path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
128030195/cell_14 | [
"text_plain_output_1.png"
] | from keras.models import Model, load_model
from keras.utils.vis_utils import plot_model
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.layers import Dense, Flatten, GlobalAveragePooling2D, Dropout
from tensorflow.keras.layers import Dense, Input, Conv2D, MaxPool2D, Flatten ,Activation,Dropout,BatchNormalization
from tensorflow.keras.models import Model
from tensorflow.keras.models import Sequential
from tensorflow.keras.models import Sequential
import tensorflow as tf
data_dir = '/kaggle/input/rgb-arabic-alphabets-sign-language-dataset-jpg/images_after'
images = tf.keras.utils.image_dataset_from_directory(data_dir, labels='inferred', label_mode='int', class_names=None, color_mode='rgb', batch_size=32, image_size=(256, 256), shuffle=True, seed=123, validation_split=0.2, subset='training', interpolation='bilinear')
data_dir = '/kaggle/input/rgb-arabic-alphabets-sign-language-dataset-jpg/images_after'
images_validation = tf.keras.utils.image_dataset_from_directory(data_dir, labels='inferred', label_mode='int', class_names=None, color_mode='rgb', batch_size=32, image_size=(256, 256), shuffle=True, seed=123, validation_split=0.2, subset='validation', interpolation='bilinear')
early_stop = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=2, restore_best_weights=True)
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.models import Model
import tensorflow.keras as keras
resnet = ResNet50(include_top=False, weights='imagenet', input_shape=(256, 256, 3), pooling='max')
output = resnet.layers[-1].output
output = tf.keras.layers.Flatten()(output)
resnet = Model(resnet.input, output)
res_name = []
for layer in resnet.layers:
res_name.append(layer.name)
set_trainable = False
for layer in resnet.layers:
if layer.name in res_name[-22:]:
set_trainable = True
if set_trainable:
layer.trainable = True
else:
layer.trainable = False
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, GlobalAveragePooling2D, Dropout
model6 = Sequential()
model6.add(resnet)
model6.add(BatchNormalization())
model6.add(Dense(2048, activation='relu'))
model6.add(Dropout(0.2))
model6.add(Dense(1024, activation='relu'))
model6.add(Dropout(0.2))
model6.add(Dense(512, activation='relu'))
model6.add(Dropout(0.2))
model6.add(Dense(256, activation='relu'))
model6.add(Dropout(0.2))
model6.add(Dense(128, activation='relu'))
model6.add(Dropout(0.2))
model6.add(Dense(64, activation='relu'))
model6.add(Dropout(0.2))
model6.add(Dense(31, activation='softmax'))
model6.summary()
from keras.utils.vis_utils import plot_model
plot_model(model6, show_shapes=True, show_layer_names=True, to_file='model.png') | code |
128030195/cell_10 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from keras.models import Model, load_model
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.models import Model
import tensorflow as tf
data_dir = '/kaggle/input/rgb-arabic-alphabets-sign-language-dataset-jpg/images_after'
images = tf.keras.utils.image_dataset_from_directory(data_dir, labels='inferred', label_mode='int', class_names=None, color_mode='rgb', batch_size=32, image_size=(256, 256), shuffle=True, seed=123, validation_split=0.2, subset='training', interpolation='bilinear')
data_dir = '/kaggle/input/rgb-arabic-alphabets-sign-language-dataset-jpg/images_after'
images_validation = tf.keras.utils.image_dataset_from_directory(data_dir, labels='inferred', label_mode='int', class_names=None, color_mode='rgb', batch_size=32, image_size=(256, 256), shuffle=True, seed=123, validation_split=0.2, subset='validation', interpolation='bilinear')
early_stop = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=2, restore_best_weights=True)
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.models import Model
import tensorflow.keras as keras
resnet = ResNet50(include_top=False, weights='imagenet', input_shape=(256, 256, 3), pooling='max')
output = resnet.layers[-1].output
output = tf.keras.layers.Flatten()(output)
resnet = Model(resnet.input, output)
res_name = []
for layer in resnet.layers:
res_name.append(layer.name) | code |
128030195/cell_5 | [
"text_plain_output_35.png",
"text_plain_output_37.png",
"text_plain_output_5.png",
"text_plain_output_30.png",
"text_plain_output_15.png",
"text_plain_output_9.png",
"text_plain_output_40.png",
"text_plain_output_31.png",
"text_plain_output_20.png",
"text_plain_output_4.png",
"text_plain_output_13.png",
"text_plain_output_14.png",
"text_plain_output_32.png",
"text_plain_output_29.png",
"text_plain_output_27.png",
"text_plain_output_10.png",
"text_plain_output_6.png",
"text_plain_output_24.png",
"text_plain_output_21.png",
"text_plain_output_25.png",
"text_plain_output_18.png",
"text_plain_output_36.png",
"text_plain_output_3.png",
"text_plain_output_22.png",
"text_plain_output_38.png",
"text_plain_output_7.png",
"text_plain_output_16.png",
"text_plain_output_8.png",
"text_plain_output_26.png",
"text_plain_output_34.png",
"text_plain_output_23.png",
"text_plain_output_28.png",
"text_plain_output_2.png",
"text_plain_output_1.png",
"text_plain_output_33.png",
"text_plain_output_39.png",
"text_plain_output_19.png",
"text_plain_output_17.png",
"text_plain_output_11.png",
"text_plain_output_12.png"
] | import tensorflow as tf
data_dir = '/kaggle/input/rgb-arabic-alphabets-sign-language-dataset-jpg/images_after'
images = tf.keras.utils.image_dataset_from_directory(data_dir, labels='inferred', label_mode='int', class_names=None, color_mode='rgb', batch_size=32, image_size=(256, 256), shuffle=True, seed=123, validation_split=0.2, subset='training', interpolation='bilinear')
class_names = images.class_names
class_names | code |
90116663/cell_13 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np
a = np.random.randint(10, size=7)
b = np.random.randint(10, size=(3, 5))
c = np.random.randint(7, size=9, dtype=int)
d = np.array([1, 2, 3])
e = np.array([4, 5, 6])
f = np.concatenate([d, e])
g = np.array([7, 8, 9])
h = np.concatenate([f, g])
i = np.concatenate([d, e, g])
j = np.array([[1, 2, 3], [4, 5, 6]])
k = np.concatenate([j, j])
L = np.concatenate([j, j], axis=0)
m = np.concatenate([j, j], axis=1)
print(L)
print('---------')
print(m) | code |
90116663/cell_9 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np
a = np.random.randint(10, size=7)
b = np.random.randint(10, size=(3, 5))
c = np.random.randint(7, size=9, dtype=int)
d = np.array([1, 2, 3])
e = np.array([4, 5, 6])
f = np.concatenate([d, e])
print('f : ', f) | code |
90116663/cell_4 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np
a = np.random.randint(10, size=7)
b = np.random.randint(10, size=(3, 5))
print('a : ', a.ndim)
print('b : ', b.ndim) | code |
90116663/cell_6 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np
a = np.random.randint(10, size=7)
b = np.random.randint(10, size=(3, 5))
print('a : ', a.size)
print('b : ', b.size) | code |
90116663/cell_2 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np
print(np.random.randint(10, size=7)) | code |
90116663/cell_11 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np
a = np.random.randint(10, size=7)
b = np.random.randint(10, size=(3, 5))
c = np.random.randint(7, size=9, dtype=int)
d = np.array([1, 2, 3])
e = np.array([4, 5, 6])
f = np.concatenate([d, e])
g = np.array([7, 8, 9])
h = np.concatenate([f, g])
i = np.concatenate([d, e, g])
j = np.array([[1, 2, 3], [4, 5, 6]])
k = np.concatenate([j, j])
print(k) | code |
90116663/cell_7 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np
a = np.random.randint(10, size=7)
b = np.random.randint(10, size=(3, 5))
print(a.dtype)
print(b.dtype) | code |
90116663/cell_18 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np
a = np.random.randint(10, size=7)
b = np.random.randint(10, size=(3, 5))
c = np.random.randint(7, size=9, dtype=int)
d = np.array([1, 2, 3])
e = np.array([4, 5, 6])
f = np.concatenate([d, e])
g = np.array([7, 8, 9])
h = np.concatenate([f, g])
i = np.concatenate([d, e, g])
j = np.array([[1, 2, 3], [4, 5, 6]])
k = np.concatenate([j, j])
L = np.concatenate([j, j], axis=0)
m = np.concatenate([j, j], axis=1)
n = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
o, p, r = np.split(n, [3, 5])
s = np.arange(16).reshape(4, 4)
print(np.hsplit(s, [2])) | code |
90116663/cell_8 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np
a = np.random.randint(10, size=7)
b = np.random.randint(10, size=(3, 5))
c = np.random.randint(7, size=9, dtype=int)
print('c : ', c)
print()
print('3x3 matris hali : \n\n', c.reshape(3, 3)) | code |
90116663/cell_15 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np
a = np.random.randint(10, size=7)
b = np.random.randint(10, size=(3, 5))
c = np.random.randint(7, size=9, dtype=int)
d = np.array([1, 2, 3])
e = np.array([4, 5, 6])
f = np.concatenate([d, e])
g = np.array([7, 8, 9])
h = np.concatenate([f, g])
i = np.concatenate([d, e, g])
j = np.array([[1, 2, 3], [4, 5, 6]])
k = np.concatenate([j, j])
L = np.concatenate([j, j], axis=0)
m = np.concatenate([j, j], axis=1)
n = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
o, p, r = np.split(n, [3, 5])
print(o)
print(p)
print(r) | code |
90116663/cell_16 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np
a = np.random.randint(10, size=7)
b = np.random.randint(10, size=(3, 5))
c = np.random.randint(7, size=9, dtype=int)
d = np.array([1, 2, 3])
e = np.array([4, 5, 6])
f = np.concatenate([d, e])
g = np.array([7, 8, 9])
h = np.concatenate([f, g])
i = np.concatenate([d, e, g])
j = np.array([[1, 2, 3], [4, 5, 6]])
k = np.concatenate([j, j])
L = np.concatenate([j, j], axis=0)
m = np.concatenate([j, j], axis=1)
n = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
o, p, r = np.split(n, [3, 5])
s = np.arange(16).reshape(4, 4)
print(s) | code |
90116663/cell_17 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np
a = np.random.randint(10, size=7)
b = np.random.randint(10, size=(3, 5))
c = np.random.randint(7, size=9, dtype=int)
d = np.array([1, 2, 3])
e = np.array([4, 5, 6])
f = np.concatenate([d, e])
g = np.array([7, 8, 9])
h = np.concatenate([f, g])
i = np.concatenate([d, e, g])
j = np.array([[1, 2, 3], [4, 5, 6]])
k = np.concatenate([j, j])
L = np.concatenate([j, j], axis=0)
m = np.concatenate([j, j], axis=1)
n = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
o, p, r = np.split(n, [3, 5])
s = np.arange(16).reshape(4, 4)
print(np.vsplit(s, [2])) | code |
90116663/cell_14 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np
a = np.random.randint(10, size=7)
b = np.random.randint(10, size=(3, 5))
c = np.random.randint(7, size=9, dtype=int)
d = np.array([1, 2, 3])
e = np.array([4, 5, 6])
f = np.concatenate([d, e])
g = np.array([7, 8, 9])
h = np.concatenate([f, g])
i = np.concatenate([d, e, g])
j = np.array([[1, 2, 3], [4, 5, 6]])
k = np.concatenate([j, j])
L = np.concatenate([j, j], axis=0)
m = np.concatenate([j, j], axis=1)
n = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
print(np.split(n, [3, 5])) | code |
90116663/cell_10 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np
a = np.random.randint(10, size=7)
b = np.random.randint(10, size=(3, 5))
c = np.random.randint(7, size=9, dtype=int)
d = np.array([1, 2, 3])
e = np.array([4, 5, 6])
f = np.concatenate([d, e])
g = np.array([7, 8, 9])
h = np.concatenate([f, g])
print(h)
print('-------------------')
i = np.concatenate([d, e, g])
print(i) | code |
90116663/cell_5 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np
a = np.random.randint(10, size=7)
b = np.random.randint(10, size=(3, 5))
print('a : ', a.shape)
print('b : ', b.shape) | code |
74042282/cell_6 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from google.colab import drive
from tqdm import tqdm
import glob
import json
import numpy as np
import os
import os
def is_in_ipython():
"""Is the code running in the ipython environment (jupyter including)"""
program_name = os.path.basename(os.getenv('_', ''))
if 'jupyter-notebook' in program_name or 'ipython' in program_name or 'jupyter' in program_name or ('JPY_PARENT_PID' in os.environ):
return True
else:
return False
def is_in_colab():
if not is_in_ipython():
return False
try:
from google import colab
return True
except:
return False
def is_in_kaggle_kernal():
if 'kaggle' in os.environ['PYTHONPATH']:
return True
else:
return False
if is_in_colab():
from google.colab import drive
drive.mount('/content/gdrive')
os.environ['TRIDENT_BACKEND'] = 'pytorch'
kaggle_kernal = None
if is_in_kaggle_kernal():
os.environ['TRIDENT_HOME'] = './trident'
elif is_in_colab():
os.environ['TRIDENT_HOME'] = '/content/gdrive/My Drive/trident'
class_names = ['未配戴口罩', '正確配戴口罩', '未正確配戴口罩', '配戴無防護能力口罩']
palette = [(0, 255, 255), (255, 255, 128), (255, 0, 255), (0, 255, 0)]
imgs = glob.glob('../input/maskedfacesdetection/imgs/*.*g')
path_dict = {}
for im_path in imgs:
folder, filename = os.path.split(os.path.normpath(im_path))
folder, file, ext = split_path(filename)
path_dict[file] = im_path
annos = OrderedDict()
jsons = glob.glob('../input/maskedfacesdetection/tags/*.json')
images = []
boxes = []
for j in tqdm(range(len(jsons))):
j_item = jsons[j]
try:
folder, file, ext = split_path(j_item)
box_collection = []
label_collection = []
if file in path_dict and os.path.exists(path_dict[file]):
img_path = path_dict[file]
f = open(j_item, 'r', encoding='utf-8-sig')
im = image2array(img_path)
tagging = json.load(f)
w = im.shape[1]
h = im.shape[0]
if len(tagging['outputs']) > 0 and len(tagging['outputs']['object']) > 0:
folder, file, ext = split_path(img_path)
annos[file + ext] = []
for i in range(len(tagging['outputs']['object'])):
tag = tagging['outputs']['object'][i]
label = int(tag['name']) + 1
x1 = max(tag['bndbox']['xmin'], 0)
y1 = max(tag['bndbox']['ymin'], 0)
x2 = min(tag['bndbox']['xmax'], w)
y2 = min(tag['bndbox']['ymax'], h)
bbox = [x1, y1, x2, y2, label]
annos[file + ext].append(np.array([x1, y1, x2, y2, label]))
box_collection.append(bbox)
box_collection = np.array(box_collection, dtype=np.float32)
boxes.append(box_collection)
images.append(img_path)
except:
pickle_it('annos1.pkl', annos)
print(boxes[:20])
print('')
print(images[:20]) | code |
74042282/cell_8 | [
"text_plain_output_1.png"
] | from PIL import Image, ImageDraw
from google.colab import drive
from tqdm import tqdm
import glob
import json
import numpy as np
import os
import random
import os
def is_in_ipython():
"""Is the code running in the ipython environment (jupyter including)"""
program_name = os.path.basename(os.getenv('_', ''))
if 'jupyter-notebook' in program_name or 'ipython' in program_name or 'jupyter' in program_name or ('JPY_PARENT_PID' in os.environ):
return True
else:
return False
def is_in_colab():
if not is_in_ipython():
return False
try:
from google import colab
return True
except:
return False
def is_in_kaggle_kernal():
if 'kaggle' in os.environ['PYTHONPATH']:
return True
else:
return False
if is_in_colab():
from google.colab import drive
drive.mount('/content/gdrive')
os.environ['TRIDENT_BACKEND'] = 'pytorch'
kaggle_kernal = None
if is_in_kaggle_kernal():
os.environ['TRIDENT_HOME'] = './trident'
elif is_in_colab():
os.environ['TRIDENT_HOME'] = '/content/gdrive/My Drive/trident'
class_names = ['未配戴口罩', '正確配戴口罩', '未正確配戴口罩', '配戴無防護能力口罩']
palette = [(0, 255, 255), (255, 255, 128), (255, 0, 255), (0, 255, 0)]
imgs = glob.glob('../input/maskedfacesdetection/imgs/*.*g')
path_dict = {}
for im_path in imgs:
folder, filename = os.path.split(os.path.normpath(im_path))
folder, file, ext = split_path(filename)
path_dict[file] = im_path
annos = OrderedDict()
jsons = glob.glob('../input/maskedfacesdetection/tags/*.json')
images = []
boxes = []
for j in tqdm(range(len(jsons))):
j_item = jsons[j]
try:
folder, file, ext = split_path(j_item)
box_collection = []
label_collection = []
if file in path_dict and os.path.exists(path_dict[file]):
img_path = path_dict[file]
f = open(j_item, 'r', encoding='utf-8-sig')
im = image2array(img_path)
tagging = json.load(f)
w = im.shape[1]
h = im.shape[0]
if len(tagging['outputs']) > 0 and len(tagging['outputs']['object']) > 0:
folder, file, ext = split_path(img_path)
annos[file + ext] = []
for i in range(len(tagging['outputs']['object'])):
tag = tagging['outputs']['object'][i]
label = int(tag['name']) + 1
x1 = max(tag['bndbox']['xmin'], 0)
y1 = max(tag['bndbox']['ymin'], 0)
x2 = min(tag['bndbox']['xmax'], w)
y2 = min(tag['bndbox']['ymax'], h)
bbox = [x1, y1, x2, y2, label]
annos[file + ext].append(np.array([x1, y1, x2, y2, label]))
box_collection.append(bbox)
box_collection = np.array(box_collection, dtype=np.float32)
boxes.append(box_collection)
images.append(img_path)
except:
pickle_it('annos1.pkl', annos)
#示範如何讀取人的眶以及對應的關鍵點
from PIL import Image, ImageDraw
import builtins
def draw_sample(idx=0):
keys=annos.key_list
key_idx=keys[idx]
boxes=annos[keys[idx]]
pillow_img=array2image(image2array(os.path.join('../input/maskedfacesdetection/imgs/{0}'.format(key_idx))))
for box in boxes:
this_box = box[:4]
this_label = box[4]
thiscolor=palette[this_label-1]
pillow_img=plot_bbox(this_box, pillow_img, thiscolor,this_label, line_thickness=2)
draw = ImageDraw.Draw(pillow_img)
return pillow_img.resize((pillow_img.width*3,pillow_img.height*3))
draw_sample(random.choice(list(range(len(annos))))) | code |
74042282/cell_3 | [
"text_plain_output_1.png"
] | #為確保安裝最新版
!pip uninstall tridentx -y
!pip install ../input/trident/tridentx-0.7.3.20-py3-none-any.whl --upgrade
import re
import pandas
import json
import copy
import numpy as np
#調用trident api
import random
from tqdm import tqdm
import scipy
import time
import glob
import trident as T
from trident import *
from trident.models import rfbnet | code |
74042282/cell_10 | [
"application_vnd.jupyter.stderr_output_2.png",
"application_vnd.jupyter.stderr_output_4.png",
"text_plain_output_3.png",
"text_plain_output_1.png"
] | from trident.models import rfbnet
new_rfbmodel = rfbnet.RfbNet(pretrianed=False, num_classes=5, num_regressors=4)
new_rfbmodel.model.trainable = True
new_rfbmodel.summary() | code |
74042282/cell_5 | [
"image_output_1.png"
] | from google.colab import drive
from tqdm import tqdm
import glob
import json
import numpy as np
import os
import os
def is_in_ipython():
"""Is the code running in the ipython environment (jupyter including)"""
program_name = os.path.basename(os.getenv('_', ''))
if 'jupyter-notebook' in program_name or 'ipython' in program_name or 'jupyter' in program_name or ('JPY_PARENT_PID' in os.environ):
return True
else:
return False
def is_in_colab():
if not is_in_ipython():
return False
try:
from google import colab
return True
except:
return False
def is_in_kaggle_kernal():
if 'kaggle' in os.environ['PYTHONPATH']:
return True
else:
return False
if is_in_colab():
from google.colab import drive
drive.mount('/content/gdrive')
os.environ['TRIDENT_BACKEND'] = 'pytorch'
kaggle_kernal = None
if is_in_kaggle_kernal():
os.environ['TRIDENT_HOME'] = './trident'
elif is_in_colab():
os.environ['TRIDENT_HOME'] = '/content/gdrive/My Drive/trident'
class_names = ['未配戴口罩', '正確配戴口罩', '未正確配戴口罩', '配戴無防護能力口罩']
palette = [(0, 255, 255), (255, 255, 128), (255, 0, 255), (0, 255, 0)]
imgs = glob.glob('../input/maskedfacesdetection/imgs/*.*g')
path_dict = {}
for im_path in imgs:
folder, filename = os.path.split(os.path.normpath(im_path))
folder, file, ext = split_path(filename)
path_dict[file] = im_path
annos = OrderedDict()
jsons = glob.glob('../input/maskedfacesdetection/tags/*.json')
images = []
boxes = []
for j in tqdm(range(len(jsons))):
j_item = jsons[j]
try:
folder, file, ext = split_path(j_item)
box_collection = []
label_collection = []
if file in path_dict and os.path.exists(path_dict[file]):
img_path = path_dict[file]
f = open(j_item, 'r', encoding='utf-8-sig')
im = image2array(img_path)
tagging = json.load(f)
w = im.shape[1]
h = im.shape[0]
if len(tagging['outputs']) > 0 and len(tagging['outputs']['object']) > 0:
folder, file, ext = split_path(img_path)
annos[file + ext] = []
for i in range(len(tagging['outputs']['object'])):
tag = tagging['outputs']['object'][i]
label = int(tag['name']) + 1
x1 = max(tag['bndbox']['xmin'], 0)
y1 = max(tag['bndbox']['ymin'], 0)
x2 = min(tag['bndbox']['xmax'], w)
y2 = min(tag['bndbox']['ymax'], h)
bbox = [x1, y1, x2, y2, label]
annos[file + ext].append(np.array([x1, y1, x2, y2, label]))
box_collection.append(bbox)
box_collection = np.array(box_collection, dtype=np.float32)
boxes.append(box_collection)
images.append(img_path)
except:
print(j_item)
print('boxes', len(boxes), 'images', len(images))
pickle_it('annos1.pkl', annos) | code |
17113265/cell_21 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.metrics import confusion_matrix,classification_report
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
plt.style.use('ggplot')
zoo = pd.read_csv('../input/zoo.csv')
data = zoo.copy()
data.drop('animal_name', axis=1, inplace=True)
x = data.drop('class_type', axis=1)
y = data.class_type.values
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=42)
from sklearn.svm import SVC
svm = SVC(random_state=42, kernel='linear')
svm.fit(x_train, y_train)
y_pred_svm = svm.predict(x_test)
from sklearn.metrics import confusion_matrix, classification_report
cm_svm = confusion_matrix(y_test, y_pred_svm)
cr_svm = classification_report(y_test, y_pred_svm)
plt.figure(figsize=(10, 8))
sns.heatmap(cm_svm, annot=True, cmap='Blues', xticklabels=np.arange(1, 8), yticklabels=np.arange(1, 8))
plt.show() | code |
17113265/cell_13 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
plt.style.use('ggplot')
zoo = pd.read_csv('../input/zoo.csv')
data = zoo.copy()
data.drop('animal_name', axis=1, inplace=True)
x = data.drop('class_type', axis=1)
y = data.class_type.values
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=42)
print('x_train shape : ', x_train.shape)
print('x_test shape : ', x_test.shape)
print('y_train shape : ', y_train.shape)
print('y_test shape : ', y_test.shape) | code |
17113265/cell_9 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
plt.style.use('ggplot')
zoo = pd.read_csv('../input/zoo.csv')
print(zoo.class_type.value_counts())
plt.figure(figsize=(10, 8))
sns.countplot(zoo.class_type)
plt.show() | code |
17113265/cell_25 | [
"text_plain_output_1.png"
] | from sklearn.metrics import confusion_matrix,classification_report
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
plt.style.use('ggplot')
zoo = pd.read_csv('../input/zoo.csv')
data = zoo.copy()
data.drop('animal_name', axis=1, inplace=True)
x = data.drop('class_type', axis=1)
y = data.class_type.values
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=42)
from sklearn.svm import SVC
svm = SVC(random_state=42, kernel='linear')
svm.fit(x_train, y_train)
y_pred_svm = svm.predict(x_test)
from sklearn.metrics import confusion_matrix, classification_report
cm_svm = confusion_matrix(y_test, y_pred_svm)
cr_svm = classification_report(y_test, y_pred_svm)
from sklearn.neighbors import KNeighborsClassifier
scr_max = 0
knn_test_score_list = []
knn_train_score_list = []
for i in range(1, x_train.shape[0] + 1):
knn = KNeighborsClassifier(n_neighbors=i)
knn.fit(x_train, y_train)
knn_test_scr = knn.score(x_test, y_test)
knn_test_score_list.append(knn_test_scr)
knn_train_scr = knn.score(x_train, y_train)
knn_train_score_list.append(knn_train_scr)
if knn_test_scr >= scr_max:
scr_max = knn_test_scr
index = i
print('Best K value = ', index)
print('Best score = ', scr_max)
plt.figure(figsize=(15, 10))
plt.plot(range(1, x_train.shape[0] + 1), knn_test_score_list, label='test')
plt.plot(range(1, x_train.shape[0] + 1), knn_train_score_list, label='train')
plt.legend()
plt.xlabel('K Values')
plt.ylabel('Scores')
plt.show() | code |
17113265/cell_4 | [
"text_plain_output_1.png"
] | import os
import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import os
print(os.listdir('../input')) | code |
17113265/cell_30 | [
"image_output_1.png"
] | from sklearn.metrics import confusion_matrix,classification_report
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
plt.style.use('ggplot')
zoo = pd.read_csv('../input/zoo.csv')
data = zoo.copy()
data.drop('animal_name', axis=1, inplace=True)
x = data.drop('class_type', axis=1)
y = data.class_type.values
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=42)
from sklearn.svm import SVC
svm = SVC(random_state=42, kernel='linear')
svm.fit(x_train, y_train)
y_pred_svm = svm.predict(x_test)
from sklearn.metrics import confusion_matrix, classification_report
cm_svm = confusion_matrix(y_test, y_pred_svm)
cr_svm = classification_report(y_test, y_pred_svm)
from sklearn.neighbors import KNeighborsClassifier
scr_max = 0
knn_test_score_list = []
knn_train_score_list = []
for i in range(1, x_train.shape[0] + 1):
knn = KNeighborsClassifier(n_neighbors=i)
knn.fit(x_train, y_train)
knn_test_scr = knn.score(x_test, y_test)
knn_test_score_list.append(knn_test_scr)
knn_train_scr = knn.score(x_train, y_train)
knn_train_score_list.append(knn_train_scr)
if knn_test_scr >= scr_max:
scr_max = knn_test_scr
index = i
from sklearn.tree import DecisionTreeClassifier
dec_tree = DecisionTreeClassifier(random_state=42)
dec_tree.fit(x_train, y_train)
y_pred_tree = dec_tree.predict(x_test)
print('Test Accurary : ', dec_tree.score(x_test, y_test))
print('Train Accurary : ', dec_tree.score(x_train, y_train)) | code |
17113265/cell_20 | [
"text_plain_output_1.png"
] | from sklearn.metrics import confusion_matrix,classification_report
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
plt.style.use('ggplot')
zoo = pd.read_csv('../input/zoo.csv')
data = zoo.copy()
data.drop('animal_name', axis=1, inplace=True)
x = data.drop('class_type', axis=1)
y = data.class_type.values
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=42)
from sklearn.svm import SVC
svm = SVC(random_state=42, kernel='linear')
svm.fit(x_train, y_train)
y_pred_svm = svm.predict(x_test)
from sklearn.metrics import confusion_matrix, classification_report
cm_svm = confusion_matrix(y_test, y_pred_svm)
cr_svm = classification_report(y_test, y_pred_svm)
print('confusion matrix : \n', cm_svm)
print('classification report : \n', cr_svm) | code |
17113265/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
zoo = pd.read_csv('../input/zoo.csv')
zoo.head() | code |
17113265/cell_26 | [
"text_plain_output_1.png"
] | from sklearn.metrics import confusion_matrix,classification_report
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
plt.style.use('ggplot')
zoo = pd.read_csv('../input/zoo.csv')
data = zoo.copy()
data.drop('animal_name', axis=1, inplace=True)
x = data.drop('class_type', axis=1)
y = data.class_type.values
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=42)
from sklearn.svm import SVC
svm = SVC(random_state=42, kernel='linear')
svm.fit(x_train, y_train)
y_pred_svm = svm.predict(x_test)
from sklearn.metrics import confusion_matrix, classification_report
cm_svm = confusion_matrix(y_test, y_pred_svm)
cr_svm = classification_report(y_test, y_pred_svm)
from sklearn.neighbors import KNeighborsClassifier
scr_max = 0
knn_test_score_list = []
knn_train_score_list = []
for i in range(1, x_train.shape[0] + 1):
knn = KNeighborsClassifier(n_neighbors=i)
knn.fit(x_train, y_train)
knn_test_scr = knn.score(x_test, y_test)
knn_test_score_list.append(knn_test_scr)
knn_train_scr = knn.score(x_train, y_train)
knn_train_score_list.append(knn_train_scr)
if knn_test_scr >= scr_max:
scr_max = knn_test_scr
index = i
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(x_train, y_train)
y_pred_knn = knn.predict(x_test)
cr_knn = classification_report(y_test, y_pred_knn)
cm_knn = confusion_matrix(y_test, y_pred_knn)
print('confusion matrix : \n', cm_knn)
print('classification report : \n', cr_knn) | code |
17113265/cell_19 | [
"text_html_output_1.png"
] | from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
plt.style.use('ggplot')
zoo = pd.read_csv('../input/zoo.csv')
data = zoo.copy()
data.drop('animal_name', axis=1, inplace=True)
x = data.drop('class_type', axis=1)
y = data.class_type.values
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=42)
from sklearn.svm import SVC
svm = SVC(random_state=42, kernel='linear')
svm.fit(x_train, y_train)
y_pred_svm = svm.predict(x_test)
print('Train Accurary : ', svm.score(x_train, y_train))
print('Test Accuray : ', svm.score(x_test, y_test)) | code |
17113265/cell_7 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
zoo = pd.read_csv('../input/zoo.csv')
zoo.info() | code |
17113265/cell_32 | [
"text_plain_output_1.png"
] | from sklearn.metrics import confusion_matrix,classification_report
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
plt.style.use('ggplot')
zoo = pd.read_csv('../input/zoo.csv')
data = zoo.copy()
data.drop('animal_name', axis=1, inplace=True)
x = data.drop('class_type', axis=1)
y = data.class_type.values
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=42)
from sklearn.svm import SVC
svm = SVC(random_state=42, kernel='linear')
svm.fit(x_train, y_train)
y_pred_svm = svm.predict(x_test)
from sklearn.metrics import confusion_matrix, classification_report
cm_svm = confusion_matrix(y_test, y_pred_svm)
cr_svm = classification_report(y_test, y_pred_svm)
from sklearn.neighbors import KNeighborsClassifier
scr_max = 0
knn_test_score_list = []
knn_train_score_list = []
for i in range(1, x_train.shape[0] + 1):
knn = KNeighborsClassifier(n_neighbors=i)
knn.fit(x_train, y_train)
knn_test_scr = knn.score(x_test, y_test)
knn_test_score_list.append(knn_test_scr)
knn_train_scr = knn.score(x_train, y_train)
knn_train_score_list.append(knn_train_scr)
if knn_test_scr >= scr_max:
scr_max = knn_test_scr
index = i
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(x_train, y_train)
y_pred_knn = knn.predict(x_test)
cr_knn = classification_report(y_test, y_pred_knn)
cm_knn = confusion_matrix(y_test, y_pred_knn)
from sklearn.tree import DecisionTreeClassifier
dec_tree = DecisionTreeClassifier(random_state=42)
dec_tree.fit(x_train, y_train)
y_pred_tree = dec_tree.predict(x_test)
cm_tree = confusion_matrix(y_test, y_pred_tree)
cr_tree = classification_report(y_test, y_pred_tree)
plt.figure(figsize=(10, 8))
sns.heatmap(cm_tree, annot=True, xticklabels=np.arange(1, 8), yticklabels=np.arange(1, 8), cmap='Greens')
plt.show() | code |
17113265/cell_31 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.metrics import confusion_matrix,classification_report
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
plt.style.use('ggplot')
zoo = pd.read_csv('../input/zoo.csv')
data = zoo.copy()
data.drop('animal_name', axis=1, inplace=True)
x = data.drop('class_type', axis=1)
y = data.class_type.values
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=42)
from sklearn.svm import SVC
svm = SVC(random_state=42, kernel='linear')
svm.fit(x_train, y_train)
y_pred_svm = svm.predict(x_test)
from sklearn.metrics import confusion_matrix, classification_report
cm_svm = confusion_matrix(y_test, y_pred_svm)
cr_svm = classification_report(y_test, y_pred_svm)
from sklearn.neighbors import KNeighborsClassifier
scr_max = 0
knn_test_score_list = []
knn_train_score_list = []
for i in range(1, x_train.shape[0] + 1):
knn = KNeighborsClassifier(n_neighbors=i)
knn.fit(x_train, y_train)
knn_test_scr = knn.score(x_test, y_test)
knn_test_score_list.append(knn_test_scr)
knn_train_scr = knn.score(x_train, y_train)
knn_train_score_list.append(knn_train_scr)
if knn_test_scr >= scr_max:
scr_max = knn_test_scr
index = i
from sklearn.tree import DecisionTreeClassifier
dec_tree = DecisionTreeClassifier(random_state=42)
dec_tree.fit(x_train, y_train)
y_pred_tree = dec_tree.predict(x_test)
cm_tree = confusion_matrix(y_test, y_pred_tree)
cr_tree = classification_report(y_test, y_pred_tree)
print('confusion matrix : \n', cm_tree)
print('classification report : \n', cr_tree) | code |
17113265/cell_27 | [
"text_plain_output_1.png"
] | from sklearn.metrics import confusion_matrix,classification_report
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
plt.style.use('ggplot')
zoo = pd.read_csv('../input/zoo.csv')
data = zoo.copy()
data.drop('animal_name', axis=1, inplace=True)
x = data.drop('class_type', axis=1)
y = data.class_type.values
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=42)
from sklearn.svm import SVC
svm = SVC(random_state=42, kernel='linear')
svm.fit(x_train, y_train)
y_pred_svm = svm.predict(x_test)
from sklearn.metrics import confusion_matrix, classification_report
cm_svm = confusion_matrix(y_test, y_pred_svm)
cr_svm = classification_report(y_test, y_pred_svm)
from sklearn.neighbors import KNeighborsClassifier
scr_max = 0
knn_test_score_list = []
knn_train_score_list = []
for i in range(1, x_train.shape[0] + 1):
knn = KNeighborsClassifier(n_neighbors=i)
knn.fit(x_train, y_train)
knn_test_scr = knn.score(x_test, y_test)
knn_test_score_list.append(knn_test_scr)
knn_train_scr = knn.score(x_train, y_train)
knn_train_score_list.append(knn_train_scr)
if knn_test_scr >= scr_max:
scr_max = knn_test_scr
index = i
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(x_train, y_train)
y_pred_knn = knn.predict(x_test)
cr_knn = classification_report(y_test, y_pred_knn)
cm_knn = confusion_matrix(y_test, y_pred_knn)
plt.figure(figsize=(10, 8))
sns.heatmap(cm_knn, annot=True, xticklabels=np.arange(1, 8), yticklabels=np.arange(1, 8))
plt.show() | code |
105212440/cell_1 | [
"text_plain_output_1.png"
] | from subprocess import check_output
import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
from subprocess import check_output
print(check_output(['ls', '../input']).decode('utf8'))
import cv2
import os | code |
105212440/cell_3 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import cv2
import matplotlib.pyplot as plt
import numpy as np # linear algebra
import os
train_cats = '../input/cat-and-dogs/dataset/training_set/cats'
train_dogs = '../input/cat-and-dogs/dataset/training_set/dogs'
test_cats = '../input/cat-and-dogs/dataset/training_set/cats'
test_dogs = '../input/cat-and-dogs/dataset/training_set/dogs'
simgle_image = '../input/cat-and-dogs/dataset/single_prediction'
image_size = 128
for image1 in os.listdir(train_cats):
path = os.path.join(train_cats, image1)
img1 = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
img1 = cv2.resize(img1, (image_size, image_size)).flatten()
np_img1 = np.asarray(img1)
for image2 in os.listdir(train_dogs):
path = os.path.join(train_dogs, image2)
img2 = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
img2 = cv2.resize(img2, (image_size, image_size)).flatten()
np_img2 = np.asarray(img2)
plt.figure(figsize=(10, 10))
plt.subplot(1, 2, 1)
plt.imshow(np_img1.reshape(image_size, image_size))
plt.axis('off')
plt.subplot(1, 2, 2)
plt.imshow(np_img2.reshape(image_size, image_size))
plt.axis('off') | code |
104126200/cell_9 | [
"text_plain_output_1.png"
] | import numpy as np
import random
import torch
def set_seed(seed=0):
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
set_seed()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device | code |
104126200/cell_29 | [
"text_plain_output_1.png"
] | from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import numpy as np
import random
import torch
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torchvision
def set_seed(seed=0):
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
set_seed()
BATCH_SIZE = 64
LEARNING_RATE = 0.01
N_EPOCHS = 20
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, transform=transform, download=True)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, transform=transform, download=False)
train_loader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=BATCH_SIZE, shuffle=False)
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
class ConvNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=5, stride=1, padding=0)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1, padding=0)
self.flat = nn.Flatten()
self.fc1 = nn.Linear(in_features=32 * 5 * 5, out_features=128)
self.fc2 = nn.Linear(in_features=128, out_features=64)
self.fc3 = nn.Linear(in_features=64, out_features=10)
self.relu = nn.ReLU()
def forward(self, x):
out = self.conv1(x)
out = self.relu(out)
out = self.pool(out)
out = self.conv2(out)
out = self.relu(out)
out = self.pool(out)
out = self.flat(out)
out = self.fc1(out)
out = self.relu(out)
out = self.fc2(out)
out = self.relu(out)
out = self.fc3(out)
return out
model = ConvNet().to(device)
loss = nn.CrossEntropyLoss()
optimiser = optim.SGD(params=model.parameters(), lr=LEARNING_RATE)
scheduler = lr_scheduler.CosineAnnealingLR(optimiser, T_max=N_EPOCHS)
for epoch in range(N_EPOCHS):
loss_acc = 0
train_count = 0
for i, (imgs, labels) in enumerate(train_loader):
imgs = imgs.to(device)
labels = labels.to(device)
preds = model(imgs)
L = loss(preds, labels)
L.backward()
optimiser.step()
optimiser.zero_grad()
loss_acc += L.detach().item()
train_count += 1
scheduler.step()
PATH = 'ConvNet.pt'
torch.save({'epoch': N_EPOCHS, 'model_state_dict': model.state_dict(), 'optimiser_state_dict': optimiser.state_dict(), 'scheduler_state_dict': scheduler.state_dict(), 'loss': loss_acc / train_count}, PATH)
model = ConvNet().to(device)
optimiser = optim.SGD(params=model.parameters(), lr=LEARNING_RATE)
scheduler = lr_scheduler.CosineAnnealingLR(optimiser, T_max=N_EPOCHS)
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
optimiser.load_state_dict(checkpoint['optimiser_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
model.eval()
with torch.no_grad():
n_correct = 0
n_samples = 0
n_class_correct = [0 for i in range(10)]
n_class_sample = [0 for i in range(10)]
for imgs, labels in test_loader:
imgs = imgs.to(device)
labels = labels.to(device)
output = model(imgs)
_, preds = torch.max(output, 1)
n_samples += labels.shape[0]
n_correct += (preds == labels).sum().item()
for i in range(BATCH_SIZE):
try:
label = labels[i].item()
pred = preds[i].item()
except:
break
if label == pred:
n_class_correct[label] += 1
n_class_sample[label] += 1
acc = 100 * n_correct / n_samples
print(f'Overall accuracy on test set: {acc:.1f} %')
for i in range(10):
print(f'Accuracy of {classes[i]}: {100 * n_class_correct[i] / n_class_sample[i]:.1f} %') | code |
104126200/cell_26 | [
"text_plain_output_1.png"
] | from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import numpy as np
import random
import torch
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torchvision
def set_seed(seed=0):
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
set_seed()
BATCH_SIZE = 64
LEARNING_RATE = 0.01
N_EPOCHS = 20
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, transform=transform, download=True)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, transform=transform, download=False)
train_loader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=BATCH_SIZE, shuffle=False)
class ConvNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=5, stride=1, padding=0)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1, padding=0)
self.flat = nn.Flatten()
self.fc1 = nn.Linear(in_features=32 * 5 * 5, out_features=128)
self.fc2 = nn.Linear(in_features=128, out_features=64)
self.fc3 = nn.Linear(in_features=64, out_features=10)
self.relu = nn.ReLU()
def forward(self, x):
out = self.conv1(x)
out = self.relu(out)
out = self.pool(out)
out = self.conv2(out)
out = self.relu(out)
out = self.pool(out)
out = self.flat(out)
out = self.fc1(out)
out = self.relu(out)
out = self.fc2(out)
out = self.relu(out)
out = self.fc3(out)
return out
model = ConvNet().to(device)
loss = nn.CrossEntropyLoss()
optimiser = optim.SGD(params=model.parameters(), lr=LEARNING_RATE)
scheduler = lr_scheduler.CosineAnnealingLR(optimiser, T_max=N_EPOCHS)
for epoch in range(N_EPOCHS):
loss_acc = 0
train_count = 0
for i, (imgs, labels) in enumerate(train_loader):
imgs = imgs.to(device)
labels = labels.to(device)
preds = model(imgs)
L = loss(preds, labels)
L.backward()
optimiser.step()
optimiser.zero_grad()
loss_acc += L.detach().item()
train_count += 1
scheduler.step()
PATH = 'ConvNet.pt'
torch.save({'epoch': N_EPOCHS, 'model_state_dict': model.state_dict(), 'optimiser_state_dict': optimiser.state_dict(), 'scheduler_state_dict': scheduler.state_dict(), 'loss': loss_acc / train_count}, PATH)
model = ConvNet().to(device)
optimiser = optim.SGD(params=model.parameters(), lr=LEARNING_RATE)
scheduler = lr_scheduler.CosineAnnealingLR(optimiser, T_max=N_EPOCHS)
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
optimiser.load_state_dict(checkpoint['optimiser_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
model.eval() | code |
104126200/cell_14 | [
"text_plain_output_1.png"
] | from torchvision import transforms
import torchvision
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, transform=transform, download=True)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, transform=transform, download=False) | code |
104126200/cell_22 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import numpy as np
import random
import torch
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torchvision
def set_seed(seed=0):
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
set_seed()
BATCH_SIZE = 64
LEARNING_RATE = 0.01
N_EPOCHS = 20
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True, transform=transform, download=True)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False, transform=transform, download=False)
train_loader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=BATCH_SIZE, shuffle=False)
class ConvNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=5, stride=1, padding=0)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1, padding=0)
self.flat = nn.Flatten()
self.fc1 = nn.Linear(in_features=32 * 5 * 5, out_features=128)
self.fc2 = nn.Linear(in_features=128, out_features=64)
self.fc3 = nn.Linear(in_features=64, out_features=10)
self.relu = nn.ReLU()
def forward(self, x):
out = self.conv1(x)
out = self.relu(out)
out = self.pool(out)
out = self.conv2(out)
out = self.relu(out)
out = self.pool(out)
out = self.flat(out)
out = self.fc1(out)
out = self.relu(out)
out = self.fc2(out)
out = self.relu(out)
out = self.fc3(out)
return out
model = ConvNet().to(device)
loss = nn.CrossEntropyLoss()
optimiser = optim.SGD(params=model.parameters(), lr=LEARNING_RATE)
scheduler = lr_scheduler.CosineAnnealingLR(optimiser, T_max=N_EPOCHS)
for epoch in range(N_EPOCHS):
loss_acc = 0
train_count = 0
for i, (imgs, labels) in enumerate(train_loader):
imgs = imgs.to(device)
labels = labels.to(device)
preds = model(imgs)
L = loss(preds, labels)
L.backward()
optimiser.step()
optimiser.zero_grad()
loss_acc += L.detach().item()
train_count += 1
scheduler.step()
if (epoch + 1) % 1 == 0:
print(f'Epoch {epoch + 1}/{N_EPOCHS}, loss {loss_acc / train_count:.5f}')
print('')
print('Training complete') | code |
73073677/cell_21 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
calendar = pd.read_csv('../input/prague-airbnb/Prague_calendar.csv')
listings = pd.read_csv('../input/prague-airbnb/Prague_listings.csv')
reviews = pd.read_csv('../input/prague-airbnb/Prague_reviews.csv')
(calendar.shape, listings.shape, reviews.shape)
calendar = calendar[['listing_id', 'date', 'year', 'month', 'day', 'available', 'price', 'adjusted_price', 'minimum_nights', 'maximum_nights']]
calendar.dtypes
f'Número de imoveis listados: {len(calendar.listing_id.unique())}'
fig, ax = plt.subplots(1,2, sharey=True)
ax[0].boxplot(calendar['price'])
ax[0].set_xlabel('Price')
ax[1].boxplot(calendar.adjusted_price)
ax[1].set_xlabel('Adjusted Price')
plt.show()
fig, ax = plt.subplots(1,2, sharey=True)
ax[0].hist(calendar['price'])
ax[0].set_xlabel('Price')
ax[1].hist(calendar.adjusted_price)
ax[1].set_xlabel('Adjusted Price')
plt.show()
mean_price_month = calendar.groupby('month').mean()
mean_price_month
fig, ax = plt.subplots()
ax.set_title('Preço médio ao longo do ano.')
ax.bar(x=mean_price_month.index, height=mean_price_month.price)
ax.set_xlabel('Mes')
ax.set_xticks(ticks=mean_price_month.index)
ax.set_ylabel('Preço médio')
plt.show() | code |
73073677/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd
calendar = pd.read_csv('../input/prague-airbnb/Prague_calendar.csv')
listings = pd.read_csv('../input/prague-airbnb/Prague_listings.csv')
reviews = pd.read_csv('../input/prague-airbnb/Prague_reviews.csv')
(calendar.shape, listings.shape, reviews.shape)
calendar = calendar[['listing_id', 'date', 'year', 'month', 'day', 'available', 'price', 'adjusted_price', 'minimum_nights', 'maximum_nights']]
calendar.dtypes
calendar.head(10) | code |
73073677/cell_25 | [
"image_output_1.png"
] | import pandas as pd
calendar = pd.read_csv('../input/prague-airbnb/Prague_calendar.csv')
listings = pd.read_csv('../input/prague-airbnb/Prague_listings.csv')
reviews = pd.read_csv('../input/prague-airbnb/Prague_reviews.csv')
(calendar.shape, listings.shape, reviews.shape)
reviews.shape
reviews.head() | code |
73073677/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd
calendar = pd.read_csv('../input/prague-airbnb/Prague_calendar.csv')
listings = pd.read_csv('../input/prague-airbnb/Prague_listings.csv')
reviews = pd.read_csv('../input/prague-airbnb/Prague_reviews.csv')
(calendar.shape, listings.shape, reviews.shape)
calendar.info() | code |
73073677/cell_23 | [
"image_output_1.png"
] | import pandas as pd
calendar = pd.read_csv('../input/prague-airbnb/Prague_calendar.csv')
listings = pd.read_csv('../input/prague-airbnb/Prague_listings.csv')
reviews = pd.read_csv('../input/prague-airbnb/Prague_reviews.csv')
(calendar.shape, listings.shape, reviews.shape)
reviews.shape | code |
73073677/cell_30 | [
"text_html_output_1.png"
] | import pandas as pd
calendar = pd.read_csv('../input/prague-airbnb/Prague_calendar.csv')
listings = pd.read_csv('../input/prague-airbnb/Prague_listings.csv')
reviews = pd.read_csv('../input/prague-airbnb/Prague_reviews.csv')
(calendar.shape, listings.shape, reviews.shape)
reviews.shape
reviews = reviews[['listing_id', 'id', 'date', 'year', 'month', 'day', 'reviewer_id', 'reviewer_name', 'comments']]
print(reviews.date.min())
print(reviews.date.max()) | code |
73073677/cell_20 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
calendar = pd.read_csv('../input/prague-airbnb/Prague_calendar.csv')
listings = pd.read_csv('../input/prague-airbnb/Prague_listings.csv')
reviews = pd.read_csv('../input/prague-airbnb/Prague_reviews.csv')
(calendar.shape, listings.shape, reviews.shape)
calendar = calendar[['listing_id', 'date', 'year', 'month', 'day', 'available', 'price', 'adjusted_price', 'minimum_nights', 'maximum_nights']]
calendar.dtypes
f'Número de imoveis listados: {len(calendar.listing_id.unique())}'
fig, ax = plt.subplots(1,2, sharey=True)
ax[0].boxplot(calendar['price'])
ax[0].set_xlabel('Price')
ax[1].boxplot(calendar.adjusted_price)
ax[1].set_xlabel('Adjusted Price')
plt.show()
fig, ax = plt.subplots(1, 2, sharey=True)
ax[0].hist(calendar['price'])
ax[0].set_xlabel('Price')
ax[1].hist(calendar.adjusted_price)
ax[1].set_xlabel('Adjusted Price')
plt.show() | code |
73073677/cell_29 | [
"text_plain_output_1.png"
] | import pandas as pd
calendar = pd.read_csv('../input/prague-airbnb/Prague_calendar.csv')
listings = pd.read_csv('../input/prague-airbnb/Prague_listings.csv')
reviews = pd.read_csv('../input/prague-airbnb/Prague_reviews.csv')
(calendar.shape, listings.shape, reviews.shape)
reviews.shape
reviews = reviews[['listing_id', 'id', 'date', 'year', 'month', 'day', 'reviewer_id', 'reviewer_name', 'comments']]
print(f'Numero de imoveis listados com review: {len(reviews.listing_id.unique())}') | code |
73073677/cell_18 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
calendar = pd.read_csv('../input/prague-airbnb/Prague_calendar.csv')
listings = pd.read_csv('../input/prague-airbnb/Prague_listings.csv')
reviews = pd.read_csv('../input/prague-airbnb/Prague_reviews.csv')
(calendar.shape, listings.shape, reviews.shape)
calendar = calendar[['listing_id', 'date', 'year', 'month', 'day', 'available', 'price', 'adjusted_price', 'minimum_nights', 'maximum_nights']]
calendar.dtypes
f'Número de imoveis listados: {len(calendar.listing_id.unique())}'
fig, ax = plt.subplots(1, 2, sharey=True)
ax[0].boxplot(calendar['price'])
ax[0].set_xlabel('Price')
ax[1].boxplot(calendar.adjusted_price)
ax[1].set_xlabel('Adjusted Price')
plt.show() | code |
73073677/cell_15 | [
"text_plain_output_1.png"
] | import pandas as pd
calendar = pd.read_csv('../input/prague-airbnb/Prague_calendar.csv')
listings = pd.read_csv('../input/prague-airbnb/Prague_listings.csv')
reviews = pd.read_csv('../input/prague-airbnb/Prague_reviews.csv')
(calendar.shape, listings.shape, reviews.shape)
calendar = calendar[['listing_id', 'date', 'year', 'month', 'day', 'available', 'price', 'adjusted_price', 'minimum_nights', 'maximum_nights']]
calendar.dtypes
f'Número de imoveis listados: {len(calendar.listing_id.unique())}'
print(f'Primeiro dia: {calendar.date.min()}')
print(f'Último dia: {calendar.date.max()}') | code |
73073677/cell_16 | [
"text_html_output_1.png"
] | import pandas as pd
calendar = pd.read_csv('../input/prague-airbnb/Prague_calendar.csv')
listings = pd.read_csv('../input/prague-airbnb/Prague_listings.csv')
reviews = pd.read_csv('../input/prague-airbnb/Prague_reviews.csv')
(calendar.shape, listings.shape, reviews.shape)
calendar = calendar[['listing_id', 'date', 'year', 'month', 'day', 'available', 'price', 'adjusted_price', 'minimum_nights', 'maximum_nights']]
calendar.dtypes
f'Número de imoveis listados: {len(calendar.listing_id.unique())}'
print(f'Menor preço: {calendar.price.min()}')
print(f'Maior preço: {calendar.price.max()}') | code |
73073677/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
calendar = pd.read_csv('../input/prague-airbnb/Prague_calendar.csv')
listings = pd.read_csv('../input/prague-airbnb/Prague_listings.csv')
reviews = pd.read_csv('../input/prague-airbnb/Prague_reviews.csv')
(calendar.shape, listings.shape, reviews.shape) | code |
73073677/cell_24 | [
"image_output_1.png"
] | import pandas as pd
calendar = pd.read_csv('../input/prague-airbnb/Prague_calendar.csv')
listings = pd.read_csv('../input/prague-airbnb/Prague_listings.csv')
reviews = pd.read_csv('../input/prague-airbnb/Prague_reviews.csv')
(calendar.shape, listings.shape, reviews.shape)
reviews.shape
reviews.info() | code |
73073677/cell_14 | [
"text_html_output_1.png"
] | import pandas as pd
calendar = pd.read_csv('../input/prague-airbnb/Prague_calendar.csv')
listings = pd.read_csv('../input/prague-airbnb/Prague_listings.csv')
reviews = pd.read_csv('../input/prague-airbnb/Prague_reviews.csv')
(calendar.shape, listings.shape, reviews.shape)
calendar = calendar[['listing_id', 'date', 'year', 'month', 'day', 'available', 'price', 'adjusted_price', 'minimum_nights', 'maximum_nights']]
calendar.dtypes
f'Número de imoveis listados: {len(calendar.listing_id.unique())}' | code |
73073677/cell_37 | [
"text_plain_output_1.png"
] | import pandas as pd
calendar = pd.read_csv('../input/prague-airbnb/Prague_calendar.csv')
listings = pd.read_csv('../input/prague-airbnb/Prague_listings.csv')
reviews = pd.read_csv('../input/prague-airbnb/Prague_reviews.csv')
(calendar.shape, listings.shape, reviews.shape)
listings.isnull().sum() | code |
73073677/cell_12 | [
"text_plain_output_1.png"
] | import pandas as pd
calendar = pd.read_csv('../input/prague-airbnb/Prague_calendar.csv')
listings = pd.read_csv('../input/prague-airbnb/Prague_listings.csv')
reviews = pd.read_csv('../input/prague-airbnb/Prague_reviews.csv')
(calendar.shape, listings.shape, reviews.shape)
calendar = calendar[['listing_id', 'date', 'year', 'month', 'day', 'available', 'price', 'adjusted_price', 'minimum_nights', 'maximum_nights']]
calendar.dtypes | code |
73073677/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
calendar = pd.read_csv('../input/prague-airbnb/Prague_calendar.csv')
listings = pd.read_csv('../input/prague-airbnb/Prague_listings.csv')
reviews = pd.read_csv('../input/prague-airbnb/Prague_reviews.csv')
(calendar.shape, listings.shape, reviews.shape)
calendar.head() | code |
73073677/cell_36 | [
"text_plain_output_1.png"
] | import pandas as pd
calendar = pd.read_csv('../input/prague-airbnb/Prague_calendar.csv')
listings = pd.read_csv('../input/prague-airbnb/Prague_listings.csv')
reviews = pd.read_csv('../input/prague-airbnb/Prague_reviews.csv')
(calendar.shape, listings.shape, reviews.shape)
listings.info() | code |
129031792/cell_9 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.preprocessing.text import Tokenizer
import json
import numpy as np
import numpy as np
import tensorflow as tf
import tensorflow as tf
import tensorflow as tf
import tensorflow as tf
import urllib
import urllib
import zipfile
def solution_model():
xs = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float)
ys = np.array([5.0, 6.0, 7.0, 8.0, 9.0, 10.0], dtype=float)
model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=[1])])
model.compile(loss='mean_squared_error', optimizer='sgd')
model.fit(xs, ys, epochs=1000)
return model
if __name__ == '__main__':
model = solution_model()
model.save('mymodel.h5')
def solution_model():
fashion_mnist = tf.keras.datasets.fashion_mnist
(training_images, training_labels), (val_images, val_label) = fashion_mnist.load_data()
training_images = training_images / 255.0
val_images = val_images / 255.0
training_images = np.expand_dims(training_images, axis=3)
val_images = np.expand_dims(val_images, axis=3)
model = tf.keras.Sequential([tf.keras.layers.Conv2D(14, (3, 3), activation='relu', input_shape=(28, 28, 1)), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10, activation='softmax')])
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['acc'])
model.fit(training_images, training_labels, validation_data=(val_images, val_label), epochs=5)
return model
if __name__ == '__main__':
model = solution_model()
model.save('mymodel.h5')
def solution_model():
_TRAIN_URL = 'https://storage.googleapis.com/download.tensorflow.org/data/horse-or-human.zip'
_TEST_URL = 'https://storage.googleapis.com/download.tensorflow.org/data/validation-horse-or-human.zip'
urllib.request.urlretrieve(_TRAIN_URL, 'horse-or-human.zip')
local_zip = 'horse-or-human.zip'
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('tmp/horse-or-human/')
zip_ref.close()
urllib.request.urlretrieve(_TEST_URL, 'testdata.zip')
local_zip = 'testdata.zip'
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('tmp/testdata/')
zip_ref.close()
training_data = 'tmp/horse-or-human/'
val_data = 'tmp/testdata/'
train_datagen = ImageDataGenerator(rescale=1.0 / 255)
validation_datagen = ImageDataGenerator(rescale=1.0 / 255.0)
train_generator = train_datagen.flow_from_directory(training_data, target_size=(300, 300), batch_size=128, class_mode='binary')
validation_generator = validation_datagen.flow_from_directory(val_data, target_size=(300, 300), batch_size=64, class_mode='binary')
model = tf.keras.models.Sequential([tf.keras.layers.Conv2D(16, (3, 3), activation='relu', input_shape=(300, 300, 3)), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(32, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(64, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(64, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(64, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid')])
model.compile(loss='binary_crossentropy', optimizer=RMSprop(lr=0.001), metrics=['accuracy'])
model.fit(train_generator, epochs=10, verbose=1, validation_data=validation_generator)
return model
if __name__ == '__main__':
model = solution_model()
model.save('mymodel2.h5')
def solution_model():
url = 'https://storage.googleapis.com/download.tensorflow.org/data/sarcasm.json'
urllib.request.urlretrieve(url, 'sarcasm.json')
vocab_size = 1000
embedding_dim = 16
max_length = 120
trunc_type = 'post'
padding_type = 'post'
oov_tok = '<OOV>'
training_size = 20000
sentences = []
labels = []
with open('sarcasm.json', 'r') as f:
data = json.load(f)
for text in data:
sentences.append(text['headline'])
labels.append(text['is_sarcastic'])
train_sentences = sentences[:training_size]
test_sentences = sentences[training_size:]
train_labels = labels[:training_size]
test_labels = labels[training_size:]
tokenizer = Tokenizer(num_words=vocab_size, oov_token=oov_tok)
tokenizer.fit_on_texts(train_sentences)
train_sequences = tokenizer.texts_to_sequences(train_sentences)
train_padded = pad_sequences(train_sequences, maxlen=max_length, padding=padding_type, truncating=trunc_type)
test_sequences = tokenizer.texts_to_sequences(test_sentences)
test_padded = pad_sequences(test_sequences, maxlen=max_length, padding=padding_type, truncating=trunc_type)
train_labels = np.array(train_labels)
test_labels = np.array(test_labels)
model = tf.keras.Sequential([tf.keras.layers.Embedding(vocab_size, embedding_dim, input_length=max_length), tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)), tf.keras.layers.Dense(24, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid')])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc'])
model.fit(train_padded, train_labels, epochs=10, validation_data=(test_padded, test_labels))
return model
if __name__ == '__main__':
model = solution_model()
model.save('mymodel6.h5') | code |
129031792/cell_7 | [
"text_plain_output_1.png"
] | from tensorflow.keras.optimizers import RMSprop
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
import numpy as np
import tensorflow as tf
import tensorflow as tf
import tensorflow as tf
import tensorflow as tf
import urllib
import urllib
import zipfile
def solution_model():
xs = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float)
ys = np.array([5.0, 6.0, 7.0, 8.0, 9.0, 10.0], dtype=float)
model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=[1])])
model.compile(loss='mean_squared_error', optimizer='sgd')
model.fit(xs, ys, epochs=1000)
return model
if __name__ == '__main__':
model = solution_model()
model.save('mymodel.h5')
def solution_model():
fashion_mnist = tf.keras.datasets.fashion_mnist
(training_images, training_labels), (val_images, val_label) = fashion_mnist.load_data()
training_images = training_images / 255.0
val_images = val_images / 255.0
training_images = np.expand_dims(training_images, axis=3)
val_images = np.expand_dims(val_images, axis=3)
model = tf.keras.Sequential([tf.keras.layers.Conv2D(14, (3, 3), activation='relu', input_shape=(28, 28, 1)), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10, activation='softmax')])
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['acc'])
model.fit(training_images, training_labels, validation_data=(val_images, val_label), epochs=5)
return model
if __name__ == '__main__':
model = solution_model()
model.save('mymodel.h5')
def solution_model():
_TRAIN_URL = 'https://storage.googleapis.com/download.tensorflow.org/data/horse-or-human.zip'
_TEST_URL = 'https://storage.googleapis.com/download.tensorflow.org/data/validation-horse-or-human.zip'
urllib.request.urlretrieve(_TRAIN_URL, 'horse-or-human.zip')
local_zip = 'horse-or-human.zip'
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('tmp/horse-or-human/')
zip_ref.close()
urllib.request.urlretrieve(_TEST_URL, 'testdata.zip')
local_zip = 'testdata.zip'
zip_ref = zipfile.ZipFile(local_zip, 'r')
zip_ref.extractall('tmp/testdata/')
zip_ref.close()
training_data = 'tmp/horse-or-human/'
val_data = 'tmp/testdata/'
train_datagen = ImageDataGenerator(rescale=1.0 / 255)
validation_datagen = ImageDataGenerator(rescale=1.0 / 255.0)
train_generator = train_datagen.flow_from_directory(training_data, target_size=(300, 300), batch_size=128, class_mode='binary')
validation_generator = validation_datagen.flow_from_directory(val_data, target_size=(300, 300), batch_size=64, class_mode='binary')
model = tf.keras.models.Sequential([tf.keras.layers.Conv2D(16, (3, 3), activation='relu', input_shape=(300, 300, 3)), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(32, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(64, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(64, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(64, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid')])
model.compile(loss='binary_crossentropy', optimizer=RMSprop(lr=0.001), metrics=['accuracy'])
model.fit(train_generator, epochs=10, verbose=1, validation_data=validation_generator)
return model
if __name__ == '__main__':
model = solution_model()
model.save('mymodel2.h5') | code |
129031792/cell_3 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np
import tensorflow as tf
import tensorflow as tf
import tensorflow as tf
import tensorflow as tf
def solution_model():
xs = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float)
ys = np.array([5.0, 6.0, 7.0, 8.0, 9.0, 10.0], dtype=float)
model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=[1])])
model.compile(loss='mean_squared_error', optimizer='sgd')
model.fit(xs, ys, epochs=1000)
return model
if __name__ == '__main__':
model = solution_model()
model.save('mymodel.h5') | code |
129031792/cell_5 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_3.png",
"text_plain_output_1.png"
] | import numpy as np
import numpy as np
import tensorflow as tf
import tensorflow as tf
import tensorflow as tf
import tensorflow as tf
def solution_model():
xs = np.array([-1.0, 0.0, 1.0, 2.0, 3.0, 4.0], dtype=float)
ys = np.array([5.0, 6.0, 7.0, 8.0, 9.0, 10.0], dtype=float)
model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=[1])])
model.compile(loss='mean_squared_error', optimizer='sgd')
model.fit(xs, ys, epochs=1000)
return model
if __name__ == '__main__':
model = solution_model()
model.save('mymodel.h5')
def solution_model():
fashion_mnist = tf.keras.datasets.fashion_mnist
(training_images, training_labels), (val_images, val_label) = fashion_mnist.load_data()
training_images = training_images / 255.0
val_images = val_images / 255.0
training_images = np.expand_dims(training_images, axis=3)
val_images = np.expand_dims(val_images, axis=3)
model = tf.keras.Sequential([tf.keras.layers.Conv2D(14, (3, 3), activation='relu', input_shape=(28, 28, 1)), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10, activation='softmax')])
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['acc'])
model.fit(training_images, training_labels, validation_data=(val_images, val_label), epochs=5)
return model
if __name__ == '__main__':
model = solution_model()
model.save('mymodel.h5') | code |
50219444/cell_13 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
sarcasm_df = pd.read_csv('../input/sarcasm/train-balanced-sarcasm.csv')
sarcasm_df.dropna(subset=['comment'], inplace=True)
sarcasm_df['comment'] = sarcasm_df['comment'].str.lower()
sarcasm_df['comment'] = sarcasm_df['comment'].str.replace('[^\\w\\s]', '')
sarcasm_df.created_utc = pd.to_datetime(sarcasm_df.created_utc)
plt.figure(figsize=(5,5))
ax = sns.countplot(x='label', data= sarcasm_df)
ax.set(title = "Distribution of Classes", xlabel="Sarcasm Status", ylabel = "Total Count")
total = float(len(sarcasm_df ))
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 3,
'{:1.1f}%'.format((height/total)*100),
ha="center")
plt.show()
sns.boxplot(x=sarcasm_df.loc[sarcasm_df['label'] == 1, 'comment'].str.len()).set(title='Length of Sarcastic Comments', xlabel='Length')
sns.despine(offset=10, trim=True)
plt.show() | code |
50219444/cell_9 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
sarcasm_df = pd.read_csv('../input/sarcasm/train-balanced-sarcasm.csv')
sarcasm_df.dropna(subset=['comment'], inplace=True)
sarcasm_df['comment'] = sarcasm_df['comment'].str.lower()
sarcasm_df['comment'] = sarcasm_df['comment'].str.replace('[^\\w\\s]', '')
sarcasm_df.created_utc = pd.to_datetime(sarcasm_df.created_utc)
plt.figure(figsize=(5, 5))
ax = sns.countplot(x='label', data=sarcasm_df)
ax.set(title='Distribution of Classes', xlabel='Sarcasm Status', ylabel='Total Count')
total = float(len(sarcasm_df))
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x() + p.get_width() / 2.0, height + 3, '{:1.1f}%'.format(height / total * 100), ha='center')
plt.show() | code |
50219444/cell_23 | [
"image_output_1.png"
] | from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
sarcasm_df = pd.read_csv('../input/sarcasm/train-balanced-sarcasm.csv')
sarcasm_df.dropna(subset=['comment'], inplace=True)
sarcasm_df['comment'] = sarcasm_df['comment'].str.lower()
sarcasm_df['comment'] = sarcasm_df['comment'].str.replace('[^\\w\\s]', '')
sarcasm_df.created_utc = pd.to_datetime(sarcasm_df.created_utc)
plt.figure(figsize=(5,5))
ax = sns.countplot(x='label', data= sarcasm_df)
ax.set(title = "Distribution of Classes", xlabel="Sarcasm Status", ylabel = "Total Count")
total = float(len(sarcasm_df ))
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 3,
'{:1.1f}%'.format((height/total)*100),
ha="center")
plt.show()
sns.despine(offset=10, trim=True)
sns.despine(offset=10, trim=True)
sarcasm_df['log_comment'] = sarcasm_df['comment'].apply(lambda text: np.log1p(len(text)))
wordcloud = WordCloud(background_color='black', stopwords=STOPWORDS, max_words=200, max_font_size=100, random_state=17, width=800, height=400)
wordcloud.generate(str(sarcasm_df.loc[sarcasm_df['label'] == 1, 'comment']))
labels = ['Sarcastic Score', 'Neutral Score']
sizes = [3235069, 3725113]
colors = ['#F21F3B', '#1FF257']
plt.rcParams.update({'font.size': 14})
fig1, ax1 = plt.subplots()
ax1.pie(sizes, colors=colors, labels=labels, autopct='%1.1f%%', startangle=30)
ax1.set_title('Scores of Subreddits')
centre_circle = plt.Circle((0, 0), 0.7, fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
ax1.axis('equal')
plt.tight_layout()
plt.show() | code |
50219444/cell_6 | [
"image_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sarcasm_df = pd.read_csv('../input/sarcasm/train-balanced-sarcasm.csv')
sarcasm_df.dropna(subset=['comment'], inplace=True)
sarcasm_df['comment'] = sarcasm_df['comment'].str.lower()
sarcasm_df['comment'] = sarcasm_df['comment'].str.replace('[^\\w\\s]', '')
sarcasm_df.created_utc = pd.to_datetime(sarcasm_df.created_utc)
sarcasm_df.info() | code |
50219444/cell_19 | [
"image_output_1.png"
] | from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
sarcasm_df = pd.read_csv('../input/sarcasm/train-balanced-sarcasm.csv')
sarcasm_df.dropna(subset=['comment'], inplace=True)
sarcasm_df['comment'] = sarcasm_df['comment'].str.lower()
sarcasm_df['comment'] = sarcasm_df['comment'].str.replace('[^\\w\\s]', '')
sarcasm_df.created_utc = pd.to_datetime(sarcasm_df.created_utc)
plt.figure(figsize=(5,5))
ax = sns.countplot(x='label', data= sarcasm_df)
ax.set(title = "Distribution of Classes", xlabel="Sarcasm Status", ylabel = "Total Count")
total = float(len(sarcasm_df ))
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 3,
'{:1.1f}%'.format((height/total)*100),
ha="center")
plt.show()
sns.despine(offset=10, trim=True)
sns.despine(offset=10, trim=True)
sarcasm_df['log_comment'] = sarcasm_df['comment'].apply(lambda text: np.log1p(len(text)))
wordcloud = WordCloud(background_color='black', stopwords=STOPWORDS, max_words=200, max_font_size=100, random_state=17, width=800, height=400)
plt.figure(figsize=(12, 12))
wordcloud.generate(str(sarcasm_df.loc[sarcasm_df['label'] == 1, 'comment']))
plt.grid(b=False)
plt.imshow(wordcloud) | code |
50219444/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
50219444/cell_16 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
sarcasm_df = pd.read_csv('../input/sarcasm/train-balanced-sarcasm.csv')
sarcasm_df.dropna(subset=['comment'], inplace=True)
sarcasm_df['comment'] = sarcasm_df['comment'].str.lower()
sarcasm_df['comment'] = sarcasm_df['comment'].str.replace('[^\\w\\s]', '')
sarcasm_df.created_utc = pd.to_datetime(sarcasm_df.created_utc)
plt.figure(figsize=(5,5))
ax = sns.countplot(x='label', data= sarcasm_df)
ax.set(title = "Distribution of Classes", xlabel="Sarcasm Status", ylabel = "Total Count")
total = float(len(sarcasm_df ))
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 3,
'{:1.1f}%'.format((height/total)*100),
ha="center")
plt.show()
sns.despine(offset=10, trim=True)
sns.despine(offset=10, trim=True)
sarcasm_df['log_comment'] = sarcasm_df['comment'].apply(lambda text: np.log1p(len(text)))
sarcasm_df[sarcasm_df['label'] == 1]['log_comment'].hist(alpha=0.6, label='Sarcastic', color='blue')
sarcasm_df[sarcasm_df['label'] == 0]['log_comment'].hist(alpha=0.6, label='Non-Sarcastic', color='red')
plt.legend()
plt.title('Natural Log Length of Comments')
plt.show() | code |
50219444/cell_14 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
sarcasm_df = pd.read_csv('../input/sarcasm/train-balanced-sarcasm.csv')
sarcasm_df.dropna(subset=['comment'], inplace=True)
sarcasm_df['comment'] = sarcasm_df['comment'].str.lower()
sarcasm_df['comment'] = sarcasm_df['comment'].str.replace('[^\\w\\s]', '')
sarcasm_df.created_utc = pd.to_datetime(sarcasm_df.created_utc)
plt.figure(figsize=(5,5))
ax = sns.countplot(x='label', data= sarcasm_df)
ax.set(title = "Distribution of Classes", xlabel="Sarcasm Status", ylabel = "Total Count")
total = float(len(sarcasm_df ))
for p in ax.patches:
height = p.get_height()
ax.text(p.get_x()+p.get_width()/2.,
height + 3,
'{:1.1f}%'.format((height/total)*100),
ha="center")
plt.show()
sns.despine(offset=10, trim=True)
sns.boxplot(x=sarcasm_df.loc[sarcasm_df['label'] == 0, 'comment'].str.len()).set(title='Length of Neutral Comments', xlabel='Length')
sns.despine(offset=10, trim=True)
plt.show() | code |
89135965/cell_9 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/titanic/train.csv')
data_test = pd.read_csv('../input/titanic/test.csv')
X = data[['Pclass', 'Age', 'Sex', 'SibSp', 'Parch', 'Fare', 'Embarked', 'Cabin']]
y = data.Survived
X.isnull().sum()
def impute_age(X):
mc_age = X[(X.Age <= 18) & (X.Sex == 'male')].Age.mean()
fc_age = X[(X.Age <= 18) & (X.Sex == 'female')].Age.mean()
ma_age = X[(X.Age > 18) & (X.Sex == 'male')].Age.mean()
fa_age = X[(X.Age > 18) & (X.Sex == 'female')].Age.mean()
for idx, row in X.iterrows():
if not pd.isna(row.Age):
continue
if row.SibSp >= 3:
if row.Sex == 'male':
X.loc[idx, 'Age'] = mc_age
if row.Sex == 'female':
X.loc[idx, 'Age'] = fc_age
else:
if row.Sex == 'male':
X.loc[idx, 'Age'] = ma_age
if row.Sex == 'female':
X.loc[idx, 'Age'] = fa_age
def impute_embarked(X):
most_common = X.Embarked.mode()
X.Embarked = [most_common if pd.isna(x) else x for x in X.Embarked]
def impute_cabins(X):
for a in 'ABCDEFG':
X[a] = [0 for _ in range(X.shape[0])]
for i, cabins in enumerate(X.Cabin):
if pd.isna(cabins):
continue
cabins = cabins.split()
for cabin in cabins:
if cabin == 'T':
continue
X.loc[i, cabins[0][:1]] = int(cabin[1:] or 0)
X.drop('Cabin', axis=1, inplace=True)
X.isnull().sum() | code |
89135965/cell_4 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/titanic/train.csv')
data_test = pd.read_csv('../input/titanic/test.csv')
X = data[['Pclass', 'Age', 'Sex', 'SibSp', 'Parch', 'Fare', 'Embarked', 'Cabin']]
y = data.Survived
X.isnull().sum() | code |
89135965/cell_2 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/titanic/train.csv')
data_test = pd.read_csv('../input/titanic/test.csv')
data.head() | code |
89135965/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/titanic/train.csv')
data_test = pd.read_csv('../input/titanic/test.csv')
X = data[['Pclass', 'Age', 'Sex', 'SibSp', 'Parch', 'Fare', 'Embarked', 'Cabin']]
y = data.Survived
X.isnull().sum()
def impute_age(X):
mc_age = X[(X.Age <= 18) & (X.Sex == 'male')].Age.mean()
fc_age = X[(X.Age <= 18) & (X.Sex == 'female')].Age.mean()
ma_age = X[(X.Age > 18) & (X.Sex == 'male')].Age.mean()
fa_age = X[(X.Age > 18) & (X.Sex == 'female')].Age.mean()
for idx, row in X.iterrows():
if not pd.isna(row.Age):
continue
if row.SibSp >= 3:
if row.Sex == 'male':
X.loc[idx, 'Age'] = mc_age
if row.Sex == 'female':
X.loc[idx, 'Age'] = fc_age
else:
if row.Sex == 'male':
X.loc[idx, 'Age'] = ma_age
if row.Sex == 'female':
X.loc[idx, 'Age'] = fa_age
def impute_embarked(X):
most_common = X.Embarked.mode()
X.Embarked = [most_common if pd.isna(x) else x for x in X.Embarked]
def impute_cabins(X):
for a in 'ABCDEFG':
X[a] = [0 for _ in range(X.shape[0])]
for i, cabins in enumerate(X.Cabin):
if pd.isna(cabins):
continue
cabins = cabins.split()
for cabin in cabins:
if cabin == 'T':
continue
X.loc[i, cabins[0][:1]] = int(cabin[1:] or 0)
X.drop('Cabin', axis=1, inplace=True)
impute_age(X)
impute_embarked(X)
impute_cabins(X) | code |
89135965/cell_10 | [
"text_html_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score, train_test_split
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/titanic/train.csv')
data_test = pd.read_csv('../input/titanic/test.csv')
X = data[['Pclass', 'Age', 'Sex', 'SibSp', 'Parch', 'Fare', 'Embarked', 'Cabin']]
y = data.Survived
X.isnull().sum()
def impute_age(X):
mc_age = X[(X.Age <= 18) & (X.Sex == 'male')].Age.mean()
fc_age = X[(X.Age <= 18) & (X.Sex == 'female')].Age.mean()
ma_age = X[(X.Age > 18) & (X.Sex == 'male')].Age.mean()
fa_age = X[(X.Age > 18) & (X.Sex == 'female')].Age.mean()
for idx, row in X.iterrows():
if not pd.isna(row.Age):
continue
if row.SibSp >= 3:
if row.Sex == 'male':
X.loc[idx, 'Age'] = mc_age
if row.Sex == 'female':
X.loc[idx, 'Age'] = fc_age
else:
if row.Sex == 'male':
X.loc[idx, 'Age'] = ma_age
if row.Sex == 'female':
X.loc[idx, 'Age'] = fa_age
def impute_embarked(X):
most_common = X.Embarked.mode()
X.Embarked = [most_common if pd.isna(x) else x for x in X.Embarked]
def impute_cabins(X):
for a in 'ABCDEFG':
X[a] = [0 for _ in range(X.shape[0])]
for i, cabins in enumerate(X.Cabin):
if pd.isna(cabins):
continue
cabins = cabins.split()
for cabin in cabins:
if cabin == 'T':
continue
X.loc[i, cabins[0][:1]] = int(cabin[1:] or 0)
X.drop('Cabin', axis=1, inplace=True)
X.isnull().sum()
def optimize_model(ne, md, trials):
for i in range(round(ne['low'] / ne['step']), round(ne['high'] / ne['step'])):
for j in range(round(md['low'] / md['step']), round(md['high'] / md['step'])):
print(i)
maes = []
for k in range(trials):
X_train, y_train, X_test, y_test = train_test_split(X, y, train_size=0.7, shuffle=True)
model = RandomForestClassifier(n_estimators=i * ne['step'], max_depth=j * md['step'])
model.fit(X_train, y_train)
prediction = model.predict(X_test)
maes.push(mean_abolute_error(y_test, prediction))
print(maes)
print(f"average: {sum(maes) / trials}\nne: {i * ne['step']}\tmd: {j * md['step']}")
optimize_model({'low': 50, 'high': 1000, 'step': 50}, {'low': 50, 'high': 300, 'step': 50}, trials=3) | code |
73079027/cell_6 | [
"text_html_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv', index_col='Id')
test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv')
train.shape
train.head() | code |
73079027/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/house-prices-advanced-regression-techniques/train.csv', index_col='Id')
test = pd.read_csv('../input/house-prices-advanced-regression-techniques/test.csv')
train.shape | code |
105201347/cell_13 | [
"text_plain_output_1.png"
] | import lazypredict
from lazypredict.Supervised import LazyClassifier | code |
105201347/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/indian-liver-patient-records/indian_liver_patient.csv')
data
data.describe() | code |
105201347/cell_2 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/indian-liver-patient-records/indian_liver_patient.csv')
data | code |
105201347/cell_7 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/indian-liver-patient-records/indian_liver_patient.csv')
data
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
data = data.apply(le.fit_transform)
data | code |
105201347/cell_8 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/indian-liver-patient-records/indian_liver_patient.csv')
data
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
data = data.apply(le.fit_transform)
data
from sklearn.preprocessing import MinMaxScaler
scaling = MinMaxScaler()
data = scaling.fit_transform(data)
data = pd.DataFrame(data)
data | code |
105201347/cell_3 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
data = pd.read_csv('../input/indian-liver-patient-records/indian_liver_patient.csv')
data
data.info() | code |
105201347/cell_10 | [
"text_html_output_1.png"
] | from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/indian-liver-patient-records/indian_liver_patient.csv')
data
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
data = data.apply(le.fit_transform)
data
from sklearn.preprocessing import MinMaxScaler
scaling = MinMaxScaler()
data = scaling.fit_transform(data)
data = pd.DataFrame(data)
data
x = data.drop(10, axis=1)
y = data[10]
plt.figure(figsize=(10, 6))
sns.heatmap(x.corr(), annot=True) | code |
105201347/cell_5 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = pd.read_csv('../input/indian-liver-patient-records/indian_liver_patient.csv')
data
plt.figure(figsize=(10, 6))
sns.heatmap(data.corr(), annot=True) | code |
33104556/cell_13 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv')
test = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv')
train = train.drop_duplicates().reset_index(drop=True)
train.target.value_counts()
train.isnull().sum()
test.isnull().sum()
dist = train[train.target==1].keyword.value_counts().head()
#dist
plt.figure(figsize=(9,6))
sns.barplot(dist,dist.index)
plt.show()
nondist = train[train.target == 0].keyword.value_counts().head()
plt.figure(figsize=(9, 6))
sns.barplot(nondist, nondist.index)
plt.show() | code |
33104556/cell_9 | [
"image_output_1.png"
] | import pandas as pd
train = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv')
test = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv')
test.isnull().sum() | code |
33104556/cell_4 | [
"image_output_1.png"
] | import pandas as pd
train = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv')
test = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv')
train.head(10) | code |
33104556/cell_6 | [
"image_output_1.png"
] | import pandas as pd
import seaborn as sns
train = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv')
test = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv')
train = train.drop_duplicates().reset_index(drop=True)
sns.countplot(x='target', data=train) | code |
33104556/cell_11 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv')
test = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv')
train = train.drop_duplicates().reset_index(drop=True)
train.target.value_counts()
train.isnull().sum()
test.isnull().sum()
plt.figure(figsize=(12, 8))
sns.countplot(x='keyword', data=train, order=train.keyword.value_counts().iloc[:15].index)
plt.title('Top Keywords')
plt.show() | code |
33104556/cell_7 | [
"image_output_1.png"
] | import pandas as pd
train = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv')
test = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv')
train = train.drop_duplicates().reset_index(drop=True)
train.target.value_counts() | code |
33104556/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd
train = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv')
test = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv')
train = train.drop_duplicates().reset_index(drop=True)
train.target.value_counts()
train.isnull().sum() | code |
33104556/cell_15 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv')
test = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv')
train = train.drop_duplicates().reset_index(drop=True)
train.target.value_counts()
train.isnull().sum()
test.isnull().sum()
dist = train[train.target==1].keyword.value_counts().head()
#dist
plt.figure(figsize=(9,6))
sns.barplot(dist,dist.index)
plt.show()
nondist = train[train.target==0].keyword.value_counts().head()
#nondist
plt.figure(figsize=(9,6))
sns.barplot(nondist,nondist.index)
plt.show()
distribution_dist = train.groupby('keyword').mean()['target'].sort_values(ascending=False).head(10)
distribution_nondist = train.groupby('keyword').mean()['target'].sort_values().head(10)
plt.figure(figsize=(9, 6))
sns.barplot(distribution_nondist, distribution_nondist.index)
plt.title('Distribution of Non Disasters keywords for lower risk')
plt.show() | code |
33104556/cell_16 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv')
test = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv')
train = train.drop_duplicates().reset_index(drop=True)
train.target.value_counts()
train.isnull().sum()
test.isnull().sum()
dist = train[train.target==1].keyword.value_counts().head()
#dist
plt.figure(figsize=(9,6))
sns.barplot(dist,dist.index)
plt.show()
nondist = train[train.target==0].keyword.value_counts().head()
#nondist
plt.figure(figsize=(9,6))
sns.barplot(nondist,nondist.index)
plt.show()
distribution_dist = train.groupby('keyword').mean()['target'].sort_values(ascending=False).head(10)
distribution_nondist = train.groupby('keyword').mean()['target'].sort_values().head(10)
print(train.location.nunique(), test.location.nunique()) | code |
33104556/cell_3 | [
"image_output_1.png"
] | import pandas as pd
train = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv')
test = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv')
print('Train : ', train.shape)
print('*' * 10)
print('Test : ', test.shape) | code |
33104556/cell_14 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
train = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv')
test = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv')
train = train.drop_duplicates().reset_index(drop=True)
train.target.value_counts()
train.isnull().sum()
test.isnull().sum()
dist = train[train.target==1].keyword.value_counts().head()
#dist
plt.figure(figsize=(9,6))
sns.barplot(dist,dist.index)
plt.show()
nondist = train[train.target==0].keyword.value_counts().head()
#nondist
plt.figure(figsize=(9,6))
sns.barplot(nondist,nondist.index)
plt.show()
distribution_dist = train.groupby('keyword').mean()['target'].sort_values(ascending=False).head(10)
plt.figure(figsize=(9, 6))
sns.barplot(distribution_dist, distribution_dist.index)
plt.title('Distribution of keywords for higher risk')
plt.show() | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.