path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
105191248/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105191248/cell_18
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) youtube = pd.read_csv('/kaggle/input/youtube-new/GBvideos.csv') missing_values_count = youtube.isnull().sum() missing_values_count total_cells = np.product(youtube.shape) total_missing = missing_values_count.sum() total_missing / total_cells * 100 youtube.loc[pd.isna(youtube['description']), :].index youtube = youtube.fillna('no description available for this video') youtube.loc[91] column_names = ['title', 'trending_date'] duplicates2 = youtube.duplicated(subset=column_names, keep=False) youtube[duplicates2].sort_values(by='title') youtube = youtube.drop_duplicates(['title', 'trending_date'], keep='first') youtube[youtube['title'] == '13 Reasons Why: Season 2 | Official Trailer [HD] | Netflix'] youtube['trending_date'] = pd.to_datetime(youtube['trending_date'], format='%y.%d.%m') youtube['publish_time'] = pd.to_datetime(youtube['publish_time']) youtube.describe()
code
105191248/cell_15
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) youtube = pd.read_csv('/kaggle/input/youtube-new/GBvideos.csv') missing_values_count = youtube.isnull().sum() missing_values_count total_cells = np.product(youtube.shape) total_missing = missing_values_count.sum() total_missing / total_cells * 100 youtube.loc[pd.isna(youtube['description']), :].index youtube = youtube.fillna('no description available for this video') youtube.loc[91] column_names = ['title', 'trending_date'] duplicates2 = youtube.duplicated(subset=column_names, keep=False) youtube[duplicates2].sort_values(by='title') youtube['title'].loc[34137]
code
105191248/cell_16
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) youtube = pd.read_csv('/kaggle/input/youtube-new/GBvideos.csv') missing_values_count = youtube.isnull().sum() missing_values_count total_cells = np.product(youtube.shape) total_missing = missing_values_count.sum() total_missing / total_cells * 100 youtube.loc[pd.isna(youtube['description']), :].index youtube = youtube.fillna('no description available for this video') youtube.loc[91] column_names = ['title', 'trending_date'] duplicates2 = youtube.duplicated(subset=column_names, keep=False) youtube[duplicates2].sort_values(by='title') youtube = youtube.drop_duplicates(['title', 'trending_date'], keep='first') youtube[youtube['title'] == '13 Reasons Why: Season 2 | Official Trailer [HD] | Netflix']
code
105191248/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) youtube = pd.read_csv('/kaggle/input/youtube-new/GBvideos.csv') youtube.head()
code
105191248/cell_17
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) youtube = pd.read_csv('/kaggle/input/youtube-new/GBvideos.csv') missing_values_count = youtube.isnull().sum() missing_values_count total_cells = np.product(youtube.shape) total_missing = missing_values_count.sum() total_missing / total_cells * 100 youtube.loc[pd.isna(youtube['description']), :].index youtube = youtube.fillna('no description available for this video') youtube.loc[91] column_names = ['title', 'trending_date'] duplicates2 = youtube.duplicated(subset=column_names, keep=False) youtube[duplicates2].sort_values(by='title') youtube = youtube.drop_duplicates(['title', 'trending_date'], keep='first') youtube[youtube['title'] == '13 Reasons Why: Season 2 | Official Trailer [HD] | Netflix'] youtube['trending_date'] = pd.to_datetime(youtube['trending_date'], format='%y.%d.%m') youtube['publish_time'] = pd.to_datetime(youtube['publish_time']) youtube.info()
code
105191248/cell_14
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) youtube = pd.read_csv('/kaggle/input/youtube-new/GBvideos.csv') missing_values_count = youtube.isnull().sum() missing_values_count total_cells = np.product(youtube.shape) total_missing = missing_values_count.sum() total_missing / total_cells * 100 youtube.loc[pd.isna(youtube['description']), :].index youtube = youtube.fillna('no description available for this video') youtube.loc[91] column_names = ['title', 'trending_date'] duplicates2 = youtube.duplicated(subset=column_names, keep=False) youtube[duplicates2].sort_values(by='title')
code
105191248/cell_10
[ "text_html_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) youtube = pd.read_csv('/kaggle/input/youtube-new/GBvideos.csv') missing_values_count = youtube.isnull().sum() missing_values_count total_cells = np.product(youtube.shape) total_missing = missing_values_count.sum() total_missing / total_cells * 100 youtube.loc[pd.isna(youtube['description']), :].index
code
105191248/cell_12
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) youtube = pd.read_csv('/kaggle/input/youtube-new/GBvideos.csv') missing_values_count = youtube.isnull().sum() missing_values_count total_cells = np.product(youtube.shape) total_missing = missing_values_count.sum() total_missing / total_cells * 100 youtube.loc[pd.isna(youtube['description']), :].index youtube = youtube.fillna('no description available for this video') youtube.loc[91]
code
105191248/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) youtube = pd.read_csv('/kaggle/input/youtube-new/GBvideos.csv') missing_values_count = youtube.isnull().sum() missing_values_count
code
2042995/cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from IPython.display import display import matplotlib.pyplot as plt from datetime import date pd.set_option('display.float_format', lambda x: '%.5f' % x) from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
322963/cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
322963/cell_5
[ "text_plain_output_1.png" ]
import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) zika_df = pd.read_csv(os.path.join('..', 'input', 'cdc_zika.csv'), low_memory=False) keep_rows = pd.notnull(zika_df['report_date']) zika_df = zika_df[keep_rows] print('Removed {:d} out of {:d} rows with missing report_date.'.format(len(keep_rows) - sum(keep_rows), len(keep_rows))) zika_df.index = pd.to_datetime([d.replace('_', '-') for d in zika_df['report_date']], format='%Y-%m-%d') zika_df.sort_index(inplace=True) zika_df.index.rename('report_date', inplace=True) zika_df.drop('report_date', axis=1, inplace=True)
code
122264653/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
Person1 = [['Maths', 'Science', 'Entrepreneurship'], 'B', 'Blue', '42.5'] Person1[0][0]
code
122264653/cell_4
[ "text_plain_output_1.png" ]
age = {} type(age) age = dict() type(age) age = {'Ragul': 23, 'Joe': 15, 'Venkat': 32} type(age)
code
122264653/cell_2
[ "text_plain_output_1.png" ]
age = {} type(age)
code
122264653/cell_11
[ "text_plain_output_1.png" ]
marks = {'Ragul': 23, 'Joe': 15, 'Venkat': [34, 44, 56]} marks['Venkat']
code
122264653/cell_8
[ "text_plain_output_1.png" ]
Person1 = [['Maths', 'Science', 'Entrepreneurship'], 'B', 'Blue', '42.5'] Person1[0]
code
122264653/cell_15
[ "text_plain_output_1.png" ]
marks = {'Ragul': 23, 'Joe': 15, 'Venkat': [34, 44, 56]} marks['Venkat'] marks = {'Ragul': 23, 'Joe': 15, 'Venkat': [34, 44, 56]} marks['Venkat'][2] for i in marks: print(i)
code
122264653/cell_16
[ "text_plain_output_1.png" ]
age = {} type(age) age = dict() type(age) age = {'Ragul': 23, 'Joe': 15, 'Venkat': 32} type(age) age = ['Venkat'] for i in age: print(i, age[i])
code
122264653/cell_3
[ "text_plain_output_1.png" ]
age = {} type(age) age = dict() type(age)
code
122264653/cell_14
[ "text_plain_output_1.png" ]
marks = {'Ragul': 23, 'Joe': 15, 'Venkat': [34, 44, 56]} marks['Venkat'] marks = {'Ragul': 23, 'Joe': 15, 'Venkat': [34, 44, 56]} marks['Venkat'][2] marks
code
122264653/cell_12
[ "text_plain_output_1.png" ]
marks = {'Ragul': 23, 'Joe': 15, 'Venkat': [34, 44, 56]} marks['Venkat'] marks = {'Ragul': 23, 'Joe': 15, 'Venkat': [34, 44, 56]} marks['Venkat'][2]
code
73071424/cell_21
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra states = {-1: 'Loss', 0: 'Draw', 1: 'Win'} states transition = np.array([[0.65, 0.1, 0.25], [0.3, 0.5, 0.2], [0.35, 0.1, 0.55]]) transition n = 15 br = 0 points = 0 start_state = 0 prev_state = start_state while n: if prev_state == 0: points += 1 elif prev_state == 1: points += 3 curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) prev_state = curr_state n -= 1 br += 1 if prev_state == 0: points += 1 elif prev_state == 1: points += 3 n = 100000 br = n br_l = 0 br_d = 0 br_w = 0 start_state = 0 prev_state = start_state while n: curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) if curr_state == -1: br_l += 1 elif curr_state == 0: br_d += 1 else: br_w += 1 prev_state = curr_state n -= 1 steps = 10 ** 6 start_state = 0 pi = np.array([0, 0, 0]) pi[start_state + 1] += 1 prev_state = start_state for i in range(steps): curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) pi[curr_state + 1] += 1 prev_state = curr_state pi = left[:, 0] pi_normalized = [(x / np.sum(pi)).real for x in pi] steps = 10 ** 6 start_state = 0 pi = transition[start_state + 1] for i in range(steps): pi = np.dot(pi, transition) steps = 10 transition_n = transition for i in range(steps): transition_n = np.matmul(transition_n, transition) steps = 1000 transition_n = transition for i in range(steps): transition_n = np.matmul(transition_n, transition) print('Matrix: \n', transition_n, '\n') print('pi = ', transition_n[1])
code
73071424/cell_9
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra states = {-1: 'Loss', 0: 'Draw', 1: 'Win'} states transition = np.array([[0.65, 0.1, 0.25], [0.3, 0.5, 0.2], [0.35, 0.1, 0.55]]) transition n = 15 br = 0 points = 0 start_state = 0 prev_state = start_state while n: if prev_state == 0: points += 1 elif prev_state == 1: points += 3 curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) prev_state = curr_state n -= 1 br += 1 if prev_state == 0: points += 1 elif prev_state == 1: points += 3 n = 100000 br = n br_l = 0 br_d = 0 br_w = 0 start_state = 0 prev_state = start_state while n: curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) if curr_state == -1: br_l += 1 elif curr_state == 0: br_d += 1 else: br_w += 1 prev_state = curr_state n -= 1 print('Loss : ', br_l / br) print('Draw : ', br_d / br) print('Win : ', br_w / br)
code
73071424/cell_4
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra transition = np.array([[0.65, 0.1, 0.25], [0.3, 0.5, 0.2], [0.35, 0.1, 0.55]]) transition
code
73071424/cell_23
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra states = {-1: 'Loss', 0: 'Draw', 1: 'Win'} states transition = np.array([[0.65, 0.1, 0.25], [0.3, 0.5, 0.2], [0.35, 0.1, 0.55]]) transition n = 15 br = 0 points = 0 start_state = 0 prev_state = start_state while n: if prev_state == 0: points += 1 elif prev_state == 1: points += 3 curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) prev_state = curr_state n -= 1 br += 1 if prev_state == 0: points += 1 elif prev_state == 1: points += 3 n = 100000 br = n br_l = 0 br_d = 0 br_w = 0 start_state = 0 prev_state = start_state while n: curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) if curr_state == -1: br_l += 1 elif curr_state == 0: br_d += 1 else: br_w += 1 prev_state = curr_state n -= 1 steps = 10 ** 6 start_state = 0 pi = np.array([0, 0, 0]) pi[start_state + 1] += 1 prev_state = start_state for i in range(steps): curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) pi[curr_state + 1] += 1 prev_state = curr_state pi = left[:, 0] pi_normalized = [(x / np.sum(pi)).real for x in pi] steps = 10 ** 6 start_state = 0 pi = transition[start_state + 1] for i in range(steps): pi = np.dot(pi, transition) def find_prob(seq, A, pi): start_state = seq[0] prob = pi[start_state] prev_state = start_state for i in range(1, len(seq)): curr_state = seq[i] prob *= A[prev_state][curr_state] prev_state = curr_state return prob print(find_prob([1, 0, -1, -1, -1, 1], transition, pi_normalized))
code
73071424/cell_20
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra states = {-1: 'Loss', 0: 'Draw', 1: 'Win'} states transition = np.array([[0.65, 0.1, 0.25], [0.3, 0.5, 0.2], [0.35, 0.1, 0.55]]) transition n = 15 br = 0 points = 0 start_state = 0 prev_state = start_state while n: if prev_state == 0: points += 1 elif prev_state == 1: points += 3 curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) prev_state = curr_state n -= 1 br += 1 if prev_state == 0: points += 1 elif prev_state == 1: points += 3 n = 100000 br = n br_l = 0 br_d = 0 br_w = 0 start_state = 0 prev_state = start_state while n: curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) if curr_state == -1: br_l += 1 elif curr_state == 0: br_d += 1 else: br_w += 1 prev_state = curr_state n -= 1 steps = 10 ** 6 start_state = 0 pi = np.array([0, 0, 0]) pi[start_state + 1] += 1 prev_state = start_state for i in range(steps): curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) pi[curr_state + 1] += 1 prev_state = curr_state pi = left[:, 0] pi_normalized = [(x / np.sum(pi)).real for x in pi] steps = 10 ** 6 start_state = 0 pi = transition[start_state + 1] for i in range(steps): pi = np.dot(pi, transition) steps = 10 transition_n = transition for i in range(steps): transition_n = np.matmul(transition_n, transition) print('Matrix: \n', transition_n, '\n') print('pi = ', transition_n[1])
code
73071424/cell_6
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra states = {-1: 'Loss', 0: 'Draw', 1: 'Win'} states transition = np.array([[0.65, 0.1, 0.25], [0.3, 0.5, 0.2], [0.35, 0.1, 0.55]]) transition n = 15 br = 0 points = 0 start_state = 0 print(states[start_state], '-->', end=' ') prev_state = start_state while n: if prev_state == 0: points += 1 elif prev_state == 1: points += 3 curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) print(states[curr_state], '-->', end=' ') prev_state = curr_state n -= 1 br += 1 print('stop') if prev_state == 0: points += 1 elif prev_state == 1: points += 3 print('Bodovi: ', points) print('Uspješnost: ', points / (3 * br))
code
73071424/cell_15
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra states = {-1: 'Loss', 0: 'Draw', 1: 'Win'} states transition = np.array([[0.65, 0.1, 0.25], [0.3, 0.5, 0.2], [0.35, 0.1, 0.55]]) transition n = 15 br = 0 points = 0 start_state = 0 prev_state = start_state while n: if prev_state == 0: points += 1 elif prev_state == 1: points += 3 curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) prev_state = curr_state n -= 1 br += 1 if prev_state == 0: points += 1 elif prev_state == 1: points += 3 n = 100000 br = n br_l = 0 br_d = 0 br_w = 0 start_state = 0 prev_state = start_state while n: curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) if curr_state == -1: br_l += 1 elif curr_state == 0: br_d += 1 else: br_w += 1 prev_state = curr_state n -= 1 steps = 10 ** 6 start_state = 0 pi = np.array([0, 0, 0]) pi[start_state + 1] += 1 prev_state = start_state for i in range(steps): curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) pi[curr_state + 1] += 1 prev_state = curr_state pi = left[:, 0] pi_normalized = [(x / np.sum(pi)).real for x in pi] print('pi = ', pi_normalized)
code
73071424/cell_3
[ "text_plain_output_1.png" ]
states = {-1: 'Loss', 0: 'Draw', 1: 'Win'} states
code
73071424/cell_17
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra states = {-1: 'Loss', 0: 'Draw', 1: 'Win'} states transition = np.array([[0.65, 0.1, 0.25], [0.3, 0.5, 0.2], [0.35, 0.1, 0.55]]) transition n = 15 br = 0 points = 0 start_state = 0 prev_state = start_state while n: if prev_state == 0: points += 1 elif prev_state == 1: points += 3 curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) prev_state = curr_state n -= 1 br += 1 if prev_state == 0: points += 1 elif prev_state == 1: points += 3 n = 100000 br = n br_l = 0 br_d = 0 br_w = 0 start_state = 0 prev_state = start_state while n: curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) if curr_state == -1: br_l += 1 elif curr_state == 0: br_d += 1 else: br_w += 1 prev_state = curr_state n -= 1 steps = 10 ** 6 start_state = 0 pi = np.array([0, 0, 0]) pi[start_state + 1] += 1 prev_state = start_state for i in range(steps): curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) pi[curr_state + 1] += 1 prev_state = curr_state pi = left[:, 0] pi_normalized = [(x / np.sum(pi)).real for x in pi] steps = 10 ** 6 start_state = 0 pi = transition[start_state + 1] for i in range(steps): pi = np.dot(pi, transition) print('pi = ', pi)
code
73071424/cell_10
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra states = {-1: 'Loss', 0: 'Draw', 1: 'Win'} states transition = np.array([[0.65, 0.1, 0.25], [0.3, 0.5, 0.2], [0.35, 0.1, 0.55]]) transition n = 15 br = 0 points = 0 start_state = 0 prev_state = start_state while n: if prev_state == 0: points += 1 elif prev_state == 1: points += 3 curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) prev_state = curr_state n -= 1 br += 1 if prev_state == 0: points += 1 elif prev_state == 1: points += 3 n = 100000 br = n br_l = 0 br_d = 0 br_w = 0 start_state = 0 prev_state = start_state while n: curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) if curr_state == -1: br_l += 1 elif curr_state == 0: br_d += 1 else: br_w += 1 prev_state = curr_state n -= 1 steps = 10 ** 6 start_state = 0 pi = np.array([0, 0, 0]) pi[start_state + 1] += 1 prev_state = start_state for i in range(steps): curr_state = np.random.choice([-1, 0, 1], p=transition[prev_state + 1]) pi[curr_state + 1] += 1 prev_state = curr_state print('pi = ', pi / steps)
code
73071424/cell_12
[ "text_plain_output_1.png" ]
import numpy as np # linear algebra transition = np.array([[0.65, 0.1, 0.25], [0.3, 0.5, 0.2], [0.35, 0.1, 0.55]]) transition import scipy.linalg values, left = scipy.linalg.eig(transition, right=False, left=True) print('left eigen vectors =\n', left, '\n') print('eigen values = \n', values)
code
326282/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
from IPython.display import display import numpy as np import pandas as pd import re def extract_maritial(name): """ extract the person's title, and bin it to Mr. Miss. and Mrs. assuming a Miss, Lady or Countess has more change to survive than a regular married woman.""" re_maritial = ' ([A-Za-z]+\\.) ' found = re.findall(re_maritial, name)[0] replace = [['Dr.', 'Sir.'], ['Rev.', 'Sir.'], ['Major.', 'Officer.'], ['Mlle.', 'Miss.'], ['Col.', 'Officer.'], ['Master.', 'Sir.'], ['Jonkheer.', 'Sir.'], ['Sir.', 'Sir.'], ['Don.', 'Sir.'], ['Countess.', 'High.'], ['Capt.', 'Officer.'], ['Ms.', 'High.'], ['Mme.', 'High.'], ['Dona.', 'High.'], ['Lady.', 'High.']] for i in range(0, len(replace)): if found == replace[i][0]: found = replace[i][1] break return found def father(sex, age, parch): if sex == 'male' and age > 16 and (parch > 0): return 1 else: return 0 def mother(sex, age, parch): if sex == 'female' and age > 16 and (parch > 0): return 1 else: return 0 def parent(sex, age, parch): if mother(sex, age, parch) == 1 or father(sex, age, parch) == 1: return 1 else: return 0 def extract_cabin_nr(cabin): """ Extracts the cabin number. If there no number found, return NaN """ if not pd.isnull(cabin): cabin = cabin.split(' ')[-1] re_numb = '[A-Z]([0-9]+)' try: number = int(re.findall(re_numb, cabin)[0]) return number except: return np.nan else: return np.nan def extract_cabin_letter(cabin): """ Extracts the cabin letter. If there no letter found, return NaN """ if not pd.isnull(cabin): cabin = cabin.split(' ')[-1] re_char = '([A-Z])[0-9]+' try: character = re.findall(re_char, cabin)[0] return character except: return np.nan else: return np.nan def expand_sex(sex, age): """ this expands male/female with kid. Cause below 14 years old, male or female is irrelevant""" if age < 14: return 'kid' else: return sex def feat_eng(data): data['Title'] = list(map(extract_maritial, data['Name'])) data['Cabin_char'] = list(map(extract_cabin_letter, data['Cabin'])) data['Cabin_nr'] = list(map(extract_cabin_nr, data['Cabin'])) data['Cabin_nr_odd'] = data.Cabin_nr.apply(lambda x: np.nan if x == np.nan else x % 2) data['Father'] = list(map(father, data.Sex, data.Age, data.Parch)) data['Mother'] = list(map(mother, data.Sex, data.Age, data.Parch)) data['Parent'] = list(map(parent, data.Sex, data.Age, data.Parch)) data['has_parents_or_kids'] = data.Parch.apply(lambda x: 1 if x > 0 else 0) data['FamilySize'] = data.SibSp + data.Parch data['Sex'] = list(map(expand_sex, data['Sex'], data['Age'])) data['FareBin'] = pd.cut(data.Fare, bins=(-1000, 0, 8.67, 16.11, 32, 350, 1000)) data['AgeBin'] = pd.cut(data.Age, bins=(0, 15, 25, 60, 90)) return data def missing(data): data.loc[data.Age.isnull() & (data.Title == 'Sir.'), 'Age'] = data.loc[data.Title == 'Sir.', 'Age'].median() data.loc[data.Age.isnull() & (data.Title == 'Officer.'), 'Age'] = data.loc[data.Title == 'Officer.', 'Age'].median() data.loc[data.Age.isnull() & (data.Title == 'Miss.'), 'Age'] = data.loc[data.Title == 'Miss.', 'Age'].median() data.loc[data.Age.isnull() & (data.Title == 'High.'), 'Age'] = data.loc[data.Title == 'High.', 'Age'].median() data.loc[data.Age.isnull() & (data.Title == 'Mrs.'), 'Age'] = data.loc[data.Title == 'Mrs.', 'Age'].median() data.loc[data.Age.isnull() & (data.Title == 'Mr.'), 'Age'] = data.loc[data.Title == 'Mr.', 'Age'].median() median_fare = data['Fare'].median() data['Fare'].fillna(value=median_fare, inplace=True) mode_embarked = data['Embarked'].mode()[0] data['Embarked'].fillna(value=mode_embarked, inplace=True) data['Cabin_char'].fillna(value=-9999, inplace=True) data['Cabin_nr'].fillna(value=-9999, inplace=True) data['Cabin_nr_odd'].fillna(value=-9999, inplace=True) data = data.drop(['Name', 'Cabin', 'Fare', 'Age', 'Ticket'], 1) return data train = pd.read_csv('../input/train.csv') display('Unaltered training set:') display(train.head(8)) train = feat_eng(train) display('After feature engineering:') display(train.head(8)) train = missing(train) display('After handling missing values:') display(train.head(8)) train = pd.get_dummies(train, drop_first=True) display('After handling categorical values:') display(train.head(8))
code
326282/cell_16
[ "text_plain_output_1.png" ]
from IPython.display import display from sklearn import cross_validation from sklearn.feature_selection import RFECV import numpy as np import pandas as pd import re import xgboost as xgb def extract_maritial(name): """ extract the person's title, and bin it to Mr. Miss. and Mrs. assuming a Miss, Lady or Countess has more change to survive than a regular married woman.""" re_maritial = ' ([A-Za-z]+\\.) ' found = re.findall(re_maritial, name)[0] replace = [['Dr.', 'Sir.'], ['Rev.', 'Sir.'], ['Major.', 'Officer.'], ['Mlle.', 'Miss.'], ['Col.', 'Officer.'], ['Master.', 'Sir.'], ['Jonkheer.', 'Sir.'], ['Sir.', 'Sir.'], ['Don.', 'Sir.'], ['Countess.', 'High.'], ['Capt.', 'Officer.'], ['Ms.', 'High.'], ['Mme.', 'High.'], ['Dona.', 'High.'], ['Lady.', 'High.']] for i in range(0, len(replace)): if found == replace[i][0]: found = replace[i][1] break return found def father(sex, age, parch): if sex == 'male' and age > 16 and (parch > 0): return 1 else: return 0 def mother(sex, age, parch): if sex == 'female' and age > 16 and (parch > 0): return 1 else: return 0 def parent(sex, age, parch): if mother(sex, age, parch) == 1 or father(sex, age, parch) == 1: return 1 else: return 0 def extract_cabin_nr(cabin): """ Extracts the cabin number. If there no number found, return NaN """ if not pd.isnull(cabin): cabin = cabin.split(' ')[-1] re_numb = '[A-Z]([0-9]+)' try: number = int(re.findall(re_numb, cabin)[0]) return number except: return np.nan else: return np.nan def extract_cabin_letter(cabin): """ Extracts the cabin letter. If there no letter found, return NaN """ if not pd.isnull(cabin): cabin = cabin.split(' ')[-1] re_char = '([A-Z])[0-9]+' try: character = re.findall(re_char, cabin)[0] return character except: return np.nan else: return np.nan def expand_sex(sex, age): """ this expands male/female with kid. Cause below 14 years old, male or female is irrelevant""" if age < 14: return 'kid' else: return sex def feat_eng(data): data['Title'] = list(map(extract_maritial, data['Name'])) data['Cabin_char'] = list(map(extract_cabin_letter, data['Cabin'])) data['Cabin_nr'] = list(map(extract_cabin_nr, data['Cabin'])) data['Cabin_nr_odd'] = data.Cabin_nr.apply(lambda x: np.nan if x == np.nan else x % 2) data['Father'] = list(map(father, data.Sex, data.Age, data.Parch)) data['Mother'] = list(map(mother, data.Sex, data.Age, data.Parch)) data['Parent'] = list(map(parent, data.Sex, data.Age, data.Parch)) data['has_parents_or_kids'] = data.Parch.apply(lambda x: 1 if x > 0 else 0) data['FamilySize'] = data.SibSp + data.Parch data['Sex'] = list(map(expand_sex, data['Sex'], data['Age'])) data['FareBin'] = pd.cut(data.Fare, bins=(-1000, 0, 8.67, 16.11, 32, 350, 1000)) data['AgeBin'] = pd.cut(data.Age, bins=(0, 15, 25, 60, 90)) return data def missing(data): data.loc[data.Age.isnull() & (data.Title == 'Sir.'), 'Age'] = data.loc[data.Title == 'Sir.', 'Age'].median() data.loc[data.Age.isnull() & (data.Title == 'Officer.'), 'Age'] = data.loc[data.Title == 'Officer.', 'Age'].median() data.loc[data.Age.isnull() & (data.Title == 'Miss.'), 'Age'] = data.loc[data.Title == 'Miss.', 'Age'].median() data.loc[data.Age.isnull() & (data.Title == 'High.'), 'Age'] = data.loc[data.Title == 'High.', 'Age'].median() data.loc[data.Age.isnull() & (data.Title == 'Mrs.'), 'Age'] = data.loc[data.Title == 'Mrs.', 'Age'].median() data.loc[data.Age.isnull() & (data.Title == 'Mr.'), 'Age'] = data.loc[data.Title == 'Mr.', 'Age'].median() median_fare = data['Fare'].median() data['Fare'].fillna(value=median_fare, inplace=True) mode_embarked = data['Embarked'].mode()[0] data['Embarked'].fillna(value=mode_embarked, inplace=True) data['Cabin_char'].fillna(value=-9999, inplace=True) data['Cabin_nr'].fillna(value=-9999, inplace=True) data['Cabin_nr_odd'].fillna(value=-9999, inplace=True) data = data.drop(['Name', 'Cabin', 'Fare', 'Age', 'Ticket'], 1) return data train = pd.read_csv('../input/train.csv') train = feat_eng(train) train = missing(train) train = pd.get_dummies(train, drop_first=True) X = np.array(train.drop(['Survived', 'PassengerId'], 1)) training_features = np.array(train.drop(['Survived', 'PassengerId'], 1).columns) y = np.array(train['Survived']) clf = xgb.XGBClassifier() cv = cross_validation.KFold(len(X), n_folds=20, shuffle=True, random_state=1) scores = cross_validation.cross_val_score(clf, X, y, cv=cv, n_jobs=1, scoring='accuracy') clf.fit(X, y) featselect = RFECV(estimator=clf, cv=cv, scoring='accuracy') featselect.fit(X, y) print('features used during training: ') print(training_features) print('') (print('features proposed by RFECV: '),) print(training_features[featselect.support_])
code
326282/cell_3
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from IPython.display import display import re import pandas as pd import numpy as np import xgboost as xgb from sklearn import preprocessing from sklearn import cross_validation from sklearn.model_selection import KFold from sklearn.feature_selection import RFECV from sklearn.grid_search import GridSearchCV
code
326282/cell_14
[ "text_html_output_4.png", "text_plain_output_4.png", "text_html_output_2.png", "text_plain_output_3.png", "text_html_output_1.png", "text_plain_output_2.png", "text_plain_output_1.png", "text_html_output_3.png" ]
from IPython.display import display from sklearn import cross_validation import numpy as np import pandas as pd import re import xgboost as xgb def extract_maritial(name): """ extract the person's title, and bin it to Mr. Miss. and Mrs. assuming a Miss, Lady or Countess has more change to survive than a regular married woman.""" re_maritial = ' ([A-Za-z]+\\.) ' found = re.findall(re_maritial, name)[0] replace = [['Dr.', 'Sir.'], ['Rev.', 'Sir.'], ['Major.', 'Officer.'], ['Mlle.', 'Miss.'], ['Col.', 'Officer.'], ['Master.', 'Sir.'], ['Jonkheer.', 'Sir.'], ['Sir.', 'Sir.'], ['Don.', 'Sir.'], ['Countess.', 'High.'], ['Capt.', 'Officer.'], ['Ms.', 'High.'], ['Mme.', 'High.'], ['Dona.', 'High.'], ['Lady.', 'High.']] for i in range(0, len(replace)): if found == replace[i][0]: found = replace[i][1] break return found def father(sex, age, parch): if sex == 'male' and age > 16 and (parch > 0): return 1 else: return 0 def mother(sex, age, parch): if sex == 'female' and age > 16 and (parch > 0): return 1 else: return 0 def parent(sex, age, parch): if mother(sex, age, parch) == 1 or father(sex, age, parch) == 1: return 1 else: return 0 def extract_cabin_nr(cabin): """ Extracts the cabin number. If there no number found, return NaN """ if not pd.isnull(cabin): cabin = cabin.split(' ')[-1] re_numb = '[A-Z]([0-9]+)' try: number = int(re.findall(re_numb, cabin)[0]) return number except: return np.nan else: return np.nan def extract_cabin_letter(cabin): """ Extracts the cabin letter. If there no letter found, return NaN """ if not pd.isnull(cabin): cabin = cabin.split(' ')[-1] re_char = '([A-Z])[0-9]+' try: character = re.findall(re_char, cabin)[0] return character except: return np.nan else: return np.nan def expand_sex(sex, age): """ this expands male/female with kid. Cause below 14 years old, male or female is irrelevant""" if age < 14: return 'kid' else: return sex def feat_eng(data): data['Title'] = list(map(extract_maritial, data['Name'])) data['Cabin_char'] = list(map(extract_cabin_letter, data['Cabin'])) data['Cabin_nr'] = list(map(extract_cabin_nr, data['Cabin'])) data['Cabin_nr_odd'] = data.Cabin_nr.apply(lambda x: np.nan if x == np.nan else x % 2) data['Father'] = list(map(father, data.Sex, data.Age, data.Parch)) data['Mother'] = list(map(mother, data.Sex, data.Age, data.Parch)) data['Parent'] = list(map(parent, data.Sex, data.Age, data.Parch)) data['has_parents_or_kids'] = data.Parch.apply(lambda x: 1 if x > 0 else 0) data['FamilySize'] = data.SibSp + data.Parch data['Sex'] = list(map(expand_sex, data['Sex'], data['Age'])) data['FareBin'] = pd.cut(data.Fare, bins=(-1000, 0, 8.67, 16.11, 32, 350, 1000)) data['AgeBin'] = pd.cut(data.Age, bins=(0, 15, 25, 60, 90)) return data def missing(data): data.loc[data.Age.isnull() & (data.Title == 'Sir.'), 'Age'] = data.loc[data.Title == 'Sir.', 'Age'].median() data.loc[data.Age.isnull() & (data.Title == 'Officer.'), 'Age'] = data.loc[data.Title == 'Officer.', 'Age'].median() data.loc[data.Age.isnull() & (data.Title == 'Miss.'), 'Age'] = data.loc[data.Title == 'Miss.', 'Age'].median() data.loc[data.Age.isnull() & (data.Title == 'High.'), 'Age'] = data.loc[data.Title == 'High.', 'Age'].median() data.loc[data.Age.isnull() & (data.Title == 'Mrs.'), 'Age'] = data.loc[data.Title == 'Mrs.', 'Age'].median() data.loc[data.Age.isnull() & (data.Title == 'Mr.'), 'Age'] = data.loc[data.Title == 'Mr.', 'Age'].median() median_fare = data['Fare'].median() data['Fare'].fillna(value=median_fare, inplace=True) mode_embarked = data['Embarked'].mode()[0] data['Embarked'].fillna(value=mode_embarked, inplace=True) data['Cabin_char'].fillna(value=-9999, inplace=True) data['Cabin_nr'].fillna(value=-9999, inplace=True) data['Cabin_nr_odd'].fillna(value=-9999, inplace=True) data = data.drop(['Name', 'Cabin', 'Fare', 'Age', 'Ticket'], 1) return data train = pd.read_csv('../input/train.csv') train = feat_eng(train) train = missing(train) train = pd.get_dummies(train, drop_first=True) X = np.array(train.drop(['Survived', 'PassengerId'], 1)) training_features = np.array(train.drop(['Survived', 'PassengerId'], 1).columns) y = np.array(train['Survived']) clf = xgb.XGBClassifier() cv = cross_validation.KFold(len(X), n_folds=20, shuffle=True, random_state=1) scores = cross_validation.cross_val_score(clf, X, y, cv=cv, n_jobs=1, scoring='accuracy') clf.fit(X, y) print(scores) print('Accuracy: %.3f stdev: %.2f' % (np.mean(np.abs(scores)), np.std(scores)))
code
128039843/cell_21
[ "text_plain_output_1.png" ]
from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') train_data.isnull().sum().sum() fig, ax = plt.subplots(5,5,figsize = (8,8)) for i in range(5): for j in range(5): ax[i][j].axis('off') ax[i][j].imshow(train_data.iloc[[i+(j*5)], 1:].to_numpy().astype(np.uint8).reshape(28, 28), cmap='gray') plt.show() #temp = train_data.iloc[:1, 1:].to_numpy().reshape(28,28) #plt.imshow(temp, cmap='gray') yX = train_data.copy() y = yX.pop('label') X = yX.copy() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.9, random_state=42) (X_train.shape, X_test.shape, y_train.shape, y_test.shape) model = GradientBoostingClassifier() params_dict = {'learning_rate': np.linspace(0.05, 0.3, 6), 'subsample': np.linspace(0.3, 1, 10), 'n_estimators': range(10, 40, 5), 'max_depth': range(2, 20, 2), 'min_samples_split': range(2, 20, 1)} clf = RandomizedSearchCV(model, params_dict, scoring='accuracy', n_iter=15, verbose=2, cv=3) search = clf.fit(X_train, y_train) search.best_params_ learning_rate_params = {'learning_rate': np.linspace(0.08, 0.12, 5), 'subsample': [search.best_params_['subsample']], 'n_estimators': [search.best_params_['n_estimators']], 'max_depth': [search.best_params_['max_depth']], 'min_samples_split': [search.best_params_['min_samples_split']]} lr_clf = GridSearchCV(model, learning_rate_params, scoring='accuracy', verbose=2, cv=2) lr_search = lr_clf.fit(X_train, y_train) lr_search.best_params_ subsample_params = {'learning_rate': [lr_search.best_params_['learning_rate']], 'subsample': np.linspace(0.6, 0.8, 5), 'n_estimators': [search.best_params_['n_estimators']], 'max_depth': [search.best_params_['max_depth']], 'min_samples_split': [search.best_params_['min_samples_split']]} s_clf = GridSearchCV(model, subsample_params, scoring='accuracy', verbose=2, cv=2) s_search = s_clf.fit(X_train, y_train) s_search.best_params_
code
128039843/cell_9
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') train_data.isnull().sum().sum()
code
128039843/cell_23
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') train_data.isnull().sum().sum() fig, ax = plt.subplots(5,5,figsize = (8,8)) for i in range(5): for j in range(5): ax[i][j].axis('off') ax[i][j].imshow(train_data.iloc[[i+(j*5)], 1:].to_numpy().astype(np.uint8).reshape(28, 28), cmap='gray') plt.show() #temp = train_data.iloc[:1, 1:].to_numpy().reshape(28,28) #plt.imshow(temp, cmap='gray') yX = train_data.copy() y = yX.pop('label') X = yX.copy() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.9, random_state=42) (X_train.shape, X_test.shape, y_train.shape, y_test.shape) model = GradientBoostingClassifier() params_dict = {'learning_rate': np.linspace(0.05, 0.3, 6), 'subsample': np.linspace(0.3, 1, 10), 'n_estimators': range(10, 40, 5), 'max_depth': range(2, 20, 2), 'min_samples_split': range(2, 20, 1)} clf = RandomizedSearchCV(model, params_dict, scoring='accuracy', n_iter=15, verbose=2, cv=3) search = clf.fit(X_train, y_train) search.best_params_ learning_rate_params = {'learning_rate': np.linspace(0.08, 0.12, 5), 'subsample': [search.best_params_['subsample']], 'n_estimators': [search.best_params_['n_estimators']], 'max_depth': [search.best_params_['max_depth']], 'min_samples_split': [search.best_params_['min_samples_split']]} lr_clf = GridSearchCV(model, learning_rate_params, scoring='accuracy', verbose=2, cv=2) lr_search = lr_clf.fit(X_train, y_train) lr_search.best_params_ subsample_params = {'learning_rate': [lr_search.best_params_['learning_rate']], 'subsample': np.linspace(0.6, 0.8, 5), 'n_estimators': [search.best_params_['n_estimators']], 'max_depth': [search.best_params_['max_depth']], 'min_samples_split': [search.best_params_['min_samples_split']]} s_clf = GridSearchCV(model, subsample_params, scoring='accuracy', verbose=2, cv=2) s_search = s_clf.fit(X_train, y_train) s_search.best_params_ n_estimators_params = {'learning_rate': [lr_search.best_params_['learning_rate']], 'subsample': [s_search.best_params_['subsample']], 'n_estimators': range(34, 42, 2), 'max_depth': [search.best_params_['max_depth']], 'min_samples_split': [search.best_params_['min_samples_split']]} n_clf = GridSearchCV(model, n_estimators_params, scoring='accuracy', verbose=2, cv=2) n_search = n_clf.fit(X_train, y_train) n_search.best_params_ max_params = {'learning_rate': [lr_search.best_params_['learning_rate']], 'subsample': [s_search.best_params_['subsample']], 'n_estimators': [n_search.best_params_['n_estimators']], 'max_depth': range(6, 10, 1), 'min_samples_split': [search.best_params_['min_samples_split']]} max_clf = GridSearchCV(model, max_params, scoring='accuracy', verbose=2, cv=2) max_search = max_clf.fit(X_train, y_train) max_search.best_params_
code
128039843/cell_20
[ "image_output_1.png" ]
from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') train_data.isnull().sum().sum() fig, ax = plt.subplots(5,5,figsize = (8,8)) for i in range(5): for j in range(5): ax[i][j].axis('off') ax[i][j].imshow(train_data.iloc[[i+(j*5)], 1:].to_numpy().astype(np.uint8).reshape(28, 28), cmap='gray') plt.show() #temp = train_data.iloc[:1, 1:].to_numpy().reshape(28,28) #plt.imshow(temp, cmap='gray') yX = train_data.copy() y = yX.pop('label') X = yX.copy() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.9, random_state=42) (X_train.shape, X_test.shape, y_train.shape, y_test.shape) model = GradientBoostingClassifier() params_dict = {'learning_rate': np.linspace(0.05, 0.3, 6), 'subsample': np.linspace(0.3, 1, 10), 'n_estimators': range(10, 40, 5), 'max_depth': range(2, 20, 2), 'min_samples_split': range(2, 20, 1)} clf = RandomizedSearchCV(model, params_dict, scoring='accuracy', n_iter=15, verbose=2, cv=3) search = clf.fit(X_train, y_train) search.best_params_ learning_rate_params = {'learning_rate': np.linspace(0.08, 0.12, 5), 'subsample': [search.best_params_['subsample']], 'n_estimators': [search.best_params_['n_estimators']], 'max_depth': [search.best_params_['max_depth']], 'min_samples_split': [search.best_params_['min_samples_split']]} lr_clf = GridSearchCV(model, learning_rate_params, scoring='accuracy', verbose=2, cv=2) lr_search = lr_clf.fit(X_train, y_train) lr_search.best_params_
code
128039843/cell_26
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') train_data.isnull().sum().sum() fig, ax = plt.subplots(5,5,figsize = (8,8)) for i in range(5): for j in range(5): ax[i][j].axis('off') ax[i][j].imshow(train_data.iloc[[i+(j*5)], 1:].to_numpy().astype(np.uint8).reshape(28, 28), cmap='gray') plt.show() #temp = train_data.iloc[:1, 1:].to_numpy().reshape(28,28) #plt.imshow(temp, cmap='gray') yX = train_data.copy() y = yX.pop('label') X = yX.copy() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.9, random_state=42) (X_train.shape, X_test.shape, y_train.shape, y_test.shape) yX2 = train_data.copy() y2 = yX2.pop('label') X2 = yX2.copy() X2_train, X2_test, y2_train, y2_test = train_test_split(X2, y2, test_size=0.4, random_state=42) (X2_train.shape, X2_test.shape, y2_train.shape, y2_test.shape)
code
128039843/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') train_data.isnull().sum().sum() fig, ax = plt.subplots(5, 5, figsize=(8, 8)) for i in range(5): for j in range(5): ax[i][j].axis('off') ax[i][j].imshow(train_data.iloc[[i + j * 5], 1:].to_numpy().astype(np.uint8).reshape(28, 28), cmap='gray') plt.show()
code
128039843/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
128039843/cell_7
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') train_data.head()
code
128039843/cell_18
[ "text_plain_output_1.png" ]
from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') train_data.isnull().sum().sum() fig, ax = plt.subplots(5,5,figsize = (8,8)) for i in range(5): for j in range(5): ax[i][j].axis('off') ax[i][j].imshow(train_data.iloc[[i+(j*5)], 1:].to_numpy().astype(np.uint8).reshape(28, 28), cmap='gray') plt.show() #temp = train_data.iloc[:1, 1:].to_numpy().reshape(28,28) #plt.imshow(temp, cmap='gray') yX = train_data.copy() y = yX.pop('label') X = yX.copy() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.9, random_state=42) (X_train.shape, X_test.shape, y_train.shape, y_test.shape) model = GradientBoostingClassifier() params_dict = {'learning_rate': np.linspace(0.05, 0.3, 6), 'subsample': np.linspace(0.3, 1, 10), 'n_estimators': range(10, 40, 5), 'max_depth': range(2, 20, 2), 'min_samples_split': range(2, 20, 1)} clf = RandomizedSearchCV(model, params_dict, scoring='accuracy', n_iter=15, verbose=2, cv=3) search = clf.fit(X_train, y_train) search.best_params_
code
128039843/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') train_data.describe()
code
128039843/cell_16
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') train_data.isnull().sum().sum() fig, ax = plt.subplots(5,5,figsize = (8,8)) for i in range(5): for j in range(5): ax[i][j].axis('off') ax[i][j].imshow(train_data.iloc[[i+(j*5)], 1:].to_numpy().astype(np.uint8).reshape(28, 28), cmap='gray') plt.show() #temp = train_data.iloc[:1, 1:].to_numpy().reshape(28,28) #plt.imshow(temp, cmap='gray') yX = train_data.copy() y = yX.pop('label') X = yX.copy() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.9, random_state=42) (X_train.shape, X_test.shape, y_train.shape, y_test.shape)
code
128039843/cell_24
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') train_data.isnull().sum().sum() fig, ax = plt.subplots(5,5,figsize = (8,8)) for i in range(5): for j in range(5): ax[i][j].axis('off') ax[i][j].imshow(train_data.iloc[[i+(j*5)], 1:].to_numpy().astype(np.uint8).reshape(28, 28), cmap='gray') plt.show() #temp = train_data.iloc[:1, 1:].to_numpy().reshape(28,28) #plt.imshow(temp, cmap='gray') yX = train_data.copy() y = yX.pop('label') X = yX.copy() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.9, random_state=42) (X_train.shape, X_test.shape, y_train.shape, y_test.shape) model = GradientBoostingClassifier() params_dict = {'learning_rate': np.linspace(0.05, 0.3, 6), 'subsample': np.linspace(0.3, 1, 10), 'n_estimators': range(10, 40, 5), 'max_depth': range(2, 20, 2), 'min_samples_split': range(2, 20, 1)} clf = RandomizedSearchCV(model, params_dict, scoring='accuracy', n_iter=15, verbose=2, cv=3) search = clf.fit(X_train, y_train) search.best_params_ learning_rate_params = {'learning_rate': np.linspace(0.08, 0.12, 5), 'subsample': [search.best_params_['subsample']], 'n_estimators': [search.best_params_['n_estimators']], 'max_depth': [search.best_params_['max_depth']], 'min_samples_split': [search.best_params_['min_samples_split']]} lr_clf = GridSearchCV(model, learning_rate_params, scoring='accuracy', verbose=2, cv=2) lr_search = lr_clf.fit(X_train, y_train) lr_search.best_params_ subsample_params = {'learning_rate': [lr_search.best_params_['learning_rate']], 'subsample': np.linspace(0.6, 0.8, 5), 'n_estimators': [search.best_params_['n_estimators']], 'max_depth': [search.best_params_['max_depth']], 'min_samples_split': [search.best_params_['min_samples_split']]} s_clf = GridSearchCV(model, subsample_params, scoring='accuracy', verbose=2, cv=2) s_search = s_clf.fit(X_train, y_train) s_search.best_params_ n_estimators_params = {'learning_rate': [lr_search.best_params_['learning_rate']], 'subsample': [s_search.best_params_['subsample']], 'n_estimators': range(34, 42, 2), 'max_depth': [search.best_params_['max_depth']], 'min_samples_split': [search.best_params_['min_samples_split']]} n_clf = GridSearchCV(model, n_estimators_params, scoring='accuracy', verbose=2, cv=2) n_search = n_clf.fit(X_train, y_train) n_search.best_params_ max_params = {'learning_rate': [lr_search.best_params_['learning_rate']], 'subsample': [s_search.best_params_['subsample']], 'n_estimators': [n_search.best_params_['n_estimators']], 'max_depth': range(6, 10, 1), 'min_samples_split': [search.best_params_['min_samples_split']]} max_clf = GridSearchCV(model, max_params, scoring='accuracy', verbose=2, cv=2) max_search = max_clf.fit(X_train, y_train) max_search.best_params_ min_params = {'learning_rate': [lr_search.best_params_['learning_rate']], 'subsample': [s_search.best_params_['subsample']], 'n_estimators': [n_search.best_params_['n_estimators']], 'max_depth': [max_search.best_params_['max_depth']], 'min_samples_split': range(17, 21, 1)} min_clf = GridSearchCV(model, min_params, scoring='accuracy', verbose=2, cv=2) min_search = min_clf.fit(X_train, y_train) min_search.best_params_
code
128039843/cell_22
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/Kannada-MNIST/train.csv') train_data.isnull().sum().sum() fig, ax = plt.subplots(5,5,figsize = (8,8)) for i in range(5): for j in range(5): ax[i][j].axis('off') ax[i][j].imshow(train_data.iloc[[i+(j*5)], 1:].to_numpy().astype(np.uint8).reshape(28, 28), cmap='gray') plt.show() #temp = train_data.iloc[:1, 1:].to_numpy().reshape(28,28) #plt.imshow(temp, cmap='gray') yX = train_data.copy() y = yX.pop('label') X = yX.copy() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.9, random_state=42) (X_train.shape, X_test.shape, y_train.shape, y_test.shape) model = GradientBoostingClassifier() params_dict = {'learning_rate': np.linspace(0.05, 0.3, 6), 'subsample': np.linspace(0.3, 1, 10), 'n_estimators': range(10, 40, 5), 'max_depth': range(2, 20, 2), 'min_samples_split': range(2, 20, 1)} clf = RandomizedSearchCV(model, params_dict, scoring='accuracy', n_iter=15, verbose=2, cv=3) search = clf.fit(X_train, y_train) search.best_params_ learning_rate_params = {'learning_rate': np.linspace(0.08, 0.12, 5), 'subsample': [search.best_params_['subsample']], 'n_estimators': [search.best_params_['n_estimators']], 'max_depth': [search.best_params_['max_depth']], 'min_samples_split': [search.best_params_['min_samples_split']]} lr_clf = GridSearchCV(model, learning_rate_params, scoring='accuracy', verbose=2, cv=2) lr_search = lr_clf.fit(X_train, y_train) lr_search.best_params_ subsample_params = {'learning_rate': [lr_search.best_params_['learning_rate']], 'subsample': np.linspace(0.6, 0.8, 5), 'n_estimators': [search.best_params_['n_estimators']], 'max_depth': [search.best_params_['max_depth']], 'min_samples_split': [search.best_params_['min_samples_split']]} s_clf = GridSearchCV(model, subsample_params, scoring='accuracy', verbose=2, cv=2) s_search = s_clf.fit(X_train, y_train) s_search.best_params_ n_estimators_params = {'learning_rate': [lr_search.best_params_['learning_rate']], 'subsample': [s_search.best_params_['subsample']], 'n_estimators': range(34, 42, 2), 'max_depth': [search.best_params_['max_depth']], 'min_samples_split': [search.best_params_['min_samples_split']]} n_clf = GridSearchCV(model, n_estimators_params, scoring='accuracy', verbose=2, cv=2) n_search = n_clf.fit(X_train, y_train) n_search.best_params_
code
128007350/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd nodes = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') nodes edges = pd.read_csv('../input/tolokers/edges.tsv', sep='\t') edges import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') corr_matrix = df.corr() corr_matrix df['education'].isna().sum() df['banned'].isna().sum()
code
128007350/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd nodes = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') nodes edges = pd.read_csv('../input/tolokers/edges.tsv', sep='\t') edges
code
128007350/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd nodes = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') nodes nodes['education'].value_counts()
code
128007350/cell_29
[ "text_html_output_1.png" ]
from scipy.stats import chi2 import numpy as np import numpy as np import pandas as pd import pandas as pd nodes = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') nodes edges = pd.read_csv('../input/tolokers/edges.tsv', sep='\t') edges import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') corr_matrix = df.corr() corr_matrix from scipy.stats import chi2 def chi2_p_return(col1, col2): col1_vals = col1.unique() col2_vals = col2.unique() contingency_matrix = {} for i in col1_vals: row = {} for j in col2_vals: count = len(df[(col1 == i) & (col2 == j)]) row[j] = count contingency_matrix[i] = row contingency_matrix_df = pd.DataFrame(contingency_matrix) contingency_matrix_df.fillna(0, inplace=True) actual = contingency_matrix_df.values row_sums = actual.sum(axis=1) col_sums = actual.sum(axis=0) total = actual.sum() expected = np.outer(row_sums, col_sums) / total chi_squared = np.sum((actual - expected) ** 2 / expected) degree_freedom = (len(contingency_matrix_df) - 1) * (len(contingency_matrix_df.columns) - 1) p_value_sci = '{:.3e}'.format(1 - chi2.cdf(chi_squared, degree_freedom)) return (chi_squared, p_value_sci) chi_squared, p_value = chi2_p_return(df['education'], df['banned']) alpha = 0.01 chi_squared, p_value = chi2_p_return(df['expired_rate'], df['banned']) print('Chi_squared:', chi_squared, ', p_value:', p_value, '(very close to zero)') alpha = 0.01 if float(p_value) <= alpha: print('Dependent (reject H0)') else: print('Independent (H0 holds true)')
code
128007350/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd nodes = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') nodes
code
128007350/cell_31
[ "text_plain_output_1.png" ]
from scipy.stats import chi2 import numpy as np import numpy as np import pandas as pd import pandas as pd nodes = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') nodes edges = pd.read_csv('../input/tolokers/edges.tsv', sep='\t') edges import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') corr_matrix = df.corr() corr_matrix from scipy.stats import chi2 def chi2_p_return(col1, col2): col1_vals = col1.unique() col2_vals = col2.unique() contingency_matrix = {} for i in col1_vals: row = {} for j in col2_vals: count = len(df[(col1 == i) & (col2 == j)]) row[j] = count contingency_matrix[i] = row contingency_matrix_df = pd.DataFrame(contingency_matrix) contingency_matrix_df.fillna(0, inplace=True) actual = contingency_matrix_df.values row_sums = actual.sum(axis=1) col_sums = actual.sum(axis=0) total = actual.sum() expected = np.outer(row_sums, col_sums) / total chi_squared = np.sum((actual - expected) ** 2 / expected) degree_freedom = (len(contingency_matrix_df) - 1) * (len(contingency_matrix_df.columns) - 1) p_value_sci = '{:.3e}'.format(1 - chi2.cdf(chi_squared, degree_freedom)) return (chi_squared, p_value_sci) chi_squared, p_value = chi2_p_return(df['education'], df['banned']) alpha = 0.01 chi_squared, p_value = chi2_p_return(df['expired_rate'], df['banned']) alpha = 0.01 chi_squared, p_value = chi2_p_return(df['approved_rate'], df['english_profile']) print('Chi_squared:', chi_squared, ', p_value:', p_value, '(very close to zero)') alpha = 0.01 if float(p_value) <= alpha: print('Dependent (reject H0)') else: print('Independent (H0 holds true)')
code
128007350/cell_24
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd nodes = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') nodes edges = pd.read_csv('../input/tolokers/edges.tsv', sep='\t') edges import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') corr_matrix = df.corr() corr_matrix df.head()
code
128007350/cell_22
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd nodes = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') nodes edges = pd.read_csv('../input/tolokers/edges.tsv', sep='\t') edges import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') corr_matrix = df.corr() corr_matrix
code
128007350/cell_27
[ "text_html_output_1.png" ]
from scipy.stats import chi2 import numpy as np import numpy as np import pandas as pd import pandas as pd nodes = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') nodes edges = pd.read_csv('../input/tolokers/edges.tsv', sep='\t') edges import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt df = pd.read_csv('../input/tolokers/nodes.tsv', sep='\t', index_col='id') corr_matrix = df.corr() corr_matrix from scipy.stats import chi2 def chi2_p_return(col1, col2): col1_vals = col1.unique() col2_vals = col2.unique() contingency_matrix = {} for i in col1_vals: row = {} for j in col2_vals: count = len(df[(col1 == i) & (col2 == j)]) row[j] = count contingency_matrix[i] = row contingency_matrix_df = pd.DataFrame(contingency_matrix) contingency_matrix_df.fillna(0, inplace=True) actual = contingency_matrix_df.values row_sums = actual.sum(axis=1) col_sums = actual.sum(axis=0) total = actual.sum() expected = np.outer(row_sums, col_sums) / total chi_squared = np.sum((actual - expected) ** 2 / expected) degree_freedom = (len(contingency_matrix_df) - 1) * (len(contingency_matrix_df.columns) - 1) p_value_sci = '{:.3e}'.format(1 - chi2.cdf(chi_squared, degree_freedom)) return (chi_squared, p_value_sci) chi_squared, p_value = chi2_p_return(df['education'], df['banned']) print('Chi_squared:', chi_squared, ', p_value:', p_value, '(very close to zero)') alpha = 0.01 if float(p_value) <= alpha: print('Dependent (reject H0)') else: print('Independent (H0 holds true)')
code
34133139/cell_13
[ "text_html_output_1.png" ]
from nltk.tokenize import sent_tokenize import nltk import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import nltk from nltk.tokenize import sent_tokenize tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') fp = open('/kaggle/input/hotel-text-data/text.txt') data = fp.read() sentences = sent_tokenize(data) df = pd.DataFrame(sentences, columns=['sentences']) df1 = df[df['sentences_clean'] != ''] df1
code
34133139/cell_25
[ "application_vnd.jupyter.stderr_output_1.png" ]
from nltk.tokenize import sent_tokenize import nltk import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import string import nltk from nltk.tokenize import sent_tokenize tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') fp = open('/kaggle/input/hotel-text-data/text.txt') data = fp.read() sentences = sent_tokenize(data) df = pd.DataFrame(sentences, columns=['sentences']) cleanliness = ['satisfactory', 'ample', 'hygienic', 'proper', 'ambience', 'odour', 'dirty', 'clean', 'smell', 'cleanliness'] service = ['desk', 'check in', 'check out', 'reliable', 'fast', 'convenient', 'service', 'hospitality'] location = ['railway', 'view', 'station', 'airport', 'distance', 'far', 'close', 'train', 'metro', 'transport', 'market', 'mall', 'surrounding', 'areas', 'highway', 'traffic', 'out', 'location'] value = ['price', 'amount', 'rate', 'cheap', 'worth', 'low', 'money', 'economical', 'reasonable', 'fee', 'expensive', 'charge', 'value'] room = ['bed', 'bunkbeds', 'toilet', 'bathroom', 'shower', 'dryer', 'fridge', 'space', 'spacious', 'outdated', 'noisy', 'room'] food = ['drink', 'breakfast', 'spicy', 'food', 'tasty', 'tea', 'coffee', 'buffet', 'bar', 'restaurant', 'dinner', 'lunch', 'brunch', 'delicious'] facility = ['pool', 'gym', 'wifi', 'spa', 'internet', 'wireless', 'broken', 'parking', 'ventilation', 'maintained', 'facility', 'lot', 'premises'] staff = ['friendly', 'helpful', 'reliable', 'quick', 'good', 'polite', 'staff'] from nltk.corpus import wordnet import string from nltk import pos_tag from nltk.corpus import stopwords from nltk.tokenize import WhitespaceTokenizer from nltk.stem import WordNetLemmatizer def clean_text(text): text = text.lower() text = [word.strip(string.punctuation) for word in text.split(' ')] text = [word for word in text if not any((c.isdigit() for c in word))] text = [t for t in text if len(t) > 0] text = [t for t in text if len(t) > 1] text = ' '.join(text) return text df['sentences_clean'] = df['sentences'].apply(lambda x: clean_text(x)) df1 = df[df['sentences_clean'] != ''] import re wordlist = [] for i in df1['sentences_clean']: wordlist.append(re.split('\\s+', i)) a = [] for i in range(len(wordlist)): a.append(len(wordlist[i])) def calculate(word, category): clean = [] for i in range(len(word)): sum = 0 sum1 = 0 for j in range(len(word[i])): sum = sum + fuzz.ratio(word[i][j], category) clean.append(sum / a[i]) return clean c = [] for k in cleanliness: c.append(calculate(wordlist, k)) l = [] for k in location: l.append(calculate(wordlist, k))
code
34133139/cell_23
[ "text_plain_output_1.png" ]
from nltk.tokenize import sent_tokenize import nltk import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import string import nltk from nltk.tokenize import sent_tokenize tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') fp = open('/kaggle/input/hotel-text-data/text.txt') data = fp.read() sentences = sent_tokenize(data) df = pd.DataFrame(sentences, columns=['sentences']) cleanliness = ['satisfactory', 'ample', 'hygienic', 'proper', 'ambience', 'odour', 'dirty', 'clean', 'smell', 'cleanliness'] service = ['desk', 'check in', 'check out', 'reliable', 'fast', 'convenient', 'service', 'hospitality'] location = ['railway', 'view', 'station', 'airport', 'distance', 'far', 'close', 'train', 'metro', 'transport', 'market', 'mall', 'surrounding', 'areas', 'highway', 'traffic', 'out', 'location'] value = ['price', 'amount', 'rate', 'cheap', 'worth', 'low', 'money', 'economical', 'reasonable', 'fee', 'expensive', 'charge', 'value'] room = ['bed', 'bunkbeds', 'toilet', 'bathroom', 'shower', 'dryer', 'fridge', 'space', 'spacious', 'outdated', 'noisy', 'room'] food = ['drink', 'breakfast', 'spicy', 'food', 'tasty', 'tea', 'coffee', 'buffet', 'bar', 'restaurant', 'dinner', 'lunch', 'brunch', 'delicious'] facility = ['pool', 'gym', 'wifi', 'spa', 'internet', 'wireless', 'broken', 'parking', 'ventilation', 'maintained', 'facility', 'lot', 'premises'] staff = ['friendly', 'helpful', 'reliable', 'quick', 'good', 'polite', 'staff'] from nltk.corpus import wordnet import string from nltk import pos_tag from nltk.corpus import stopwords from nltk.tokenize import WhitespaceTokenizer from nltk.stem import WordNetLemmatizer def clean_text(text): text = text.lower() text = [word.strip(string.punctuation) for word in text.split(' ')] text = [word for word in text if not any((c.isdigit() for c in word))] text = [t for t in text if len(t) > 0] text = [t for t in text if len(t) > 1] text = ' '.join(text) return text df['sentences_clean'] = df['sentences'].apply(lambda x: clean_text(x)) df1 = df[df['sentences_clean'] != ''] import re wordlist = [] for i in df1['sentences_clean']: wordlist.append(re.split('\\s+', i)) a = [] for i in range(len(wordlist)): a.append(len(wordlist[i])) def calculate(word, category): clean = [] for i in range(len(word)): sum = 0 sum1 = 0 for j in range(len(word[i])): sum = sum + fuzz.ratio(word[i][j], category) clean.append(sum / a[i]) return clean c = [] for k in cleanliness: c.append(calculate(wordlist, k)) s = [] for k in service: s.append(calculate(wordlist, k))
code
34133139/cell_30
[ "application_vnd.jupyter.stderr_output_1.png" ]
from nltk.tokenize import sent_tokenize from statistics import mean import nltk import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import string import nltk from nltk.tokenize import sent_tokenize tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') fp = open('/kaggle/input/hotel-text-data/text.txt') data = fp.read() sentences = sent_tokenize(data) df = pd.DataFrame(sentences, columns=['sentences']) cleanliness = ['satisfactory', 'ample', 'hygienic', 'proper', 'ambience', 'odour', 'dirty', 'clean', 'smell', 'cleanliness'] service = ['desk', 'check in', 'check out', 'reliable', 'fast', 'convenient', 'service', 'hospitality'] location = ['railway', 'view', 'station', 'airport', 'distance', 'far', 'close', 'train', 'metro', 'transport', 'market', 'mall', 'surrounding', 'areas', 'highway', 'traffic', 'out', 'location'] value = ['price', 'amount', 'rate', 'cheap', 'worth', 'low', 'money', 'economical', 'reasonable', 'fee', 'expensive', 'charge', 'value'] room = ['bed', 'bunkbeds', 'toilet', 'bathroom', 'shower', 'dryer', 'fridge', 'space', 'spacious', 'outdated', 'noisy', 'room'] food = ['drink', 'breakfast', 'spicy', 'food', 'tasty', 'tea', 'coffee', 'buffet', 'bar', 'restaurant', 'dinner', 'lunch', 'brunch', 'delicious'] facility = ['pool', 'gym', 'wifi', 'spa', 'internet', 'wireless', 'broken', 'parking', 'ventilation', 'maintained', 'facility', 'lot', 'premises'] staff = ['friendly', 'helpful', 'reliable', 'quick', 'good', 'polite', 'staff'] from nltk.corpus import wordnet import string from nltk import pos_tag from nltk.corpus import stopwords from nltk.tokenize import WhitespaceTokenizer from nltk.stem import WordNetLemmatizer def clean_text(text): text = text.lower() text = [word.strip(string.punctuation) for word in text.split(' ')] text = [word for word in text if not any((c.isdigit() for c in word))] text = [t for t in text if len(t) > 0] text = [t for t in text if len(t) > 1] text = ' '.join(text) return text df['sentences_clean'] = df['sentences'].apply(lambda x: clean_text(x)) df1 = df[df['sentences_clean'] != ''] import re wordlist = [] for i in df1['sentences_clean']: wordlist.append(re.split('\\s+', i)) np.array(wordlist) a = [] for i in range(len(wordlist)): a.append(len(wordlist[i])) def calculate(word, category): clean = [] for i in range(len(word)): sum = 0 sum1 = 0 for j in range(len(word[i])): sum = sum + fuzz.ratio(word[i][j], category) clean.append(sum / a[i]) return clean c = [] for k in cleanliness: c.append(calculate(wordlist, k)) c = np.array(c).transpose() s = [] for k in service: s.append(calculate(wordlist, k)) s = np.array(s).transpose() se = [] for i in s: se.append(mean(i)) l = [] for k in location: l.append(calculate(wordlist, k)) l = np.array(l).transpose() lo = [] for i in l: lo.append(mean(i)) v = [] for k in value: v.append(calculate(wordlist, k)) v = np.array(v).transpose() va = [] for i in v: va.append(mean(i)) r = [] for k in room: r.append(calculate(wordlist, k)) r = np.array(r).transpose() ro = [] for i in r: ro.append(mean(i)) f = [] for k in food: f.append(calculate(wordlist, k)) f = np.array(f).transpose() fo = [] for i in f: fo.append(mean(i)) fa = [] for k in facility: fa.append(calculate(wordlist, k)) fa = np.array(fa).transpose() fac = [] for i in fa: fac.append(mean(i))
code
34133139/cell_20
[ "text_plain_output_1.png" ]
from nltk.tokenize import sent_tokenize import nltk import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import string import nltk from nltk.tokenize import sent_tokenize tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') fp = open('/kaggle/input/hotel-text-data/text.txt') data = fp.read() sentences = sent_tokenize(data) df = pd.DataFrame(sentences, columns=['sentences']) cleanliness = ['satisfactory', 'ample', 'hygienic', 'proper', 'ambience', 'odour', 'dirty', 'clean', 'smell', 'cleanliness'] service = ['desk', 'check in', 'check out', 'reliable', 'fast', 'convenient', 'service', 'hospitality'] location = ['railway', 'view', 'station', 'airport', 'distance', 'far', 'close', 'train', 'metro', 'transport', 'market', 'mall', 'surrounding', 'areas', 'highway', 'traffic', 'out', 'location'] value = ['price', 'amount', 'rate', 'cheap', 'worth', 'low', 'money', 'economical', 'reasonable', 'fee', 'expensive', 'charge', 'value'] room = ['bed', 'bunkbeds', 'toilet', 'bathroom', 'shower', 'dryer', 'fridge', 'space', 'spacious', 'outdated', 'noisy', 'room'] food = ['drink', 'breakfast', 'spicy', 'food', 'tasty', 'tea', 'coffee', 'buffet', 'bar', 'restaurant', 'dinner', 'lunch', 'brunch', 'delicious'] facility = ['pool', 'gym', 'wifi', 'spa', 'internet', 'wireless', 'broken', 'parking', 'ventilation', 'maintained', 'facility', 'lot', 'premises'] staff = ['friendly', 'helpful', 'reliable', 'quick', 'good', 'polite', 'staff'] from nltk.corpus import wordnet import string from nltk import pos_tag from nltk.corpus import stopwords from nltk.tokenize import WhitespaceTokenizer from nltk.stem import WordNetLemmatizer def clean_text(text): text = text.lower() text = [word.strip(string.punctuation) for word in text.split(' ')] text = [word for word in text if not any((c.isdigit() for c in word))] text = [t for t in text if len(t) > 0] text = [t for t in text if len(t) > 1] text = ' '.join(text) return text df['sentences_clean'] = df['sentences'].apply(lambda x: clean_text(x)) df1 = df[df['sentences_clean'] != ''] import re wordlist = [] for i in df1['sentences_clean']: wordlist.append(re.split('\\s+', i)) a = [] for i in range(len(wordlist)): a.append(len(wordlist[i])) def calculate(word, category): clean = [] for i in range(len(word)): sum = 0 sum1 = 0 for j in range(len(word[i])): sum = sum + fuzz.ratio(word[i][j], category) clean.append(sum / a[i]) return clean c = [] for k in cleanliness: c.append(calculate(wordlist, k))
code
34133139/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
from nltk.tokenize import sent_tokenize import nltk import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import nltk from nltk.tokenize import sent_tokenize tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') fp = open('/kaggle/input/hotel-text-data/text.txt') data = fp.read() sentences = sent_tokenize(data) df = pd.DataFrame(sentences, columns=['sentences']) df
code
34133139/cell_29
[ "application_vnd.jupyter.stderr_output_1.png" ]
from nltk.tokenize import sent_tokenize from statistics import mean import nltk import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import string import nltk from nltk.tokenize import sent_tokenize tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') fp = open('/kaggle/input/hotel-text-data/text.txt') data = fp.read() sentences = sent_tokenize(data) df = pd.DataFrame(sentences, columns=['sentences']) cleanliness = ['satisfactory', 'ample', 'hygienic', 'proper', 'ambience', 'odour', 'dirty', 'clean', 'smell', 'cleanliness'] service = ['desk', 'check in', 'check out', 'reliable', 'fast', 'convenient', 'service', 'hospitality'] location = ['railway', 'view', 'station', 'airport', 'distance', 'far', 'close', 'train', 'metro', 'transport', 'market', 'mall', 'surrounding', 'areas', 'highway', 'traffic', 'out', 'location'] value = ['price', 'amount', 'rate', 'cheap', 'worth', 'low', 'money', 'economical', 'reasonable', 'fee', 'expensive', 'charge', 'value'] room = ['bed', 'bunkbeds', 'toilet', 'bathroom', 'shower', 'dryer', 'fridge', 'space', 'spacious', 'outdated', 'noisy', 'room'] food = ['drink', 'breakfast', 'spicy', 'food', 'tasty', 'tea', 'coffee', 'buffet', 'bar', 'restaurant', 'dinner', 'lunch', 'brunch', 'delicious'] facility = ['pool', 'gym', 'wifi', 'spa', 'internet', 'wireless', 'broken', 'parking', 'ventilation', 'maintained', 'facility', 'lot', 'premises'] staff = ['friendly', 'helpful', 'reliable', 'quick', 'good', 'polite', 'staff'] from nltk.corpus import wordnet import string from nltk import pos_tag from nltk.corpus import stopwords from nltk.tokenize import WhitespaceTokenizer from nltk.stem import WordNetLemmatizer def clean_text(text): text = text.lower() text = [word.strip(string.punctuation) for word in text.split(' ')] text = [word for word in text if not any((c.isdigit() for c in word))] text = [t for t in text if len(t) > 0] text = [t for t in text if len(t) > 1] text = ' '.join(text) return text df['sentences_clean'] = df['sentences'].apply(lambda x: clean_text(x)) df1 = df[df['sentences_clean'] != ''] import re wordlist = [] for i in df1['sentences_clean']: wordlist.append(re.split('\\s+', i)) np.array(wordlist) a = [] for i in range(len(wordlist)): a.append(len(wordlist[i])) def calculate(word, category): clean = [] for i in range(len(word)): sum = 0 sum1 = 0 for j in range(len(word[i])): sum = sum + fuzz.ratio(word[i][j], category) clean.append(sum / a[i]) return clean c = [] for k in cleanliness: c.append(calculate(wordlist, k)) c = np.array(c).transpose() s = [] for k in service: s.append(calculate(wordlist, k)) s = np.array(s).transpose() se = [] for i in s: se.append(mean(i)) l = [] for k in location: l.append(calculate(wordlist, k)) l = np.array(l).transpose() lo = [] for i in l: lo.append(mean(i)) v = [] for k in value: v.append(calculate(wordlist, k)) v = np.array(v).transpose() va = [] for i in v: va.append(mean(i)) r = [] for k in room: r.append(calculate(wordlist, k)) r = np.array(r).transpose() ro = [] for i in r: ro.append(mean(i)) f = [] for k in food: f.append(calculate(wordlist, k)) f = np.array(f).transpose() fo = [] for i in f: fo.append(mean(i))
code
34133139/cell_11
[ "text_html_output_1.png" ]
from nltk.tokenize import sent_tokenize import nltk import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import nltk from nltk.tokenize import sent_tokenize tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') fp = open('/kaggle/input/hotel-text-data/text.txt') data = fp.read() sentences = sent_tokenize(data) df = pd.DataFrame(sentences, columns=['sentences']) df
code
34133139/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34133139/cell_18
[ "text_plain_output_1.png" ]
from nltk.tokenize import sent_tokenize import nltk import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import nltk from nltk.tokenize import sent_tokenize tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') fp = open('/kaggle/input/hotel-text-data/text.txt') data = fp.read() sentences = sent_tokenize(data) df = pd.DataFrame(sentences, columns=['sentences']) df1 = df[df['sentences_clean'] != ''] import re wordlist = [] for i in df1['sentences_clean']: wordlist.append(re.split('\\s+', i)) a = [] for i in range(len(wordlist)): a.append(len(wordlist[i])) a
code
34133139/cell_32
[ "application_vnd.jupyter.stderr_output_1.png" ]
from nltk.tokenize import sent_tokenize from statistics import mean import nltk import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import string import nltk from nltk.tokenize import sent_tokenize tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') fp = open('/kaggle/input/hotel-text-data/text.txt') data = fp.read() sentences = sent_tokenize(data) df = pd.DataFrame(sentences, columns=['sentences']) cleanliness = ['satisfactory', 'ample', 'hygienic', 'proper', 'ambience', 'odour', 'dirty', 'clean', 'smell', 'cleanliness'] service = ['desk', 'check in', 'check out', 'reliable', 'fast', 'convenient', 'service', 'hospitality'] location = ['railway', 'view', 'station', 'airport', 'distance', 'far', 'close', 'train', 'metro', 'transport', 'market', 'mall', 'surrounding', 'areas', 'highway', 'traffic', 'out', 'location'] value = ['price', 'amount', 'rate', 'cheap', 'worth', 'low', 'money', 'economical', 'reasonable', 'fee', 'expensive', 'charge', 'value'] room = ['bed', 'bunkbeds', 'toilet', 'bathroom', 'shower', 'dryer', 'fridge', 'space', 'spacious', 'outdated', 'noisy', 'room'] food = ['drink', 'breakfast', 'spicy', 'food', 'tasty', 'tea', 'coffee', 'buffet', 'bar', 'restaurant', 'dinner', 'lunch', 'brunch', 'delicious'] facility = ['pool', 'gym', 'wifi', 'spa', 'internet', 'wireless', 'broken', 'parking', 'ventilation', 'maintained', 'facility', 'lot', 'premises'] staff = ['friendly', 'helpful', 'reliable', 'quick', 'good', 'polite', 'staff'] from nltk.corpus import wordnet import string from nltk import pos_tag from nltk.corpus import stopwords from nltk.tokenize import WhitespaceTokenizer from nltk.stem import WordNetLemmatizer def clean_text(text): text = text.lower() text = [word.strip(string.punctuation) for word in text.split(' ')] text = [word for word in text if not any((c.isdigit() for c in word))] text = [t for t in text if len(t) > 0] text = [t for t in text if len(t) > 1] text = ' '.join(text) return text df['sentences_clean'] = df['sentences'].apply(lambda x: clean_text(x)) df1 = df[df['sentences_clean'] != ''] import re wordlist = [] for i in df1['sentences_clean']: wordlist.append(re.split('\\s+', i)) np.array(wordlist) a = [] for i in range(len(wordlist)): a.append(len(wordlist[i])) def calculate(word, category): clean = [] for i in range(len(word)): sum = 0 sum1 = 0 for j in range(len(word[i])): sum = sum + fuzz.ratio(word[i][j], category) clean.append(sum / a[i]) return clean c = [] for k in cleanliness: c.append(calculate(wordlist, k)) c = np.array(c).transpose() cl = [] for i in c: cl.append(mean(i)) cl s = [] for k in service: s.append(calculate(wordlist, k)) s = np.array(s).transpose() se = [] for i in s: se.append(mean(i)) l = [] for k in location: l.append(calculate(wordlist, k)) l = np.array(l).transpose() lo = [] for i in l: lo.append(mean(i)) v = [] for k in value: v.append(calculate(wordlist, k)) v = np.array(v).transpose() va = [] for i in v: va.append(mean(i)) r = [] for k in room: r.append(calculate(wordlist, k)) r = np.array(r).transpose() ro = [] for i in r: ro.append(mean(i)) f = [] for k in food: f.append(calculate(wordlist, k)) f = np.array(f).transpose() fo = [] for i in f: fo.append(mean(i)) fa = [] for k in facility: fa.append(calculate(wordlist, k)) fa = np.array(fa).transpose() fac = [] for i in fa: fac.append(mean(i)) st = [] for k in staff: st.append(calculate(wordlist, k)) st = np.array(st).transpose() sta = [] for i in st: sta.append(mean(i)) cl = np.array(cl) cl
code
34133139/cell_28
[ "application_vnd.jupyter.stderr_output_1.png" ]
from nltk.tokenize import sent_tokenize from statistics import mean import nltk import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import string import nltk from nltk.tokenize import sent_tokenize tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') fp = open('/kaggle/input/hotel-text-data/text.txt') data = fp.read() sentences = sent_tokenize(data) df = pd.DataFrame(sentences, columns=['sentences']) cleanliness = ['satisfactory', 'ample', 'hygienic', 'proper', 'ambience', 'odour', 'dirty', 'clean', 'smell', 'cleanliness'] service = ['desk', 'check in', 'check out', 'reliable', 'fast', 'convenient', 'service', 'hospitality'] location = ['railway', 'view', 'station', 'airport', 'distance', 'far', 'close', 'train', 'metro', 'transport', 'market', 'mall', 'surrounding', 'areas', 'highway', 'traffic', 'out', 'location'] value = ['price', 'amount', 'rate', 'cheap', 'worth', 'low', 'money', 'economical', 'reasonable', 'fee', 'expensive', 'charge', 'value'] room = ['bed', 'bunkbeds', 'toilet', 'bathroom', 'shower', 'dryer', 'fridge', 'space', 'spacious', 'outdated', 'noisy', 'room'] food = ['drink', 'breakfast', 'spicy', 'food', 'tasty', 'tea', 'coffee', 'buffet', 'bar', 'restaurant', 'dinner', 'lunch', 'brunch', 'delicious'] facility = ['pool', 'gym', 'wifi', 'spa', 'internet', 'wireless', 'broken', 'parking', 'ventilation', 'maintained', 'facility', 'lot', 'premises'] staff = ['friendly', 'helpful', 'reliable', 'quick', 'good', 'polite', 'staff'] from nltk.corpus import wordnet import string from nltk import pos_tag from nltk.corpus import stopwords from nltk.tokenize import WhitespaceTokenizer from nltk.stem import WordNetLemmatizer def clean_text(text): text = text.lower() text = [word.strip(string.punctuation) for word in text.split(' ')] text = [word for word in text if not any((c.isdigit() for c in word))] text = [t for t in text if len(t) > 0] text = [t for t in text if len(t) > 1] text = ' '.join(text) return text df['sentences_clean'] = df['sentences'].apply(lambda x: clean_text(x)) df1 = df[df['sentences_clean'] != ''] import re wordlist = [] for i in df1['sentences_clean']: wordlist.append(re.split('\\s+', i)) np.array(wordlist) a = [] for i in range(len(wordlist)): a.append(len(wordlist[i])) def calculate(word, category): clean = [] for i in range(len(word)): sum = 0 sum1 = 0 for j in range(len(word[i])): sum = sum + fuzz.ratio(word[i][j], category) clean.append(sum / a[i]) return clean c = [] for k in cleanliness: c.append(calculate(wordlist, k)) c = np.array(c).transpose() s = [] for k in service: s.append(calculate(wordlist, k)) s = np.array(s).transpose() se = [] for i in s: se.append(mean(i)) l = [] for k in location: l.append(calculate(wordlist, k)) l = np.array(l).transpose() lo = [] for i in l: lo.append(mean(i)) v = [] for k in value: v.append(calculate(wordlist, k)) v = np.array(v).transpose() va = [] for i in v: va.append(mean(i)) r = [] for k in room: r.append(calculate(wordlist, k)) r = np.array(r).transpose() ro = [] for i in r: ro.append(mean(i))
code
34133139/cell_15
[ "text_html_output_1.png" ]
from nltk.tokenize import sent_tokenize import nltk import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import nltk from nltk.tokenize import sent_tokenize tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') fp = open('/kaggle/input/hotel-text-data/text.txt') data = fp.read() sentences = sent_tokenize(data) df = pd.DataFrame(sentences, columns=['sentences']) df1 = df[df['sentences_clean'] != ''] df1['sentences_clean'][5]
code
34133139/cell_16
[ "text_plain_output_1.png" ]
from nltk.tokenize import sent_tokenize import nltk import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import nltk from nltk.tokenize import sent_tokenize tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') fp = open('/kaggle/input/hotel-text-data/text.txt') data = fp.read() sentences = sent_tokenize(data) df = pd.DataFrame(sentences, columns=['sentences']) df1 = df[df['sentences_clean'] != ''] import re wordlist = [] for i in df1['sentences_clean']: wordlist.append(re.split('\\s+', i)) np.array(wordlist)
code
34133139/cell_31
[ "application_vnd.jupyter.stderr_output_1.png" ]
from nltk.tokenize import sent_tokenize from statistics import mean import nltk import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import string import nltk from nltk.tokenize import sent_tokenize tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') fp = open('/kaggle/input/hotel-text-data/text.txt') data = fp.read() sentences = sent_tokenize(data) df = pd.DataFrame(sentences, columns=['sentences']) cleanliness = ['satisfactory', 'ample', 'hygienic', 'proper', 'ambience', 'odour', 'dirty', 'clean', 'smell', 'cleanliness'] service = ['desk', 'check in', 'check out', 'reliable', 'fast', 'convenient', 'service', 'hospitality'] location = ['railway', 'view', 'station', 'airport', 'distance', 'far', 'close', 'train', 'metro', 'transport', 'market', 'mall', 'surrounding', 'areas', 'highway', 'traffic', 'out', 'location'] value = ['price', 'amount', 'rate', 'cheap', 'worth', 'low', 'money', 'economical', 'reasonable', 'fee', 'expensive', 'charge', 'value'] room = ['bed', 'bunkbeds', 'toilet', 'bathroom', 'shower', 'dryer', 'fridge', 'space', 'spacious', 'outdated', 'noisy', 'room'] food = ['drink', 'breakfast', 'spicy', 'food', 'tasty', 'tea', 'coffee', 'buffet', 'bar', 'restaurant', 'dinner', 'lunch', 'brunch', 'delicious'] facility = ['pool', 'gym', 'wifi', 'spa', 'internet', 'wireless', 'broken', 'parking', 'ventilation', 'maintained', 'facility', 'lot', 'premises'] staff = ['friendly', 'helpful', 'reliable', 'quick', 'good', 'polite', 'staff'] from nltk.corpus import wordnet import string from nltk import pos_tag from nltk.corpus import stopwords from nltk.tokenize import WhitespaceTokenizer from nltk.stem import WordNetLemmatizer def clean_text(text): text = text.lower() text = [word.strip(string.punctuation) for word in text.split(' ')] text = [word for word in text if not any((c.isdigit() for c in word))] text = [t for t in text if len(t) > 0] text = [t for t in text if len(t) > 1] text = ' '.join(text) return text df['sentences_clean'] = df['sentences'].apply(lambda x: clean_text(x)) df1 = df[df['sentences_clean'] != ''] import re wordlist = [] for i in df1['sentences_clean']: wordlist.append(re.split('\\s+', i)) np.array(wordlist) a = [] for i in range(len(wordlist)): a.append(len(wordlist[i])) def calculate(word, category): clean = [] for i in range(len(word)): sum = 0 sum1 = 0 for j in range(len(word[i])): sum = sum + fuzz.ratio(word[i][j], category) clean.append(sum / a[i]) return clean c = [] for k in cleanliness: c.append(calculate(wordlist, k)) c = np.array(c).transpose() s = [] for k in service: s.append(calculate(wordlist, k)) s = np.array(s).transpose() se = [] for i in s: se.append(mean(i)) l = [] for k in location: l.append(calculate(wordlist, k)) l = np.array(l).transpose() lo = [] for i in l: lo.append(mean(i)) v = [] for k in value: v.append(calculate(wordlist, k)) v = np.array(v).transpose() va = [] for i in v: va.append(mean(i)) r = [] for k in room: r.append(calculate(wordlist, k)) r = np.array(r).transpose() ro = [] for i in r: ro.append(mean(i)) f = [] for k in food: f.append(calculate(wordlist, k)) f = np.array(f).transpose() fo = [] for i in f: fo.append(mean(i)) fa = [] for k in facility: fa.append(calculate(wordlist, k)) fa = np.array(fa).transpose() fac = [] for i in fa: fac.append(mean(i)) st = [] for k in staff: st.append(calculate(wordlist, k)) st = np.array(st).transpose() sta = [] for i in st: sta.append(mean(i))
code
34133139/cell_22
[ "application_vnd.jupyter.stderr_output_1.png" ]
from nltk.tokenize import sent_tokenize from statistics import mean import nltk import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import string import nltk from nltk.tokenize import sent_tokenize tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') fp = open('/kaggle/input/hotel-text-data/text.txt') data = fp.read() sentences = sent_tokenize(data) df = pd.DataFrame(sentences, columns=['sentences']) cleanliness = ['satisfactory', 'ample', 'hygienic', 'proper', 'ambience', 'odour', 'dirty', 'clean', 'smell', 'cleanliness'] service = ['desk', 'check in', 'check out', 'reliable', 'fast', 'convenient', 'service', 'hospitality'] location = ['railway', 'view', 'station', 'airport', 'distance', 'far', 'close', 'train', 'metro', 'transport', 'market', 'mall', 'surrounding', 'areas', 'highway', 'traffic', 'out', 'location'] value = ['price', 'amount', 'rate', 'cheap', 'worth', 'low', 'money', 'economical', 'reasonable', 'fee', 'expensive', 'charge', 'value'] room = ['bed', 'bunkbeds', 'toilet', 'bathroom', 'shower', 'dryer', 'fridge', 'space', 'spacious', 'outdated', 'noisy', 'room'] food = ['drink', 'breakfast', 'spicy', 'food', 'tasty', 'tea', 'coffee', 'buffet', 'bar', 'restaurant', 'dinner', 'lunch', 'brunch', 'delicious'] facility = ['pool', 'gym', 'wifi', 'spa', 'internet', 'wireless', 'broken', 'parking', 'ventilation', 'maintained', 'facility', 'lot', 'premises'] staff = ['friendly', 'helpful', 'reliable', 'quick', 'good', 'polite', 'staff'] from nltk.corpus import wordnet import string from nltk import pos_tag from nltk.corpus import stopwords from nltk.tokenize import WhitespaceTokenizer from nltk.stem import WordNetLemmatizer def clean_text(text): text = text.lower() text = [word.strip(string.punctuation) for word in text.split(' ')] text = [word for word in text if not any((c.isdigit() for c in word))] text = [t for t in text if len(t) > 0] text = [t for t in text if len(t) > 1] text = ' '.join(text) return text df['sentences_clean'] = df['sentences'].apply(lambda x: clean_text(x)) df1 = df[df['sentences_clean'] != ''] import re wordlist = [] for i in df1['sentences_clean']: wordlist.append(re.split('\\s+', i)) np.array(wordlist) a = [] for i in range(len(wordlist)): a.append(len(wordlist[i])) def calculate(word, category): clean = [] for i in range(len(word)): sum = 0 sum1 = 0 for j in range(len(word[i])): sum = sum + fuzz.ratio(word[i][j], category) clean.append(sum / a[i]) return clean c = [] for k in cleanliness: c.append(calculate(wordlist, k)) c = np.array(c).transpose() cl = [] for i in c: cl.append(mean(i)) cl
code
34133139/cell_27
[ "application_vnd.jupyter.stderr_output_1.png" ]
from nltk.tokenize import sent_tokenize from statistics import mean import nltk import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import re import string import nltk from nltk.tokenize import sent_tokenize tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') fp = open('/kaggle/input/hotel-text-data/text.txt') data = fp.read() sentences = sent_tokenize(data) df = pd.DataFrame(sentences, columns=['sentences']) cleanliness = ['satisfactory', 'ample', 'hygienic', 'proper', 'ambience', 'odour', 'dirty', 'clean', 'smell', 'cleanliness'] service = ['desk', 'check in', 'check out', 'reliable', 'fast', 'convenient', 'service', 'hospitality'] location = ['railway', 'view', 'station', 'airport', 'distance', 'far', 'close', 'train', 'metro', 'transport', 'market', 'mall', 'surrounding', 'areas', 'highway', 'traffic', 'out', 'location'] value = ['price', 'amount', 'rate', 'cheap', 'worth', 'low', 'money', 'economical', 'reasonable', 'fee', 'expensive', 'charge', 'value'] room = ['bed', 'bunkbeds', 'toilet', 'bathroom', 'shower', 'dryer', 'fridge', 'space', 'spacious', 'outdated', 'noisy', 'room'] food = ['drink', 'breakfast', 'spicy', 'food', 'tasty', 'tea', 'coffee', 'buffet', 'bar', 'restaurant', 'dinner', 'lunch', 'brunch', 'delicious'] facility = ['pool', 'gym', 'wifi', 'spa', 'internet', 'wireless', 'broken', 'parking', 'ventilation', 'maintained', 'facility', 'lot', 'premises'] staff = ['friendly', 'helpful', 'reliable', 'quick', 'good', 'polite', 'staff'] from nltk.corpus import wordnet import string from nltk import pos_tag from nltk.corpus import stopwords from nltk.tokenize import WhitespaceTokenizer from nltk.stem import WordNetLemmatizer def clean_text(text): text = text.lower() text = [word.strip(string.punctuation) for word in text.split(' ')] text = [word for word in text if not any((c.isdigit() for c in word))] text = [t for t in text if len(t) > 0] text = [t for t in text if len(t) > 1] text = ' '.join(text) return text df['sentences_clean'] = df['sentences'].apply(lambda x: clean_text(x)) df1 = df[df['sentences_clean'] != ''] import re wordlist = [] for i in df1['sentences_clean']: wordlist.append(re.split('\\s+', i)) np.array(wordlist) a = [] for i in range(len(wordlist)): a.append(len(wordlist[i])) def calculate(word, category): clean = [] for i in range(len(word)): sum = 0 sum1 = 0 for j in range(len(word[i])): sum = sum + fuzz.ratio(word[i][j], category) clean.append(sum / a[i]) return clean c = [] for k in cleanliness: c.append(calculate(wordlist, k)) c = np.array(c).transpose() s = [] for k in service: s.append(calculate(wordlist, k)) s = np.array(s).transpose() se = [] for i in s: se.append(mean(i)) l = [] for k in location: l.append(calculate(wordlist, k)) l = np.array(l).transpose() lo = [] for i in l: lo.append(mean(i)) v = [] for k in value: v.append(calculate(wordlist, k)) v = np.array(v).transpose() va = [] for i in v: va.append(mean(i))
code
50224995/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
train = dt.fread(os.path.join(root_path, 'train.csv')).to_pandas().query('weight > 0').pipe(reduce_mem_usage).reset_index(drop=True) train['action'] = (train.resp > 0).astype(int) resp_cols = [i for i in train.columns if 'resp' in i] features_names = [i for i in train.columns if 'feature_' in i] features_index = list(map(lambda x: int(re.sub('feature_', '', x)), features_names)) features_tuples = sorted(list(zip(features_names, features_index)), key=lambda x: x[1]) just_features = [i[0] for i in features_tuples]
code
50224995/cell_16
[ "text_plain_output_1.png" ]
from sklearn.model_selection import StratifiedKFold import janestreet import lightgbm as lgb from sklearn.model_selection import StratifiedKFold params = {'objective': 'binary', 'metrics': ['auc']} nfolds = 3 kfold = StratifiedKFold(n_splits=nfolds) lgb_models = list() import lightgbm as lgb for k, (train_idx, valid_idx) in enumerate(kfold.split(train.query('date>150')[just_features], train.query('date>150')['action'])): lgb_train = lgb.Dataset(train.loc[train_idx, just_features], train.loc[train_idx, 'action']) lgb_valid = lgb.Dataset(train.loc[valid_idx, just_features], train.loc[valid_idx, 'action']) model = lgb.train(params, lgb_train, valid_sets=[lgb_train, lgb_valid], num_boost_round=10000, verbose_eval=50, early_stopping_rounds=10) lgb_models.append(model) import janestreet env = janestreet.make_env() iter_test = env.iter_test() for test_df, sample_prediction_df in iter_test: prediction = 0 for model in lgb_models: prediction += model.predict(test_df[features])[0] prediction /= len(lgb_models) prediction = prediction > 0.5 sample_prediction_df.action = prediction.astype(int) env.predict(sample_prediction_df) if rcount % 1000 == 0: print('Processed: {} rows\n'.format(rcount)) print(f'Finished processing {rcount} rows.')
code
50224995/cell_3
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import os import random import numpy as np import datatable as dt import pandas as pd import random import re random.seed(28) import tqdm import os import gc import logging import optuna from matplotlib.colors import ListedColormap import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = [20, 12] from lightgbm import LGBMClassifier from xgboost import XGBClassifier from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import roc_auc_score input_path = '/kaggle/input/' root_path = os.path.join(input_path, 'jane-street-market-prediction')
code
74041737/cell_9
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) terror_df = pd.read_csv('/kaggle/input/gtd/globalterrorismdb_0718dist.csv', encoding='latin1') terror_df.columns.to_list() terror_df.rename(columns={'iyear': 'Year', 'imonth': 'Month', 'iday': 'Day', 'country_txt': 'Country', 'provstate': 'state', 'region_txt': 'Region', 'attacktype1_txt': 'AttackType', 'target1': 'Target', 'nkill': 'Killed', 'nwound': 'Wounded', 'summary': 'Summary', 'gname': 'Group', 'targtype1_txt': 'Target_type', 'weaptype1_txt': 'Weapon_type', 'motive': 'Motive'}, inplace=True) terror_df.columns terror_df = terror_df[['Year', 'Month', 'Day', 'Country', 'state', 'Region', 'city', 'latitude', 'longitude', 'AttackType', 'Killed', 'Wounded', 'Target', 'Summary', 'Group', 'Target_type', 'Weapon_type', 'Motive']] terror_df.shape
code
74041737/cell_4
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) terror_df = pd.read_csv('/kaggle/input/gtd/globalterrorismdb_0718dist.csv', encoding='latin1') terror_df.head()
code
74041737/cell_23
[ "text_plain_output_1.png" ]
from wordcloud import WordCloud import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns terror_df = pd.read_csv('/kaggle/input/gtd/globalterrorismdb_0718dist.csv', encoding='latin1') terror_df.columns.to_list() terror_df.rename(columns={'iyear': 'Year', 'imonth': 'Month', 'iday': 'Day', 'country_txt': 'Country', 'provstate': 'state', 'region_txt': 'Region', 'attacktype1_txt': 'AttackType', 'target1': 'Target', 'nkill': 'Killed', 'nwound': 'Wounded', 'summary': 'Summary', 'gname': 'Group', 'targtype1_txt': 'Target_type', 'weaptype1_txt': 'Weapon_type', 'motive': 'Motive'}, inplace=True) terror_df.columns terror_df = terror_df[['Year', 'Month', 'Day', 'Country', 'state', 'Region', 'city', 'latitude', 'longitude', 'AttackType', 'Killed', 'Wounded', 'Target', 'Summary', 'Group', 'Target_type', 'Weapon_type', 'Motive']] terror_df.shape terror_df.isnull().sum() import seaborn as sns x_year = terror_df['Year'].unique() y_year = terror_df['Year'].value_counts(dropna=False).sort_index() plt.xticks(rotation=45) plt.xticks(rotation=45) from wordcloud import WordCloud from scipy import signal cities = terror_df.state.dropna(False) wordcloud = WordCloud(background_color='white', width=500, height=250).generate(' '.join(cities)) plt.axis('off') terror_copy = terror_df.sort_values(by='casualities', ascending=False)[:30] terror_copy.corr()
code
74041737/cell_20
[ "text_plain_output_1.png" ]
from wordcloud import WordCloud import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns terror_df = pd.read_csv('/kaggle/input/gtd/globalterrorismdb_0718dist.csv', encoding='latin1') terror_df.columns.to_list() terror_df.rename(columns={'iyear': 'Year', 'imonth': 'Month', 'iday': 'Day', 'country_txt': 'Country', 'provstate': 'state', 'region_txt': 'Region', 'attacktype1_txt': 'AttackType', 'target1': 'Target', 'nkill': 'Killed', 'nwound': 'Wounded', 'summary': 'Summary', 'gname': 'Group', 'targtype1_txt': 'Target_type', 'weaptype1_txt': 'Weapon_type', 'motive': 'Motive'}, inplace=True) terror_df.columns terror_df = terror_df[['Year', 'Month', 'Day', 'Country', 'state', 'Region', 'city', 'latitude', 'longitude', 'AttackType', 'Killed', 'Wounded', 'Target', 'Summary', 'Group', 'Target_type', 'Weapon_type', 'Motive']] terror_df.shape terror_df.isnull().sum() import seaborn as sns x_year = terror_df['Year'].unique() y_year = terror_df['Year'].value_counts(dropna=False).sort_index() plt.xticks(rotation=45) plt.xticks(rotation=45) from wordcloud import WordCloud from scipy import signal cities = terror_df.state.dropna(False) plt.subplots(figsize=(10, 10)) wordcloud = WordCloud(background_color='white', width=500, height=250).generate(' '.join(cities)) plt.axis('off') plt.imshow(wordcloud) plt.show()
code
74041737/cell_2
[ "text_html_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
74041737/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) terror_df = pd.read_csv('/kaggle/input/gtd/globalterrorismdb_0718dist.csv', encoding='latin1') terror_df.columns.to_list() terror_df.rename(columns={'iyear': 'Year', 'imonth': 'Month', 'iday': 'Day', 'country_txt': 'Country', 'provstate': 'state', 'region_txt': 'Region', 'attacktype1_txt': 'AttackType', 'target1': 'Target', 'nkill': 'Killed', 'nwound': 'Wounded', 'summary': 'Summary', 'gname': 'Group', 'targtype1_txt': 'Target_type', 'weaptype1_txt': 'Weapon_type', 'motive': 'Motive'}, inplace=True) terror_df.columns terror_df = terror_df[['Year', 'Month', 'Day', 'Country', 'state', 'Region', 'city', 'latitude', 'longitude', 'AttackType', 'Killed', 'Wounded', 'Target', 'Summary', 'Group', 'Target_type', 'Weapon_type', 'Motive']] terror_df.shape terror_df.isnull().sum() terror_df.info()
code
74041737/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns terror_df = pd.read_csv('/kaggle/input/gtd/globalterrorismdb_0718dist.csv', encoding='latin1') terror_df.columns.to_list() terror_df.rename(columns={'iyear': 'Year', 'imonth': 'Month', 'iday': 'Day', 'country_txt': 'Country', 'provstate': 'state', 'region_txt': 'Region', 'attacktype1_txt': 'AttackType', 'target1': 'Target', 'nkill': 'Killed', 'nwound': 'Wounded', 'summary': 'Summary', 'gname': 'Group', 'targtype1_txt': 'Target_type', 'weaptype1_txt': 'Weapon_type', 'motive': 'Motive'}, inplace=True) terror_df.columns terror_df = terror_df[['Year', 'Month', 'Day', 'Country', 'state', 'Region', 'city', 'latitude', 'longitude', 'AttackType', 'Killed', 'Wounded', 'Target', 'Summary', 'Group', 'Target_type', 'Weapon_type', 'Motive']] terror_df.shape terror_df.isnull().sum() import seaborn as sns x_year = terror_df['Year'].unique() y_year = terror_df['Year'].value_counts(dropna=False).sort_index() plt.xticks(rotation=45) plt.xticks(rotation=45) pd.crosstab(terror_df.Year, terror_df.Region).plot(kind='area', figsize=(15, 6)) plt.title('Terrorist activites by Region in each year') plt.ylabel('Number of attacks') plt.show()
code
74041737/cell_7
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) terror_df = pd.read_csv('/kaggle/input/gtd/globalterrorismdb_0718dist.csv', encoding='latin1') terror_df.columns.to_list() terror_df.rename(columns={'iyear': 'Year', 'imonth': 'Month', 'iday': 'Day', 'country_txt': 'Country', 'provstate': 'state', 'region_txt': 'Region', 'attacktype1_txt': 'AttackType', 'target1': 'Target', 'nkill': 'Killed', 'nwound': 'Wounded', 'summary': 'Summary', 'gname': 'Group', 'targtype1_txt': 'Target_type', 'weaptype1_txt': 'Weapon_type', 'motive': 'Motive'}, inplace=True) terror_df.columns
code
74041737/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns terror_df = pd.read_csv('/kaggle/input/gtd/globalterrorismdb_0718dist.csv', encoding='latin1') terror_df.columns.to_list() terror_df.rename(columns={'iyear': 'Year', 'imonth': 'Month', 'iday': 'Day', 'country_txt': 'Country', 'provstate': 'state', 'region_txt': 'Region', 'attacktype1_txt': 'AttackType', 'target1': 'Target', 'nkill': 'Killed', 'nwound': 'Wounded', 'summary': 'Summary', 'gname': 'Group', 'targtype1_txt': 'Target_type', 'weaptype1_txt': 'Weapon_type', 'motive': 'Motive'}, inplace=True) terror_df.columns terror_df = terror_df[['Year', 'Month', 'Day', 'Country', 'state', 'Region', 'city', 'latitude', 'longitude', 'AttackType', 'Killed', 'Wounded', 'Target', 'Summary', 'Group', 'Target_type', 'Weapon_type', 'Motive']] terror_df.shape terror_df.isnull().sum() import seaborn as sns x_year = terror_df['Year'].unique() y_year = terror_df['Year'].value_counts(dropna=False).sort_index() plt.xticks(rotation=45) plt.subplots(figsize=(15, 6)) sns.countplot('Year', data=terror_df, palette='RdYlGn_r', edgecolor=sns.color_palette('YlOrBr', 5)) plt.xticks(rotation=45) plt.title('CountPLot of Number Of Terrorist Activities Each Year') plt.show()
code
74041737/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) terror_df = pd.read_csv('/kaggle/input/gtd/globalterrorismdb_0718dist.csv', encoding='latin1') terror_df.columns.to_list() terror_df.rename(columns={'iyear': 'Year', 'imonth': 'Month', 'iday': 'Day', 'country_txt': 'Country', 'provstate': 'state', 'region_txt': 'Region', 'attacktype1_txt': 'AttackType', 'target1': 'Target', 'nkill': 'Killed', 'nwound': 'Wounded', 'summary': 'Summary', 'gname': 'Group', 'targtype1_txt': 'Target_type', 'weaptype1_txt': 'Weapon_type', 'motive': 'Motive'}, inplace=True) terror_df.columns terror_df = terror_df[['Year', 'Month', 'Day', 'Country', 'state', 'Region', 'city', 'latitude', 'longitude', 'AttackType', 'Killed', 'Wounded', 'Target', 'Summary', 'Group', 'Target_type', 'Weapon_type', 'Motive']] terror_df.head()
code
74041737/cell_15
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) terror_df = pd.read_csv('/kaggle/input/gtd/globalterrorismdb_0718dist.csv', encoding='latin1') terror_df.columns.to_list() terror_df.rename(columns={'iyear': 'Year', 'imonth': 'Month', 'iday': 'Day', 'country_txt': 'Country', 'provstate': 'state', 'region_txt': 'Region', 'attacktype1_txt': 'AttackType', 'target1': 'Target', 'nkill': 'Killed', 'nwound': 'Wounded', 'summary': 'Summary', 'gname': 'Group', 'targtype1_txt': 'Target_type', 'weaptype1_txt': 'Weapon_type', 'motive': 'Motive'}, inplace=True) terror_df.columns terror_df = terror_df[['Year', 'Month', 'Day', 'Country', 'state', 'Region', 'city', 'latitude', 'longitude', 'AttackType', 'Killed', 'Wounded', 'Target', 'Summary', 'Group', 'Target_type', 'Weapon_type', 'Motive']] terror_df.shape terror_df.isnull().sum() terror_df['Year'].value_counts(dropna=False).sort_index()
code
74041737/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns terror_df = pd.read_csv('/kaggle/input/gtd/globalterrorismdb_0718dist.csv', encoding='latin1') terror_df.columns.to_list() terror_df.rename(columns={'iyear': 'Year', 'imonth': 'Month', 'iday': 'Day', 'country_txt': 'Country', 'provstate': 'state', 'region_txt': 'Region', 'attacktype1_txt': 'AttackType', 'target1': 'Target', 'nkill': 'Killed', 'nwound': 'Wounded', 'summary': 'Summary', 'gname': 'Group', 'targtype1_txt': 'Target_type', 'weaptype1_txt': 'Weapon_type', 'motive': 'Motive'}, inplace=True) terror_df.columns terror_df = terror_df[['Year', 'Month', 'Day', 'Country', 'state', 'Region', 'city', 'latitude', 'longitude', 'AttackType', 'Killed', 'Wounded', 'Target', 'Summary', 'Group', 'Target_type', 'Weapon_type', 'Motive']] terror_df.shape terror_df.isnull().sum() import seaborn as sns x_year = terror_df['Year'].unique() y_year = terror_df['Year'].value_counts(dropna=False).sort_index() plt.figure(figsize=(15, 10)) plt.title('Attack in Years') plt.xlabel('Attack Years') plt.ylabel('Number of attacks each year') plt.xticks(rotation=45) sns.barplot(x=x_year, y=y_year, palette='rocket') plt.show()
code
74041737/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) terror_df = pd.read_csv('/kaggle/input/gtd/globalterrorismdb_0718dist.csv', encoding='latin1') terror_df.columns.to_list() terror_df.rename(columns={'iyear': 'Year', 'imonth': 'Month', 'iday': 'Day', 'country_txt': 'Country', 'provstate': 'state', 'region_txt': 'Region', 'attacktype1_txt': 'AttackType', 'target1': 'Target', 'nkill': 'Killed', 'nwound': 'Wounded', 'summary': 'Summary', 'gname': 'Group', 'targtype1_txt': 'Target_type', 'weaptype1_txt': 'Weapon_type', 'motive': 'Motive'}, inplace=True) terror_df.columns terror_df = terror_df[['Year', 'Month', 'Day', 'Country', 'state', 'Region', 'city', 'latitude', 'longitude', 'AttackType', 'Killed', 'Wounded', 'Target', 'Summary', 'Group', 'Target_type', 'Weapon_type', 'Motive']] terror_df.shape terror_df.isnull().sum() print('Country with most attacks: ', terror_df['Country'].value_counts().idxmax()) print('City with most attacks: ', terror_df['city'].value_counts().index[1]) print('Region with the most attacks:', terror_df['Region'].value_counts().idxmax()) print('Year with the most attacks:', terror_df['Year'].value_counts().idxmax()) print('Month with the most attacks:', terror_df['Month'].value_counts().idxmax()) print('Group with the most attacks:', terror_df['Group'].value_counts().index[1]) print('Most Attack Types:', terror_df['AttackType'].value_counts().idxmax())
code
74041737/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) terror_df = pd.read_csv('/kaggle/input/gtd/globalterrorismdb_0718dist.csv', encoding='latin1') terror_df.columns.to_list() terror_df.rename(columns={'iyear': 'Year', 'imonth': 'Month', 'iday': 'Day', 'country_txt': 'Country', 'provstate': 'state', 'region_txt': 'Region', 'attacktype1_txt': 'AttackType', 'target1': 'Target', 'nkill': 'Killed', 'nwound': 'Wounded', 'summary': 'Summary', 'gname': 'Group', 'targtype1_txt': 'Target_type', 'weaptype1_txt': 'Weapon_type', 'motive': 'Motive'}, inplace=True) terror_df.columns terror_df = terror_df[['Year', 'Month', 'Day', 'Country', 'state', 'Region', 'city', 'latitude', 'longitude', 'AttackType', 'Killed', 'Wounded', 'Target', 'Summary', 'Group', 'Target_type', 'Weapon_type', 'Motive']] terror_df.shape terror_df.isnull().sum()
code
74041737/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) terror_df = pd.read_csv('/kaggle/input/gtd/globalterrorismdb_0718dist.csv', encoding='latin1') terror_df.columns.to_list() terror_df.rename(columns={'iyear': 'Year', 'imonth': 'Month', 'iday': 'Day', 'country_txt': 'Country', 'provstate': 'state', 'region_txt': 'Region', 'attacktype1_txt': 'AttackType', 'target1': 'Target', 'nkill': 'Killed', 'nwound': 'Wounded', 'summary': 'Summary', 'gname': 'Group', 'targtype1_txt': 'Target_type', 'weaptype1_txt': 'Weapon_type', 'motive': 'Motive'}, inplace=True) terror_df.columns terror_df = terror_df[['Year', 'Month', 'Day', 'Country', 'state', 'Region', 'city', 'latitude', 'longitude', 'AttackType', 'Killed', 'Wounded', 'Target', 'Summary', 'Group', 'Target_type', 'Weapon_type', 'Motive']] terror_df.shape terror_df.isnull().sum() terror_df.describe(include='all')
code
74041737/cell_5
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) terror_df = pd.read_csv('/kaggle/input/gtd/globalterrorismdb_0718dist.csv', encoding='latin1') terror_df.columns.to_list()
code
72121245/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.dtypes
code
72121245/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.dtypes cat_cols = [col for col in train.columns if train[col].dtype == 'object'] cat_cols cont_cols = [col for col in train.columns if train[col].dtype != 'object' and col not in ('id', 'target')] cont_cols
code
72121245/cell_11
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.dtypes cat_cols = [col for col in train.columns if train[col].dtype == 'object'] cat_cols cont_cols = [col for col in train.columns if train[col].dtype != 'object' and col not in ('id', 'target')] cont_cols mean = train['target'].mean() std = train['target'].std() cut_off = std * 3 lower, upper = (mean - cut_off, mean + cut_off) outliers = train[(train['target'] > upper) | (train['target'] < lower)] train.drop(outliers.index.to_list(), inplace=True) train.shape q25, q75 = (np.percentile(train['target'], 25), np.percentile(train['target'], 75)) iqr = q75 - q25 cut_off = iqr * 1.5 lower, upper = (q25 - cut_off, q75 + cut_off) cut_off = iqr * 1.5 lower, upper = (q25 - cut_off, q75 + cut_off) outliers = train[(train['target'] > upper) | (train['target'] < lower)] train.drop(outliers.index.to_list(), inplace=True) train.shape
code
72121245/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') sample_submission = pd.read_csv('../input/30-days-of-ml/sample_submission.csv') train.dtypes cat_cols = [col for col in train.columns if train[col].dtype == 'object'] cat_cols cont_cols = [col for col in train.columns if train[col].dtype != 'object' and col not in ('id', 'target')] cont_cols train['target'].describe()
code