path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
50222118/cell_24
[ "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from tqdm import tqdm import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def create_mean_std_df(df): means = df.mean() stds = df.std() ret_df = pd.concat([means, stds], axis=1).reset_index() ret_df.columns = ['index', 'mean', 'std'] ret_df['pref'] = ret_df['index'].apply(lambda x: x.split('-')[0]) ret_df['post'] = ret_df['index'].apply(lambda x: x.split('-')[1]) return ret_df def scatter(y, x=None, color= None): fig, ax = plt.subplots() un_c = color.unique() for i, col in enumerate(un_c): y_i = y[color == col] if type(x) != pd.core.series.Series: x_i = range(0 + i * (y.shape[0] - y_i.shape[0]), (1 - i)*y_i.shape[0] + i * y.shape[0]) else: x_i = x[color == col] ax.scatter(x_i, y_i, c=col, label=col, alpha=0.3) ax.set_ylabel(y.name) ax.legend() ax.grid(True) plt.show() tr = create_mean_std_df(train_features.iloc[:, 4:]) corrMatrix = train_features.corr() def mul_lab_logreg(test, train_X, train_y): sub = pd.DataFrame(test['sig_id']) col = train_y.columns.drop('sig_id') train_X.set_index('sig_id', inplace=True) df = pd.concat([train_X.iloc[:, 0], train_y.set_index('sig_id')], axis=1) for c in tqdm(col): y = df.loc[:, c] clf = LogisticRegression(random_state=0, class_weight=y.mean(), n_jobs=6).fit(train_X, y) clf.fit(train_X, y) sub[c] = clf.predict_proba(test.drop('sig_id', axis=1)).T[1] return sub clf = RandomForestClassifier(n_estimators=15, criterion='entropy', max_depth=15, max_samples=150, max_features=0.3, verbose=1, n_jobs=-1, random_state=1998, ccp_alpha=0.0) clf.fit(train_features.set_index('sig_id'), train_targets_scored.set_index('sig_id'))
code
50222118/cell_14
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def create_mean_std_df(df): means = df.mean() stds = df.std() ret_df = pd.concat([means, stds], axis=1).reset_index() ret_df.columns = ['index', 'mean', 'std'] ret_df['pref'] = ret_df['index'].apply(lambda x: x.split('-')[0]) ret_df['post'] = ret_df['index'].apply(lambda x: x.split('-')[1]) return ret_df def scatter(y, x=None, color= None): fig, ax = plt.subplots() un_c = color.unique() for i, col in enumerate(un_c): y_i = y[color == col] if type(x) != pd.core.series.Series: x_i = range(0 + i * (y.shape[0] - y_i.shape[0]), (1 - i)*y_i.shape[0] + i * y.shape[0]) else: x_i = x[color == col] ax.scatter(x_i, y_i, c=col, label=col, alpha=0.3) ax.set_ylabel(y.name) ax.legend() ax.grid(True) plt.show() tr = create_mean_std_df(train_features.iloc[:, 4:]) corrMatrix = train_features.corr() plt.imshow(corrMatrix) plt.show()
code
50222118/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def create_mean_std_df(df): means = df.mean() stds = df.std() ret_df = pd.concat([means, stds], axis=1).reset_index() ret_df.columns = ['index', 'mean', 'std'] ret_df['pref'] = ret_df['index'].apply(lambda x: x.split('-')[0]) ret_df['post'] = ret_df['index'].apply(lambda x: x.split('-')[1]) return ret_df def scatter(y, x=None, color= None): fig, ax = plt.subplots() un_c = color.unique() for i, col in enumerate(un_c): y_i = y[color == col] if type(x) != pd.core.series.Series: x_i = range(0 + i * (y.shape[0] - y_i.shape[0]), (1 - i)*y_i.shape[0] + i * y.shape[0]) else: x_i = x[color == col] ax.scatter(x_i, y_i, c=col, label=col, alpha=0.3) ax.set_ylabel(y.name) ax.legend() ax.grid(True) plt.show() tr = create_mean_std_df(train_features.iloc[:, 4:]) scatter(y=tr['std'], color=tr['pref'])
code
50222118/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
train_features[['cp_type']].value_counts()
code
73090447/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sb train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv', index_col='Id') test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv', index_col='Id') train.shape trainNum = train.select_dtypes(include=['int64', 'float64']) corrMat = trainNum.corr() corrY = corrMat[['SalePrice']].sort_values(by = 'SalePrice') cmap = sb.diverging_palette(20, 220, n=10) fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(20, 8)) sb.heatmap(corrMat, cmap = cmap, ax = axes[0]) sb.heatmap(corrY, cmap = cmap, ax = axes[1]) sb.boxplot(x='OverallQual', y='SalePrice', data=train)
code
73090447/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv', index_col='Id') test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv', index_col='Id') train.shape train.hist(column='SalePrice', bins=50)
code
73090447/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sb train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv', index_col='Id') test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv', index_col='Id') train.shape trainNum = train.select_dtypes(include=['int64', 'float64']) corrMat = trainNum.corr() corrY = corrMat[['SalePrice']].sort_values(by='SalePrice') cmap = sb.diverging_palette(20, 220, n=10) fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(20, 8)) sb.heatmap(corrMat, cmap=cmap, ax=axes[0]) sb.heatmap(corrY, cmap=cmap, ax=axes[1])
code
73090447/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv', index_col='Id') test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv', index_col='Id') train.shape
code
73090447/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv', index_col='Id') test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv', index_col='Id') train.shape train.head()
code
73090447/cell_15
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sb train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv', index_col='Id') test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv', index_col='Id') train.shape trainNum = train.select_dtypes(include=['int64', 'float64']) corrMat = trainNum.corr() corrY = corrMat[['SalePrice']].sort_values(by = 'SalePrice') cmap = sb.diverging_palette(20, 220, n=10) fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(20, 8)) sb.heatmap(corrMat, cmap = cmap, ax = axes[0]) sb.heatmap(corrY, cmap = cmap, ax = axes[1]) train = train[~((train.OverallQual == 4) & (train.SalePrice >= 200000)) & ~((train.OverallQual == 8) & (train.SalePrice >= 500000))] train.shape
code
73090447/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv', index_col='Id') test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv', index_col='Id') train.shape train[['SalePrice']].describe()
code
128033200/cell_9
[ "text_html_output_1.png" ]
from itertools import chain import os import pandas as pd import pandas as pd DATAFRAME_PATH = '/kaggle/input/productcategorization2/image_taxonomy_and_description.csv' IMAGE_DIRECTORY_PATH = '/kaggle/input/productcategorization2/new_images/new_images' images_list = [int(iter.split('.')[0]) for iter in os.listdir(IMAGE_DIRECTORY_PATH)] df = pd.read_csv(DATAFRAME_PATH) df1 = df.copy() df1 = df1[df1['product_id'].isin(images_list)] df1.reset_index(drop=True, inplace=True) df1.drop({'long_description', 'short_description'}, axis=1, inplace=True) unique_labels_having_one_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 0]).to_list())))) unique_labels_having_two_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 1]).to_list())))) unique_labels_having_three_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 2]).to_list())))) df1.shape df1['three_label_taxonomy'] = df.apply(lambda row: [iter for iter in row['taxonomy'].split('|') if iter.count('>') == 2], axis=1) for iter in unique_labels_having_three_cat: df1[iter] = 0 for idx, row in df1.iterrows(): cats = row['three_label_taxonomy'] for it in cats: df1.loc[idx, it] += 1
code
128033200/cell_4
[ "text_html_output_1.png" ]
from itertools import chain import os import pandas as pd import pandas as pd DATAFRAME_PATH = '/kaggle/input/productcategorization2/image_taxonomy_and_description.csv' IMAGE_DIRECTORY_PATH = '/kaggle/input/productcategorization2/new_images/new_images' images_list = [int(iter.split('.')[0]) for iter in os.listdir(IMAGE_DIRECTORY_PATH)] df = pd.read_csv(DATAFRAME_PATH) df1 = df.copy() df1 = df1[df1['product_id'].isin(images_list)] df1.reset_index(drop=True, inplace=True) df1.drop({'long_description', 'short_description'}, axis=1, inplace=True) unique_labels_having_one_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 0]).to_list())))) unique_labels_having_two_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 1]).to_list())))) unique_labels_having_three_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 2]).to_list())))) df1.shape
code
128033200/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
from itertools import chain from sklearn.model_selection import train_test_split from tqdm import tqdm import numpy as np import numpy as np import os import pandas as pd import pandas as pd DATAFRAME_PATH = '/kaggle/input/productcategorization2/image_taxonomy_and_description.csv' IMAGE_DIRECTORY_PATH = '/kaggle/input/productcategorization2/new_images/new_images' images_list = [int(iter.split('.')[0]) for iter in os.listdir(IMAGE_DIRECTORY_PATH)] df = pd.read_csv(DATAFRAME_PATH) df1 = df.copy() df1 = df1[df1['product_id'].isin(images_list)] df1.reset_index(drop=True, inplace=True) df1.drop({'long_description', 'short_description'}, axis=1, inplace=True) unique_labels_having_one_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 0]).to_list())))) unique_labels_having_two_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 1]).to_list())))) unique_labels_having_three_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 2]).to_list())))) df1.shape df1['three_label_taxonomy'] = df.apply(lambda row: [iter for iter in row['taxonomy'].split('|') if iter.count('>') == 2], axis=1) for iter in unique_labels_having_three_cat: df1[iter] = 0 for idx, row in df1.iterrows(): cats = row['three_label_taxonomy'] for it in cats: df1.loc[idx, it] += 1 df1['powerlabel'] = 0 for idx, row in tqdm(df1.iterrows()): count = 0 for i, iter in enumerate(unique_labels_having_three_cat): count += np.ceil(1.01 ** (203 - i - 1)) * row[iter] df1.loc[idx, 'powerlabel'] = count max = int(df1['powerlabel'].max()) powercount = {} powerlabels = np.unique(df1['powerlabel']) for p in powerlabels: powercount[p] = np.count_nonzero(df1['powerlabel'] == p) train_inds, val_inds = train_test_split(np.array(list(range(df1.shape[0]))), test_size=0.2, random_state=0) train_df = df1.loc[train_inds, :].reset_index(drop=True) train_df.drop({'taxonomy', 'three_label_taxonomy'}, inplace=True, axis=1) val_df = df1.loc[val_inds, :].reset_index(drop=True) val_df.drop({'taxonomy', 'three_label_taxonomy'}, inplace=True, axis=1) train_df[train_df['Footwear>Kids>Sandals'] == 1]
code
128033200/cell_6
[ "text_html_output_1.png" ]
from itertools import chain import os import pandas as pd import pandas as pd DATAFRAME_PATH = '/kaggle/input/productcategorization2/image_taxonomy_and_description.csv' IMAGE_DIRECTORY_PATH = '/kaggle/input/productcategorization2/new_images/new_images' images_list = [int(iter.split('.')[0]) for iter in os.listdir(IMAGE_DIRECTORY_PATH)] df = pd.read_csv(DATAFRAME_PATH) df1 = df.copy() df1 = df1[df1['product_id'].isin(images_list)] df1.reset_index(drop=True, inplace=True) df1.drop({'long_description', 'short_description'}, axis=1, inplace=True) unique_labels_having_one_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 0]).to_list())))) unique_labels_having_two_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 1]).to_list())))) unique_labels_having_three_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 2]).to_list())))) df1.shape df1.head()
code
128033200/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import numpy as np import os from tqdm import tqdm from itertools import chain import numpy as np import pandas as pd import matplotlib.pyplot as plt import tensorflow as tf import tensorflow.keras.backend as K import shutil, os, time, random, copy import imageio import h5py from scipy.io import loadmat from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score, roc_curve, f1_score, precision_recall_curve, confusion_matrix, average_precision_score import seaborn as sns from skimage.transform import rotate, AffineTransform, warp, resize from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import Conv2D, Dense, MaxPool2D, GlobalAveragePooling2D, Input from tensorflow.keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array from tensorflow.keras.utils import Sequence from tensorflow.keras.applications import ResNet50 from tensorflow.keras.applications.resnet50 import preprocess_input
code
128033200/cell_18
[ "application_vnd.jupyter.stderr_output_1.png" ]
from itertools import chain from sklearn.model_selection import train_test_split from tqdm import tqdm import numpy as np import numpy as np import os import pandas as pd import pandas as pd DATAFRAME_PATH = '/kaggle/input/productcategorization2/image_taxonomy_and_description.csv' IMAGE_DIRECTORY_PATH = '/kaggle/input/productcategorization2/new_images/new_images' images_list = [int(iter.split('.')[0]) for iter in os.listdir(IMAGE_DIRECTORY_PATH)] df = pd.read_csv(DATAFRAME_PATH) df1 = df.copy() df1 = df1[df1['product_id'].isin(images_list)] df1.reset_index(drop=True, inplace=True) df1.drop({'long_description', 'short_description'}, axis=1, inplace=True) unique_labels_having_one_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 0]).to_list())))) unique_labels_having_two_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 1]).to_list())))) unique_labels_having_three_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 2]).to_list())))) df1.shape df1['three_label_taxonomy'] = df.apply(lambda row: [iter for iter in row['taxonomy'].split('|') if iter.count('>') == 2], axis=1) for iter in unique_labels_having_three_cat: df1[iter] = 0 for idx, row in df1.iterrows(): cats = row['three_label_taxonomy'] for it in cats: df1.loc[idx, it] += 1 df1['powerlabel'] = 0 for idx, row in tqdm(df1.iterrows()): count = 0 for i, iter in enumerate(unique_labels_having_three_cat): count += np.ceil(1.01 ** (203 - i - 1)) * row[iter] df1.loc[idx, 'powerlabel'] = count max = int(df1['powerlabel'].max()) powercount = {} powerlabels = np.unique(df1['powerlabel']) for p in powerlabels: powercount[p] = np.count_nonzero(df1['powerlabel'] == p) train_inds, val_inds = train_test_split(np.array(list(range(df1.shape[0]))), test_size=0.2, random_state=0) df1
code
128033200/cell_8
[ "text_plain_output_1.png" ]
from itertools import chain import os import pandas as pd import pandas as pd DATAFRAME_PATH = '/kaggle/input/productcategorization2/image_taxonomy_and_description.csv' IMAGE_DIRECTORY_PATH = '/kaggle/input/productcategorization2/new_images/new_images' images_list = [int(iter.split('.')[0]) for iter in os.listdir(IMAGE_DIRECTORY_PATH)] df = pd.read_csv(DATAFRAME_PATH) df1 = df.copy() df1 = df1[df1['product_id'].isin(images_list)] df1.reset_index(drop=True, inplace=True) df1.drop({'long_description', 'short_description'}, axis=1, inplace=True) unique_labels_having_one_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 0]).to_list())))) unique_labels_having_two_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 1]).to_list())))) unique_labels_having_three_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 2]).to_list())))) df1.shape df1.head(1)
code
128033200/cell_15
[ "application_vnd.jupyter.stderr_output_1.png" ]
from itertools import chain from tqdm import tqdm import numpy as np import numpy as np import os import pandas as pd import pandas as pd DATAFRAME_PATH = '/kaggle/input/productcategorization2/image_taxonomy_and_description.csv' IMAGE_DIRECTORY_PATH = '/kaggle/input/productcategorization2/new_images/new_images' images_list = [int(iter.split('.')[0]) for iter in os.listdir(IMAGE_DIRECTORY_PATH)] df = pd.read_csv(DATAFRAME_PATH) df1 = df.copy() df1 = df1[df1['product_id'].isin(images_list)] df1.reset_index(drop=True, inplace=True) df1.drop({'long_description', 'short_description'}, axis=1, inplace=True) unique_labels_having_one_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 0]).to_list())))) unique_labels_having_two_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 1]).to_list())))) unique_labels_having_three_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 2]).to_list())))) df1.shape df1['three_label_taxonomy'] = df.apply(lambda row: [iter for iter in row['taxonomy'].split('|') if iter.count('>') == 2], axis=1) for iter in unique_labels_having_three_cat: df1[iter] = 0 for idx, row in df1.iterrows(): cats = row['three_label_taxonomy'] for it in cats: df1.loc[idx, it] += 1 df1['powerlabel'] = 0 for idx, row in tqdm(df1.iterrows()): count = 0 for i, iter in enumerate(unique_labels_having_three_cat): count += np.ceil(1.01 ** (203 - i - 1)) * row[iter] df1.loc[idx, 'powerlabel'] = count max = int(df1['powerlabel'].max()) powercount = {} powerlabels = np.unique(df1['powerlabel']) for p in powerlabels: powercount[p] = np.count_nonzero(df1['powerlabel'] == p) powercount
code
128033200/cell_14
[ "text_html_output_1.png" ]
from itertools import chain from tqdm import tqdm import numpy as np import numpy as np import os import pandas as pd import pandas as pd DATAFRAME_PATH = '/kaggle/input/productcategorization2/image_taxonomy_and_description.csv' IMAGE_DIRECTORY_PATH = '/kaggle/input/productcategorization2/new_images/new_images' images_list = [int(iter.split('.')[0]) for iter in os.listdir(IMAGE_DIRECTORY_PATH)] df = pd.read_csv(DATAFRAME_PATH) df1 = df.copy() df1 = df1[df1['product_id'].isin(images_list)] df1.reset_index(drop=True, inplace=True) df1.drop({'long_description', 'short_description'}, axis=1, inplace=True) unique_labels_having_one_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 0]).to_list())))) unique_labels_having_two_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 1]).to_list())))) unique_labels_having_three_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 2]).to_list())))) df1.shape df1['three_label_taxonomy'] = df.apply(lambda row: [iter for iter in row['taxonomy'].split('|') if iter.count('>') == 2], axis=1) for iter in unique_labels_having_three_cat: df1[iter] = 0 for idx, row in df1.iterrows(): cats = row['three_label_taxonomy'] for it in cats: df1.loc[idx, it] += 1 df1['powerlabel'] = 0 for idx, row in tqdm(df1.iterrows()): count = 0 for i, iter in enumerate(unique_labels_having_three_cat): count += np.ceil(1.01 ** (203 - i - 1)) * row[iter] df1.loc[idx, 'powerlabel'] = count max = int(df1['powerlabel'].max()) powercount = {} powerlabels = np.unique(df1['powerlabel']) for p in powerlabels: powercount[p] = np.count_nonzero(df1['powerlabel'] == p) len(powercount)
code
128033200/cell_22
[ "text_plain_output_1.png" ]
from itertools import chain from sklearn.model_selection import train_test_split from tqdm import tqdm import numpy as np import numpy as np import os import pandas as pd import pandas as pd DATAFRAME_PATH = '/kaggle/input/productcategorization2/image_taxonomy_and_description.csv' IMAGE_DIRECTORY_PATH = '/kaggle/input/productcategorization2/new_images/new_images' images_list = [int(iter.split('.')[0]) for iter in os.listdir(IMAGE_DIRECTORY_PATH)] df = pd.read_csv(DATAFRAME_PATH) df1 = df.copy() df1 = df1[df1['product_id'].isin(images_list)] df1.reset_index(drop=True, inplace=True) df1.drop({'long_description', 'short_description'}, axis=1, inplace=True) unique_labels_having_one_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 0]).to_list())))) unique_labels_having_two_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 1]).to_list())))) unique_labels_having_three_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 2]).to_list())))) df1.shape df1['three_label_taxonomy'] = df.apply(lambda row: [iter for iter in row['taxonomy'].split('|') if iter.count('>') == 2], axis=1) for iter in unique_labels_having_three_cat: df1[iter] = 0 for idx, row in df1.iterrows(): cats = row['three_label_taxonomy'] for it in cats: df1.loc[idx, it] += 1 df1['powerlabel'] = 0 for idx, row in tqdm(df1.iterrows()): count = 0 for i, iter in enumerate(unique_labels_having_three_cat): count += np.ceil(1.01 ** (203 - i - 1)) * row[iter] df1.loc[idx, 'powerlabel'] = count max = int(df1['powerlabel'].max()) powercount = {} powerlabels = np.unique(df1['powerlabel']) for p in powerlabels: powercount[p] = np.count_nonzero(df1['powerlabel'] == p) train_inds, val_inds = train_test_split(np.array(list(range(df1.shape[0]))), test_size=0.2, random_state=0) train_df = df1.loc[train_inds, :].reset_index(drop=True) train_df.drop({'taxonomy', 'three_label_taxonomy'}, inplace=True, axis=1) val_df = df1.loc[val_inds, :].reset_index(drop=True) val_df.drop({'taxonomy', 'three_label_taxonomy'}, inplace=True, axis=1) df1.iloc[7808, 3:]
code
128033200/cell_10
[ "text_plain_output_1.png" ]
from itertools import chain from tqdm import tqdm import numpy as np import numpy as np import os import pandas as pd import pandas as pd DATAFRAME_PATH = '/kaggle/input/productcategorization2/image_taxonomy_and_description.csv' IMAGE_DIRECTORY_PATH = '/kaggle/input/productcategorization2/new_images/new_images' images_list = [int(iter.split('.')[0]) for iter in os.listdir(IMAGE_DIRECTORY_PATH)] df = pd.read_csv(DATAFRAME_PATH) df1 = df.copy() df1 = df1[df1['product_id'].isin(images_list)] df1.reset_index(drop=True, inplace=True) df1.drop({'long_description', 'short_description'}, axis=1, inplace=True) unique_labels_having_one_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 0]).to_list())))) unique_labels_having_two_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 1]).to_list())))) unique_labels_having_three_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 2]).to_list())))) df1.shape df1['three_label_taxonomy'] = df.apply(lambda row: [iter for iter in row['taxonomy'].split('|') if iter.count('>') == 2], axis=1) for iter in unique_labels_having_three_cat: df1[iter] = 0 for idx, row in df1.iterrows(): cats = row['three_label_taxonomy'] for it in cats: df1.loc[idx, it] += 1 df1['powerlabel'] = 0 for idx, row in tqdm(df1.iterrows()): count = 0 for i, iter in enumerate(unique_labels_having_three_cat): count += np.ceil(1.01 ** (203 - i - 1)) * row[iter] df1.loc[idx, 'powerlabel'] = count
code
128033200/cell_12
[ "text_html_output_1.png" ]
from itertools import chain from tqdm import tqdm import numpy as np import numpy as np import os import pandas as pd import pandas as pd DATAFRAME_PATH = '/kaggle/input/productcategorization2/image_taxonomy_and_description.csv' IMAGE_DIRECTORY_PATH = '/kaggle/input/productcategorization2/new_images/new_images' images_list = [int(iter.split('.')[0]) for iter in os.listdir(IMAGE_DIRECTORY_PATH)] df = pd.read_csv(DATAFRAME_PATH) df1 = df.copy() df1 = df1[df1['product_id'].isin(images_list)] df1.reset_index(drop=True, inplace=True) df1.drop({'long_description', 'short_description'}, axis=1, inplace=True) unique_labels_having_one_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 0]).to_list())))) unique_labels_having_two_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 1]).to_list())))) unique_labels_having_three_cat = sorted(list(set(chain.from_iterable(df['taxonomy'].apply(lambda x: [iter for iter in x.split('|') if iter.count('>') == 2]).to_list())))) df1.shape df1['three_label_taxonomy'] = df.apply(lambda row: [iter for iter in row['taxonomy'].split('|') if iter.count('>') == 2], axis=1) for iter in unique_labels_having_three_cat: df1[iter] = 0 for idx, row in df1.iterrows(): cats = row['three_label_taxonomy'] for it in cats: df1.loc[idx, it] += 1 df1['powerlabel'] = 0 for idx, row in tqdm(df1.iterrows()): count = 0 for i, iter in enumerate(unique_labels_having_three_cat): count += np.ceil(1.01 ** (203 - i - 1)) * row[iter] df1.loc[idx, 'powerlabel'] = count max = int(df1['powerlabel'].max()) df1['powerlabel'].hist(bins=np.array(range(1, max + 2)) - 0.5)
code
1001261/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd train_data = pd.read_csv('../input/train.csv') test_data = pd.read_csv('../input/test.csv')
code
128035984/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames[:3]: print(os.path.join(dirname, filename)) if len(filenames) > 3: print('...')
code
128035984/cell_8
[ "text_plain_output_1.png" ]
from torch.utils.data import Dataset, DataLoader import csv import cv2 import numpy as np import numpy as np # linear algebra import random import torch import torch.nn as nn TRAIN_PATH = '/kaggle/input/captcha-hacker-2023-spring/dataset/train' TEST_PATH = '/kaggle/input/captcha-hacker-2023-spring/dataset/test' device = 'cpu' alphabets = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789' alphabets2index = {alphabet: i for i, alphabet in enumerate(alphabets)} class Task1Dataset(Dataset): def __init__(self, data, root, return_filename=False): self.data = [sample for sample in data if sample[0].startswith('task1')] self.return_filename = return_filename self.root = root def __getitem__(self, index): filename, label = self.data[index] img = cv2.imread(f'{self.root}/{filename}') img = cv2.resize(img, (32, 32)) img = np.mean(img, axis=2) if self.return_filename: return (torch.FloatTensor((img - 128) / 128), filename) else: return (torch.FloatTensor((img - 128) / 128), alphabets2index[label]) def __len__(self): return len(self.data) class Model(nn.Module): def __init__(self): super().__init__() self.layers = nn.Sequential(nn.Linear(1024, 512), nn.LeakyReLU(), nn.Linear(512, len(alphabets))) def forward(self, x): batch_size, h, w = x.shape x = x.view(batch_size, h * w) return self.layers(x) train_data = [] val_data = [] with open(f'{TRAIN_PATH}/annotations.csv', newline='') as csvfile: for row in csv.reader(csvfile, delimiter=','): if random.random() < 0.8: train_data.append(row) else: val_data.append(row) train_ds = Task1Dataset(train_data, root=TRAIN_PATH) train_dl = DataLoader(train_ds, batch_size=100, num_workers=4, drop_last=True, shuffle=True) val_ds = Task1Dataset(val_data, root=TRAIN_PATH) val_dl = DataLoader(val_ds, batch_size=100, num_workers=4, drop_last=False, shuffle=False) model = Model().to(device) optimizer = torch.optim.Adam(model.parameters(), lr=0.001) loss_fn = nn.CrossEntropyLoss() for epoch in range(50): print(f'Epoch [{epoch}]') model.train() for image, label in train_dl: image = image.to(device) label = label.to(device) pred = model(image) loss = loss_fn(pred, label) optimizer.zero_grad() loss.backward() optimizer.step() sample_count = 0 correct_count = 0 model.eval() for image, label in val_dl: image = image.to(device) label = label.to(device) pred = model(image) loss = loss_fn(pred, label) pred = torch.argmax(pred, dim=1) sample_count += len(image) correct_count += (label == pred).sum() print('accuracy (validation):', correct_count / sample_count)
code
34149992/cell_4
[ "text_plain_output_1.png" ]
X_train
code
34149992/cell_8
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import os import pandas as pd pd.set_option('display.max_colwidth', None) folder = '../input/nlp-getting-started' test = pd.read_csv(os.path.join(folder, 'test.csv'), index_col='id') train = pd.read_csv(os.path.join(folder, 'train.csv'), index_col='id') X = train.drop(columns='target') y = train['target'] X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.33, random_state=42) X['text'].iloc[10]
code
34149992/cell_10
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split import os import pandas as pd import spacy pd.set_option('display.max_colwidth', None) folder = '../input/nlp-getting-started' test = pd.read_csv(os.path.join(folder, 'test.csv'), index_col='id') train = pd.read_csv(os.path.join(folder, 'train.csv'), index_col='id') X = train.drop(columns='target') y = train['target'] X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.33, random_state=42) nlp = spacy.load('en_core_web_sm') doc = nlp(X['text'].iloc[0]) for token in doc: print(token.text, token.lemma_, token.dep_, token.pos_)
code
72080311/cell_21
[ "text_html_output_1.png" ]
import matplotlib.mlab as mlab # some MATLAB commands import matplotlib.pyplot as plt # plotting import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random # generating (pseudo)-random numbers import numpy as np import pandas as pd pd.set_option('display.max_colwidth', None) import matplotlib.pyplot as plt from glob import glob import random import matplotlib.mlab as mlab from scipy.interpolate import interp1d training_labels_path = '../input/g2net-gravitational-wave-detection/training_labels.csv' training_labels = pd.read_csv(training_labels_path) training_paths = glob('../input/g2net-gravitational-wave-detection/train/*/*/*/*') ids = [path.split('/')[-1].split('.')[0] for path in training_paths] paths_df = pd.DataFrame({'path': training_paths, 'id': ids}) train_data = pd.merge(left=training_labels, right=paths_df, on='id') def load_random_file(signal=None): """Selecting a random file from the training dataset. Args: signal: bool optional flag defining whether to select pure detector noise (False) or detector noise plus simulated signal (True). If skipped, the flag is chosen randomly. Returns: file_id: str unique id of the selected file target: int 0 or 1, target value data: numpy.ndarray numpy array in the shape (3, 4096), where 3 is the number of detectors, 4096 is number of data points (each time series instance spans over 2 seconds and is sampled at 2048 Hz) """ if signal is None: signal = random.choice([True, False]) filtered = train_data['target'] == signal index = random.choice(train_data[filtered].index) file_id = train_data['id'].at[index] target = train_data['target'].at[index] path = train_data['path'].at[index] data = np.load(path) return (file_id, target, data) file_id, target, data = load_random_file() ylim = 1.1*np.max(data) plt.style.use('ggplot') fig, axs = plt.subplots(ncols=1, nrows=3, figsize=(10, 5)) for i in range(3): ax = axs.ravel()[i] ax.plot(data[i]) ax.margins(0) axs[i].set_title(f"Detector {i+1}", loc='center') ax.set_ylabel(f"Amplitude") ax.set_ylim([-ylim, ylim]) axs[0].xaxis.set_visible(False) axs[1].xaxis.set_visible(False) axs[2].set_xlabel("Time stamp") fig.suptitle(f"Raw data visualization. ID: {file_id}. Target: {target}.") plt.show() fs = 2048 NFFT = 4 * fs f_min = 20.0 f_max = fs / 2 _, target, data = load_random_file(True) strain1, strain2, strain3 = (data[0], data[1], data[2]) Pxx_1, freqs = mlab.psd(strain1, Fs=fs, NFFT=NFFT) Pxx_2, freqs = mlab.psd(strain2, Fs=fs, NFFT=NFFT) Pxx_3, freqs = mlab.psd(strain3, Fs=fs, NFFT=NFFT) psd_1 = interp1d(freqs, Pxx_1) psd_2 = interp1d(freqs, Pxx_2) psd_3 = interp1d(freqs, Pxx_3) fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(10, 5)) ax.loglog(freqs, np.sqrt(Pxx_1), 'g', label='Detector 1') ax.loglog(freqs, np.sqrt(Pxx_2), 'r', label='Detector 2') ax.loglog(freqs, np.sqrt(Pxx_3), 'b', label='Detector 3') ax.set_xlim([f_min, f_max]) ax.set_ylabel('ASD (strain/$\\sqrt{Hz}$)') ax.set_xlabel('Frequency (Hz)') ax.legend() plt.show()
code
72080311/cell_9
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd pd.set_option('display.max_colwidth', None) import matplotlib.pyplot as plt from glob import glob import random import matplotlib.mlab as mlab from scipy.interpolate import interp1d training_labels_path = '../input/g2net-gravitational-wave-detection/training_labels.csv' training_labels = pd.read_csv(training_labels_path) training_labels['target'].value_counts()
code
72080311/cell_23
[ "image_output_1.png" ]
!pip -q install pycbc import pycbc
code
72080311/cell_30
[ "text_plain_output_1.png" ]
import matplotlib.mlab as mlab # some MATLAB commands import matplotlib.pyplot as plt # plotting import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pycbc import random # generating (pseudo)-random numbers import numpy as np import pandas as pd pd.set_option('display.max_colwidth', None) import matplotlib.pyplot as plt from glob import glob import random import matplotlib.mlab as mlab from scipy.interpolate import interp1d training_labels_path = '../input/g2net-gravitational-wave-detection/training_labels.csv' training_labels = pd.read_csv(training_labels_path) training_paths = glob('../input/g2net-gravitational-wave-detection/train/*/*/*/*') ids = [path.split('/')[-1].split('.')[0] for path in training_paths] paths_df = pd.DataFrame({'path': training_paths, 'id': ids}) train_data = pd.merge(left=training_labels, right=paths_df, on='id') def load_random_file(signal=None): """Selecting a random file from the training dataset. Args: signal: bool optional flag defining whether to select pure detector noise (False) or detector noise plus simulated signal (True). If skipped, the flag is chosen randomly. Returns: file_id: str unique id of the selected file target: int 0 or 1, target value data: numpy.ndarray numpy array in the shape (3, 4096), where 3 is the number of detectors, 4096 is number of data points (each time series instance spans over 2 seconds and is sampled at 2048 Hz) """ if signal is None: signal = random.choice([True, False]) filtered = train_data['target'] == signal index = random.choice(train_data[filtered].index) file_id = train_data['id'].at[index] target = train_data['target'].at[index] path = train_data['path'].at[index] data = np.load(path) return (file_id, target, data) file_id, target, data = load_random_file() ylim = 1.1*np.max(data) plt.style.use('ggplot') fig, axs = plt.subplots(ncols=1, nrows=3, figsize=(10, 5)) for i in range(3): ax = axs.ravel()[i] ax.plot(data[i]) ax.margins(0) axs[i].set_title(f"Detector {i+1}", loc='center') ax.set_ylabel(f"Amplitude") ax.set_ylim([-ylim, ylim]) axs[0].xaxis.set_visible(False) axs[1].xaxis.set_visible(False) axs[2].set_xlabel("Time stamp") fig.suptitle(f"Raw data visualization. ID: {file_id}. Target: {target}.") plt.show() fs = 2048 NFFT = 4 * fs f_min = 20.0 f_max = fs / 2 _, target, data = load_random_file(True) strain1, strain2, strain3 = data[0], data[1], data[2] Pxx_1, freqs = mlab.psd(strain1, Fs = fs, NFFT = NFFT) Pxx_2, freqs = mlab.psd(strain2, Fs = fs, NFFT = NFFT) Pxx_3, freqs = mlab.psd(strain3, Fs = fs, NFFT = NFFT) psd_1 = interp1d(freqs, Pxx_1) psd_2 = interp1d(freqs, Pxx_2) psd_3 = interp1d(freqs, Pxx_3) fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(10, 5)) ax.loglog(freqs, np.sqrt(Pxx_1),"g",label="Detector 1") ax.loglog(freqs, np.sqrt(Pxx_2),"r",label="Detector 2") ax.loglog(freqs, np.sqrt(Pxx_3),"b",label="Detector 3") ax.set_xlim([f_min, f_max]) ax.set_ylabel("ASD (strain/$\sqrt{Hz}$)") ax.set_xlabel("Frequency (Hz)") ax.legend() plt.show() def generate_qtransform(data, fs): """Function for generating constant Q-transform. Args: data: numpy.ndarray numpy array in the shape (3, 4096), where 3 is the number of detectors, 4096 is number of data points (each time series instance spans over 2 seconds and is sampled at 2048 Hz) fs: int sampling frequency Returns: times: numpy.ndarray array of time bins freqs: numpy.ndarray array of frequency bins qplanes: list list with 3 elements corresponding to each detector in the raw data file. Each element is a 2-d vector of the power in each time-frequency bin """ qplanes = [] for i in range(len(data)): ts = pycbc.types.TimeSeries(data[i, :], epoch=0, delta_t=1.0 / fs) ts = ts.whiten(0.125, 0.125) times, freqs, qplane = ts.qtransform(0.002, logfsteps=100, qrange=(10, 10), frange=(20, 512)) qplanes.append(qplane) return (times, freqs, qplanes) def plot_qtransform(file_id, target, data): """Plotting constant Q-transform data. Args: file_id: str unique id of the selected file target: int 0 or 1, target value data: numpy.ndarray numpy array in the shape (3, 4096), where 3 is the number of detectors, 4096 is number of data points (each time series instance spans over 2 seconds and is sampled at 2048 Hz) """ times, freqs, qplanes = generate_qtransform(data, fs=fs) fig, axs = plt.subplots(ncols=1, nrows=3, figsize=(12, 8)) for i in range(3): axs[i].pcolormesh(times, freqs, qplanes[i], shading = 'auto') axs[i].set_yscale('log') axs[i].set_ylabel('Frequency (Hz)') axs[i].set_xlabel('Time (s)') axs[i].set_title(f"Detector {i+1}", loc='left') axs[i].grid(False) axs[0].xaxis.set_visible(False) axs[1].xaxis.set_visible(False) fig.suptitle(f"Q transform visualization. ID: {file_id}. Target: {target}.", fontsize=16) plt.show() file_id = '7945e449f3' target = 1 data = np.load(train_data[train_data['id'] == file_id]['path'].values[0]) plot_qtransform(file_id, target, data)
code
72080311/cell_11
[ "text_html_output_1.png" ]
training_paths = glob('../input/g2net-gravitational-wave-detection/train/*/*/*/*') print('The total number of files in the training set:', len(training_paths))
code
72080311/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt # plotting import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import random # generating (pseudo)-random numbers import numpy as np import pandas as pd pd.set_option('display.max_colwidth', None) import matplotlib.pyplot as plt from glob import glob import random import matplotlib.mlab as mlab from scipy.interpolate import interp1d training_labels_path = '../input/g2net-gravitational-wave-detection/training_labels.csv' training_labels = pd.read_csv(training_labels_path) training_paths = glob('../input/g2net-gravitational-wave-detection/train/*/*/*/*') ids = [path.split('/')[-1].split('.')[0] for path in training_paths] paths_df = pd.DataFrame({'path': training_paths, 'id': ids}) train_data = pd.merge(left=training_labels, right=paths_df, on='id') def load_random_file(signal=None): """Selecting a random file from the training dataset. Args: signal: bool optional flag defining whether to select pure detector noise (False) or detector noise plus simulated signal (True). If skipped, the flag is chosen randomly. Returns: file_id: str unique id of the selected file target: int 0 or 1, target value data: numpy.ndarray numpy array in the shape (3, 4096), where 3 is the number of detectors, 4096 is number of data points (each time series instance spans over 2 seconds and is sampled at 2048 Hz) """ if signal is None: signal = random.choice([True, False]) filtered = train_data['target'] == signal index = random.choice(train_data[filtered].index) file_id = train_data['id'].at[index] target = train_data['target'].at[index] path = train_data['path'].at[index] data = np.load(path) return (file_id, target, data) file_id, target, data = load_random_file() ylim = 1.1 * np.max(data) plt.style.use('ggplot') fig, axs = plt.subplots(ncols=1, nrows=3, figsize=(10, 5)) for i in range(3): ax = axs.ravel()[i] ax.plot(data[i]) ax.margins(0) axs[i].set_title(f'Detector {i + 1}', loc='center') ax.set_ylabel(f'Amplitude') ax.set_ylim([-ylim, ylim]) axs[0].xaxis.set_visible(False) axs[1].xaxis.set_visible(False) axs[2].set_xlabel('Time stamp') fig.suptitle(f'Raw data visualization. ID: {file_id}. Target: {target}.') plt.show()
code
72080311/cell_28
[ "image_output_1.png" ]
import matplotlib.mlab as mlab # some MATLAB commands import matplotlib.pyplot as plt # plotting import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pycbc import random # generating (pseudo)-random numbers import numpy as np import pandas as pd pd.set_option('display.max_colwidth', None) import matplotlib.pyplot as plt from glob import glob import random import matplotlib.mlab as mlab from scipy.interpolate import interp1d training_labels_path = '../input/g2net-gravitational-wave-detection/training_labels.csv' training_labels = pd.read_csv(training_labels_path) training_paths = glob('../input/g2net-gravitational-wave-detection/train/*/*/*/*') ids = [path.split('/')[-1].split('.')[0] for path in training_paths] paths_df = pd.DataFrame({'path': training_paths, 'id': ids}) train_data = pd.merge(left=training_labels, right=paths_df, on='id') def load_random_file(signal=None): """Selecting a random file from the training dataset. Args: signal: bool optional flag defining whether to select pure detector noise (False) or detector noise plus simulated signal (True). If skipped, the flag is chosen randomly. Returns: file_id: str unique id of the selected file target: int 0 or 1, target value data: numpy.ndarray numpy array in the shape (3, 4096), where 3 is the number of detectors, 4096 is number of data points (each time series instance spans over 2 seconds and is sampled at 2048 Hz) """ if signal is None: signal = random.choice([True, False]) filtered = train_data['target'] == signal index = random.choice(train_data[filtered].index) file_id = train_data['id'].at[index] target = train_data['target'].at[index] path = train_data['path'].at[index] data = np.load(path) return (file_id, target, data) file_id, target, data = load_random_file() ylim = 1.1*np.max(data) plt.style.use('ggplot') fig, axs = plt.subplots(ncols=1, nrows=3, figsize=(10, 5)) for i in range(3): ax = axs.ravel()[i] ax.plot(data[i]) ax.margins(0) axs[i].set_title(f"Detector {i+1}", loc='center') ax.set_ylabel(f"Amplitude") ax.set_ylim([-ylim, ylim]) axs[0].xaxis.set_visible(False) axs[1].xaxis.set_visible(False) axs[2].set_xlabel("Time stamp") fig.suptitle(f"Raw data visualization. ID: {file_id}. Target: {target}.") plt.show() fs = 2048 NFFT = 4 * fs f_min = 20.0 f_max = fs / 2 _, target, data = load_random_file(True) strain1, strain2, strain3 = data[0], data[1], data[2] Pxx_1, freqs = mlab.psd(strain1, Fs = fs, NFFT = NFFT) Pxx_2, freqs = mlab.psd(strain2, Fs = fs, NFFT = NFFT) Pxx_3, freqs = mlab.psd(strain3, Fs = fs, NFFT = NFFT) psd_1 = interp1d(freqs, Pxx_1) psd_2 = interp1d(freqs, Pxx_2) psd_3 = interp1d(freqs, Pxx_3) fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(10, 5)) ax.loglog(freqs, np.sqrt(Pxx_1),"g",label="Detector 1") ax.loglog(freqs, np.sqrt(Pxx_2),"r",label="Detector 2") ax.loglog(freqs, np.sqrt(Pxx_3),"b",label="Detector 3") ax.set_xlim([f_min, f_max]) ax.set_ylabel("ASD (strain/$\sqrt{Hz}$)") ax.set_xlabel("Frequency (Hz)") ax.legend() plt.show() def generate_qtransform(data, fs): """Function for generating constant Q-transform. Args: data: numpy.ndarray numpy array in the shape (3, 4096), where 3 is the number of detectors, 4096 is number of data points (each time series instance spans over 2 seconds and is sampled at 2048 Hz) fs: int sampling frequency Returns: times: numpy.ndarray array of time bins freqs: numpy.ndarray array of frequency bins qplanes: list list with 3 elements corresponding to each detector in the raw data file. Each element is a 2-d vector of the power in each time-frequency bin """ qplanes = [] for i in range(len(data)): ts = pycbc.types.TimeSeries(data[i, :], epoch=0, delta_t=1.0 / fs) ts = ts.whiten(0.125, 0.125) times, freqs, qplane = ts.qtransform(0.002, logfsteps=100, qrange=(10, 10), frange=(20, 512)) qplanes.append(qplane) return (times, freqs, qplanes) def plot_qtransform(file_id, target, data): """Plotting constant Q-transform data. Args: file_id: str unique id of the selected file target: int 0 or 1, target value data: numpy.ndarray numpy array in the shape (3, 4096), where 3 is the number of detectors, 4096 is number of data points (each time series instance spans over 2 seconds and is sampled at 2048 Hz) """ times, freqs, qplanes = generate_qtransform(data, fs=fs) fig, axs = plt.subplots(ncols=1, nrows=3, figsize=(12, 8)) for i in range(3): axs[i].pcolormesh(times, freqs, qplanes[i], shading = 'auto') axs[i].set_yscale('log') axs[i].set_ylabel('Frequency (Hz)') axs[i].set_xlabel('Time (s)') axs[i].set_title(f"Detector {i+1}", loc='left') axs[i].grid(False) axs[0].xaxis.set_visible(False) axs[1].xaxis.set_visible(False) fig.suptitle(f"Q transform visualization. ID: {file_id}. Target: {target}.", fontsize=16) plt.show() file_id, target, data = load_random_file() plot_qtransform(file_id, target, data)
code
72080311/cell_8
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd pd.set_option('display.max_colwidth', None) import matplotlib.pyplot as plt from glob import glob import random import matplotlib.mlab as mlab from scipy.interpolate import interp1d training_labels_path = '../input/g2net-gravitational-wave-detection/training_labels.csv' training_labels = pd.read_csv(training_labels_path) training_labels.head(3)
code
72080311/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd pd.set_option('display.max_colwidth', None) import matplotlib.pyplot as plt from glob import glob import random import matplotlib.mlab as mlab from scipy.interpolate import interp1d training_labels_path = '../input/g2net-gravitational-wave-detection/training_labels.csv' training_labels = pd.read_csv(training_labels_path) training_paths = glob('../input/g2net-gravitational-wave-detection/train/*/*/*/*') ids = [path.split('/')[-1].split('.')[0] for path in training_paths] paths_df = pd.DataFrame({'path': training_paths, 'id': ids}) train_data = pd.merge(left=training_labels, right=paths_df, on='id') train_data.head(3)
code
34134310/cell_21
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import StandardScaler import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_fifa = pd.read_csv('/kaggle/input/fifa19/data.csv') columns_to_drop = ['Unnamed: 0', 'ID', 'Name', 'Photo', 'Nationality', 'Flag', 'Club', 'Club Logo', 'Value', 'Wage', 'Special', 'Preferred Foot', 'International Reputation', 'Weak Foot', 'Skill Moves', 'Work Rate', 'Body Type', 'Real Face', 'Position', 'Jersey Number', 'Joined', 'Loaned From', 'Contract Valid Until', 'Height', 'Weight', 'LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RCM', 'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB', 'Release Clause'] df_fifa.drop(columns_to_drop, axis=1, inplace=True) df_fifa = df_fifa.dropna() x = df_fifa.drop('Overall', axis=1).values y = df_fifa.Overall.values x = StandardScaler().fit_transform(x) mx_cov = np.cov(x, rowvar=False) mx_exemplo = np.array([[1.76, 75], [1.8, 97.3]]) mx_exemplo.T
code
34134310/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_fifa = pd.read_csv('/kaggle/input/fifa19/data.csv') columns_to_drop = ['Unnamed: 0', 'ID', 'Name', 'Photo', 'Nationality', 'Flag', 'Club', 'Club Logo', 'Value', 'Wage', 'Special', 'Preferred Foot', 'International Reputation', 'Weak Foot', 'Skill Moves', 'Work Rate', 'Body Type', 'Real Face', 'Position', 'Jersey Number', 'Joined', 'Loaned From', 'Contract Valid Until', 'Height', 'Weight', 'LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RCM', 'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB', 'Release Clause'] df_fifa.drop(columns_to_drop, axis=1, inplace=True) df_fifa = df_fifa.dropna() x = df_fifa.drop('Overall', axis=1).values y = df_fifa.Overall.values x = StandardScaler().fit_transform(x) mx_cov = np.cov(x, rowvar=False) plt.figure(figsize=(30, 30)) sns.heatmap(mx_cov, annot=True)
code
34134310/cell_33
[ "text_html_output_1.png" ]
from sklearn.preprocessing import StandardScaler import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_fifa = pd.read_csv('/kaggle/input/fifa19/data.csv') columns_to_drop = ['Unnamed: 0', 'ID', 'Name', 'Photo', 'Nationality', 'Flag', 'Club', 'Club Logo', 'Value', 'Wage', 'Special', 'Preferred Foot', 'International Reputation', 'Weak Foot', 'Skill Moves', 'Work Rate', 'Body Type', 'Real Face', 'Position', 'Jersey Number', 'Joined', 'Loaned From', 'Contract Valid Until', 'Height', 'Weight', 'LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RCM', 'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB', 'Release Clause'] df_fifa.drop(columns_to_drop, axis=1, inplace=True) df_fifa = df_fifa.dropna() x = df_fifa.drop('Overall', axis=1).values y = df_fifa.Overall.values x = StandardScaler().fit_transform(x) mx_cov = np.cov(x, rowvar=False) mx_exemplo = np.array([[1.76, 75], [1.8, 97.3]]) mx_exemplo.T np.shape(mx_cov) autovalores, autovetores = np.linalg.eig(mx_cov) tp_componentes = tuple(zip(autovalores, autovetores)) tp_componentes total = sum(autovalores) var_acum = [autovalor / total for autovalor in sorted(autovalores, reverse=True)] var_acum componentes = np.argmax(np.cumsum(var_acum) >= 0.95) ft_ds = tp_componentes[:componentes] ft_vetor = list() for val, vet in ft_ds: ft_vetor.append(vet) df = pd.DataFrame(np.array(ft_vetor).T[:15]) np.shape(ft_vetor) featured_ds = np.dot(x[:, :15], np.array(ft_vetor).T[:15]) + x.mean() df = pd.DataFrame(featured_ds) df
code
34134310/cell_29
[ "text_plain_output_1.png" ]
tp_componentes = tuple(zip(autovalores, autovetores)) tp_componentes sorted(tp_componentes, reverse=True)
code
34134310/cell_26
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import StandardScaler import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_fifa = pd.read_csv('/kaggle/input/fifa19/data.csv') columns_to_drop = ['Unnamed: 0', 'ID', 'Name', 'Photo', 'Nationality', 'Flag', 'Club', 'Club Logo', 'Value', 'Wage', 'Special', 'Preferred Foot', 'International Reputation', 'Weak Foot', 'Skill Moves', 'Work Rate', 'Body Type', 'Real Face', 'Position', 'Jersey Number', 'Joined', 'Loaned From', 'Contract Valid Until', 'Height', 'Weight', 'LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RCM', 'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB', 'Release Clause'] df_fifa.drop(columns_to_drop, axis=1, inplace=True) df_fifa = df_fifa.dropna() x = df_fifa.drop('Overall', axis=1).values y = df_fifa.Overall.values x = StandardScaler().fit_transform(x) mx_cov = np.cov(x, rowvar=False) mx_exemplo = np.array([[1.76, 75], [1.8, 97.3]]) mx_exemplo.T np.shape(mx_cov) autovalores, autovetores = np.linalg.eig(mx_cov) print('Autovalores', autovalores) print('Autovetores', autovetores)
code
34134310/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34134310/cell_32
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import StandardScaler import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_fifa = pd.read_csv('/kaggle/input/fifa19/data.csv') columns_to_drop = ['Unnamed: 0', 'ID', 'Name', 'Photo', 'Nationality', 'Flag', 'Club', 'Club Logo', 'Value', 'Wage', 'Special', 'Preferred Foot', 'International Reputation', 'Weak Foot', 'Skill Moves', 'Work Rate', 'Body Type', 'Real Face', 'Position', 'Jersey Number', 'Joined', 'Loaned From', 'Contract Valid Until', 'Height', 'Weight', 'LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RCM', 'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB', 'Release Clause'] df_fifa.drop(columns_to_drop, axis=1, inplace=True) df_fifa = df_fifa.dropna() x = df_fifa.drop('Overall', axis=1).values y = df_fifa.Overall.values x = StandardScaler().fit_transform(x) mx_cov = np.cov(x, rowvar=False) mx_exemplo = np.array([[1.76, 75], [1.8, 97.3]]) mx_exemplo.T np.shape(mx_cov) autovalores, autovetores = np.linalg.eig(mx_cov) tp_componentes = tuple(zip(autovalores, autovetores)) tp_componentes total = sum(autovalores) var_acum = [autovalor / total for autovalor in sorted(autovalores, reverse=True)] var_acum componentes = np.argmax(np.cumsum(var_acum) >= 0.95) ft_ds = tp_componentes[:componentes] ft_vetor = list() for val, vet in ft_ds: ft_vetor.append(vet) df = pd.DataFrame(np.array(ft_vetor).T[:15]) np.shape(ft_vetor)
code
34134310/cell_28
[ "text_plain_output_1.png" ]
tp_componentes = tuple(zip(autovalores, autovetores)) tp_componentes
code
34134310/cell_31
[ "text_plain_output_1.png" ]
total = sum(autovalores) var_acum = [autovalor / total for autovalor in sorted(autovalores, reverse=True)] var_acum
code
34134310/cell_24
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import StandardScaler import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_fifa = pd.read_csv('/kaggle/input/fifa19/data.csv') columns_to_drop = ['Unnamed: 0', 'ID', 'Name', 'Photo', 'Nationality', 'Flag', 'Club', 'Club Logo', 'Value', 'Wage', 'Special', 'Preferred Foot', 'International Reputation', 'Weak Foot', 'Skill Moves', 'Work Rate', 'Body Type', 'Real Face', 'Position', 'Jersey Number', 'Joined', 'Loaned From', 'Contract Valid Until', 'Height', 'Weight', 'LS', 'ST', 'RS', 'LW', 'LF', 'CF', 'RF', 'RW', 'LAM', 'CAM', 'RAM', 'LM', 'LCM', 'CM', 'RCM', 'RM', 'LWB', 'LDM', 'CDM', 'RDM', 'RWB', 'LB', 'LCB', 'CB', 'RCB', 'RB', 'Release Clause'] df_fifa.drop(columns_to_drop, axis=1, inplace=True) df_fifa = df_fifa.dropna() x = df_fifa.drop('Overall', axis=1).values y = df_fifa.Overall.values x = StandardScaler().fit_transform(x) mx_cov = np.cov(x, rowvar=False) mx_exemplo = np.array([[1.76, 75], [1.8, 97.3]]) mx_exemplo.T np.shape(mx_cov)
code
2007135/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing import numpy as np import pandas as pd from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() dataset = dataset.drop(['Id', 'LotFrontage', 'Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) len(dataset.columns) dataset = dataset.dropna(thresh=70) X = dataset.iloc[:, 0:-1] y = dataset.iloc[:, -1] X.head()
code
2007135/cell_25
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor import pandas as pd # data processing import numpy as np import pandas as pd from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() dataset = dataset.drop(['Id', 'LotFrontage', 'Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) len(dataset.columns) dataset = dataset.dropna(thresh=70) X = dataset.iloc[:, 0:-1] y = dataset.iloc[:, -1] X = pd.get_dummies(data=X, columns=['MSZoning', 'Street', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'SaleType', 'SaleCondition', 'KitchenQual', 'Functional', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive'], drop_first=True) X = X.values y = y.values lin_reg = LinearRegression() y_pred_lr = cross_val_predict(lin_reg, X, y, cv=6) accuracy_lf = metrics.r2_score(y, y_pred_lr) poly_reg = PolynomialFeatures(degree=2) X_poly = poly_reg.fit_transform(X) lin_reg_pl = LinearRegression() lin_reg_pl = LinearRegression() y_pred_pl = cross_val_predict(lin_reg_pl, X_poly, y, cv=6) accuracy_pl = metrics.r2_score(y, y_pred_pl) dt_regressor = DecisionTreeRegressor(random_state=0) y_pred_dt = cross_val_predict(dt_regressor, X, y, cv=6) accuracy_dt = metrics.r2_score(y, y_pred_dt) rf_regressor = RandomForestRegressor(n_estimators=300, random_state=0) y_pred_rf = cross_val_predict(rf_regressor, X, y, cv=6) accuracy_rf = metrics.r2_score(y, y_pred_rf) print('Cross-Predicted Random Forest Regression Accuracy: ', accuracy_rf)
code
2007135/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing import numpy as np import pandas as pd from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum()
code
2007135/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing import numpy as np import pandas as pd from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() dataset = dataset.drop(['Id', 'LotFrontage', 'Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) len(dataset.columns)
code
2007135/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing import numpy as np import pandas as pd from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.head()
code
2007135/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing import numpy as np import pandas as pd from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() dataset = dataset.drop(['Id', 'LotFrontage', 'Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) len(dataset.columns) dataset = dataset.dropna(thresh=70) X = dataset.iloc[:, 0:-1] y = dataset.iloc[:, -1] X = pd.get_dummies(data=X, columns=['MSZoning', 'Street', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'SaleType', 'SaleCondition', 'KitchenQual', 'Functional', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive'], drop_first=True) X.head()
code
2007135/cell_19
[ "text_html_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn.preprocessing import PolynomialFeatures import pandas as pd # data processing import numpy as np import pandas as pd from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() dataset = dataset.drop(['Id', 'LotFrontage', 'Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) len(dataset.columns) dataset = dataset.dropna(thresh=70) X = dataset.iloc[:, 0:-1] y = dataset.iloc[:, -1] X = pd.get_dummies(data=X, columns=['MSZoning', 'Street', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'SaleType', 'SaleCondition', 'KitchenQual', 'Functional', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive'], drop_first=True) X = X.values y = y.values lin_reg = LinearRegression() y_pred_lr = cross_val_predict(lin_reg, X, y, cv=6) accuracy_lf = metrics.r2_score(y, y_pred_lr) poly_reg = PolynomialFeatures(degree=2) X_poly = poly_reg.fit_transform(X) lin_reg_pl = LinearRegression() lin_reg_pl = LinearRegression() y_pred_pl = cross_val_predict(lin_reg_pl, X_poly, y, cv=6) accuracy_pl = metrics.r2_score(y, y_pred_pl) print('Cross-Predicted Polynominal Regression Accuracy: ', accuracy_pl)
code
2007135/cell_16
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score, cross_val_predict import pandas as pd # data processing import numpy as np import pandas as pd from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() dataset = dataset.drop(['Id', 'LotFrontage', 'Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) len(dataset.columns) dataset = dataset.dropna(thresh=70) X = dataset.iloc[:, 0:-1] y = dataset.iloc[:, -1] X = pd.get_dummies(data=X, columns=['MSZoning', 'Street', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'SaleType', 'SaleCondition', 'KitchenQual', 'Functional', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive'], drop_first=True) X = X.values y = y.values lin_reg = LinearRegression() y_pred_lr = cross_val_predict(lin_reg, X, y, cv=6) accuracy_lf = metrics.r2_score(y, y_pred_lr) print('Cross-Predicted Mutiple Linear Regression Accuracy: ', accuracy_lf)
code
2007135/cell_22
[ "text_html_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor import pandas as pd # data processing import numpy as np import pandas as pd from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() dataset = dataset.drop(['Id', 'LotFrontage', 'Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) len(dataset.columns) dataset = dataset.dropna(thresh=70) X = dataset.iloc[:, 0:-1] y = dataset.iloc[:, -1] X = pd.get_dummies(data=X, columns=['MSZoning', 'Street', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'SaleType', 'SaleCondition', 'KitchenQual', 'Functional', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive'], drop_first=True) X = X.values y = y.values lin_reg = LinearRegression() y_pred_lr = cross_val_predict(lin_reg, X, y, cv=6) accuracy_lf = metrics.r2_score(y, y_pred_lr) poly_reg = PolynomialFeatures(degree=2) X_poly = poly_reg.fit_transform(X) lin_reg_pl = LinearRegression() lin_reg_pl = LinearRegression() y_pred_pl = cross_val_predict(lin_reg_pl, X_poly, y, cv=6) accuracy_pl = metrics.r2_score(y, y_pred_pl) dt_regressor = DecisionTreeRegressor(random_state=0) y_pred_dt = cross_val_predict(dt_regressor, X, y, cv=6) accuracy_dt = metrics.r2_score(y, y_pred_dt) print('Cross-Predicted Decision Tree Regression Accuracy: ', accuracy_dt)
code
2007135/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing import numpy as np import pandas as pd from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn import metrics from sklearn.preprocessing import Imputer from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor dataset = pd.read_csv('../input/train.csv') dataset.isnull().sum() dataset = dataset.drop(['Id', 'LotFrontage', 'Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) len(dataset.columns) dataset = dataset.dropna(thresh=70) X = dataset.iloc[:, 0:-1] y = dataset.iloc[:, -1] y[0:5]
code
129033726/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt #to perform different visualizations import pandas as pd #to handle the dataframe import seaborn as sns data = pd.read_csv('/kaggle/input/churn-predictions-personal/Churn_Predictions.csv') data.isnull().sum() ' It\'s alaways necessary to check for the missing values. "Nan" is not always missing values. Missing values can be present in other format also.\nFeature can also have 0\'s which can also be treated as missing values for some particular dataset. Here in this case we dont have any missing value present \nin the dataset which saves a lot of time' gender_counts = data['Gender'].value_counts() """Using Density plot we can visualize the distribution of different age group""" import seaborn as sns sns.kdeplot(data['Age'], shade=True) plt.xlabel('Age') plt.ylabel('Density') plt.title('Age Distribution') plt.show()
code
129033726/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd #to handle the dataframe data = pd.read_csv('/kaggle/input/churn-predictions-personal/Churn_Predictions.csv') data.head()
code
129033726/cell_25
[ "image_output_1.png" ]
from scipy.stats import f_oneway import pandas as pd #to handle the dataframe data = pd.read_csv('/kaggle/input/churn-predictions-personal/Churn_Predictions.csv') data.isnull().sum() ' It\'s alaways necessary to check for the missing values. "Nan" is not always missing values. Missing values can be present in other format also.\nFeature can also have 0\'s which can also be treated as missing values for some particular dataset. Here in this case we dont have any missing value present \nin the dataset which saves a lot of time' """We can also check the top N customers based on their current account balance. Here 1 means left 0 means still with the bank""" top_N = data.nlargest(20, 'Balance') bottom_N = data.nsmallest(20, 'Balance') from scipy.stats import f_oneway grouped_data = data.groupby('Exited')['Age'].apply(list) f_statistic, p_value = f_oneway(*grouped_data) data.corr()
code
129033726/cell_33
[ "text_plain_output_1.png" ]
from scipy.stats import f_oneway from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder import numpy as np #to perform arithmetic operation import pandas as pd #to handle the dataframe data = pd.read_csv('/kaggle/input/churn-predictions-personal/Churn_Predictions.csv') data.isnull().sum() ' It\'s alaways necessary to check for the missing values. "Nan" is not always missing values. Missing values can be present in other format also.\nFeature can also have 0\'s which can also be treated as missing values for some particular dataset. Here in this case we dont have any missing value present \nin the dataset which saves a lot of time' """We can also check the top N customers based on their current account balance. Here 1 means left 0 means still with the bank""" top_N = data.nlargest(20, 'Balance') bottom_N = data.nsmallest(20, 'Balance') from scipy.stats import f_oneway grouped_data = data.groupby('Exited')['Age'].apply(list) f_statistic, p_value = f_oneway(*grouped_data) data.corr() X = data.iloc[:, 3:-1].values y = data.iloc[:, -1].values """Here 001 represent spain 100 represent france 010 represent germany""" from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [1])], remainder='passthrough') X = np.array(ct.fit_transform(X)) X = np.delete(X, 0, axis=1) print(X)
code
129033726/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt #to perform different visualizations import pandas as pd #to handle the dataframe import seaborn as sns data = pd.read_csv('/kaggle/input/churn-predictions-personal/Churn_Predictions.csv') data.isnull().sum() ' It\'s alaways necessary to check for the missing values. "Nan" is not always missing values. Missing values can be present in other format also.\nFeature can also have 0\'s which can also be treated as missing values for some particular dataset. Here in this case we dont have any missing value present \nin the dataset which saves a lot of time' gender_counts = data['Gender'].value_counts() """Using Density plot we can visualize the distribution of different age group""" import seaborn as sns counts = data['Geography'].value_counts() counts = data['HasCrCard'].value_counts() counts = data['IsActiveMember'].value_counts() """We can also check the top N customers based on their current account balance. Here 1 means left 0 means still with the bank""" top_N = data.nlargest(20, 'Balance') bottom_N = data.nsmallest(20, 'Balance') contingency_table = pd.crosstab(data['Geography'], data['Exited']) contingency_table = pd.crosstab(data['Gender'], data['Exited']) contingency_table.plot(kind='bar') plt.xlabel('Gender') plt.ylabel('Count') plt.title('Distribution of Gender by Churn') plt.show()
code
129033726/cell_55
[ "text_plain_output_1.png" ]
from keras.layers import Dense, LeakyReLU from keras.models import Sequential from scipy.stats import f_oneway from sklearn.compose import ColumnTransformer from sklearn.metrics import confusion_matrix, accuracy_score from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler import numpy as np #to perform arithmetic operation import pandas as pd #to handle the dataframe data = pd.read_csv('/kaggle/input/churn-predictions-personal/Churn_Predictions.csv') data.isnull().sum() ' It\'s alaways necessary to check for the missing values. "Nan" is not always missing values. Missing values can be present in other format also.\nFeature can also have 0\'s which can also be treated as missing values for some particular dataset. Here in this case we dont have any missing value present \nin the dataset which saves a lot of time' """We can also check the top N customers based on their current account balance. Here 1 means left 0 means still with the bank""" top_N = data.nlargest(20, 'Balance') bottom_N = data.nsmallest(20, 'Balance') from scipy.stats import f_oneway grouped_data = data.groupby('Exited')['Age'].apply(list) f_statistic, p_value = f_oneway(*grouped_data) data.corr() X = data.iloc[:, 3:-1].values y = data.iloc[:, -1].values """Here 001 represent spain 100 represent france 010 represent germany""" from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [1])], remainder='passthrough') X = np.array(ct.fit_transform(X)) X = np.delete(X, 0, axis=1) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) classifier = Sequential() classifier.add(Dense(units=6, kernel_initializer='uniform')) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=6, kernel_initializer='uniform')) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=1, kernel_initializer='uniform', activation='sigmoid')) 'as it is a binary classification problem thats why using 1 as number of neuron\nand using sigmoid as we have only 2 categories. If we would have more than 2 categories\nthen we might have used softmax activation function' classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) ' Here optimizer is used as Adam a special type of Stochastic gradient descent(SGD), \nbinary_crossentropy loss function is used and accuracy metrics is considered' classifier.fit(X_train, y_train, batch_size=10, epochs=100) y_pred = classifier.predict(X_test) y_pred = y_pred > 0.5 from sklearn.metrics import confusion_matrix, accuracy_score con_matrix = confusion_matrix(y_pred, y_test) accuracy = accuracy_score(y_pred, y_test) print(X[0]) type(X) X_new = np.array([[1, 0, 0, 600, 1, 40, 3, 60000, 2, 1, 1, 50000]]) print(X_new) X_new = X_new[:, 1:] print(X_new) X_new = sc.transform(X_new) print(len(X_new[0])) y_pred_one = classifier.predict(X_new) print(y_pred_one > 0.5)
code
129033726/cell_29
[ "text_plain_output_1.png" ]
from scipy.stats import f_oneway import pandas as pd #to handle the dataframe data = pd.read_csv('/kaggle/input/churn-predictions-personal/Churn_Predictions.csv') data.isnull().sum() ' It\'s alaways necessary to check for the missing values. "Nan" is not always missing values. Missing values can be present in other format also.\nFeature can also have 0\'s which can also be treated as missing values for some particular dataset. Here in this case we dont have any missing value present \nin the dataset which saves a lot of time' """We can also check the top N customers based on their current account balance. Here 1 means left 0 means still with the bank""" top_N = data.nlargest(20, 'Balance') bottom_N = data.nsmallest(20, 'Balance') from scipy.stats import f_oneway grouped_data = data.groupby('Exited')['Age'].apply(list) f_statistic, p_value = f_oneway(*grouped_data) data.corr() X = data.iloc[:, 3:-1].values y = data.iloc[:, -1].values print(X)
code
129033726/cell_65
[ "text_plain_output_1.png" ]
""" #developing the model using Dropout #here we will initialize dropout in each layer except the output layer as it might result into a unstable network classifier=Sequential() #1st hidden layer classifier.add(Dense(units=6, kernel_initializer="uniform")) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dropout(p=0.1)) #adding dropout rate 10%. Its better to start with a small number #2nd hidden layer classifier.add(Dense(units=6, kernel_initializer="uniform")) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dropout(p=0.1)) #output layer classifier.add(Dense(units=1, kernel_initializer="uniform",activation="sigmoid")) #compiling the network classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy']) """
code
129033726/cell_61
[ "text_plain_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from keras.layers import Dense, LeakyReLU from keras.models import Sequential from scipy.stats import f_oneway from sklearn.compose import ColumnTransformer from sklearn.metrics import confusion_matrix, accuracy_score from sklearn.model_selection import cross_val_score from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler import numpy as np #to perform arithmetic operation import pandas as pd #to handle the dataframe data = pd.read_csv('/kaggle/input/churn-predictions-personal/Churn_Predictions.csv') data.isnull().sum() ' It\'s alaways necessary to check for the missing values. "Nan" is not always missing values. Missing values can be present in other format also.\nFeature can also have 0\'s which can also be treated as missing values for some particular dataset. Here in this case we dont have any missing value present \nin the dataset which saves a lot of time' """We can also check the top N customers based on their current account balance. Here 1 means left 0 means still with the bank""" top_N = data.nlargest(20, 'Balance') bottom_N = data.nsmallest(20, 'Balance') from scipy.stats import f_oneway grouped_data = data.groupby('Exited')['Age'].apply(list) f_statistic, p_value = f_oneway(*grouped_data) data.corr() X = data.iloc[:, 3:-1].values y = data.iloc[:, -1].values """Here 001 represent spain 100 represent france 010 represent germany""" from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [1])], remainder='passthrough') X = np.array(ct.fit_transform(X)) X = np.delete(X, 0, axis=1) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) classifier = Sequential() classifier.add(Dense(units=6, kernel_initializer='uniform')) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=6, kernel_initializer='uniform')) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=1, kernel_initializer='uniform', activation='sigmoid')) 'as it is a binary classification problem thats why using 1 as number of neuron\nand using sigmoid as we have only 2 categories. If we would have more than 2 categories\nthen we might have used softmax activation function' classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) ' Here optimizer is used as Adam a special type of Stochastic gradient descent(SGD), \nbinary_crossentropy loss function is used and accuracy metrics is considered' classifier.fit(X_train, y_train, batch_size=10, epochs=100) y_pred = classifier.predict(X_test) y_pred = y_pred > 0.5 from sklearn.metrics import confusion_matrix, accuracy_score con_matrix = confusion_matrix(y_pred, y_test) accuracy = accuracy_score(y_pred, y_test) type(X) X_new = np.array([[1, 0, 0, 600, 1, 40, 3, 60000, 2, 1, 1, 50000]]) X_new = X_new[:, 1:] X_new = sc.transform(X_new) y_pred_one = classifier.predict(X_new) def ann_classifier(): classifier = Sequential() classifier.add(Dense(units=6, kernel_initializer='uniform')) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=6, kernel_initializer='uniform')) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=1, kernel_initializer='uniform', activation='sigmoid')) classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) return classifier global_classifier = KerasClassifier(build_fn=ann_classifier, batch_size=32, epochs=50) accuracies = cross_val_score(estimator=global_classifier, X=X_train, y=y_train, cv=5, n_jobs=-1) " n_jobs is to decide number of cpus to use. If it is set to -1 then it will enable parallel computation and use\nall the cpu's" print('Mean Accuracy:', accuracies.mean()) print('Standard Deviation:', accuracies.std()) print(accuracies)
code
129033726/cell_67
[ "text_plain_output_1.png" ]
""" from keras.wrappers.scikit_learn import KerasClassifier #this is used to wrap sklearn in keras from sklearn.model_selection import GridSearchCV def ann_classifier(optimizer): classifier=Sequential() #this is the local classifier classifier.add(Dense(units=6, kernel_initializer="uniform")) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=6, kernel_initializer="uniform")) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=1, kernel_initializer="uniform",activation="sigmoid")) classifier.compile(optimizer =optimizer , loss = 'binary_crossentropy', metrics = ['accuracy']) return classifier #global Classifier global_classifier=KerasClassifier(build_fn=ann_classifier) #declaring the parameters parameter={'batch_size':[25,32],'epochs':[100,200],'optimizer':['adam','rmsprop']} grid_search=GridSearchCV(estimatior=global_classifier,param_grid=parameter,scoring='accuracy',cv=5, n_jobs=-1) grid_search=grid_search.fit(X_train,y_train) best_parameters=grid_search.best_params_ best_accuracies=grid_search.best_score_ """
code
129033726/cell_60
[ "text_plain_output_1.png" ]
from keras.layers import Dense, LeakyReLU from keras.models import Sequential from scipy.stats import f_oneway from sklearn.compose import ColumnTransformer from sklearn.metrics import confusion_matrix, accuracy_score from sklearn.model_selection import cross_val_score from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler import numpy as np #to perform arithmetic operation import pandas as pd #to handle the dataframe data = pd.read_csv('/kaggle/input/churn-predictions-personal/Churn_Predictions.csv') data.isnull().sum() ' It\'s alaways necessary to check for the missing values. "Nan" is not always missing values. Missing values can be present in other format also.\nFeature can also have 0\'s which can also be treated as missing values for some particular dataset. Here in this case we dont have any missing value present \nin the dataset which saves a lot of time' """We can also check the top N customers based on their current account balance. Here 1 means left 0 means still with the bank""" top_N = data.nlargest(20, 'Balance') bottom_N = data.nsmallest(20, 'Balance') from scipy.stats import f_oneway grouped_data = data.groupby('Exited')['Age'].apply(list) f_statistic, p_value = f_oneway(*grouped_data) data.corr() X = data.iloc[:, 3:-1].values y = data.iloc[:, -1].values """Here 001 represent spain 100 represent france 010 represent germany""" from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [1])], remainder='passthrough') X = np.array(ct.fit_transform(X)) X = np.delete(X, 0, axis=1) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) classifier = Sequential() classifier.add(Dense(units=6, kernel_initializer='uniform')) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=6, kernel_initializer='uniform')) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=1, kernel_initializer='uniform', activation='sigmoid')) 'as it is a binary classification problem thats why using 1 as number of neuron\nand using sigmoid as we have only 2 categories. If we would have more than 2 categories\nthen we might have used softmax activation function' classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) ' Here optimizer is used as Adam a special type of Stochastic gradient descent(SGD), \nbinary_crossentropy loss function is used and accuracy metrics is considered' classifier.fit(X_train, y_train, batch_size=10, epochs=100) y_pred = classifier.predict(X_test) y_pred = y_pred > 0.5 from sklearn.metrics import confusion_matrix, accuracy_score con_matrix = confusion_matrix(y_pred, y_test) accuracy = accuracy_score(y_pred, y_test) type(X) X_new = np.array([[1, 0, 0, 600, 1, 40, 3, 60000, 2, 1, 1, 50000]]) X_new = X_new[:, 1:] X_new = sc.transform(X_new) y_pred_one = classifier.predict(X_new) def ann_classifier(): classifier = Sequential() classifier.add(Dense(units=6, kernel_initializer='uniform')) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=6, kernel_initializer='uniform')) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=1, kernel_initializer='uniform', activation='sigmoid')) classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) return classifier global_classifier = KerasClassifier(build_fn=ann_classifier, batch_size=32, epochs=50) accuracies = cross_val_score(estimator=global_classifier, X=X_train, y=y_train, cv=5, n_jobs=-1) " n_jobs is to decide number of cpus to use. If it is set to -1 then it will enable parallel computation and use\nall the cpu's"
code
129033726/cell_19
[ "image_output_1.png" ]
import matplotlib.pyplot as plt #to perform different visualizations import pandas as pd #to handle the dataframe import seaborn as sns data = pd.read_csv('/kaggle/input/churn-predictions-personal/Churn_Predictions.csv') data.isnull().sum() ' It\'s alaways necessary to check for the missing values. "Nan" is not always missing values. Missing values can be present in other format also.\nFeature can also have 0\'s which can also be treated as missing values for some particular dataset. Here in this case we dont have any missing value present \nin the dataset which saves a lot of time' gender_counts = data['Gender'].value_counts() """Using Density plot we can visualize the distribution of different age group""" import seaborn as sns counts = data['Geography'].value_counts() counts = data['HasCrCard'].value_counts() counts = data['IsActiveMember'].value_counts() """We can also check the top N customers based on their current account balance. Here 1 means left 0 means still with the bank""" top_N = data.nlargest(20, 'Balance') bottom_N = data.nsmallest(20, 'Balance') contingency_table = pd.crosstab(data['Geography'], data['Exited']) contingency_table.plot(kind='bar', stacked=True) plt.xlabel('Country') plt.ylabel('Count') plt.title('Distribution of Geography by Churn') plt.show()
code
129033726/cell_49
[ "text_plain_output_1.png" ]
from keras.layers import Dense, LeakyReLU from keras.models import Sequential classifier = Sequential() classifier.add(Dense(units=6, kernel_initializer='uniform')) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=6, kernel_initializer='uniform')) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=1, kernel_initializer='uniform', activation='sigmoid')) 'as it is a binary classification problem thats why using 1 as number of neuron\nand using sigmoid as we have only 2 categories. If we would have more than 2 categories\nthen we might have used softmax activation function' classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) ' Here optimizer is used as Adam a special type of Stochastic gradient descent(SGD), \nbinary_crossentropy loss function is used and accuracy metrics is considered'
code
129033726/cell_32
[ "text_plain_output_1.png" ]
from scipy.stats import f_oneway import pandas as pd #to handle the dataframe data = pd.read_csv('/kaggle/input/churn-predictions-personal/Churn_Predictions.csv') data.isnull().sum() ' It\'s alaways necessary to check for the missing values. "Nan" is not always missing values. Missing values can be present in other format also.\nFeature can also have 0\'s which can also be treated as missing values for some particular dataset. Here in this case we dont have any missing value present \nin the dataset which saves a lot of time' """We can also check the top N customers based on their current account balance. Here 1 means left 0 means still with the bank""" top_N = data.nlargest(20, 'Balance') bottom_N = data.nsmallest(20, 'Balance') from scipy.stats import f_oneway grouped_data = data.groupby('Exited')['Age'].apply(list) f_statistic, p_value = f_oneway(*grouped_data) data.corr() X = data.iloc[:, 3:-1].values y = data.iloc[:, -1].values print(X)
code
129033726/cell_51
[ "text_plain_output_1.png" ]
from keras.layers import Dense, LeakyReLU from keras.models import Sequential from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) classifier = Sequential() classifier.add(Dense(units=6, kernel_initializer='uniform')) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=6, kernel_initializer='uniform')) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=1, kernel_initializer='uniform', activation='sigmoid')) 'as it is a binary classification problem thats why using 1 as number of neuron\nand using sigmoid as we have only 2 categories. If we would have more than 2 categories\nthen we might have used softmax activation function' classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) ' Here optimizer is used as Adam a special type of Stochastic gradient descent(SGD), \nbinary_crossentropy loss function is used and accuracy metrics is considered' classifier.fit(X_train, y_train, batch_size=10, epochs=100)
code
129033726/cell_15
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt #to perform different visualizations import pandas as pd #to handle the dataframe import seaborn as sns data = pd.read_csv('/kaggle/input/churn-predictions-personal/Churn_Predictions.csv') data.isnull().sum() ' It\'s alaways necessary to check for the missing values. "Nan" is not always missing values. Missing values can be present in other format also.\nFeature can also have 0\'s which can also be treated as missing values for some particular dataset. Here in this case we dont have any missing value present \nin the dataset which saves a lot of time' gender_counts = data['Gender'].value_counts() """Using Density plot we can visualize the distribution of different age group""" import seaborn as sns counts = data['Geography'].value_counts() counts = data['HasCrCard'].value_counts() plt.bar(['Yes', 'No'], counts) plt.xlabel('Have Hash Card or Not') plt.ylabel('Count') plt.title('Distribution') plt.show()
code
129033726/cell_16
[ "image_output_1.png" ]
import matplotlib.pyplot as plt #to perform different visualizations import pandas as pd #to handle the dataframe import seaborn as sns data = pd.read_csv('/kaggle/input/churn-predictions-personal/Churn_Predictions.csv') data.isnull().sum() ' It\'s alaways necessary to check for the missing values. "Nan" is not always missing values. Missing values can be present in other format also.\nFeature can also have 0\'s which can also be treated as missing values for some particular dataset. Here in this case we dont have any missing value present \nin the dataset which saves a lot of time' gender_counts = data['Gender'].value_counts() """Using Density plot we can visualize the distribution of different age group""" import seaborn as sns counts = data['Geography'].value_counts() counts = data['HasCrCard'].value_counts() counts = data['IsActiveMember'].value_counts() plt.bar(['Yes', 'No'], counts) plt.xlabel('Active or Not') plt.ylabel('Count') plt.title('Distribution') plt.show()
code
129033726/cell_47
[ "text_plain_output_1.png" ]
from keras.layers import Dense, LeakyReLU from keras.models import Sequential classifier = Sequential() classifier.add(Dense(units=6, kernel_initializer='uniform')) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=6, kernel_initializer='uniform')) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=1, kernel_initializer='uniform', activation='sigmoid')) 'as it is a binary classification problem thats why using 1 as number of neuron\nand using sigmoid as we have only 2 categories. If we would have more than 2 categories\nthen we might have used softmax activation function'
code
129033726/cell_3
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
!pip install keras #integration of tensorflow and theano. Used to build DNN in an efficient way !pip install tensorflow !pip install theano #powerfull library to perform mathematical operation
code
129033726/cell_17
[ "image_output_1.png" ]
import pandas as pd #to handle the dataframe data = pd.read_csv('/kaggle/input/churn-predictions-personal/Churn_Predictions.csv') data.isnull().sum() ' It\'s alaways necessary to check for the missing values. "Nan" is not always missing values. Missing values can be present in other format also.\nFeature can also have 0\'s which can also be treated as missing values for some particular dataset. Here in this case we dont have any missing value present \nin the dataset which saves a lot of time' """We can also check the top N customers based on their current account balance. Here 1 means left 0 means still with the bank""" top_N = data.nlargest(20, 'Balance') bottom_N = data.nsmallest(20, 'Balance') print('TOP 20 \n') print(top_N) print('*' * 100) print('BOTTOM 20 \n') print(bottom_N)
code
129033726/cell_14
[ "image_output_1.png" ]
import matplotlib.pyplot as plt #to perform different visualizations import pandas as pd #to handle the dataframe import seaborn as sns data = pd.read_csv('/kaggle/input/churn-predictions-personal/Churn_Predictions.csv') data.isnull().sum() ' It\'s alaways necessary to check for the missing values. "Nan" is not always missing values. Missing values can be present in other format also.\nFeature can also have 0\'s which can also be treated as missing values for some particular dataset. Here in this case we dont have any missing value present \nin the dataset which saves a lot of time' gender_counts = data['Gender'].value_counts() """Using Density plot we can visualize the distribution of different age group""" import seaborn as sns counts = data['Geography'].value_counts() plt.pie(counts, labels=counts.index, autopct='%1.1f%%') plt.title('Geographical Distribution') plt.show()
code
129033726/cell_22
[ "image_output_1.png" ]
from scipy.stats import f_oneway import pandas as pd #to handle the dataframe data = pd.read_csv('/kaggle/input/churn-predictions-personal/Churn_Predictions.csv') data.isnull().sum() ' It\'s alaways necessary to check for the missing values. "Nan" is not always missing values. Missing values can be present in other format also.\nFeature can also have 0\'s which can also be treated as missing values for some particular dataset. Here in this case we dont have any missing value present \nin the dataset which saves a lot of time' """We can also check the top N customers based on their current account balance. Here 1 means left 0 means still with the bank""" top_N = data.nlargest(20, 'Balance') bottom_N = data.nsmallest(20, 'Balance') from scipy.stats import f_oneway grouped_data = data.groupby('Exited')['Age'].apply(list) f_statistic, p_value = f_oneway(*grouped_data) print('F-statistic:', f_statistic) print('P-value:', p_value)
code
129033726/cell_53
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from keras.layers import Dense, LeakyReLU from keras.models import Sequential from sklearn.metrics import confusion_matrix, accuracy_score from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) classifier = Sequential() classifier.add(Dense(units=6, kernel_initializer='uniform')) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=6, kernel_initializer='uniform')) classifier.add(LeakyReLU(alpha=0.1)) classifier.add(Dense(units=1, kernel_initializer='uniform', activation='sigmoid')) 'as it is a binary classification problem thats why using 1 as number of neuron\nand using sigmoid as we have only 2 categories. If we would have more than 2 categories\nthen we might have used softmax activation function' classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) ' Here optimizer is used as Adam a special type of Stochastic gradient descent(SGD), \nbinary_crossentropy loss function is used and accuracy metrics is considered' classifier.fit(X_train, y_train, batch_size=10, epochs=100) y_pred = classifier.predict(X_test) y_pred = y_pred > 0.5 from sklearn.metrics import confusion_matrix, accuracy_score con_matrix = confusion_matrix(y_pred, y_test) accuracy = accuracy_score(y_pred, y_test) print(con_matrix) print(accuracy)
code
129033726/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd #to handle the dataframe data = pd.read_csv('/kaggle/input/churn-predictions-personal/Churn_Predictions.csv') data.isnull().sum() ' It\'s alaways necessary to check for the missing values. "Nan" is not always missing values. Missing values can be present in other format also.\nFeature can also have 0\'s which can also be treated as missing values for some particular dataset. Here in this case we dont have any missing value present \nin the dataset which saves a lot of time'
code
129033726/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt #to perform different visualizations import pandas as pd #to handle the dataframe data = pd.read_csv('/kaggle/input/churn-predictions-personal/Churn_Predictions.csv') data.isnull().sum() ' It\'s alaways necessary to check for the missing values. "Nan" is not always missing values. Missing values can be present in other format also.\nFeature can also have 0\'s which can also be treated as missing values for some particular dataset. Here in this case we dont have any missing value present \nin the dataset which saves a lot of time' gender_counts = data['Gender'].value_counts() plt.pie(gender_counts, labels=gender_counts.index, autopct='%1.1f%%') plt.title('Gender Distribution') plt.show()
code
326306/cell_9
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plot import pandas import seaborn data = pandas.read_csv('../input/wowah_data.csv') data.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp'] data['time'] = data['timestamp'].apply(pandas.to_datetime) last70 = data[data['level'] == 70].groupby('char', as_index=False).last() ding80 = data[data['level'] == 80].groupby('char', as_index=False).first() ding80.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'ding80time'] last70.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'last70time'] characters = pandas.merge(ding80[['char', 'race', 'charclass', 'guild', 'ding80time']], last70[['char', 'last70time']], on='char') mean_leveling_time = characters['leveling_time'].mean() std_leveling_time = characters['leveling_time'].std() characters_no_slowpokes = characters[characters['leveling_time'] - mean_leveling_time <= 3 * std_leveling_time] plot.figure(figsize=(45, 10)) seaborn.boxplot(x='guild', y='leveling_time', data=characters_no_slowpokes)
code
326306/cell_4
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas data = pandas.read_csv('../input/wowah_data.csv') data.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp'] data['time'] = data['timestamp'].apply(pandas.to_datetime) last70 = data[data['level'] == 70].groupby('char', as_index=False).last() ding80 = data[data['level'] == 80].groupby('char', as_index=False).first() ding80.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'ding80time'] last70.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'last70time'] characters = pandas.merge(ding80[['char', 'race', 'charclass', 'guild', 'ding80time']], last70[['char', 'last70time']], on='char')
code
326306/cell_6
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas data = pandas.read_csv('../input/wowah_data.csv') data.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp'] data['time'] = data['timestamp'].apply(pandas.to_datetime) last70 = data[data['level'] == 70].groupby('char', as_index=False).last() ding80 = data[data['level'] == 80].groupby('char', as_index=False).first() ding80.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'ding80time'] last70.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'last70time'] characters = pandas.merge(ding80[['char', 'race', 'charclass', 'guild', 'ding80time']], last70[['char', 'last70time']], on='char') mean_leveling_time = characters['leveling_time'].mean() std_leveling_time = characters['leveling_time'].std() characters_no_slowpokes = characters[characters['leveling_time'] - mean_leveling_time <= 3 * std_leveling_time]
code
326306/cell_2
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas data = pandas.read_csv('../input/wowah_data.csv') data.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp']
code
326306/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas import seaborn import matplotlib.pyplot as plot seaborn.set(style='darkgrid', palette='husl')
code
326306/cell_7
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas data = pandas.read_csv('../input/wowah_data.csv') data.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp'] data['time'] = data['timestamp'].apply(pandas.to_datetime) last70 = data[data['level'] == 70].groupby('char', as_index=False).last() ding80 = data[data['level'] == 80].groupby('char', as_index=False).first() ding80.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'ding80time'] last70.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'last70time'] characters = pandas.merge(ding80[['char', 'race', 'charclass', 'guild', 'ding80time']], last70[['char', 'last70time']], on='char') characters[characters['leveling_time'].isin(characters['leveling_time'].nsmallest(10))].sort_values('leveling_time')
code
326306/cell_8
[ "text_plain_output_5.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_4.png", "text_plain_output_3.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas import seaborn data = pandas.read_csv('../input/wowah_data.csv') data.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp'] data['time'] = data['timestamp'].apply(pandas.to_datetime) last70 = data[data['level'] == 70].groupby('char', as_index=False).last() ding80 = data[data['level'] == 80].groupby('char', as_index=False).first() ding80.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'ding80time'] last70.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'last70time'] characters = pandas.merge(ding80[['char', 'race', 'charclass', 'guild', 'ding80time']], last70[['char', 'last70time']], on='char') mean_leveling_time = characters['leveling_time'].mean() std_leveling_time = characters['leveling_time'].std() characters_no_slowpokes = characters[characters['leveling_time'] - mean_leveling_time <= 3 * std_leveling_time] seaborn.boxplot(x='charclass', y='leveling_time', data=characters_no_slowpokes)
code
326306/cell_3
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas data = pandas.read_csv('../input/wowah_data.csv') data.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp'] data['time'] = data['timestamp'].apply(pandas.to_datetime)
code
326306/cell_10
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plot import pandas import seaborn data = pandas.read_csv('../input/wowah_data.csv') data.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp'] data['time'] = data['timestamp'].apply(pandas.to_datetime) last70 = data[data['level'] == 70].groupby('char', as_index=False).last() ding80 = data[data['level'] == 80].groupby('char', as_index=False).first() ding80.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'ding80time'] last70.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'last70time'] characters = pandas.merge(ding80[['char', 'race', 'charclass', 'guild', 'ding80time']], last70[['char', 'last70time']], on='char') mean_leveling_time = characters['leveling_time'].mean() std_leveling_time = characters['leveling_time'].std() characters_no_slowpokes = characters[characters['leveling_time'] - mean_leveling_time <= 3 * std_leveling_time] seaborn.boxplot(x='race', y='leveling_time', data=characters_no_slowpokes)
code
326306/cell_5
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas data = pandas.read_csv('../input/wowah_data.csv') data.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp'] data['time'] = data['timestamp'].apply(pandas.to_datetime) last70 = data[data['level'] == 70].groupby('char', as_index=False).last() ding80 = data[data['level'] == 80].groupby('char', as_index=False).first() ding80.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'ding80time'] last70.columns = ['char', 'level', 'race', 'charclass', 'zone', 'guild', 'timestamp', 'last70time'] characters = pandas.merge(ding80[['char', 'race', 'charclass', 'guild', 'ding80time']], last70[['char', 'last70time']], on='char') characters['leveling_time'] = characters['ding80time'] - characters['last70time']
code
17139134/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import itertools import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import os import seaborn as sns import itertools sns.set(style='darkgrid') data = pd.read_csv('../input/IMDB-Movie-Data.csv') data.rename({'Runtime (Minutes)': 'Duration', 'Revenue (Millions)': 'Revenue'}, axis='columns', inplace=True) for col in data.columns: nans = pd.value_counts(data[col].isnull()) Nans = data[pd.isnull(data).any(axis=1)] data.dropna(inplace=True) actors = list((actor.split(',') for actor in data.Actors)) actors = list(itertools.chain.from_iterable(actors)) actors = [actor.strip(' ') for actor in actors] actors_count = pd.value_counts(actors) fig, ax = plt.subplots(figsize=(15, 10)) sns.heatmap(data.corr(), annot=True, fmt='.2f', linewidths=0.5, ax=ax) plt.show()
code
17139134/cell_23
[ "image_output_1.png" ]
import itertools import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import os import seaborn as sns import itertools sns.set(style='darkgrid') data = pd.read_csv('../input/IMDB-Movie-Data.csv') data.rename({'Runtime (Minutes)': 'Duration', 'Revenue (Millions)': 'Revenue'}, axis='columns', inplace=True) for col in data.columns: nans = pd.value_counts(data[col].isnull()) Nans = data[pd.isnull(data).any(axis=1)] data.dropna(inplace=True) actors = list((actor.split(',') for actor in data.Actors)) actors = list(itertools.chain.from_iterable(actors)) actors = [actor.strip(' ') for actor in actors] actors_count = pd.value_counts(actors) fig, ax = plt.subplots(figsize=(15, 10)) sns.heatmap(data.corr(), annot=True, fmt=".2f", linewidths=.5, ax=ax) plt.show() fig, axs = plt.subplots(2, 2, figsize=(25, 15)) plt.suptitle('Boxplots of Duration,Rating,Votes and Revenue', fontsize=20) sns.boxplot(data.Duration, ax=axs[0][0], color=sns.xkcd_rgb['cerulean']) axs[0][0].set_xlabel('Duration (Minutes)', fontsize=14) sns.boxplot(data.Rating, ax=axs[0][1], color='r') axs[0][1].set_xlabel('Rating', fontsize=14) sns.boxplot(data.Votes, ax=axs[1][0], color=sns.xkcd_rgb['teal green']) axs[1][0].set_xlabel('Votes', fontsize=14) sns.boxplot(data.Revenue, ax=axs[1][1], color=sns.xkcd_rgb['dusty purple']) axs[1][1].set_xlabel('Revenue in millions', fontsize=14) plt.show()
code
17139134/cell_20
[ "text_plain_output_1.png" ]
import itertools import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import os import seaborn as sns import itertools sns.set(style='darkgrid') data = pd.read_csv('../input/IMDB-Movie-Data.csv') data.rename({'Runtime (Minutes)': 'Duration', 'Revenue (Millions)': 'Revenue'}, axis='columns', inplace=True) for col in data.columns: nans = pd.value_counts(data[col].isnull()) Nans = data[pd.isnull(data).any(axis=1)] data.dropna(inplace=True) actors = list((actor.split(',') for actor in data.Actors)) actors = list(itertools.chain.from_iterable(actors)) actors = [actor.strip(' ') for actor in actors] actors_count = pd.value_counts(actors) sns.pairplot(data, kind='reg')
code
17139134/cell_17
[ "text_html_output_1.png" ]
import itertools import pandas as pd data = pd.read_csv('../input/IMDB-Movie-Data.csv') data.rename({'Runtime (Minutes)': 'Duration', 'Revenue (Millions)': 'Revenue'}, axis='columns', inplace=True) for col in data.columns: nans = pd.value_counts(data[col].isnull()) Nans = data[pd.isnull(data).any(axis=1)] data.dropna(inplace=True) actors = list((actor.split(',') for actor in data.Actors)) actors = list(itertools.chain.from_iterable(actors)) actors = [actor.strip(' ') for actor in actors] actors_count = pd.value_counts(actors) print('There are ', len(actors), 'different actors in the dataset,after removing NaN rows')
code
17139134/cell_24
[ "image_output_1.png" ]
import itertools import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import os import seaborn as sns import itertools sns.set(style='darkgrid') data = pd.read_csv('../input/IMDB-Movie-Data.csv') data.rename({'Runtime (Minutes)': 'Duration', 'Revenue (Millions)': 'Revenue'}, axis='columns', inplace=True) for col in data.columns: nans = pd.value_counts(data[col].isnull()) Nans = data[pd.isnull(data).any(axis=1)] data.dropna(inplace=True) actors = list((actor.split(',') for actor in data.Actors)) actors = list(itertools.chain.from_iterable(actors)) actors = [actor.strip(' ') for actor in actors] actors_count = pd.value_counts(actors) fig, ax = plt.subplots(figsize=(15, 10)) sns.heatmap(data.corr(), annot=True, fmt=".2f", linewidths=.5, ax=ax) plt.show() fig, axs = plt.subplots(2, 2, figsize=(25,15)) plt.suptitle('Boxplots of Duration,Rating,Votes and Revenue',fontsize=20) sns.boxplot(data.Duration,ax=axs[0][0],color=sns.xkcd_rgb["cerulean"]) axs[0][0].set_xlabel('Duration (Minutes)',fontsize=14) sns.boxplot(data.Rating,ax=axs[0][1],color='r') axs[0][1].set_xlabel('Rating',fontsize=14) sns.boxplot(data.Votes,ax=axs[1][0],color=sns.xkcd_rgb["teal green"]) axs[1][0].set_xlabel('Votes',fontsize=14) sns.boxplot(data.Revenue,ax=axs[1][1],color=sns.xkcd_rgb["dusty purple"]) axs[1][1].set_xlabel('Revenue in millions',fontsize=14) plt.show() fig, axs = plt.subplots(2, 2, figsize=(25, 15)) plt.suptitle('Histograms of Duration,Rating,Votes and Revenue', fontsize=20) sns.distplot(data.Duration, ax=axs[0][0], color=sns.xkcd_rgb['cerulean']) axs[0][0].set_xlabel('Duration (Minutes)', fontsize=14) sns.distplot(data.Rating, ax=axs[0][1], color='r') axs[0][1].set_xlabel('Rating', fontsize=14) sns.distplot(data.Votes, ax=axs[1][0], color=sns.xkcd_rgb['teal green']) axs[1][0].set_xlabel('Votes', fontsize=14) sns.distplot(data.Revenue, ax=axs[1][1], color=sns.xkcd_rgb['dusty purple']) axs[1][1].set_xlabel('Revenue in millions', fontsize=14) plt.show()
code
17139134/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/IMDB-Movie-Data.csv') data.rename({'Runtime (Minutes)': 'Duration', 'Revenue (Millions)': 'Revenue'}, axis='columns', inplace=True) for col in data.columns: nans = pd.value_counts(data[col].isnull()) data.describe(include='all')
code
17139134/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/IMDB-Movie-Data.csv') data.rename({'Runtime (Minutes)': 'Duration', 'Revenue (Millions)': 'Revenue'}, axis='columns', inplace=True) print('The dataset contains NaN values: ', data.isnull().values.any()) print('Missing values in the dataset : ', data.isnull().values.sum()) for col in data.columns: nans = pd.value_counts(data[col].isnull()) if len(nans) > 1: print('Column: ', col, ' , Missing values: ', nans[1])
code