size=cfg.crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg'])]
cfg.test_pipeline = [dict(type='LoadImageFromFile'), dict(type='MultiScaleFlipAug', img_scale=(320, 240), flip=False, transforms=[dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **cfg.img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img'])])]
cfg.data.train.type = cfg.dataset_type
cfg.data.train.data_root = cfg.data_root
cfg.data.train.img_dir = img_dir
cfg.data.train.ann_dir = ann_dir
cfg.data.train.pipeline = cfg.train_pipeline
cfg.data.train.split = 'splits/train.txt'
cfg.data.val.type = cfg.dataset_type
cfg.data.val.data_root = cfg.data_root
cfg.data.val.img_dir = img_dir
cfg.data.val.ann_dir = ann_dir
cfg.data.val.pipeline = cfg.test_pipeline
cfg.data.val.split = 'splits/val.txt'
cfg.data.test.type = cfg.dataset_type
cfg.data.test.data_root = cfg.data_root
cfg.data.test.img_dir = img_dir
cfg.data.test.ann_dir = ann_dir
cfg.data.test.pipeline = cfg.test_pipeline
cfg.data.test.split = 'splits/val.txt'
cfg.load_from = 'checkpoints/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200605_094614-3769eecf.pth'
cfg.work_dir = './work_dirs/nails'
cfg.optimizer.lr = 0.01 / 8
cfg.runner.max_iters = 600
cfg.log_config.interval = 10
cfg.evaluation.interval = 200
cfg.checkpoint_config.interval = 200
cfg.seed = 1111
set_random_seed(1111, deterministic=False)
cfg.gpu_ids = range(1)
from mmseg.datasets import build_dataset
from mmseg.models import build_segmentor
from mmseg.apis import train_segmentor
datasets = [build_dataset(cfg.data.train)]
model = build_segmentor(cfg.model)
model.CLASSES = datasets[0].CLASSES
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
train_segmentor(model, datasets, cfg, distributed=False, validate=True, meta=dict())
img = mmcv.imread('/content/mmsegmentation/nails/images/09aefeec-e05f-11e8-87a6-0242ac1c0002.jpg')
model.cfg = cfg
result = inference_segmentor(model, img)
plt.figure(figsize=(8, 6))
show_result_pyplot(model, img, result, palette) | code |
129012879/cell_10 | [
"text_plain_output_1.png"
] | !unzip /content/drive/MyDrive/nails.zip -d /content/mmsegmentation/nails | code |
129012879/cell_12 | [
"text_plain_output_1.png"
] | # Install tree first
!apt-get -q install tree
!tree nails | code |
129012879/cell_5 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | !rm -rf mmsegmentation
!git clone https://github.com/open-mmlab/mmsegmentation.git
!pip install -e . | code |
1004507/cell_4 | [
"image_output_1.png"
] | import numpy as np # linear algebra
import pandas as pd # data processing
import re # regular expressions
raw_data = pd.read_csv('../input/train.csv')
raw_data = shuffle(raw_data)
gender_dic = {'male': 0, 'female': 1}
raw_data.ix[:, 4] = raw_data.ix[:, 4].replace(gender_dic)
raw_data.fillna(0, inplace=True)
raw_data = raw_data.assign(Cabin_count=0)
raw_data = raw_data.assign(Cabin_letter=0)
raw_data = raw_data.assign(Cabin_number=0)
def map_cabin(row):
cabin_str = row[10]
if cabin_str == 0:
return row
cabin_parts = cabin_str.split(' ')
row[12] = len(cabin_parts)
lc = cabin_parts[len(cabin_parts) - 1]
cl = re.findall('[A-Z]', lc)
cn = re.findall('\\d+', lc)
if len(cl) > 0:
row[13] = ord(cl[0])
else:
row[13] = 0
if len(cn) > 0:
row[14] = int(cn[0])
else:
row[14] = 0
return row
raw_data = raw_data.apply(map_cabin, axis=1)
data_X = raw_data.ix[:, [2, 4, 5, 6, 7, 9, 12, 13, 14]]
data_y = raw_data.ix[:, 1]
poly = PolynomialFeatures(2)
data_X = poly.fit_transform(data_X)
msk = np.random.rand(len(data_X)) < 0.8
train_X = data_X[msk]
train_y = data_y[msk]
cv_X = data_X[~msk]
cv_y = data_y[~msk]
pd.DataFrame(data=data_X).head() | code |
1004507/cell_6 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt # plotting
import numpy as np # linear algebra
import pandas as pd # data processing
import re # regular expressions
raw_data = pd.read_csv('../input/train.csv')
raw_data = shuffle(raw_data)
gender_dic = {'male': 0, 'female': 1}
raw_data.ix[:, 4] = raw_data.ix[:, 4].replace(gender_dic)
raw_data.fillna(0, inplace=True)
raw_data = raw_data.assign(Cabin_count=0)
raw_data = raw_data.assign(Cabin_letter=0)
raw_data = raw_data.assign(Cabin_number=0)
def map_cabin(row):
cabin_str = row[10]
if cabin_str == 0:
return row
cabin_parts = cabin_str.split(' ')
row[12] = len(cabin_parts)
lc = cabin_parts[len(cabin_parts) - 1]
cl = re.findall('[A-Z]', lc)
cn = re.findall('\\d+', lc)
if len(cl) > 0:
row[13] = ord(cl[0])
else:
row[13] = 0
if len(cn) > 0:
row[14] = int(cn[0])
else:
row[14] = 0
return row
raw_data = raw_data.apply(map_cabin, axis=1)
data_X = raw_data.ix[:, [2, 4, 5, 6, 7, 9, 12, 13, 14]]
data_y = raw_data.ix[:, 1]
poly = PolynomialFeatures(2)
data_X = poly.fit_transform(data_X)
msk = np.random.rand(len(data_X)) < 0.8
train_X = data_X[msk]
train_y = data_y[msk]
cv_X = data_X[~msk]
cv_y = data_y[~msk]
pca = PCA(n_components=2)
t = pca.fit_transform(data_X)
t_x, t_y = t.T
plt.scatter(t_x, t_y, c=data_y)
plt.show() | code |
1004507/cell_8 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import learning_curve
import matplotlib.pyplot as plt # plotting
import numpy as np # linear algebra
import pandas as pd # data processing
import re # regular expressions
raw_data = pd.read_csv('../input/train.csv')
raw_data = shuffle(raw_data)
gender_dic = {'male': 0, 'female': 1}
raw_data.ix[:, 4] = raw_data.ix[:, 4].replace(gender_dic)
raw_data.fillna(0, inplace=True)
raw_data = raw_data.assign(Cabin_count=0)
raw_data = raw_data.assign(Cabin_letter=0)
raw_data = raw_data.assign(Cabin_number=0)
def map_cabin(row):
cabin_str = row[10]
if cabin_str == 0:
return row
cabin_parts = cabin_str.split(' ')
row[12] = len(cabin_parts)
lc = cabin_parts[len(cabin_parts) - 1]
cl = re.findall('[A-Z]', lc)
cn = re.findall('\\d+', lc)
if len(cl) > 0:
row[13] = ord(cl[0])
else:
row[13] = 0
if len(cn) > 0:
row[14] = int(cn[0])
else:
row[14] = 0
return row
raw_data = raw_data.apply(map_cabin, axis=1)
data_X = raw_data.ix[:, [2, 4, 5, 6, 7, 9, 12, 13, 14]]
data_y = raw_data.ix[:, 1]
poly = PolynomialFeatures(2)
data_X = poly.fit_transform(data_X)
msk = np.random.rand(len(data_X)) < 0.8
train_X = data_X[msk]
train_y = data_y[msk]
cv_X = data_X[~msk]
cv_y = data_y[~msk]
pca = PCA(n_components=2)
t = pca.fit_transform(data_X)
t_x, t_y = t.T
est = SVC(C=0.2)
ts = [10, 25, 50, 100, 200, 300, 400, 445]
train_sizes, train_scores, valid_scores = learning_curve(est, data_X, data_y, train_sizes=ts, cv=2)
plt.plot(train_sizes, np.mean(train_scores, axis=1))
plt.plot(train_sizes, np.mean(valid_scores, axis=1))
plt.show() | code |
1004507/cell_10 | [
"text_html_output_1.png"
] | from sklearn.model_selection import learning_curve
import matplotlib.pyplot as plt # plotting
import numpy as np # linear algebra
import pandas as pd # data processing
import re # regular expressions
raw_data = pd.read_csv('../input/train.csv')
raw_data = shuffle(raw_data)
gender_dic = {'male': 0, 'female': 1}
raw_data.ix[:, 4] = raw_data.ix[:, 4].replace(gender_dic)
raw_data.fillna(0, inplace=True)
raw_data = raw_data.assign(Cabin_count=0)
raw_data = raw_data.assign(Cabin_letter=0)
raw_data = raw_data.assign(Cabin_number=0)
def map_cabin(row):
cabin_str = row[10]
if cabin_str == 0:
return row
cabin_parts = cabin_str.split(' ')
row[12] = len(cabin_parts)
lc = cabin_parts[len(cabin_parts) - 1]
cl = re.findall('[A-Z]', lc)
cn = re.findall('\\d+', lc)
if len(cl) > 0:
row[13] = ord(cl[0])
else:
row[13] = 0
if len(cn) > 0:
row[14] = int(cn[0])
else:
row[14] = 0
return row
raw_data = raw_data.apply(map_cabin, axis=1)
data_X = raw_data.ix[:, [2, 4, 5, 6, 7, 9, 12, 13, 14]]
data_y = raw_data.ix[:, 1]
poly = PolynomialFeatures(2)
data_X = poly.fit_transform(data_X)
msk = np.random.rand(len(data_X)) < 0.8
train_X = data_X[msk]
train_y = data_y[msk]
cv_X = data_X[~msk]
cv_y = data_y[~msk]
pca = PCA(n_components=2)
t = pca.fit_transform(data_X)
t_x, t_y = t.T
est = SVC(C=0.2)
ts = [10, 25, 50, 100, 200, 300, 400, 445]
train_sizes, train_scores, valid_scores = learning_curve(est, data_X, data_y, train_sizes=ts, cv=2)
est.fit(train_X, train_y)
predict = est.predict(cv_X)
compare_y = cv_y.as_matrix()
sim = np.sum(predict == compare_y) / len(predict)
print(sim, '%') | code |
1008970/cell_6 | [
"image_output_1.png"
] | silly_thresh_value = 55
thresh_image = bone_image > silly_thresh_value
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))
ax1.imshow(bone_image, cmap='bone')
ax1.set_title('Original Image')
ax2.imshow(thresh_image, cmap='jet')
ax2.set_title('Thresheld Image') | code |
1008970/cell_3 | [
"image_output_1.png"
] | from skimage.io import imread
bone_image = imread('../input/bone.tif')
print('Loading bone image shape: {}'.format(bone_image.shape)) | code |
1008970/cell_12 | [
"text_plain_output_1.png"
] | threshold_list = [10, 20, 200]
fig, m_ax = plt.subplots(2, len(threshold_list), figsize=(15, 6))
for c_thresh, (c_ax1, c_ax2) in zip(threshold_list, m_ax.T):
bone_thresh = bone_image > c_thresh
c_ax1.imshow(bone_thresh, cmap='jet')
c_ax1.set_title('Bone @ {}, Image'.format(c_thresh))
c_ax1.axis('off')
cell_thresh = bone_image < c_thresh
c_ax2.imshow(cell_thresh, cmap='jet')
c_ax2.set_title('Cell @ {}, Image'.format(c_thresh))
c_ax2.axis('off') | code |
1008970/cell_5 | [
"text_plain_output_1.png",
"image_output_1.png"
] | fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))
ax1.imshow(bone_image, cmap='bone')
_ = ax2.hist(bone_image.ravel(), 20) | code |
33122071/cell_25 | [
"text_html_output_2.png"
] | from plotly.subplots import make_subplots
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.graph_objects as go
import translators as ts
df_new = pd.read_json('/kaggle/input/indonesiandata/emotion_id_tweets.json', lines=True)
ex_label = []
for i in range(df_new['annotation'].shape[0]):
if df_new['annotation'][i]['labels'] == []:
ex_label.append('no_emotion')
else:
ex_label.append(df_new.annotation[i]['labels'][0])
df = pd.DataFrame()
df['content'] = df_new['content']
df['emotion'] = ex_label
df['len'] = df['content'].astype(str).apply(len)
df = df.drop_duplicates(subset='content', keep='first')
df.shape
def missing_value_of_data(data):
total = data.isnull().sum().sort_values(ascending=False)
percentage = round(total / data.shape[0] * 100, 2)
return pd.concat([total, percentage], axis=1, keys=['Total', 'Percentage'])
missing_value_of_data(df)
def count_values_in_column(data, feature):
total = data.loc[:, feature].value_counts(dropna=False)
percentage = round(data.loc[:, feature].value_counts(dropna=False, normalize=True) * 100, 2)
return pd.concat([total, percentage], axis=1, keys=['Total', 'Percentage'])
count_values_in_column(df, 'emotion')
name_of_emotion = df.emotion.unique()
value_of_emotion = list(df.emotion.value_counts())
fig = go.Figure([go.Bar(x=list(name_of_emotion), y=value_of_emotion)])
fig.update_traces(textposition='outside')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide')
def ngrams_top(corpus, ngram_range, n=None):
"""
List the top n words in a vocabulary according to occurrence in a text corpus.
"""
vec = CountVectorizer(stop_words='english', ngram_range=ngram_range).fit(corpus)
bag_of_words = vec.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True)
total_list = words_freq[:n]
df = pd.DataFrame(total_list, columns=['text', 'count'])
return df
_1gram = ngrams_top(df['content'], (1, 1), n=10)
english_1gram = []
for i in range(10):
english_1gram.append(ts.google(_1gram['text'][i], 'auto', 'en'))
fig = make_subplots(rows=1, cols=2)
fig.add_trace(go.Bar(x=_1gram['count'][::-1], y=_1gram['text'][::-1], name='Indonesian', marker_color='rgb(55, 83, 109)', orientation='h'), row=1, col=1)
fig.add_trace(go.Bar(x=_1gram['count'][::-1], y=english_1gram[::-1], name='English', marker_color='rgb(5, 3, 243)', orientation='h'), row=1, col=2)
fig.update_layout(height=600, width=800, title_text='1 grams for Indonesian/English')
fig.show() | code |
33122071/cell_23 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.graph_objects as go
df_new = pd.read_json('/kaggle/input/indonesiandata/emotion_id_tweets.json', lines=True)
ex_label = []
for i in range(df_new['annotation'].shape[0]):
if df_new['annotation'][i]['labels'] == []:
ex_label.append('no_emotion')
else:
ex_label.append(df_new.annotation[i]['labels'][0])
df = pd.DataFrame()
df['content'] = df_new['content']
df['emotion'] = ex_label
df['len'] = df['content'].astype(str).apply(len)
df = df.drop_duplicates(subset='content', keep='first')
df.shape
def missing_value_of_data(data):
total = data.isnull().sum().sort_values(ascending=False)
percentage = round(total / data.shape[0] * 100, 2)
return pd.concat([total, percentage], axis=1, keys=['Total', 'Percentage'])
missing_value_of_data(df)
def count_values_in_column(data, feature):
total = data.loc[:, feature].value_counts(dropna=False)
percentage = round(data.loc[:, feature].value_counts(dropna=False, normalize=True) * 100, 2)
return pd.concat([total, percentage], axis=1, keys=['Total', 'Percentage'])
count_values_in_column(df, 'emotion')
name_of_emotion = df.emotion.unique()
value_of_emotion = list(df.emotion.value_counts())
fig = go.Figure([go.Bar(x=list(name_of_emotion), y=value_of_emotion)])
fig.update_traces(textposition='outside')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide')
def ngrams_top(corpus, ngram_range, n=None):
"""
List the top n words in a vocabulary according to occurrence in a text corpus.
"""
vec = CountVectorizer(stop_words='english', ngram_range=ngram_range).fit(corpus)
bag_of_words = vec.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True)
total_list = words_freq[:n]
df = pd.DataFrame(total_list, columns=['text', 'count'])
return df
_1gram = ngrams_top(df['content'], (1, 1), n=10) | code |
33122071/cell_29 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from plotly.subplots import make_subplots
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.graph_objects as go
import translators as ts
df_new = pd.read_json('/kaggle/input/indonesiandata/emotion_id_tweets.json', lines=True)
ex_label = []
for i in range(df_new['annotation'].shape[0]):
if df_new['annotation'][i]['labels'] == []:
ex_label.append('no_emotion')
else:
ex_label.append(df_new.annotation[i]['labels'][0])
df = pd.DataFrame()
df['content'] = df_new['content']
df['emotion'] = ex_label
df['len'] = df['content'].astype(str).apply(len)
df = df.drop_duplicates(subset='content', keep='first')
df.shape
def missing_value_of_data(data):
total = data.isnull().sum().sort_values(ascending=False)
percentage = round(total / data.shape[0] * 100, 2)
return pd.concat([total, percentage], axis=1, keys=['Total', 'Percentage'])
missing_value_of_data(df)
def count_values_in_column(data, feature):
total = data.loc[:, feature].value_counts(dropna=False)
percentage = round(data.loc[:, feature].value_counts(dropna=False, normalize=True) * 100, 2)
return pd.concat([total, percentage], axis=1, keys=['Total', 'Percentage'])
count_values_in_column(df, 'emotion')
name_of_emotion = df.emotion.unique()
value_of_emotion = list(df.emotion.value_counts())
fig = go.Figure([go.Bar(x=list(name_of_emotion), y=value_of_emotion)])
fig.update_traces(textposition='outside')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide')
def ngrams_top(corpus, ngram_range, n=None):
"""
List the top n words in a vocabulary according to occurrence in a text corpus.
"""
vec = CountVectorizer(stop_words='english', ngram_range=ngram_range).fit(corpus)
bag_of_words = vec.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True)
total_list = words_freq[:n]
df = pd.DataFrame(total_list, columns=['text', 'count'])
return df
_1gram = ngrams_top(df['content'], (1, 1), n=10)
english_1gram = []
for i in range(10):
english_1gram.append(ts.google(_1gram['text'][i], 'auto', 'en'))
fig = make_subplots(rows=1, cols=2)
fig.add_trace(
go.Bar(x=_1gram['count'][::-1],
y=_1gram['text'][::-1],
name='Indonesian',
marker_color='rgb(55, 83, 109)',
orientation='h'
),
row=1, col=1
)
fig.add_trace(
go.Bar(x=_1gram['count'][::-1],
y=english_1gram[::-1],
name='English',
marker_color='rgb(5, 3, 243)',
orientation='h'
),
row=1, col=2
)
fig.update_layout(height=600, width=800, title_text="1 grams for Indonesian/English")
fig.show()
_2gram = ngrams_top(df['content'], (2, 2), n=10)
english_2gram = []
for i in range(10):
english_2gram.append(ts.google(_2gram['text'][i], 'auto', 'en'))
fig = make_subplots(rows=1, cols=2)
fig.add_trace(go.Bar(x=_2gram['count'][::-1], y=_2gram['text'][::-1], name='Indonesian', marker_color='rgb(55, 244, 181)', orientation='h'), row=1, col=1)
fig.add_trace(go.Bar(x=_2gram['count'][::-1], y=english_2gram[::-1], name='English', marker_color='rgb(58, 45, 121)', orientation='h'), row=1, col=2)
fig.update_layout(height=600, width=1400, title_text='2 grams for Indonesian/English')
fig.show() | code |
33122071/cell_19 | [
"text_plain_output_1.png"
] | !pip install translators | code |
33122071/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
33122071/cell_7 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_new = pd.read_json('/kaggle/input/indonesiandata/emotion_id_tweets.json', lines=True)
ex_label = []
for i in range(df_new['annotation'].shape[0]):
if df_new['annotation'][i]['labels'] == []:
ex_label.append('no_emotion')
else:
ex_label.append(df_new.annotation[i]['labels'][0])
df = pd.DataFrame()
df['content'] = df_new['content']
df['emotion'] = ex_label
df.describe() | code |
33122071/cell_28 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.graph_objects as go
import translators as ts
df_new = pd.read_json('/kaggle/input/indonesiandata/emotion_id_tweets.json', lines=True)
ex_label = []
for i in range(df_new['annotation'].shape[0]):
if df_new['annotation'][i]['labels'] == []:
ex_label.append('no_emotion')
else:
ex_label.append(df_new.annotation[i]['labels'][0])
df = pd.DataFrame()
df['content'] = df_new['content']
df['emotion'] = ex_label
df['len'] = df['content'].astype(str).apply(len)
df = df.drop_duplicates(subset='content', keep='first')
df.shape
def missing_value_of_data(data):
total = data.isnull().sum().sort_values(ascending=False)
percentage = round(total / data.shape[0] * 100, 2)
return pd.concat([total, percentage], axis=1, keys=['Total', 'Percentage'])
missing_value_of_data(df)
def count_values_in_column(data, feature):
total = data.loc[:, feature].value_counts(dropna=False)
percentage = round(data.loc[:, feature].value_counts(dropna=False, normalize=True) * 100, 2)
return pd.concat([total, percentage], axis=1, keys=['Total', 'Percentage'])
count_values_in_column(df, 'emotion')
name_of_emotion = df.emotion.unique()
value_of_emotion = list(df.emotion.value_counts())
fig = go.Figure([go.Bar(x=list(name_of_emotion), y=value_of_emotion)])
fig.update_traces(textposition='outside')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide')
def ngrams_top(corpus, ngram_range, n=None):
"""
List the top n words in a vocabulary according to occurrence in a text corpus.
"""
vec = CountVectorizer(stop_words='english', ngram_range=ngram_range).fit(corpus)
bag_of_words = vec.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True)
total_list = words_freq[:n]
df = pd.DataFrame(total_list, columns=['text', 'count'])
return df
_1gram = ngrams_top(df['content'], (1, 1), n=10)
english_1gram = []
for i in range(10):
english_1gram.append(ts.google(_1gram['text'][i], 'auto', 'en'))
_2gram = ngrams_top(df['content'], (2, 2), n=10)
english_2gram = []
for i in range(10):
english_2gram.append(ts.google(_2gram['text'][i], 'auto', 'en')) | code |
33122071/cell_8 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_new = pd.read_json('/kaggle/input/indonesiandata/emotion_id_tweets.json', lines=True)
ex_label = []
for i in range(df_new['annotation'].shape[0]):
if df_new['annotation'][i]['labels'] == []:
ex_label.append('no_emotion')
else:
ex_label.append(df_new.annotation[i]['labels'][0])
df = pd.DataFrame()
df['content'] = df_new['content']
df['emotion'] = ex_label
df['len'] = df['content'].astype(str).apply(len)
df.head() | code |
33122071/cell_15 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_new = pd.read_json('/kaggle/input/indonesiandata/emotion_id_tweets.json', lines=True)
ex_label = []
for i in range(df_new['annotation'].shape[0]):
if df_new['annotation'][i]['labels'] == []:
ex_label.append('no_emotion')
else:
ex_label.append(df_new.annotation[i]['labels'][0])
df = pd.DataFrame()
df['content'] = df_new['content']
df['emotion'] = ex_label
df['len'] = df['content'].astype(str).apply(len)
df = df.drop_duplicates(subset='content', keep='first')
df.shape
def missing_value_of_data(data):
total = data.isnull().sum().sort_values(ascending=False)
percentage = round(total / data.shape[0] * 100, 2)
return pd.concat([total, percentage], axis=1, keys=['Total', 'Percentage'])
missing_value_of_data(df)
def count_values_in_column(data, feature):
total = data.loc[:, feature].value_counts(dropna=False)
percentage = round(data.loc[:, feature].value_counts(dropna=False, normalize=True) * 100, 2)
return pd.concat([total, percentage], axis=1, keys=['Total', 'Percentage'])
count_values_in_column(df, 'emotion') | code |
33122071/cell_3 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_new = pd.read_json('/kaggle/input/indonesiandata/emotion_id_tweets.json', lines=True)
df_new.head() | code |
33122071/cell_17 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.graph_objects as go
df_new = pd.read_json('/kaggle/input/indonesiandata/emotion_id_tweets.json', lines=True)
ex_label = []
for i in range(df_new['annotation'].shape[0]):
if df_new['annotation'][i]['labels'] == []:
ex_label.append('no_emotion')
else:
ex_label.append(df_new.annotation[i]['labels'][0])
df = pd.DataFrame()
df['content'] = df_new['content']
df['emotion'] = ex_label
df['len'] = df['content'].astype(str).apply(len)
df = df.drop_duplicates(subset='content', keep='first')
df.shape
name_of_emotion = df.emotion.unique()
value_of_emotion = list(df.emotion.value_counts())
fig = go.Figure([go.Bar(x=list(name_of_emotion), y=value_of_emotion)])
fig.update_traces(textposition='outside')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide')
fig.show() | code |
33122071/cell_31 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.graph_objects as go
import translators as ts
df_new = pd.read_json('/kaggle/input/indonesiandata/emotion_id_tweets.json', lines=True)
ex_label = []
for i in range(df_new['annotation'].shape[0]):
if df_new['annotation'][i]['labels'] == []:
ex_label.append('no_emotion')
else:
ex_label.append(df_new.annotation[i]['labels'][0])
df = pd.DataFrame()
df['content'] = df_new['content']
df['emotion'] = ex_label
df['len'] = df['content'].astype(str).apply(len)
df = df.drop_duplicates(subset='content', keep='first')
df.shape
def missing_value_of_data(data):
total = data.isnull().sum().sort_values(ascending=False)
percentage = round(total / data.shape[0] * 100, 2)
return pd.concat([total, percentage], axis=1, keys=['Total', 'Percentage'])
missing_value_of_data(df)
def count_values_in_column(data, feature):
total = data.loc[:, feature].value_counts(dropna=False)
percentage = round(data.loc[:, feature].value_counts(dropna=False, normalize=True) * 100, 2)
return pd.concat([total, percentage], axis=1, keys=['Total', 'Percentage'])
count_values_in_column(df, 'emotion')
name_of_emotion = df.emotion.unique()
value_of_emotion = list(df.emotion.value_counts())
fig = go.Figure([go.Bar(x=list(name_of_emotion), y=value_of_emotion)])
fig.update_traces(textposition='outside')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide')
def ngrams_top(corpus, ngram_range, n=None):
"""
List the top n words in a vocabulary according to occurrence in a text corpus.
"""
vec = CountVectorizer(stop_words='english', ngram_range=ngram_range).fit(corpus)
bag_of_words = vec.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True)
total_list = words_freq[:n]
df = pd.DataFrame(total_list, columns=['text', 'count'])
return df
_1gram = ngrams_top(df['content'], (1, 1), n=10)
english_1gram = []
for i in range(10):
english_1gram.append(ts.google(_1gram['text'][i], 'auto', 'en'))
_2gram = ngrams_top(df['content'], (2, 2), n=10)
english_2gram = []
for i in range(10):
english_2gram.append(ts.google(_2gram['text'][i], 'auto', 'en'))
_3gram = ngrams_top(df['content'], (3, 3), n=10)
english_3gram = []
for i in range(10):
english_3gram.append(ts.google(_3gram['text'][i], 'auto', 'en')) | code |
33122071/cell_24 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.graph_objects as go
import translators as ts
df_new = pd.read_json('/kaggle/input/indonesiandata/emotion_id_tweets.json', lines=True)
ex_label = []
for i in range(df_new['annotation'].shape[0]):
if df_new['annotation'][i]['labels'] == []:
ex_label.append('no_emotion')
else:
ex_label.append(df_new.annotation[i]['labels'][0])
df = pd.DataFrame()
df['content'] = df_new['content']
df['emotion'] = ex_label
df['len'] = df['content'].astype(str).apply(len)
df = df.drop_duplicates(subset='content', keep='first')
df.shape
def missing_value_of_data(data):
total = data.isnull().sum().sort_values(ascending=False)
percentage = round(total / data.shape[0] * 100, 2)
return pd.concat([total, percentage], axis=1, keys=['Total', 'Percentage'])
missing_value_of_data(df)
def count_values_in_column(data, feature):
total = data.loc[:, feature].value_counts(dropna=False)
percentage = round(data.loc[:, feature].value_counts(dropna=False, normalize=True) * 100, 2)
return pd.concat([total, percentage], axis=1, keys=['Total', 'Percentage'])
count_values_in_column(df, 'emotion')
name_of_emotion = df.emotion.unique()
value_of_emotion = list(df.emotion.value_counts())
fig = go.Figure([go.Bar(x=list(name_of_emotion), y=value_of_emotion)])
fig.update_traces(textposition='outside')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide')
def ngrams_top(corpus, ngram_range, n=None):
"""
List the top n words in a vocabulary according to occurrence in a text corpus.
"""
vec = CountVectorizer(stop_words='english', ngram_range=ngram_range).fit(corpus)
bag_of_words = vec.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True)
total_list = words_freq[:n]
df = pd.DataFrame(total_list, columns=['text', 'count'])
return df
_1gram = ngrams_top(df['content'], (1, 1), n=10)
english_1gram = []
for i in range(10):
english_1gram.append(ts.google(_1gram['text'][i], 'auto', 'en')) | code |
33122071/cell_10 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_new = pd.read_json('/kaggle/input/indonesiandata/emotion_id_tweets.json', lines=True)
ex_label = []
for i in range(df_new['annotation'].shape[0]):
if df_new['annotation'][i]['labels'] == []:
ex_label.append('no_emotion')
else:
ex_label.append(df_new.annotation[i]['labels'][0])
df = pd.DataFrame()
df['content'] = df_new['content']
df['emotion'] = ex_label
df['len'] = df['content'].astype(str).apply(len)
df = df.drop_duplicates(subset='content', keep='first')
df.shape | code |
33122071/cell_27 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import plotly.graph_objects as go
df_new = pd.read_json('/kaggle/input/indonesiandata/emotion_id_tweets.json', lines=True)
ex_label = []
for i in range(df_new['annotation'].shape[0]):
if df_new['annotation'][i]['labels'] == []:
ex_label.append('no_emotion')
else:
ex_label.append(df_new.annotation[i]['labels'][0])
df = pd.DataFrame()
df['content'] = df_new['content']
df['emotion'] = ex_label
df['len'] = df['content'].astype(str).apply(len)
df = df.drop_duplicates(subset='content', keep='first')
df.shape
def missing_value_of_data(data):
total = data.isnull().sum().sort_values(ascending=False)
percentage = round(total / data.shape[0] * 100, 2)
return pd.concat([total, percentage], axis=1, keys=['Total', 'Percentage'])
missing_value_of_data(df)
def count_values_in_column(data, feature):
total = data.loc[:, feature].value_counts(dropna=False)
percentage = round(data.loc[:, feature].value_counts(dropna=False, normalize=True) * 100, 2)
return pd.concat([total, percentage], axis=1, keys=['Total', 'Percentage'])
count_values_in_column(df, 'emotion')
name_of_emotion = df.emotion.unique()
value_of_emotion = list(df.emotion.value_counts())
fig = go.Figure([go.Bar(x=list(name_of_emotion), y=value_of_emotion)])
fig.update_traces(textposition='outside')
fig.update_layout(uniformtext_minsize=8, uniformtext_mode='hide')
def ngrams_top(corpus, ngram_range, n=None):
"""
List the top n words in a vocabulary according to occurrence in a text corpus.
"""
vec = CountVectorizer(stop_words='english', ngram_range=ngram_range).fit(corpus)
bag_of_words = vec.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.items()]
words_freq = sorted(words_freq, key=lambda x: x[1], reverse=True)
total_list = words_freq[:n]
df = pd.DataFrame(total_list, columns=['text', 'count'])
return df
_2gram = ngrams_top(df['content'], (2, 2), n=10) | code |
33122071/cell_12 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_new = pd.read_json('/kaggle/input/indonesiandata/emotion_id_tweets.json', lines=True)
ex_label = []
for i in range(df_new['annotation'].shape[0]):
if df_new['annotation'][i]['labels'] == []:
ex_label.append('no_emotion')
else:
ex_label.append(df_new.annotation[i]['labels'][0])
df = pd.DataFrame()
df['content'] = df_new['content']
df['emotion'] = ex_label
df['len'] = df['content'].astype(str).apply(len)
df = df.drop_duplicates(subset='content', keep='first')
df.shape
def missing_value_of_data(data):
total = data.isnull().sum().sort_values(ascending=False)
percentage = round(total / data.shape[0] * 100, 2)
return pd.concat([total, percentage], axis=1, keys=['Total', 'Percentage'])
missing_value_of_data(df) | code |
33122071/cell_5 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df_new = pd.read_json('/kaggle/input/indonesiandata/emotion_id_tweets.json', lines=True)
ex_label = []
for i in range(df_new['annotation'].shape[0]):
if df_new['annotation'][i]['labels'] == []:
ex_label.append('no_emotion')
else:
ex_label.append(df_new.annotation[i]['labels'][0])
df = pd.DataFrame()
df['content'] = df_new['content']
df['emotion'] = ex_label
df.head() | code |
34130888/cell_6 | [
"text_plain_output_1.png"
] | import cv2
import os
import pandas as pd
in_part1 = set(os.listdir('../input/skin-cancer-mnist-ham10000/ham10000_images_part_1'))
df = pd.read_csv('../input/skin-cancer-mnist-ham10000/HAM10000_metadata.csv')
x_train = []
y_train = []
lesions = set()
for index, row in df.iterrows():
if row['lesion_id'] in lesions:
continue
lesions.add(row['lesion_id'])
path = '../input/skin-cancer-mnist-ham10000/'
if row['image_id'] + '.jpg' in in_part1:
path += 'ham10000_images_part_1/' + row['image_id'] + '.jpg'
else:
path += 'ham10000_images_part_2/' + row['image_id'] + '.jpg'
img = cv2.imread(path)
img = cv2.resize(img, (100, 75))
x_train.append(img)
y_train.append(row['dx'])
y_train = pd.get_dummies(y_train)
y_train.head() | code |
34130888/cell_11 | [
"text_html_output_1.png"
] | from keras.layers import Dense, Dropout, Flatten , Conv2D , MaxPool2D
from keras.models import Sequential
input_shape = (75, 100, 3)
num_classes = 7
model = Sequential()
model.add(Flatten(input_shape=input_shape))
model.add(Dense(512, activation='relu'))
model.add(Dense(256, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
model.summary() | code |
34130888/cell_1 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import numpy as np
import pandas as pd
import os
import cv2
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras import backend as K
from keras.layers.normalization import BatchNormalization
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ReduceLROnPlateau
from sklearn.model_selection import train_test_split | code |
34130888/cell_8 | [
"text_plain_output_1.png"
] | import cv2
import numpy as np
import os
import pandas as pd
in_part1 = set(os.listdir('../input/skin-cancer-mnist-ham10000/ham10000_images_part_1'))
df = pd.read_csv('../input/skin-cancer-mnist-ham10000/HAM10000_metadata.csv')
x_train = []
y_train = []
lesions = set()
for index, row in df.iterrows():
if row['lesion_id'] in lesions:
continue
lesions.add(row['lesion_id'])
path = '../input/skin-cancer-mnist-ham10000/'
if row['image_id'] + '.jpg' in in_part1:
path += 'ham10000_images_part_1/' + row['image_id'] + '.jpg'
else:
path += 'ham10000_images_part_2/' + row['image_id'] + '.jpg'
img = cv2.imread(path)
img = cv2.resize(img, (100, 75))
x_train.append(img)
y_train.append(row['dx'])
y_train = pd.get_dummies(y_train)
y_train = np.asarray(y_train)
mean = np.mean(x_train)
std = np.std(x_train)
x_train = (x_train - mean) / std
print(x_train.shape)
print(y_train.shape) | code |
34130888/cell_15 | [
"text_plain_output_1.png"
] | from keras.callbacks import ReduceLROnPlateau
from keras.layers import Dense, Dropout, Flatten , Conv2D , MaxPool2D
from keras.models import Sequential
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator
import cv2
import numpy as np
import os
import pandas as pd
in_part1 = set(os.listdir('../input/skin-cancer-mnist-ham10000/ham10000_images_part_1'))
df = pd.read_csv('../input/skin-cancer-mnist-ham10000/HAM10000_metadata.csv')
x_train = []
y_train = []
lesions = set()
for index, row in df.iterrows():
if row['lesion_id'] in lesions:
continue
lesions.add(row['lesion_id'])
path = '../input/skin-cancer-mnist-ham10000/'
if row['image_id'] + '.jpg' in in_part1:
path += 'ham10000_images_part_1/' + row['image_id'] + '.jpg'
else:
path += 'ham10000_images_part_2/' + row['image_id'] + '.jpg'
img = cv2.imread(path)
img = cv2.resize(img, (100, 75))
x_train.append(img)
y_train.append(row['dx'])
y_train = pd.get_dummies(y_train)
y_train = np.asarray(y_train)
mean = np.mean(x_train)
std = np.std(x_train)
x_train = (x_train - mean) / std
input_shape = (75, 100, 3)
num_classes = 7
model = Sequential()
model.add(Flatten(input_shape=input_shape))
model.add(Dense(512, activation='relu'))
model.add(Dense(256, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
model.summary()
optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.999)
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
learning_rate_reduction = ReduceLROnPlateau(monitor='val_accuracy', patience=3, verbose=1, factor=0.5, min_lr=1e-05)
datagen = ImageDataGenerator(rotation_range=10, zoom_range=0.1, width_shift_range=0.1, height_shift_range=0.1)
datagen.fit(x_train)
epochs = 50
batch_size = 128
history = model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size), epochs=epochs, validation_data=(x_validate, y_validate), verbose=1, callbacks=[learning_rate_reduction], shuffle=True) | code |
16120004/cell_9 | [
"text_plain_output_1.png"
] | from PIL import Image
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
infectados = os.listdir('../input/cell_images/cell_images/Parasitized/')
saudaveis = os.listdir('../input/cell_images/cell_images/Uninfected/')
data = []
labels = []
for i in infectados:
try:
image = cv2.imread('../input/cell_images/cell_images/Parasitized/' + i)
image_array = Image.fromarray(image, 'RGB')
resize_img = image_array.resize((50, 50))
rotated30 = resize_img.rotate(30)
rotated60 = resize_img.rotate(60)
blur = cv2.blur(np.array(resize_img), (10, 10))
data.append(np.array(resize_img))
data.append(np.array(rotated30))
data.append(np.array(rotated60))
data.append(np.array(blur))
labels.append(1)
labels.append(1)
labels.append(1)
labels.append(1)
except AttributeError:
for s in saudaveis:
try:
image = cv2.imread('../input/cell_images/cell_images/Uninfected/' + s)
image_array = Image.fromarray(image, 'RGB')
resize_img = image_array.resize((50, 50))
rotated30 = resize_img.rotate(30)
rotated60 = resize_img.rotate(60)
data.append(np.array(resize_img))
data.append(np.array(rotated30))
data.append(np.array(rotated60))
labels.append(0)
labels.append(0)
labels.append(0)
except AttributeError:
celulas = np.array(data)
classes = np.array(labels)
import matplotlib.pyplot as plt
n = 0
for i in range(49):
n += 1
r = np.random.randint(0, celulas.shape[0], 1)
(plt.xticks([]), plt.yticks([]))
plt.figure(1, figsize=(15, 7))
plt.subplot(1, 2, 1)
plt.imshow(celulas[0])
plt.title('Infectada')
(plt.xticks([]), plt.yticks([]))
plt.subplot(1, 2, 2)
plt.imshow(celulas[60000])
plt.title('Saudavel')
(plt.xticks([]), plt.yticks([]))
plt.show() | code |
16120004/cell_4 | [
"image_output_1.png"
] | import os
print(os.listdir('../input/cell_images/cell_images')) | code |
16120004/cell_6 | [
"text_plain_output_1.png"
] | from PIL import Image
import cv2
import numpy as np
import os
infectados = os.listdir('../input/cell_images/cell_images/Parasitized/')
saudaveis = os.listdir('../input/cell_images/cell_images/Uninfected/')
data = []
labels = []
for i in infectados:
try:
image = cv2.imread('../input/cell_images/cell_images/Parasitized/' + i)
image_array = Image.fromarray(image, 'RGB')
resize_img = image_array.resize((50, 50))
rotated30 = resize_img.rotate(30)
rotated60 = resize_img.rotate(60)
blur = cv2.blur(np.array(resize_img), (10, 10))
data.append(np.array(resize_img))
data.append(np.array(rotated30))
data.append(np.array(rotated60))
data.append(np.array(blur))
labels.append(1)
labels.append(1)
labels.append(1)
labels.append(1)
except AttributeError:
print('')
for s in saudaveis:
try:
image = cv2.imread('../input/cell_images/cell_images/Uninfected/' + s)
image_array = Image.fromarray(image, 'RGB')
resize_img = image_array.resize((50, 50))
rotated30 = resize_img.rotate(30)
rotated60 = resize_img.rotate(60)
data.append(np.array(resize_img))
data.append(np.array(rotated30))
data.append(np.array(rotated60))
labels.append(0)
labels.append(0)
labels.append(0)
except AttributeError:
print('') | code |
16120004/cell_8 | [
"text_plain_output_1.png"
] | from PIL import Image
import cv2
import matplotlib.pyplot as plt
import numpy as np
import os
infectados = os.listdir('../input/cell_images/cell_images/Parasitized/')
saudaveis = os.listdir('../input/cell_images/cell_images/Uninfected/')
data = []
labels = []
for i in infectados:
try:
image = cv2.imread('../input/cell_images/cell_images/Parasitized/' + i)
image_array = Image.fromarray(image, 'RGB')
resize_img = image_array.resize((50, 50))
rotated30 = resize_img.rotate(30)
rotated60 = resize_img.rotate(60)
blur = cv2.blur(np.array(resize_img), (10, 10))
data.append(np.array(resize_img))
data.append(np.array(rotated30))
data.append(np.array(rotated60))
data.append(np.array(blur))
labels.append(1)
labels.append(1)
labels.append(1)
labels.append(1)
except AttributeError:
for s in saudaveis:
try:
image = cv2.imread('../input/cell_images/cell_images/Uninfected/' + s)
image_array = Image.fromarray(image, 'RGB')
resize_img = image_array.resize((50, 50))
rotated30 = resize_img.rotate(30)
rotated60 = resize_img.rotate(60)
data.append(np.array(resize_img))
data.append(np.array(rotated30))
data.append(np.array(rotated60))
labels.append(0)
labels.append(0)
labels.append(0)
except AttributeError:
celulas = np.array(data)
classes = np.array(labels)
import matplotlib.pyplot as plt
plt.figure(1, figsize=(15, 9))
n = 0
for i in range(49):
n += 1
r = np.random.randint(0, celulas.shape[0], 1)
plt.subplot(7, 7, n)
plt.subplots_adjust(hspace=0.5, wspace=0.5)
plt.imshow(celulas[r[0]])
plt.title('{} : {}'.format('Infectados' if classes[r[0]] == 1 else 'Saudaveis', classes[r[0]]))
(plt.xticks([]), plt.yticks([]))
plt.show() | code |
16120004/cell_15 | [
"text_plain_output_1.png"
] | from keras.layers import Conv2D,MaxPooling2D,Dense,Flatten,Dropout
from keras.models import Sequential
model = Sequential()
model.add(Conv2D(filters=16, kernel_size=2, padding='same', activation='relu', input_shape=(50, 50, 3)))
model.add(MaxPooling2D(pool_size=2))
model.add(Conv2D(filters=32, kernel_size=2, padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Conv2D(filters=64, kernel_size=2, padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Conv2D(filters=128, kernel_size=2, padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=2))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(500, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(2, activation='sigmoid'))
model.summary() | code |
16120004/cell_3 | [
"image_output_1.png"
] | from PIL import Image
import numpy as np
import os
import cv2
import keras
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout | code |
16120004/cell_14 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from PIL import Image
import cv2
import keras
import matplotlib.pyplot as plt
import numpy as np
import os
infectados = os.listdir('../input/cell_images/cell_images/Parasitized/')
saudaveis = os.listdir('../input/cell_images/cell_images/Uninfected/')
data = []
labels = []
for i in infectados:
try:
image = cv2.imread('../input/cell_images/cell_images/Parasitized/' + i)
image_array = Image.fromarray(image, 'RGB')
resize_img = image_array.resize((50, 50))
rotated30 = resize_img.rotate(30)
rotated60 = resize_img.rotate(60)
blur = cv2.blur(np.array(resize_img), (10, 10))
data.append(np.array(resize_img))
data.append(np.array(rotated30))
data.append(np.array(rotated60))
data.append(np.array(blur))
labels.append(1)
labels.append(1)
labels.append(1)
labels.append(1)
except AttributeError:
for s in saudaveis:
try:
image = cv2.imread('../input/cell_images/cell_images/Uninfected/' + s)
image_array = Image.fromarray(image, 'RGB')
resize_img = image_array.resize((50, 50))
rotated30 = resize_img.rotate(30)
rotated60 = resize_img.rotate(60)
data.append(np.array(resize_img))
data.append(np.array(rotated30))
data.append(np.array(rotated60))
labels.append(0)
labels.append(0)
labels.append(0)
except AttributeError:
celulas = np.array(data)
classes = np.array(labels)
import matplotlib.pyplot as plt
n = 0
for i in range(49):
n += 1
r = np.random.randint(0, celulas.shape[0], 1)
(plt.xticks([]), plt.yticks([]))
np.random.seed(0)
n = np.arange(celulas.shape[0])
np.random.shuffle(n)
cells = celulas[n]
labels = classes[n]
cells = cells.astype(np.float32)
labels = labels.astype(np.int32)
cells = cells / 255
num_classes = len(np.unique(labels))
len_data = len(cells)
y_tr = keras.utils.to_categorical(y_tr, num_classes)
y_val = keras.utils.to_categorical(y_val, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
print(y_tr.shape, y_val.shape, X_tr.shape, X_val.shape) | code |
1004704/cell_19 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn import tree
from sklearn import tree
clf = tree.DecisionTreeClassifier()
clf.fit(xtrain, ytrain)
clf.score(xtest, ytest) | code |
1004704/cell_18 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn import tree
from sklearn import tree
clf = tree.DecisionTreeClassifier()
clf.fit(xtrain, ytrain) | code |
16136701/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataf = pd.read_csv('../input/bike_share.csv')
dataf.describe().T
dataf.duplicated().sum()
dataf.shape
dataf.drop_duplicates(inplace=True)
dataf.duplicated().sum()
dataf.isna().sum()
dataf.windspeed.plot(kind='box') | code |
16136701/cell_9 | [
"image_output_11.png",
"image_output_5.png",
"image_output_7.png",
"image_output_4.png",
"image_output_8.png",
"image_output_6.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png",
"image_output_10.png",
"image_output_9.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataf = pd.read_csv('../input/bike_share.csv')
dataf.describe().T
dataf.duplicated().sum()
dataf.shape
dataf.drop_duplicates(inplace=True)
dataf.duplicated().sum() | code |
16136701/cell_25 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataf = pd.read_csv('../input/bike_share.csv')
dataf.describe().T
dataf.duplicated().sum()
dataf.shape
dataf.drop_duplicates(inplace=True)
dataf.duplicated().sum()
dataf.isna().sum()
dataf.corr()
train_X = dataf.drop(columns=['temp', 'casual', 'registered'])
model = LinearRegression()
a = cross_val_score(model, train_X, train_Y, cv=5, scoring='neg_mean_squared_error') | code |
16136701/cell_4 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataf = pd.read_csv('../input/bike_share.csv')
dataf.info() | code |
16136701/cell_30 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LinearRegression
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataf = pd.read_csv('../input/bike_share.csv')
dataf.describe().T
dataf.duplicated().sum()
dataf.shape
dataf.drop_duplicates(inplace=True)
dataf.duplicated().sum()
dataf.isna().sum()
dataf.corr()
train_X = dataf.drop(columns=['temp', 'casual', 'registered'])
train1_Y = dataf['casual']
train2_Y = dataf['registered']
train3_Y = dataf['count']
model = LinearRegression()
model.fit(train_X, train1_Y)
dtrain_predictions = model.predict(train_X)
model.fit(X_train, Y_train) | code |
16136701/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataf = pd.read_csv('../input/bike_share.csv')
dataf.describe().T
dataf.duplicated().sum() | code |
16136701/cell_26 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataf = pd.read_csv('../input/bike_share.csv')
dataf.describe().T
dataf.duplicated().sum()
dataf.shape
dataf.drop_duplicates(inplace=True)
dataf.duplicated().sum()
dataf.isna().sum()
dataf.corr()
train_X = dataf.drop(columns=['temp', 'casual', 'registered'])
model = LinearRegression()
a = cross_val_score(model, train_X, train_Y, cv=5, scoring='neg_mean_squared_error')
np.mean(np.sqrt(np.abs(a))) | code |
16136701/cell_11 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataf = pd.read_csv('../input/bike_share.csv')
dataf.describe().T
dataf.duplicated().sum()
dataf.shape
dataf.drop_duplicates(inplace=True)
dataf.duplicated().sum()
dataf.isna().sum()
dataf['temp'].unique() | code |
16136701/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
16136701/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataf = pd.read_csv('../input/bike_share.csv')
dataf.describe().T
dataf.duplicated().sum()
dataf.shape | code |
16136701/cell_18 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataf = pd.read_csv('../input/bike_share.csv')
dataf.describe().T
dataf.duplicated().sum()
dataf.shape
dataf.drop_duplicates(inplace=True)
dataf.duplicated().sum()
dataf.isna().sum()
dataf.corr() | code |
16136701/cell_15 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataf = pd.read_csv('../input/bike_share.csv')
dataf.describe().T
dataf.duplicated().sum()
dataf.shape
dataf.drop_duplicates(inplace=True)
dataf.duplicated().sum()
dataf.isna().sum()
dataf.registered.plot(kind='box') | code |
16136701/cell_16 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataf = pd.read_csv('../input/bike_share.csv')
dataf.describe().T
dataf.duplicated().sum()
dataf.shape
dataf.drop_duplicates(inplace=True)
dataf.duplicated().sum()
dataf.isna().sum()
dataf['count'].plot(kind='box') | code |
16136701/cell_38 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
dataf = pd.read_csv('../input/bike_share.csv')
dataf.describe().T
dataf.duplicated().sum()
dataf.shape
dataf.drop_duplicates(inplace=True)
dataf.duplicated().sum()
dataf.isna().sum()
dataf.corr()
train_X = dataf.drop(columns=['temp', 'casual', 'registered'])
for i in dataf.columns:
sns.pairplot(data=dataf, x_vars=i, y_vars='count') | code |
16136701/cell_3 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataf = pd.read_csv('../input/bike_share.csv')
dataf.head() | code |
16136701/cell_17 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataf = pd.read_csv('../input/bike_share.csv')
dataf.describe().T
dataf.duplicated().sum()
dataf.shape
dataf.drop_duplicates(inplace=True)
dataf.duplicated().sum()
dataf.isna().sum()
dataf['count'].value_counts() | code |
16136701/cell_35 | [
"text_html_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_squared_log_error, r2_score
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataf = pd.read_csv('../input/bike_share.csv')
dataf.describe().T
dataf.duplicated().sum()
dataf.shape
dataf.drop_duplicates(inplace=True)
dataf.duplicated().sum()
dataf.isna().sum()
dataf.corr()
train_X = dataf.drop(columns=['temp', 'casual', 'registered'])
train1_Y = dataf['casual']
train2_Y = dataf['registered']
train3_Y = dataf['count']
model = LinearRegression()
model.fit(train_X, train1_Y)
dtrain_predictions = model.predict(train_X)
model.fit(X_train, Y_train)
train_predict = model.predict(X_train)
test_predict = model.predict(X_test)
print('Train:', mean_absolute_error(Y_train, train_predict))
print('Test:', mean_absolute_error(Y_test, test_predict)) | code |
16136701/cell_24 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.linear_model import LinearRegression
model = LinearRegression()
model | code |
16136701/cell_14 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataf = pd.read_csv('../input/bike_share.csv')
dataf.describe().T
dataf.duplicated().sum()
dataf.shape
dataf.drop_duplicates(inplace=True)
dataf.duplicated().sum()
dataf.isna().sum()
dataf.casual.plot(kind='box') | code |
16136701/cell_10 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataf = pd.read_csv('../input/bike_share.csv')
dataf.describe().T
dataf.duplicated().sum()
dataf.shape
dataf.drop_duplicates(inplace=True)
dataf.duplicated().sum()
dataf.isna().sum() | code |
16136701/cell_12 | [
"text_html_output_1.png"
] | dataf.season.plot(kind='box') | code |
16136701/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataf = pd.read_csv('../input/bike_share.csv')
dataf.describe().T | code |
16136701/cell_36 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_squared_log_error, r2_score
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataf = pd.read_csv('../input/bike_share.csv')
dataf.describe().T
dataf.duplicated().sum()
dataf.shape
dataf.drop_duplicates(inplace=True)
dataf.duplicated().sum()
dataf.isna().sum()
dataf.corr()
train_X = dataf.drop(columns=['temp', 'casual', 'registered'])
train1_Y = dataf['casual']
train2_Y = dataf['registered']
train3_Y = dataf['count']
model = LinearRegression()
model.fit(train_X, train1_Y)
dtrain_predictions = model.predict(train_X)
model.fit(X_train, Y_train)
train_predict = model.predict(X_train)
test_predict = model.predict(X_test)
print('r2 train', r2_score(Y_train, train_predict))
print('r2 test', r2_score(Y_test, test_predict)) | code |
74052344/cell_2 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
pd.set_option.max_rows = 50
import numpy as np
train_path = '/kaggle/input/house-prices-advanced-regression-techniques/train.csv'
test_path = '/kaggle/input/house-prices-advanced-regression-techniques/test.csv'
df_train = pd.read_csv(train_path)
df_test = pd.read_csv(test_path)
print('shape of train set', df_train.shape)
print('shape of test set ', df_test.shape)
list_col_train = list(df_train.columns)
print('Train features : ', list_col_test)
list_col_test = list(df_test.columns)
print('test Features :', list_col_test) | code |
74052344/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.