path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
2025748/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2025748/cell_7
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) housing = pd.read_csv('../input/housing.csv') from sklearn.model_selection import train_test_split train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42) print(len(train_set), 'train +', len(test_set), 'test')
code
2025748/cell_8
[ "text_plain_output_1.png" ]
from sklearn.model_selection import StratifiedShuffleSplit import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) housing = pd.read_csv('../input/housing.csv') housing['income_cat'] = np.ceil(housing['median_income'] / 1.5) housing['income_cat'].where(housing['income_cat'] < 5, 5.0, inplace=True) from sklearn.model_selection import StratifiedShuffleSplit split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42) for train_index, test_index in split.split(housing, housing['income_cat']): strat_train_set = housing.loc[train_index] strat_test_set = housing.loc[test_index] strat_train_set.head()
code
2025748/cell_16
[ "text_plain_output_1.png" ]
from sklearn.model_selection import StratifiedShuffleSplit import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) housing = pd.read_csv('../input/housing.csv') housing['income_cat'] = np.ceil(housing['median_income'] / 1.5) housing['income_cat'].where(housing['income_cat'] < 5, 5.0, inplace=True) from sklearn.model_selection import StratifiedShuffleSplit split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42) for train_index, test_index in split.split(housing, housing['income_cat']): strat_train_set = housing.loc[train_index] strat_test_set = housing.loc[test_index] housing = strat_train_set.copy() corr_matrix = housing.corr() corr_matrix['median_house_value'].sort_values(ascending=False) housing['rooms_per_household'] = housing['total_rooms'] / housing['households'] housing['bedrooms_per_room'] = housing['total_bedrooms'] / housing['total_rooms'] housing['population_per_household'] = housing['population'] / housing['households'] corr_matrix = housing.corr() corr_matrix['median_house_value'].sort_values(ascending=False) housing = strat_train_set.drop('median_house_value', axis=1) housing_labels = strat_train_set['median_house_value'].copy() median = housing['total_bedrooms'].median() housing['total_bedrooms'].fillna(median) housing.info() print(median)
code
2025748/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) housing = pd.read_csv('../input/housing.csv') housing.info()
code
2025748/cell_14
[ "image_output_1.png" ]
from sklearn.model_selection import StratifiedShuffleSplit import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) housing = pd.read_csv('../input/housing.csv') housing['income_cat'] = np.ceil(housing['median_income'] / 1.5) housing['income_cat'].where(housing['income_cat'] < 5, 5.0, inplace=True) from sklearn.model_selection import StratifiedShuffleSplit split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42) for train_index, test_index in split.split(housing, housing['income_cat']): strat_train_set = housing.loc[train_index] strat_test_set = housing.loc[test_index] housing = strat_train_set.copy() corr_matrix = housing.corr() corr_matrix['median_house_value'].sort_values(ascending=False) housing['rooms_per_household'] = housing['total_rooms'] / housing['households'] housing['bedrooms_per_room'] = housing['total_bedrooms'] / housing['total_rooms'] housing['population_per_household'] = housing['population'] / housing['households'] corr_matrix = housing.corr() corr_matrix['median_house_value'].sort_values(ascending=False)
code
2025748/cell_10
[ "text_html_output_1.png" ]
from sklearn.model_selection import StratifiedShuffleSplit import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) housing = pd.read_csv('../input/housing.csv') housing['income_cat'] = np.ceil(housing['median_income'] / 1.5) housing['income_cat'].where(housing['income_cat'] < 5, 5.0, inplace=True) from sklearn.model_selection import StratifiedShuffleSplit split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42) for train_index, test_index in split.split(housing, housing['income_cat']): strat_train_set = housing.loc[train_index] strat_test_set = housing.loc[test_index] housing = strat_train_set.copy() housing.plot(kind='scatter', x='longitude', y='latitude', alpha=0.4, s=housing['population'] / 100, label='population', c='median_house_value', cmap=plt.get_cmap('jet'), colorbar=True) plt.legend()
code
2025748/cell_12
[ "text_plain_output_1.png" ]
from pandas.tools.plotting import scatter_matrix from sklearn.model_selection import StratifiedShuffleSplit import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) housing = pd.read_csv('../input/housing.csv') housing['income_cat'] = np.ceil(housing['median_income'] / 1.5) housing['income_cat'].where(housing['income_cat'] < 5, 5.0, inplace=True) from sklearn.model_selection import StratifiedShuffleSplit split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42) for train_index, test_index in split.split(housing, housing['income_cat']): strat_train_set = housing.loc[train_index] strat_test_set = housing.loc[test_index] housing = strat_train_set.copy() corr_matrix = housing.corr() corr_matrix['median_house_value'].sort_values(ascending=False) from pandas.tools.plotting import scatter_matrix attributes = ['median_house_value', 'median_income', 'total_rooms', 'housing_median_age'] scatter_matrix(housing[attributes], figsize=(12, 8))
code
2025748/cell_5
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) housing = pd.read_csv('../input/housing.csv') housing.describe()
code
327301/cell_6
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) titanic_df['Age'].groupby(titanic_df['Survived']).mean()
code
327301/cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import matplotlib.pyplot as plt from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
327301/cell_3
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) print('Number of records in titanic_df= {}'.format(len(titanic_df))) print('Number of records in test_df = {}'.format(len(test_df))) print(list(titanic_df.columns.values))
code
327301/cell_5
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) titanic_df = pd.read_csv('../input/train.csv', dtype={'Age': np.float64}) test_df = pd.read_csv('../input/test.csv', dtype={'Age': np.float64}) pd.crosstab(index=titanic_df['Survived'], columns=titanic_df['Sex'])
code
34118808/cell_9
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/titanic/train.csv') train_df.head().T test_df = pd.read_csv('/kaggle/input/titanic/test.csv') test_df.head().T train_df.head().T train_df = train_df.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test_df = test_df.drop(['Name', 'Ticket'], axis=1) train_df.isnull().sum()
code
34118808/cell_4
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/titanic/train.csv') train_df.head().T train_df.head().T
code
34118808/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/titanic/train.csv') train_df.head().T test_df = pd.read_csv('/kaggle/input/titanic/test.csv') test_df.head().T test_df.describe(include='all')
code
34118808/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/titanic/train.csv') train_df.head().T
code
34118808/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/titanic/train.csv') train_df.head().T test_df = pd.read_csv('/kaggle/input/titanic/test.csv') test_df.head().T train_df.head().T train_df = train_df.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test_df = test_df.drop(['Name', 'Ticket'], axis=1) train_df.isnull().sum() test_df.isnull().sum() # Embarked variable # 2 missing data in the train Data set .. So fill it with Mode. train_df["Embarked"].fillna(train_df["Embarked"].mode()[0], inplace=True) # check to verify the null is gone in the embarked train_df.isnull().sum() # Plot the embarked and survival relation fig, (axis1,axis2,axis3) = plt.subplots(1,3,figsize=(15,5)) sns.countplot(x='Embarked', data=train_df , ax = axis1 ) sns.countplot(x='Survived', hue="Embarked", data=train_df, order=[1,0] , ax = axis2) combined = train_df[["Embarked", "Survived"]].groupby(['Embarked'],as_index=False).mean() sns.barplot(x='Embarked', y='Survived', data=combined,order=['S','C','Q'],ax=axis3) # convert the category variable to numeric by dummy variable method train_df1 = pd.get_dummies(train_df, prefix ='Embark', columns = ['Embarked']) test_df1 = pd.get_dummies(test_df, prefix ='Embark', columns = ['Embarked']) train_df1.head().T test_df1['Fare'].fillna(test_df1['Fare'].median(), inplace=True) #age # age has missing values in the train and test . replaced with the median test_df1["Age"].fillna(test_df1["Age"].median(), inplace=True) train_df1["Age"].fillna(train_df1["Age"].median(), inplace=True) # check if the NAN has removed with median test_df1.isnull().sum() # convert from float to int train_df1['Age'] = train_df1['Age'].astype(int) test_df1['Age'] = test_df1['Age'].astype(int) #plot for aged and survived # average survived passengers by age fig, axis1 = plt.subplots(1,1,figsize=(18,4)) average_age = train_df1[["Age", "Survived"]].groupby(['Age'],as_index=False).mean() sns.barplot(x='Age', y='Survived', data=average_age) train_df1.drop('Cabin', axis=1, inplace=True) test_df1.drop('Cabin', axis=1, inplace=True) train_df1.head().T train_df1['Family'] = train_df1['Parch'] + train_df1['SibSp'] train_df1['Family'].loc[train_df1['Family'] > 0] = 1 train_df1['Family'].loc[train_df1['Family'] == 0] = 0 test_df1['Family'] = test_df1['Parch'] + test_df['SibSp'] test_df1['Family'].loc[test_df1['Family'] > 0] = 1 test_df1['Family'].loc[test_df1['Family'] == 0] = 0 train_df1 = train_df1.drop(['SibSp', 'Parch'], axis=1) test_df1 = test_df1.drop(['SibSp', 'Parch'], axis=1) fig, (axis1, axis2) = plt.subplots(1, 2, sharex=True, figsize=(10, 5)) sns.countplot(x='Family', data=train_df1, order=[1, 0], ax=axis1) family_perc = train_df1[['Family', 'Survived']].groupby(['Family'], as_index=False).mean() sns.barplot(x='Family', y='Survived', data=family_perc, order=[1, 0], ax=axis2) axis1.set_xticklabels(['With Family', 'Alone'], rotation=0)
code
34118808/cell_1
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC, LinearSVC from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB
code
34118808/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/titanic/train.csv') train_df.head().T test_df = pd.read_csv('/kaggle/input/titanic/test.csv') test_df.head().T train_df.head().T train_df = train_df.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test_df = test_df.drop(['Name', 'Ticket'], axis=1) train_df.isnull().sum() test_df.isnull().sum() # Embarked variable # 2 missing data in the train Data set .. So fill it with Mode. train_df["Embarked"].fillna(train_df["Embarked"].mode()[0], inplace=True) # check to verify the null is gone in the embarked train_df.isnull().sum() # Plot the embarked and survival relation fig, (axis1,axis2,axis3) = plt.subplots(1,3,figsize=(15,5)) sns.countplot(x='Embarked', data=train_df , ax = axis1 ) sns.countplot(x='Survived', hue="Embarked", data=train_df, order=[1,0] , ax = axis2) combined = train_df[["Embarked", "Survived"]].groupby(['Embarked'],as_index=False).mean() sns.barplot(x='Embarked', y='Survived', data=combined,order=['S','C','Q'],ax=axis3) # convert the category variable to numeric by dummy variable method train_df1 = pd.get_dummies(train_df, prefix ='Embark', columns = ['Embarked']) test_df1 = pd.get_dummies(test_df, prefix ='Embark', columns = ['Embarked']) train_df1.head().T test_df1['Fare'].fillna(test_df1['Fare'].median(), inplace=True) #age # age has missing values in the train and test . replaced with the median test_df1["Age"].fillna(test_df1["Age"].median(), inplace=True) train_df1["Age"].fillna(train_df1["Age"].median(), inplace=True) # check if the NAN has removed with median test_df1.isnull().sum() # convert from float to int train_df1['Age'] = train_df1['Age'].astype(int) test_df1['Age'] = test_df1['Age'].astype(int) #plot for aged and survived # average survived passengers by age fig, axis1 = plt.subplots(1,1,figsize=(18,4)) average_age = train_df1[["Age", "Survived"]].groupby(['Age'],as_index=False).mean() sns.barplot(x='Age', y='Survived', data=average_age) train_df1.drop('Cabin', axis=1, inplace=True) test_df1.drop('Cabin', axis=1, inplace=True) train_df1.head().T
code
34118808/cell_8
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/titanic/train.csv') train_df.head().T test_df = pd.read_csv('/kaggle/input/titanic/test.csv') test_df.head().T train_df.head().T train_df = train_df.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test_df = test_df.drop(['Name', 'Ticket'], axis=1) train_df.info()
code
34118808/cell_15
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/titanic/train.csv') train_df.head().T test_df = pd.read_csv('/kaggle/input/titanic/test.csv') test_df.head().T train_df.head().T train_df = train_df.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test_df = test_df.drop(['Name', 'Ticket'], axis=1) train_df.isnull().sum() test_df.isnull().sum() # Embarked variable # 2 missing data in the train Data set .. So fill it with Mode. train_df["Embarked"].fillna(train_df["Embarked"].mode()[0], inplace=True) # check to verify the null is gone in the embarked train_df.isnull().sum() # Plot the embarked and survival relation fig, (axis1,axis2,axis3) = plt.subplots(1,3,figsize=(15,5)) sns.countplot(x='Embarked', data=train_df , ax = axis1 ) sns.countplot(x='Survived', hue="Embarked", data=train_df, order=[1,0] , ax = axis2) combined = train_df[["Embarked", "Survived"]].groupby(['Embarked'],as_index=False).mean() sns.barplot(x='Embarked', y='Survived', data=combined,order=['S','C','Q'],ax=axis3) # convert the category variable to numeric by dummy variable method train_df1 = pd.get_dummies(train_df, prefix ='Embark', columns = ['Embarked']) test_df1 = pd.get_dummies(test_df, prefix ='Embark', columns = ['Embarked']) train_df1.head().T sns.boxplot(x='Fare', data=train_df1) test_df1['Fare'].fillna(test_df1['Fare'].median(), inplace=True)
code
34118808/cell_16
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/titanic/train.csv') train_df.head().T test_df = pd.read_csv('/kaggle/input/titanic/test.csv') test_df.head().T train_df.head().T train_df = train_df.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test_df = test_df.drop(['Name', 'Ticket'], axis=1) train_df.isnull().sum() test_df.isnull().sum() # Embarked variable # 2 missing data in the train Data set .. So fill it with Mode. train_df["Embarked"].fillna(train_df["Embarked"].mode()[0], inplace=True) # check to verify the null is gone in the embarked train_df.isnull().sum() # Plot the embarked and survival relation fig, (axis1,axis2,axis3) = plt.subplots(1,3,figsize=(15,5)) sns.countplot(x='Embarked', data=train_df , ax = axis1 ) sns.countplot(x='Survived', hue="Embarked", data=train_df, order=[1,0] , ax = axis2) combined = train_df[["Embarked", "Survived"]].groupby(['Embarked'],as_index=False).mean() sns.barplot(x='Embarked', y='Survived', data=combined,order=['S','C','Q'],ax=axis3) # convert the category variable to numeric by dummy variable method train_df1 = pd.get_dummies(train_df, prefix ='Embark', columns = ['Embarked']) test_df1 = pd.get_dummies(test_df, prefix ='Embark', columns = ['Embarked']) train_df1.head().T test_df1['Fare'].fillna(test_df1['Fare'].median(), inplace=True) test_df1['Age'].fillna(test_df1['Age'].median(), inplace=True) train_df1['Age'].fillna(train_df1['Age'].median(), inplace=True) test_df1.isnull().sum() train_df1['Age'] = train_df1['Age'].astype(int) test_df1['Age'] = test_df1['Age'].astype(int) fig, axis1 = plt.subplots(1, 1, figsize=(18, 4)) average_age = train_df1[['Age', 'Survived']].groupby(['Age'], as_index=False).mean() sns.barplot(x='Age', y='Survived', data=average_age)
code
34118808/cell_3
[ "text_html_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/titanic/train.csv') train_df.head().T test_df = pd.read_csv('/kaggle/input/titanic/test.csv') test_df.head().T
code
34118808/cell_14
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_df = pd.read_csv('/kaggle/input/titanic/train.csv') train_df.head().T test_df = pd.read_csv('/kaggle/input/titanic/test.csv') test_df.head().T train_df.head().T train_df = train_df.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test_df = test_df.drop(['Name', 'Ticket'], axis=1) train_df.isnull().sum() test_df.isnull().sum() train_df['Embarked'].fillna(train_df['Embarked'].mode()[0], inplace=True) train_df.isnull().sum() fig, (axis1, axis2, axis3) = plt.subplots(1, 3, figsize=(15, 5)) sns.countplot(x='Embarked', data=train_df, ax=axis1) sns.countplot(x='Survived', hue='Embarked', data=train_df, order=[1, 0], ax=axis2) combined = train_df[['Embarked', 'Survived']].groupby(['Embarked'], as_index=False).mean() sns.barplot(x='Embarked', y='Survived', data=combined, order=['S', 'C', 'Q'], ax=axis3) train_df1 = pd.get_dummies(train_df, prefix='Embark', columns=['Embarked']) test_df1 = pd.get_dummies(test_df, prefix='Embark', columns=['Embarked']) train_df1.head().T
code
34118808/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/titanic/train.csv') train_df.head().T test_df = pd.read_csv('/kaggle/input/titanic/test.csv') test_df.head().T train_df.head().T train_df = train_df.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test_df = test_df.drop(['Name', 'Ticket'], axis=1) test_df.isnull().sum()
code
34118808/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/titanic/train.csv') train_df.head().T test_df = pd.read_csv('/kaggle/input/titanic/test.csv') test_df.head().T train_df.head().T train_df = train_df.drop(['PassengerId', 'Name', 'Ticket'], axis=1) test_df = test_df.drop(['Name', 'Ticket'], axis=1) train_df.isnull().sum() train_df.hist(figsize=(12, 8)) plt.show()
code
34118808/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_df = pd.read_csv('/kaggle/input/titanic/train.csv') train_df.head().T train_df.head().T train_df.describe(include='all')
code
18103228/cell_2
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import os train_data = pd.read_csv('../input/train.csv') test_data = pd.read_csv('../input/test.csv') Survials_By_Age = train_data.groupby('Age')['Survived'].sum().reset_index() sns.lineplot(y='Survived', x='Age', data=Survials_By_Age) Survials_By_Age_Segment = [] age_difference = 5 max_age = 70 for i in range(max_age // age_difference): s = Survials_By_Age.loc['Age', i * age_difference:(i + 1) * age_difference]['Survived'].sum() Survials_By_Age_Segment.append(s) print(Survials_By_Age_Segment)
code
18103228/cell_1
[ "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import seaborn as sns import os print(os.listdir('../input')) train_data = pd.read_csv('../input/train.csv') test_data = pd.read_csv('../input/test.csv')
code
18103228/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import os train_data = pd.read_csv('../input/train.csv') test_data = pd.read_csv('../input/test.csv') Survials_By_Age = train_data.groupby('Age')['Survived'].sum().reset_index() Survials_By_Age_Segment = [] age_difference = 5 max_age = 70 for i in range(max_age // age_difference): s = Survials_By_Age.loc['Age', i * age_difference:(i + 1) * age_difference]['Survived'].sum() Survials_By_Age_Segment.append(s) boolean_Survivals = train_data['Survived'] == 1 Survivals = train_data[boolean_Survivals] sns.barplot(y='title', x='average_rating', data=ayu)
code
90119831/cell_21
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import pandas as pd train = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', index_col='row_id', parse_dates=['time']) test = pd.read_csv('../input/tabular-playground-series-mar-2022/test.csv', index_col='row_id', parse_dates=['time']) sub = pd.read_csv('../input/tabular-playground-series-mar-2022/sample_submission.csv') missing_values_train = train.isna().any().sum() missing_values_test = test.isna().any().sum() duplicates_train = train.duplicated().sum() duplicates_test = test.duplicated().sum() def add_road_feature(df): df['road'] = df['x'].astype(str) + df['y'].astype(str) + df['direction'] return df.drop(['x', 'y', 'direction'], axis=1) train = add_road_feature(train) test = add_road_feature(test) le = LabelEncoder() train['road'] = le.fit_transform(train['road']) test['road'] = le.transform(test['road']) group = ['road', 'weekday', 'hour', 'minute'] congestion = train.groupby(group).congestion def add_feature(feature, feature_name): feature = feature.rename(columns={'congestion': feature_name}) return (train.merge(feature, on=group, how='left'), test.merge(feature, on=group, how='left')) train, test = add_feature(pd.DataFrame(congestion.max().astype(int)).reset_index(), 'min') train, test = add_feature(pd.DataFrame(congestion.max().astype(int)).reset_index(), 'max') train, test = add_feature(pd.DataFrame(congestion.median().astype(int)).reset_index(), 'median') train.drop(['month', 'day', 'weekday', 'hour', 'minute', 'time'], axis=1, inplace=True) test.drop(['month', 'day', 'weekday', 'hour', 'minute', 'time'], axis=1, inplace=True) train.head()
code
90119831/cell_13
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', index_col='row_id', parse_dates=['time']) test = pd.read_csv('../input/tabular-playground-series-mar-2022/test.csv', index_col='row_id', parse_dates=['time']) sub = pd.read_csv('../input/tabular-playground-series-mar-2022/sample_submission.csv') missing_values_train = train.isna().any().sum() missing_values_test = test.isna().any().sum() duplicates_train = train.duplicated().sum() print('Duplicates in train data: {0}'.format(duplicates_train)) duplicates_test = test.duplicated().sum() print('Duplicates in test data: {0}'.format(duplicates_test))
code
90119831/cell_9
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', index_col='row_id', parse_dates=['time']) test = pd.read_csv('../input/tabular-playground-series-mar-2022/test.csv', index_col='row_id', parse_dates=['time']) sub = pd.read_csv('../input/tabular-playground-series-mar-2022/sample_submission.csv') print('Train data shape:', train.shape) print('Test data shape:', test.shape)
code
90119831/cell_23
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd train = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', index_col='row_id', parse_dates=['time']) test = pd.read_csv('../input/tabular-playground-series-mar-2022/test.csv', index_col='row_id', parse_dates=['time']) sub = pd.read_csv('../input/tabular-playground-series-mar-2022/sample_submission.csv') missing_values_train = train.isna().any().sum() missing_values_test = test.isna().any().sum() duplicates_train = train.duplicated().sum() duplicates_test = test.duplicated().sum() def add_road_feature(df): df['road'] = df['x'].astype(str) + df['y'].astype(str) + df['direction'] return df.drop(['x', 'y', 'direction'], axis=1) train = add_road_feature(train) test = add_road_feature(test) le = LabelEncoder() train['road'] = le.fit_transform(train['road']) test['road'] = le.transform(test['road']) group = ['road', 'weekday', 'hour', 'minute'] congestion = train.groupby(group).congestion def add_feature(feature, feature_name): feature = feature.rename(columns={'congestion': feature_name}) return (train.merge(feature, on=group, how='left'), test.merge(feature, on=group, how='left')) train, test = add_feature(pd.DataFrame(congestion.max().astype(int)).reset_index(), 'min') train, test = add_feature(pd.DataFrame(congestion.max().astype(int)).reset_index(), 'max') train, test = add_feature(pd.DataFrame(congestion.median().astype(int)).reset_index(), 'median') train.drop(['month', 'day', 'weekday', 'hour', 'minute', 'time'], axis=1, inplace=True) test.drop(['month', 'day', 'weekday', 'hour', 'minute', 'time'], axis=1, inplace=True) def reduce_mem_usage(df, verbose=True): numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] start_mem = df.memory_usage().sum() / 1024 ** 2 for col in df.columns: col_type = df[col].dtypes if col_type in numerics: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) elif c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) else: df[col] = df[col].astype('category') end_mem = df.memory_usage().sum() / 1024 ** 2 if verbose: print('Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)'.format(end_mem, 100 * (start_mem - end_mem) / start_mem)) return df reduce_mem_usage(train) reduce_mem_usage(test)
code
90119831/cell_6
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', index_col='row_id', parse_dates=['time']) test = pd.read_csv('../input/tabular-playground-series-mar-2022/test.csv', index_col='row_id', parse_dates=['time']) sub = pd.read_csv('../input/tabular-playground-series-mar-2022/sample_submission.csv') train.describe()
code
90119831/cell_11
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', index_col='row_id', parse_dates=['time']) test = pd.read_csv('../input/tabular-playground-series-mar-2022/test.csv', index_col='row_id', parse_dates=['time']) sub = pd.read_csv('../input/tabular-playground-series-mar-2022/sample_submission.csv') missing_values_train = train.isna().any().sum() print('Missing values in train data: {0}'.format(missing_values_train[missing_values_train > 0])) missing_values_test = test.isna().any().sum() print('Missing values in test data: {0}'.format(missing_values_test[missing_values_test > 0]))
code
90119831/cell_7
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', index_col='row_id', parse_dates=['time']) test = pd.read_csv('../input/tabular-playground-series-mar-2022/test.csv', index_col='row_id', parse_dates=['time']) sub = pd.read_csv('../input/tabular-playground-series-mar-2022/sample_submission.csv') print('Columns: \n{0}'.format(list(train.columns)))
code
90119831/cell_27
[ "text_plain_output_1.png" ]
from catboost import CatBoostRegressor from sklearn.preprocessing import LabelEncoder import pandas as pd train = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', index_col='row_id', parse_dates=['time']) test = pd.read_csv('../input/tabular-playground-series-mar-2022/test.csv', index_col='row_id', parse_dates=['time']) sub = pd.read_csv('../input/tabular-playground-series-mar-2022/sample_submission.csv') missing_values_train = train.isna().any().sum() missing_values_test = test.isna().any().sum() duplicates_train = train.duplicated().sum() duplicates_test = test.duplicated().sum() def add_road_feature(df): df['road'] = df['x'].astype(str) + df['y'].astype(str) + df['direction'] return df.drop(['x', 'y', 'direction'], axis=1) train = add_road_feature(train) test = add_road_feature(test) le = LabelEncoder() train['road'] = le.fit_transform(train['road']) test['road'] = le.transform(test['road']) group = ['road', 'weekday', 'hour', 'minute'] congestion = train.groupby(group).congestion def add_feature(feature, feature_name): feature = feature.rename(columns={'congestion': feature_name}) return (train.merge(feature, on=group, how='left'), test.merge(feature, on=group, how='left')) train, test = add_feature(pd.DataFrame(congestion.max().astype(int)).reset_index(), 'min') train, test = add_feature(pd.DataFrame(congestion.max().astype(int)).reset_index(), 'max') train, test = add_feature(pd.DataFrame(congestion.median().astype(int)).reset_index(), 'median') train.drop(['month', 'day', 'weekday', 'hour', 'minute', 'time'], axis=1, inplace=True) test.drop(['month', 'day', 'weekday', 'hour', 'minute', 'time'], axis=1, inplace=True) y = train.loc[:, 'congestion'] X = train.drop('congestion', axis=1) test_X = test model = CatBoostRegressor(silent=True) model.fit(X, y) train_predictions = pd.Series(model.predict(X), index=X.index) test_predictions = pd.Series(model.predict(test_X), index=test_X.index) sub['congestion'] = test_predictions.round().astype(int) sub.to_csv('submission.csv', index=False) sub
code
90119831/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/tabular-playground-series-mar-2022/train.csv', index_col='row_id', parse_dates=['time']) test = pd.read_csv('../input/tabular-playground-series-mar-2022/test.csv', index_col='row_id', parse_dates=['time']) sub = pd.read_csv('../input/tabular-playground-series-mar-2022/sample_submission.csv') train.head()
code
333806/cell_25
[ "text_plain_output_1.png" ]
from sklearn.decomposition import NMF from sklearn.feature_extraction.text import CountVectorizer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re about_data = pd.read_csv('../input/AboutIsis.csv', encoding='ISO-8859-1') fanboy_data = pd.read_csv('../input/IsisFanboy.csv', encoding='ISO-8859-1') about_data.keys() fanboy_space_split = [str(i).split() for i in fanboy_data['tweets']] fanboy_handles = [j for i in fanboy_space_split for j in i if '@' in j] about_space_split = [str(i).split() for i in about_data['tweets']] about_handles = [j for i in about_space_split for j in i if '@' in j] import re fanboy_text = [re.sub('[^a-zA-Z]', ' ', j).lower() for i in fanboy_space_split for j in i if not '@' in j and (not '#' in j)] about_text = [re.sub('[^a-zA-Z]', ' ', j).lower() for i in about_space_split for j in i if not '@' in j and (not '#' in j)] from sklearn.feature_extraction.text import CountVectorizer fc_vectorizer = CountVectorizer(stop_words='english', max_features=1000) fanboy_counts = fc_vectorizer.fit_transform(fanboy_text) ac_vectorizer = CountVectorizer(stop_words='english', max_features=1000) about_counts = ac_vectorizer.fit_transform(about_text) def print_top_words(model, feature_names, n_top_words): pass from sklearn.decomposition import NMF n_samples = 2000 n_features = 1000 n_topics = 10 n_top_words = 20 fanboy_nmf = NMF(n_components=n_topics, random_state=1, alpha=0.1, l1_ratio=0.5).fit(fanboy_counts) fanboy_feature_names = fc_vectorizer.get_feature_names() print_top_words(fanboy_nmf, fanboy_feature_names, n_top_words)
code
333806/cell_18
[ "text_plain_output_1.png" ]
import matplotlib import networkx as nx import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) about_data = pd.read_csv('../input/AboutIsis.csv', encoding='ISO-8859-1') fanboy_data = pd.read_csv('../input/IsisFanboy.csv', encoding='ISO-8859-1') about_data.keys() fanboy_space_split = [str(i).split() for i in fanboy_data['tweets']] fanboy_handles = [j for i in fanboy_space_split for j in i if '@' in j] about_space_split = [str(i).split() for i in about_data['tweets']] about_handles = [j for i in about_space_split for j in i if '@' in j] fanboy_edges = [(k, j[1:]) for k, i in zip(fanboy_data['username'], fanboy_space_split) for j in i if '@' in j] about_edges = [(k, j[1:]) for k, i in zip(about_data['username'], about_space_split) for j in i if '@' in j] about_graph = nx.Graph() fanboy_graph = nx.Graph() about_graph.add_edges_from(about_edges) fanboy_graph.add_edges_from(fanboy_edges) fanboy_cc = nx.connected_component_subgraphs(fanboy_graph) bet_cen = nx.betweenness_centrality([i for i in fanboy_cc][0]) fanboy_cc = nx.connected_component_subgraphs(fanboy_graph) clo_cen = nx.closeness_centrality([i for i in fanboy_cc][0]) fig, ax = matplotlib.pyplot.subplots() ax.scatter(list(clo_cen.values()), list(bet_cen.values())) ax.set_ylim(0.04, 0.3) ax.set_xlim(0.32, 0.45) ax.set_xlabel('Closeness Centrality') ax.set_ylabel('Betweenness Centrality') ax.set_yscale('log') for i, txt in enumerate(list(clo_cen.keys())): ax.annotate(txt, (list(clo_cen.values())[i], list(bet_cen.values())[i]))
code
333806/cell_28
[ "text_plain_output_1.png" ]
from sklearn.decomposition import NMF from sklearn.feature_extraction.text import CountVectorizer import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re about_data = pd.read_csv('../input/AboutIsis.csv', encoding='ISO-8859-1') fanboy_data = pd.read_csv('../input/IsisFanboy.csv', encoding='ISO-8859-1') about_data.keys() fanboy_space_split = [str(i).split() for i in fanboy_data['tweets']] fanboy_handles = [j for i in fanboy_space_split for j in i if '@' in j] about_space_split = [str(i).split() for i in about_data['tweets']] about_handles = [j for i in about_space_split for j in i if '@' in j] import re fanboy_text = [re.sub('[^a-zA-Z]', ' ', j).lower() for i in fanboy_space_split for j in i if not '@' in j and (not '#' in j)] about_text = [re.sub('[^a-zA-Z]', ' ', j).lower() for i in about_space_split for j in i if not '@' in j and (not '#' in j)] from sklearn.feature_extraction.text import CountVectorizer fc_vectorizer = CountVectorizer(stop_words='english', max_features=1000) fanboy_counts = fc_vectorizer.fit_transform(fanboy_text) ac_vectorizer = CountVectorizer(stop_words='english', max_features=1000) about_counts = ac_vectorizer.fit_transform(about_text) def print_top_words(model, feature_names, n_top_words): pass from sklearn.decomposition import NMF n_samples = 2000 n_features = 1000 n_topics = 10 n_top_words = 20 fanboy_nmf = NMF(n_components=n_topics, random_state=1, alpha=0.1, l1_ratio=0.5).fit(fanboy_counts) about_nmf = NMF(n_components=n_topics, random_state=1, alpha=0.1, l1_ratio=0.5).fit(about_counts) about_feature_names = ac_vectorizer.get_feature_names() print_top_words(about_nmf, about_feature_names, n_top_words)
code
333806/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) about_data = pd.read_csv('../input/AboutIsis.csv', encoding='ISO-8859-1') fanboy_data = pd.read_csv('../input/IsisFanboy.csv', encoding='ISO-8859-1') about_data.keys() fanboy_space_split = [str(i).split() for i in fanboy_data['tweets']] fanboy_handles = [j for i in fanboy_space_split for j in i if '@' in j] about_space_split = [str(i).split() for i in about_data['tweets']] about_handles = [j for i in about_space_split for j in i if '@' in j] print(len(set(fanboy_data['username'])) / len(set(fanboy_handles)), len(set(about_data['username'])) / len(set(about_handles)))
code
333806/cell_3
[ "image_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd import seaborn as sns import matplotlib from matplotlib import * from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
333806/cell_14
[ "text_plain_output_1.png" ]
import networkx as nx import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) about_data = pd.read_csv('../input/AboutIsis.csv', encoding='ISO-8859-1') fanboy_data = pd.read_csv('../input/IsisFanboy.csv', encoding='ISO-8859-1') about_data.keys() fanboy_space_split = [str(i).split() for i in fanboy_data['tweets']] fanboy_handles = [j for i in fanboy_space_split for j in i if '@' in j] about_space_split = [str(i).split() for i in about_data['tweets']] about_handles = [j for i in about_space_split for j in i if '@' in j] fanboy_edges = [(k, j[1:]) for k, i in zip(fanboy_data['username'], fanboy_space_split) for j in i if '@' in j] about_edges = [(k, j[1:]) for k, i in zip(about_data['username'], about_space_split) for j in i if '@' in j] about_graph = nx.Graph() fanboy_graph = nx.Graph() about_graph.add_edges_from(about_edges) fanboy_graph.add_edges_from(fanboy_edges) print(1 / (float(fanboy_graph.order()) / float(fanboy_graph.size()))) print(1 / (float(about_graph.order()) / float(about_graph.size())))
code
333806/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) about_data = pd.read_csv('../input/AboutIsis.csv', encoding='ISO-8859-1') fanboy_data = pd.read_csv('../input/IsisFanboy.csv', encoding='ISO-8859-1') about_data.keys()
code
72063178/cell_21
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_district = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') df_district.isnull().sum() df_district.columns df_district.shape df_district.dtypes df_district = df_district.drop_duplicates() plt.figure(figsize=(12, 10)) plt.xticks(rotation=60) sns.countplot(df_district.state, edgecolor=sns.color_palette('dark', 3))
code
72063178/cell_25
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_district = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') df_district.isnull().sum() df_district.columns df_district.shape df_district.dtypes df_district = df_district.drop_duplicates() plt.xticks(rotation=60) fig, ax = plt.subplots(figsize=(12, 6)) fig.suptitle('Locale Distribution', size = 20) explode = (0.04, 0.04, 0.04, 0.04) labels = list(df_district.locale.value_counts().index) sizes = df_district.locale.value_counts().values ax.pie(sizes, explode=explode,startangle=60, labels=labels, shadow= True) ax.add_artist(plt.Circle((0,0),0.4,fc='white')) plt.show() sns.countplot(data=df_district, x='pct_free/reduced') plt.show()
code
72063178/cell_23
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_district = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') df_district.isnull().sum() df_district.columns df_district.shape df_district.dtypes df_district = df_district.drop_duplicates() plt.xticks(rotation=60) fig, ax = plt.subplots(figsize=(12, 6)) fig.suptitle('Locale Distribution', size=20) explode = (0.04, 0.04, 0.04, 0.04) labels = list(df_district.locale.value_counts().index) sizes = df_district.locale.value_counts().values ax.pie(sizes, explode=explode, startangle=60, labels=labels, shadow=True) ax.add_artist(plt.Circle((0, 0), 0.4, fc='white')) plt.show()
code
72063178/cell_28
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_district = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') df_district.isnull().sum() df_district.columns df_district.shape df_district.dtypes df_district = df_district.drop_duplicates() plt.xticks(rotation=60) fig, ax = plt.subplots(figsize=(12, 6)) fig.suptitle('Locale Distribution', size = 20) explode = (0.04, 0.04, 0.04, 0.04) labels = list(df_district.locale.value_counts().index) sizes = df_district.locale.value_counts().values ax.pie(sizes, explode=explode,startangle=60, labels=labels, shadow= True) ax.add_artist(plt.Circle((0,0),0.4,fc='white')) plt.show() df_products = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv') c1 = c2 = c3 = 0 for s in df_products['Sector(s)']: if not pd.isnull(s): s = s.split(';') for i in range(len(s)): sub = s[i].strip() if sub == 'PreK-12': c1 += 1 if sub == 'Higher Ed': c2 += 1 if sub == 'Corporate': c3 += 1 fig, ax = plt.subplots(figsize=(16, 8)) fig.suptitle('Sector Distribution', size=20) explode = (0.05, 0.05, 0.05) labels = ['PreK-12', 'Higher Ed', 'Corporate'] sizes = [c1, c2, c3] ax.pie(sizes, explode=explode, startangle=60, labels=labels) ax.add_artist(plt.Circle((0, 0), 0.4, fc='white')) plt.show()
code
72063178/cell_8
[ "image_output_1.png" ]
import pandas as pd df_district = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') df_district.head(5)
code
72063178/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd df_district = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') df_district.isnull().sum() df_district.columns df_district.shape df_district.dtypes
code
72063178/cell_24
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df_district = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') df_district.isnull().sum() df_district.columns df_district.shape df_district.dtypes df_district = df_district.drop_duplicates() plt.xticks(rotation=60) fig, ax = plt.subplots(figsize=(12, 6)) fig.suptitle('Locale Distribution', size = 20) explode = (0.04, 0.04, 0.04, 0.04) labels = list(df_district.locale.value_counts().index) sizes = df_district.locale.value_counts().values ax.pie(sizes, explode=explode,startangle=60, labels=labels, shadow= True) ax.add_artist(plt.Circle((0,0),0.4,fc='white')) plt.show() sns.countplot(data=df_district, x='pct_black/hispanic') plt.show()
code
72063178/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd df_district = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') df_district.isnull().sum() df_district.columns df_district.shape
code
72063178/cell_10
[ "text_html_output_1.png" ]
import pandas as pd df_district = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') df_district.isnull().sum()
code
72063178/cell_27
[ "image_output_1.png" ]
import pandas as pd df_district = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') df_products = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv') df_products.head(5)
code
72063178/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd df_district = pd.read_csv('../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv') df_district.isnull().sum() df_district.columns
code
129006184/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
import warnings import torch import matplotlib.pyplot as plt import numpy as np import torchvision from torchvision import datasets, transforms import torch.nn as nn import torch.optim as optim import seaborn as sns import warnings warnings.filterwarnings('ignore')
code
129006184/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import mlflow get_ipython().system_raw('mlflow ui --port 5000 &') mlflow.pytorch.autolog()
code
129006184/cell_8
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_1.png" ]
from pyngrok import ngrok from pyngrok import ngrok from getpass import getpass ngrok.kill() NGROK_AUTH_TOKEN = '2Padn9VzXvPy7nJXe6eAUTR3Dbd_6cXCwQeLNLwZDCWL5ypKs' ngrok.set_auth_token(NGROK_AUTH_TOKEN) ngrok_tunnel = ngrok.connect(addr='5000', proto='http', bind_tls=True) print('MLflow Tracking UI:', ngrok_tunnel.public_url)
code
129006184/cell_3
[ "text_plain_output_1.png" ]
# Install the requiered packages to run MLFlow !pip install mlflow --quiet !pip install pyngrok --quiet
code
90116628/cell_3
[ "text_plain_output_1.png" ]
from bs4 import BeautifulSoup import requests webpage_response = requests.get('https://bank.gov.ua/ua/markets/exchangerates') webpage = webpage_response.content soup = BeautifulSoup(webpage, 'html.parser') soup.table
code
90116628/cell_5
[ "text_plain_output_1.png" ]
from bs4 import BeautifulSoup import pandas as pd import requests webpage_response = requests.get('https://bank.gov.ua/ua/markets/exchangerates') webpage = webpage_response.content soup = BeautifulSoup(webpage, 'html.parser') soup.table k = soup.find_all(attrs={'data-label': 'Офіційний курс'}) t1 = [] for i in k: m = i.string t1.append(float(m.replace(',', '.'))) k = soup.find_all(attrs={'data-label': 'Код літерний'}) t2 = [] for i in k: t2.append(i.string) t = {'ccy': t2, 'value': t1} import pandas as pd df = pd.DataFrame(data=t) print(df)
code
2037081/cell_9
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def sigmoid(z): return 1.0 / (1 + np.exp(-z)) def z(theta, x): assert theta.shape[1] == 1 assert theta.shape[0] == x.shape[1] return np.dot(x, theta) a = np.array([[1, 2], [3, 4]]) b = np.array([[4, 1], [2, 2]]) a = np.array([1, 1]) b = np.array([2, 3]) def hypothesis(theta, x): return sigmoid(z(theta, x)) def cost(theta, x, y): assert x.shape[1] == theta.shape[0] assert x.shape[0] == y.shape[0] assert y.shape[1] == 1 assert theta.shape[1] == 1 h = hypothesis(theta, x) cost = -1 / len(x) * np.sum(np.dot(y.T, np.log(h)) + np.dot((1 - y).T, np.log(1 - h))) return cost def gradient_descent(theta, x, y, learning_rate): h = hypothesis(theta, x) theta = theta - learning_rate / len(x) * np.dot(x.T, h - y) return theta def minimize(theta, x, y, iterations, learning_rate): costs = [] for _ in range(iterations): theta = gradient_descent(theta, x, y, learning_rate) costs.append(cost(theta, x, y)) return (theta, costs) mushroom_data = pd.read_csv('../input/mushrooms.csv').dropna() mushroom_x = pd.get_dummies(mushroom_data.drop('class', axis=1)) mushroom_x['bias'] = 1 mushroom_x = mushroom_x.values mushroom_y = (np.atleast_2d(mushroom_data['class']).T == 'p').astype(int) x_train, x_test, y_train, y_test = train_test_split(mushroom_x, mushroom_y, train_size=0.85, test_size=0.15) print('x_train, y_train') print(x_train.shape, y_train.shape) candidate = np.atleast_2d([np.random.uniform(-1, 1, 118)]).T theta, costs = minimize(candidate, x_train, y_train, 1200, 1.2) plt.plot(range(len(costs)), costs) plt.show() print(costs[-1]) predictions = x_test.dot(theta) > 0 len(list(filter(lambda x: x[0] == x[1], np.dstack((predictions, y_test))[:, 0]))) / len(predictions)
code
2037081/cell_4
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra def sigmoid(z): return 1.0 / (1 + np.exp(-z)) def z(theta, x): assert theta.shape[1] == 1 assert theta.shape[0] == x.shape[1] return np.dot(x, theta) a = np.array([[1, 2], [3, 4]]) b = np.array([[4, 1], [2, 2]]) print('a.T*b is:', np.dot(a.T, b)) print('a*b.T is:', np.dot(a, b.T)) a = np.array([1, 1]) b = np.array([2, 3]) print(a.shape) print(b.T.shape) print('a*b is: ', np.dot(a, b.T))
code
2037081/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split
code
121149831/cell_9
[ "image_output_1.png" ]
from sklearn.compose import ColumnTransformer from sklearn.datasets import fetch_openml from sklearn.ensemble import RandomForestClassifier from sklearn.impute import SimpleImputer from sklearn.inspection import permutation_importance from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import OrdinalEncoder import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split X, y = fetch_openml('titanic', version=1, as_frame=True, return_X_y=True) rng = np.random.RandomState(seed=42) X['random_cat'] = rng.randint(3, size=X.shape[0]) X['random_num'] = rng.randn(X.shape[0]) categorical_columns = ['pclass', 'sex', 'embarked', 'random_cat'] numerical_columns = ['age', 'sibsp', 'parch', 'fare', 'random_num'] X = X[categorical_columns + numerical_columns] X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42) from sklearn.ensemble import RandomForestClassifier from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.preprocessing import OrdinalEncoder categorical_encoder = OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1) numerical_pipe = SimpleImputer(strategy='mean') preprocessing = ColumnTransformer([('cat', categorical_encoder, categorical_columns), ('num', numerical_pipe, numerical_columns)], verbose_feature_names_out=True) rf = Pipeline([('preprocess', preprocessing), ('classifier', RandomForestClassifier(random_state=42))]) rf.fit(X_train, y_train) feature_names = categorical_columns + numerical_columns mdi_importances = pd.Series(rf[-1].feature_importances_, index=feature_names).sort_values(ascending=True) ax = mdi_importances.plot.barh() ax.figure.tight_layout() from sklearn.inspection import permutation_importance result = permutation_importance(rf, X_test, y_test, n_repeats=10, random_state=42, n_jobs=2) sorted_importances_idx = result.importances_mean.argsort() importances = pd.DataFrame(result.importances[sorted_importances_idx].T, columns=X.columns[sorted_importances_idx]) ax = importances.plot.box(vert=False, whis=10) ax.set_title('Permutation Importances (test set)') ax.axvline(x=0, color='k', linestyle='--') ax.set_xlabel('Decrease in accuracy score') ax.figure.tight_layout()
code
121149831/cell_4
[ "text_plain_output_1.png" ]
from sklearn.compose import ColumnTransformer from sklearn.datasets import fetch_openml from sklearn.ensemble import RandomForestClassifier from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import OrdinalEncoder import numpy as np # linear algebra from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split X, y = fetch_openml('titanic', version=1, as_frame=True, return_X_y=True) rng = np.random.RandomState(seed=42) X['random_cat'] = rng.randint(3, size=X.shape[0]) X['random_num'] = rng.randn(X.shape[0]) categorical_columns = ['pclass', 'sex', 'embarked', 'random_cat'] numerical_columns = ['age', 'sibsp', 'parch', 'fare', 'random_num'] X = X[categorical_columns + numerical_columns] X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42) from sklearn.ensemble import RandomForestClassifier from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.preprocessing import OrdinalEncoder categorical_encoder = OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1) numerical_pipe = SimpleImputer(strategy='mean') preprocessing = ColumnTransformer([('cat', categorical_encoder, categorical_columns), ('num', numerical_pipe, numerical_columns)], verbose_feature_names_out=True) rf = Pipeline([('preprocess', preprocessing), ('classifier', RandomForestClassifier(random_state=42))]) rf.fit(X_train, y_train)
code
121149831/cell_6
[ "text_plain_output_1.png" ]
from sklearn.compose import ColumnTransformer from sklearn.datasets import fetch_openml from sklearn.ensemble import RandomForestClassifier from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import OrdinalEncoder import numpy as np # linear algebra from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split X, y = fetch_openml('titanic', version=1, as_frame=True, return_X_y=True) rng = np.random.RandomState(seed=42) X['random_cat'] = rng.randint(3, size=X.shape[0]) X['random_num'] = rng.randn(X.shape[0]) categorical_columns = ['pclass', 'sex', 'embarked', 'random_cat'] numerical_columns = ['age', 'sibsp', 'parch', 'fare', 'random_num'] X = X[categorical_columns + numerical_columns] X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42) from sklearn.ensemble import RandomForestClassifier from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.preprocessing import OrdinalEncoder categorical_encoder = OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1) numerical_pipe = SimpleImputer(strategy='mean') preprocessing = ColumnTransformer([('cat', categorical_encoder, categorical_columns), ('num', numerical_pipe, numerical_columns)], verbose_feature_names_out=True) rf = Pipeline([('preprocess', preprocessing), ('classifier', RandomForestClassifier(random_state=42))]) rf.fit(X_train, y_train) rf[0].output_indices_
code
121149831/cell_8
[ "image_output_1.png" ]
from sklearn.compose import ColumnTransformer from sklearn.datasets import fetch_openml from sklearn.ensemble import RandomForestClassifier from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import OrdinalEncoder import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split X, y = fetch_openml('titanic', version=1, as_frame=True, return_X_y=True) rng = np.random.RandomState(seed=42) X['random_cat'] = rng.randint(3, size=X.shape[0]) X['random_num'] = rng.randn(X.shape[0]) categorical_columns = ['pclass', 'sex', 'embarked', 'random_cat'] numerical_columns = ['age', 'sibsp', 'parch', 'fare', 'random_num'] X = X[categorical_columns + numerical_columns] X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42) from sklearn.ensemble import RandomForestClassifier from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.preprocessing import OrdinalEncoder categorical_encoder = OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1) numerical_pipe = SimpleImputer(strategy='mean') preprocessing = ColumnTransformer([('cat', categorical_encoder, categorical_columns), ('num', numerical_pipe, numerical_columns)], verbose_feature_names_out=True) rf = Pipeline([('preprocess', preprocessing), ('classifier', RandomForestClassifier(random_state=42))]) rf.fit(X_train, y_train) feature_names = categorical_columns + numerical_columns mdi_importances = pd.Series(rf[-1].feature_importances_, index=feature_names).sort_values(ascending=True) ax = mdi_importances.plot.barh() ax.set_title('Random Forest Feature Importances (MDI)') ax.figure.tight_layout()
code
121149831/cell_5
[ "text_plain_output_1.png" ]
from sklearn.compose import ColumnTransformer from sklearn.datasets import fetch_openml from sklearn.ensemble import RandomForestClassifier from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import OrdinalEncoder import numpy as np # linear algebra from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split X, y = fetch_openml('titanic', version=1, as_frame=True, return_X_y=True) rng = np.random.RandomState(seed=42) X['random_cat'] = rng.randint(3, size=X.shape[0]) X['random_num'] = rng.randn(X.shape[0]) categorical_columns = ['pclass', 'sex', 'embarked', 'random_cat'] numerical_columns = ['age', 'sibsp', 'parch', 'fare', 'random_num'] X = X[categorical_columns + numerical_columns] X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42) from sklearn.ensemble import RandomForestClassifier from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.preprocessing import OrdinalEncoder categorical_encoder = OrdinalEncoder(handle_unknown='use_encoded_value', unknown_value=-1) numerical_pipe = SimpleImputer(strategy='mean') preprocessing = ColumnTransformer([('cat', categorical_encoder, categorical_columns), ('num', numerical_pipe, numerical_columns)], verbose_feature_names_out=True) rf = Pipeline([('preprocess', preprocessing), ('classifier', RandomForestClassifier(random_state=42))]) rf.fit(X_train, y_train) print(f'RF train accuracy: {rf.score(X_train, y_train):.3f}') print(f'RF test accuracy: {rf.score(X_test, y_test):.3f}')
code
34144733/cell_2
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_4.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
!pip install hyperopt !pip install geffnet
code
34144733/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34144733/cell_10
[ "text_plain_output_1.png" ]
from PIL import ImageOps, ImageEnhance from abc import ABC, abstractmethod from hyperopt import fmin, tpe, hp, STATUS_OK, Trials import geffnet import numpy as np import numpy as np # linear algebra import pickle import torch import torch.nn as nn import torch.nn as nn import torch.utils.data as Data import torchvision.transforms as transforms import torchvision.transforms as transforms import numpy as np import torch.nn as nn import torchvision.transforms as transforms from abc import ABC, abstractmethod from PIL import ImageOps, ImageEnhance from PIL import Image as I class BaseTransform(ABC): def __init__(self, prob, mag): self.prob = prob self.mag = mag def __call__(self, img): return transforms.RandomApply([self.transform], self.prob)(img) def __repr__(self): return '%s(prob=%.2f, magnitude=%.2f)' % (self.__class__.__name__, self.prob, self.mag) @abstractmethod def transform(self, img): pass class ShearXY(BaseTransform): def transform(self, img): degrees = self.mag * 360 t = transforms.RandomAffine(0, shear=degrees, resample=I.BILINEAR) return t(img) class TranslateXY(BaseTransform): def transform(self, img): translate = (self.mag, self.mag) t = transforms.RandomAffine(0, translate=translate, resample=I.BILINEAR) return t(img) class Rotate(BaseTransform): def transform(self, img): degrees = self.mag * 360 t = transforms.RandomRotation(degrees, I.BILINEAR) return t(img) class AutoContrast(BaseTransform): def transform(self, img): cutoff = int(self.mag * 49) return ImageOps.autocontrast(img, cutoff=cutoff) class Invert(BaseTransform): def transform(self, img): return ImageOps.invert(img) class Equalize(BaseTransform): def transform(self, img): return ImageOps.equalize(img) class Solarize(BaseTransform): def transform(self, img): threshold = (1 - self.mag) * 255 return ImageOps.solarize(img, threshold) class Posterize(BaseTransform): def transform(self, img): bits = int((1 - self.mag) * 8) return ImageOps.posterize(img, bits=bits) class Contrast(BaseTransform): def transform(self, img): factor = self.mag * 10 return ImageEnhance.Contrast(img).enhance(factor) class Color(BaseTransform): def transform(self, img): factor = self.mag * 10 return ImageEnhance.Color(img).enhance(factor) class Brightness(BaseTransform): def transform(self, img): factor = self.mag * 10 return ImageEnhance.Brightness(img).enhance(factor) class Sharpness(BaseTransform): def transform(self, img): factor = self.mag * 10 return ImageEnhance.Sharpness(img).enhance(factor) class Cutout(BaseTransform): def transform(self, img): n_holes = 1 length = 24 * self.mag cutout_op = CutoutOp(n_holes=n_holes, length=length) return cutout_op(img) class CutoutOp(object): """ https://github.com/uoguelph-mlrg/Cutout Randomly mask out one or more patches from an image. Args: n_holes (int): Number of patches to cut out of each image. length (int): The length (in pixels) of each square patch. """ def __init__(self, n_holes, length): self.n_holes = n_holes self.length = length def __call__(self, img): """ Args: img (Tensor): Tensor image of size (C, H, W). Returns: Tensor: Image with n_holes of dimension length x length cut out of it. """ w, h = img.size mask = np.ones((h, w, 1), np.uint8) for n in range(self.n_holes): y = np.random.randint(h) x = np.random.randint(w) y1 = np.clip(y - self.length // 2, 0, h).astype(int) y2 = np.clip(y + self.length // 2, 0, h).astype(int) x1 = np.clip(x - self.length // 2, 0, w).astype(int) x2 = np.clip(x + self.length // 2, 0, w).astype(int) mask[y1:y2, x1:x2, :] = 0.0 img = mask * np.asarray(img).astype(np.uint8) img = I.fromarray(mask * np.asarray(img)) return img class TestDataset(Data.Dataset): def __init__(self, names, image_labels, transform): super(TestDataset, self).__init__() self.names = names self.image_labels = image_labels self.transform = transform def __getitem__(self, index): name = self.names[index] if type(name) == list: name = name[0] label = self.image_labels[name] image = I.open(name) image = self.transform(image) return (image, label) def __len__(self): return len(self.names) DEFALUT_CANDIDATES = [ShearXY, TranslateXY, Rotate, AutoContrast, Invert, Equalize, Solarize, Posterize, Contrast, Color, Brightness, Sharpness, Cutout] def l2_norm(input, axis=1): norm = torch.norm(input, 2, axis, True) output = torch.div(input, norm) return output class myNet(nn.Module): def __init__(self): super(myNet, self).__init__() backbone = geffnet.efficientnet_b3(pretrained=True) self.backbone = torch.nn.Sequential(backbone.conv_stem, backbone.bn1, backbone.act1, backbone.blocks, backbone.conv_head, backbone.bn2, backbone.act2, backbone.global_pool) self.global_avgpool = torch.nn.AdaptiveAvgPool2d(1) self.global_bn = nn.BatchNorm1d(1536) self.global_bn.bias.requires_grad = False self.local_conv = nn.Conv2d(1536, 512, 1) self.local_bn = nn.BatchNorm2d(512) self.local_bn.bias.requires_grad = False self.fc = nn.Linear(1536, 20) nn.init.kaiming_normal_(self.fc.weight, mode='fan_out') nn.init.constant_(self.fc.bias, 0) def forward(self, x): x = self.backbone(x) global_feat = self.global_avgpool(x) global_feat = global_feat.view(global_feat.shape[0], -1) global_feat = F.dropout(global_feat, p=0.2) global_feat = self.global_bn(global_feat) global_feat = l2_norm(global_feat) local_feat = torch.mean(x, -1, keepdim=True) local_feat = self.local_bn(self.local_conv(local_feat)) local_feat = local_feat.squeeze(-1).permute(0, 2, 1) local_feat = l2_norm(local_feat, axis=-1) out = self.fc(global_feat) * 16 return (global_feat, local_feat, out) import torch.nn as nn import torch class TripletLoss(nn.Module): def __init__(self, margin=0.3): super(TripletLoss, self).__init__() self.margin = margin self.ranking_loss = nn.MarginRankingLoss(margin=margin) def shortest_dist(self, dist_mat): m, n = dist_mat.size()[:2] dist = [[0 for _ in range(n)] for _ in range(m)] for i in range(m): for j in range(n): if i == 0 and j == 0: dist[i][j] = dist_mat[i, j] elif i == 0 and j > 0: dist[i][j] = dist[i][j - 1] + dist_mat[i, j] elif i > 0 and j == 0: dist[i][j] = dist[i - 1][j] + dist_mat[i, j] else: dist[i][j] = torch.min(dist[i - 1][j], dist[i][j - 1]) + dist_mat[i, j] dist = dist[-1][-1] return dist '局部特征的距离矩阵' def compute_local_dist(self, x, y): M, m, d = x.size() N, n, d = y.size() x = x.contiguous().view(M * m, d) y = y.contiguous().view(N * n, d) dist_mat = self.comput_dist(x, y) dist_mat = (torch.exp(dist_mat) - 1.0) / (torch.exp(dist_mat) + 1.0) dist_mat = dist_mat.contiguous().view(M, m, N, n).permute(1, 3, 0, 2) dist_mat = self.shortest_dist(dist_mat) return dist_mat '全局特征的距离矩阵' def comput_dist(self, x, y): m, n = (x.size(0), y.size(0)) xx = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n) yy = torch.pow(y, 2).sum(1, keepdim=True).expand(n, m).t() dist = xx + yy dist.addmm_(1, -2, x, y.t()) dist = dist.clamp(min=1e-12).sqrt() return dist def hard_example_mining(self, dist_mat, labels, return_inds=False): assert len(dist_mat.size()) == 2 assert dist_mat.size(0) == dist_mat.size(1) N = dist_mat.size(0) is_pos = labels.expand(N, N).eq(labels.expand(N, N).t()) is_neg = labels.expand(N, N).ne(labels.expand(N, N).t()) list_ap = [] list_an = [] for i in range(N): list_ap.append(dist_mat[i][is_pos[i]].max().unsqueeze(0)) list_an.append(dist_mat[i][is_neg[i]].min().unsqueeze(0)) dist_ap = torch.cat(list_ap) dist_an = torch.cat(list_an) return (dist_ap, dist_an) def forward(self, feat_type, feat, labels): """ :param feat_type: 'global'代表计算全局特征的三重损失,'local'代表计算局部特征 :param feat: 经过网络计算出来的结果 :param labels: 标签 :return: """ if feat_type == 'global': dist_mat = self.comput_dist(feat, feat) else: dist_mat = self.compute_local_dist(feat, feat) dist_ap, dist_an = self.hard_example_mining(dist_mat, labels) y = torch.ones_like(dist_an) loss = self.ranking_loss(dist_an, dist_ap, y) return loss def one_hot_smooth_label(x, num_class, smooth=0.1): num = x.shape[0] labels = torch.zeros((num, 20)) for i in range(num): labels[i][x[i]] = 1 labels = (1 - (num_class - 1) / num_class * smooth) * labels + smooth / num_class return labels class Criterion: def __init__(self): self.triplet_criterion = TripletLoss() self.cls_criterion = nn.BCEWithLogitsLoss() def __call__(self, global_feat, local_feat, cls_score, label): global_loss = self.triplet_criterion('global', global_feat, label) local_loss = self.triplet_criterion('local', local_feat, label) label = one_hot_smooth_label(label, 20) cls_loss = self.cls_criterion(cls_score, label) return global_loss + local_loss + cls_loss def validate_child(model, dl, criterion, transform): device = torch.device('cuda:0') model = model.to(device) model.eval() steps = len(dl) total_metric = 0 total_loss = 0 dl.dataset.transform = transform with torch.no_grad(): for images, labels in dl: images = images.to(device) global_feat, local_feat, logits = model(images) global_feat = global_feat.to('cpu') logits = logits.to('cpu') local_feat = local_feat.to('cpu') loss = criterion(global_feat, local_feat, logits, labels) metric = accuracy(logits, labels) total_loss += loss total_metric += metric metric = total_metric / steps loss = total_loss / steps return (metric, loss) def get_next_subpolicy(transform_candidates, op_per_subpolicy=2): n_candidates = len(transform_candidates) subpolicy = [] for i in range(op_per_subpolicy): index = random.randrange(n_candidates) prob = random.random() mag = random.random() subpolicy.append(transform_candidates[index](prob, mag)) subpolicy = transforms.Compose([*subpolicy, transforms.Resize([300, 300]), transforms.ToTensor()]) return subpolicy def search_subpolicies_hyperopt(transform_candidates, child_model, dl, B, criterion): def _objective(sampled): subpolicy = [transform(prob, mag) for transform, prob, mag in sampled] subpolicy = transforms.Compose([transforms.Resize([300, 300]), *subpolicy, transforms.ToTensor()]) val_res = validate_child(child_model, dl, criterion, subpolicy) loss = val_res[1].cpu().detach().numpy() return {'loss': loss, 'status': STATUS_OK} space = [(hp.choice('transform1', transform_candidates), hp.uniform('prob1', 0, 1.0), hp.uniform('mag1', 0, 1.0)), (hp.choice('transform2', transform_candidates), hp.uniform('prob2', 0, 1.0), hp.uniform('mag2', 0, 1.0)), (hp.choice('transform3', transform_candidates), hp.uniform('prob3', 0, 1.0), hp.uniform('mag3', 0, 1.0))] trials = Trials() best = fmin(_objective, space=space, algo=tpe.suggest, max_evals=B, trials=trials) subpolicies = [] for t in trials.trials: vals = t['misc']['vals'] subpolicy = [transform_candidates[vals['transform1'][0]](vals['prob1'][0], vals['mag1'][0]), transform_candidates[vals['transform2'][0]](vals['prob2'][0], vals['mag2'][0]), transform_candidates[vals['transform3'][0]](vals['prob3'][0], vals['mag3'][0])] subpolicy = transforms.Compose([transforms.RandomHorizontalFlip(), *subpolicy, transforms.ToTensor()]) subpolicies.append((subpolicy, t['result']['loss'])) return subpolicies def get_topn_subpolicies(subpolicies, N=10): return sorted(subpolicies, key=lambda subpolicy: subpolicy[1])[:N] def process_fn(child_model, Da_dl, T, transform_candidates, B, N): transform = [] criterion = Criterion() for i in range(T): subpolicies = search_subpolicies_hyperopt(transform_candidates, child_model, Da_dl, B, criterion) subpolicies = get_topn_subpolicies(subpolicies, N) transform.extend([subpolicy[0] for subpolicy in subpolicies]) return transform from tqdm import tqdm def fast_auto_augment(model, Da_dl, B=300, T=2, N=10): transform_list = [] transform_candidates = DEFALUT_CANDIDATES transform = process_fn(model, Da_dl, T, transform_candidates, B, N) transform_list.extend(transform) return transform_list import pickle def main(): k = 0 with open('/kaggle/input/linshi/valid_dl{}.txt'.format(k), 'rb') as f: valid_dl = pickle.load(f) ds = valid_dl.dataset new_valid_dl = Data.DataLoader(ds, batch_size=32, shuffle=True) with open('/kaggle/input/linshi/model{}.txt'.format(k), 'rb') as f: model = pickle.load(f) transform_list = fast_auto_augment(model, new_valid_dl) file = open('transform_list{}.txt'.format(k), 'wb+') pickle.dump(transform_list, file) file.close() main()
code
34121284/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import requests import json import pandas as pd import time import plotly import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
89135088/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
median_house = pd.read_csv('../input/fatal-police-shootings-in-the-us/MedianHouseholdIncome2015.csv', encoding='windows-1252') percent_over = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentOver25CompletedHighSchool.csv', encoding='windows-1252') percentage_people = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentagePeopleBelowPovertyLevel.csv', encoding='windows-1252') kill = pd.read_csv('../input/fatal-police-shootings-in-the-us/PoliceKillingsUS.csv', encoding='windows-1252') share_race = pd.read_csv('../input/fatal-police-shootings-in-the-us/ShareRaceByCity.csv', encoding='windows-1252') percent_over.percent_completed_hs.value_counts() percent_over.info()
code
89135088/cell_9
[ "image_output_1.png" ]
median_house = pd.read_csv('../input/fatal-police-shootings-in-the-us/MedianHouseholdIncome2015.csv', encoding='windows-1252') percent_over = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentOver25CompletedHighSchool.csv', encoding='windows-1252') percentage_people = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentagePeopleBelowPovertyLevel.csv', encoding='windows-1252') kill = pd.read_csv('../input/fatal-police-shootings-in-the-us/PoliceKillingsUS.csv', encoding='windows-1252') share_race = pd.read_csv('../input/fatal-police-shootings-in-the-us/ShareRaceByCity.csv', encoding='windows-1252') kill.name.value_counts()
code
89135088/cell_4
[ "text_plain_output_1.png" ]
median_house = pd.read_csv('../input/fatal-police-shootings-in-the-us/MedianHouseholdIncome2015.csv', encoding='windows-1252') percent_over = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentOver25CompletedHighSchool.csv', encoding='windows-1252') percentage_people = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentagePeopleBelowPovertyLevel.csv', encoding='windows-1252') kill = pd.read_csv('../input/fatal-police-shootings-in-the-us/PoliceKillingsUS.csv', encoding='windows-1252') share_race = pd.read_csv('../input/fatal-police-shootings-in-the-us/ShareRaceByCity.csv', encoding='windows-1252') percentage_people.info()
code
89135088/cell_6
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import seaborn as sns median_house = pd.read_csv('../input/fatal-police-shootings-in-the-us/MedianHouseholdIncome2015.csv', encoding='windows-1252') percent_over = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentOver25CompletedHighSchool.csv', encoding='windows-1252') percentage_people = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentagePeopleBelowPovertyLevel.csv', encoding='windows-1252') kill = pd.read_csv('../input/fatal-police-shootings-in-the-us/PoliceKillingsUS.csv', encoding='windows-1252') share_race = pd.read_csv('../input/fatal-police-shootings-in-the-us/ShareRaceByCity.csv', encoding='windows-1252') percentage_people.poverty_rate.value_counts() percentage_people.poverty_rate.replace(['-'], 0.0, inplace=True) percentage_people.poverty_rate = percentage_people.poverty_rate.astype(float) area_list = list(percentage_people['Geographic Area'].unique()) area_poverty_ratio = [] for i in area_list: x = percentage_people[percentage_people['Geographic Area'] == i] area_poverty_rate = sum(x.poverty_rate) / len(x) area_poverty_ratio.append(area_poverty_rate) data = pd.DataFrame({'area_list': area_list, 'area_poverty_ratio': area_poverty_ratio}) new_index = data['area_poverty_ratio'].sort_values(ascending=False).index.values sorted_data = data.reindex(new_index) plt.figure(figsize=(15, 10)) sns.barplot(x=sorted_data['area_list'], y=sorted_data['area_poverty_ratio']) plt.xticks(rotation=45) plt.xlabel('States') plt.ylabel('Poverty Rate') plt.title('Povert Rate Given States')
code
89135088/cell_11
[ "text_plain_output_1.png" ]
median_house = pd.read_csv('../input/fatal-police-shootings-in-the-us/MedianHouseholdIncome2015.csv', encoding='windows-1252') percent_over = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentOver25CompletedHighSchool.csv', encoding='windows-1252') percentage_people = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentagePeopleBelowPovertyLevel.csv', encoding='windows-1252') kill = pd.read_csv('../input/fatal-police-shootings-in-the-us/PoliceKillingsUS.csv', encoding='windows-1252') share_race = pd.read_csv('../input/fatal-police-shootings-in-the-us/ShareRaceByCity.csv', encoding='windows-1252') percent_over.head()
code
89135088/cell_1
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from collections import Counter import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
89135088/cell_7
[ "text_plain_output_1.png" ]
median_house = pd.read_csv('../input/fatal-police-shootings-in-the-us/MedianHouseholdIncome2015.csv', encoding='windows-1252') percent_over = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentOver25CompletedHighSchool.csv', encoding='windows-1252') percentage_people = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentagePeopleBelowPovertyLevel.csv', encoding='windows-1252') kill = pd.read_csv('../input/fatal-police-shootings-in-the-us/PoliceKillingsUS.csv', encoding='windows-1252') share_race = pd.read_csv('../input/fatal-police-shootings-in-the-us/ShareRaceByCity.csv', encoding='windows-1252') kill.head()
code
89135088/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
median_house = pd.read_csv('../input/fatal-police-shootings-in-the-us/MedianHouseholdIncome2015.csv', encoding='windows-1252') percent_over = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentOver25CompletedHighSchool.csv', encoding='windows-1252') percentage_people = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentagePeopleBelowPovertyLevel.csv', encoding='windows-1252') kill = pd.read_csv('../input/fatal-police-shootings-in-the-us/PoliceKillingsUS.csv', encoding='windows-1252') share_race = pd.read_csv('../input/fatal-police-shootings-in-the-us/ShareRaceByCity.csv', encoding='windows-1252') kill.info()
code
89135088/cell_15
[ "text_plain_output_1.png" ]
median_house = pd.read_csv('../input/fatal-police-shootings-in-the-us/MedianHouseholdIncome2015.csv', encoding='windows-1252') percent_over = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentOver25CompletedHighSchool.csv', encoding='windows-1252') percentage_people = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentagePeopleBelowPovertyLevel.csv', encoding='windows-1252') kill = pd.read_csv('../input/fatal-police-shootings-in-the-us/PoliceKillingsUS.csv', encoding='windows-1252') share_race = pd.read_csv('../input/fatal-police-shootings-in-the-us/ShareRaceByCity.csv', encoding='windows-1252') share_race.head()
code
89135088/cell_16
[ "text_plain_output_1.png" ]
median_house = pd.read_csv('../input/fatal-police-shootings-in-the-us/MedianHouseholdIncome2015.csv', encoding='windows-1252') percent_over = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentOver25CompletedHighSchool.csv', encoding='windows-1252') percentage_people = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentagePeopleBelowPovertyLevel.csv', encoding='windows-1252') kill = pd.read_csv('../input/fatal-police-shootings-in-the-us/PoliceKillingsUS.csv', encoding='windows-1252') share_race = pd.read_csv('../input/fatal-police-shootings-in-the-us/ShareRaceByCity.csv', encoding='windows-1252') share_race.info()
code
89135088/cell_3
[ "text_plain_output_1.png" ]
median_house = pd.read_csv('../input/fatal-police-shootings-in-the-us/MedianHouseholdIncome2015.csv', encoding='windows-1252') percent_over = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentOver25CompletedHighSchool.csv', encoding='windows-1252') percentage_people = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentagePeopleBelowPovertyLevel.csv', encoding='windows-1252') kill = pd.read_csv('../input/fatal-police-shootings-in-the-us/PoliceKillingsUS.csv', encoding='windows-1252') share_race = pd.read_csv('../input/fatal-police-shootings-in-the-us/ShareRaceByCity.csv', encoding='windows-1252') percentage_people.head()
code
89135088/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
from collections import Counter import matplotlib.pyplot as plt import seaborn as sns median_house = pd.read_csv('../input/fatal-police-shootings-in-the-us/MedianHouseholdIncome2015.csv', encoding='windows-1252') percent_over = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentOver25CompletedHighSchool.csv', encoding='windows-1252') percentage_people = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentagePeopleBelowPovertyLevel.csv', encoding='windows-1252') kill = pd.read_csv('../input/fatal-police-shootings-in-the-us/PoliceKillingsUS.csv', encoding='windows-1252') share_race = pd.read_csv('../input/fatal-police-shootings-in-the-us/ShareRaceByCity.csv', encoding='windows-1252') percentage_people.poverty_rate.value_counts() percentage_people.poverty_rate.replace(['-'], 0.0, inplace=True) percentage_people.poverty_rate = percentage_people.poverty_rate.astype(float) area_list = list(percentage_people['Geographic Area'].unique()) area_poverty_ratio = [] for i in area_list: x = percentage_people[percentage_people['Geographic Area'] == i] area_poverty_rate = sum(x.poverty_rate) / len(x) area_poverty_ratio.append(area_poverty_rate) data = pd.DataFrame({'area_list': area_list, 'area_poverty_ratio': area_poverty_ratio}) new_index = data['area_poverty_ratio'].sort_values(ascending=False).index.values sorted_data = data.reindex(new_index) plt.xticks(rotation=45) kill.name.value_counts() separate = kill.name[kill.name != 'TK TK'].str.split() a, b = zip(*separate) name_list = a + b name_count = Counter(name_list) most_common_names = name_count.most_common(15) x, y = zip(*most_common_names) x, y = (list(x), list(y)) percent_over.percent_completed_hs.value_counts() percent_over.percent_completed_hs.replace(['-'], 0.0, inplace=True) percent_over.percent_completed_hs = percent_over.percent_completed_hs.astype(float) area_list = list(percent_over['Geographic Area'].unique()) area_highschool = [] for i in area_list: x = percent_over[percent_over['Geographic Area'] == i] area_highschool_rate = sum(x.percent_completed_hs) / len(x) area_highschool.append(area_highschool_rate) data = pd.DataFrame({'area_list': area_list, 'area_highschool_ratio': area_highschool}) new_index = data['area_highschool_ratio'].sort_values(ascending=True).index.values sorted_data2 = data.reindex(new_index) plt.xticks(rotation=45) share_race.replace(['-'], 0.0, inplace=True) share_race.replace(['(X)'], 0.0, inplace=True) share_race.loc[:, ['share_white', 'share_black', 'share_native_american', 'share_asian', 'share_hispanic']] = share_race.loc[:, ['share_white', 'share_black', 'share_native_american', 'share_asian', 'share_hispanic']].astype(float) area_list = list(share_race['Geographic area'].unique()) share_white = [] share_black = [] share_native_american = [] share_asian = [] share_hispanic = [] for i in area_list: x = share_race[share_race['Geographic area'] == i] share_white.append(sum(x.share_white) / len(x)) share_native_american.append(sum(x.share_native_american) / len(x)) share_black.append(sum(x.share_black) / len(x)) share_asian.append(sum(x.share_asian) / len(x)) share_hispanic.append(sum(x.share_hispanic) / len(x)) f, ax = plt.subplots(figsize=(9, 15)) sns.barplot(x=share_white, y=area_list, color='green', alpha=0.5, label='White') sns.barplot(x=share_black, y=area_list, color='blue', alpha=0.5, label='Black') sns.barplot(x=share_native_american, y=area_list, color='cyan', alpha=0.5, label='Native American') sns.barplot(x=share_asian, y=area_list, color='yellow', alpha=0.5, label='Asian') sns.barplot(x=share_hispanic, y=area_list, color='red', alpha=0.5, label='Hispanic') ax.legend(loc='lower right', frameon=True)
code
89135088/cell_14
[ "text_html_output_1.png" ]
from collections import Counter import matplotlib.pyplot as plt import seaborn as sns median_house = pd.read_csv('../input/fatal-police-shootings-in-the-us/MedianHouseholdIncome2015.csv', encoding='windows-1252') percent_over = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentOver25CompletedHighSchool.csv', encoding='windows-1252') percentage_people = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentagePeopleBelowPovertyLevel.csv', encoding='windows-1252') kill = pd.read_csv('../input/fatal-police-shootings-in-the-us/PoliceKillingsUS.csv', encoding='windows-1252') share_race = pd.read_csv('../input/fatal-police-shootings-in-the-us/ShareRaceByCity.csv', encoding='windows-1252') percentage_people.poverty_rate.value_counts() percentage_people.poverty_rate.replace(['-'], 0.0, inplace=True) percentage_people.poverty_rate = percentage_people.poverty_rate.astype(float) area_list = list(percentage_people['Geographic Area'].unique()) area_poverty_ratio = [] for i in area_list: x = percentage_people[percentage_people['Geographic Area'] == i] area_poverty_rate = sum(x.poverty_rate) / len(x) area_poverty_ratio.append(area_poverty_rate) data = pd.DataFrame({'area_list': area_list, 'area_poverty_ratio': area_poverty_ratio}) new_index = data['area_poverty_ratio'].sort_values(ascending=False).index.values sorted_data = data.reindex(new_index) plt.xticks(rotation=45) kill.name.value_counts() separate = kill.name[kill.name != 'TK TK'].str.split() a, b = zip(*separate) name_list = a + b name_count = Counter(name_list) most_common_names = name_count.most_common(15) x, y = zip(*most_common_names) x, y = (list(x), list(y)) percent_over.percent_completed_hs.value_counts() percent_over.percent_completed_hs.replace(['-'], 0.0, inplace=True) percent_over.percent_completed_hs = percent_over.percent_completed_hs.astype(float) area_list = list(percent_over['Geographic Area'].unique()) area_highschool = [] for i in area_list: x = percent_over[percent_over['Geographic Area'] == i] area_highschool_rate = sum(x.percent_completed_hs) / len(x) area_highschool.append(area_highschool_rate) data = pd.DataFrame({'area_list': area_list, 'area_highschool_ratio': area_highschool}) new_index = data['area_highschool_ratio'].sort_values(ascending=True).index.values sorted_data2 = data.reindex(new_index) plt.figure(figsize=(15, 10)) sns.barplot(x=sorted_data2['area_list'], y=sorted_data2['area_highschool_ratio']) plt.xticks(rotation=45) plt.xlabel('States') plt.ylabel('Highs School Graduet Rate')
code
89135088/cell_10
[ "text_html_output_1.png" ]
from collections import Counter import matplotlib.pyplot as plt import seaborn as sns median_house = pd.read_csv('../input/fatal-police-shootings-in-the-us/MedianHouseholdIncome2015.csv', encoding='windows-1252') percent_over = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentOver25CompletedHighSchool.csv', encoding='windows-1252') percentage_people = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentagePeopleBelowPovertyLevel.csv', encoding='windows-1252') kill = pd.read_csv('../input/fatal-police-shootings-in-the-us/PoliceKillingsUS.csv', encoding='windows-1252') share_race = pd.read_csv('../input/fatal-police-shootings-in-the-us/ShareRaceByCity.csv', encoding='windows-1252') percentage_people.poverty_rate.value_counts() percentage_people.poverty_rate.replace(['-'], 0.0, inplace=True) percentage_people.poverty_rate = percentage_people.poverty_rate.astype(float) area_list = list(percentage_people['Geographic Area'].unique()) area_poverty_ratio = [] for i in area_list: x = percentage_people[percentage_people['Geographic Area'] == i] area_poverty_rate = sum(x.poverty_rate) / len(x) area_poverty_ratio.append(area_poverty_rate) data = pd.DataFrame({'area_list': area_list, 'area_poverty_ratio': area_poverty_ratio}) new_index = data['area_poverty_ratio'].sort_values(ascending=False).index.values sorted_data = data.reindex(new_index) plt.xticks(rotation=45) kill.name.value_counts() separate = kill.name[kill.name != 'TK TK'].str.split() a, b = zip(*separate) name_list = a + b name_count = Counter(name_list) most_common_names = name_count.most_common(15) x, y = zip(*most_common_names) x, y = (list(x), list(y)) plt.figure(figsize=(15, 10)) sns.barplot(x=x, y=y, palette=sns.cubehelix_palette(len(x))) plt.xlabel('Name or surname of killed people') plt.ylabel('Frequency') plt.title('Most common 15 name or surname of killed people')
code
89135088/cell_12
[ "text_plain_output_1.png" ]
median_house = pd.read_csv('../input/fatal-police-shootings-in-the-us/MedianHouseholdIncome2015.csv', encoding='windows-1252') percent_over = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentOver25CompletedHighSchool.csv', encoding='windows-1252') percentage_people = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentagePeopleBelowPovertyLevel.csv', encoding='windows-1252') kill = pd.read_csv('../input/fatal-police-shootings-in-the-us/PoliceKillingsUS.csv', encoding='windows-1252') share_race = pd.read_csv('../input/fatal-police-shootings-in-the-us/ShareRaceByCity.csv', encoding='windows-1252') percent_over.percent_completed_hs.value_counts()
code
89135088/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
median_house = pd.read_csv('../input/fatal-police-shootings-in-the-us/MedianHouseholdIncome2015.csv', encoding='windows-1252') percent_over = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentOver25CompletedHighSchool.csv', encoding='windows-1252') percentage_people = pd.read_csv('../input/fatal-police-shootings-in-the-us/PercentagePeopleBelowPovertyLevel.csv', encoding='windows-1252') kill = pd.read_csv('../input/fatal-police-shootings-in-the-us/PoliceKillingsUS.csv', encoding='windows-1252') share_race = pd.read_csv('../input/fatal-police-shootings-in-the-us/ShareRaceByCity.csv', encoding='windows-1252') percentage_people.poverty_rate.value_counts()
code
17104067/cell_9
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) cota = pd.read_csv('../input/cota_parlamentar_sp.csv', delimiter=';') cota.dataframeName = 'cota_parlamentar_sp.csv' nRow, nCol = cota.shape #partido_valor = pd.DataFrame() #partido_valor['sgpartido'] = cota['sgpartido'] #partido_valor['vlrdocumento'] = cota['vlrdocumento'] #partido_valor['nulegislatura'] = cota['nulegislatura'] #cota['nulegislatura'].value_counts() #cota.groupby(['nulegislatura']).sum() cota_total = pd.DataFrame(cota.groupby(['sgpartido'])['vlrdocumento'].sum().sort_values(ascending=False)) cota_total2 = cota_total.head(5) #cota.groupby('nulegislatura')['vlrdocumento'].sum().sort_values(ascending=False) cota_por_ano = pd.DataFrame(cota.groupby('numano')['vlrdocumento'].sum()) #partido_valor.groupby(['sgpartido']).sum() cota_por_ano cota_total.plot(kind='bar', title='Gastos Partidos - Completo')
code
17104067/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) cota = pd.read_csv('../input/cota_parlamentar_sp.csv', delimiter=';') cota.dataframeName = 'cota_parlamentar_sp.csv' nRow, nCol = cota.shape print(f'There are {nRow} rows and {nCol} columns')
code
17104067/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt # plotting import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) cota = pd.read_csv('../input/cota_parlamentar_sp.csv', delimiter=';') cota.dataframeName = 'cota_parlamentar_sp.csv' nRow, nCol = cota.shape #partido_valor = pd.DataFrame() #partido_valor['sgpartido'] = cota['sgpartido'] #partido_valor['vlrdocumento'] = cota['vlrdocumento'] #partido_valor['nulegislatura'] = cota['nulegislatura'] #cota['nulegislatura'].value_counts() #cota.groupby(['nulegislatura']).sum() cota_total = pd.DataFrame(cota.groupby(['sgpartido'])['vlrdocumento'].sum().sort_values(ascending=False)) cota_total2 = cota_total.head(5) #cota.groupby('nulegislatura')['vlrdocumento'].sum().sort_values(ascending=False) cota_por_ano = pd.DataFrame(cota.groupby('numano')['vlrdocumento'].sum()) #partido_valor.groupby(['sgpartido']).sum() cota_por_ano plt.title('Evolução Gastos dos Partidos', loc='center', fontsize=12, fontweight=0, color='black') plt.xlabel('Ano') plt.ylabel('Gasto') plt.plot(cota_por_ano)
code
17104067/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) cota = pd.read_csv('../input/cota_parlamentar_sp.csv', delimiter=';') cota.dataframeName = 'cota_parlamentar_sp.csv' nRow, nCol = cota.shape cota_total = pd.DataFrame(cota.groupby(['sgpartido'])['vlrdocumento'].sum().sort_values(ascending=False)) cota_total2 = cota_total.head(5) cota_por_ano = pd.DataFrame(cota.groupby('numano')['vlrdocumento'].sum()) cota_por_ano
code
17104067/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) cota = pd.read_csv('../input/cota_parlamentar_sp.csv', delimiter=';') cota.dataframeName = 'cota_parlamentar_sp.csv' nRow, nCol = cota.shape #partido_valor = pd.DataFrame() #partido_valor['sgpartido'] = cota['sgpartido'] #partido_valor['vlrdocumento'] = cota['vlrdocumento'] #partido_valor['nulegislatura'] = cota['nulegislatura'] #cota['nulegislatura'].value_counts() #cota.groupby(['nulegislatura']).sum() cota_total = pd.DataFrame(cota.groupby(['sgpartido'])['vlrdocumento'].sum().sort_values(ascending=False)) cota_total2 = cota_total.head(5) #cota.groupby('nulegislatura')['vlrdocumento'].sum().sort_values(ascending=False) cota_por_ano = pd.DataFrame(cota.groupby('numano')['vlrdocumento'].sum()) #partido_valor.groupby(['sgpartido']).sum() cota_por_ano cota_total
code
17104067/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) cota = pd.read_csv('../input/cota_parlamentar_sp.csv', delimiter=';') cota.dataframeName = 'cota_parlamentar_sp.csv' nRow, nCol = cota.shape #partido_valor = pd.DataFrame() #partido_valor['sgpartido'] = cota['sgpartido'] #partido_valor['vlrdocumento'] = cota['vlrdocumento'] #partido_valor['nulegislatura'] = cota['nulegislatura'] #cota['nulegislatura'].value_counts() #cota.groupby(['nulegislatura']).sum() cota_total = pd.DataFrame(cota.groupby(['sgpartido'])['vlrdocumento'].sum().sort_values(ascending=False)) cota_total2 = cota_total.head(5) #cota.groupby('nulegislatura')['vlrdocumento'].sum().sort_values(ascending=False) cota_por_ano = pd.DataFrame(cota.groupby('numano')['vlrdocumento'].sum()) #partido_valor.groupby(['sgpartido']).sum() cota_por_ano cota_total2.plot(kind='pie', title='Maiores Gastos Partidos - Top5', subplots=True)
code
17104067/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) cota = pd.read_csv('../input/cota_parlamentar_sp.csv', delimiter=';') cota.dataframeName = 'cota_parlamentar_sp.csv' nRow, nCol = cota.shape #partido_valor = pd.DataFrame() #partido_valor['sgpartido'] = cota['sgpartido'] #partido_valor['vlrdocumento'] = cota['vlrdocumento'] #partido_valor['nulegislatura'] = cota['nulegislatura'] #cota['nulegislatura'].value_counts() #cota.groupby(['nulegislatura']).sum() cota_total = pd.DataFrame(cota.groupby(['sgpartido'])['vlrdocumento'].sum().sort_values(ascending=False)) cota_total2 = cota_total.head(5) #cota.groupby('nulegislatura')['vlrdocumento'].sum().sort_values(ascending=False) cota_por_ano = pd.DataFrame(cota.groupby('numano')['vlrdocumento'].sum()) #partido_valor.groupby(['sgpartido']).sum() cota_por_ano pd.DataFrame(cota.groupby(['numano', 'nummes'])['vlrdocumento'].sum())
code
17104067/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) cota = pd.read_csv('../input/cota_parlamentar_sp.csv', delimiter=';') cota.dataframeName = 'cota_parlamentar_sp.csv' nRow, nCol = cota.shape cota.head(10)
code