path
stringlengths
13
17
screenshot_names
listlengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
323526/cell_9
[ "text_plain_output_4.png", "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/act_train.csv', parse_dates=['date']) test = pd.read_csv('../input/act_test.csv', parse_dates=['date']) ppl = pd.read_csv('../input/people.csv', parse_dates=['date']) df_train = pd.merge(train, ppl, on='people_id') df_test = pd.merge(test, ppl, on='people_id') del train, test, ppl date_x = pd.DataFrame() date_x['Class probability'] = df_train.groupby('date_x')['outcome'].mean() date_x['Frequency'] = df_train.groupby('date_x')['outcome'].size() date_y = pd.DataFrame() date_y['Class probability'] = df_train.groupby('date_y')['outcome'].mean() date_y['Frequency'] = df_train.groupby('date_y')['outcome'].size() i = int(len(date_y) / 3) date_y[:i].plot(secondary_y='Frequency', figsize=(20, 5), title='date_y Year 1') date_y[i:2 * i].plot(secondary_y='Frequency', figsize=(20, 5), title='date_y Year 2') date_y[2 * i:].plot(secondary_y='Frequency', figsize=(20, 5), title='date_y Year 3')
code
323526/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/act_train.csv', parse_dates=['date']) test = pd.read_csv('../input/act_test.csv', parse_dates=['date']) ppl = pd.read_csv('../input/people.csv', parse_dates=['date']) df_train = pd.merge(train, ppl, on='people_id') df_test = pd.merge(test, ppl, on='people_id') del train, test, ppl date_x = pd.DataFrame() date_x['Class probability'] = df_train.groupby('date_x')['outcome'].mean() date_x['Frequency'] = df_train.groupby('date_x')['outcome'].size() date_y = pd.DataFrame() date_y['Class probability'] = df_train.groupby('date_y')['outcome'].mean() date_y['Frequency'] = df_train.groupby('date_y')['outcome'].size() i = int(len(date_y) / 3) date_x_freq = pd.DataFrame() date_x_freq['Training set'] = df_train.groupby('date_x')['activity_id'].count() date_x_freq['Testing set'] = df_test.groupby('date_x')['activity_id'].count() date_x_freq.plot(secondary_y='Testing set', figsize=(20, 8), title='Comparison of date_x distribution between training/testing set') date_y_freq = pd.DataFrame() date_y_freq['Training set'] = df_train.groupby('date_y')['activity_id'].count() date_y_freq['Testing set'] = df_test.groupby('date_y')['activity_id'].count() date_y_freq[:i].plot(secondary_y='Testing set', figsize=(20, 8), title='Comparison of date_y distribution between training/testing set (first year)') date_y_freq[2 * i:].plot(secondary_y='Testing set', figsize=(20, 8), title='Comparison of date_y distribution between training/testing set (last year)')
code
323526/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/act_train.csv', parse_dates=['date']) test = pd.read_csv('../input/act_test.csv', parse_dates=['date']) ppl = pd.read_csv('../input/people.csv', parse_dates=['date']) df_train = pd.merge(train, ppl, on='people_id') df_test = pd.merge(test, ppl, on='people_id') del train, test, ppl date_x = pd.DataFrame() date_x['Class probability'] = df_train.groupby('date_x')['outcome'].mean() date_x['Frequency'] = df_train.groupby('date_x')['outcome'].size() date_x.plot(secondary_y='Frequency', figsize=(20, 10))
code
323526/cell_16
[ "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
from sklearn.metrics import roc_auc_score import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/act_train.csv', parse_dates=['date']) test = pd.read_csv('../input/act_test.csv', parse_dates=['date']) ppl = pd.read_csv('../input/people.csv', parse_dates=['date']) df_train = pd.merge(train, ppl, on='people_id') df_test = pd.merge(test, ppl, on='people_id') del train, test, ppl date_x = pd.DataFrame() date_x['Class probability'] = df_train.groupby('date_x')['outcome'].mean() date_x['Frequency'] = df_train.groupby('date_x')['outcome'].size() date_y = pd.DataFrame() date_y['Class probability'] = df_train.groupby('date_y')['outcome'].mean() date_y['Frequency'] = df_train.groupby('date_y')['outcome'].size() i = int(len(date_y) / 3) date_x_freq = pd.DataFrame() date_x_freq['Training set'] = df_train.groupby('date_x')['activity_id'].count() date_x_freq['Testing set'] = df_test.groupby('date_x')['activity_id'].count() date_y_freq = pd.DataFrame() date_y_freq['Training set'] = df_train.groupby('date_y')['activity_id'].count() date_y_freq['Testing set'] = df_test.groupby('date_y')['activity_id'].count() from sklearn.metrics import roc_auc_score features = pd.DataFrame() features['date_x_prob'] = df_train.groupby('date_x')['outcome'].transform('mean') features['date_y_prob'] = df_train.groupby('date_y')['outcome'].transform('mean') features['date_x_count'] = df_train.groupby('date_x')['outcome'].transform('count') features['date_y_count'] = df_train.groupby('date_y')['outcome'].transform('count') _ = [print(f.ljust(12) + ' AUC: ' + str(round(roc_auc_score(df_train['outcome'], features[f]), 6))) for f in features.columns]
code
323526/cell_14
[ "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/act_train.csv', parse_dates=['date']) test = pd.read_csv('../input/act_test.csv', parse_dates=['date']) ppl = pd.read_csv('../input/people.csv', parse_dates=['date']) df_train = pd.merge(train, ppl, on='people_id') df_test = pd.merge(test, ppl, on='people_id') del train, test, ppl date_x = pd.DataFrame() date_x['Class probability'] = df_train.groupby('date_x')['outcome'].mean() date_x['Frequency'] = df_train.groupby('date_x')['outcome'].size() date_y = pd.DataFrame() date_y['Class probability'] = df_train.groupby('date_y')['outcome'].mean() date_y['Frequency'] = df_train.groupby('date_y')['outcome'].size() i = int(len(date_y) / 3) date_x_freq = pd.DataFrame() date_x_freq['Training set'] = df_train.groupby('date_x')['activity_id'].count() date_x_freq['Testing set'] = df_test.groupby('date_x')['activity_id'].count() date_y_freq = pd.DataFrame() date_y_freq['Training set'] = df_train.groupby('date_y')['activity_id'].count() date_y_freq['Testing set'] = df_test.groupby('date_y')['activity_id'].count() print('date_y correlation in year 1: ' + str(np.corrcoef(date_y_freq[:i].fillna(0).T)[0, 1])) print('date_y correlation in year 2: ' + str(np.corrcoef(date_y_freq[i:2 * i].fillna(0).T)[0, 1])) print('date_y correlation in year 3: ' + str(np.corrcoef(date_y_freq[2 * i:].fillna(0).T)[0, 1]))
code
323526/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/act_train.csv', parse_dates=['date']) test = pd.read_csv('../input/act_test.csv', parse_dates=['date']) ppl = pd.read_csv('../input/people.csv', parse_dates=['date']) df_train = pd.merge(train, ppl, on='people_id') df_test = pd.merge(test, ppl, on='people_id') del train, test, ppl date_x = pd.DataFrame() date_x['Class probability'] = df_train.groupby('date_x')['outcome'].mean() date_x['Frequency'] = df_train.groupby('date_x')['outcome'].size() date_y = pd.DataFrame() date_y['Class probability'] = df_train.groupby('date_y')['outcome'].mean() date_y['Frequency'] = df_train.groupby('date_y')['outcome'].size() i = int(len(date_y) / 3) date_x_freq = pd.DataFrame() date_x_freq['Training set'] = df_train.groupby('date_x')['activity_id'].count() date_x_freq['Testing set'] = df_test.groupby('date_x')['activity_id'].count() date_y_freq = pd.DataFrame() date_y_freq['Training set'] = df_train.groupby('date_y')['activity_id'].count() date_y_freq['Testing set'] = df_test.groupby('date_y')['activity_id'].count() print('Correlation of date_x distribution in training/testing sets: ' + str(np.corrcoef(date_x_freq.T)[0, 1])) print('Correlation of date_y distribution in training/testing sets: ' + str(np.corrcoef(date_y_freq.fillna(0).T)[0, 1]))
code
323526/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/act_train.csv', parse_dates=['date']) test = pd.read_csv('../input/act_test.csv', parse_dates=['date']) ppl = pd.read_csv('../input/people.csv', parse_dates=['date']) df_train = pd.merge(train, ppl, on='people_id') df_test = pd.merge(test, ppl, on='people_id') del train, test, ppl for d in ['date_x', 'date_y']: print('Start of ' + d + ': ' + str(df_train[d].min().date())) print(' End of ' + d + ': ' + str(df_train[d].max().date())) print('Range of ' + d + ': ' + str(df_train[d].max() - df_train[d].min()) + '\n')
code
129040249/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv', index_col='Rank') data.shape data.dtypes data.isnull().sum() duplicate_rows_data = data[data.duplicated()] data.drop_duplicates() data.head(5)
code
129040249/cell_13
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv', index_col='Rank') data.shape data.dtypes data.isnull().sum()
code
129040249/cell_9
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv', index_col='Rank') data.head(5)
code
129040249/cell_23
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv', index_col='Rank') data.shape data.dtypes data.isnull().sum() duplicate_rows_data = data[data.duplicated()] data.drop_duplicates() plt.figure(figsize=(10, 4)) sns.countplot(x='Genre', data=data, order=data['Genre'].value_counts().index) plt.xticks(rotation='vertical') plt.title('Genre vs. No. of Games released', fontsize=14) plt.ylabel('No. of Games', fontsize=12) plt.xlabel('Genre', fontsize=12) plt.show()
code
129040249/cell_30
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv', index_col='Rank') data.shape data.dtypes data.isnull().sum() duplicate_rows_data = data[data.duplicated()] data.drop_duplicates() JAPAN_data = data.sort_values(by=['JP_Sales', 'Genre'], ascending=False) JAPAN_data = JAPAN_data.reset_index() JAPAN_data.drop(['Rank', 'Name', 'Platform', 'Year', 'Publisher', 'Global_Sales'], axis=1) JAPAN_data = JAPAN_data.groupby('Genre').sum() JAPAN_data
code
129040249/cell_6
[ "text_html_output_1.png" ]
import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt import seaborn as sns
code
129040249/cell_29
[ "image_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv', index_col='Rank') data.shape data.dtypes data.isnull().sum() duplicate_rows_data = data[data.duplicated()] data.drop_duplicates() JAPAN_data = data.sort_values(by=['JP_Sales', 'Genre'], ascending=False) JAPAN_data = JAPAN_data.reset_index() JAPAN_data.drop(['Rank', 'Name', 'Platform', 'Year', 'Publisher', 'Global_Sales'], axis=1) JAPAN_data = JAPAN_data.groupby('Genre').sum()
code
129040249/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv', index_col='Rank') data.shape
code
129040249/cell_19
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv', index_col='Rank') data.shape data.dtypes data.isnull().sum() duplicate_rows_data = data[data.duplicated()] data.drop_duplicates() data.describe()
code
129040249/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv', index_col='Rank') data.shape data.dtypes data.isnull().sum() duplicate_rows_data = data[data.duplicated()] data.drop_duplicates() data.info()
code
129040249/cell_28
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv', index_col='Rank') data.shape data.dtypes data.isnull().sum() duplicate_rows_data = data[data.duplicated()] data.drop_duplicates() JAPAN_data = data.sort_values(by=['JP_Sales', 'Genre'], ascending=False) JAPAN_data = JAPAN_data.reset_index() JAPAN_data.drop(['Rank', 'Name', 'Platform', 'Year', 'Publisher', 'Global_Sales'], axis=1)
code
129040249/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') data.head(5)
code
129040249/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv', index_col='Rank') data.shape data.dtypes data.isnull().sum() duplicate_rows_data = data[data.duplicated()] data.drop_duplicates()
code
129040249/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv', index_col='Rank') data.shape data.dtypes data.isnull().sum() duplicate_rows_data = data[data.duplicated()] data.drop_duplicates() data['Genre'].astype('category')
code
129040249/cell_24
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv', index_col='Rank') data.shape data.dtypes data.isnull().sum() duplicate_rows_data = data[data.duplicated()] data.drop_duplicates() Action_data = data[data['Genre'] == 'Action'] Action_data
code
129040249/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv', index_col='Rank') data.shape data.dtypes data.isnull().sum() duplicate_rows_data = data[data.duplicated()] print('number of duplicate rows: ', duplicate_rows_data.shape)
code
129040249/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv', index_col='Rank') data.shape data.dtypes data.isnull().sum() duplicate_rows_data = data[data.duplicated()] data.drop_duplicates() data['Genre'].value_counts()
code
129040249/cell_12
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') data = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv', index_col='Rank') data.shape data.dtypes
code
122258149/cell_21
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/euro-football-data-since-2012/Euro-Football_2012-2023.csv') drop_index = [] for j in range(0, len(df)): if (pd.isnull(df['HomeTeam'][j]) == True) | (pd.isnull(df['FTHG'][j]) == True): drop_index.append(j) df.drop(drop_index, axis=0, inplace=True) df.reset_index(inplace=True) df.drop('index', axis=1, inplace=True) df.drop('id', axis=1, inplace=True) import matplotlib.pyplot as plt def league_teams(league): teams=[] for i in range(0,len(df)): if df['League'][i] == league: teams.append(df['HomeTeam'][i]) team_counts = pd.DataFrame(data=teams, columns=['Teams']).value_counts() team_counts = team_counts.reset_index() column_name = '{} Teams most played since 2012'.format(league) team_counts.columns = [column_name, 'Counts'] team_counts = team_counts.plot(kind='bar',x=column_name,stacked=True, figsize=(17,5)) def plot_team_result_in_season(season, team): home = df[(df['HomeTeam'] == team) & (df['Season'] == season)]['FTR'].value_counts() away = df[(df['AwayTeam'] == team) & (df['Season'] == season)]['FTR'].value_counts() ploting = pd.DataFrame([home, away], ['home', 'away']) plot_team_result_in_season('2012-2013', 'Man United')
code
122258149/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/euro-football-data-since-2012/Euro-Football_2012-2023.csv') drop_index = [] for j in range(0, len(df)): if (pd.isnull(df['HomeTeam'][j]) == True) | (pd.isnull(df['FTHG'][j]) == True): drop_index.append(j) df.drop(drop_index, axis=0, inplace=True) df.reset_index(inplace=True) df.drop('index', axis=1, inplace=True) df.drop('id', axis=1, inplace=True) import matplotlib.pyplot as plt def league_teams(league): teams=[] for i in range(0,len(df)): if df['League'][i] == league: teams.append(df['HomeTeam'][i]) team_counts = pd.DataFrame(data=teams, columns=['Teams']).value_counts() team_counts = team_counts.reset_index() column_name = '{} Teams most played since 2012'.format(league) team_counts.columns = [column_name, 'Counts'] team_counts = team_counts.plot(kind='bar',x=column_name,stacked=True, figsize=(17,5)) league_teams('Premier League')
code
122258149/cell_9
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/euro-football-data-since-2012/Euro-Football_2012-2023.csv') drop_index = [] for j in range(0, len(df)): if (pd.isnull(df['HomeTeam'][j]) == True) | (pd.isnull(df['FTHG'][j]) == True): drop_index.append(j) df.drop(drop_index, axis=0, inplace=True) df.reset_index(inplace=True) df.drop('index', axis=1, inplace=True) df.drop('id', axis=1, inplace=True) c = df['Country'].value_counts() print(c) c.plot(kind='bar')
code
122258149/cell_4
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/euro-football-data-since-2012/Euro-Football_2012-2023.csv') df.head()
code
122258149/cell_30
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/euro-football-data-since-2012/Euro-Football_2012-2023.csv') drop_index = [] for j in range(0, len(df)): if (pd.isnull(df['HomeTeam'][j]) == True) | (pd.isnull(df['FTHG'][j]) == True): drop_index.append(j) df.drop(drop_index, axis=0, inplace=True) df.reset_index(inplace=True) df.drop('index', axis=1, inplace=True) df.drop('id', axis=1, inplace=True) import matplotlib.pyplot as plt def league_teams(league): teams=[] for i in range(0,len(df)): if df['League'][i] == league: teams.append(df['HomeTeam'][i]) team_counts = pd.DataFrame(data=teams, columns=['Teams']).value_counts() team_counts = team_counts.reset_index() column_name = '{} Teams most played since 2012'.format(league) team_counts.columns = [column_name, 'Counts'] team_counts = team_counts.plot(kind='bar',x=column_name,stacked=True, figsize=(17,5)) def plot_team_result_in_season(season, team): home = df[(df['HomeTeam'] == team) & (df['Season'] == season)]['FTR'].value_counts() away = df[(df['AwayTeam'] == team) & (df['Season'] == season)]['FTR'].value_counts() ploting = pd.DataFrame([home, away], ['home', 'away']) import seaborn as sns def home_goals_in_season(team, season): date = [] goals = [] total_shots = [] shot_target = [] corners = [] for i in range(0, len(df)): if (df['HomeTeam'][i] == team) & (df['Season'][i] == season): date.append(df['Date'][i]) goals.append(df['FTHG'][i]) total_shots.append(df['HS'][i]) shot_target.append(df['HST'][i]) corners.append(df['HC'][i]) if i == len(df) - 1: goals_data = {'Date': date, 'Home goals': goals, 'Home total shots': total_shots, 'Home shot on target': shot_target, 'Home team corners': corners} home_goals = pd.DataFrame(goals_data).set_index('Date') sns.set_style('dark') def away_goals_in_season(team, season): date = [] goals = [] total_shots = [] shot_target = [] corners = [] for i in range(0, len(df)): if (df['AwayTeam'][i] == team) & (df['Season'][i] == season): date.append(df['Date'][i]) goals.append(df['FTAG'][i]) total_shots.append(df['AS'][i]) shot_target.append(df['AST'][i]) corners.append(df['AC'][i]) if i == len(df) - 1: goals_data = {'Date': date, 'Away goals': goals, 'Away total shots': total_shots, 'Away shot on target': shot_target, 'Away team corners': corners} away_goals = pd.DataFrame(goals_data).set_index('Date') sns.set_style('dark') def home_fouls(team, season): date = [] fouls = [] yellow_card = [] red_card = [] for i in range(0, len(df)): if (df['HomeTeam'][i] == team) & (df['Season'][i] == season): date.append(df['Date'][i]) fouls.append(df['HF'][i]) yellow_card.append(df['HY'][i]) red_card.append(df['HR'][i]) if i == len(df) - 1: fouls_data = {'Date': date, 'Fouls': fouls, 'Yellow card': yellow_card, 'Red card': red_card} home_fouls = pd.DataFrame(fouls_data).set_index('Date') sns.set_style('dark') home_fouls('Milan', '2019-2020')
code
122258149/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
122258149/cell_7
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/euro-football-data-since-2012/Euro-Football_2012-2023.csv') drop_index = [] for j in range(0, len(df)): if (pd.isnull(df['HomeTeam'][j]) == True) | (pd.isnull(df['FTHG'][j]) == True): drop_index.append(j) df.drop(drop_index, axis=0, inplace=True) df.reset_index(inplace=True) df.drop('index', axis=1, inplace=True) df.drop('id', axis=1, inplace=True) df.info()
code
122258149/cell_18
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/euro-football-data-since-2012/Euro-Football_2012-2023.csv') drop_index = [] for j in range(0, len(df)): if (pd.isnull(df['HomeTeam'][j]) == True) | (pd.isnull(df['FTHG'][j]) == True): drop_index.append(j) df.drop(drop_index, axis=0, inplace=True) df.reset_index(inplace=True) df.drop('index', axis=1, inplace=True) df.drop('id', axis=1, inplace=True) def search_team_result_in_season(season, team): result = df[(df['Season'] == season) & ((df['AwayTeam'] == team) | (df['HomeTeam'] == team))][['League', 'Season', 'HomeTeam', 'AwayTeam', 'FTR', 'FTHG', 'FTAG']] return result search_team_result_in_season('2012-2013', 'Real Madrid')
code
122258149/cell_24
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/euro-football-data-since-2012/Euro-Football_2012-2023.csv') drop_index = [] for j in range(0, len(df)): if (pd.isnull(df['HomeTeam'][j]) == True) | (pd.isnull(df['FTHG'][j]) == True): drop_index.append(j) df.drop(drop_index, axis=0, inplace=True) df.reset_index(inplace=True) df.drop('index', axis=1, inplace=True) df.drop('id', axis=1, inplace=True) import matplotlib.pyplot as plt def league_teams(league): teams=[] for i in range(0,len(df)): if df['League'][i] == league: teams.append(df['HomeTeam'][i]) team_counts = pd.DataFrame(data=teams, columns=['Teams']).value_counts() team_counts = team_counts.reset_index() column_name = '{} Teams most played since 2012'.format(league) team_counts.columns = [column_name, 'Counts'] team_counts = team_counts.plot(kind='bar',x=column_name,stacked=True, figsize=(17,5)) def plot_team_result_in_season(season, team): home = df[(df['HomeTeam'] == team) & (df['Season'] == season)]['FTR'].value_counts() away = df[(df['AwayTeam'] == team) & (df['Season'] == season)]['FTR'].value_counts() ploting = pd.DataFrame([home, away], ['home', 'away']) import seaborn as sns def home_goals_in_season(team, season): date = [] goals = [] total_shots = [] shot_target = [] corners = [] for i in range(0, len(df)): if (df['HomeTeam'][i] == team) & (df['Season'][i] == season): date.append(df['Date'][i]) goals.append(df['FTHG'][i]) total_shots.append(df['HS'][i]) shot_target.append(df['HST'][i]) corners.append(df['HC'][i]) if i == len(df) - 1: goals_data = {'Date': date, 'Home goals': goals, 'Home total shots': total_shots, 'Home shot on target': shot_target, 'Home team corners': corners} home_goals = pd.DataFrame(goals_data).set_index('Date') sns.set_style('dark') home_goals_in_season('Real Madrid', '2012-2013')
code
122258149/cell_10
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/euro-football-data-since-2012/Euro-Football_2012-2023.csv') drop_index = [] for j in range(0, len(df)): if (pd.isnull(df['HomeTeam'][j]) == True) | (pd.isnull(df['FTHG'][j]) == True): drop_index.append(j) df.drop(drop_index, axis=0, inplace=True) df.reset_index(inplace=True) df.drop('index', axis=1, inplace=True) df.drop('id', axis=1, inplace=True) l = df['League'].value_counts() print(l) l.plot(kind='bar')
code
122258149/cell_27
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/euro-football-data-since-2012/Euro-Football_2012-2023.csv') drop_index = [] for j in range(0, len(df)): if (pd.isnull(df['HomeTeam'][j]) == True) | (pd.isnull(df['FTHG'][j]) == True): drop_index.append(j) df.drop(drop_index, axis=0, inplace=True) df.reset_index(inplace=True) df.drop('index', axis=1, inplace=True) df.drop('id', axis=1, inplace=True) import matplotlib.pyplot as plt def league_teams(league): teams=[] for i in range(0,len(df)): if df['League'][i] == league: teams.append(df['HomeTeam'][i]) team_counts = pd.DataFrame(data=teams, columns=['Teams']).value_counts() team_counts = team_counts.reset_index() column_name = '{} Teams most played since 2012'.format(league) team_counts.columns = [column_name, 'Counts'] team_counts = team_counts.plot(kind='bar',x=column_name,stacked=True, figsize=(17,5)) def plot_team_result_in_season(season, team): home = df[(df['HomeTeam'] == team) & (df['Season'] == season)]['FTR'].value_counts() away = df[(df['AwayTeam'] == team) & (df['Season'] == season)]['FTR'].value_counts() ploting = pd.DataFrame([home, away], ['home', 'away']) import seaborn as sns def home_goals_in_season(team, season): date = [] goals = [] total_shots = [] shot_target = [] corners = [] for i in range(0, len(df)): if (df['HomeTeam'][i] == team) & (df['Season'][i] == season): date.append(df['Date'][i]) goals.append(df['FTHG'][i]) total_shots.append(df['HS'][i]) shot_target.append(df['HST'][i]) corners.append(df['HC'][i]) if i == len(df) - 1: goals_data = {'Date': date, 'Home goals': goals, 'Home total shots': total_shots, 'Home shot on target': shot_target, 'Home team corners': corners} home_goals = pd.DataFrame(goals_data).set_index('Date') sns.set_style('dark') def away_goals_in_season(team, season): date = [] goals = [] total_shots = [] shot_target = [] corners = [] for i in range(0, len(df)): if (df['AwayTeam'][i] == team) & (df['Season'][i] == season): date.append(df['Date'][i]) goals.append(df['FTAG'][i]) total_shots.append(df['AS'][i]) shot_target.append(df['AST'][i]) corners.append(df['AC'][i]) if i == len(df) - 1: goals_data = {'Date': date, 'Away goals': goals, 'Away total shots': total_shots, 'Away shot on target': shot_target, 'Away team corners': corners} away_goals = pd.DataFrame(goals_data).set_index('Date') sns.set_style('dark') away_goals_in_season('Barcelona', '2014-2015')
code
17142199/cell_13
[ "text_plain_output_1.png" ]
from torch import tensor, nn import torch.nn.functional as F x_train, y_train, x_valid, y_valid = get_data() n, m = x_train.shape c = y_train.max() + 1 nh = 50 (n, m, c, nh) class Model(nn.Module): def __init__(self, ni, nh, no): super().__init__() self.layers = [nn.Linear(ni, nh), nn.ReLU(), nn.Linear(nh, no)] def __call__(self, x): for l in self.layers: x = l(x) return x model = Model(m, nh, 10) pred = model(x_train) pred.shape def log_softmax(x): return (x.exp() / x.exp().sum(-1, keepdim=True)).log() sm_pred = log_softmax(pred) (sm_pred.shape, sm_pred[:3]) def nll(inp, targ): return -inp[range(targ.shape[0]), targ].mean() loss = nll(sm_pred, y_train) loss def log_softmax(x): return x - x.exp().sum(-1, keepdim=True).log() test_near(nll(log_softmax(pred), y_train), loss) def log_softmax(x): return x - x.logsumexp(-1, keepdim=True) test_near(nll(log_softmax(pred), y_train), loss) test_near(F.nll_loss(F.log_softmax(pred, -1), y_train), loss) test_near(F.cross_entropy(pred, y_train), loss) loss_func = F.cross_entropy def acc(out, yb): return (torch.argmax(out, -1) == yb).float().mean() bs = 64 xb, yb = (x_train[:bs], y_train[:bs]) preds = model(xb) (loss_func(preds, yb), acc(preds, yb)) lr = 0.5 epochs = 1 for e in range(epochs): for i in range((n - 1) // bs + 1): start_i = bs * i end_i = bs * (i + 1) xb = x_train[start_i:end_i] yb = y_train[start_i:end_i] loss = loss_func(model(xb), yb) loss.backward() with torch.no_grad(): for l in model.layers: if hasattr(l, 'weight'): l.weight -= l.weight.grad * lr l.bias -= l.bias.grad * lr l.weight.grad.zero_() l.bias.grad.zero_() (loss_func(model(xb), yb), acc(model(xb), yb)) model = Model(m, nh, 10) for name, l in model.named_children(): print(f'{name}: {l}')
code
17142199/cell_4
[ "text_plain_output_1.png" ]
x_train, y_train, x_valid, y_valid = get_data() n, m = x_train.shape c = y_train.max() + 1 nh = 50 (n, m, c, nh)
code
17142199/cell_6
[ "text_plain_output_1.png" ]
from torch import tensor, nn x_train, y_train, x_valid, y_valid = get_data() n, m = x_train.shape c = y_train.max() + 1 nh = 50 (n, m, c, nh) class Model(nn.Module): def __init__(self, ni, nh, no): super().__init__() self.layers = [nn.Linear(ni, nh), nn.ReLU(), nn.Linear(nh, no)] def __call__(self, x): for l in self.layers: x = l(x) return x model = Model(m, nh, 10) pred = model(x_train) pred.shape def log_softmax(x): return (x.exp() / x.exp().sum(-1, keepdim=True)).log() sm_pred = log_softmax(pred) (sm_pred.shape, sm_pred[:3])
code
17142199/cell_11
[ "text_plain_output_1.png" ]
from torch import tensor, nn import torch.nn.functional as F x_train, y_train, x_valid, y_valid = get_data() n, m = x_train.shape c = y_train.max() + 1 nh = 50 (n, m, c, nh) class Model(nn.Module): def __init__(self, ni, nh, no): super().__init__() self.layers = [nn.Linear(ni, nh), nn.ReLU(), nn.Linear(nh, no)] def __call__(self, x): for l in self.layers: x = l(x) return x model = Model(m, nh, 10) pred = model(x_train) pred.shape def log_softmax(x): return (x.exp() / x.exp().sum(-1, keepdim=True)).log() sm_pred = log_softmax(pred) (sm_pred.shape, sm_pred[:3]) def nll(inp, targ): return -inp[range(targ.shape[0]), targ].mean() loss = nll(sm_pred, y_train) loss def log_softmax(x): return x - x.exp().sum(-1, keepdim=True).log() test_near(nll(log_softmax(pred), y_train), loss) def log_softmax(x): return x - x.logsumexp(-1, keepdim=True) test_near(nll(log_softmax(pred), y_train), loss) test_near(F.nll_loss(F.log_softmax(pred, -1), y_train), loss) test_near(F.cross_entropy(pred, y_train), loss) loss_func = F.cross_entropy def acc(out, yb): return (torch.argmax(out, -1) == yb).float().mean() bs = 64 xb, yb = (x_train[:bs], y_train[:bs]) preds = model(xb) (loss_func(preds, yb), acc(preds, yb)) lr = 0.5 epochs = 1 for e in range(epochs): for i in range((n - 1) // bs + 1): start_i = bs * i end_i = bs * (i + 1) xb = x_train[start_i:end_i] yb = y_train[start_i:end_i] loss = loss_func(model(xb), yb) loss.backward() with torch.no_grad(): for l in model.layers: if hasattr(l, 'weight'): l.weight -= l.weight.grad * lr l.bias -= l.bias.grad * lr l.weight.grad.zero_() l.bias.grad.zero_() (loss_func(model(xb), yb), acc(model(xb), yb))
code
17142199/cell_7
[ "text_plain_output_1.png" ]
from torch import tensor, nn x_train, y_train, x_valid, y_valid = get_data() n, m = x_train.shape c = y_train.max() + 1 nh = 50 (n, m, c, nh) class Model(nn.Module): def __init__(self, ni, nh, no): super().__init__() self.layers = [nn.Linear(ni, nh), nn.ReLU(), nn.Linear(nh, no)] def __call__(self, x): for l in self.layers: x = l(x) return x model = Model(m, nh, 10) pred = model(x_train) pred.shape def log_softmax(x): return (x.exp() / x.exp().sum(-1, keepdim=True)).log() sm_pred = log_softmax(pred) (sm_pred.shape, sm_pred[:3]) def nll(inp, targ): return -inp[range(targ.shape[0]), targ].mean() loss = nll(sm_pred, y_train) loss
code
17142199/cell_15
[ "text_plain_output_1.png" ]
from torch import tensor, nn import torch.nn.functional as F x_train, y_train, x_valid, y_valid = get_data() n, m = x_train.shape c = y_train.max() + 1 nh = 50 (n, m, c, nh) class Model(nn.Module): def __init__(self, ni, nh, no): super().__init__() self.layers = [nn.Linear(ni, nh), nn.ReLU(), nn.Linear(nh, no)] def __call__(self, x): for l in self.layers: x = l(x) return x model = Model(m, nh, 10) pred = model(x_train) pred.shape def log_softmax(x): return (x.exp() / x.exp().sum(-1, keepdim=True)).log() sm_pred = log_softmax(pred) (sm_pred.shape, sm_pred[:3]) def nll(inp, targ): return -inp[range(targ.shape[0]), targ].mean() loss = nll(sm_pred, y_train) loss def log_softmax(x): return x - x.exp().sum(-1, keepdim=True).log() test_near(nll(log_softmax(pred), y_train), loss) def log_softmax(x): return x - x.logsumexp(-1, keepdim=True) test_near(nll(log_softmax(pred), y_train), loss) test_near(F.nll_loss(F.log_softmax(pred, -1), y_train), loss) test_near(F.cross_entropy(pred, y_train), loss) loss_func = F.cross_entropy def acc(out, yb): return (torch.argmax(out, -1) == yb).float().mean() bs = 64 xb, yb = (x_train[:bs], y_train[:bs]) preds = model(xb) (loss_func(preds, yb), acc(preds, yb)) lr = 0.5 epochs = 1 for e in range(epochs): for i in range((n - 1) // bs + 1): start_i = bs * i end_i = bs * (i + 1) xb = x_train[start_i:end_i] yb = y_train[start_i:end_i] loss = loss_func(model(xb), yb) loss.backward() with torch.no_grad(): for l in model.layers: if hasattr(l, 'weight'): l.weight -= l.weight.grad * lr l.bias -= l.bias.grad * lr l.weight.grad.zero_() l.bias.grad.zero_() (loss_func(model(xb), yb), acc(model(xb), yb)) model = Model(m, nh, 10) def fit(): for e in range(epochs): for i in range((n - 1) // bs + 1): start_i = bs * i end_i = bs * (i + 1) xb = x_train[start_i:end_i] yb = y_train[start_i:end_i] loss = loss_func(model(xb), yb) loss.backward() with torch.no_grad(): for p in model.parameters(): p -= p.grad * lr model.zero_grad() fit() (loss_func(model(xb), yb), acc(model(xb), yb))
code
17142199/cell_3
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import os print(os.listdir('../input')) import operator from pathlib import Path from IPython.core.debugger import set_trace from fastai import datasets import pickle, gzip, math, torch, matplotlib as mpl import matplotlib.pyplot as plt from torch import tensor, nn import torch.nn.functional as F def test(a, b, cmp, cname=None): if cname is None: cname = cmp.__name__ assert cmp(a, b), f'{cname}:\n{a}\n{b}' def test_eq(a, b): test(a, b, operator.eq, '==') def near(a, b): return torch.allclose(a, b, 0.001, 1e-05) def test_near(a, b): test(a, b, near) MNIST_URL = 'http://deeplearning.net/data/mnist/mnist.pkl' def get_data(): path = datasets.download_data(MNIST_URL, ext='.gz') with gzip.open(path, 'rb') as f: (x_train, y_train), (x_valid, y_valid), _ = pickle.load(f, encoding='latin-1') return map(tensor, (x_train, y_train, x_valid, y_valid)) def normalize(x, m, s): return (x - m) / s
code
17142199/cell_14
[ "text_plain_output_1.png" ]
from torch import tensor, nn import torch.nn.functional as F x_train, y_train, x_valid, y_valid = get_data() n, m = x_train.shape c = y_train.max() + 1 nh = 50 (n, m, c, nh) class Model(nn.Module): def __init__(self, ni, nh, no): super().__init__() self.layers = [nn.Linear(ni, nh), nn.ReLU(), nn.Linear(nh, no)] def __call__(self, x): for l in self.layers: x = l(x) return x model = Model(m, nh, 10) pred = model(x_train) pred.shape def log_softmax(x): return (x.exp() / x.exp().sum(-1, keepdim=True)).log() sm_pred = log_softmax(pred) (sm_pred.shape, sm_pred[:3]) def nll(inp, targ): return -inp[range(targ.shape[0]), targ].mean() loss = nll(sm_pred, y_train) loss def log_softmax(x): return x - x.exp().sum(-1, keepdim=True).log() test_near(nll(log_softmax(pred), y_train), loss) def log_softmax(x): return x - x.logsumexp(-1, keepdim=True) test_near(nll(log_softmax(pred), y_train), loss) test_near(F.nll_loss(F.log_softmax(pred, -1), y_train), loss) test_near(F.cross_entropy(pred, y_train), loss) loss_func = F.cross_entropy def acc(out, yb): return (torch.argmax(out, -1) == yb).float().mean() bs = 64 xb, yb = (x_train[:bs], y_train[:bs]) preds = model(xb) (loss_func(preds, yb), acc(preds, yb)) lr = 0.5 epochs = 1 for e in range(epochs): for i in range((n - 1) // bs + 1): start_i = bs * i end_i = bs * (i + 1) xb = x_train[start_i:end_i] yb = y_train[start_i:end_i] loss = loss_func(model(xb), yb) loss.backward() with torch.no_grad(): for l in model.layers: if hasattr(l, 'weight'): l.weight -= l.weight.grad * lr l.bias -= l.bias.grad * lr l.weight.grad.zero_() l.bias.grad.zero_() (loss_func(model(xb), yb), acc(model(xb), yb)) model = Model(m, nh, 10) model
code
17142199/cell_10
[ "text_plain_output_1.png" ]
from torch import tensor, nn import torch.nn.functional as F x_train, y_train, x_valid, y_valid = get_data() n, m = x_train.shape c = y_train.max() + 1 nh = 50 (n, m, c, nh) class Model(nn.Module): def __init__(self, ni, nh, no): super().__init__() self.layers = [nn.Linear(ni, nh), nn.ReLU(), nn.Linear(nh, no)] def __call__(self, x): for l in self.layers: x = l(x) return x model = Model(m, nh, 10) pred = model(x_train) pred.shape def log_softmax(x): return (x.exp() / x.exp().sum(-1, keepdim=True)).log() sm_pred = log_softmax(pred) (sm_pred.shape, sm_pred[:3]) def nll(inp, targ): return -inp[range(targ.shape[0]), targ].mean() loss = nll(sm_pred, y_train) loss def log_softmax(x): return x - x.exp().sum(-1, keepdim=True).log() test_near(nll(log_softmax(pred), y_train), loss) def log_softmax(x): return x - x.logsumexp(-1, keepdim=True) test_near(nll(log_softmax(pred), y_train), loss) test_near(F.nll_loss(F.log_softmax(pred, -1), y_train), loss) test_near(F.cross_entropy(pred, y_train), loss) loss_func = F.cross_entropy def acc(out, yb): return (torch.argmax(out, -1) == yb).float().mean() bs = 64 xb, yb = (x_train[:bs], y_train[:bs]) preds = model(xb) (loss_func(preds, yb), acc(preds, yb))
code
17142199/cell_5
[ "text_plain_output_1.png" ]
from torch import tensor, nn x_train, y_train, x_valid, y_valid = get_data() n, m = x_train.shape c = y_train.max() + 1 nh = 50 (n, m, c, nh) class Model(nn.Module): def __init__(self, ni, nh, no): super().__init__() self.layers = [nn.Linear(ni, nh), nn.ReLU(), nn.Linear(nh, no)] def __call__(self, x): for l in self.layers: x = l(x) return x model = Model(m, nh, 10) pred = model(x_train) pred.shape
code
50221349/cell_9
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import lightgbm as lgb import numpy as np # linear algebra import optuna import optuna import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import sklearn train = pd.read_csv('/kaggle/input/jane-street-market-prediction/train.csv', nrows=30000) features = [col for col in list(train.columns) if 'feature' in col] train = train[train['weight'] != 0] train['action'] = (train['resp'].values > 0).astype(int) f_mean = train.mean() train = train.fillna(f_mean) X = train.loc[:, features] y = train.loc[:, 'action'] del train X = np.array(X) y = np.array(y) import optuna def objective(trial): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25) dtrain = lgb.Dataset(X_train, label=y_train) param = {'objective': 'binary', 'metric': 'binary_logloss', 'verbosity': -1, 'boosting_type': 'gbdt', 'lambda_l1': trial.suggest_float('lambda_l1', 1e-08, 10.0, log=True), 'lambda_l2': trial.suggest_float('lambda_l2', 1e-08, 10.0, log=True), 'num_leaves': trial.suggest_int('num_leaves', 2, 256), 'feature_fraction': trial.suggest_float('feature_fraction', 0.4, 1.0), 'bagging_fraction': trial.suggest_float('bagging_fraction', 0.4, 1.0), 'bagging_freq': trial.suggest_int('bagging_freq', 1, 7), 'min_child_samples': trial.suggest_int('min_child_samples', 5, 100)} gbm = lgb.train(param, dtrain) preds = gbm.predict(X_test) pred_labels = np.rint(preds) accuracy = sklearn.metrics.accuracy_score(y_test, pred_labels) return accuracy study = optuna.create_study(direction='maximize') study.optimize(objective, n_trials=100)
code
50221349/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import lightgbm as lgb import optuna from sklearn.model_selection import train_test_split import sklearn
code
50221349/cell_10
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import lightgbm as lgb import numpy as np # linear algebra import optuna import optuna import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import sklearn train = pd.read_csv('/kaggle/input/jane-street-market-prediction/train.csv', nrows=30000) features = [col for col in list(train.columns) if 'feature' in col] train = train[train['weight'] != 0] train['action'] = (train['resp'].values > 0).astype(int) f_mean = train.mean() train = train.fillna(f_mean) X = train.loc[:, features] y = train.loc[:, 'action'] del train X = np.array(X) y = np.array(y) import optuna def objective(trial): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25) dtrain = lgb.Dataset(X_train, label=y_train) param = {'objective': 'binary', 'metric': 'binary_logloss', 'verbosity': -1, 'boosting_type': 'gbdt', 'lambda_l1': trial.suggest_float('lambda_l1', 1e-08, 10.0, log=True), 'lambda_l2': trial.suggest_float('lambda_l2', 1e-08, 10.0, log=True), 'num_leaves': trial.suggest_int('num_leaves', 2, 256), 'feature_fraction': trial.suggest_float('feature_fraction', 0.4, 1.0), 'bagging_fraction': trial.suggest_float('bagging_fraction', 0.4, 1.0), 'bagging_freq': trial.suggest_int('bagging_freq', 1, 7), 'min_child_samples': trial.suggest_int('min_child_samples', 5, 100)} gbm = lgb.train(param, dtrain) preds = gbm.predict(X_test) pred_labels = np.rint(preds) accuracy = sklearn.metrics.accuracy_score(y_test, pred_labels) return accuracy study = optuna.create_study(direction='maximize') study.optimize(objective, n_trials=100) print('Number of finished trials: {}'.format(len(study.trials))) print('Best trial:') trial = study.best_trial print(' Value: {}'.format(trial.value)) print(' Params: ') for key, value in trial.params.items(): print(' {}: {}'.format(key, value))
code
18159225/cell_13
[ "text_html_output_1.png" ]
from collections import Counter from nltk.corpus import stopwords import pandas as pd import string import numpy as np import pandas as pd import re import nltk import spacy import string pd.options.mode.chained_assignment = None full_df = pd.read_csv('../input/twcs/twcs.csv', nrows=5000) df = full_df[['text']] df['text'] = df['text'].astype(str) df['text_lower'] = df['text'].str.lower() df.drop(['text_lower'], axis=1, inplace=True) PUNCT_TO_REMOVE = string.punctuation def remove_punctuation(text): """custom function to remove the punctuation""" return text.translate(str.maketrans('', '', PUNCT_TO_REMOVE)) df['text_wo_punct'] = df['text'].apply(lambda text: remove_punctuation(text)) from nltk.corpus import stopwords ', '.join(stopwords.words('english')) STOPWORDS = set(stopwords.words('english')) def remove_stopwords(text): """custom function to remove the stopwords""" return ' '.join([word for word in str(text).split() if word not in STOPWORDS]) df['text_wo_stop'] = df['text_wo_punct'].apply(lambda text: remove_stopwords(text)) from collections import Counter cnt = Counter() for text in df['text_wo_stop'].values: for word in text.split(): cnt[word] += 1 cnt.most_common(10) FREQWORDS = set([w for w, wc in cnt.most_common(10)]) def remove_freqwords(text): """custom function to remove the frequent words""" return ' '.join([word for word in str(text).split() if word not in FREQWORDS]) df['text_wo_stopfreq'] = df['text_wo_stop'].apply(lambda text: remove_freqwords(text)) df.head()
code
18159225/cell_4
[ "text_html_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import re import nltk import spacy import string pd.options.mode.chained_assignment = None full_df = pd.read_csv('../input/twcs/twcs.csv', nrows=5000) df = full_df[['text']] df['text'] = df['text'].astype(str) df['text_lower'] = df['text'].str.lower() df.head()
code
18159225/cell_6
[ "text_html_output_1.png" ]
import pandas as pd import string import numpy as np import pandas as pd import re import nltk import spacy import string pd.options.mode.chained_assignment = None full_df = pd.read_csv('../input/twcs/twcs.csv', nrows=5000) df = full_df[['text']] df['text'] = df['text'].astype(str) df['text_lower'] = df['text'].str.lower() df.drop(['text_lower'], axis=1, inplace=True) PUNCT_TO_REMOVE = string.punctuation def remove_punctuation(text): """custom function to remove the punctuation""" return text.translate(str.maketrans('', '', PUNCT_TO_REMOVE)) df['text_wo_punct'] = df['text'].apply(lambda text: remove_punctuation(text)) df.head()
code
18159225/cell_2
[ "text_html_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd import re import nltk import spacy import string pd.options.mode.chained_assignment = None full_df = pd.read_csv('../input/twcs/twcs.csv', nrows=5000) df = full_df[['text']] df['text'] = df['text'].astype(str) full_df.head()
code
18159225/cell_19
[ "text_plain_output_1.png" ]
from nltk.stem.snowball import SnowballStemmer from nltk.stem.snowball import SnowballStemmer SnowballStemmer.languages
code
18159225/cell_8
[ "text_plain_output_1.png" ]
from nltk.corpus import stopwords from nltk.corpus import stopwords ', '.join(stopwords.words('english'))
code
18159225/cell_15
[ "text_plain_output_1.png" ]
from collections import Counter from nltk.corpus import stopwords import pandas as pd import string import numpy as np import pandas as pd import re import nltk import spacy import string pd.options.mode.chained_assignment = None full_df = pd.read_csv('../input/twcs/twcs.csv', nrows=5000) df = full_df[['text']] df['text'] = df['text'].astype(str) df['text_lower'] = df['text'].str.lower() df.drop(['text_lower'], axis=1, inplace=True) PUNCT_TO_REMOVE = string.punctuation def remove_punctuation(text): """custom function to remove the punctuation""" return text.translate(str.maketrans('', '', PUNCT_TO_REMOVE)) df['text_wo_punct'] = df['text'].apply(lambda text: remove_punctuation(text)) from nltk.corpus import stopwords ', '.join(stopwords.words('english')) STOPWORDS = set(stopwords.words('english')) def remove_stopwords(text): """custom function to remove the stopwords""" return ' '.join([word for word in str(text).split() if word not in STOPWORDS]) df['text_wo_stop'] = df['text_wo_punct'].apply(lambda text: remove_stopwords(text)) from collections import Counter cnt = Counter() for text in df['text_wo_stop'].values: for word in text.split(): cnt[word] += 1 cnt.most_common(10) FREQWORDS = set([w for w, wc in cnt.most_common(10)]) def remove_freqwords(text): """custom function to remove the frequent words""" return ' '.join([word for word in str(text).split() if word not in FREQWORDS]) df['text_wo_stopfreq'] = df['text_wo_stop'].apply(lambda text: remove_freqwords(text)) df.drop(['text_wo_punct', 'text_wo_stop'], axis=1, inplace=True) n_rare_words = 10 RAREWORDS = set([w for w, wc in cnt.most_common()[:-n_rare_words - 1:-1]]) def remove_rarewords(text): """custom function to remove the rare words""" return ' '.join([word for word in str(text).split() if word not in RAREWORDS]) df['text_wo_stopfreqrare'] = df['text_wo_stopfreq'].apply(lambda text: remove_rarewords(text)) df.head()
code
18159225/cell_17
[ "text_html_output_1.png" ]
from collections import Counter from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer import pandas as pd import string import numpy as np import pandas as pd import re import nltk import spacy import string pd.options.mode.chained_assignment = None full_df = pd.read_csv('../input/twcs/twcs.csv', nrows=5000) df = full_df[['text']] df['text'] = df['text'].astype(str) df['text_lower'] = df['text'].str.lower() df.drop(['text_lower'], axis=1, inplace=True) PUNCT_TO_REMOVE = string.punctuation def remove_punctuation(text): """custom function to remove the punctuation""" return text.translate(str.maketrans('', '', PUNCT_TO_REMOVE)) df['text_wo_punct'] = df['text'].apply(lambda text: remove_punctuation(text)) from nltk.corpus import stopwords ', '.join(stopwords.words('english')) STOPWORDS = set(stopwords.words('english')) def remove_stopwords(text): """custom function to remove the stopwords""" return ' '.join([word for word in str(text).split() if word not in STOPWORDS]) df['text_wo_stop'] = df['text_wo_punct'].apply(lambda text: remove_stopwords(text)) from collections import Counter cnt = Counter() for text in df['text_wo_stop'].values: for word in text.split(): cnt[word] += 1 cnt.most_common(10) FREQWORDS = set([w for w, wc in cnt.most_common(10)]) def remove_freqwords(text): """custom function to remove the frequent words""" return ' '.join([word for word in str(text).split() if word not in FREQWORDS]) df['text_wo_stopfreq'] = df['text_wo_stop'].apply(lambda text: remove_freqwords(text)) df.drop(['text_wo_punct', 'text_wo_stop'], axis=1, inplace=True) n_rare_words = 10 RAREWORDS = set([w for w, wc in cnt.most_common()[:-n_rare_words - 1:-1]]) def remove_rarewords(text): """custom function to remove the rare words""" return ' '.join([word for word in str(text).split() if word not in RAREWORDS]) df['text_wo_stopfreqrare'] = df['text_wo_stopfreq'].apply(lambda text: remove_rarewords(text)) from nltk.stem.porter import PorterStemmer df.drop(['text_wo_stopfreq', 'text_wo_stopfreqrare'], axis=1, inplace=True) stemmer = PorterStemmer() def stem_words(text): return ' '.join([stemmer.stem(word) for word in text.split()]) df['text_stemmed'] = df['text'].apply(lambda text: stem_words(text)) df.head()
code
18159225/cell_10
[ "text_html_output_1.png" ]
from nltk.corpus import stopwords import pandas as pd import string import numpy as np import pandas as pd import re import nltk import spacy import string pd.options.mode.chained_assignment = None full_df = pd.read_csv('../input/twcs/twcs.csv', nrows=5000) df = full_df[['text']] df['text'] = df['text'].astype(str) df['text_lower'] = df['text'].str.lower() df.drop(['text_lower'], axis=1, inplace=True) PUNCT_TO_REMOVE = string.punctuation def remove_punctuation(text): """custom function to remove the punctuation""" return text.translate(str.maketrans('', '', PUNCT_TO_REMOVE)) df['text_wo_punct'] = df['text'].apply(lambda text: remove_punctuation(text)) from nltk.corpus import stopwords ', '.join(stopwords.words('english')) STOPWORDS = set(stopwords.words('english')) def remove_stopwords(text): """custom function to remove the stopwords""" return ' '.join([word for word in str(text).split() if word not in STOPWORDS]) df['text_wo_stop'] = df['text_wo_punct'].apply(lambda text: remove_stopwords(text)) df.head()
code
18159225/cell_12
[ "text_html_output_1.png" ]
from collections import Counter from nltk.corpus import stopwords import pandas as pd import string import numpy as np import pandas as pd import re import nltk import spacy import string pd.options.mode.chained_assignment = None full_df = pd.read_csv('../input/twcs/twcs.csv', nrows=5000) df = full_df[['text']] df['text'] = df['text'].astype(str) df['text_lower'] = df['text'].str.lower() df.drop(['text_lower'], axis=1, inplace=True) PUNCT_TO_REMOVE = string.punctuation def remove_punctuation(text): """custom function to remove the punctuation""" return text.translate(str.maketrans('', '', PUNCT_TO_REMOVE)) df['text_wo_punct'] = df['text'].apply(lambda text: remove_punctuation(text)) from nltk.corpus import stopwords ', '.join(stopwords.words('english')) STOPWORDS = set(stopwords.words('english')) def remove_stopwords(text): """custom function to remove the stopwords""" return ' '.join([word for word in str(text).split() if word not in STOPWORDS]) df['text_wo_stop'] = df['text_wo_punct'].apply(lambda text: remove_stopwords(text)) from collections import Counter cnt = Counter() for text in df['text_wo_stop'].values: for word in text.split(): cnt[word] += 1 cnt.most_common(10)
code
129008050/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('/kaggle/input/autompg-dataset/auto-mpg.csv', na_values='?', comment='\t', skipinitialspace=True) data data = data.replace(np.nan, 0) data cor = data.corr() data = data.drop(['cylinders', 'displacement'], axis=1) data cor = data.corr() x_train = data.iloc[:, 1:] y_train = data.iloc[:, 0:1] x_train
code
129008050/cell_4
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/autompg-dataset/auto-mpg.csv', na_values='?', comment='\t', skipinitialspace=True) data df_c = data['car name'].astype('category') data['car name'] = df_c.cat.codes data['car name']
code
129008050/cell_6
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('/kaggle/input/autompg-dataset/auto-mpg.csv', na_values='?', comment='\t', skipinitialspace=True) data data = data.replace(np.nan, 0) data plt.figure(figsize=(12, 10)) cor = data.corr() sns.heatmap(cor, annot=True, cmap=plt.cm.Reds) plt.show()
code
129008050/cell_2
[ "image_output_1.png" ]
import pandas as pd data = pd.read_csv('/kaggle/input/autompg-dataset/auto-mpg.csv', na_values='?', comment='\t', skipinitialspace=True) data
code
129008050/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score from sklearn.decomposition import PCA from sklearn import linear_model from keras.utils import to_categorical import matplotlib.pyplot as plt import seaborn as sns
code
129008050/cell_7
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('/kaggle/input/autompg-dataset/auto-mpg.csv', na_values='?', comment='\t', skipinitialspace=True) data data = data.replace(np.nan, 0) data cor = data.corr() data = data.drop(['cylinders', 'displacement'], axis=1) data
code
129008050/cell_8
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('/kaggle/input/autompg-dataset/auto-mpg.csv', na_values='?', comment='\t', skipinitialspace=True) data data = data.replace(np.nan, 0) data cor = data.corr() data = data.drop(['cylinders', 'displacement'], axis=1) data plt.figure(figsize=(12, 10)) cor = data.corr() sns.heatmap(cor, annot=True, cmap=plt.cm.Reds) plt.show()
code
129008050/cell_15
[ "text_html_output_1.png" ]
from sklearn import linear_model from sklearn.metrics import r2_score import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('/kaggle/input/autompg-dataset/auto-mpg.csv', na_values='?', comment='\t', skipinitialspace=True) data data = data.replace(np.nan, 0) data cor = data.corr() data = data.drop(['cylinders', 'displacement'], axis=1) data cor = data.corr() x_train = data.iloc[:, 1:] y_train = data.iloc[:, 0:1] x_train x_train.shape model = linear_model.LinearRegression() model.fit(x_train, y_train) y_predict_val = model.predict(x_val) y_predict_test = model.predict(x_test) testing_rts = r2_score(y_predict_test, y_test) testing_rts
code
129008050/cell_14
[ "text_plain_output_1.png" ]
from sklearn import linear_model from sklearn.metrics import r2_score import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('/kaggle/input/autompg-dataset/auto-mpg.csv', na_values='?', comment='\t', skipinitialspace=True) data data = data.replace(np.nan, 0) data cor = data.corr() data = data.drop(['cylinders', 'displacement'], axis=1) data cor = data.corr() x_train = data.iloc[:, 1:] y_train = data.iloc[:, 0:1] x_train x_train.shape model = linear_model.LinearRegression() model.fit(x_train, y_train) y_predict_val = model.predict(x_val) training_rts = r2_score(y_predict_val, y_val) training_rts
code
129008050/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('/kaggle/input/autompg-dataset/auto-mpg.csv', na_values='?', comment='\t', skipinitialspace=True) data data = data.replace(np.nan, 0) data cor = data.corr() data = data.drop(['cylinders', 'displacement'], axis=1) data cor = data.corr() x_train = data.iloc[:, 1:] y_train = data.iloc[:, 0:1] x_train x_train.shape
code
129008050/cell_5
[ "image_output_1.png" ]
import numpy as np import pandas as pd data = pd.read_csv('/kaggle/input/autompg-dataset/auto-mpg.csv', na_values='?', comment='\t', skipinitialspace=True) data data = data.replace(np.nan, 0) data
code
73060893/cell_2
[ "text_plain_output_1.png" ]
import warnings import os import time import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset import pandas as pd from sklearn import metrics from sklearn.model_selection import train_test_split import transformers from transformers import AdamW, T5Tokenizer, T5ForConditionalGeneration import torch_xla.core.xla_model as xm import torch_xla.distributed.parallel_loader as pl import torch_xla.distributed.xla_multiprocessing as xmp import warnings warnings.filterwarnings('ignore')
code
73060893/cell_1
[ "text_plain_output_1.png" ]
!curl https://raw.githubusercontent.com/pytorch/xla/master/contrib/scripts/env-setup.py -o pytorch-xla-env-setup.py !python pytorch-xla-env-setup.py --version nightly --apt-packages libomp5 libopenblas-dev
code
73060893/cell_3
[ "application_vnd.jupyter.stderr_output_9.png", "text_plain_output_5.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_4.png", "application_vnd.jupyter.stderr_output_6.png", "application_vnd.jupyter.stderr_output_8.png", "text_plain_output_3.png", "text_plain_output_7.png", "text_plain_output_1.png" ]
import transformers class config: MAX_LEN_I = 448 MAX_LEN_O = 224 TRAIN_BATCH_SIZE = 16 VALID_BATCH_SIZE = 8 EPOCHS = 15 MODEL_PATH = 'T5-base-TPU.pth' TRAINING_FILE = '../input/table-to-text-generation-dataset-google-totto/totto_data/tablesWithTag.csv' TOKENIZER = transformers.T5Tokenizer.from_pretrained('t5-base', do_lower_case=True)
code
73060893/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.model_selection import train_test_split from torch.utils.data import Dataset from transformers import AdamW, T5Tokenizer, T5ForConditionalGeneration import pandas as pd import time import torch import torch_xla.core.xla_model as xm special_tokens_dict = {'pad_token': '<pad>', 'bos_token': '<bos>', 'eos_token': '<eos>', 'additional_special_tokens': ['<PAGESTART>', '<PAGEEND>', '<SECTIONSTART>', '<SECTIONEND>', '<TABLESTART>', '<TABLEEND>', '<CELLSTART>', '<CELLEND>', '<COLHEADERSTART>', '<COLHEADEREND>', '<ROWHEADERSTART>', '<ROWHEADEREND>']} num_added_toks = config.TOKENIZER.add_special_tokens(special_tokens_dict) df = pd.read_csv(config.TRAINING_FILE) train_df, val_df = train_test_split(df, test_size=0.1) train_df = train_df.reset_index(drop=True) val_df = val_df.reset_index(drop=True) class tottoDataset(Dataset): def __init__(self, df, tokenizer): self.sentence = df['sentence'] self.table = df['table'] self.tokenizer = tokenizer def __len__(self): return len(self.sentence) def __getitem__(self, idx): inp = (self.table[idx] + '</s>').replace('<page_title>', '<PAGESTART>').replace('</page_title>', '<PAGEEND>').replace('<section_title>', '<SECTIONSTART>').replace('</section_title>', '<SECTIONEND>').replace('<table>', '<TABLESTART>').replace('</table>', '<TABLEEND>').replace('<cell>', '<CELLSTART>').replace('</cell>', '<CELLEND>').replace('<col_header>', '<COLHEADERSTART>').replace('</col_header>', '<COLHEADEREND>').replace('<row_header>', '<ROWHEADERSTART>').replace('</row_header>', '<ROWHEADEREND>') out = self.sentence[idx] + '</s>' inp_tokens = self.tokenizer.encode_plus(inp, padding='max_length', max_length=config.MAX_LEN_I, truncation=True) out_tokens = self.tokenizer.encode_plus(out, padding='max_length', max_length=config.MAX_LEN_O, truncation=True) inp_id = inp_tokens.input_ids out_id = out_tokens.input_ids inp_mask = inp_tokens.attention_mask out_mask = out_tokens.attention_mask labels = out_tokens.input_ids.copy() labels = [-100 if x == self.tokenizer.pad_token_id else x for x in labels] return {'table_text': inp, 'sentence': out, 'input_ids': torch.tensor(inp_id, dtype=torch.long), 'input_attention_mask': torch.tensor(inp_mask, dtype=torch.long), 'decoder_input_ids': torch.tensor(out_id, dtype=torch.long), 'decoder_attention_mask': torch.tensor(out_mask, dtype=torch.long), 'labels': torch.tensor(labels, dtype=torch.long)} def train_fn(dataloader, model, optimizer, device, scheduler, epoch, num_epoch, num_steps): model.train() for i, batch in enumerate(dataloader): input_ids = batch['input_ids'].to(device) labels = batch['labels'].to(device) outputs = model(input_ids=input_ids, labels=labels) loss = outputs.loss loss.backward() xm.optimizer_step(optimizer) if scheduler is not None: scheduler.step() def eval_fn(dataloader, model, device, size): model.eval() loss = 0 with torch.no_grad(): for i, batch in enumerate(dataloader): input_ids = batch['input_ids'].to(device) labels = batch['labels'].to(device) outputs = model(input_ids=input_ids, labels=labels) loss += outputs.loss.item() return loss model = T5ForConditionalGeneration.from_pretrained('t5-base', return_dict=True) model.encoder.resize_token_embeddings(len(config.TOKENIZER)) model.decoder.resize_token_embeddings(len(config.TOKENIZER))
code
105187200/cell_25
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/brainly/IC2 Data Analyst Taske home task - dataset for Part 2 - 2.1.csv') data.shape data.sort_values(by=['action_date'], inplace=True) cats = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] data.groupby(['weekday'])['daily_conversion_rate '].sum().reindex(cats).plot(figsize=(16, 6), subplots=True)
code
105187200/cell_23
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/brainly/IC2 Data Analyst Taske home task - dataset for Part 2 - 2.1.csv') data.shape data.sort_values(by=['action_date'], inplace=True) data.groupby(['week_number'])['daily_conversion_rate '].sum().plot(figsize=(16, 6), subplots=True)
code
105187200/cell_30
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/brainly/IC2 Data Analyst Taske home task - dataset for Part 2 - 2.1.csv') data.shape data.sort_values(by=['action_date'], inplace=True) cats = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] data.groupby(['week_number'])['conversion_rate_to_unlockpage '].sum().plot(figsize=(16, 6), subplots=True)
code
105187200/cell_20
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/brainly/IC2 Data Analyst Taske home task - dataset for Part 2 - 2.1.csv') data.shape data.sort_values(by=['action_date'], inplace=True) fig, ax = plt.subplots(figsize=(13, 6)) ax.bar(data['action_date'], data['daily_conversion_rate ']) ax.set(xlabel='Date', ylabel='Daily Conversion rate(%)', title='Daily Conversion Rate to trial') plt.setp(ax.get_xticklabels(), rotation=45) plt.show()
code
105187200/cell_39
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/brainly/IC2 Data Analyst Taske home task - dataset for Part 2 - 2.1.csv') data.shape data.sort_values(by=['action_date'], inplace=True) fig, ax = plt.subplots(figsize=(13,6)) # Add x-axis and y-axis ax.bar(data["action_date"], data['daily_conversion_rate '] ) # Set title and labels for axes ax.set(xlabel="Date", ylabel="Daily Conversion rate(%)", title="Daily Conversion Rate to trial") # Rotate tick marks on x-axis plt.setp(ax.get_xticklabels(), rotation=45) plt.show() cats = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] fig, ax = plt.subplots(figsize=(13,6)) # Add x-axis and y-axis ax.bar(data["action_date"], data['conversion_rate_to_unlockpage '] ) # Set title and labels for axes ax.set(xlabel="Date", ylabel="Unlock Page Conversion rate(%)", title="Daily Unlock Page Conversion") # Rotate tick marks on x-axis plt.setp(ax.get_xticklabels(), rotation=45) plt.show() fig, ax = plt.subplots(figsize=(13, 6)) ax.set(xlabel='conversion_rate_to_unlockpage(%)', ylabel='daily_conversion_rate', title='Relationship between unlock page view rate to trial rate') sns.scatterplot(data['conversion_rate_to_unlockpage '], data['daily_conversion_rate '])
code
105187200/cell_48
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/brainly/IC2 Data Analyst Taske home task - dataset for Part 2 - 2.1.csv') data.shape data.sort_values(by=['action_date'], inplace=True) data['week_number'] = pd.to_datetime(data['action_date']).dt.strftime('%U') data['weekday'] = pd.to_datetime(data['action_date']).dt.day_name() cats = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] pd.Series(data['daily_conversion_rate ']).corr(pd.Series(data['conversion_rate_to_unlockpage '])) data_2 = pd.read_csv('/kaggle/input/brainly-2/IC2 Data Analyst Taske home task - dataset for Part 2 - 2.2.csv') data_2
code
105187200/cell_41
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/brainly/IC2 Data Analyst Taske home task - dataset for Part 2 - 2.1.csv') data.shape data.sort_values(by=['action_date'], inplace=True) fig, ax = plt.subplots(figsize=(13,6)) # Add x-axis and y-axis ax.bar(data["action_date"], data['daily_conversion_rate '] ) # Set title and labels for axes ax.set(xlabel="Date", ylabel="Daily Conversion rate(%)", title="Daily Conversion Rate to trial") # Rotate tick marks on x-axis plt.setp(ax.get_xticklabels(), rotation=45) plt.show() cats = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] fig, ax = plt.subplots(figsize=(13,6)) # Add x-axis and y-axis ax.bar(data["action_date"], data['conversion_rate_to_unlockpage '] ) # Set title and labels for axes ax.set(xlabel="Date", ylabel="Unlock Page Conversion rate(%)", title="Daily Unlock Page Conversion") # Rotate tick marks on x-axis plt.setp(ax.get_xticklabels(), rotation=45) plt.show() fig, ax = plt.subplots(figsize=(13,6)) # Set title and labels for axes ax.set(xlabel="conversion_rate_to_unlockpage(%)", ylabel="daily_conversion_rate", title="Relationship between unlock page view rate to trial rate") sns.scatterplot( data["conversion_rate_to_unlockpage "], data["daily_conversion_rate "]); fig, ax = plt.subplots(figsize=(13, 6)) ax.set(xlabel='unlock_users', ylabel='trial_users', title='Relationship between trial users and unlock users') sns.scatterplot(data['unlock_users'], data['trial_users'])
code
105187200/cell_50
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/brainly/IC2 Data Analyst Taske home task - dataset for Part 2 - 2.1.csv') data.shape data.sort_values(by=['action_date'], inplace=True) fig, ax = plt.subplots(figsize=(13,6)) # Add x-axis and y-axis ax.bar(data["action_date"], data['daily_conversion_rate '] ) # Set title and labels for axes ax.set(xlabel="Date", ylabel="Daily Conversion rate(%)", title="Daily Conversion Rate to trial") # Rotate tick marks on x-axis plt.setp(ax.get_xticklabels(), rotation=45) plt.show() data['week_number'] = pd.to_datetime(data['action_date']).dt.strftime('%U') data['weekday'] = pd.to_datetime(data['action_date']).dt.day_name() cats = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] fig, ax = plt.subplots(figsize=(13,6)) # Add x-axis and y-axis ax.bar(data["action_date"], data['conversion_rate_to_unlockpage '] ) # Set title and labels for axes ax.set(xlabel="Date", ylabel="Unlock Page Conversion rate(%)", title="Daily Unlock Page Conversion") # Rotate tick marks on x-axis plt.setp(ax.get_xticklabels(), rotation=45) plt.show() pd.Series(data['daily_conversion_rate ']).corr(pd.Series(data['conversion_rate_to_unlockpage '])) fig, ax = plt.subplots(figsize=(13,6)) # Set title and labels for axes ax.set(xlabel="conversion_rate_to_unlockpage(%)", ylabel="daily_conversion_rate", title="Relationship between unlock page view rate to trial rate") sns.scatterplot( data["conversion_rate_to_unlockpage "], data["daily_conversion_rate "]); fig, ax = plt.subplots(figsize=(13,6)) # Set title and labels for axes ax.set(xlabel="unlock_users", ylabel="trial_users", title="Relationship between trial users and unlock users") sns.scatterplot(data["unlock_users"], data["trial_users"] ); data_2 = pd.read_csv('/kaggle/input/brainly-2/IC2 Data Analyst Taske home task - dataset for Part 2 - 2.2.csv') data_2['answer_added (%)'] = data_2['users_at_least_1_answer_added'] / data_2['users_all'] * 100 fig, ax = plt.subplots(figsize=(13, 6)) ax.set(title='Behavior of converted and non converted users in answer_added') sns.barplot(x=data_2['user_converted_to_trial'], y=data_2['answer_added (%)'])
code
105187200/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105187200/cell_18
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/brainly/IC2 Data Analyst Taske home task - dataset for Part 2 - 2.1.csv') data.shape data.sort_values(by=['action_date'], inplace=True) data.head()
code
105187200/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/brainly/IC2 Data Analyst Taske home task - dataset for Part 2 - 2.1.csv') data.shape data.sort_values(by=['action_date'], inplace=True) cats = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] data.groupby(['weekday'])['conversion_rate_to_unlockpage '].sum().reindex(cats).plot(figsize=(16, 6), subplots=True)
code
105187200/cell_51
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/brainly/IC2 Data Analyst Taske home task - dataset for Part 2 - 2.1.csv') data.shape data.sort_values(by=['action_date'], inplace=True) fig, ax = plt.subplots(figsize=(13,6)) # Add x-axis and y-axis ax.bar(data["action_date"], data['daily_conversion_rate '] ) # Set title and labels for axes ax.set(xlabel="Date", ylabel="Daily Conversion rate(%)", title="Daily Conversion Rate to trial") # Rotate tick marks on x-axis plt.setp(ax.get_xticklabels(), rotation=45) plt.show() data['week_number'] = pd.to_datetime(data['action_date']).dt.strftime('%U') data['weekday'] = pd.to_datetime(data['action_date']).dt.day_name() cats = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] fig, ax = plt.subplots(figsize=(13,6)) # Add x-axis and y-axis ax.bar(data["action_date"], data['conversion_rate_to_unlockpage '] ) # Set title and labels for axes ax.set(xlabel="Date", ylabel="Unlock Page Conversion rate(%)", title="Daily Unlock Page Conversion") # Rotate tick marks on x-axis plt.setp(ax.get_xticklabels(), rotation=45) plt.show() pd.Series(data['daily_conversion_rate ']).corr(pd.Series(data['conversion_rate_to_unlockpage '])) fig, ax = plt.subplots(figsize=(13,6)) # Set title and labels for axes ax.set(xlabel="conversion_rate_to_unlockpage(%)", ylabel="daily_conversion_rate", title="Relationship between unlock page view rate to trial rate") sns.scatterplot( data["conversion_rate_to_unlockpage "], data["daily_conversion_rate "]); fig, ax = plt.subplots(figsize=(13,6)) # Set title and labels for axes ax.set(xlabel="unlock_users", ylabel="trial_users", title="Relationship between trial users and unlock users") sns.scatterplot(data["unlock_users"], data["trial_users"] ); data_2 = pd.read_csv('/kaggle/input/brainly-2/IC2 Data Analyst Taske home task - dataset for Part 2 - 2.2.csv') data_2["answer_added (%)"]=data_2["users_at_least_1_answer_added"]/data_2["users_all"]*100 fig, ax = plt.subplots(figsize=(13,6)) # Set title and labels for axes ax.set(title="Behavior of converted and non converted users in answer_added") sns.barplot(x=data_2["user_converted_to_trial"],y=data_2["answer_added (%)"] ) data_2['question_added (%)'] = data_2['users_at_least_1_question_added'] / data_2['users_all'] * 100 fig, ax = plt.subplots(figsize=(13, 6)) ax.set(title='Behavior of converted and non converted users in questions_added') sns.barplot(x=data_2['user_converted_to_trial'], y=data_2['question_added (%)'])
code
105187200/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/brainly/IC2 Data Analyst Taske home task - dataset for Part 2 - 2.1.csv') data.shape data.sort_values(by=['action_date'], inplace=True) fig, ax = plt.subplots(figsize=(13,6)) # Add x-axis and y-axis ax.bar(data["action_date"], data['daily_conversion_rate '] ) # Set title and labels for axes ax.set(xlabel="Date", ylabel="Daily Conversion rate(%)", title="Daily Conversion Rate to trial") # Rotate tick marks on x-axis plt.setp(ax.get_xticklabels(), rotation=45) plt.show() cats = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] fig, ax = plt.subplots(figsize=(13, 6)) ax.bar(data['action_date'], data['conversion_rate_to_unlockpage ']) ax.set(xlabel='Date', ylabel='Unlock Page Conversion rate(%)', title='Daily Unlock Page Conversion') plt.setp(ax.get_xticklabels(), rotation=45) plt.show()
code
105187200/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/brainly/IC2 Data Analyst Taske home task - dataset for Part 2 - 2.1.csv') data.shape
code
105187200/cell_15
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/brainly/IC2 Data Analyst Taske home task - dataset for Part 2 - 2.1.csv') data.shape data.head()
code
105187200/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/brainly/IC2 Data Analyst Taske home task - dataset for Part 2 - 2.1.csv') data.shape data.head()
code
105187200/cell_36
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/brainly/IC2 Data Analyst Taske home task - dataset for Part 2 - 2.1.csv') data.shape data.sort_values(by=['action_date'], inplace=True) data['week_number'] = pd.to_datetime(data['action_date']).dt.strftime('%U') data['weekday'] = pd.to_datetime(data['action_date']).dt.day_name() cats = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] pd.Series(data['daily_conversion_rate ']).corr(pd.Series(data['conversion_rate_to_unlockpage ']))
code
33112913/cell_4
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import pandas as pd import os import numpy as np from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV import os data = pd.read_csv('/kaggle/input/otto-group-product-classification-challenge/train.csv') data.sample(10) X = np.asarray(data.iloc[:, 1:-1].dropna(), dtype=np.float32) Y = np.asarray(data.iloc[:, -1]) np.sum(data.iloc[:, 1:94] > 40)
code
33112913/cell_6
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import StandardScaler import numpy as np import numpy as np # linear algebra import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import pandas as pd import os import numpy as np from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV import os data = pd.read_csv('/kaggle/input/otto-group-product-classification-challenge/train.csv') data.sample(10) X = np.asarray(data.iloc[:, 1:-1].dropna(), dtype=np.float32) Y = np.asarray(data.iloc[:, -1]) from sklearn.preprocessing import StandardScaler X_standard = StandardScaler().fit_transform(X) X_standard
code
33112913/cell_2
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import pandas as pd import os import numpy as np from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV import os data = pd.read_csv('/kaggle/input/otto-group-product-classification-challenge/train.csv') data.sample(10) X = np.asarray(data.iloc[:, 1:-1].dropna(), dtype=np.float32) print(X.shape) Y = np.asarray(data.iloc[:, -1]) print(Y, Y.shape, len(np.unique(Y)))
code
33112913/cell_1
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import pandas as pd import os import numpy as np from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) data = pd.read_csv('/kaggle/input/otto-group-product-classification-challenge/train.csv') data.sample(10)
code
33112913/cell_7
[ "text_plain_output_1.png" ]
from sklearn.model_selection import cross_validate from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler import numpy as np import numpy as np # linear algebra import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import pandas as pd import os import numpy as np from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV import os data = pd.read_csv('/kaggle/input/otto-group-product-classification-challenge/train.csv') data.sample(10) X = np.asarray(data.iloc[:, 1:-1].dropna(), dtype=np.float32) Y = np.asarray(data.iloc[:, -1]) from sklearn.preprocessing import StandardScaler X_standard = StandardScaler().fit_transform(X) X_standard from sklearn.model_selection import cross_validate knn = KNeighborsClassifier(n_neighbors=9) cv_results = cross_validate(knn, X_standard, Y, cv=5) cv_results['test_score']
code
33112913/cell_3
[ "text_html_output_1.png" ]
import numpy as np import numpy as np # linear algebra import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import pandas as pd import os import numpy as np from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV import os data = pd.read_csv('/kaggle/input/otto-group-product-classification-challenge/train.csv') data.sample(10) X = np.asarray(data.iloc[:, 1:-1].dropna(), dtype=np.float32) Y = np.asarray(data.iloc[:, -1]) data.describe()
code
33112913/cell_5
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import pandas as pd import os import numpy as np from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV import os data = pd.read_csv('/kaggle/input/otto-group-product-classification-challenge/train.csv') data.sample(10) X = np.asarray(data.iloc[:, 1:-1].dropna(), dtype=np.float32) Y = np.asarray(data.iloc[:, -1]) np.sum(data.iloc[:, 1:94] > 40) data.isnull().sum()
code
50227590/cell_7
[ "text_plain_output_1.png" ]
from sklearn import datasets from sklearn.model_selection import cross_val_score from sklearn.naive_bayes import BernoulliNB, MultinomialNB, GaussianNB digits = datasets.load_digits() breast = datasets.load_breast_cancer() X_digits = digits.data y_digits = digits.target X_breast = breast.data y_breast = breast.target Bern_clf = BernoulliNB() Mult_clf = MultinomialNB() Gauss_clf = GaussianNB() Bern_val_score_digits = cross_val_score(Bern_clf, X_digits, y_digits).mean() Mult_val_score_digits = cross_val_score(Mult_clf, X_digits, y_digits).mean() Gauss_val_score_digits = cross_val_score(Gauss_clf, X_digits, y_digits).mean() Bern_val_score_breast = cross_val_score(Bern_clf, X_breast, y_breast).mean() Mult_val_score_breast = cross_val_score(Mult_clf, X_breast, y_breast).mean() Gauss_val_score_breast = cross_val_score(Gauss_clf, X_breast, y_breast).mean() print('BernoulliNB, digits = ', Bern_val_score_digits) print('MultinomialNB, digits = ', Mult_val_score_digits) print('GaussianNB, digits = ', Gauss_val_score_digits) print('') print('BernoulliNB, breast = ', Bern_val_score_breast) print('MultinomialNB, breast = ', Mult_val_score_breast) print('GaussianNB, breast = ', Gauss_val_score_breast)
code
73079642/cell_21
[ "text_plain_output_1.png" ]
from keras.layers import Input,Conv2D,MaxPool2D, UpSampling2D,Dense, Dropout from keras.models import Model from keras.models import load_model from tensorflow.keras import losses import matplotlib.pyplot as plt import numpy as np def noise(a1, a2, channel): """ Adds random noise to each image in the supplied array. """ if channel == 1: noise_factor = 0.2 noisy_arr1 = a1 + noise_factor * np.random.normal(0.0, 1.0, size=a1.shape) noisy_arr2 = a2 + noise_factor * np.random.normal(0.0, 1.0, size=a2.shape) else: noi = 0.1 noisy_arr1 = a1 + noi * np.random.normal(0.0, 1.0, size=a1.shape) noisy_arr2 = a2 + noi * np.random.normal(0.0, 1.0, size=a2.shape) ab1 = np.clip(noisy_arr1, 0, 1) ab2 = np.clip(noisy_arr2, 0, 1) return (ab1, ab2) # Visualization for mnist, cifar10, noisy, denoised/predictions data def display(rows, cols, a, b, check=False ): '''rows: defining no. of rows in figure cols: defining no. of colums in figure a: train images without noise or noisy_image while test prediction b: train images with noise or denoised_image based while test prediction check: default False for 32*32 cifar10, true for 28*28 mnist dataset and any predictions ''' # defining a figure f = plt.figure(figsize=(2*cols,2*rows*2)) for i in range(rows): for j in range(cols): # adding subplot to figure on each iteration f.add_subplot(rows*2,cols, (2*i*cols)+(j+1)) if check: plt.imshow(a[i*cols + j].reshape([28,28]),cmap="Blues") else: plt.imshow(a[i*cols + j]) plt.axis("off") for j in range(cols): # adding subplot to figure on each iteration f.add_subplot(rows*2,cols,((2*i+1)*cols)+(j+1)) if check: plt.imshow(b[i*cols + j].reshape([28,28]),cmap="Blues") else: plt.imshow(b[i*cols + j]) plt.axis("off") plt.axis("off") #f.suptitle("Sample Training Data",fontsize=18) plt.savefig("ss.png") plt.show() inputs = Input(shape=(28, 28, 1)) x = Conv2D(32, 3, activation='relu', padding='same')(inputs) x = MaxPool2D()(x) x = Dropout(0.2)(x) x = Conv2D(32, 3, activation='relu', padding='same')(x) encoded = MaxPool2D()(x) x = Conv2D(32, 3, activation='relu', padding='same')(encoded) x = UpSampling2D()(x) x = Dropout(0.2)(x) x = Conv2D(32, 3, activation='relu', padding='same')(x) x = UpSampling2D()(x) decoded = Conv2D(1, 3, activation='sigmoid', padding='same')(x) from tensorflow.keras import losses autoencoder1 = Model(inputs, decoded) autoencoder1.compile(optimizer='adam', loss=losses.binary_crossentropy) autoencoder1.summary() history1 = autoencoder1.fit(noisy_train_data, train_data, epochs=50, batch_size=256, shuffle=True, validation_data=(noisy_test_data, test_data)) autoencoder1.save('autoencoder_model1.h5') from keras.models import load_model model1 = load_model('autoencoder_model1.h5') num_imgs = 45 rand = np.random.randint(1, 100) test_images = noisy_test_data[rand:rand + num_imgs] test_denoised = model1.predict(test_images) display(2, 6, test_images, test_denoised, check=True)
code