path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
33104556/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') test = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv') train = train.drop_duplicates().reset_index(drop=True) train.target.value_counts() train.isnull().sum() test.isnull().sum() print(train.keyword.nunique(), test.keyword.nunique())
code
33104556/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv') test = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv') train = train.drop_duplicates().reset_index(drop=True) train.target.value_counts() train.isnull().sum() test.isnull().sum() dist = train[train.target == 1].keyword.value_counts().head() plt.figure(figsize=(9, 6)) sns.barplot(dist, dist.index) plt.show()
code
16166679/cell_13
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) file = '../input/COTAHIST_A2009_to_A2018P.csv' df = pd.read_csv(file) df.drop(df.columns[df.columns.str.contains('unnamed', case=False)], axis=1, inplace=True) """ Eliminando os mercados que não serão utilizados em nossa análise.Esses mercados são: LEILÃO (017), FRACIONARIO(020) e o TERMO(030) """ mask = (df['TPMERC'] == 10) | (df['TPMERC'] == 12) | (df['TPMERC'] == 13) | (df['TPMERC'] == 70) | (df['TPMERC'] == 80) new_df = df[mask] new_df.head(2)
code
16166679/cell_4
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) file = '../input/COTAHIST_A2009_to_A2018P.csv' df = pd.read_csv(file) df.drop(df.columns[df.columns.str.contains('unnamed', case=False)], axis=1, inplace=True) df.head(2)
code
16166679/cell_20
[ "text_plain_output_1.png" ]
""" Será que devemos retirar? Dúvidas referente aos campos: CODBDI - CÓDIGO BDI , ESPECI - ESPECIFICAÇÃO DO PAPEL, CODISI e DISMES """ '\nO que faremos com a data de vencimento do mercado a vista?\n'
code
16166679/cell_6
[ "text_html_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) file = '../input/COTAHIST_A2009_to_A2018P.csv' df = pd.read_csv(file) df.drop(df.columns[df.columns.str.contains('unnamed', case=False)], axis=1, inplace=True) codBDI = df[['CODBDI']] codBDI = np.unique(codBDI) codBDI
code
16166679/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) file = '../input/COTAHIST_A2009_to_A2018P.csv' df = pd.read_csv(file) df.drop(df.columns[df.columns.str.contains('unnamed', case=False)], axis=1, inplace=True) """ Eliminando os mercados que não serão utilizados em nossa análise.Esses mercados são: LEILÃO (017), FRACIONARIO(020) e o TERMO(030) """ mask = (df['TPMERC'] == 10) | (df['TPMERC'] == 12) | (df['TPMERC'] == 13) | (df['TPMERC'] == 70) | (df['TPMERC'] == 80) new_df = df[mask] """ Eliminando a coluna TIPREG, pois esta possui um valor fixo que não será utilizado na análise """ new_df.drop(columns=['TIPREG'], axis=1, inplace=True) """ Eliminando a coluna PRAZOT, pois este campo é referente ao prazo do hedge do mercado a termo.Essa coluna possui valores nulos para os mercados de opções e a vista. Como esta não fará parte da analise, pode ser eliminada. """ new_df.drop(columns=['PRAZOT'], axis=1, inplace=True) new_df.head(10)
code
16166679/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
16166679/cell_18
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) file = '../input/COTAHIST_A2009_to_A2018P.csv' df = pd.read_csv(file) df.drop(df.columns[df.columns.str.contains('unnamed', case=False)], axis=1, inplace=True) """ Eliminando os mercados que não serão utilizados em nossa análise.Esses mercados são: LEILÃO (017), FRACIONARIO(020) e o TERMO(030) """ mask = (df['TPMERC'] == 10) | (df['TPMERC'] == 12) | (df['TPMERC'] == 13) | (df['TPMERC'] == 70) | (df['TPMERC'] == 80) new_df = df[mask] """ Eliminando a coluna TIPREG, pois esta possui um valor fixo que não será utilizado na análise """ new_df.drop(columns=['TIPREG'], axis=1, inplace=True) new_df.head(2)
code
16166679/cell_8
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) file = '../input/COTAHIST_A2009_to_A2018P.csv' df = pd.read_csv(file) df.drop(df.columns[df.columns.str.contains('unnamed', case=False)], axis=1, inplace=True) codBDI = df[['CODBDI']] codBDI = np.unique(codBDI) codBDI codESPECI = df[['ESPECI']] codESPECI = np.unique(codESPECI) codESPECI
code
16166679/cell_15
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) file = '../input/COTAHIST_A2009_to_A2018P.csv' df = pd.read_csv(file) df.drop(df.columns[df.columns.str.contains('unnamed', case=False)], axis=1, inplace=True) codBDI = df[['CODBDI']] codBDI = np.unique(codBDI) codBDI codESPECI = df[['ESPECI']] codESPECI = np.unique(codESPECI) codESPECI tpMercado = df[['TPMERC']] tpMercado = np.unique(tpMercado) tpMercado """ Eliminando os mercados que não serão utilizados em nossa análise.Esses mercados são: LEILÃO (017), FRACIONARIO(020) e o TERMO(030) """ mask = (df['TPMERC'] == 10) | (df['TPMERC'] == 12) | (df['TPMERC'] == 13) | (df['TPMERC'] == 70) | (df['TPMERC'] == 80) new_df = df[mask] moedaMerc = new_df[['MODREF']] moedaMerc = np.unique(moedaMerc) moedaMerc indCorr = new_df[['INDOPC']] indCorr = np.unique(indCorr) indCorr
code
16166679/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) file = '../input/COTAHIST_A2009_to_A2018P.csv' df = pd.read_csv(file) df.head(2)
code
16166679/cell_17
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) file = '../input/COTAHIST_A2009_to_A2018P.csv' df = pd.read_csv(file) df.drop(df.columns[df.columns.str.contains('unnamed', case=False)], axis=1, inplace=True) codBDI = df[['CODBDI']] codBDI = np.unique(codBDI) codBDI codESPECI = df[['ESPECI']] codESPECI = np.unique(codESPECI) codESPECI tpMercado = df[['TPMERC']] tpMercado = np.unique(tpMercado) tpMercado """ Eliminando os mercados que não serão utilizados em nossa análise.Esses mercados são: LEILÃO (017), FRACIONARIO(020) e o TERMO(030) """ mask = (df['TPMERC'] == 10) | (df['TPMERC'] == 12) | (df['TPMERC'] == 13) | (df['TPMERC'] == 70) | (df['TPMERC'] == 80) new_df = df[mask] moedaMerc = new_df[['MODREF']] moedaMerc = np.unique(moedaMerc) moedaMerc indCorr = new_df[['INDOPC']] indCorr = np.unique(indCorr) indCorr fatCot = new_df[['FATCOT']] fatCot = np.unique(fatCot) fatCot
code
16166679/cell_14
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) file = '../input/COTAHIST_A2009_to_A2018P.csv' df = pd.read_csv(file) df.drop(df.columns[df.columns.str.contains('unnamed', case=False)], axis=1, inplace=True) codBDI = df[['CODBDI']] codBDI = np.unique(codBDI) codBDI codESPECI = df[['ESPECI']] codESPECI = np.unique(codESPECI) codESPECI tpMercado = df[['TPMERC']] tpMercado = np.unique(tpMercado) tpMercado """ Eliminando os mercados que não serão utilizados em nossa análise.Esses mercados são: LEILÃO (017), FRACIONARIO(020) e o TERMO(030) """ mask = (df['TPMERC'] == 10) | (df['TPMERC'] == 12) | (df['TPMERC'] == 13) | (df['TPMERC'] == 70) | (df['TPMERC'] == 80) new_df = df[mask] moedaMerc = new_df[['MODREF']] moedaMerc = np.unique(moedaMerc) moedaMerc
code
16166679/cell_10
[ "text_html_output_1.png" ]
import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) file = '../input/COTAHIST_A2009_to_A2018P.csv' df = pd.read_csv(file) df.drop(df.columns[df.columns.str.contains('unnamed', case=False)], axis=1, inplace=True) codBDI = df[['CODBDI']] codBDI = np.unique(codBDI) codBDI codESPECI = df[['ESPECI']] codESPECI = np.unique(codESPECI) codESPECI tpMercado = df[['TPMERC']] tpMercado = np.unique(tpMercado) tpMercado
code
33111782/cell_9
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/uncover/public_health_england/covid-19-daily-confirmed-cases.csv', encoding='ISO-8859-2') df1 = pd.read_csv('../input/uncover/public_health_england/covid-19-cases-by-county-uas.csv', encoding='ISO-8859-2') df2 = pd.read_csv('../input/uncover/regional_sources/uk_government/covid-19-uk-historical-data.csv', encoding='ISO-8859-2') df2.dtypes
code
33111782/cell_4
[ "text_html_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import plotly.graph_objs as go import plotly.offline as py import plotly.express as px import seaborn import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
33111782/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/uncover/public_health_england/covid-19-daily-confirmed-cases.csv', encoding='ISO-8859-2') df1 = pd.read_csv('../input/uncover/public_health_england/covid-19-cases-by-county-uas.csv', encoding='ISO-8859-2') df1.head()
code
33111782/cell_2
[ "text_plain_output_1.png" ]
from IPython.display import Image from IPython.display import Image Image(url='', width=400, height=400)
code
33111782/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/uncover/public_health_england/covid-19-daily-confirmed-cases.csv', encoding='ISO-8859-2') df1 = pd.read_csv('../input/uncover/public_health_england/covid-19-cases-by-county-uas.csv', encoding='ISO-8859-2') df2 = pd.read_csv('../input/uncover/regional_sources/uk_government/covid-19-uk-historical-data.csv', encoding='ISO-8859-2') df2.head()
code
33111782/cell_10
[ "text_html_output_1.png" ]
from IPython.display import Image from IPython.display import Image from IPython.display import Image Image(url='', width=400, height=400)
code
33111782/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/uncover/public_health_england/covid-19-daily-confirmed-cases.csv', encoding='ISO-8859-2') df.head()
code
74052611/cell_9
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) numbers_lables_data = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') x_test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') y_train = numbers_lables_data[['label']] x_train = numbers_lables_data.iloc[:, 1:] x_train = np.array(x_train).reshape((x_train.shape[0], 28, 28, 1)) x_test = np.array(x_test).reshape((x_test.shape[0], 28, 28, 1)) x_train = x_train / 255 x_test = x_test / 255 plt.imshow(x_train[9])
code
74052611/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) numbers_lables_data = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') x_test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') y_train = numbers_lables_data[['label']] x_train = numbers_lables_data.iloc[:, 1:] y_train['label'].value_counts()
code
74052611/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
74052611/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
from keras.layers import Conv2D,MaxPool2D,AveragePooling2D,Flatten,Dense,Input from keras.losses import categorical_crossentropy,sparse_categorical_crossentropy from keras.models import Sequential import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) numbers_lables_data = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') x_test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') y_train = numbers_lables_data[['label']] x_train = numbers_lables_data.iloc[:, 1:] x_train = np.array(x_train).reshape((x_train.shape[0], 28, 28, 1)) x_test = np.array(x_test).reshape((x_test.shape[0], 28, 28, 1)) x_train = x_train / 255 x_test = x_test / 255 model = Sequential() model.add(Input((28, 28, 1))) model.add(Conv2D(128, 3, activation='relu', padding='same')) model.add(AveragePooling2D(2)) model.add(Conv2D(64, 3, activation='relu', padding='same')) model.add(AveragePooling2D(2)) model.add(Conv2D(32, 3, activation='relu', padding='same')) model.add(AveragePooling2D(2)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(32, activation='relu')) model.add(Dense(10, activation='softmax')) model.compile(optimizer='adam', loss=sparse_categorical_crossentropy, metrics=['accuracy']) model.summary() model.fit(x_train, y_train, epochs=100, validation_split=0.1)
code
74052611/cell_14
[ "text_plain_output_1.png" ]
from keras.layers import Conv2D,MaxPool2D,AveragePooling2D,Flatten,Dense,Input from keras.losses import categorical_crossentropy,sparse_categorical_crossentropy from keras.models import Sequential model = Sequential() model.add(Input((28, 28, 1))) model.add(Conv2D(128, 3, activation='relu', padding='same')) model.add(AveragePooling2D(2)) model.add(Conv2D(64, 3, activation='relu', padding='same')) model.add(AveragePooling2D(2)) model.add(Conv2D(32, 3, activation='relu', padding='same')) model.add(AveragePooling2D(2)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(32, activation='relu')) model.add(Dense(10, activation='softmax')) model.compile(optimizer='adam', loss=sparse_categorical_crossentropy, metrics=['accuracy']) model.summary()
code
49116933/cell_21
[ "text_plain_output_1.png" ]
from Sastrawi.Stemmer.StemmerFactory import StemmerFactory from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) factory = StemmerFactory() stemmer = factory.create_stemmer() Encoder = LabelEncoder() Tfidf_vect = TfidfVectorizer() data_train = pd.read_csv('../input/indonesiafalsenews/Data_latih.csv') false_news = data_train[data_train['label'] == 1].sample(frac=1) true_fact = data_train[data_train['label'] == 0] df = true_fact.append(false_news[:len(true_fact) + 200]) df feature = df['narasi'] label = df['label'] lower = [stemmer.stem(row.lower()) for row in feature] lower Tfidf_vect.fit([''.join(row) for row in X_train])
code
49116933/cell_13
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_train = pd.read_csv('../input/indonesiafalsenews/Data_latih.csv') false_news = data_train[data_train['label'] == 1].sample(frac=1) true_fact = data_train[data_train['label'] == 0] df = true_fact.append(false_news[:len(true_fact) + 200]) df
code
49116933/cell_25
[ "text_plain_output_1.png" ]
from Sastrawi.Stemmer.StemmerFactory import StemmerFactory from sklearn import svm from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import accuracy_score from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) factory = StemmerFactory() stemmer = factory.create_stemmer() Encoder = LabelEncoder() Tfidf_vect = TfidfVectorizer() data_train = pd.read_csv('../input/indonesiafalsenews/Data_latih.csv') false_news = data_train[data_train['label'] == 1].sample(frac=1) true_fact = data_train[data_train['label'] == 0] df = true_fact.append(false_news[:len(true_fact) + 200]) df feature = df['narasi'] label = df['label'] lower = [stemmer.stem(row.lower()) for row in feature] lower y_train = Encoder.fit_transform(y_train) y_test = Encoder.fit_transform(y_test) y_train Tfidf_vect.fit([''.join(row) for row in X_train]) X_train_Tfidf = Tfidf_vect.transform([' '.join(row) for row in X_train]) X_test_Tfidf = Tfidf_vect.transform([' '.join(row) for row in X_test]) SVM = svm.SVC(C=1.0, kernel='linear', degree=1, gamma='auto', verbose=True) SVM.fit(X_train_Tfidf, y_train) predictions_SVM = SVM.predict(X_test_Tfidf) print('SVM Accuracy Score -> ', accuracy_score(predictions_SVM, y_test) * 100)
code
49116933/cell_4
[ "text_plain_output_1.png" ]
import nltk import numpy as np import numpy as np # linear algebra np.random.seed(42) nltk.download('punkt')
code
49116933/cell_20
[ "text_plain_output_1.png" ]
from Sastrawi.Stemmer.StemmerFactory import StemmerFactory from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import LabelEncoder factory = StemmerFactory() stemmer = factory.create_stemmer() Encoder = LabelEncoder() Tfidf_vect = TfidfVectorizer() y_train = Encoder.fit_transform(y_train) y_test = Encoder.fit_transform(y_test) y_train
code
49116933/cell_2
[ "text_plain_output_1.png" ]
!pip install Sastrawi
code
49116933/cell_11
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_train = pd.read_csv('../input/indonesiafalsenews/Data_latih.csv') data_train['label'].value_counts()
code
49116933/cell_19
[ "text_plain_output_1.png" ]
print('X_train : ', len(X_train)) print('X_test : ', len(X_test))
code
49116933/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
49116933/cell_16
[ "text_plain_output_1.png" ]
from Sastrawi.Stemmer.StemmerFactory import StemmerFactory from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) factory = StemmerFactory() stemmer = factory.create_stemmer() Encoder = LabelEncoder() Tfidf_vect = TfidfVectorizer() data_train = pd.read_csv('../input/indonesiafalsenews/Data_latih.csv') false_news = data_train[data_train['label'] == 1].sample(frac=1) true_fact = data_train[data_train['label'] == 0] df = true_fact.append(false_news[:len(true_fact) + 200]) df feature = df['narasi'] label = df['label'] lower = [stemmer.stem(row.lower()) for row in feature] lower
code
49116933/cell_17
[ "text_html_output_1.png" ]
from Sastrawi.Stemmer.StemmerFactory import StemmerFactory from nltk.tokenize import word_tokenize from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) factory = StemmerFactory() stemmer = factory.create_stemmer() Encoder = LabelEncoder() Tfidf_vect = TfidfVectorizer() data_train = pd.read_csv('../input/indonesiafalsenews/Data_latih.csv') false_news = data_train[data_train['label'] == 1].sample(frac=1) true_fact = data_train[data_train['label'] == 0] df = true_fact.append(false_news[:len(true_fact) + 200]) df feature = df['narasi'] label = df['label'] lower = [stemmer.stem(row.lower()) for row in feature] lower tokens = [word_tokenize(element) for element in lower] tokens
code
49116933/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_train = pd.read_csv('../input/indonesiafalsenews/Data_latih.csv') data_train
code
49116933/cell_27
[ "text_plain_output_1.png" ]
from Sastrawi.Stemmer.StemmerFactory import StemmerFactory from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import accuracy_score from sklearn.preprocessing import LabelEncoder import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) factory = StemmerFactory() stemmer = factory.create_stemmer() Encoder = LabelEncoder() Tfidf_vect = TfidfVectorizer() data_train = pd.read_csv('../input/indonesiafalsenews/Data_latih.csv') false_news = data_train[data_train['label'] == 1].sample(frac=1) true_fact = data_train[data_train['label'] == 0] df = true_fact.append(false_news[:len(true_fact) + 200]) df feature = df['narasi'] label = df['label'] lower = [stemmer.stem(row.lower()) for row in feature] lower y_train = Encoder.fit_transform(y_train) y_test = Encoder.fit_transform(y_test) y_train Tfidf_vect.fit([''.join(row) for row in X_train]) X_train_Tfidf = Tfidf_vect.transform([' '.join(row) for row in X_train]) X_test_Tfidf = Tfidf_vect.transform([' '.join(row) for row in X_test]) rf = RandomForestClassifier() rf.fit(X_train_Tfidf, y_train) prediction_rf = rf.predict(X_test_Tfidf) print('RandomForest Accuracy Score -> ', accuracy_score(prediction_rf, y_test) * 100)
code
89125359/cell_42
[ "text_plain_output_1.png" ]
from pathlib import Path import ipywidgets as widgets path = Path().cwd() / 'dogs' lst = get_image_files(path) lst failed = verify_images(lst) failed failed.map(Path.unlink) dog = DataBlock(blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, item_tfms=Resize(128)) dls = dog.dataloaders(path) dog = dog.new(item_tfms=RandomResizedCrop(128, min_scale=0.5), batch_tfms=aug_transforms()) dls = dog.dataloaders(path) learn = cnn_learner(dls, resnet18, metrics=error_rate) lr_min, lr_steep, lr_slide, lr_valley = learn.lr_find(suggest_funcs=(minimum, steep, slide, valley)) learn.fine_tune(5, 0.0006918309954926372) learn.export() path = Path() path.ls(file_exts='.pkl') btn_upload = widgets.FileUpload() btn_upload img = PILImage.create(btn_upload.data[-1]) img out_pl = widgets.Output() out_pl.clear_output() out_pl learn_inf = load_learner(path / 'export.pkl') pred, pred_idx, probs = learn_inf.predict(img)
code
89125359/cell_21
[ "text_plain_output_1.png" ]
from pathlib import Path path = Path().cwd() / 'dogs' dog = DataBlock(blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, item_tfms=Resize(128)) dls = dog.dataloaders(path) dog = dog.new(item_tfms=RandomResizedCrop(128, min_scale=0.5), batch_tfms=aug_transforms()) dls = dog.dataloaders(path) learn = cnn_learner(dls, resnet18, metrics=error_rate)
code
89125359/cell_9
[ "text_plain_output_1.png" ]
from pathlib import Path path = Path().cwd() / 'dogs' lst = get_image_files(path) lst
code
89125359/cell_4
[ "text_plain_output_1.png" ]
!pip install -Uqq fastbook import fastbook #import the fast.ai library from fastbook import * #dont't worry, it's designed to work with import * fastbook.setup_book() from fastai.vision.widgets import * #import the image scraper by @JoeDockrill, website: https://joedockrill.github.io/blog/2020/09/18/jmd-imagescraper-library/ from jmd_imagescraper.core import * from pathlib import Path from jmd_imagescraper.imagecleaner import * import ipywidgets as widgets
code
89125359/cell_23
[ "text_plain_output_1.png" ]
from pathlib import Path path = Path().cwd() / 'dogs' dog = DataBlock(blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, item_tfms=Resize(128)) dls = dog.dataloaders(path) dog = dog.new(item_tfms=RandomResizedCrop(128, min_scale=0.5), batch_tfms=aug_transforms()) dls = dog.dataloaders(path) learn = cnn_learner(dls, resnet18, metrics=error_rate) lr_min, lr_steep, lr_slide, lr_valley = learn.lr_find(suggest_funcs=(minimum, steep, slide, valley))
code
89125359/cell_33
[ "text_html_output_2.png", "text_html_output_1.png" ]
from pathlib import Path path = Path().cwd() / 'dogs' lst = get_image_files(path) lst failed = verify_images(lst) failed failed.map(Path.unlink) dog = DataBlock(blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, item_tfms=Resize(128)) dls = dog.dataloaders(path) dog = dog.new(item_tfms=RandomResizedCrop(128, min_scale=0.5), batch_tfms=aug_transforms()) dls = dog.dataloaders(path) learn = cnn_learner(dls, resnet18, metrics=error_rate) lr_min, lr_steep, lr_slide, lr_valley = learn.lr_find(suggest_funcs=(minimum, steep, slide, valley)) learn.fine_tune(5, 0.0006918309954926372) learn.export() path = Path() path.ls(file_exts='.pkl')
code
89125359/cell_44
[ "image_output_1.png" ]
import ipywidgets as widgets btn_upload = widgets.FileUpload() btn_upload img = PILImage.create(btn_upload.data[-1]) img out_pl = widgets.Output() out_pl.clear_output() out_pl lbl_pred = widgets.Label() lbl_pred.value = f'Prediction: {pred}; Probability: {probs[pred_idx]:.04f}' lbl_pred
code
89125359/cell_40
[ "text_plain_output_1.png" ]
import ipywidgets as widgets btn_upload = widgets.FileUpload() btn_upload img = PILImage.create(btn_upload.data[-1]) img out_pl = widgets.Output() out_pl.clear_output() with out_pl: display(img.to_thumb(128, 128)) out_pl
code
89125359/cell_29
[ "image_output_1.png" ]
from pathlib import Path path = Path().cwd() / 'dogs' dog = DataBlock(blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, item_tfms=Resize(128)) dls = dog.dataloaders(path) dog = dog.new(item_tfms=RandomResizedCrop(128, min_scale=0.5), batch_tfms=aug_transforms()) dls = dog.dataloaders(path) learn = cnn_learner(dls, resnet18, metrics=error_rate) lr_min, lr_steep, lr_slide, lr_valley = learn.lr_find(suggest_funcs=(minimum, steep, slide, valley)) learn.fine_tune(5, 0.0006918309954926372) cleaner = ImageClassifierCleaner(learn) cleaner
code
89125359/cell_26
[ "text_plain_output_1.png" ]
from pathlib import Path path = Path().cwd() / 'dogs' dog = DataBlock(blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, item_tfms=Resize(128)) dls = dog.dataloaders(path) dog = dog.new(item_tfms=RandomResizedCrop(128, min_scale=0.5), batch_tfms=aug_transforms()) dls = dog.dataloaders(path) learn = cnn_learner(dls, resnet18, metrics=error_rate) lr_min, lr_steep, lr_slide, lr_valley = learn.lr_find(suggest_funcs=(minimum, steep, slide, valley)) learn.fine_tune(5, 0.0006918309954926372)
code
89125359/cell_11
[ "text_plain_output_1.png" ]
from pathlib import Path path = Path().cwd() / 'dogs' lst = get_image_files(path) lst len(lst)
code
89125359/cell_19
[ "text_plain_output_5.png", "text_html_output_4.png", "text_plain_output_4.png", "text_html_output_2.png", "text_html_output_5.png", "text_plain_output_6.png", "text_plain_output_3.png", "text_html_output_1.png", "text_plain_output_2.png", "text_plain_output_1.png", "text_html_output_3.png" ]
from pathlib import Path path = Path().cwd() / 'dogs' dog = DataBlock(blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, item_tfms=Resize(128)) dls = dog.dataloaders(path) dog = dog.new(item_tfms=RandomResizedCrop(128, min_scale=0.5), batch_tfms=aug_transforms()) dls = dog.dataloaders(path) dls.train.show_batch(max_n=8, nrows=2)
code
89125359/cell_7
[ "text_plain_output_1.png" ]
from pathlib import Path path = Path().cwd() / 'dogs' duckduckgo_search(path, 'bulldog', 'bulldog', max_results=200) duckduckgo_search(path, 'shih tzu', 'shih tzu', max_results=200) duckduckgo_search(path, 'dalmatian', 'dalmatian', max_results=200) duckduckgo_search(path, 'golden retriever', 'golden retriever', max_results=200) duckduckgo_search(path, 'german shepherd', 'german shepherd', max_results=200)
code
89125359/cell_28
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from pathlib import Path path = Path().cwd() / 'dogs' dog = DataBlock(blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, item_tfms=Resize(128)) dls = dog.dataloaders(path) dog = dog.new(item_tfms=RandomResizedCrop(128, min_scale=0.5), batch_tfms=aug_transforms()) dls = dog.dataloaders(path) learn = cnn_learner(dls, resnet18, metrics=error_rate) lr_min, lr_steep, lr_slide, lr_valley = learn.lr_find(suggest_funcs=(minimum, steep, slide, valley)) learn.fine_tune(5, 0.0006918309954926372) interp = ClassificationInterpretation.from_learner(learn) interp.plot_top_losses(5, nrows=1)
code
89125359/cell_8
[ "text_plain_output_1.png" ]
from pathlib import Path path = Path().cwd() / 'dogs' path
code
89125359/cell_38
[ "image_output_1.png" ]
import ipywidgets as widgets btn_upload = widgets.FileUpload() btn_upload img = PILImage.create(btn_upload.data[-1]) img
code
89125359/cell_3
[ "text_plain_output_1.png" ]
pip install jmd_imagescraper;
code
89125359/cell_46
[ "text_plain_output_1.png" ]
import ipywidgets as widgets btn_upload = widgets.FileUpload() btn_upload img = PILImage.create(btn_upload.data[-1]) img out_pl = widgets.Output() out_pl.clear_output() out_pl lbl_pred = widgets.Label() lbl_pred.value = f'Prediction: {pred}; Probability: {probs[pred_idx]:.04f}' lbl_pred btn_run = widgets.Button(description='Classify') btn_run
code
89125359/cell_24
[ "text_plain_output_1.png" ]
print(f' minimum:{lr_min}\n steep:{lr_steep}\n slide:{lr_slide}\n valley:{lr_valley}')
code
89125359/cell_27
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from pathlib import Path path = Path().cwd() / 'dogs' dog = DataBlock(blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, item_tfms=Resize(128)) dls = dog.dataloaders(path) dog = dog.new(item_tfms=RandomResizedCrop(128, min_scale=0.5), batch_tfms=aug_transforms()) dls = dog.dataloaders(path) learn = cnn_learner(dls, resnet18, metrics=error_rate) lr_min, lr_steep, lr_slide, lr_valley = learn.lr_find(suggest_funcs=(minimum, steep, slide, valley)) learn.fine_tune(5, 0.0006918309954926372) interp = ClassificationInterpretation.from_learner(learn) interp.plot_confusion_matrix()
code
89125359/cell_12
[ "text_plain_output_1.png" ]
from pathlib import Path path = Path().cwd() / 'dogs' lst = get_image_files(path) lst failed = verify_images(lst) failed
code
89125359/cell_36
[ "image_output_1.png" ]
import ipywidgets as widgets btn_upload = widgets.FileUpload() btn_upload
code
105214315/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/emotions-in-text/Emotion_final.csv') dataset.sample(5) def get_longest_text(texts): longest_input = 0 for text in texts: text_len = len(text.split()) longest_input = max(longest_input, text_len) return longest_input longest_input = get_longest_text(dataset['Text']) longest_input def get_total_words(texts): total_words = [] for text in texts: for word in text.split(): if word not in total_words: total_words.append(word) return len(total_words) word_count = get_total_words(dataset['Text']) word_count
code
105214315/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/emotions-in-text/Emotion_final.csv') dataset.sample(5) def get_longest_text(texts): longest_input = 0 for text in texts: text_len = len(text.split()) longest_input = max(longest_input, text_len) return longest_input longest_input = get_longest_text(dataset['Text']) longest_input
code
105214315/cell_25
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder from tensorflow.keras.utils import to_categorical import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/emotions-in-text/Emotion_final.csv') dataset.sample(5) from sklearn.preprocessing import LabelEncoder from tensorflow.keras.utils import to_categorical encoder = LabelEncoder() y_encoder = encoder.fit_transform(dataset['Emotion']) y = to_categorical(y_encoder) y[0]
code
105214315/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/emotions-in-text/Emotion_final.csv') dataset.sample(5) dataset.head(5)
code
105214315/cell_23
[ "text_plain_output_1.png" ]
from keras.layers import Dense, Dropout from keras.layers import Flatten from keras.layers.embeddings import Embedding from keras.models import Sequential from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.text import one_hot from keras.preprocessing.text import one_hot import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/emotions-in-text/Emotion_final.csv') dataset.sample(5) def get_longest_text(texts): longest_input = 0 for text in texts: text_len = len(text.split()) longest_input = max(longest_input, text_len) return longest_input longest_input = get_longest_text(dataset['Text']) longest_input vocab_size = 21000 encoded_docs = [one_hot(d, vocab_size) for d in dataset['Text']] max_length = longest_input padded_docs = pad_sequences(encoded_docs, maxlen=max_length, padding='post') model = Sequential() model.add(Embedding(vocab_size, 132, input_length=max_length)) model.add(Flatten()) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(6, activation='relu')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) print(model.summary())
code
105214315/cell_30
[ "text_plain_output_1.png" ]
(X_train.shape, y_train.shape)
code
105214315/cell_33
[ "text_plain_output_1.png" ]
from keras.layers import Dense, Dropout from keras.layers import Flatten from keras.layers.embeddings import Embedding from keras.models import Sequential from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.text import one_hot from keras.preprocessing.text import one_hot import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/emotions-in-text/Emotion_final.csv') dataset.sample(5) def get_longest_text(texts): longest_input = 0 for text in texts: text_len = len(text.split()) longest_input = max(longest_input, text_len) return longest_input longest_input = get_longest_text(dataset['Text']) longest_input vocab_size = 21000 encoded_docs = [one_hot(d, vocab_size) for d in dataset['Text']] max_length = longest_input padded_docs = pad_sequences(encoded_docs, maxlen=max_length, padding='post') model = Sequential() model.add(Embedding(vocab_size, 132, input_length=max_length)) model.add(Flatten()) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(6, activation='relu')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) (X_train.shape, y_train.shape) history = model.fit(X_train, y_train, epochs=50, validation_data=(X_test, y_test))
code
105214315/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/emotions-in-text/Emotion_final.csv') dataset.sample(5) dataset['Text'][0]
code
105214315/cell_26
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder from tensorflow.keras.utils import to_categorical import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/emotions-in-text/Emotion_final.csv') dataset.sample(5) from sklearn.preprocessing import LabelEncoder from tensorflow.keras.utils import to_categorical encoder = LabelEncoder() y_encoder = encoder.fit_transform(dataset['Emotion']) y = to_categorical(y_encoder) y[0] y
code
105214315/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/emotions-in-text/Emotion_final.csv') dataset.sample(5) len(dataset['Text'][1].split())
code
105214315/cell_19
[ "text_plain_output_1.png" ]
from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.text import one_hot import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/emotions-in-text/Emotion_final.csv') dataset.sample(5) def get_longest_text(texts): longest_input = 0 for text in texts: text_len = len(text.split()) longest_input = max(longest_input, text_len) return longest_input longest_input = get_longest_text(dataset['Text']) longest_input vocab_size = 21000 encoded_docs = [one_hot(d, vocab_size) for d in dataset['Text']] max_length = longest_input padded_docs = pad_sequences(encoded_docs, maxlen=max_length, padding='post') print(padded_docs[0])
code
105214315/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105214315/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/emotions-in-text/Emotion_final.csv') dataset.sample(5) dataset.info()
code
105214315/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/emotions-in-text/Emotion_final.csv') dataset.sample(5)
code
105214315/cell_17
[ "text_plain_output_1.png" ]
from keras.preprocessing.text import one_hot import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/emotions-in-text/Emotion_final.csv') dataset.sample(5) vocab_size = 21000 encoded_docs = [one_hot(d, vocab_size) for d in dataset['Text']] print(encoded_docs[0])
code
105214315/cell_31
[ "text_plain_output_1.png" ]
(X_train.shape, y_train.shape) y_train
code
105214315/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/emotions-in-text/Emotion_final.csv') dataset.sample(5) dataset['Emotion'][0]
code
105214315/cell_36
[ "text_plain_output_1.png" ]
from keras.layers import Dense, Dropout from keras.layers import Flatten from keras.layers.embeddings import Embedding from keras.models import Sequential from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.text import one_hot from keras.preprocessing.text import one_hot import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dataset = pd.read_csv('../input/emotions-in-text/Emotion_final.csv') dataset.sample(5) def get_longest_text(texts): longest_input = 0 for text in texts: text_len = len(text.split()) longest_input = max(longest_input, text_len) return longest_input longest_input = get_longest_text(dataset['Text']) longest_input vocab_size = 21000 encoded_docs = [one_hot(d, vocab_size) for d in dataset['Text']] max_length = longest_input padded_docs = pad_sequences(encoded_docs, maxlen=max_length, padding='post') model = Sequential() model.add(Embedding(vocab_size, 132, input_length=max_length)) model.add(Flatten()) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(6, activation='relu')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) (X_train.shape, y_train.shape) history = model.fit(X_train, y_train, epochs=50, validation_data=(X_test, y_test)) plt.plot(history.history['accuracy'], label='accuracy') plt.plot(history.history['val_accuracy'], label='val_accuracy') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.ylim([0.0, 1]) plt.legend(loc='lower right') test_loss, test_acc = model.evaluate(X_test, y_test, verbose=2)
code
129040406/cell_13
[ "text_plain_output_1.png" ]
X_test.head()
code
129040406/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd from sklearn.model_selection import train_test_split CSV_PATH = '/kaggle/input/iris/Iris.csv' ID = 'Id' TARGET = 'Species' TEST_SIZE = 0.3 VAL_SIZE = 0.3 SEED = 2023 total = pd.read_csv(CSV_PATH) TOTAL_LEN = len(total) TOTAL_LEN
code
129040406/cell_20
[ "text_plain_output_1.png" ]
y_val.value_counts()
code
129040406/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd from sklearn.model_selection import train_test_split CSV_PATH = '/kaggle/input/iris/Iris.csv' ID = 'Id' TARGET = 'Species' TEST_SIZE = 0.3 VAL_SIZE = 0.3 SEED = 2023 total = pd.read_csv(CSV_PATH) total[TARGET].value_counts()
code
129040406/cell_11
[ "text_plain_output_1.png" ]
X_trainval.head()
code
129040406/cell_19
[ "text_plain_output_1.png" ]
X_val.head()
code
129040406/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split CSV_PATH = '/kaggle/input/iris/Iris.csv' ID = 'Id' TARGET = 'Species' TEST_SIZE = 0.3 VAL_SIZE = 0.3 SEED = 2023
code
129040406/cell_18
[ "text_html_output_1.png" ]
y_train.value_counts()
code
129040406/cell_16
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split import numpy as np import pandas as pd from sklearn.model_selection import train_test_split CSV_PATH = '/kaggle/input/iris/Iris.csv' ID = 'Id' TARGET = 'Species' TEST_SIZE = 0.3 VAL_SIZE = 0.3 SEED = 2023 y_trainval.value_counts() X_train, X_val, y_train, y_val = train_test_split(X_trainval, y_trainval, test_size=VAL_SIZE, random_state=SEED, stratify=y_trainval) print('train set = ', len(X_train), ' val set', len(X_val))
code
129040406/cell_3
[ "text_html_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd from sklearn.model_selection import train_test_split CSV_PATH = '/kaggle/input/iris/Iris.csv' ID = 'Id' TARGET = 'Species' TEST_SIZE = 0.3 VAL_SIZE = 0.3 SEED = 2023 total = pd.read_csv(CSV_PATH) total.head()
code
129040406/cell_17
[ "text_plain_output_1.png" ]
X_train.head()
code
129040406/cell_14
[ "text_plain_output_1.png" ]
y_test.value_counts()
code
129040406/cell_10
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd import numpy as np import pandas as pd from sklearn.model_selection import train_test_split CSV_PATH = '/kaggle/input/iris/Iris.csv' ID = 'Id' TARGET = 'Species' TEST_SIZE = 0.3 VAL_SIZE = 0.3 SEED = 2023 total = pd.read_csv(CSV_PATH) y = total[TARGET] X = total.drop([TARGET], axis=1) X_trainval, X_test, y_trainval, y_test = train_test_split(X, y, test_size=TEST_SIZE, random_state=SEED, stratify=y) print('train+val set = ', len(X_trainval), ' test set', len(X_test))
code
129040406/cell_12
[ "text_plain_output_1.png" ]
y_trainval.value_counts()
code
129040406/cell_5
[ "text_html_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd from sklearn.model_selection import train_test_split CSV_PATH = '/kaggle/input/iris/Iris.csv' ID = 'Id' TARGET = 'Species' TEST_SIZE = 0.3 VAL_SIZE = 0.3 SEED = 2023 total = pd.read_csv(CSV_PATH) total[TARGET].unique()
code
2025748/cell_13
[ "text_html_output_1.png" ]
from sklearn.model_selection import StratifiedShuffleSplit import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) housing = pd.read_csv('../input/housing.csv') housing['income_cat'] = np.ceil(housing['median_income'] / 1.5) housing['income_cat'].where(housing['income_cat'] < 5, 5.0, inplace=True) from sklearn.model_selection import StratifiedShuffleSplit split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42) for train_index, test_index in split.split(housing, housing['income_cat']): strat_train_set = housing.loc[train_index] strat_test_set = housing.loc[test_index] housing = strat_train_set.copy() corr_matrix = housing.corr() corr_matrix['median_house_value'].sort_values(ascending=False) housing.plot(kind='scatter', x='median_income', y='median_house_value', alpha=0.1)
code
2025748/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) housing = pd.read_csv('../input/housing.csv') housing['ocean_proximity'].value_counts()
code
2025748/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt housing.hist(bins=50, figsize=(20, 15)) plt.show()
code
2025748/cell_2
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) housing = pd.read_csv('../input/housing.csv') housing.head()
code
2025748/cell_11
[ "text_plain_output_1.png" ]
from sklearn.model_selection import StratifiedShuffleSplit import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) housing = pd.read_csv('../input/housing.csv') housing['income_cat'] = np.ceil(housing['median_income'] / 1.5) housing['income_cat'].where(housing['income_cat'] < 5, 5.0, inplace=True) from sklearn.model_selection import StratifiedShuffleSplit split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42) for train_index, test_index in split.split(housing, housing['income_cat']): strat_train_set = housing.loc[train_index] strat_test_set = housing.loc[test_index] housing = strat_train_set.copy() corr_matrix = housing.corr() corr_matrix['median_house_value'].sort_values(ascending=False)
code