path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
105190429/cell_10
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/heart-attack-analysis-prediction-dataset/heart.csv') data.describe().T
code
90131319/cell_4
[ "text_html_output_1.png", "image_output_1.png" ]
import os import pandas as pd data_path = '/kaggle/input/covidx9a/' images_path = '/kaggle/input/covidx-cxr2/train/' data_file = 'train_COVIDx9A.txt' train = pd.read_csv(os.path.join(data_path, data_file), header=None, sep=' ') train.columns = ['patient id', 'filename', 'class', 'data source'] print('Training data shape:', train.shape) display(train.head())
code
90131319/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd import seaborn as sns data_path = '/kaggle/input/covidx9a/' images_path = '/kaggle/input/covidx-cxr2/train/' data_file = 'train_COVIDx9A.txt' train = pd.read_csv(os.path.join(data_path, data_file), header=None, sep=' ') train.columns = ['patient id', 'filename', 'class', 'data source'] plt.figure(figsize=(8, 6)) sns.histplot(data=train, x='data source', hue='class') plt.show() data_classes = train['class'].unique() df_summary_count = pd.DataFrame() for dataset in ['cohen', 'fig1', 'actmed', 'sirm', 'ricord', 'rsna', 'stonybrook', 'bimcv', 'rnsa']: num_negative = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[0]), 'filename'].count() if len(data_classes) == 2: num_positive = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[1]), 'filename'].count() df_new = pd.DataFrame({'Dataset': [dataset], 'Covid': [num_positive], 'Negative': [num_negative]}) elif len(data_classes) == 3: num_pneumonia = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[1]), 'filename'].count() num_positive = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[2]), 'filename'].count() df_new = pd.DataFrame({'Dataset': [dataset], 'Covid': [num_positive], 'Pneumonia': [num_pneumonia], 'Negative': [num_negative]}) else: print(f'Error! Not accounting for {len(data_classes)} no. of classes.') df_summary_count = pd.concat([df_summary_count, df_new]) display(df_summary_count)
code
90131319/cell_11
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from PIL import Image import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import seaborn as sns data_path = '/kaggle/input/covidx9a/' images_path = '/kaggle/input/covidx-cxr2/train/' data_file = 'train_COVIDx9A.txt' train = pd.read_csv(os.path.join(data_path, data_file), header=None, sep=' ') train.columns = ['patient id', 'filename', 'class', 'data source'] data_classes = train['class'].unique() df_summary_count = pd.DataFrame() for dataset in ['cohen', 'fig1', 'actmed', 'sirm', 'ricord', 'rsna', 'stonybrook', 'bimcv', 'rnsa']: num_negative = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[0]), 'filename'].count() if len(data_classes) == 2: num_positive = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[1]), 'filename'].count() df_new = pd.DataFrame({'Dataset': [dataset], 'Covid': [num_positive], 'Negative': [num_negative]}) elif len(data_classes) == 3: num_pneumonia = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[1]), 'filename'].count() num_positive = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[2]), 'filename'].count() df_new = pd.DataFrame({'Dataset': [dataset], 'Covid': [num_positive], 'Pneumonia': [num_pneumonia], 'Negative': [num_negative]}) df_summary_count = pd.concat([df_summary_count, df_new]) patient_distribution = train.groupby(['patient id', 'data source', 'class']).count().reset_index() patient_distribution.rename(columns={'filename': 'num_patients'}, inplace=True) num_patients_bydata = patient_distribution[['data source', 'num_patients']].groupby(['data source']).count() num_patients_byclass = patient_distribution[['class', 'num_patients']].groupby(['class']).count() print('Images are saved at:', images_path) fig, axs = plt.subplots(3, 3, figsize=(18, 14)) for i in range(3): for j in range(3): if j == 0: file_name, class_label = train[train['class'] == data_classes[0]].iloc[i, [1, 2]] elif j == 1: file_name, class_label = train[train['class'] == data_classes[1]].iloc[i, [1, 2]] elif j == 2 and len(data_classes) == 3: file_name, class_label = train[train['class'] == data_classes[2]].iloc[i, [1, 2]] else: print('Out of bounds') image_file = os.path.join(images_path, file_name) img = Image.open(image_file) print('Original:', 3 * i + j, np.asarray(img).shape) img = img.convert('L') axs[i, j].set_title(f'Class: {class_label} - Image Size: {np.asarray(img).shape}') axs[i, j].axis('off') axs[i, j].imshow(img, cmap='gray') plt.show()
code
90131319/cell_7
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import os import pandas as pd import seaborn as sns data_path = '/kaggle/input/covidx9a/' images_path = '/kaggle/input/covidx-cxr2/train/' data_file = 'train_COVIDx9A.txt' train = pd.read_csv(os.path.join(data_path, data_file), header=None, sep=' ') train.columns = ['patient id', 'filename', 'class', 'data source'] data_classes = train['class'].unique() df_summary_count = pd.DataFrame() for dataset in ['cohen', 'fig1', 'actmed', 'sirm', 'ricord', 'rsna', 'stonybrook', 'bimcv', 'rnsa']: num_negative = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[0]), 'filename'].count() if len(data_classes) == 2: num_positive = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[1]), 'filename'].count() df_new = pd.DataFrame({'Dataset': [dataset], 'Covid': [num_positive], 'Negative': [num_negative]}) elif len(data_classes) == 3: num_pneumonia = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[1]), 'filename'].count() num_positive = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[2]), 'filename'].count() df_new = pd.DataFrame({'Dataset': [dataset], 'Covid': [num_positive], 'Pneumonia': [num_pneumonia], 'Negative': [num_negative]}) df_summary_count = pd.concat([df_summary_count, df_new]) patient_distribution = train.groupby(['patient id', 'data source', 'class']).count().reset_index() patient_distribution.rename(columns={'filename': 'num_patients'}, inplace=True) print('No. of unique patients by data source:') num_patients_bydata = patient_distribution[['data source', 'num_patients']].groupby(['data source']).count() display(num_patients_bydata) print('No. of unqiue patients by class:') num_patients_byclass = patient_distribution[['class', 'num_patients']].groupby(['class']).count() display(num_patients_byclass)
code
90131319/cell_12
[ "text_plain_output_1.png" ]
from PIL import Image import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import seaborn as sns data_path = '/kaggle/input/covidx9a/' images_path = '/kaggle/input/covidx-cxr2/train/' data_file = 'train_COVIDx9A.txt' train = pd.read_csv(os.path.join(data_path, data_file), header=None, sep=' ') train.columns = ['patient id', 'filename', 'class', 'data source'] data_classes = train['class'].unique() df_summary_count = pd.DataFrame() for dataset in ['cohen', 'fig1', 'actmed', 'sirm', 'ricord', 'rsna', 'stonybrook', 'bimcv', 'rnsa']: num_negative = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[0]), 'filename'].count() if len(data_classes) == 2: num_positive = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[1]), 'filename'].count() df_new = pd.DataFrame({'Dataset': [dataset], 'Covid': [num_positive], 'Negative': [num_negative]}) elif len(data_classes) == 3: num_pneumonia = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[1]), 'filename'].count() num_positive = train.loc[(train['data source'] == dataset) & (train['class'] == data_classes[2]), 'filename'].count() df_new = pd.DataFrame({'Dataset': [dataset], 'Covid': [num_positive], 'Pneumonia': [num_pneumonia], 'Negative': [num_negative]}) df_summary_count = pd.concat([df_summary_count, df_new]) patient_distribution = train.groupby(['patient id', 'data source', 'class']).count().reset_index() patient_distribution.rename(columns={'filename': 'num_patients'}, inplace=True) num_patients_bydata = patient_distribution[['data source', 'num_patients']].groupby(['data source']).count() num_patients_byclass = patient_distribution[['class', 'num_patients']].groupby(['class']).count() def crop_resize_image(gray_img, final_size=224): """ Set the new dimensions so the cropped image is a square """ width, height = gray_img.size diff = abs(width - height) left, right, top, bottom = (0, 0, 0, 0) if diff % 2 == 0: if width > height: bottom = height left = diff / 2 right = width - left elif height > width: top = diff / 2 bottom = height - top right = width elif width > height: bottom = height left = diff / 2 + 0.5 right = width - left + 1 elif height > width: top = diff / 2 + 0.5 bottom = height - top + 1 right = width img_cropped = gray_img.crop((left, top, right, bottom)) img_final = img_cropped.resize((final_size, final_size)) return img_final ### Look at a few images to explore: # a) what do the scans look like for each class? # b) what is the image resolution? # c) is there anything noticeable across classes / images? # Kaggle dataset print('Images are saved at:', images_path) fig, axs = plt.subplots(3, 3, figsize = (18,14)) for i in range(3): for j in range(3): if j==0: file_name, class_label = train[train['class']==data_classes[0]].iloc[i,[1,2]] elif j==1: file_name, class_label = train[train['class']==data_classes[1]].iloc[i,[1,2]] elif j==2 and len(data_classes)==3: file_name, class_label = train[train['class']==data_classes[2]].iloc[i,[1,2]] else: print('Out of bounds') image_file = os.path.join(images_path, file_name) img = Image.open(image_file) print('Original:', (3*i+j), np.asarray(img).shape) # Greyscale convert img = img.convert('L') axs[i,j].set_title(f'Class: {class_label} - Image Size: {np.asarray(img).shape}') axs[i,j].axis('off') axs[i,j].imshow(img, cmap = 'gray') plt.show() final_size = 224 fig, axs = plt.subplots(3, 3, figsize=(18, 14)) for i in range(3): for j in range(3): if j == 0: file_name, class_label = train[train['class'] == data_classes[0]].iloc[i, [1, 2]] elif j == 1: file_name, class_label = train[train['class'] == data_classes[1]].iloc[i, [1, 2]] elif j == 2 and len(data_classes) == 3: file_name, class_label = train[train['class'] == data_classes[2]].iloc[i, [1, 2]] else: print('Out of bounds') image_file = os.path.join(images_path, file_name) img = Image.open(image_file) img = img.convert('L') img = crop_resize_image(img, final_size=224) axs[i, j].set_title(f'Class: {class_label} - Image Size: {np.asarray(img_final).shape}') axs[i, j].axis('off') axs[i, j].imshow(img_final, cmap='gray') plt.show()
code
90131319/cell_5
[ "text_html_output_2.png", "text_html_output_1.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
import os import pandas as pd data_path = '/kaggle/input/covidx9a/' images_path = '/kaggle/input/covidx-cxr2/train/' data_file = 'train_COVIDx9A.txt' train = pd.read_csv(os.path.join(data_path, data_file), header=None, sep=' ') train.columns = ['patient id', 'filename', 'class', 'data source'] print('Classes:\n', train['class'].unique()) print('Data sources:\n', train['data source'].unique()) print('---------------------------------') print('No. of unique patients:', train['patient id'].nunique(), 'out of', train.shape[0], 'images.')
code
16154664/cell_9
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.reset_index(drop=True, inplace=True) train['SalePrice'] = np.log1p(train['SalePrice']) train['SalePrice'].hist(bins=50) y = train['SalePrice'].reset_index(drop=True)
code
16154664/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') test.describe()
code
16154664/cell_11
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.reset_index(drop=True, inplace=True) train['SalePrice'] = np.log1p(train['SalePrice']) y = train['SalePrice'].reset_index(drop=True) train = train.drop(['Id', 'SalePrice'], axis=1) test = test.drop(['Id'], axis=1) x = pd.concat([train, test]).reset_index(drop=True) x.info()
code
16154664/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') original_y = train['SalePrice'].reset_index(drop=True) train['SalePrice'].hist(bins=50)
code
16154664/cell_14
[ "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.reset_index(drop=True, inplace=True) train['SalePrice'] = np.log1p(train['SalePrice']) y = train['SalePrice'].reset_index(drop=True) train = train.drop(['Id', 'SalePrice'], axis=1) test = test.drop(['Id'], axis=1) x = pd.concat([train, test]).reset_index(drop=True) x['MSSubClass'] = x['MSSubClass'].apply(str) x['YrSold'] = x['YrSold'].astype(str) x['MoSold'] = x['MoSold'].astype(str) x['Functional'] = x['Functional'].fillna('Typ') x['Electrical'] = x['Electrical'].fillna('SBrkr') x['KitchenQual'] = x['KitchenQual'].fillna('TA') x['Exterior1st'] = x['Exterior1st'].fillna(x['Exterior1st'].mode()[0]) x['Exterior2nd'] = x['Exterior2nd'].fillna(x['Exterior2nd'].mode()[0]) x['SaleType'] = x['SaleType'].fillna(x['SaleType'].mode()[0]) x['MasVnrArea'] = x['MasVnrArea'].fillna(x['MasVnrArea'].mode()[0]) x['LotFrontage'] = x.groupby('Neighborhood')['LotFrontage'].transform(lambda x: x.fillna(x.median())) for col in ('GarageYrBlt', 'GarageArea', 'GarageCars'): x[col] = x[col].fillna(0) for col in ['GarageType', 'GarageFinish', 'GarageQual', 'GarageCond']: x[col] = x[col].fillna('None') for col in ('BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath'): x[col] = x[col].fillna(0) for col in ('BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2'): x[col] = x[col].fillna('None') objects = [] for i in x.columns: if x[i].dtype == object: objects.append(i) x.update(x[objects].fillna('None')) numeric_dtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] numerics = [] for i in x.columns: if x[i].dtype in numeric_dtypes: numerics.append(i) x.update(x[numerics].fillna(0)) x['total_sf'] = x['TotalBsmtSF'] + x['BsmtFinSF1'] + x['BsmtFinSF2'] + x['1stFlrSF'] + x['2ndFlrSF'] x['total_bathrooms'] = x['FullBath'] + 0.5 * x['HalfBath'] + x['BsmtFullBath'] + 0.5 * x['BsmtHalfBath'] x['total_porch_sf'] = x['OpenPorchSF'] + x['3SsnPorch'] + x['EnclosedPorch'] + x['ScreenPorch'] + x['WoodDeckSF'] x['hasPool'] = x['PoolArea'].apply(lambda x: 1 if x > 0 else 0) x['has2ndFloor'] = x['2ndFlrSF'].apply(lambda x: 1 if x > 0 else 0) x['hasGarage'] = x['GarageArea'].apply(lambda x: 1 if x > 0 else 0) x['hasBasement'] = x['TotalBsmtSF'].apply(lambda x: 1 if x > 0 else 0) x['hasFireplace'] = x['Fireplaces'].apply(lambda x: 1 if x > 0 else 0) x.describe()
code
16154664/cell_10
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.reset_index(drop=True, inplace=True) train['SalePrice'] = np.log1p(train['SalePrice']) y = train['SalePrice'].reset_index(drop=True) train = train.drop(['Id', 'SalePrice'], axis=1) test = test.drop(['Id'], axis=1) x = pd.concat([train, test]).reset_index(drop=True) x.describe()
code
16154664/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.reset_index(drop=True, inplace=True) train['SalePrice'] = np.log1p(train['SalePrice']) y = train['SalePrice'].reset_index(drop=True) train = train.drop(['Id', 'SalePrice'], axis=1) test = test.drop(['Id'], axis=1) x = pd.concat([train, test]).reset_index(drop=True) x['MSSubClass'] = x['MSSubClass'].apply(str) x['YrSold'] = x['YrSold'].astype(str) x['MoSold'] = x['MoSold'].astype(str) x['Functional'] = x['Functional'].fillna('Typ') x['Electrical'] = x['Electrical'].fillna('SBrkr') x['KitchenQual'] = x['KitchenQual'].fillna('TA') x['Exterior1st'] = x['Exterior1st'].fillna(x['Exterior1st'].mode()[0]) x['Exterior2nd'] = x['Exterior2nd'].fillna(x['Exterior2nd'].mode()[0]) x['SaleType'] = x['SaleType'].fillna(x['SaleType'].mode()[0]) x['MasVnrArea'] = x['MasVnrArea'].fillna(x['MasVnrArea'].mode()[0]) x['LotFrontage'] = x.groupby('Neighborhood')['LotFrontage'].transform(lambda x: x.fillna(x.median())) for col in ('GarageYrBlt', 'GarageArea', 'GarageCars'): x[col] = x[col].fillna(0) for col in ['GarageType', 'GarageFinish', 'GarageQual', 'GarageCond']: x[col] = x[col].fillna('None') for col in ('BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath'): x[col] = x[col].fillna(0) for col in ('BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2'): x[col] = x[col].fillna('None') objects = [] for i in x.columns: if x[i].dtype == object: objects.append(i) x.update(x[objects].fillna('None')) numeric_dtypes = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] numerics = [] for i in x.columns: if x[i].dtype in numeric_dtypes: numerics.append(i) x.update(x[numerics].fillna(0)) x.info()
code
16154664/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.describe()
code
74045329/cell_9
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df test_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/test.csv') test_df slct_test_df = test_df[['date', 'bathrooms', 'sqft_living', 'view', 'grade', 'sqft_above', 'sqft_living15']] slct_test_df
code
74045329/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df test_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/test.csv') test_df
code
74045329/cell_2
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df
code
74045329/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df import matplotlib.pyplot as plt import seaborn as sns cor = train_df.corr() train_df.dtypes
code
74045329/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
74045329/cell_7
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df import matplotlib.pyplot as plt import seaborn as sns cor = train_df.corr() plt.figure(figsize=(12, 10)) sns.heatmap(cor)
code
74045329/cell_8
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df import matplotlib.pyplot as plt import seaborn as sns cor = train_df.corr() slct_train_df = train_df[['date', 'bathrooms', 'sqft_living', 'view', 'grade', 'sqft_above', 'sqft_living15']] slct_train_df
code
74045329/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df train_df['date'] = train_df['date'].str.replace('T000000', '') train_df
code
74045329/cell_12
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df import matplotlib.pyplot as plt import seaborn as sns cor = train_df.corr() train_df.dtypes X = train_df.drop({'price', 'yr_renovated', 'date', 'lat', 'waterfront'}, axis=1) y = train_df['price'] X_train_valid, X_test, y_train_valid, y_test = train_test_split(X, y, test_size=0.33) X_train_valid
code
74045329/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/train.csv', index_col=0) train_df test_df = pd.read_csv('/kaggle/input/1056lab-house-price-prediction/test.csv') test_df test_df['date'] = test_df['date'].str.replace('T000000', '') test_df
code
18112246/cell_21
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') df.columns len(df.columns) dep_var = 'SalePrice' cat_vars = ['MSSubClass', 'MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'Functional', 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive', 'PoolQC', 'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType', 'SaleCondition', 'BsmtQual', 'KitchenQual'] cont_vars = ['1stFlrSF', '2ndFlrSF', '3SsnPorch', 'BedroomAbvGr', 'EnclosedPorch', 'Fireplaces', 'FullBath', 'GarageYrBlt', 'GrLivArea', 'HalfBath', 'KitchenAbvGr', 'LotArea', 'LotFrontage', 'LowQualFinSF', 'MasVnrArea', 'OpenPorchSF', 'PoolArea', 'ScreenPorch', 'TotRmsAbvGrd', 'WoodDeckSF'] procs = [FillMissing, Categorify, Normalize] data = TabularList.from_df(df, cat_names=cat_vars, cont_names=cont_vars, procs=procs).split_by_rand_pct().label_from_df(cols=dep_var, label_cls=FloatList, log=True).add_test(TabularList.from_df(test_df, cat_names=cat_vars, cont_names=cont_vars)).databunch() max_log_y = np.log(np.max(df[dep_var]) * 1.2) y_range = torch.tensor([0, max_log_y], device=defaults.device) learn = tabular_learner(data, layers=[1000, 500], y_range=y_range, metrics=exp_rmspe) learn.lr_find() learn.fit_one_cycle(10, max_lr=0.01) learn.save('stage-1') learn.load('stage-1') learn.lr_find() learn.fit_one_cycle(5, max_lr=0.005)
code
18112246/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') df.columns len(df.columns) dep_var = 'SalePrice' cat_vars = ['MSSubClass', 'MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'Functional', 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive', 'PoolQC', 'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType', 'SaleCondition', 'BsmtQual', 'KitchenQual'] cont_vars = ['1stFlrSF', '2ndFlrSF', '3SsnPorch', 'BedroomAbvGr', 'EnclosedPorch', 'Fireplaces', 'FullBath', 'GarageYrBlt', 'GrLivArea', 'HalfBath', 'KitchenAbvGr', 'LotArea', 'LotFrontage', 'LowQualFinSF', 'MasVnrArea', 'OpenPorchSF', 'PoolArea', 'ScreenPorch', 'TotRmsAbvGrd', 'WoodDeckSF'] procs = [FillMissing, Categorify, Normalize] data = TabularList.from_df(df, cat_names=cat_vars, cont_names=cont_vars, procs=procs).split_by_rand_pct().label_from_df(cols=dep_var, label_cls=FloatList, log=True).add_test(TabularList.from_df(test_df, cat_names=cat_vars, cont_names=cont_vars)).databunch() max_log_y = np.log(np.max(df[dep_var]) * 1.2) y_range = torch.tensor([0, max_log_y], device=defaults.device) learn = tabular_learner(data, layers=[1000, 500], y_range=y_range, metrics=exp_rmspe) learn.lr_find() learn.fit_one_cycle(10, max_lr=0.01) learn.save('stage-1') learn.load('stage-1') learn.lr_find() learn.fit_one_cycle(5, max_lr=0.005) learn.save('stage-2') learn.lr_find() learn.recorder.plot()
code
18112246/cell_20
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') df.columns len(df.columns) dep_var = 'SalePrice' cat_vars = ['MSSubClass', 'MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'Functional', 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive', 'PoolQC', 'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType', 'SaleCondition', 'BsmtQual', 'KitchenQual'] cont_vars = ['1stFlrSF', '2ndFlrSF', '3SsnPorch', 'BedroomAbvGr', 'EnclosedPorch', 'Fireplaces', 'FullBath', 'GarageYrBlt', 'GrLivArea', 'HalfBath', 'KitchenAbvGr', 'LotArea', 'LotFrontage', 'LowQualFinSF', 'MasVnrArea', 'OpenPorchSF', 'PoolArea', 'ScreenPorch', 'TotRmsAbvGrd', 'WoodDeckSF'] procs = [FillMissing, Categorify, Normalize] data = TabularList.from_df(df, cat_names=cat_vars, cont_names=cont_vars, procs=procs).split_by_rand_pct().label_from_df(cols=dep_var, label_cls=FloatList, log=True).add_test(TabularList.from_df(test_df, cat_names=cat_vars, cont_names=cont_vars)).databunch() max_log_y = np.log(np.max(df[dep_var]) * 1.2) y_range = torch.tensor([0, max_log_y], device=defaults.device) learn = tabular_learner(data, layers=[1000, 500], y_range=y_range, metrics=exp_rmspe) learn.lr_find() learn.fit_one_cycle(10, max_lr=0.01) learn.save('stage-1') learn.load('stage-1') learn.lr_find() learn.recorder.plot()
code
18112246/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df.columns len(df.columns)
code
18112246/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') df.columns len(df.columns) dep_var = 'SalePrice' cat_vars = ['MSSubClass', 'MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'Functional', 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive', 'PoolQC', 'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType', 'SaleCondition', 'BsmtQual', 'KitchenQual'] cont_vars = ['1stFlrSF', '2ndFlrSF', '3SsnPorch', 'BedroomAbvGr', 'EnclosedPorch', 'Fireplaces', 'FullBath', 'GarageYrBlt', 'GrLivArea', 'HalfBath', 'KitchenAbvGr', 'LotArea', 'LotFrontage', 'LowQualFinSF', 'MasVnrArea', 'OpenPorchSF', 'PoolArea', 'ScreenPorch', 'TotRmsAbvGrd', 'WoodDeckSF'] procs = [FillMissing, Categorify, Normalize] data = TabularList.from_df(df, cat_names=cat_vars, cont_names=cont_vars, procs=procs).split_by_rand_pct().label_from_df(cols=dep_var, label_cls=FloatList, log=True).add_test(TabularList.from_df(test_df, cat_names=cat_vars, cont_names=cont_vars)).databunch() max_log_y = np.log(np.max(df[dep_var]) * 1.2) y_range = torch.tensor([0, max_log_y], device=defaults.device) learn = tabular_learner(data, layers=[1000, 500], y_range=y_range, metrics=exp_rmspe) learn.lr_find() learn.fit_one_cycle(10, max_lr=0.01) learn.save('stage-1') learn.load('stage-1') learn.lr_find() learn.fit_one_cycle(5, max_lr=0.005) learn.save('stage-2') learn.lr_find() learn.fit_one_cycle(5, 0.0003) learn.save('stage-3') learn.lr_find() learn.recorder.plot()
code
18112246/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
18112246/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df.columns len(df.columns) df['BsmtHalfBath'].unique()
code
18112246/cell_16
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') df.columns len(df.columns) dep_var = 'SalePrice' cat_vars = ['MSSubClass', 'MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'Functional', 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive', 'PoolQC', 'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType', 'SaleCondition', 'BsmtQual', 'KitchenQual'] cont_vars = ['1stFlrSF', '2ndFlrSF', '3SsnPorch', 'BedroomAbvGr', 'EnclosedPorch', 'Fireplaces', 'FullBath', 'GarageYrBlt', 'GrLivArea', 'HalfBath', 'KitchenAbvGr', 'LotArea', 'LotFrontage', 'LowQualFinSF', 'MasVnrArea', 'OpenPorchSF', 'PoolArea', 'ScreenPorch', 'TotRmsAbvGrd', 'WoodDeckSF'] procs = [FillMissing, Categorify, Normalize] data = TabularList.from_df(df, cat_names=cat_vars, cont_names=cont_vars, procs=procs).split_by_rand_pct().label_from_df(cols=dep_var, label_cls=FloatList, log=True).add_test(TabularList.from_df(test_df, cat_names=cat_vars, cont_names=cont_vars)).databunch() max_log_y = np.log(np.max(df[dep_var]) * 1.2) y_range = torch.tensor([0, max_log_y], device=defaults.device) learn = tabular_learner(data, layers=[1000, 500], y_range=y_range, metrics=exp_rmspe) learn.lr_find() learn.recorder.plot()
code
18112246/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df.head()
code
18112246/cell_17
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') df.columns len(df.columns) dep_var = 'SalePrice' cat_vars = ['MSSubClass', 'MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'Functional', 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive', 'PoolQC', 'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType', 'SaleCondition', 'BsmtQual', 'KitchenQual'] cont_vars = ['1stFlrSF', '2ndFlrSF', '3SsnPorch', 'BedroomAbvGr', 'EnclosedPorch', 'Fireplaces', 'FullBath', 'GarageYrBlt', 'GrLivArea', 'HalfBath', 'KitchenAbvGr', 'LotArea', 'LotFrontage', 'LowQualFinSF', 'MasVnrArea', 'OpenPorchSF', 'PoolArea', 'ScreenPorch', 'TotRmsAbvGrd', 'WoodDeckSF'] procs = [FillMissing, Categorify, Normalize] data = TabularList.from_df(df, cat_names=cat_vars, cont_names=cont_vars, procs=procs).split_by_rand_pct().label_from_df(cols=dep_var, label_cls=FloatList, log=True).add_test(TabularList.from_df(test_df, cat_names=cat_vars, cont_names=cont_vars)).databunch() max_log_y = np.log(np.max(df[dep_var]) * 1.2) y_range = torch.tensor([0, max_log_y], device=defaults.device) learn = tabular_learner(data, layers=[1000, 500], y_range=y_range, metrics=exp_rmspe) learn.lr_find() learn.fit_one_cycle(10, max_lr=0.01)
code
18112246/cell_24
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') df.columns len(df.columns) dep_var = 'SalePrice' cat_vars = ['MSSubClass', 'MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'Functional', 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive', 'PoolQC', 'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType', 'SaleCondition', 'BsmtQual', 'KitchenQual'] cont_vars = ['1stFlrSF', '2ndFlrSF', '3SsnPorch', 'BedroomAbvGr', 'EnclosedPorch', 'Fireplaces', 'FullBath', 'GarageYrBlt', 'GrLivArea', 'HalfBath', 'KitchenAbvGr', 'LotArea', 'LotFrontage', 'LowQualFinSF', 'MasVnrArea', 'OpenPorchSF', 'PoolArea', 'ScreenPorch', 'TotRmsAbvGrd', 'WoodDeckSF'] procs = [FillMissing, Categorify, Normalize] data = TabularList.from_df(df, cat_names=cat_vars, cont_names=cont_vars, procs=procs).split_by_rand_pct().label_from_df(cols=dep_var, label_cls=FloatList, log=True).add_test(TabularList.from_df(test_df, cat_names=cat_vars, cont_names=cont_vars)).databunch() max_log_y = np.log(np.max(df[dep_var]) * 1.2) y_range = torch.tensor([0, max_log_y], device=defaults.device) learn = tabular_learner(data, layers=[1000, 500], y_range=y_range, metrics=exp_rmspe) learn.lr_find() learn.fit_one_cycle(10, max_lr=0.01) learn.save('stage-1') learn.load('stage-1') learn.lr_find() learn.fit_one_cycle(5, max_lr=0.005) learn.save('stage-2') learn.lr_find() learn.fit_one_cycle(5, 0.0003)
code
18112246/cell_27
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') df.columns len(df.columns) dep_var = 'SalePrice' cat_vars = ['MSSubClass', 'MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'Functional', 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive', 'PoolQC', 'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType', 'SaleCondition', 'BsmtQual', 'KitchenQual'] cont_vars = ['1stFlrSF', '2ndFlrSF', '3SsnPorch', 'BedroomAbvGr', 'EnclosedPorch', 'Fireplaces', 'FullBath', 'GarageYrBlt', 'GrLivArea', 'HalfBath', 'KitchenAbvGr', 'LotArea', 'LotFrontage', 'LowQualFinSF', 'MasVnrArea', 'OpenPorchSF', 'PoolArea', 'ScreenPorch', 'TotRmsAbvGrd', 'WoodDeckSF'] procs = [FillMissing, Categorify, Normalize] data = TabularList.from_df(df, cat_names=cat_vars, cont_names=cont_vars, procs=procs).split_by_rand_pct().label_from_df(cols=dep_var, label_cls=FloatList, log=True).add_test(TabularList.from_df(test_df, cat_names=cat_vars, cont_names=cont_vars)).databunch() max_log_y = np.log(np.max(df[dep_var]) * 1.2) y_range = torch.tensor([0, max_log_y], device=defaults.device) learn = tabular_learner(data, layers=[1000, 500], y_range=y_range, metrics=exp_rmspe) learn.lr_find() learn.fit_one_cycle(10, max_lr=0.01) learn.save('stage-1') learn.load('stage-1') learn.lr_find() learn.fit_one_cycle(5, max_lr=0.005) learn.save('stage-2') learn.lr_find() learn.fit_one_cycle(5, 0.0003) learn.save('stage-3') learn.lr_find() learn.fit_one_cycle(5, 0.001)
code
18112246/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df.columns
code
18146508/cell_21
[ "image_output_1.png" ]
slot = 1 for i in range(2, 102): slot += 1 slot = 1 for i in range(102, 202): slot += 1 # Distribution of target within each feature # Phân bố target theo từng biến def plot_feat_dist(df1, df2, label1, label2, feat): i = 0 sns.set_style('whitegrid') fig, ax = plt.subplots(10, 10, figsize=(30, 30)) for feat in feat: i += 1 plt.subplot(10, 10, i) sns.distplot(df1[feat], hist=False, label=label1) sns.distplot(df2[feat], hist=False, label=label2) plt.xlabel(feat) plt.show() train0 = train.loc[train.target == 0] train1 = train.loc[train.target == 1] feat = train.columns.values[2:102] feat = train.columns.values[102:202] def train_test_dist(agg): features = train.columns.values[2:202] sns.set_style('whitegrid') train_test_dist('kurtosis')
code
18146508/cell_13
[ "text_html_output_1.png" ]
slot = 1 for i in range(2, 102): slot += 1 slot = 1 for i in range(102, 202): slot += 1 # Distribution of target within each feature # Phân bố target theo từng biến def plot_feat_dist(df1, df2, label1, label2, feat): i = 0 sns.set_style('whitegrid') fig, ax = plt.subplots(10, 10, figsize=(30, 30)) for feat in feat: i += 1 plt.subplot(10, 10, i) sns.distplot(df1[feat], hist=False, label=label1) sns.distplot(df2[feat], hist=False, label=label2) plt.xlabel(feat) plt.show() train0 = train.loc[train.target == 0] train1 = train.loc[train.target == 1] feat = train.columns.values[2:102] plot_feat_dist(train0, train1, '0', '1', feat)
code
18146508/cell_9
[ "image_output_1.png" ]
slot = 1 plt.figure(figsize=(30, 30)) for i in range(2, 102): plt.subplot(10, 10, slot) train.iloc[:, i].hist() slot += 1
code
18146508/cell_4
[ "image_output_1.png" ]
train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv')
code
18146508/cell_23
[ "image_output_1.png" ]
slot = 1 for i in range(2, 102): slot += 1 slot = 1 for i in range(102, 202): slot += 1 # Distribution of target within each feature # Phân bố target theo từng biến def plot_feat_dist(df1, df2, label1, label2, feat): i = 0 sns.set_style('whitegrid') fig, ax = plt.subplots(10, 10, figsize=(30, 30)) for feat in feat: i += 1 plt.subplot(10, 10, i) sns.distplot(df1[feat], hist=False, label=label1) sns.distplot(df2[feat], hist=False, label=label2) plt.xlabel(feat) plt.show() train0 = train.loc[train.target == 0] train1 = train.loc[train.target == 1] feat = train.columns.values[2:102] feat = train.columns.values[102:202] def train_test_dist(agg): features = train.columns.values[2:202] sns.set_style('whitegrid') def train_dist(agg): t0 = train.loc[train['target'] == 0] t1 = train.loc[train['target'] == 1] features = train.columns.values[2:202] sns.set_style('whitegrid') train_dist('mean')
code
18146508/cell_20
[ "image_output_1.png" ]
slot = 1 for i in range(2, 102): slot += 1 slot = 1 for i in range(102, 202): slot += 1 # Distribution of target within each feature # Phân bố target theo từng biến def plot_feat_dist(df1, df2, label1, label2, feat): i = 0 sns.set_style('whitegrid') fig, ax = plt.subplots(10, 10, figsize=(30, 30)) for feat in feat: i += 1 plt.subplot(10, 10, i) sns.distplot(df1[feat], hist=False, label=label1) sns.distplot(df2[feat], hist=False, label=label2) plt.xlabel(feat) plt.show() train0 = train.loc[train.target == 0] train1 = train.loc[train.target == 1] feat = train.columns.values[2:102] feat = train.columns.values[102:202] def train_test_dist(agg): features = train.columns.values[2:202] sns.set_style('whitegrid') train_test_dist('skew')
code
18146508/cell_6
[ "image_output_1.png" ]
test.head()
code
18146508/cell_11
[ "text_html_output_1.png" ]
slot = 1 for i in range(2, 102): slot += 1 slot = 1 for i in range(102, 202): slot += 1 sns.countplot(train['target']) print(train.target.value_counts(normalize=True))
code
18146508/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
slot = 1 for i in range(2, 102): slot += 1 slot = 1 for i in range(102, 202): slot += 1 # Distribution of target within each feature # Phân bố target theo từng biến def plot_feat_dist(df1, df2, label1, label2, feat): i = 0 sns.set_style('whitegrid') fig, ax = plt.subplots(10, 10, figsize=(30, 30)) for feat in feat: i += 1 plt.subplot(10, 10, i) sns.distplot(df1[feat], hist=False, label=label1) sns.distplot(df2[feat], hist=False, label=label2) plt.xlabel(feat) plt.show() train0 = train.loc[train.target == 0] train1 = train.loc[train.target == 1] feat = train.columns.values[2:102] feat = train.columns.values[102:202] def train_test_dist(agg): features = train.columns.values[2:202] sns.set_style('whitegrid') train_test_dist('max')
code
18146508/cell_7
[ "image_output_1.png" ]
train.describe()
code
18146508/cell_18
[ "image_output_1.png" ]
slot = 1 for i in range(2, 102): slot += 1 slot = 1 for i in range(102, 202): slot += 1 # Distribution of target within each feature # Phân bố target theo từng biến def plot_feat_dist(df1, df2, label1, label2, feat): i = 0 sns.set_style('whitegrid') fig, ax = plt.subplots(10, 10, figsize=(30, 30)) for feat in feat: i += 1 plt.subplot(10, 10, i) sns.distplot(df1[feat], hist=False, label=label1) sns.distplot(df2[feat], hist=False, label=label2) plt.xlabel(feat) plt.show() train0 = train.loc[train.target == 0] train1 = train.loc[train.target == 1] feat = train.columns.values[2:102] feat = train.columns.values[102:202] def train_test_dist(agg): features = train.columns.values[2:202] sns.set_style('whitegrid') train_test_dist('min')
code
18146508/cell_8
[ "image_output_1.png" ]
test.describe()
code
18146508/cell_16
[ "text_html_output_1.png" ]
slot = 1 for i in range(2, 102): slot += 1 slot = 1 for i in range(102, 202): slot += 1 # Distribution of target within each feature # Phân bố target theo từng biến def plot_feat_dist(df1, df2, label1, label2, feat): i = 0 sns.set_style('whitegrid') fig, ax = plt.subplots(10, 10, figsize=(30, 30)) for feat in feat: i += 1 plt.subplot(10, 10, i) sns.distplot(df1[feat], hist=False, label=label1) sns.distplot(df2[feat], hist=False, label=label2) plt.xlabel(feat) plt.show() train0 = train.loc[train.target == 0] train1 = train.loc[train.target == 1] feat = train.columns.values[2:102] feat = train.columns.values[102:202] def train_test_dist(agg): features = train.columns.values[2:202] sns.set_style('whitegrid') train_test_dist('mean')
code
18146508/cell_17
[ "image_output_1.png" ]
slot = 1 for i in range(2, 102): slot += 1 slot = 1 for i in range(102, 202): slot += 1 # Distribution of target within each feature # Phân bố target theo từng biến def plot_feat_dist(df1, df2, label1, label2, feat): i = 0 sns.set_style('whitegrid') fig, ax = plt.subplots(10, 10, figsize=(30, 30)) for feat in feat: i += 1 plt.subplot(10, 10, i) sns.distplot(df1[feat], hist=False, label=label1) sns.distplot(df2[feat], hist=False, label=label2) plt.xlabel(feat) plt.show() train0 = train.loc[train.target == 0] train1 = train.loc[train.target == 1] feat = train.columns.values[2:102] feat = train.columns.values[102:202] def train_test_dist(agg): features = train.columns.values[2:202] sns.set_style('whitegrid') train_test_dist('std')
code
18146508/cell_24
[ "image_output_1.png" ]
slot = 1 for i in range(2, 102): slot += 1 slot = 1 for i in range(102, 202): slot += 1 # Distribution of target within each feature # Phân bố target theo từng biến def plot_feat_dist(df1, df2, label1, label2, feat): i = 0 sns.set_style('whitegrid') fig, ax = plt.subplots(10, 10, figsize=(30, 30)) for feat in feat: i += 1 plt.subplot(10, 10, i) sns.distplot(df1[feat], hist=False, label=label1) sns.distplot(df2[feat], hist=False, label=label2) plt.xlabel(feat) plt.show() train0 = train.loc[train.target == 0] train1 = train.loc[train.target == 1] feat = train.columns.values[2:102] feat = train.columns.values[102:202] def train_test_dist(agg): features = train.columns.values[2:202] sns.set_style('whitegrid') def train_dist(agg): t0 = train.loc[train['target'] == 0] t1 = train.loc[train['target'] == 1] features = train.columns.values[2:202] sns.set_style('whitegrid') train_dist('std')
code
18146508/cell_14
[ "text_html_output_1.png" ]
slot = 1 for i in range(2, 102): slot += 1 slot = 1 for i in range(102, 202): slot += 1 # Distribution of target within each feature # Phân bố target theo từng biến def plot_feat_dist(df1, df2, label1, label2, feat): i = 0 sns.set_style('whitegrid') fig, ax = plt.subplots(10, 10, figsize=(30, 30)) for feat in feat: i += 1 plt.subplot(10, 10, i) sns.distplot(df1[feat], hist=False, label=label1) sns.distplot(df2[feat], hist=False, label=label2) plt.xlabel(feat) plt.show() train0 = train.loc[train.target == 0] train1 = train.loc[train.target == 1] feat = train.columns.values[2:102] feat = train.columns.values[102:202] plot_feat_dist(train0, train1, '0', '1', feat)
code
18146508/cell_10
[ "text_plain_output_1.png" ]
slot = 1 for i in range(2, 102): slot += 1 slot = 1 plt.figure(figsize=(30, 30)) for i in range(102, 202): plt.subplot(10, 10, slot) train.iloc[:, i].hist() slot += 1
code
18146508/cell_5
[ "image_output_1.png" ]
train.head()
code
2026028/cell_21
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) def survival_stacked_bar(variable): Died = train[train['Survived'] == 0][variable].value_counts() / len(train['Survived'] == 0) Survived = train[train['Survived'] == 1][variable].value_counts() / len(train['Survived'] == 1) data = pd.DataFrame([Died, Survived]) data.index = ['Did not survived', 'Survived'] return survival_stacked_bar('Pclass')
code
2026028/cell_25
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) def survival_stacked_bar(variable): Died = train[train['Survived'] == 0][variable].value_counts() / len(train['Survived'] == 0) Survived = train[train['Survived'] == 1][variable].value_counts() / len(train['Survived'] == 1) data = pd.DataFrame([Died, Survived]) data.index = ['Did not survived', 'Survived'] return survival_stacked_bar('SibSp')
code
2026028/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv')
code
2026028/cell_56
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) labels = ('Cherbourg', 'Queenstown', 'Southampton') sizes = [sum(train['Embarked'] == 'C'), sum(train['Embarked'] == 'Q'), sum(train['Embarked'] == 'S')] colors = ['yellow', 'aqua', 'lime'] plt.axis('equal') f,ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train.corr(), annot=True, linewidths=0.5, fmt= '.2f',ax=ax) train.insert(value=train.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=12, column='Title') test.insert(value=test.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=11, column='Title') title_map = {'Capt': 'Officer', 'Col': 'Officer', 'Major': 'Officer', 'Jonkheer': 'Royalty', 'Don': 'Royalty', 'Sir': 'Royalty', 'Dr': 'Officer', 'Rev': 'Officer', 'the Countess': 'Royalty', 'Dona': 'Royalty', 'Mme': 'Mrs', 'Mlle': 'Miss', 'Ms': 'Mrs', 'Mr': 'Mr', 'Mrs': 'Mrs', 'Miss': 'Miss', 'Master': 'Master', 'Lady': 'Royalty'} train['Title'] = train.Title.map(title_map) test['Title'] = test.Title.map(title_map) test_set_1 = test.groupby(['Pclass', 'SibSp']) test_set_1_median = test_set_1.median() test_set_1_median for i in test.columns: print(i + ': ' + str(sum(test[i].isnull())) + ' missing values')
code
2026028/cell_34
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) labels = ('Cherbourg', 'Queenstown', 'Southampton') sizes = [sum(train['Embarked'] == 'C'), sum(train['Embarked'] == 'Q'), sum(train['Embarked'] == 'S')] colors = ['yellow', 'aqua', 'lime'] plt.axis('equal') def survival_stacked_bar(variable): Died = train[train['Survived'] == 0][variable].value_counts() / len(train['Survived'] == 0) Survived = train[train['Survived'] == 1][variable].value_counts() / len(train['Survived'] == 1) data = pd.DataFrame([Died, Survived]) data.index = ['Did not survived', 'Survived'] return f,ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train.corr(), annot=True, linewidths=0.5, fmt= '.2f',ax=ax) traintestdata = pd.concat([train, test]) traintestdata.shape
code
2026028/cell_23
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) def survival_stacked_bar(variable): Died = train[train['Survived'] == 0][variable].value_counts() / len(train['Survived'] == 0) Survived = train[train['Survived'] == 1][variable].value_counts() / len(train['Survived'] == 1) data = pd.DataFrame([Died, Survived]) data.index = ['Did not survived', 'Survived'] return survival_stacked_bar('Embarked')
code
2026028/cell_30
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) labels = ('Cherbourg', 'Queenstown', 'Southampton') sizes = [sum(train['Embarked'] == 'C'), sum(train['Embarked'] == 'Q'), sum(train['Embarked'] == 'S')] colors = ['yellow', 'aqua', 'lime'] plt.axis('equal') f, ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train.corr(), annot=True, linewidths=0.5, fmt='.2f', ax=ax)
code
2026028/cell_44
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) labels = ('Cherbourg', 'Queenstown', 'Southampton') sizes = [sum(train['Embarked'] == 'C'), sum(train['Embarked'] == 'Q'), sum(train['Embarked'] == 'S')] colors = ['yellow', 'aqua', 'lime'] plt.axis('equal') f,ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train.corr(), annot=True, linewidths=0.5, fmt= '.2f',ax=ax) train.insert(value=train.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=12, column='Title') test.insert(value=test.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=11, column='Title') title_map = {'Capt': 'Officer', 'Col': 'Officer', 'Major': 'Officer', 'Jonkheer': 'Royalty', 'Don': 'Royalty', 'Sir': 'Royalty', 'Dr': 'Officer', 'Rev': 'Officer', 'the Countess': 'Royalty', 'Dona': 'Royalty', 'Mme': 'Mrs', 'Mlle': 'Miss', 'Ms': 'Mrs', 'Mr': 'Mr', 'Mrs': 'Mrs', 'Miss': 'Miss', 'Master': 'Master', 'Lady': 'Royalty'} train['Title'] = train.Title.map(title_map) test['Title'] = test.Title.map(title_map) for i in test.columns: print(i + ': ' + str(sum(test[i].isnull())) + ' missing values')
code
2026028/cell_55
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) labels = ('Cherbourg', 'Queenstown', 'Southampton') sizes = [sum(train['Embarked'] == 'C'), sum(train['Embarked'] == 'Q'), sum(train['Embarked'] == 'S')] colors = ['yellow', 'aqua', 'lime'] plt.axis('equal') f,ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train.corr(), annot=True, linewidths=0.5, fmt= '.2f',ax=ax) train.insert(value=train.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=12, column='Title') test.insert(value=test.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=11, column='Title') title_map = {'Capt': 'Officer', 'Col': 'Officer', 'Major': 'Officer', 'Jonkheer': 'Royalty', 'Don': 'Royalty', 'Sir': 'Royalty', 'Dr': 'Officer', 'Rev': 'Officer', 'the Countess': 'Royalty', 'Dona': 'Royalty', 'Mme': 'Mrs', 'Mlle': 'Miss', 'Ms': 'Mrs', 'Mr': 'Mr', 'Mrs': 'Mrs', 'Miss': 'Miss', 'Master': 'Master', 'Lady': 'Royalty'} train['Title'] = train.Title.map(title_map) test['Title'] = test.Title.map(title_map) train_set_1 = train.groupby(['Pclass', 'SibSp']) train_set_1_median = train_set_1.median() train_set_1_median for i in train.columns: print(i + ': ' + str(sum(train[i].isnull())) + ' missing values')
code
2026028/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') gender_submission.head()
code
2026028/cell_39
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) labels = ('Cherbourg', 'Queenstown', 'Southampton') sizes = [sum(train['Embarked'] == 'C'), sum(train['Embarked'] == 'Q'), sum(train['Embarked'] == 'S')] colors = ['yellow', 'aqua', 'lime'] plt.axis('equal') f,ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train.corr(), annot=True, linewidths=0.5, fmt= '.2f',ax=ax) train.insert(value=train.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=12, column='Title') test.insert(value=test.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=11, column='Title')
code
2026028/cell_41
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) labels = ('Cherbourg', 'Queenstown', 'Southampton') sizes = [sum(train['Embarked'] == 'C'), sum(train['Embarked'] == 'Q'), sum(train['Embarked'] == 'S')] colors = ['yellow', 'aqua', 'lime'] plt.axis('equal') f,ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train.corr(), annot=True, linewidths=0.5, fmt= '.2f',ax=ax) train.insert(value=train.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=12, column='Title') test.insert(value=test.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=11, column='Title') title_map = {'Capt': 'Officer', 'Col': 'Officer', 'Major': 'Officer', 'Jonkheer': 'Royalty', 'Don': 'Royalty', 'Sir': 'Royalty', 'Dr': 'Officer', 'Rev': 'Officer', 'the Countess': 'Royalty', 'Dona': 'Royalty', 'Mme': 'Mrs', 'Mlle': 'Miss', 'Ms': 'Mrs', 'Mr': 'Mr', 'Mrs': 'Mrs', 'Miss': 'Miss', 'Master': 'Master', 'Lady': 'Royalty'} train['Title'] = train.Title.map(title_map) test['Title'] = test.Title.map(title_map)
code
2026028/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import scipy as sp import matplotlib as mpl import matplotlib.cm as cm import matplotlib.pyplot as plt import pandas as pd pd.set_option('display.width', 500) pd.set_option('display.max_columns', 100) pd.set_option('display.notebook_repr_html', True) import seaborn as sns sns.set(style='whitegrid') import warnings warnings.filterwarnings('ignore') from sklearn.linear_model import LinearRegression import statsmodels.formula.api as sm from sklearn.cross_validation import train_test_split
code
2026028/cell_54
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) labels = ('Cherbourg', 'Queenstown', 'Southampton') sizes = [sum(train['Embarked'] == 'C'), sum(train['Embarked'] == 'Q'), sum(train['Embarked'] == 'S')] colors = ['yellow', 'aqua', 'lime'] plt.axis('equal') f,ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train.corr(), annot=True, linewidths=0.5, fmt= '.2f',ax=ax) train.insert(value=train.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=12, column='Title') test.insert(value=test.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=11, column='Title') title_map = {'Capt': 'Officer', 'Col': 'Officer', 'Major': 'Officer', 'Jonkheer': 'Royalty', 'Don': 'Royalty', 'Sir': 'Royalty', 'Dr': 'Officer', 'Rev': 'Officer', 'the Countess': 'Royalty', 'Dona': 'Royalty', 'Mme': 'Mrs', 'Mlle': 'Miss', 'Ms': 'Mrs', 'Mr': 'Mr', 'Mrs': 'Mrs', 'Miss': 'Miss', 'Master': 'Master', 'Lady': 'Royalty'} train['Title'] = train.Title.map(title_map) test['Title'] = test.Title.map(title_map) train_set_1 = train.groupby(['Pclass', 'SibSp']) train_set_1_median = train_set_1.median() train_set_1_median test_set_1 = test.groupby(['Pclass', 'SibSp']) test_set_1_median = test_set_1.median() test_set_1_median train['Cabin'] = train['Cabin'].fillna('U') test['Cabin'] = test['Cabin'].fillna('U') train['Cabin'] = train['Cabin'].map(lambda x: x[0]) test['Cabin'] = test['Cabin'].map(lambda x: x[0])
code
2026028/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) train.info()
code
2026028/cell_60
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) labels = ('Cherbourg', 'Queenstown', 'Southampton') sizes = [sum(train['Embarked'] == 'C'), sum(train['Embarked'] == 'Q'), sum(train['Embarked'] == 'S')] colors = ['yellow', 'aqua', 'lime'] plt.axis('equal') f,ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train.corr(), annot=True, linewidths=0.5, fmt= '.2f',ax=ax) train.insert(value=train.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=12, column='Title') test.insert(value=test.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=11, column='Title') title_map = {'Capt': 'Officer', 'Col': 'Officer', 'Major': 'Officer', 'Jonkheer': 'Royalty', 'Don': 'Royalty', 'Sir': 'Royalty', 'Dr': 'Officer', 'Rev': 'Officer', 'the Countess': 'Royalty', 'Dona': 'Royalty', 'Mme': 'Mrs', 'Mlle': 'Miss', 'Ms': 'Mrs', 'Mr': 'Mr', 'Mrs': 'Mrs', 'Miss': 'Miss', 'Master': 'Master', 'Lady': 'Royalty'} train['Title'] = train.Title.map(title_map) test['Title'] = test.Title.map(title_map) test_set_1 = test.groupby(['Pclass', 'SibSp']) test_set_1_median = test_set_1.median() test_set_1_median test['Fare'] = test['Fare'].fillna(np.mean(test['Fare'])) for i in test.columns: print(i + ': ' + str(sum(test[i].isnull())) + ' missing values')
code
2026028/cell_19
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) def survival_stacked_bar(variable): Died = train[train['Survived'] == 0][variable].value_counts() / len(train['Survived'] == 0) Survived = train[train['Survived'] == 1][variable].value_counts() / len(train['Survived'] == 1) data = pd.DataFrame([Died, Survived]) data.index = ['Did not survived', 'Survived'] return survival_stacked_bar('Sex')
code
2026028/cell_50
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) labels = ('Cherbourg', 'Queenstown', 'Southampton') sizes = [sum(train['Embarked'] == 'C'), sum(train['Embarked'] == 'Q'), sum(train['Embarked'] == 'S')] colors = ['yellow', 'aqua', 'lime'] plt.axis('equal') f,ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train.corr(), annot=True, linewidths=0.5, fmt= '.2f',ax=ax) train.insert(value=train.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=12, column='Title') test.insert(value=test.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=11, column='Title') title_map = {'Capt': 'Officer', 'Col': 'Officer', 'Major': 'Officer', 'Jonkheer': 'Royalty', 'Don': 'Royalty', 'Sir': 'Royalty', 'Dr': 'Officer', 'Rev': 'Officer', 'the Countess': 'Royalty', 'Dona': 'Royalty', 'Mme': 'Mrs', 'Mlle': 'Miss', 'Ms': 'Mrs', 'Mr': 'Mr', 'Mrs': 'Mrs', 'Miss': 'Miss', 'Master': 'Master', 'Lady': 'Royalty'} train['Title'] = train.Title.map(title_map) test['Title'] = test.Title.map(title_map) train_set_1 = train.groupby(['Pclass', 'SibSp']) train_set_1_median = train_set_1.median() train_set_1_median for i in train.columns: print(i + ': ' + str(sum(train[i].isnull())) + ' missing values')
code
2026028/cell_49
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) labels = ('Cherbourg', 'Queenstown', 'Southampton') sizes = [sum(train['Embarked'] == 'C'), sum(train['Embarked'] == 'Q'), sum(train['Embarked'] == 'S')] colors = ['yellow', 'aqua', 'lime'] plt.axis('equal') f,ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train.corr(), annot=True, linewidths=0.5, fmt= '.2f',ax=ax) train.insert(value=train.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=12, column='Title') test.insert(value=test.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=11, column='Title') title_map = {'Capt': 'Officer', 'Col': 'Officer', 'Major': 'Officer', 'Jonkheer': 'Royalty', 'Don': 'Royalty', 'Sir': 'Royalty', 'Dr': 'Officer', 'Rev': 'Officer', 'the Countess': 'Royalty', 'Dona': 'Royalty', 'Mme': 'Mrs', 'Mlle': 'Miss', 'Ms': 'Mrs', 'Mr': 'Mr', 'Mrs': 'Mrs', 'Miss': 'Miss', 'Master': 'Master', 'Lady': 'Royalty'} train['Title'] = train.Title.map(title_map) test['Title'] = test.Title.map(title_map) train_set_1 = train.groupby(['Pclass', 'SibSp']) train_set_1_median = train_set_1.median() train_set_1_median test_set_1 = test.groupby(['Pclass', 'SibSp']) test_set_1_median = test_set_1.median() test_set_1_median def fill_age(dataset, dataset_med): for x in range(len(dataset)): if dataset['Pclass'][x] == 1: if dataset['SibSp'][x] == 0: return dataset_med.loc[1, 0]['Age'] elif dataset['SibSp'][x] == 1: return dataset_med.loc[1, 1]['Age'] elif dataset['SibSp'][x] == 2: return dataset_med.loc[1, 2]['Age'] elif dataset['SibSp'][x] == 3: return dataset_med.loc[1, 3]['Age'] elif dataset['Pclass'][x] == 2: if dataset['SibSp'][x] == 0: return dataset_med.loc[2, 0]['Age'] elif dataset['SibSp'][x] == 1: return dataset_med.loc[2, 1]['Age'] elif dataset['SibSp'][x] == 2: return dataset_med.loc[2, 2]['Age'] elif dataset['SibSp'][x] == 3: return dataset_med.loc[2, 3]['Age'] elif dataset['Pclass'][x] == 3: if dataset['SibSp'][x] == 0: return dataset_med.loc[3, 0]['Age'] elif dataset['SibSp'][x] == 1: return dataset_med.loc[3, 1]['Age'] elif dataset['SibSp'][x] == 2: return dataset_med.loc[3, 2]['Age'] elif dataset['SibSp'][x] == 3: return dataset_med.loc[3, 3]['Age'] elif dataset['SibSp'][x] == 4: return dataset_med.loc[3, 4]['Age'] elif dataset['SibSp'][x] == 5: return dataset_med.loc[3, 5]['Age'] elif dataset['SibSp'][x] == 8: return dataset_med.loc[3]['Age'].median() train['Age'] = train['Age'].fillna(fill_age(train, train_set_1_median)) test['Age'] = test['Age'].fillna(fill_age(test, test_set_1_median))
code
2026028/cell_51
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) labels = ('Cherbourg', 'Queenstown', 'Southampton') sizes = [sum(train['Embarked'] == 'C'), sum(train['Embarked'] == 'Q'), sum(train['Embarked'] == 'S')] colors = ['yellow', 'aqua', 'lime'] plt.axis('equal') f,ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train.corr(), annot=True, linewidths=0.5, fmt= '.2f',ax=ax) train.insert(value=train.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=12, column='Title') test.insert(value=test.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=11, column='Title') title_map = {'Capt': 'Officer', 'Col': 'Officer', 'Major': 'Officer', 'Jonkheer': 'Royalty', 'Don': 'Royalty', 'Sir': 'Royalty', 'Dr': 'Officer', 'Rev': 'Officer', 'the Countess': 'Royalty', 'Dona': 'Royalty', 'Mme': 'Mrs', 'Mlle': 'Miss', 'Ms': 'Mrs', 'Mr': 'Mr', 'Mrs': 'Mrs', 'Miss': 'Miss', 'Master': 'Master', 'Lady': 'Royalty'} train['Title'] = train.Title.map(title_map) test['Title'] = test.Title.map(title_map) test_set_1 = test.groupby(['Pclass', 'SibSp']) test_set_1_median = test_set_1.median() test_set_1_median for i in test.columns: print(i + ': ' + str(sum(test[i].isnull())) + ' missing values')
code
2026028/cell_58
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) labels = ('Cherbourg', 'Queenstown', 'Southampton') sizes = [sum(train['Embarked'] == 'C'), sum(train['Embarked'] == 'Q'), sum(train['Embarked'] == 'S')] colors = ['yellow', 'aqua', 'lime'] plt.axis('equal') f,ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train.corr(), annot=True, linewidths=0.5, fmt= '.2f',ax=ax) train.insert(value=train.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=12, column='Title') test.insert(value=test.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=11, column='Title') title_map = {'Capt': 'Officer', 'Col': 'Officer', 'Major': 'Officer', 'Jonkheer': 'Royalty', 'Don': 'Royalty', 'Sir': 'Royalty', 'Dr': 'Officer', 'Rev': 'Officer', 'the Countess': 'Royalty', 'Dona': 'Royalty', 'Mme': 'Mrs', 'Mlle': 'Miss', 'Ms': 'Mrs', 'Mr': 'Mr', 'Mrs': 'Mrs', 'Miss': 'Miss', 'Master': 'Master', 'Lady': 'Royalty'} train['Title'] = train.Title.map(title_map) test['Title'] = test.Title.map(title_map) train_set_1 = train.groupby(['Pclass', 'SibSp']) train_set_1_median = train_set_1.median() train_set_1_median train['Embarked'] = train['Embarked'].fillna('S') for i in train.columns: print(i + ': ' + str(sum(train[i].isnull())) + ' missing values')
code
2026028/cell_15
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) train['Sex'].value_counts().plot(kind='bar')
code
2026028/cell_16
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) labels = ('Cherbourg', 'Queenstown', 'Southampton') sizes = [sum(train['Embarked'] == 'C'), sum(train['Embarked'] == 'Q'), sum(train['Embarked'] == 'S')] colors = ['yellow', 'aqua', 'lime'] plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90) plt.axis('equal') plt.show()
code
2026028/cell_47
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) labels = ('Cherbourg', 'Queenstown', 'Southampton') sizes = [sum(train['Embarked'] == 'C'), sum(train['Embarked'] == 'Q'), sum(train['Embarked'] == 'S')] colors = ['yellow', 'aqua', 'lime'] plt.axis('equal') f,ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train.corr(), annot=True, linewidths=0.5, fmt= '.2f',ax=ax) train.insert(value=train.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=12, column='Title') test.insert(value=test.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=11, column='Title') title_map = {'Capt': 'Officer', 'Col': 'Officer', 'Major': 'Officer', 'Jonkheer': 'Royalty', 'Don': 'Royalty', 'Sir': 'Royalty', 'Dr': 'Officer', 'Rev': 'Officer', 'the Countess': 'Royalty', 'Dona': 'Royalty', 'Mme': 'Mrs', 'Mlle': 'Miss', 'Ms': 'Mrs', 'Mr': 'Mr', 'Mrs': 'Mrs', 'Miss': 'Miss', 'Master': 'Master', 'Lady': 'Royalty'} train['Title'] = train.Title.map(title_map) test['Title'] = test.Title.map(title_map) test_set_1 = test.groupby(['Pclass', 'SibSp']) test_set_1_median = test_set_1.median() test_set_1_median
code
2026028/cell_43
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) labels = ('Cherbourg', 'Queenstown', 'Southampton') sizes = [sum(train['Embarked'] == 'C'), sum(train['Embarked'] == 'Q'), sum(train['Embarked'] == 'S')] colors = ['yellow', 'aqua', 'lime'] plt.axis('equal') f,ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train.corr(), annot=True, linewidths=0.5, fmt= '.2f',ax=ax) train.insert(value=train.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=12, column='Title') test.insert(value=test.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=11, column='Title') title_map = {'Capt': 'Officer', 'Col': 'Officer', 'Major': 'Officer', 'Jonkheer': 'Royalty', 'Don': 'Royalty', 'Sir': 'Royalty', 'Dr': 'Officer', 'Rev': 'Officer', 'the Countess': 'Royalty', 'Dona': 'Royalty', 'Mme': 'Mrs', 'Mlle': 'Miss', 'Ms': 'Mrs', 'Mr': 'Mr', 'Mrs': 'Mrs', 'Miss': 'Miss', 'Master': 'Master', 'Lady': 'Royalty'} train['Title'] = train.Title.map(title_map) test['Title'] = test.Title.map(title_map) for i in train.columns: print(i + ': ' + str(sum(train[i].isnull())) + ' missing values')
code
2026028/cell_46
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) labels = ('Cherbourg', 'Queenstown', 'Southampton') sizes = [sum(train['Embarked'] == 'C'), sum(train['Embarked'] == 'Q'), sum(train['Embarked'] == 'S')] colors = ['yellow', 'aqua', 'lime'] plt.axis('equal') f,ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train.corr(), annot=True, linewidths=0.5, fmt= '.2f',ax=ax) train.insert(value=train.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=12, column='Title') test.insert(value=test.Name.map(lambda name: name.split(',')[1].split('.')[0].strip()), loc=11, column='Title') title_map = {'Capt': 'Officer', 'Col': 'Officer', 'Major': 'Officer', 'Jonkheer': 'Royalty', 'Don': 'Royalty', 'Sir': 'Royalty', 'Dr': 'Officer', 'Rev': 'Officer', 'the Countess': 'Royalty', 'Dona': 'Royalty', 'Mme': 'Mrs', 'Mlle': 'Miss', 'Ms': 'Mrs', 'Mr': 'Mr', 'Mrs': 'Mrs', 'Miss': 'Miss', 'Master': 'Master', 'Lady': 'Royalty'} train['Title'] = train.Title.map(title_map) test['Title'] = test.Title.map(title_map) train_set_1 = train.groupby(['Pclass', 'SibSp']) train_set_1_median = train_set_1.median() train_set_1_median
code
2026028/cell_14
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) train['Age'].hist(width=6)
code
2026028/cell_53
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) labels = ('Cherbourg', 'Queenstown', 'Southampton') sizes = [sum(train['Embarked'] == 'C'), sum(train['Embarked'] == 'Q'), sum(train['Embarked'] == 'S')] colors = ['yellow', 'aqua', 'lime'] plt.axis('equal') def survival_stacked_bar(variable): Died = train[train['Survived'] == 0][variable].value_counts() / len(train['Survived'] == 0) Survived = train[train['Survived'] == 1][variable].value_counts() / len(train['Survived'] == 1) data = pd.DataFrame([Died, Survived]) data.index = ['Did not survived', 'Survived'] return f,ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train.corr(), annot=True, linewidths=0.5, fmt= '.2f',ax=ax) traintestdata = pd.concat([train, test]) traintestdata.shape traintestdata.Cabin.unique()
code
2026028/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape)
code
2026028/cell_27
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) def survival_stacked_bar(variable): Died = train[train['Survived'] == 0][variable].value_counts() / len(train['Survived'] == 0) Survived = train[train['Survived'] == 1][variable].value_counts() / len(train['Survived'] == 1) data = pd.DataFrame([Died, Survived]) data.index = ['Did not survived', 'Survived'] return survival_stacked_bar('Parch')
code
2026028/cell_12
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) test.info()
code
2026028/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') train.tail()
code
2026028/cell_36
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/train.csv') test = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/test.csv') gender_submission = pd.read_csv('C:/Users/Peng/Documents/APS/Data-Analysis-Blog/Kaggle/Titanic/gender_submission.csv') (train.shape, test.shape) labels = ('Cherbourg', 'Queenstown', 'Southampton') sizes = [sum(train['Embarked'] == 'C'), sum(train['Embarked'] == 'Q'), sum(train['Embarked'] == 'S')] colors = ['yellow', 'aqua', 'lime'] plt.axis('equal') def survival_stacked_bar(variable): Died = train[train['Survived'] == 0][variable].value_counts() / len(train['Survived'] == 0) Survived = train[train['Survived'] == 1][variable].value_counts() / len(train['Survived'] == 1) data = pd.DataFrame([Died, Survived]) data.index = ['Did not survived', 'Survived'] return f,ax = plt.subplots(figsize=(10, 10)) sns.heatmap(train.corr(), annot=True, linewidths=0.5, fmt= '.2f',ax=ax) sex_map = {'male': 1, 'female': 0} train['Sex'] = train['Sex'].map(sex_map) test['Sex'] = test['Sex'].map(sex_map) survival_stacked_bar('Sex')
code
18112986/cell_13
[ "text_html_output_1.png" ]
from collections import Counter import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') IDtest = test['PassengerId'] def detect_outlier(df, n, features): outlier_indices = [] for col in features: Q1 = np.percentile(df[col].dropna(), 25) Q3 = np.percentile(df[col].dropna(), 75) IQR = Q3 - Q1 outlier_step = 1.5 * IQR outliers_list_col = df[(df[col] < Q1 - outlier_step) | (df[col] > Q3 + outlier_step)].index outlier_indices.extend(outliers_list_col) outlier_indices = Counter(outlier_indices) multiple_outliers = list((k for k, v in outlier_indices.items() if v > n)) return multiple_outliers outliers_to_drop = detect_outlier(train, 2, ['Age', 'SibSp', 'Parch', 'Fare']) train.loc[outliers_to_drop] train = train.drop(outliers_to_drop, axis=0).reset_index(drop=True) train.isnull().sum() train.dtypes train.describe()
code
18112986/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
from collections import Counter import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') IDtest = test['PassengerId'] def detect_outlier(df, n, features): outlier_indices = [] for col in features: Q1 = np.percentile(df[col].dropna(), 25) Q3 = np.percentile(df[col].dropna(), 75) IQR = Q3 - Q1 outlier_step = 1.5 * IQR outliers_list_col = df[(df[col] < Q1 - outlier_step) | (df[col] > Q3 + outlier_step)].index outlier_indices.extend(outliers_list_col) outlier_indices = Counter(outlier_indices) multiple_outliers = list((k for k, v in outlier_indices.items() if v > n)) return multiple_outliers outliers_to_drop = detect_outlier(train, 2, ['Age', 'SibSp', 'Parch', 'Fare']) train.loc[outliers_to_drop] train = train.drop(outliers_to_drop, axis=0).reset_index(drop=True) train_len = len(train) dataset = pd.concat(objs=[train, test], axis=0, sort=False).reset_index(drop=True) dataset = dataset.fillna(np.nan) dataset.isnull().sum()
code
18112986/cell_20
[ "image_output_1.png" ]
from collections import Counter import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') IDtest = test['PassengerId'] def detect_outlier(df, n, features): outlier_indices = [] for col in features: Q1 = np.percentile(df[col].dropna(), 25) Q3 = np.percentile(df[col].dropna(), 75) IQR = Q3 - Q1 outlier_step = 1.5 * IQR outliers_list_col = df[(df[col] < Q1 - outlier_step) | (df[col] > Q3 + outlier_step)].index outlier_indices.extend(outliers_list_col) outlier_indices = Counter(outlier_indices) multiple_outliers = list((k for k, v in outlier_indices.items() if v > n)) return multiple_outliers outliers_to_drop = detect_outlier(train, 2, ['Age', 'SibSp', 'Parch', 'Fare']) train.loc[outliers_to_drop] train = train.drop(outliers_to_drop, axis=0).reset_index(drop=True) train_len = len(train) dataset = pd.concat(objs=[train, test], axis=0, sort=False).reset_index(drop=True) dataset = dataset.fillna(np.nan) dataset.isnull().sum() dataset['Fare'].isnull().sum()
code
18112986/cell_11
[ "text_plain_output_1.png" ]
from collections import Counter import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') IDtest = test['PassengerId'] def detect_outlier(df, n, features): outlier_indices = [] for col in features: Q1 = np.percentile(df[col].dropna(), 25) Q3 = np.percentile(df[col].dropna(), 75) IQR = Q3 - Q1 outlier_step = 1.5 * IQR outliers_list_col = df[(df[col] < Q1 - outlier_step) | (df[col] > Q3 + outlier_step)].index outlier_indices.extend(outliers_list_col) outlier_indices = Counter(outlier_indices) multiple_outliers = list((k for k, v in outlier_indices.items() if v > n)) return multiple_outliers outliers_to_drop = detect_outlier(train, 2, ['Age', 'SibSp', 'Parch', 'Fare']) train.loc[outliers_to_drop] train = train.drop(outliers_to_drop, axis=0).reset_index(drop=True) train.isnull().sum() train.head()
code
18112986/cell_19
[ "image_output_1.png" ]
from collections import Counter import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') IDtest = test['PassengerId'] def detect_outlier(df, n, features): outlier_indices = [] for col in features: Q1 = np.percentile(df[col].dropna(), 25) Q3 = np.percentile(df[col].dropna(), 75) IQR = Q3 - Q1 outlier_step = 1.5 * IQR outliers_list_col = df[(df[col] < Q1 - outlier_step) | (df[col] > Q3 + outlier_step)].index outlier_indices.extend(outliers_list_col) outlier_indices = Counter(outlier_indices) multiple_outliers = list((k for k, v in outlier_indices.items() if v > n)) return multiple_outliers outliers_to_drop = detect_outlier(train, 2, ['Age', 'SibSp', 'Parch', 'Fare']) train.loc[outliers_to_drop] train = train.drop(outliers_to_drop, axis=0).reset_index(drop=True) train.isnull().sum() train.dtypes #correlation matrix between numerical values and Survived feature g = sns.heatmap(train[['Survived', 'SibSp', 'Parch', 'Age', 'Fare']].corr(), annot = True, fmt = ".2f", cmap = "coolwarm") #Explore SibSp feature vs Survived g = sns.catplot(x = 'SibSp', y = 'Survived', data = train, kind = 'bar', height = 6, palette = 'muted') #g.despine(left = True) g.set_ylabels("Survival Probability") #explore parch feature vs survived g = sns.catplot(x = 'Parch', y = 'Survived', data = train, height = 6, kind = 'bar', palette = 'muted') g = sns.FacetGrid(train, col='Survived') g = g.map(sns.distplot, 'Age') g = sns.kdeplot(train['Age'][(train['Survived'] == 0) & train['Age'].notnull()], color='r', shade=True) g = sns.kdeplot(train['Age'][(train['Survived'] == 1) & train['Age'].notnull()], color='b', shade=True) g.set_xlabel('Age') g.set_ylabel('Frequency') g.legend(['Not Survived', 'Survived'])
code
18112986/cell_1
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from collections import Counter from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, ExtraTreesClassifier, VotingClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.neural_network import MLPClassifier from sklearn.svm import SVC from sklearn.model_selection import GridSearchCV, cross_val_score, StratifiedKFold, learning_curve sns.set(style='white', context='notebook', palette='deep') import os print(os.listdir('../input'))
code
18112986/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
from collections import Counter import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') IDtest = test['PassengerId'] def detect_outlier(df, n, features): outlier_indices = [] for col in features: Q1 = np.percentile(df[col].dropna(), 25) Q3 = np.percentile(df[col].dropna(), 75) IQR = Q3 - Q1 outlier_step = 1.5 * IQR outliers_list_col = df[(df[col] < Q1 - outlier_step) | (df[col] > Q3 + outlier_step)].index outlier_indices.extend(outliers_list_col) outlier_indices = Counter(outlier_indices) multiple_outliers = list((k for k, v in outlier_indices.items() if v > n)) return multiple_outliers outliers_to_drop = detect_outlier(train, 2, ['Age', 'SibSp', 'Parch', 'Fare']) train.loc[outliers_to_drop] train = train.drop(outliers_to_drop, axis=0).reset_index(drop=True) train.isnull().sum() train.dtypes #correlation matrix between numerical values and Survived feature g = sns.heatmap(train[['Survived', 'SibSp', 'Parch', 'Age', 'Fare']].corr(), annot = True, fmt = ".2f", cmap = "coolwarm") #Explore SibSp feature vs Survived g = sns.catplot(x = 'SibSp', y = 'Survived', data = train, kind = 'bar', height = 6, palette = 'muted') #g.despine(left = True) g.set_ylabels("Survival Probability") #explore parch feature vs survived g = sns.catplot(x = 'Parch', y = 'Survived', data = train, height = 6, kind = 'bar', palette = 'muted') g = sns.FacetGrid(train, col='Survived') g = g.map(sns.distplot, 'Age')
code
18112986/cell_15
[ "text_plain_output_1.png" ]
from collections import Counter import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') IDtest = test['PassengerId'] def detect_outlier(df, n, features): outlier_indices = [] for col in features: Q1 = np.percentile(df[col].dropna(), 25) Q3 = np.percentile(df[col].dropna(), 75) IQR = Q3 - Q1 outlier_step = 1.5 * IQR outliers_list_col = df[(df[col] < Q1 - outlier_step) | (df[col] > Q3 + outlier_step)].index outlier_indices.extend(outliers_list_col) outlier_indices = Counter(outlier_indices) multiple_outliers = list((k for k, v in outlier_indices.items() if v > n)) return multiple_outliers outliers_to_drop = detect_outlier(train, 2, ['Age', 'SibSp', 'Parch', 'Fare']) train.loc[outliers_to_drop] train = train.drop(outliers_to_drop, axis=0).reset_index(drop=True) train.isnull().sum() train.dtypes g = sns.heatmap(train[['Survived', 'SibSp', 'Parch', 'Age', 'Fare']].corr(), annot=True, fmt='.2f', cmap='coolwarm')
code
18112986/cell_16
[ "text_html_output_1.png" ]
from collections import Counter import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') IDtest = test['PassengerId'] def detect_outlier(df, n, features): outlier_indices = [] for col in features: Q1 = np.percentile(df[col].dropna(), 25) Q3 = np.percentile(df[col].dropna(), 75) IQR = Q3 - Q1 outlier_step = 1.5 * IQR outliers_list_col = df[(df[col] < Q1 - outlier_step) | (df[col] > Q3 + outlier_step)].index outlier_indices.extend(outliers_list_col) outlier_indices = Counter(outlier_indices) multiple_outliers = list((k for k, v in outlier_indices.items() if v > n)) return multiple_outliers outliers_to_drop = detect_outlier(train, 2, ['Age', 'SibSp', 'Parch', 'Fare']) train.loc[outliers_to_drop] train = train.drop(outliers_to_drop, axis=0).reset_index(drop=True) train.isnull().sum() train.dtypes #correlation matrix between numerical values and Survived feature g = sns.heatmap(train[['Survived', 'SibSp', 'Parch', 'Age', 'Fare']].corr(), annot = True, fmt = ".2f", cmap = "coolwarm") g = sns.catplot(x='SibSp', y='Survived', data=train, kind='bar', height=6, palette='muted') g.set_ylabels('Survival Probability')
code
18112986/cell_17
[ "image_output_1.png" ]
from collections import Counter import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') IDtest = test['PassengerId'] def detect_outlier(df, n, features): outlier_indices = [] for col in features: Q1 = np.percentile(df[col].dropna(), 25) Q3 = np.percentile(df[col].dropna(), 75) IQR = Q3 - Q1 outlier_step = 1.5 * IQR outliers_list_col = df[(df[col] < Q1 - outlier_step) | (df[col] > Q3 + outlier_step)].index outlier_indices.extend(outliers_list_col) outlier_indices = Counter(outlier_indices) multiple_outliers = list((k for k, v in outlier_indices.items() if v > n)) return multiple_outliers outliers_to_drop = detect_outlier(train, 2, ['Age', 'SibSp', 'Parch', 'Fare']) train.loc[outliers_to_drop] train = train.drop(outliers_to_drop, axis=0).reset_index(drop=True) train.isnull().sum() train.dtypes #correlation matrix between numerical values and Survived feature g = sns.heatmap(train[['Survived', 'SibSp', 'Parch', 'Age', 'Fare']].corr(), annot = True, fmt = ".2f", cmap = "coolwarm") #Explore SibSp feature vs Survived g = sns.catplot(x = 'SibSp', y = 'Survived', data = train, kind = 'bar', height = 6, palette = 'muted') #g.despine(left = True) g.set_ylabels("Survival Probability") g = sns.catplot(x='Parch', y='Survived', data=train, height=6, kind='bar', palette='muted')
code
18112986/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
from collections import Counter import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') IDtest = test['PassengerId'] def detect_outlier(df, n, features): outlier_indices = [] for col in features: Q1 = np.percentile(df[col].dropna(), 25) Q3 = np.percentile(df[col].dropna(), 75) IQR = Q3 - Q1 outlier_step = 1.5 * IQR outliers_list_col = df[(df[col] < Q1 - outlier_step) | (df[col] > Q3 + outlier_step)].index outlier_indices.extend(outliers_list_col) outlier_indices = Counter(outlier_indices) multiple_outliers = list((k for k, v in outlier_indices.items() if v > n)) return multiple_outliers outliers_to_drop = detect_outlier(train, 2, ['Age', 'SibSp', 'Parch', 'Fare']) train.loc[outliers_to_drop] train = train.drop(outliers_to_drop, axis=0).reset_index(drop=True) train_len = len(train) dataset = pd.concat(objs=[train, test], axis=0, sort=False).reset_index(drop=True) dataset = dataset.fillna(np.nan) dataset.isnull().sum() train.isnull().sum() train.dtypes #correlation matrix between numerical values and Survived feature g = sns.heatmap(train[['Survived', 'SibSp', 'Parch', 'Age', 'Fare']].corr(), annot = True, fmt = ".2f", cmap = "coolwarm") #Explore SibSp feature vs Survived g = sns.catplot(x = 'SibSp', y = 'Survived', data = train, kind = 'bar', height = 6, palette = 'muted') #g.despine(left = True) g.set_ylabels("Survival Probability") #explore parch feature vs survived g = sns.catplot(x = 'Parch', y = 'Survived', data = train, height = 6, kind = 'bar', palette = 'muted') g = sns.FacetGrid(train, col='Survived') g = g.map(sns.distplot, 'Age') #explore age distribution g = sns.kdeplot(train['Age'][(train['Survived']==0)&(train['Age'].notnull())], color = 'r', shade = True) g = sns.kdeplot(train['Age'][(train['Survived']==1)&(train['Age'].notnull())], color = 'b', shade = True) g.set_xlabel("Age") g.set_ylabel("Frequency") g.legend(["Not Survived", "Survived"]) g = sns.distplot(dataset['Fare'], color='m', label='skewness: %2f' % dataset['Fare'].skew()) g.legend(loc='best')
code