path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
48165025/cell_23 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
pd.set_option('display.float_format', lambda x: '%.3f' % x)
train = pd.read_csv('../input/titanic/train.csv', index_col='PassengerId')
test = pd.read_csv('../input/titanic/test.csv', index_col='PassengerId')
train.isnull().sum()
sns.set(font_scale=1.4)
plt.figure(figsize=(10, 6))
sns.set_style('whitegrid')
sns.countplot(x='Survived', data=train, palette='RdBu_r')
plt.title('Survived/not survived')
plt.show() | code |
48165025/cell_20 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
pd.set_option('display.float_format', lambda x: '%.3f' % x)
train = pd.read_csv('../input/titanic/train.csv', index_col='PassengerId')
test = pd.read_csv('../input/titanic/test.csv', index_col='PassengerId')
train.isnull().sum()
plt.figure(figsize=(10, 6))
sns.heatmap(train.isnull(), cbar=False, yticklabels=False, cmap='coolwarm')
sns.set(font_scale=1.4)
plt.title('Missing data features', fontsize=20)
plt.show() | code |
48165025/cell_29 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
pd.set_option('display.float_format', lambda x: '%.3f' % x)
train = pd.read_csv('../input/titanic/train.csv', index_col='PassengerId')
test = pd.read_csv('../input/titanic/test.csv', index_col='PassengerId')
titanic_dict = {'survived': 'survived', 'Pclass': 'Ticket class', 'sex': 'Sex', 'Age': 'Age in years', 'Sibsp': '# of siblings / spouses aboard the Titanic', 'parch': '# of parents / children aboard the Titanic', 'ticket': 'Ticket number', 'Fare': 'Passenger fare', 'cabin': 'Cabin number', 'Embarked': 'Port of Embarkation (C = Cherbourg, Q = Queenstown, S = Southampton)'}
train.isnull().sum()
sns.set(font_scale=1.4)
sns.set_style('whitegrid')
sns.set_style('whitegrid')
plt.figure(figsize=(10, 6))
sns.distplot(train['Age'].dropna(), kde=False, color='darkred', bins=30)
plt.title('Histogram of passengers age')
plt.show() | code |
48165025/cell_2 | [
"text_plain_output_1.png"
] | import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import cufflinks as cf
cf.go_offline()
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score, roc_curve, roc_auc_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout
from tensorflow.keras.callbacks import EarlyStopping
import warnings | code |
48165025/cell_7 | [
"image_output_1.png"
] | import pandas as pd
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
pd.set_option('display.float_format', lambda x: '%.3f' % x)
train = pd.read_csv('../input/titanic/train.csv', index_col='PassengerId')
test = pd.read_csv('../input/titanic/test.csv', index_col='PassengerId')
train.info() | code |
48165025/cell_18 | [
"text_html_output_1.png"
] | import pandas as pd
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
pd.set_option('display.float_format', lambda x: '%.3f' % x)
train = pd.read_csv('../input/titanic/train.csv', index_col='PassengerId')
test = pd.read_csv('../input/titanic/test.csv', index_col='PassengerId')
train.isnull().sum() | code |
48165025/cell_8 | [
"image_output_1.png"
] | import pandas as pd
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
pd.set_option('display.float_format', lambda x: '%.3f' % x)
train = pd.read_csv('../input/titanic/train.csv', index_col='PassengerId')
test = pd.read_csv('../input/titanic/test.csv', index_col='PassengerId')
train.head() | code |
48165025/cell_15 | [
"text_plain_output_1.png"
] | import pandas as pd
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
pd.set_option('display.float_format', lambda x: '%.3f' % x)
train = pd.read_csv('../input/titanic/train.csv', index_col='PassengerId')
test = pd.read_csv('../input/titanic/test.csv', index_col='PassengerId')
test.head() | code |
48165025/cell_16 | [
"text_html_output_1.png"
] | import pandas as pd
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
pd.set_option('display.float_format', lambda x: '%.3f' % x)
train = pd.read_csv('../input/titanic/train.csv', index_col='PassengerId')
test = pd.read_csv('../input/titanic/test.csv', index_col='PassengerId')
test.describe() | code |
48165025/cell_31 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
pd.set_option('display.float_format', lambda x: '%.3f' % x)
train = pd.read_csv('../input/titanic/train.csv', index_col='PassengerId')
test = pd.read_csv('../input/titanic/test.csv', index_col='PassengerId')
titanic_dict = {'survived': 'survived', 'Pclass': 'Ticket class', 'sex': 'Sex', 'Age': 'Age in years', 'Sibsp': '# of siblings / spouses aboard the Titanic', 'parch': '# of parents / children aboard the Titanic', 'ticket': 'Ticket number', 'Fare': 'Passenger fare', 'cabin': 'Cabin number', 'Embarked': 'Port of Embarkation (C = Cherbourg, Q = Queenstown, S = Southampton)'}
train.isnull().sum()
sns.set(font_scale=1.4)
sns.set_style('whitegrid')
sns.set_style('whitegrid')
plt.figure(figsize=(10, 6))
sns.distplot(train['Age'].dropna(), kde=False, color='darkred', bins=10)
plt.title('Distribution of passengers age')
plt.show() | code |
48165025/cell_27 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
pd.set_option('display.float_format', lambda x: '%.3f' % x)
train = pd.read_csv('../input/titanic/train.csv', index_col='PassengerId')
test = pd.read_csv('../input/titanic/test.csv', index_col='PassengerId')
titanic_dict = {'survived': 'survived', 'Pclass': 'Ticket class', 'sex': 'Sex', 'Age': 'Age in years', 'Sibsp': '# of siblings / spouses aboard the Titanic', 'parch': '# of parents / children aboard the Titanic', 'ticket': 'Ticket number', 'Fare': 'Passenger fare', 'cabin': 'Cabin number', 'Embarked': 'Port of Embarkation (C = Cherbourg, Q = Queenstown, S = Southampton)'}
train.isnull().sum()
sns.set(font_scale=1.4)
sns.set_style('whitegrid')
sns.set_style('whitegrid')
plt.figure(figsize=(10, 6))
sns.countplot(x='Survived', data=train, hue='Pclass')
plt.legend(title=titanic_dict['Pclass'])
plt.show() | code |
128030873/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataset = pd.read_csv('/kaggle/input/pima-indians-diabetes-database/diabetes.csv')
dataset.info(verbose=True) | code |
128030873/cell_6 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataset = pd.read_csv('/kaggle/input/pima-indians-diabetes-database/diabetes.csv')
dataset.describe().T | code |
128030873/cell_2 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import seaborn as sns
import warnings
from mlxtend.plotting import plot_decision_regions
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
import warnings
warnings.filterwarnings('ignore') | code |
128030873/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
128030873/cell_7 | [
"text_plain_output_1.png"
] | import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataset = pd.read_csv('/kaggle/input/pima-indians-diabetes-database/diabetes.csv')
dataset.describe().T
dataset_copy = dataset.copy(deep=True)
dataset_copy[['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']] = dataset_copy[['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']].replace(0, np.NaN)
print(dataset_copy.isnull().sum()) | code |
128030873/cell_3 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataset = pd.read_csv('/kaggle/input/pima-indians-diabetes-database/diabetes.csv')
dataset.head() | code |
128030873/cell_5 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dataset = pd.read_csv('/kaggle/input/pima-indians-diabetes-database/diabetes.csv')
dataset.describe() | code |
128047807/cell_2 | [
"text_plain_output_1.png"
] | import os
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image
from torchvision.transforms.transforms import Resize
import timm | code |
128047807/cell_1 | [
"text_plain_output_1.png"
] | !pip install torch torchvision
!pip install timm
!pip install scikit-learn | code |
128047807/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
test_labels = pd.read_csv('/kaggle/input/plant-pathology-2020-fgvc7/test.csv')
test_image_ids = test_labels['image_id'].values
train_labels = pd.read_csv('/kaggle/input/plant-pathology-2020-fgvc7/train.csv')
train_labels = train_labels[['healthy', 'multiple_diseases', 'rust', 'scab']]
train_labels = train_labels.values
train_labels | code |
128047807/cell_8 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
import os
import pandas as pd
image_dir = '/kaggle/input/plant-pathology-2020-fgvc7/images'
image_files = os.listdir(image_dir)
image_paths = [os.path.join(image_dir, filename) for filename in image_files]
import pandas as pd
test_labels = pd.read_csv('/kaggle/input/plant-pathology-2020-fgvc7/test.csv')
test_image_ids = test_labels['image_id'].values
train_labels = pd.read_csv('/kaggle/input/plant-pathology-2020-fgvc7/train.csv')
train_labels = train_labels[['healthy', 'multiple_diseases', 'rust', 'scab']]
train_labels = train_labels.values
from sklearn.model_selection import train_test_split
train_image_paths = [path for path in image_paths if 'Train' in path]
test_image_paths = [path for path in image_paths if 'Test' in path]
train_image_paths, valid_image_paths, train_labels, valid_labels = train_test_split(train_image_paths, train_labels, test_size=0.2, random_state=123)
print('Train Samples:', len(train_image_paths))
print('Validation Samples:', len(valid_image_paths))
print('Test Samples:', len(test_image_paths)) | code |
128047807/cell_14 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from PIL import Image
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset
from torch.utils.data import Dataset, DataLoader
import os
import pandas as pd
import timm
import timm
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
torch.manual_seed(123)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
image_dir = '/kaggle/input/plant-pathology-2020-fgvc7/images'
image_files = os.listdir(image_dir)
image_paths = [os.path.join(image_dir, filename) for filename in image_files]
import pandas as pd
test_labels = pd.read_csv('/kaggle/input/plant-pathology-2020-fgvc7/test.csv')
test_image_ids = test_labels['image_id'].values
train_labels = pd.read_csv('/kaggle/input/plant-pathology-2020-fgvc7/train.csv')
train_labels = train_labels[['healthy', 'multiple_diseases', 'rust', 'scab']]
train_labels = train_labels.values
from sklearn.model_selection import train_test_split
train_image_paths = [path for path in image_paths if 'Train' in path]
test_image_paths = [path for path in image_paths if 'Test' in path]
train_image_paths, valid_image_paths, train_labels, valid_labels = train_test_split(train_image_paths, train_labels, test_size=0.2, random_state=123)
from torch.utils.data import Dataset
class CustomDataset(Dataset):
def __init__(self, image_paths, labels=None, transform=None):
self.image_paths = image_paths
self.labels = labels
self.transform = transform
def __len__(self):
return len(self.image_paths)
def __getitem__(self, index):
image_path = self.image_paths[index]
image = Image.open(image_path).convert('RGB')
if self.transform:
image = self.transform(image)
if self.labels is not None:
label = self.labels[index]
return (image, label)
else:
return image
transform = transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
train_dataset = CustomDataset(train_image_paths, train_labels, transform=transform)
valid_dataset = CustomDataset(valid_image_paths, valid_labels, transform=transform)
test_dataset = CustomDataset([os.path.join(image_dir, f'{image_id}.jpg') for image_id in test_image_ids], transform=transform)
batch_size = 16
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
valid_loader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
import timm
model = timm.create_model('vit_base_patch16_224', pretrained=True)
num_classes = 4
model.head = nn.Linear(model.head.in_features, num_classes)
model = model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=5)
num_epochs = 50
for epoch in range(num_epochs):
model.train()
total_train_loss = 0.0
total_train_correct = 0
total_train_samples = 0
for images, labels in train_loader:
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
_, predicted = torch.max(outputs, 1)
total_train_correct += (predicted == labels.argmax(dim=1)).sum().item()
total_train_samples += labels.size(0)
labels_float = labels.float()
loss = criterion(outputs, labels_float)
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
total_train_loss += loss.item()
train_accuracy = total_train_correct / total_train_samples
train_loss = total_train_loss / len(train_loader)
model.eval()
total_valid_loss = 0.0
total_valid_correct = 0
total_valid_samples = 0
with torch.no_grad():
for images, labels in valid_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs, 1)
total_valid_correct += (predicted == labels.argmax(dim=1)).sum().item()
total_valid_samples += labels.size(0)
labels_float = labels.float()
loss = criterion(outputs, labels_float)
total_valid_loss += loss.item()
valid_accuracy = total_valid_correct / total_valid_samples
valid_loss = total_valid_loss / len(valid_loader)
scheduler.step(valid_loss)
print(f'Epoch [{epoch + 1}/{num_epochs}], Train Loss: {train_loss:.4f}, Train Accuracy: {train_accuracy:.4f}')
print(f'Epoch [{epoch + 1}/{num_epochs}], Valid Loss: {valid_loss:.4f}, Valid Accuracy: {valid_accuracy:.4f}') | code |
74041348/cell_13 | [
"text_plain_output_1.png"
] | import pandas as ps
import pandas as ps
import matplotlib.pyplot as plt
import seaborn as sn
from pandas_profiling import ProfileReport
winners_raw = ps.read_csv('/kaggle/input/nobel-prize-winners-19002020/nobel_prize_by_winner.csv')
winners_raw.dtypes
winners_raw.shape
winners_raw.isnull().sum()
winners = winners_raw.drop(columns=['id', 'died', 'bornCity', 'bornCountry', 'diedCountry', 'diedCountryCode', 'diedCity', 'motivation', 'overallMotivation', 'name', 'city', 'country'], axis=1)
winners1 = winners.dropna(subset=['year', 'share', 'category'])
winners1.shape
dtype_converter = {'firstname': str, 'surname': str, 'share': int, 'year': int, 'gender': str}
winners1 = winners1.astype(dtype_converter)
alive = winners1.loc[winners_raw['died'] == '0000-00-00']
category_dummies = ps.get_dummies(alive['category'])
category_dummies
gender_dummies = ps.get_dummies(alive['gender'])
gender_dummies
alive2 = ps.concat([alive, category_dummies, gender_dummies], axis=1)
alive2.head(10) | code |
74041348/cell_9 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as ps
import pandas as ps
import matplotlib.pyplot as plt
import seaborn as sn
from pandas_profiling import ProfileReport
winners_raw = ps.read_csv('/kaggle/input/nobel-prize-winners-19002020/nobel_prize_by_winner.csv')
winners_raw.dtypes
winners_raw.shape
winners_raw.isnull().sum()
winners = winners_raw.drop(columns=['id', 'died', 'bornCity', 'bornCountry', 'diedCountry', 'diedCountryCode', 'diedCity', 'motivation', 'overallMotivation', 'name', 'city', 'country'], axis=1)
winners.head(10) | code |
74041348/cell_4 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as ps
import pandas as ps
import matplotlib.pyplot as plt
import seaborn as sn
from pandas_profiling import ProfileReport
winners_raw = ps.read_csv('/kaggle/input/nobel-prize-winners-19002020/nobel_prize_by_winner.csv')
winners_raw.dtypes | code |
74041348/cell_2 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as ps
import pandas as ps
import matplotlib.pyplot as plt
import seaborn as sn
from pandas_profiling import ProfileReport
winners_raw = ps.read_csv('/kaggle/input/nobel-prize-winners-19002020/nobel_prize_by_winner.csv')
winners_raw.head(10) | code |
74041348/cell_11 | [
"text_html_output_1.png"
] | import pandas as ps
import pandas as ps
import matplotlib.pyplot as plt
import seaborn as sn
from pandas_profiling import ProfileReport
winners_raw = ps.read_csv('/kaggle/input/nobel-prize-winners-19002020/nobel_prize_by_winner.csv')
winners_raw.dtypes
winners_raw.shape
winners_raw.isnull().sum()
winners = winners_raw.drop(columns=['id', 'died', 'bornCity', 'bornCountry', 'diedCountry', 'diedCountryCode', 'diedCity', 'motivation', 'overallMotivation', 'name', 'city', 'country'], axis=1)
winners1 = winners.dropna(subset=['year', 'share', 'category'])
winners1.shape
dtype_converter = {'firstname': str, 'surname': str, 'share': int, 'year': int, 'gender': str}
winners1 = winners1.astype(dtype_converter)
print(winners1.dtypes) | code |
74041348/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
74041348/cell_7 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as ps
import pandas as ps
import matplotlib.pyplot as plt
import seaborn as sn
from pandas_profiling import ProfileReport
winners_raw = ps.read_csv('/kaggle/input/nobel-prize-winners-19002020/nobel_prize_by_winner.csv')
winners_raw.dtypes
winners_raw.shape
winners_raw.isnull().sum() | code |
74041348/cell_18 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as ps
import seaborn as sn
import pandas as ps
import matplotlib.pyplot as plt
import seaborn as sn
from pandas_profiling import ProfileReport
winners_raw = ps.read_csv('/kaggle/input/nobel-prize-winners-19002020/nobel_prize_by_winner.csv')
winners_raw.dtypes
winners_raw.shape
winners_raw.isnull().sum()
winners = winners_raw.drop(columns=['id', 'died', 'bornCity', 'bornCountry', 'diedCountry', 'diedCountryCode', 'diedCity', 'motivation', 'overallMotivation', 'name', 'city', 'country'], axis=1)
winners1 = winners.dropna(subset=['year', 'share', 'category'])
winners1.shape
dtype_converter = {'firstname': str, 'surname': str, 'share': int, 'year': int, 'gender': str}
winners1 = winners1.astype(dtype_converter)
alive = winners1.loc[winners_raw['died'] == '0000-00-00']
category_dummies = ps.get_dummies(alive['category'])
category_dummies
gender_dummies = ps.get_dummies(alive['gender'])
gender_dummies
alive2 = ps.concat([alive, category_dummies, gender_dummies], axis=1)
CountryVsCat = alive2.groupby('bornCountryCode')['peace'].sum()
CountryVsCat = alive2.groupby('bornCountryCode')['chemistry'].sum()
CountryVsCat = alive2.groupby('bornCountryCode')['literature'].sum()
CountryVsCat = alive2.groupby('bornCountryCode')['economics'].sum()
CountryVsCat = alive2.groupby('bornCountryCode')['medicine'].sum()
plt.figure(figsize=(28, 11))
sn.barplot(x=CountryVsCat.index, y=CountryVsCat.values, palette='rainbow').set_title('medicine - Counts') | code |
74041348/cell_15 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as ps
import seaborn as sn
import pandas as ps
import matplotlib.pyplot as plt
import seaborn as sn
from pandas_profiling import ProfileReport
winners_raw = ps.read_csv('/kaggle/input/nobel-prize-winners-19002020/nobel_prize_by_winner.csv')
winners_raw.dtypes
winners_raw.shape
winners_raw.isnull().sum()
winners = winners_raw.drop(columns=['id', 'died', 'bornCity', 'bornCountry', 'diedCountry', 'diedCountryCode', 'diedCity', 'motivation', 'overallMotivation', 'name', 'city', 'country'], axis=1)
winners1 = winners.dropna(subset=['year', 'share', 'category'])
winners1.shape
dtype_converter = {'firstname': str, 'surname': str, 'share': int, 'year': int, 'gender': str}
winners1 = winners1.astype(dtype_converter)
alive = winners1.loc[winners_raw['died'] == '0000-00-00']
category_dummies = ps.get_dummies(alive['category'])
category_dummies
gender_dummies = ps.get_dummies(alive['gender'])
gender_dummies
alive2 = ps.concat([alive, category_dummies, gender_dummies], axis=1)
CountryVsCat = alive2.groupby('bornCountryCode')['peace'].sum()
CountryVsCat = alive2.groupby('bornCountryCode')['chemistry'].sum()
plt.figure(figsize=(28, 11))
sn.barplot(x=CountryVsCat.index, y=CountryVsCat.values, palette='rainbow').set_title('Chemistry - Counts') | code |
74041348/cell_16 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as ps
import seaborn as sn
import pandas as ps
import matplotlib.pyplot as plt
import seaborn as sn
from pandas_profiling import ProfileReport
winners_raw = ps.read_csv('/kaggle/input/nobel-prize-winners-19002020/nobel_prize_by_winner.csv')
winners_raw.dtypes
winners_raw.shape
winners_raw.isnull().sum()
winners = winners_raw.drop(columns=['id', 'died', 'bornCity', 'bornCountry', 'diedCountry', 'diedCountryCode', 'diedCity', 'motivation', 'overallMotivation', 'name', 'city', 'country'], axis=1)
winners1 = winners.dropna(subset=['year', 'share', 'category'])
winners1.shape
dtype_converter = {'firstname': str, 'surname': str, 'share': int, 'year': int, 'gender': str}
winners1 = winners1.astype(dtype_converter)
alive = winners1.loc[winners_raw['died'] == '0000-00-00']
category_dummies = ps.get_dummies(alive['category'])
category_dummies
gender_dummies = ps.get_dummies(alive['gender'])
gender_dummies
alive2 = ps.concat([alive, category_dummies, gender_dummies], axis=1)
CountryVsCat = alive2.groupby('bornCountryCode')['peace'].sum()
CountryVsCat = alive2.groupby('bornCountryCode')['chemistry'].sum()
CountryVsCat = alive2.groupby('bornCountryCode')['literature'].sum()
plt.figure(figsize=(28, 11))
sn.barplot(x=CountryVsCat.index, y=CountryVsCat.values, palette='rainbow').set_title('literature - Counts') | code |
74041348/cell_3 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as ps
import pandas as ps
import matplotlib.pyplot as plt
import seaborn as sn
from pandas_profiling import ProfileReport
winners_raw = ps.read_csv('/kaggle/input/nobel-prize-winners-19002020/nobel_prize_by_winner.csv')
winners_raw.describe() | code |
74041348/cell_17 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as ps
import seaborn as sn
import pandas as ps
import matplotlib.pyplot as plt
import seaborn as sn
from pandas_profiling import ProfileReport
winners_raw = ps.read_csv('/kaggle/input/nobel-prize-winners-19002020/nobel_prize_by_winner.csv')
winners_raw.dtypes
winners_raw.shape
winners_raw.isnull().sum()
winners = winners_raw.drop(columns=['id', 'died', 'bornCity', 'bornCountry', 'diedCountry', 'diedCountryCode', 'diedCity', 'motivation', 'overallMotivation', 'name', 'city', 'country'], axis=1)
winners1 = winners.dropna(subset=['year', 'share', 'category'])
winners1.shape
dtype_converter = {'firstname': str, 'surname': str, 'share': int, 'year': int, 'gender': str}
winners1 = winners1.astype(dtype_converter)
alive = winners1.loc[winners_raw['died'] == '0000-00-00']
category_dummies = ps.get_dummies(alive['category'])
category_dummies
gender_dummies = ps.get_dummies(alive['gender'])
gender_dummies
alive2 = ps.concat([alive, category_dummies, gender_dummies], axis=1)
CountryVsCat = alive2.groupby('bornCountryCode')['peace'].sum()
CountryVsCat = alive2.groupby('bornCountryCode')['chemistry'].sum()
CountryVsCat = alive2.groupby('bornCountryCode')['literature'].sum()
CountryVsCat = alive2.groupby('bornCountryCode')['economics'].sum()
plt.figure(figsize=(28, 11))
sn.barplot(x=CountryVsCat.index, y=CountryVsCat.values, palette='rainbow').set_title('economics - Counts') | code |
74041348/cell_14 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as ps
import seaborn as sn
import pandas as ps
import matplotlib.pyplot as plt
import seaborn as sn
from pandas_profiling import ProfileReport
winners_raw = ps.read_csv('/kaggle/input/nobel-prize-winners-19002020/nobel_prize_by_winner.csv')
winners_raw.dtypes
winners_raw.shape
winners_raw.isnull().sum()
winners = winners_raw.drop(columns=['id', 'died', 'bornCity', 'bornCountry', 'diedCountry', 'diedCountryCode', 'diedCity', 'motivation', 'overallMotivation', 'name', 'city', 'country'], axis=1)
winners1 = winners.dropna(subset=['year', 'share', 'category'])
winners1.shape
dtype_converter = {'firstname': str, 'surname': str, 'share': int, 'year': int, 'gender': str}
winners1 = winners1.astype(dtype_converter)
alive = winners1.loc[winners_raw['died'] == '0000-00-00']
category_dummies = ps.get_dummies(alive['category'])
category_dummies
gender_dummies = ps.get_dummies(alive['gender'])
gender_dummies
alive2 = ps.concat([alive, category_dummies, gender_dummies], axis=1)
CountryVsCat = alive2.groupby('bornCountryCode')['peace'].sum()
plt.figure(figsize=(28, 11))
sn.barplot(x=CountryVsCat.index, y=CountryVsCat.values, palette='rainbow') | code |
74041348/cell_10 | [
"text_html_output_1.png"
] | import pandas as ps
import pandas as ps
import matplotlib.pyplot as plt
import seaborn as sn
from pandas_profiling import ProfileReport
winners_raw = ps.read_csv('/kaggle/input/nobel-prize-winners-19002020/nobel_prize_by_winner.csv')
winners_raw.dtypes
winners_raw.shape
winners_raw.isnull().sum()
winners = winners_raw.drop(columns=['id', 'died', 'bornCity', 'bornCountry', 'diedCountry', 'diedCountryCode', 'diedCity', 'motivation', 'overallMotivation', 'name', 'city', 'country'], axis=1)
winners1 = winners.dropna(subset=['year', 'share', 'category'])
winners1.shape | code |
74041348/cell_12 | [
"text_plain_output_1.png"
] | import pandas as ps
import pandas as ps
import matplotlib.pyplot as plt
import seaborn as sn
from pandas_profiling import ProfileReport
winners_raw = ps.read_csv('/kaggle/input/nobel-prize-winners-19002020/nobel_prize_by_winner.csv')
winners_raw.dtypes
winners_raw.shape
winners_raw.isnull().sum()
winners = winners_raw.drop(columns=['id', 'died', 'bornCity', 'bornCountry', 'diedCountry', 'diedCountryCode', 'diedCity', 'motivation', 'overallMotivation', 'name', 'city', 'country'], axis=1)
winners1 = winners.dropna(subset=['year', 'share', 'category'])
winners1.shape
dtype_converter = {'firstname': str, 'surname': str, 'share': int, 'year': int, 'gender': str}
winners1 = winners1.astype(dtype_converter)
alive = winners1.loc[winners_raw['died'] == '0000-00-00']
category_dummies = ps.get_dummies(alive['category'])
category_dummies
gender_dummies = ps.get_dummies(alive['gender'])
gender_dummies | code |
74041348/cell_5 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as ps
import pandas as ps
import matplotlib.pyplot as plt
import seaborn as sn
from pandas_profiling import ProfileReport
winners_raw = ps.read_csv('/kaggle/input/nobel-prize-winners-19002020/nobel_prize_by_winner.csv')
winners_raw.dtypes
winners_raw.shape | code |
17132106/cell_21 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
data = '../input/Iris.csv'
dataset = pd.read_csv(data)
dataset = dataset.drop('Id', axis=1)
dataset.groupby('Species').size()
dataset.hist(edgecolor='black', linewidth=2) | code |
17132106/cell_13 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
data = '../input/Iris.csv'
dataset = pd.read_csv(data)
dataset = dataset.drop('Id', axis=1)
dataset.groupby('Species').size()
plt.figure(figsize=(20, 8))
dataset.plot(kind='box', sharex=False, sharey=False) | code |
17132106/cell_9 | [
"image_output_1.png"
] | import pandas as pd
data = '../input/Iris.csv'
dataset = pd.read_csv(data)
dataset = dataset.drop('Id', axis=1)
dataset.groupby('Species').size() | code |
17132106/cell_4 | [
"image_output_1.png"
] | import pandas as pd
data = '../input/Iris.csv'
dataset = pd.read_csv(data)
dataset.head(5) | code |
17132106/cell_23 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = '../input/Iris.csv'
dataset = pd.read_csv(data)
dataset = dataset.drop('Id', axis=1)
dataset.groupby('Species').size()
sns.set(style='darkgrid', palette='deep')
sns.set(style='darkgrid', palette='deep')
sns.set(style='darkgrid', palette='deep')
sns.set(style='darkgrid', palette='deep')
sns.pairplot(dataset, hue='Species', markers=['o', 's', 'D'], diag_kind='hist')
sns.despine()
plt.show() | code |
17132106/cell_6 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
data = '../input/Iris.csv'
dataset = pd.read_csv(data)
dataset = dataset.drop('Id', axis=1)
dataset.head(5) | code |
17132106/cell_18 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = '../input/Iris.csv'
dataset = pd.read_csv(data)
dataset = dataset.drop('Id', axis=1)
dataset.groupby('Species').size()
sns.set(style='darkgrid', palette='deep')
sns.set(style='darkgrid', palette='deep')
sns.set(style='darkgrid', palette='deep')
sns.set(style='darkgrid', palette='deep')
plt.figure(figsize=(12, 6))
plt.title('Compare the distribution of Petal Width')
sns.boxplot(x='Species', y='PetalWidthCm', data=dataset)
plt.show() | code |
17132106/cell_8 | [
"image_output_1.png"
] | import pandas as pd
data = '../input/Iris.csv'
dataset = pd.read_csv(data)
dataset = dataset.drop('Id', axis=1)
dataset.info() | code |
17132106/cell_15 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = '../input/Iris.csv'
dataset = pd.read_csv(data)
dataset = dataset.drop('Id', axis=1)
dataset.groupby('Species').size()
sns.set(style='darkgrid', palette='deep')
plt.figure(figsize=(12, 6))
plt.title('Compare the distribution of Sepal Length')
sns.boxplot(x='Species', y='SepalLengthCm', data=dataset)
plt.show() | code |
17132106/cell_16 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = '../input/Iris.csv'
dataset = pd.read_csv(data)
dataset = dataset.drop('Id', axis=1)
dataset.groupby('Species').size()
sns.set(style='darkgrid', palette='deep')
sns.set(style='darkgrid', palette='deep')
plt.figure(figsize=(12, 6))
plt.title('Compare the distribution of Sepal Width')
sns.boxplot(x='Species', y='SepalWidthCm', data=dataset)
plt.show() | code |
17132106/cell_17 | [
"text_plain_output_2.png",
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
data = '../input/Iris.csv'
dataset = pd.read_csv(data)
dataset = dataset.drop('Id', axis=1)
dataset.groupby('Species').size()
sns.set(style='darkgrid', palette='deep')
sns.set(style='darkgrid', palette='deep')
sns.set(style='darkgrid', palette='deep')
plt.figure(figsize=(12, 6))
plt.title('Compare the distribution of Petal Length')
sns.boxplot(x='Species', y='PetalLengthCm', data=dataset)
plt.show() | code |
17132106/cell_14 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
data = '../input/Iris.csv'
dataset = pd.read_csv(data)
dataset = dataset.drop('Id', axis=1)
dataset.groupby('Species').size()
dataset.boxplot(by='Species', figsize=(12, 8)) | code |
17132106/cell_10 | [
"text_html_output_1.png"
] | import pandas as pd
data = '../input/Iris.csv'
dataset = pd.read_csv(data)
dataset = dataset.drop('Id', axis=1)
dataset.groupby('Species').size()
dataset.describe() | code |
73075982/cell_21 | [
"text_plain_output_1.png"
] | import tensorflow as tf
print('Num GPUs Available: ', len(tf.config.list_physical_devices('GPU'))) | code |
73075982/cell_26 | [
"text_html_output_1.png"
] | from nltk.corpus import stopwords
from sklearn.decomposition import TruncatedSVD
from sklearn.metrics import confusion_matrix,jaccard_score,f1_score,recall_score
from sklearn.metrics import precision_score,roc_auc_score,log_loss
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.preprocessing import FunctionTransformer
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from wordcloud import WordCloud, STOPWORDS
import datetime
import numpy as np
import pandas as pd
import sklearn.calibration as cal
import sklearn.feature_extraction.text as ft
import sklearn.feature_selection as fs
import sklearn.pipeline as pipe
import time
import warnings
import pandas as pd
import sklearn.feature_extraction.text as ft
import sklearn.feature_selection as fs
from sklearn.model_selection import train_test_split, GridSearchCV
import sklearn.svm as svm
import sklearn.calibration as cal
import matplotlib.pyplot as plt
from sklearn.metrics import plot_confusion_matrix, plot_roc_curve, brier_score_loss
from sklearn.metrics import plot_precision_recall_curve, classification_report
from sklearn.metrics import precision_score, roc_auc_score, log_loss
from sklearn.metrics import confusion_matrix, jaccard_score, f1_score, recall_score
from sklearn.preprocessing import FunctionTransformer
import seaborn as sns
import numpy as np
import time
import datetime
import sklearn.pipeline as pipe
from lime import lime_text
from nltk.corpus import stopwords
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.decomposition import TruncatedSVD
import re
import tensorflow as tf
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Dense, Dropout, GlobalMaxPooling1D, Conv1D, Embedding, LSTM
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from wordcloud import WordCloud, STOPWORDS
stop_words = set(stopwords.words('english'))
stopwords = set(STOPWORDS)
import warnings
warnings.filterwarnings('ignore', 'This pattern has match groups')
df = pd.read_csv('../input/d/brandonbenton/botezlive-chat-classification/botezlive_data.csv')
def split_data(df, params):
df_ones = df.loc[df['is_offensive'] == 1]
df_tmp = df.loc[df['is_offensive'] == 0]
ratio = len(df_ones) / len(df_tmp)
msk = np.random.rand(len(df_tmp)) < params['multiplier'] * ratio
df_zeros = df_tmp.loc[msk]
df = pd.concat([df_ones, df_zeros]).reset_index(drop=True)
df_train, df_test = train_test_split(df, test_size=0.2, random_state=0)
return (df_train, df_test)
def get_vectorizer(df_train, params):
vparams = dict({'stop_words': stop_words, 'min_df': params['min_df'], 'max_df': params['max_df'], 'smooth_idf': params['smooth_idf'], 'analyzer': params['analyzer'], 'ngram_range': params['ngram_range'], 'sublinear_tf': params['sublinear_tf'], 'max_features': params['max_features']})
vectorizer = ft.TfidfVectorizer(**vparams)
x_train = vectorizer.fit_transform(df_train['text'])
if params['trim features']:
y = df_train['is_offensive']
x_names = vectorizer.get_feature_names()
p_value_limit = params['pvalue limit']
dtf_features = pd.DataFrame()
for cat in np.unique(y):
chi2, p_value = fs.chi2(x_train, y == cat)
entry = pd.DataFrame({'feature': x_names, 'score': 1 - p_value, 'y': cat})
dtf_features = dtf_features.append(entry)
dtf_features = dtf_features.sort_values(['y', 'score'], ascending=[True, False])
dtf_features = dtf_features[dtf_features['score'] > p_value_limit]
x_names = dtf_features['feature'].unique().tolist()
vparams['vocabulary'] = x_names
vectorizer = ft.TfidfVectorizer(**vparams)
return vectorizer
def get_dual_vectorizer(df_train, p1, p2):
vec1 = get_vectorizer(df_train, p1)
vec2 = get_vectorizer(df_train, p2)
features = set(vec1.get_feature_names()) | set(vec2.get_feature_names())
features = list(features)
vectorizer = ft.TfidfVectorizer(vocabulary=features, max_features=p1['max_features'])
return vectorizer
def get_pca(params):
pca = TruncatedSVD(n_components=params['n_components'])
return pca
def transformer(x):
return np.array(x.toarray())
def param_score(df, params):
df_train, df_test = split_data(df, params)
vectorizer = get_vectorizer(df_train, params)
model = get_model(params)
y_train = df_train['is_offensive']
y_test = df_test['is_offensive']
num_splits = 1
if params['classifier_type'] == 'NN':
nn = KerasClassifier(build_fn=lambda: model)
nn._estimator_type = 'classifier'
vectorizer.fit(df_train['text'])
num_rows = df_train.shape[0]
num_splits = 1
if params['pca']:
pca = get_pca(params)
pca.fit(vectorizer.transform(df_train['text']))
if num_splits == 1 and params['pca']:
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('pca', pca), ('classifier', nn)])
my_pipeline.fit(df_train['text'], df_train['is_offensive'], classifier__verbose=1, classifier__epochs=params['epochs'], classifier__batch_size=4)
elif num_splits == 1 and (not params['pca']):
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('transformer', FunctionTransformer(transformer)), ('classifier', nn)])
my_pipeline.fit(df_train['text'], df_train['is_offensive'], classifier__verbose=1, classifier__epochs=params['epochs'], classifier__batch_size=4)
elif num_splits > 1 and params['pca']:
pca.fit(vectorizer.transform(df_train['text']))
df_array = np.array_split(df_train, num_splits)
for i in range(num_splits):
df_tmp = df_array[i]
nn.fit(pca.transform(vectorizer.transform(df_tmp['text'])), df_tmp['is_offensive'], verbose=1, epochs=params['epochs'], batch_size=4)
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('pca', pca), ('classifier', nn)])
elif num_splits > 1 and (not params['pca']):
df_array = np.array_split(df_train, num_splits)
for i in range(num_splits):
df_tmp = df_array[i]
nn.fit(transformer(vectorizer.transform(df_tmp['text'])), df_tmp['is_offensive'], verbose=1, epochs=params['epochs'], batch_size=4)
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('transformer', FunctionTransformer(transformer)), ('classifier', nn)])
else:
clf = cal.CalibratedClassifierCV(model, cv=p1['cv'], method='sigmoid')
if params['pca']:
pca = get_pca(params)
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('pca', pca), ('classifier', clf)])
else:
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('classifier', clf)])
my_pipeline.fit(df_train['text'], df_train['is_offensive'])
score = my_pipeline.score(df_test['text'], df_test['is_offensive'])
discrete_preds = my_pipeline.predict(df_test['text'])
confusion = confusion_matrix(y_test, discrete_preds)
test_ones = sum(confusion[1][:])
test_zeros = sum(confusion[0][:])
scores = dict({'classifier_type': params['classifier_type'], 'splits': num_splits, 'n_samples': df_train.shape[0], 'ngram_range': params['ngram_range'], 'pca': params['pca'], 'n_components': params['n_components'], 'max_features': params['max_features'], 'trim features': params['trim features'], 'pvalue limit': params['pvalue limit'], 'multiplier': params['multiplier'], 'precision': precision_score(y_test, discrete_preds), 'jaccard': jaccard_score(y_test, discrete_preds), 'recall': recall_score(y_test, discrete_preds), 'F1': f1_score(y_test, discrete_preds), 'TP': confusion[1][1] / test_ones, 'FP': confusion[0][1] / test_zeros, 'TN': confusion[0][0] / test_zeros, 'FN': confusion[1][0] / test_ones})
return (my_pipeline, discrete_preds, df_train, df_test, scores)
headers = ['classifier_type', 'splits', 'n_samples', 'ngram_range', 'trim features', 'pca', 'n_components', 'max_features', 'pvalue limit', 'multiplier', 'precision', 'jaccard', 'recall', 'F1', 'TP', 'FP', 'TN', 'FN']
df_scores = pd.DataFrame(columns=headers)
p1 = dict({'classifier_type': 'SVM', 'min_df': 1, 'max_df': 0.9, 'smooth_idf': 1, 'sublinear_tf': 1, 'ngram_range': (2, 10), 'max_features': None, 'C': 1.0, 'cv': 5, 'analyzer': 'char_wb', 'trim features': False, 'pvalue limit': 0.4, 'class_weight': None, 'multiplier': 1, 'n_components': 400, 'epochs': 10, 'pca': False})
p2 = p1.copy()
p2['classifier_type'] = 'NN'
p2['max_features'] = 20000
p2['pca'] = True
params_list = [p1]
for i, p in enumerate(params_list):
start = time.time()
model, discrete_preds, df_train, df_test, scores = param_score(df, p)
df_scores = df_scores.append(scores, ignore_index=True)
end = time.time()
elapsed = end - start
remaining_seconds = elapsed * (len(params_list) - i - 1)
df_scores.sort_values(by='avg score', ascending=False, inplace=True)
df_scores.head(1) | code |
73075982/cell_32 | [
"image_output_4.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | from lime import lime_text
from nltk.corpus import stopwords
from sklearn.decomposition import TruncatedSVD
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix,jaccard_score,f1_score,recall_score
from sklearn.metrics import plot_confusion_matrix,plot_roc_curve,brier_score_loss
from sklearn.metrics import plot_precision_recall_curve,classification_report
from sklearn.metrics import precision_score,roc_auc_score,log_loss
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.preprocessing import FunctionTransformer
from tensorflow.keras.layers import Dense, Dropout, GlobalMaxPooling1D, Conv1D, Embedding, LSTM
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sklearn.calibration as cal
import sklearn.feature_extraction.text as ft
import sklearn.feature_selection as fs
import sklearn.pipeline as pipe
import sklearn.svm as svm
import warnings
import pandas as pd
import sklearn.feature_extraction.text as ft
import sklearn.feature_selection as fs
from sklearn.model_selection import train_test_split, GridSearchCV
import sklearn.svm as svm
import sklearn.calibration as cal
import matplotlib.pyplot as plt
from sklearn.metrics import plot_confusion_matrix, plot_roc_curve, brier_score_loss
from sklearn.metrics import plot_precision_recall_curve, classification_report
from sklearn.metrics import precision_score, roc_auc_score, log_loss
from sklearn.metrics import confusion_matrix, jaccard_score, f1_score, recall_score
from sklearn.preprocessing import FunctionTransformer
import seaborn as sns
import numpy as np
import time
import datetime
import sklearn.pipeline as pipe
from lime import lime_text
from nltk.corpus import stopwords
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.decomposition import TruncatedSVD
import re
import tensorflow as tf
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Dense, Dropout, GlobalMaxPooling1D, Conv1D, Embedding, LSTM
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from wordcloud import WordCloud, STOPWORDS
stop_words = set(stopwords.words('english'))
stopwords = set(STOPWORDS)
import warnings
warnings.filterwarnings('ignore', 'This pattern has match groups')
df = pd.read_csv('../input/d/brandonbenton/botezlive-chat-classification/botezlive_data.csv')
def split_data(df, params):
df_ones = df.loc[df['is_offensive'] == 1]
df_tmp = df.loc[df['is_offensive'] == 0]
ratio = len(df_ones) / len(df_tmp)
msk = np.random.rand(len(df_tmp)) < params['multiplier'] * ratio
df_zeros = df_tmp.loc[msk]
df = pd.concat([df_ones, df_zeros]).reset_index(drop=True)
df_train, df_test = train_test_split(df, test_size=0.2, random_state=0)
return (df_train, df_test)
def get_vectorizer(df_train, params):
vparams = dict({'stop_words': stop_words, 'min_df': params['min_df'], 'max_df': params['max_df'], 'smooth_idf': params['smooth_idf'], 'analyzer': params['analyzer'], 'ngram_range': params['ngram_range'], 'sublinear_tf': params['sublinear_tf'], 'max_features': params['max_features']})
vectorizer = ft.TfidfVectorizer(**vparams)
x_train = vectorizer.fit_transform(df_train['text'])
if params['trim features']:
y = df_train['is_offensive']
x_names = vectorizer.get_feature_names()
p_value_limit = params['pvalue limit']
dtf_features = pd.DataFrame()
for cat in np.unique(y):
chi2, p_value = fs.chi2(x_train, y == cat)
entry = pd.DataFrame({'feature': x_names, 'score': 1 - p_value, 'y': cat})
dtf_features = dtf_features.append(entry)
dtf_features = dtf_features.sort_values(['y', 'score'], ascending=[True, False])
dtf_features = dtf_features[dtf_features['score'] > p_value_limit]
x_names = dtf_features['feature'].unique().tolist()
vparams['vocabulary'] = x_names
vectorizer = ft.TfidfVectorizer(**vparams)
return vectorizer
def get_dual_vectorizer(df_train, p1, p2):
vec1 = get_vectorizer(df_train, p1)
vec2 = get_vectorizer(df_train, p2)
features = set(vec1.get_feature_names()) | set(vec2.get_feature_names())
features = list(features)
vectorizer = ft.TfidfVectorizer(vocabulary=features, max_features=p1['max_features'])
return vectorizer
def get_pca(params):
pca = TruncatedSVD(n_components=params['n_components'])
return pca
def transformer(x):
return np.array(x.toarray())
def param_score(df, params):
df_train, df_test = split_data(df, params)
vectorizer = get_vectorizer(df_train, params)
model = get_model(params)
y_train = df_train['is_offensive']
y_test = df_test['is_offensive']
num_splits = 1
if params['classifier_type'] == 'NN':
nn = KerasClassifier(build_fn=lambda: model)
nn._estimator_type = 'classifier'
vectorizer.fit(df_train['text'])
num_rows = df_train.shape[0]
num_splits = 1
if params['pca']:
pca = get_pca(params)
pca.fit(vectorizer.transform(df_train['text']))
if num_splits == 1 and params['pca']:
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('pca', pca), ('classifier', nn)])
my_pipeline.fit(df_train['text'], df_train['is_offensive'], classifier__verbose=1, classifier__epochs=params['epochs'], classifier__batch_size=4)
elif num_splits == 1 and (not params['pca']):
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('transformer', FunctionTransformer(transformer)), ('classifier', nn)])
my_pipeline.fit(df_train['text'], df_train['is_offensive'], classifier__verbose=1, classifier__epochs=params['epochs'], classifier__batch_size=4)
elif num_splits > 1 and params['pca']:
pca.fit(vectorizer.transform(df_train['text']))
df_array = np.array_split(df_train, num_splits)
for i in range(num_splits):
df_tmp = df_array[i]
nn.fit(pca.transform(vectorizer.transform(df_tmp['text'])), df_tmp['is_offensive'], verbose=1, epochs=params['epochs'], batch_size=4)
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('pca', pca), ('classifier', nn)])
elif num_splits > 1 and (not params['pca']):
df_array = np.array_split(df_train, num_splits)
for i in range(num_splits):
df_tmp = df_array[i]
nn.fit(transformer(vectorizer.transform(df_tmp['text'])), df_tmp['is_offensive'], verbose=1, epochs=params['epochs'], batch_size=4)
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('transformer', FunctionTransformer(transformer)), ('classifier', nn)])
else:
clf = cal.CalibratedClassifierCV(model, cv=p1['cv'], method='sigmoid')
if params['pca']:
pca = get_pca(params)
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('pca', pca), ('classifier', clf)])
else:
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('classifier', clf)])
my_pipeline.fit(df_train['text'], df_train['is_offensive'])
score = my_pipeline.score(df_test['text'], df_test['is_offensive'])
discrete_preds = my_pipeline.predict(df_test['text'])
confusion = confusion_matrix(y_test, discrete_preds)
test_ones = sum(confusion[1][:])
test_zeros = sum(confusion[0][:])
scores = dict({'classifier_type': params['classifier_type'], 'splits': num_splits, 'n_samples': df_train.shape[0], 'ngram_range': params['ngram_range'], 'pca': params['pca'], 'n_components': params['n_components'], 'max_features': params['max_features'], 'trim features': params['trim features'], 'pvalue limit': params['pvalue limit'], 'multiplier': params['multiplier'], 'precision': precision_score(y_test, discrete_preds), 'jaccard': jaccard_score(y_test, discrete_preds), 'recall': recall_score(y_test, discrete_preds), 'F1': f1_score(y_test, discrete_preds), 'TP': confusion[1][1] / test_ones, 'FP': confusion[0][1] / test_zeros, 'TN': confusion[0][0] / test_zeros, 'FN': confusion[1][0] / test_ones})
return (my_pipeline, discrete_preds, df_train, df_test, scores)
def get_model(params):
if params['classifier_type'] == 'NN':
if params['pca']:
feature_num = params['n_components']
else:
feature_num = params['max_features']
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(feature_num,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
if params['classifier_type'] == 'SVM':
cparams = dict({'max_iter': 1000, 'C': params['C'], 'class_weight': params['class_weight']})
model = svm.LinearSVC(**cparams)
if params['classifier_type'] == 'RFC':
model = RandomForestClassifier()
return model
txt_instance = 'its so hot out'
explainer = lime_text.LimeTextExplainer(class_names=np.unique(df_train['is_offensive']))
explained = explainer.explain_instance(txt_instance, model.predict_proba, num_features=5)
def plot_score_curves(clf, X, Y):
ax = plt.gca()
preds = clf.predict_proba(X)[:, 1]
discrete_preds = clf.predict(X)
clf_score = brier_score_loss(Y, preds, pos_label=1)
frac_of_positives, mean_predicted_value = cal.calibration_curve(Y, preds, n_bins=20)
clf_score = brier_score_loss(Y, discrete_preds, pos_label=1)
frac_of_positives, mean_predicted_value = cal.calibration_curve(Y, discrete_preds, n_bins=20)
plot_score_curves(model, df_train['text'], df_train['is_offensive']) | code |
73075982/cell_28 | [
"text_html_output_1.png"
] | from lime import lime_text
from nltk.corpus import stopwords
from sklearn.decomposition import TruncatedSVD
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix,jaccard_score,f1_score,recall_score
from sklearn.metrics import precision_score,roc_auc_score,log_loss
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.preprocessing import FunctionTransformer
from tensorflow.keras.layers import Dense, Dropout, GlobalMaxPooling1D, Conv1D, Embedding, LSTM
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from wordcloud import WordCloud, STOPWORDS
import numpy as np
import pandas as pd
import sklearn.calibration as cal
import sklearn.feature_extraction.text as ft
import sklearn.feature_selection as fs
import sklearn.pipeline as pipe
import sklearn.svm as svm
import warnings
import pandas as pd
import sklearn.feature_extraction.text as ft
import sklearn.feature_selection as fs
from sklearn.model_selection import train_test_split, GridSearchCV
import sklearn.svm as svm
import sklearn.calibration as cal
import matplotlib.pyplot as plt
from sklearn.metrics import plot_confusion_matrix, plot_roc_curve, brier_score_loss
from sklearn.metrics import plot_precision_recall_curve, classification_report
from sklearn.metrics import precision_score, roc_auc_score, log_loss
from sklearn.metrics import confusion_matrix, jaccard_score, f1_score, recall_score
from sklearn.preprocessing import FunctionTransformer
import seaborn as sns
import numpy as np
import time
import datetime
import sklearn.pipeline as pipe
from lime import lime_text
from nltk.corpus import stopwords
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.decomposition import TruncatedSVD
import re
import tensorflow as tf
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Dense, Dropout, GlobalMaxPooling1D, Conv1D, Embedding, LSTM
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from wordcloud import WordCloud, STOPWORDS
stop_words = set(stopwords.words('english'))
stopwords = set(STOPWORDS)
import warnings
warnings.filterwarnings('ignore', 'This pattern has match groups')
df = pd.read_csv('../input/d/brandonbenton/botezlive-chat-classification/botezlive_data.csv')
def split_data(df, params):
df_ones = df.loc[df['is_offensive'] == 1]
df_tmp = df.loc[df['is_offensive'] == 0]
ratio = len(df_ones) / len(df_tmp)
msk = np.random.rand(len(df_tmp)) < params['multiplier'] * ratio
df_zeros = df_tmp.loc[msk]
df = pd.concat([df_ones, df_zeros]).reset_index(drop=True)
df_train, df_test = train_test_split(df, test_size=0.2, random_state=0)
return (df_train, df_test)
def get_vectorizer(df_train, params):
vparams = dict({'stop_words': stop_words, 'min_df': params['min_df'], 'max_df': params['max_df'], 'smooth_idf': params['smooth_idf'], 'analyzer': params['analyzer'], 'ngram_range': params['ngram_range'], 'sublinear_tf': params['sublinear_tf'], 'max_features': params['max_features']})
vectorizer = ft.TfidfVectorizer(**vparams)
x_train = vectorizer.fit_transform(df_train['text'])
if params['trim features']:
y = df_train['is_offensive']
x_names = vectorizer.get_feature_names()
p_value_limit = params['pvalue limit']
dtf_features = pd.DataFrame()
for cat in np.unique(y):
chi2, p_value = fs.chi2(x_train, y == cat)
entry = pd.DataFrame({'feature': x_names, 'score': 1 - p_value, 'y': cat})
dtf_features = dtf_features.append(entry)
dtf_features = dtf_features.sort_values(['y', 'score'], ascending=[True, False])
dtf_features = dtf_features[dtf_features['score'] > p_value_limit]
x_names = dtf_features['feature'].unique().tolist()
vparams['vocabulary'] = x_names
vectorizer = ft.TfidfVectorizer(**vparams)
return vectorizer
def get_dual_vectorizer(df_train, p1, p2):
vec1 = get_vectorizer(df_train, p1)
vec2 = get_vectorizer(df_train, p2)
features = set(vec1.get_feature_names()) | set(vec2.get_feature_names())
features = list(features)
vectorizer = ft.TfidfVectorizer(vocabulary=features, max_features=p1['max_features'])
return vectorizer
def get_pca(params):
pca = TruncatedSVD(n_components=params['n_components'])
return pca
def transformer(x):
return np.array(x.toarray())
def param_score(df, params):
df_train, df_test = split_data(df, params)
vectorizer = get_vectorizer(df_train, params)
model = get_model(params)
y_train = df_train['is_offensive']
y_test = df_test['is_offensive']
num_splits = 1
if params['classifier_type'] == 'NN':
nn = KerasClassifier(build_fn=lambda: model)
nn._estimator_type = 'classifier'
vectorizer.fit(df_train['text'])
num_rows = df_train.shape[0]
num_splits = 1
if params['pca']:
pca = get_pca(params)
pca.fit(vectorizer.transform(df_train['text']))
if num_splits == 1 and params['pca']:
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('pca', pca), ('classifier', nn)])
my_pipeline.fit(df_train['text'], df_train['is_offensive'], classifier__verbose=1, classifier__epochs=params['epochs'], classifier__batch_size=4)
elif num_splits == 1 and (not params['pca']):
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('transformer', FunctionTransformer(transformer)), ('classifier', nn)])
my_pipeline.fit(df_train['text'], df_train['is_offensive'], classifier__verbose=1, classifier__epochs=params['epochs'], classifier__batch_size=4)
elif num_splits > 1 and params['pca']:
pca.fit(vectorizer.transform(df_train['text']))
df_array = np.array_split(df_train, num_splits)
for i in range(num_splits):
df_tmp = df_array[i]
nn.fit(pca.transform(vectorizer.transform(df_tmp['text'])), df_tmp['is_offensive'], verbose=1, epochs=params['epochs'], batch_size=4)
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('pca', pca), ('classifier', nn)])
elif num_splits > 1 and (not params['pca']):
df_array = np.array_split(df_train, num_splits)
for i in range(num_splits):
df_tmp = df_array[i]
nn.fit(transformer(vectorizer.transform(df_tmp['text'])), df_tmp['is_offensive'], verbose=1, epochs=params['epochs'], batch_size=4)
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('transformer', FunctionTransformer(transformer)), ('classifier', nn)])
else:
clf = cal.CalibratedClassifierCV(model, cv=p1['cv'], method='sigmoid')
if params['pca']:
pca = get_pca(params)
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('pca', pca), ('classifier', clf)])
else:
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('classifier', clf)])
my_pipeline.fit(df_train['text'], df_train['is_offensive'])
score = my_pipeline.score(df_test['text'], df_test['is_offensive'])
discrete_preds = my_pipeline.predict(df_test['text'])
confusion = confusion_matrix(y_test, discrete_preds)
test_ones = sum(confusion[1][:])
test_zeros = sum(confusion[0][:])
scores = dict({'classifier_type': params['classifier_type'], 'splits': num_splits, 'n_samples': df_train.shape[0], 'ngram_range': params['ngram_range'], 'pca': params['pca'], 'n_components': params['n_components'], 'max_features': params['max_features'], 'trim features': params['trim features'], 'pvalue limit': params['pvalue limit'], 'multiplier': params['multiplier'], 'precision': precision_score(y_test, discrete_preds), 'jaccard': jaccard_score(y_test, discrete_preds), 'recall': recall_score(y_test, discrete_preds), 'F1': f1_score(y_test, discrete_preds), 'TP': confusion[1][1] / test_ones, 'FP': confusion[0][1] / test_zeros, 'TN': confusion[0][0] / test_zeros, 'FN': confusion[1][0] / test_ones})
return (my_pipeline, discrete_preds, df_train, df_test, scores)
def get_model(params):
if params['classifier_type'] == 'NN':
if params['pca']:
feature_num = params['n_components']
else:
feature_num = params['max_features']
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(feature_num,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
if params['classifier_type'] == 'SVM':
cparams = dict({'max_iter': 1000, 'C': params['C'], 'class_weight': params['class_weight']})
model = svm.LinearSVC(**cparams)
if params['classifier_type'] == 'RFC':
model = RandomForestClassifier()
return model
txt_instance = 'its so hot out'
explainer = lime_text.LimeTextExplainer(class_names=np.unique(df_train['is_offensive']))
explained = explainer.explain_instance(txt_instance, model.predict_proba, num_features=5)
explained.show_in_notebook(text=txt_instance, predict_proba=True) | code |
73075982/cell_31 | [
"image_output_4.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | from lime import lime_text
from nltk.corpus import stopwords
from sklearn.decomposition import TruncatedSVD
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix,jaccard_score,f1_score,recall_score
from sklearn.metrics import plot_confusion_matrix,plot_roc_curve,brier_score_loss
from sklearn.metrics import plot_precision_recall_curve,classification_report
from sklearn.metrics import precision_score,roc_auc_score,log_loss
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.preprocessing import FunctionTransformer
from tensorflow.keras.layers import Dense, Dropout, GlobalMaxPooling1D, Conv1D, Embedding, LSTM
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from wordcloud import WordCloud, STOPWORDS
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sklearn.calibration as cal
import sklearn.feature_extraction.text as ft
import sklearn.feature_selection as fs
import sklearn.pipeline as pipe
import sklearn.svm as svm
import warnings
import pandas as pd
import sklearn.feature_extraction.text as ft
import sklearn.feature_selection as fs
from sklearn.model_selection import train_test_split, GridSearchCV
import sklearn.svm as svm
import sklearn.calibration as cal
import matplotlib.pyplot as plt
from sklearn.metrics import plot_confusion_matrix, plot_roc_curve, brier_score_loss
from sklearn.metrics import plot_precision_recall_curve, classification_report
from sklearn.metrics import precision_score, roc_auc_score, log_loss
from sklearn.metrics import confusion_matrix, jaccard_score, f1_score, recall_score
from sklearn.preprocessing import FunctionTransformer
import seaborn as sns
import numpy as np
import time
import datetime
import sklearn.pipeline as pipe
from lime import lime_text
from nltk.corpus import stopwords
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.decomposition import TruncatedSVD
import re
import tensorflow as tf
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Dense, Dropout, GlobalMaxPooling1D, Conv1D, Embedding, LSTM
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from wordcloud import WordCloud, STOPWORDS
stop_words = set(stopwords.words('english'))
stopwords = set(STOPWORDS)
import warnings
warnings.filterwarnings('ignore', 'This pattern has match groups')
df = pd.read_csv('../input/d/brandonbenton/botezlive-chat-classification/botezlive_data.csv')
def split_data(df, params):
df_ones = df.loc[df['is_offensive'] == 1]
df_tmp = df.loc[df['is_offensive'] == 0]
ratio = len(df_ones) / len(df_tmp)
msk = np.random.rand(len(df_tmp)) < params['multiplier'] * ratio
df_zeros = df_tmp.loc[msk]
df = pd.concat([df_ones, df_zeros]).reset_index(drop=True)
df_train, df_test = train_test_split(df, test_size=0.2, random_state=0)
return (df_train, df_test)
def get_vectorizer(df_train, params):
vparams = dict({'stop_words': stop_words, 'min_df': params['min_df'], 'max_df': params['max_df'], 'smooth_idf': params['smooth_idf'], 'analyzer': params['analyzer'], 'ngram_range': params['ngram_range'], 'sublinear_tf': params['sublinear_tf'], 'max_features': params['max_features']})
vectorizer = ft.TfidfVectorizer(**vparams)
x_train = vectorizer.fit_transform(df_train['text'])
if params['trim features']:
y = df_train['is_offensive']
x_names = vectorizer.get_feature_names()
p_value_limit = params['pvalue limit']
dtf_features = pd.DataFrame()
for cat in np.unique(y):
chi2, p_value = fs.chi2(x_train, y == cat)
entry = pd.DataFrame({'feature': x_names, 'score': 1 - p_value, 'y': cat})
dtf_features = dtf_features.append(entry)
dtf_features = dtf_features.sort_values(['y', 'score'], ascending=[True, False])
dtf_features = dtf_features[dtf_features['score'] > p_value_limit]
x_names = dtf_features['feature'].unique().tolist()
vparams['vocabulary'] = x_names
vectorizer = ft.TfidfVectorizer(**vparams)
return vectorizer
def get_dual_vectorizer(df_train, p1, p2):
vec1 = get_vectorizer(df_train, p1)
vec2 = get_vectorizer(df_train, p2)
features = set(vec1.get_feature_names()) | set(vec2.get_feature_names())
features = list(features)
vectorizer = ft.TfidfVectorizer(vocabulary=features, max_features=p1['max_features'])
return vectorizer
def get_pca(params):
pca = TruncatedSVD(n_components=params['n_components'])
return pca
def transformer(x):
return np.array(x.toarray())
def param_score(df, params):
df_train, df_test = split_data(df, params)
vectorizer = get_vectorizer(df_train, params)
model = get_model(params)
y_train = df_train['is_offensive']
y_test = df_test['is_offensive']
num_splits = 1
if params['classifier_type'] == 'NN':
nn = KerasClassifier(build_fn=lambda: model)
nn._estimator_type = 'classifier'
vectorizer.fit(df_train['text'])
num_rows = df_train.shape[0]
num_splits = 1
if params['pca']:
pca = get_pca(params)
pca.fit(vectorizer.transform(df_train['text']))
if num_splits == 1 and params['pca']:
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('pca', pca), ('classifier', nn)])
my_pipeline.fit(df_train['text'], df_train['is_offensive'], classifier__verbose=1, classifier__epochs=params['epochs'], classifier__batch_size=4)
elif num_splits == 1 and (not params['pca']):
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('transformer', FunctionTransformer(transformer)), ('classifier', nn)])
my_pipeline.fit(df_train['text'], df_train['is_offensive'], classifier__verbose=1, classifier__epochs=params['epochs'], classifier__batch_size=4)
elif num_splits > 1 and params['pca']:
pca.fit(vectorizer.transform(df_train['text']))
df_array = np.array_split(df_train, num_splits)
for i in range(num_splits):
df_tmp = df_array[i]
nn.fit(pca.transform(vectorizer.transform(df_tmp['text'])), df_tmp['is_offensive'], verbose=1, epochs=params['epochs'], batch_size=4)
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('pca', pca), ('classifier', nn)])
elif num_splits > 1 and (not params['pca']):
df_array = np.array_split(df_train, num_splits)
for i in range(num_splits):
df_tmp = df_array[i]
nn.fit(transformer(vectorizer.transform(df_tmp['text'])), df_tmp['is_offensive'], verbose=1, epochs=params['epochs'], batch_size=4)
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('transformer', FunctionTransformer(transformer)), ('classifier', nn)])
else:
clf = cal.CalibratedClassifierCV(model, cv=p1['cv'], method='sigmoid')
if params['pca']:
pca = get_pca(params)
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('pca', pca), ('classifier', clf)])
else:
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('classifier', clf)])
my_pipeline.fit(df_train['text'], df_train['is_offensive'])
score = my_pipeline.score(df_test['text'], df_test['is_offensive'])
discrete_preds = my_pipeline.predict(df_test['text'])
confusion = confusion_matrix(y_test, discrete_preds)
test_ones = sum(confusion[1][:])
test_zeros = sum(confusion[0][:])
scores = dict({'classifier_type': params['classifier_type'], 'splits': num_splits, 'n_samples': df_train.shape[0], 'ngram_range': params['ngram_range'], 'pca': params['pca'], 'n_components': params['n_components'], 'max_features': params['max_features'], 'trim features': params['trim features'], 'pvalue limit': params['pvalue limit'], 'multiplier': params['multiplier'], 'precision': precision_score(y_test, discrete_preds), 'jaccard': jaccard_score(y_test, discrete_preds), 'recall': recall_score(y_test, discrete_preds), 'F1': f1_score(y_test, discrete_preds), 'TP': confusion[1][1] / test_ones, 'FP': confusion[0][1] / test_zeros, 'TN': confusion[0][0] / test_zeros, 'FN': confusion[1][0] / test_ones})
return (my_pipeline, discrete_preds, df_train, df_test, scores)
def get_model(params):
if params['classifier_type'] == 'NN':
if params['pca']:
feature_num = params['n_components']
else:
feature_num = params['max_features']
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(feature_num,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
if params['classifier_type'] == 'SVM':
cparams = dict({'max_iter': 1000, 'C': params['C'], 'class_weight': params['class_weight']})
model = svm.LinearSVC(**cparams)
if params['classifier_type'] == 'RFC':
model = RandomForestClassifier()
return model
txt_instance = 'its so hot out'
explainer = lime_text.LimeTextExplainer(class_names=np.unique(df_train['is_offensive']))
explained = explainer.explain_instance(txt_instance, model.predict_proba, num_features=5)
def plot_score_curves(clf, X, Y):
ax = plt.gca()
preds = clf.predict_proba(X)[:, 1]
discrete_preds = clf.predict(X)
clf_score = brier_score_loss(Y, preds, pos_label=1)
frac_of_positives, mean_predicted_value = cal.calibration_curve(Y, preds, n_bins=20)
clf_score = brier_score_loss(Y, discrete_preds, pos_label=1)
frac_of_positives, mean_predicted_value = cal.calibration_curve(Y, discrete_preds, n_bins=20)
plot_score_curves(model, df_test['text'], df_test['is_offensive']) | code |
73075982/cell_24 | [
"text_html_output_1.png"
] | from nltk.corpus import stopwords
from sklearn.decomposition import TruncatedSVD
from sklearn.metrics import confusion_matrix,jaccard_score,f1_score,recall_score
from sklearn.metrics import precision_score,roc_auc_score,log_loss
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.preprocessing import FunctionTransformer
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from wordcloud import WordCloud, STOPWORDS
import datetime
import numpy as np
import pandas as pd
import sklearn.calibration as cal
import sklearn.feature_extraction.text as ft
import sklearn.feature_selection as fs
import sklearn.pipeline as pipe
import time
import warnings
import pandas as pd
import sklearn.feature_extraction.text as ft
import sklearn.feature_selection as fs
from sklearn.model_selection import train_test_split, GridSearchCV
import sklearn.svm as svm
import sklearn.calibration as cal
import matplotlib.pyplot as plt
from sklearn.metrics import plot_confusion_matrix, plot_roc_curve, brier_score_loss
from sklearn.metrics import plot_precision_recall_curve, classification_report
from sklearn.metrics import precision_score, roc_auc_score, log_loss
from sklearn.metrics import confusion_matrix, jaccard_score, f1_score, recall_score
from sklearn.preprocessing import FunctionTransformer
import seaborn as sns
import numpy as np
import time
import datetime
import sklearn.pipeline as pipe
from lime import lime_text
from nltk.corpus import stopwords
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.decomposition import TruncatedSVD
import re
import tensorflow as tf
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Dense, Dropout, GlobalMaxPooling1D, Conv1D, Embedding, LSTM
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from wordcloud import WordCloud, STOPWORDS
stop_words = set(stopwords.words('english'))
stopwords = set(STOPWORDS)
import warnings
warnings.filterwarnings('ignore', 'This pattern has match groups')
df = pd.read_csv('../input/d/brandonbenton/botezlive-chat-classification/botezlive_data.csv')
def split_data(df, params):
df_ones = df.loc[df['is_offensive'] == 1]
df_tmp = df.loc[df['is_offensive'] == 0]
ratio = len(df_ones) / len(df_tmp)
msk = np.random.rand(len(df_tmp)) < params['multiplier'] * ratio
df_zeros = df_tmp.loc[msk]
df = pd.concat([df_ones, df_zeros]).reset_index(drop=True)
df_train, df_test = train_test_split(df, test_size=0.2, random_state=0)
return (df_train, df_test)
def get_vectorizer(df_train, params):
vparams = dict({'stop_words': stop_words, 'min_df': params['min_df'], 'max_df': params['max_df'], 'smooth_idf': params['smooth_idf'], 'analyzer': params['analyzer'], 'ngram_range': params['ngram_range'], 'sublinear_tf': params['sublinear_tf'], 'max_features': params['max_features']})
vectorizer = ft.TfidfVectorizer(**vparams)
x_train = vectorizer.fit_transform(df_train['text'])
if params['trim features']:
y = df_train['is_offensive']
x_names = vectorizer.get_feature_names()
p_value_limit = params['pvalue limit']
dtf_features = pd.DataFrame()
for cat in np.unique(y):
chi2, p_value = fs.chi2(x_train, y == cat)
entry = pd.DataFrame({'feature': x_names, 'score': 1 - p_value, 'y': cat})
dtf_features = dtf_features.append(entry)
dtf_features = dtf_features.sort_values(['y', 'score'], ascending=[True, False])
dtf_features = dtf_features[dtf_features['score'] > p_value_limit]
x_names = dtf_features['feature'].unique().tolist()
vparams['vocabulary'] = x_names
vectorizer = ft.TfidfVectorizer(**vparams)
return vectorizer
def get_dual_vectorizer(df_train, p1, p2):
vec1 = get_vectorizer(df_train, p1)
vec2 = get_vectorizer(df_train, p2)
features = set(vec1.get_feature_names()) | set(vec2.get_feature_names())
features = list(features)
vectorizer = ft.TfidfVectorizer(vocabulary=features, max_features=p1['max_features'])
return vectorizer
def get_pca(params):
pca = TruncatedSVD(n_components=params['n_components'])
return pca
def transformer(x):
return np.array(x.toarray())
def param_score(df, params):
df_train, df_test = split_data(df, params)
vectorizer = get_vectorizer(df_train, params)
model = get_model(params)
y_train = df_train['is_offensive']
y_test = df_test['is_offensive']
num_splits = 1
if params['classifier_type'] == 'NN':
nn = KerasClassifier(build_fn=lambda: model)
nn._estimator_type = 'classifier'
vectorizer.fit(df_train['text'])
num_rows = df_train.shape[0]
num_splits = 1
if params['pca']:
pca = get_pca(params)
pca.fit(vectorizer.transform(df_train['text']))
if num_splits == 1 and params['pca']:
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('pca', pca), ('classifier', nn)])
my_pipeline.fit(df_train['text'], df_train['is_offensive'], classifier__verbose=1, classifier__epochs=params['epochs'], classifier__batch_size=4)
elif num_splits == 1 and (not params['pca']):
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('transformer', FunctionTransformer(transformer)), ('classifier', nn)])
my_pipeline.fit(df_train['text'], df_train['is_offensive'], classifier__verbose=1, classifier__epochs=params['epochs'], classifier__batch_size=4)
elif num_splits > 1 and params['pca']:
pca.fit(vectorizer.transform(df_train['text']))
df_array = np.array_split(df_train, num_splits)
for i in range(num_splits):
df_tmp = df_array[i]
nn.fit(pca.transform(vectorizer.transform(df_tmp['text'])), df_tmp['is_offensive'], verbose=1, epochs=params['epochs'], batch_size=4)
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('pca', pca), ('classifier', nn)])
elif num_splits > 1 and (not params['pca']):
df_array = np.array_split(df_train, num_splits)
for i in range(num_splits):
df_tmp = df_array[i]
nn.fit(transformer(vectorizer.transform(df_tmp['text'])), df_tmp['is_offensive'], verbose=1, epochs=params['epochs'], batch_size=4)
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('transformer', FunctionTransformer(transformer)), ('classifier', nn)])
else:
clf = cal.CalibratedClassifierCV(model, cv=p1['cv'], method='sigmoid')
if params['pca']:
pca = get_pca(params)
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('pca', pca), ('classifier', clf)])
else:
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('classifier', clf)])
my_pipeline.fit(df_train['text'], df_train['is_offensive'])
score = my_pipeline.score(df_test['text'], df_test['is_offensive'])
discrete_preds = my_pipeline.predict(df_test['text'])
confusion = confusion_matrix(y_test, discrete_preds)
test_ones = sum(confusion[1][:])
test_zeros = sum(confusion[0][:])
scores = dict({'classifier_type': params['classifier_type'], 'splits': num_splits, 'n_samples': df_train.shape[0], 'ngram_range': params['ngram_range'], 'pca': params['pca'], 'n_components': params['n_components'], 'max_features': params['max_features'], 'trim features': params['trim features'], 'pvalue limit': params['pvalue limit'], 'multiplier': params['multiplier'], 'precision': precision_score(y_test, discrete_preds), 'jaccard': jaccard_score(y_test, discrete_preds), 'recall': recall_score(y_test, discrete_preds), 'F1': f1_score(y_test, discrete_preds), 'TP': confusion[1][1] / test_ones, 'FP': confusion[0][1] / test_zeros, 'TN': confusion[0][0] / test_zeros, 'FN': confusion[1][0] / test_ones})
return (my_pipeline, discrete_preds, df_train, df_test, scores)
headers = ['classifier_type', 'splits', 'n_samples', 'ngram_range', 'trim features', 'pca', 'n_components', 'max_features', 'pvalue limit', 'multiplier', 'precision', 'jaccard', 'recall', 'F1', 'TP', 'FP', 'TN', 'FN']
df_scores = pd.DataFrame(columns=headers)
p1 = dict({'classifier_type': 'SVM', 'min_df': 1, 'max_df': 0.9, 'smooth_idf': 1, 'sublinear_tf': 1, 'ngram_range': (2, 10), 'max_features': None, 'C': 1.0, 'cv': 5, 'analyzer': 'char_wb', 'trim features': False, 'pvalue limit': 0.4, 'class_weight': None, 'multiplier': 1, 'n_components': 400, 'epochs': 10, 'pca': False})
p2 = p1.copy()
p2['classifier_type'] = 'NN'
p2['max_features'] = 20000
p2['pca'] = True
params_list = [p1]
for i, p in enumerate(params_list):
start = time.time()
model, discrete_preds, df_train, df_test, scores = param_score(df, p)
df_scores = df_scores.append(scores, ignore_index=True)
end = time.time()
elapsed = end - start
remaining_seconds = elapsed * (len(params_list) - i - 1)
df_scores['avg score'] = df_scores[['precision', 'recall', 'jaccard', 'F1', 'TP', 'TN']].values.mean(axis=1)
df_scores | code |
73075982/cell_22 | [
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
from sklearn.decomposition import TruncatedSVD
from sklearn.metrics import confusion_matrix,jaccard_score,f1_score,recall_score
from sklearn.metrics import precision_score,roc_auc_score,log_loss
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.preprocessing import FunctionTransformer
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from wordcloud import WordCloud, STOPWORDS
import datetime
import numpy as np
import pandas as pd
import sklearn.calibration as cal
import sklearn.feature_extraction.text as ft
import sklearn.feature_selection as fs
import sklearn.pipeline as pipe
import time
import warnings
import pandas as pd
import sklearn.feature_extraction.text as ft
import sklearn.feature_selection as fs
from sklearn.model_selection import train_test_split, GridSearchCV
import sklearn.svm as svm
import sklearn.calibration as cal
import matplotlib.pyplot as plt
from sklearn.metrics import plot_confusion_matrix, plot_roc_curve, brier_score_loss
from sklearn.metrics import plot_precision_recall_curve, classification_report
from sklearn.metrics import precision_score, roc_auc_score, log_loss
from sklearn.metrics import confusion_matrix, jaccard_score, f1_score, recall_score
from sklearn.preprocessing import FunctionTransformer
import seaborn as sns
import numpy as np
import time
import datetime
import sklearn.pipeline as pipe
from lime import lime_text
from nltk.corpus import stopwords
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.decomposition import TruncatedSVD
import re
import tensorflow as tf
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Dense, Dropout, GlobalMaxPooling1D, Conv1D, Embedding, LSTM
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from wordcloud import WordCloud, STOPWORDS
stop_words = set(stopwords.words('english'))
stopwords = set(STOPWORDS)
import warnings
warnings.filterwarnings('ignore', 'This pattern has match groups')
df = pd.read_csv('../input/d/brandonbenton/botezlive-chat-classification/botezlive_data.csv')
def split_data(df, params):
df_ones = df.loc[df['is_offensive'] == 1]
df_tmp = df.loc[df['is_offensive'] == 0]
ratio = len(df_ones) / len(df_tmp)
msk = np.random.rand(len(df_tmp)) < params['multiplier'] * ratio
df_zeros = df_tmp.loc[msk]
df = pd.concat([df_ones, df_zeros]).reset_index(drop=True)
df_train, df_test = train_test_split(df, test_size=0.2, random_state=0)
return (df_train, df_test)
def get_vectorizer(df_train, params):
vparams = dict({'stop_words': stop_words, 'min_df': params['min_df'], 'max_df': params['max_df'], 'smooth_idf': params['smooth_idf'], 'analyzer': params['analyzer'], 'ngram_range': params['ngram_range'], 'sublinear_tf': params['sublinear_tf'], 'max_features': params['max_features']})
vectorizer = ft.TfidfVectorizer(**vparams)
x_train = vectorizer.fit_transform(df_train['text'])
if params['trim features']:
y = df_train['is_offensive']
x_names = vectorizer.get_feature_names()
p_value_limit = params['pvalue limit']
dtf_features = pd.DataFrame()
for cat in np.unique(y):
chi2, p_value = fs.chi2(x_train, y == cat)
entry = pd.DataFrame({'feature': x_names, 'score': 1 - p_value, 'y': cat})
dtf_features = dtf_features.append(entry)
dtf_features = dtf_features.sort_values(['y', 'score'], ascending=[True, False])
dtf_features = dtf_features[dtf_features['score'] > p_value_limit]
x_names = dtf_features['feature'].unique().tolist()
vparams['vocabulary'] = x_names
vectorizer = ft.TfidfVectorizer(**vparams)
return vectorizer
def get_dual_vectorizer(df_train, p1, p2):
vec1 = get_vectorizer(df_train, p1)
vec2 = get_vectorizer(df_train, p2)
features = set(vec1.get_feature_names()) | set(vec2.get_feature_names())
features = list(features)
vectorizer = ft.TfidfVectorizer(vocabulary=features, max_features=p1['max_features'])
return vectorizer
def get_pca(params):
pca = TruncatedSVD(n_components=params['n_components'])
return pca
def transformer(x):
return np.array(x.toarray())
def param_score(df, params):
df_train, df_test = split_data(df, params)
vectorizer = get_vectorizer(df_train, params)
model = get_model(params)
y_train = df_train['is_offensive']
y_test = df_test['is_offensive']
num_splits = 1
if params['classifier_type'] == 'NN':
nn = KerasClassifier(build_fn=lambda: model)
nn._estimator_type = 'classifier'
vectorizer.fit(df_train['text'])
num_rows = df_train.shape[0]
num_splits = 1
if params['pca']:
pca = get_pca(params)
pca.fit(vectorizer.transform(df_train['text']))
if num_splits == 1 and params['pca']:
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('pca', pca), ('classifier', nn)])
my_pipeline.fit(df_train['text'], df_train['is_offensive'], classifier__verbose=1, classifier__epochs=params['epochs'], classifier__batch_size=4)
elif num_splits == 1 and (not params['pca']):
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('transformer', FunctionTransformer(transformer)), ('classifier', nn)])
my_pipeline.fit(df_train['text'], df_train['is_offensive'], classifier__verbose=1, classifier__epochs=params['epochs'], classifier__batch_size=4)
elif num_splits > 1 and params['pca']:
pca.fit(vectorizer.transform(df_train['text']))
df_array = np.array_split(df_train, num_splits)
for i in range(num_splits):
df_tmp = df_array[i]
nn.fit(pca.transform(vectorizer.transform(df_tmp['text'])), df_tmp['is_offensive'], verbose=1, epochs=params['epochs'], batch_size=4)
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('pca', pca), ('classifier', nn)])
elif num_splits > 1 and (not params['pca']):
df_array = np.array_split(df_train, num_splits)
for i in range(num_splits):
df_tmp = df_array[i]
nn.fit(transformer(vectorizer.transform(df_tmp['text'])), df_tmp['is_offensive'], verbose=1, epochs=params['epochs'], batch_size=4)
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('transformer', FunctionTransformer(transformer)), ('classifier', nn)])
else:
clf = cal.CalibratedClassifierCV(model, cv=p1['cv'], method='sigmoid')
if params['pca']:
pca = get_pca(params)
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('pca', pca), ('classifier', clf)])
else:
my_pipeline = pipe.Pipeline([('vectorizer', vectorizer), ('classifier', clf)])
my_pipeline.fit(df_train['text'], df_train['is_offensive'])
score = my_pipeline.score(df_test['text'], df_test['is_offensive'])
discrete_preds = my_pipeline.predict(df_test['text'])
confusion = confusion_matrix(y_test, discrete_preds)
test_ones = sum(confusion[1][:])
test_zeros = sum(confusion[0][:])
scores = dict({'classifier_type': params['classifier_type'], 'splits': num_splits, 'n_samples': df_train.shape[0], 'ngram_range': params['ngram_range'], 'pca': params['pca'], 'n_components': params['n_components'], 'max_features': params['max_features'], 'trim features': params['trim features'], 'pvalue limit': params['pvalue limit'], 'multiplier': params['multiplier'], 'precision': precision_score(y_test, discrete_preds), 'jaccard': jaccard_score(y_test, discrete_preds), 'recall': recall_score(y_test, discrete_preds), 'F1': f1_score(y_test, discrete_preds), 'TP': confusion[1][1] / test_ones, 'FP': confusion[0][1] / test_zeros, 'TN': confusion[0][0] / test_zeros, 'FN': confusion[1][0] / test_ones})
return (my_pipeline, discrete_preds, df_train, df_test, scores)
headers = ['classifier_type', 'splits', 'n_samples', 'ngram_range', 'trim features', 'pca', 'n_components', 'max_features', 'pvalue limit', 'multiplier', 'precision', 'jaccard', 'recall', 'F1', 'TP', 'FP', 'TN', 'FN']
df_scores = pd.DataFrame(columns=headers)
p1 = dict({'classifier_type': 'SVM', 'min_df': 1, 'max_df': 0.9, 'smooth_idf': 1, 'sublinear_tf': 1, 'ngram_range': (2, 10), 'max_features': None, 'C': 1.0, 'cv': 5, 'analyzer': 'char_wb', 'trim features': False, 'pvalue limit': 0.4, 'class_weight': None, 'multiplier': 1, 'n_components': 400, 'epochs': 10, 'pca': False})
p2 = p1.copy()
p2['classifier_type'] = 'NN'
p2['max_features'] = 20000
p2['pca'] = True
params_list = [p1]
for i, p in enumerate(params_list):
start = time.time()
model, discrete_preds, df_train, df_test, scores = param_score(df, p)
df_scores = df_scores.append(scores, ignore_index=True)
end = time.time()
elapsed = end - start
remaining_seconds = elapsed * (len(params_list) - i - 1)
print('Done: {:.5f}, Remaining: {:<25}'.format((i + 1) / len(params_list), str(datetime.timedelta(seconds=remaining_seconds))), end='\r') | code |
16148304/cell_2 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from sklearn.model_selection import train_test_split
from sklearn import svm
from keras.models import Sequential
from keras.layers import Dense, Conv2DTranspose, Conv2D, MaxPooling2D
from keras.layers import Dropout, Flatten
from keras.utils import np_utils
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical | code |
16148304/cell_11 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
Y_train = train['label']
X_train = train.drop(labels=['label'], axis=1)
X_train = X_train / 255.0
test = test / 255.0
X_train = X_train.values.reshape(-1, 28, 28, 1)
test = test.values.reshape(-1, 28, 28, 1)
g = plt.imshow(X_train[10][:, :, 0]) | code |
16148304/cell_17 | [
"image_output_1.png"
] | from keras.layers import Dense, Conv2DTranspose,Conv2D, MaxPooling2D
from keras.layers import Dropout, Flatten
from keras.models import Sequential
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
import pandas as pd
train = pd.read_csv('../input/train.csv')
test = pd.read_csv('../input/test.csv')
Y_train = train['label']
X_train = train.drop(labels=['label'], axis=1)
X_train = X_train / 255.0
test = test / 255.0
X_train = X_train.values.reshape(-1, 28, 28, 1)
test = test.values.reshape(-1, 28, 28, 1)
Y_train = to_categorical(Y_train, num_classes=10)
def baseline_model():
model = Sequential()
model.add(Conv2D(32, 3, input_shape=(28, 28, 1), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, 3, strides=1, padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, 3, strides=1, padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, 3, strides=1, padding='same', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
return model
model = baseline_model()
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
datagen = ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range=0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False)
datagen.fit(X_train)
history = model.fit_generator(datagen.flow(X_train, Y_train, batch_size=50), epochs=3, validation_data=(X_val, Y_val), verbose=1, steps_per_epoch=X_train.shape[0] // 50) | code |
129027504/cell_13 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/quora-question-pairs/train.csv.zip')
pd.set_option('display.max_colwidth', 100)
data.rename(columns={'is_duplicate': 'similar'}, inplace=True)
data.drop(['id', 'qid1', 'qid2'], axis=1, inplace=True)
data.isnull().sum()
data[data.question1.isnull()] | code |
129027504/cell_9 | [
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/quora-question-pairs/train.csv.zip')
pd.set_option('display.max_colwidth', 100)
data.rename(columns={'is_duplicate': 'similar'}, inplace=True)
data.drop(['id', 'qid1', 'qid2'], axis=1, inplace=True)
data.head() | code |
129027504/cell_25 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/quora-question-pairs/train.csv.zip')
pd.set_option('display.max_colwidth', 100)
data.rename(columns={'is_duplicate': 'similar'}, inplace=True)
data.drop(['id', 'qid1', 'qid2'], axis=1, inplace=True)
data.isnull().sum()
data[data.question1.isnull()]
data[data.question2.isnull()]
data.dtypes
mask = data.isnull().any(axis=1)
data = data[~mask]
data.dtypes
lables = data['similar']
x_pos = data[['question1', 'question2', 'similar']][lables == 1]
x_pos
x_neg = data[['question1', 'question2', 'similar']][lables == 0]
x_neg
print(x_pos.shape)
print(x_neg.shape) | code |
129027504/cell_23 | [
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/quora-question-pairs/train.csv.zip')
pd.set_option('display.max_colwidth', 100)
data.rename(columns={'is_duplicate': 'similar'}, inplace=True)
data.drop(['id', 'qid1', 'qid2'], axis=1, inplace=True)
data.isnull().sum()
data[data.question1.isnull()]
data[data.question2.isnull()]
data.dtypes
mask = data.isnull().any(axis=1)
data = data[~mask]
data.dtypes
lables = data['similar']
x_pos = data[['question1', 'question2', 'similar']][lables == 1]
x_pos | code |
129027504/cell_30 | [
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/quora-question-pairs/train.csv.zip')
pd.set_option('display.max_colwidth', 100)
data.rename(columns={'is_duplicate': 'similar'}, inplace=True)
data.drop(['id', 'qid1', 'qid2'], axis=1, inplace=True)
data.isnull().sum()
data[data.question1.isnull()]
data[data.question2.isnull()]
data.dtypes
mask = data.isnull().any(axis=1)
data = data[~mask]
data.dtypes
lables = data['similar']
x_pos = data[['question1', 'question2', 'similar']][lables == 1]
x_pos
x_neg = data[['question1', 'question2', 'similar']][lables == 0]
x_neg
dff = pd.concat([x_pos[:32000], x_neg[:32000]], axis=0)
dff.shape
dff | code |
129027504/cell_29 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/quora-question-pairs/train.csv.zip')
pd.set_option('display.max_colwidth', 100)
data.rename(columns={'is_duplicate': 'similar'}, inplace=True)
data.drop(['id', 'qid1', 'qid2'], axis=1, inplace=True)
data.isnull().sum()
data[data.question1.isnull()]
data[data.question2.isnull()]
data.dtypes
mask = data.isnull().any(axis=1)
data = data[~mask]
data.dtypes
lables = data['similar']
x_pos = data[['question1', 'question2', 'similar']][lables == 1]
x_pos
x_neg = data[['question1', 'question2', 'similar']][lables == 0]
x_neg
dff = pd.concat([x_pos[:32000], x_neg[:32000]], axis=0)
dff.shape | code |
129027504/cell_2 | [
"text_plain_output_1.png"
] | import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
import string
import nltk
import pickle
from nltk import word_tokenize
from nltk.stem import PorterStemmer
from tqdm import tqdm
!pip install gradio
import gradio as gr
ps = PorterStemmer() # stemming
stopwords = nltk.corpus.stopwords.words('english')
warnings.filterwarnings('ignore') | code |
129027504/cell_19 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/quora-question-pairs/train.csv.zip')
pd.set_option('display.max_colwidth', 100)
data.rename(columns={'is_duplicate': 'similar'}, inplace=True)
data.drop(['id', 'qid1', 'qid2'], axis=1, inplace=True)
data.isnull().sum()
data[data.question1.isnull()]
data[data.question2.isnull()]
data.dtypes
mask = data.isnull().any(axis=1)
data = data[~mask]
print(len(data))
data.dtypes | code |
129027504/cell_32 | [
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/quora-question-pairs/train.csv.zip')
pd.set_option('display.max_colwidth', 100)
data.rename(columns={'is_duplicate': 'similar'}, inplace=True)
data.drop(['id', 'qid1', 'qid2'], axis=1, inplace=True)
data.isnull().sum()
data[data.question1.isnull()]
data[data.question2.isnull()]
data.dtypes
mask = data.isnull().any(axis=1)
data = data[~mask]
data.dtypes
lables = data['similar']
x_pos = data[['question1', 'question2', 'similar']][lables == 1]
x_pos
x_neg = data[['question1', 'question2', 'similar']][lables == 0]
x_neg
dff = pd.concat([x_pos[:32000], x_neg[:32000]], axis=0)
dff.shape
dff = dff.sample(frac=1).reset_index(drop=True)
dff | code |
129027504/cell_15 | [
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/quora-question-pairs/train.csv.zip')
pd.set_option('display.max_colwidth', 100)
data.rename(columns={'is_duplicate': 'similar'}, inplace=True)
data.drop(['id', 'qid1', 'qid2'], axis=1, inplace=True)
data.isnull().sum()
data[data.question1.isnull()]
data[data.question2.isnull()]
data.dtypes | code |
129027504/cell_16 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/quora-question-pairs/train.csv.zip')
pd.set_option('display.max_colwidth', 100)
data.rename(columns={'is_duplicate': 'similar'}, inplace=True)
data.drop(['id', 'qid1', 'qid2'], axis=1, inplace=True)
data.isnull().sum()
data[data.question1.isnull()]
data[data.question2.isnull()]
data.dtypes
print(len(data)) | code |
129027504/cell_24 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/quora-question-pairs/train.csv.zip')
pd.set_option('display.max_colwidth', 100)
data.rename(columns={'is_duplicate': 'similar'}, inplace=True)
data.drop(['id', 'qid1', 'qid2'], axis=1, inplace=True)
data.isnull().sum()
data[data.question1.isnull()]
data[data.question2.isnull()]
data.dtypes
mask = data.isnull().any(axis=1)
data = data[~mask]
data.dtypes
lables = data['similar']
x_neg = data[['question1', 'question2', 'similar']][lables == 0]
x_neg | code |
129027504/cell_14 | [
"text_plain_output_2.png",
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/quora-question-pairs/train.csv.zip')
pd.set_option('display.max_colwidth', 100)
data.rename(columns={'is_duplicate': 'similar'}, inplace=True)
data.drop(['id', 'qid1', 'qid2'], axis=1, inplace=True)
data.isnull().sum()
data[data.question1.isnull()]
data[data.question2.isnull()] | code |
129027504/cell_10 | [
"text_plain_output_35.png",
"text_plain_output_43.png",
"text_plain_output_37.png",
"text_plain_output_5.png",
"text_plain_output_48.png",
"text_plain_output_30.png",
"text_plain_output_15.png",
"text_plain_output_9.png",
"text_plain_output_44.png",
"text_plain_output_40.png",
"text_plain_output_31.png",
"text_plain_output_20.png",
"text_plain_output_4.png",
"text_plain_output_13.png",
"text_plain_output_45.png",
"text_plain_output_14.png",
"text_plain_output_32.png",
"text_plain_output_29.png",
"text_plain_output_49.png",
"text_plain_output_27.png",
"text_plain_output_10.png",
"text_plain_output_6.png",
"text_plain_output_24.png",
"text_plain_output_21.png",
"text_plain_output_47.png",
"text_plain_output_25.png",
"text_plain_output_18.png",
"text_plain_output_50.png",
"text_plain_output_36.png",
"text_plain_output_3.png",
"text_plain_output_22.png",
"text_plain_output_38.png",
"text_plain_output_7.png",
"text_plain_output_16.png",
"text_plain_output_8.png",
"text_plain_output_26.png",
"text_plain_output_41.png",
"text_plain_output_34.png",
"text_plain_output_42.png",
"text_plain_output_23.png",
"text_plain_output_51.png",
"text_plain_output_28.png",
"text_plain_output_2.png",
"text_plain_output_33.png",
"application_vnd.jupyter.stderr_output_1.png",
"text_plain_output_39.png",
"text_plain_output_19.png",
"text_plain_output_17.png",
"text_plain_output_11.png",
"text_plain_output_12.png",
"text_plain_output_46.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/quora-question-pairs/train.csv.zip')
pd.set_option('display.max_colwidth', 100)
data.rename(columns={'is_duplicate': 'similar'}, inplace=True)
data.drop(['id', 'qid1', 'qid2'], axis=1, inplace=True)
print(data['similar'].value_counts())
print(data['similar'].value_counts() / data['similar'].count() * 100)
data['similar'].value_counts().plot(kind='bar') | code |
129027504/cell_12 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/quora-question-pairs/train.csv.zip')
pd.set_option('display.max_colwidth', 100)
data.rename(columns={'is_duplicate': 'similar'}, inplace=True)
data.drop(['id', 'qid1', 'qid2'], axis=1, inplace=True)
data.isnull().sum() | code |
129027504/cell_5 | [
"text_html_output_1.png"
] | import pandas as pd
data = pd.read_csv('/kaggle/input/quora-question-pairs/train.csv.zip')
pd.set_option('display.max_colwidth', 100)
data.head() | code |
73083395/cell_25 | [
"text_html_output_1.png",
"text_plain_output_2.png",
"text_plain_output_1.png"
] | preds = aml.predict(test_hf)
preds_df = h2o.as_list(preds)
preds_df | code |
73083395/cell_34 | [
"application_vnd.jupyter.stderr_output_1.png"
] | ypred = automl.predict(test_df.values) | code |
73083395/cell_23 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | train_hf = h2o.H2OFrame(train_df.copy())
test_hf = h2o.H2OFrame(test_df.copy()) | code |
73083395/cell_33 | [
"text_plain_output_1.png"
] | print('Best ML leaner:', automl.best_estimator)
print('Best hyperparmeter config:', automl.best_config)
print('Best accuracy on validation data: {0:.4g}'.format(1 - automl.best_loss))
print('Training duration of best run: {0:.4g} s'.format(automl.best_config_train_time)) | code |
73083395/cell_29 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | !pip install -U flaml | code |
73083395/cell_11 | [
"text_plain_output_1.png"
] | from lightautoml.automl.presets.tabular_presets import TabularAutoML, TabularUtilizedAutoML
from lightautoml.tasks import Task
import torch | code |
73083395/cell_32 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | automl = AutoML()
automl_settings = {'time_budget': 1200, 'metric': 'rmse', 'task': 'regression', 'seed': 2021, 'log_file_name': 'tpsaug21log.log'}
automl.fit(X_train=X, y_train=y, **automl_settings) | code |
73083395/cell_16 | [
"text_plain_output_1.png"
] | automl = TabularAutoML(task=task, timeout=TIMEOUT, cpu_limit=N_THREADS, reader_params={'n_jobs': N_THREADS, 'cv': N_FOLDS, 'random_state': RANDOM_STATE}, general_params={'use_algos': [['linear_l2', 'cb', 'lgb', 'lgb_tuned']]}, lgb_params={'default_params': lgb_params, 'freeze_defaults': True}, cb_params={'default_params': cb_params, 'freeze_defaults': True}, verbose=2) | code |
73083395/cell_3 | [
"text_plain_output_1.png"
] | !pip install scikit-learn --upgrade
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import StandardScaler | code |
73083395/cell_17 | [
"text_plain_output_1.png"
] | oof_pred = automl.fit_predict(train_df, roles=roles)
test_pred = automl.predict(test_df) | code |
73083395/cell_35 | [
"application_vnd.jupyter.stderr_output_1.png"
] | ypred | code |
73083395/cell_24 | [
"text_plain_output_1.png"
] | aml = H2OAutoML(seed=2021, max_runtime_secs=1200, sort_metric='RMSE')
aml.train(x=train_hf.columns, y='loss', training_frame=train_hf)
lb = aml.leaderboard
lb.head(rows=lb.nrows) | code |
73083395/cell_22 | [
"text_plain_output_4.png",
"text_plain_output_6.png",
"application_vnd.jupyter.stderr_output_3.png",
"application_vnd.jupyter.stderr_output_5.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import h2o
h2o.init() | code |
73083395/cell_10 | [
"text_plain_output_1.png"
] | !pip install -U lightautoml | code |
90124933/cell_4 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data_orig = pd.read_csv('/kaggle/input/daily-min-temperatures/daily-min-temperatures.csv')
data_orig['Date'] = pd.to_datetime(data_orig['Date'])
ax = data_orig.plot(x='Date', y='Temp', figsize=(12, 6)) | code |
90124933/cell_6 | [
"image_output_1.png"
] | from statsmodels.tsa.seasonal import seasonal_decompose
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data_orig = pd.read_csv('/kaggle/input/daily-min-temperatures/daily-min-temperatures.csv')
data_orig['Date'] = pd.to_datetime(data_orig['Date']) # convert date column to datetime
ax = data_orig.plot(x='Date', y='Temp', figsize=(12,6))
ax = data_orig.plot(x='Date', y='Temp', figsize=(12,6))
xcoords = ['1981-01-01', '1982-01-01', '1983-01-01', '1984-01-01', '1985-01-01', '1986-01-01', '1987-01-01', '1988-01-01', '1989-01-01', '1990-01-01', '1990-12-31']
for xc in xcoords:
plt.axvline(x=xc, color='black', linestyle='--')
# The temperature seem to go down in the beginning of every year.
# And then slowly go up until the mid of year during which the temperature peaks.
# And again it starts to dip slowly until the end of year.
# We can see this repetitive seasonal trend.
from statsmodels.tsa.seasonal import seasonal_decompose
data_orig.set_index('Date', inplace=True)
data_orig.sort_index(inplace=True)
analysis = data_orig[['Temp']].copy()
decompose_result_mult = seasonal_decompose(analysis, model='additive', period=365)
decompose_result_mult.plot() | code |
90124933/cell_2 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data_orig = pd.read_csv('/kaggle/input/daily-min-temperatures/daily-min-temperatures.csv')
print(data_orig.count)
data_orig.head() | code |
90124933/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
90124933/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data_orig = pd.read_csv('/kaggle/input/daily-min-temperatures/daily-min-temperatures.csv')
data_orig['Temp'].isnull().values.any() | code |
90124933/cell_5 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data_orig = pd.read_csv('/kaggle/input/daily-min-temperatures/daily-min-temperatures.csv')
data_orig['Date'] = pd.to_datetime(data_orig['Date']) # convert date column to datetime
ax = data_orig.plot(x='Date', y='Temp', figsize=(12,6))
ax = data_orig.plot(x='Date', y='Temp', figsize=(12, 6))
xcoords = ['1981-01-01', '1982-01-01', '1983-01-01', '1984-01-01', '1985-01-01', '1986-01-01', '1987-01-01', '1988-01-01', '1989-01-01', '1990-01-01', '1990-12-31']
for xc in xcoords:
plt.axvline(x=xc, color='black', linestyle='--') | code |
32062359/cell_20 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from langdetect import detect
from nltk.tokenize import sent_tokenize,word_tokenize
from sklearn.model_selection import train_test_split
from snorkel.labeling import PandasLFApplier,LFAnalysis,LabelingFunction
from snorkel.labeling.model.label_model import LabelModel
from tqdm import tqdm
import pandas as pd
import pandas as pd
keywordlist = ['inhibitor']
def loopsearch(keywordlist, researchpaperfu):
alldataframeco = pd.DataFrame()
alldataframenoco = pd.DataFrame()
allcopid = []
allnocopid = []
for i in tqdm(keywordlist):
covinf = researchpaperfu.covid_related().search(i, num_results=1000, covid_related=False, view='table').results[['cord_uid', 'title', 'abstract']]
notcovinf = researchpaperfu.not_covid_related().search(i, num_results=10000, covid_related=False, view='table').results[['cord_uid', 'title', 'abstract']]
covinfpid = list(covinf.cord_uid.values)
notcovinfpid = list(notcovinf.cord_uid.values)
alldataframeco = pd.concat([covinf, alldataframeco])
alldataframenoco = pd.concat([notcovinf, alldataframenoco])
allcopid.append(covinfpid)
allnocopid.append(notcovinfpid)
alldataframeco = alldataframeco.drop_duplicates()
alldataframenoco = alldataframenoco.drop_duplicates()
return (allcopid, allnocopid, alldataframeco, alldataframenoco)
fullab = pd.concat([allcoab, allnocoab])
fullab = fullab.rename(columns={'cord_uid': 'pid'})
fullab = fullab[fullab.abstract != '']
lan = []
for i in fullab.abstract:
lan1 = detect(i)
lan.append(lan1)
fullab['lan'] = lan
fullab = fullab[fullab.lan == 'en']
fullab = fullab[['pid', 'title', 'abstract']]
question = 'Q1'
question_dir = question + '/'
keylist = pd.read_csv('/kaggle/input/kagglecovid19literature/results/' + question_dir + 'keylist.txt').columns.values
valuelist = pd.read_csv('/kaggle/input/kagglecovid19literature/results/' + question_dir + 'valuelist.txt', header=None).values
viruslist = pd.read_csv('/kaggle/input/kagglecovid19literature/results/' + question_dir + 'viruslist.txt', header=None).values
def build_raw_data(file):
def retunsb(sentlist, i, lennu):
sent = sentlist[i]
if i - 1 < 0:
present = ''
else:
present = sentlist[i - 1]
if i + 1 >= lennu:
aftsent = ''
else:
aftsent = sentlist[i + 1]
tempsent = ''
tempsent = tempsent.join([present, sent, aftsent])
return tempsent
allfile = file
allfile['abstract'] = allfile.abstract.astype(str)
allsent = []
allid = []
allab = []
for i in tqdm(range(len(allfile))):
temp = allfile.abstract.iloc[i]
temp = sent_tokenize(temp)
for j in range(len(temp)):
tempab = retunsb(temp, j, len(temp))
allsent.append(temp[j])
allid.append(allfile.pid.iloc[i])
allab.append(tempab)
allsent = pd.DataFrame(allsent, columns=['sent'])
allsent['pid'] = allid
allsent['abstract'] = allab
return (allfile, allsent)
def loop_labing(keylist, valuelist, virus):
def keyword_lookup(x, keywords, virus, label):
if any((word in x.sent.lower() for word in keywords)) and any((word in x.sent.lower() for word in virus)):
return label
return Norelevent
def make_keyword_lf(keywords, virus, name, label=None):
return LabelingFunction(name=f'keyword_{name}', f=keyword_lookup, resources=dict(keywords=keywords, virus=virus, label=label))
def keyword_lookup1(x, keywords, virus, label):
if not any((word in x.sent.lower() for word in keywords)) and any((word in x.sent.lower() for word in virus)):
return label
return Norelevent
def make_keyword_lf1(keywords, virus, name, label=None):
return LabelingFunction(name=f'keyword_{name}', f=keyword_lookup1, resources=dict(keywords=keywords, virus=virus, label=label))
def abstract_lookup(x, keywords, virus, label):
if any((word in x.abstract.lower() for word in keywords)) and any((word in x.abstract.lower() for word in virus)):
return label
return Norelevent
def make_abstract_lf(keywords, virus, name, label=None):
return LabelingFunction(name=f'abstract_{name}', f=abstract_lookup, resources=dict(keywords=keywords, virus=virus, label=label))
Norelevent = -1
allweaklabf = []
viruselist = virus
for i in range(len(keylist)):
labelvalue = 1
vbname = keylist[i]
vbnameab = vbname + 'su'
globals()[vbname] = make_keyword_lf(keywords=valuelist[i], virus=viruselist, name=vbnameab, label=labelvalue)
vbname1 = keylist[i] + 'ab'
vbnameab1 = vbname + 'su1'
globals()[vbname1] = make_abstract_lf(keywords=valuelist[i], virus=viruselist, name=vbnameab1, label=labelvalue)
vbname2 = keylist[i] + 'sent'
vbnameab2 = vbname + 'sentno'
globals()[vbname2] = make_keyword_lf1(keywords=valuelist[i], virus=viruselist, name=vbnameab2, label=0)
allweaklabf.append(globals()[vbname])
allweaklabf.append(globals()[vbname1])
allweaklabf.append(globals()[vbname2])
return allweaklabf
def snorkel_process(keylist, dataframe, allweaklabf):
def func(x):
idx = (-x).argsort()[1:]
x[idx] = 0
return x
cardinalitynu = 2
applier = PandasLFApplier(lfs=allweaklabf)
all_train_l = applier.apply(df=dataframe)
report = LFAnalysis(L=all_train_l, lfs=allweaklabf).lf_summary()
label_model = LabelModel(cardinality=cardinalitynu, verbose=False)
label_model.fit(all_train_l)
predt = label_model.predict(all_train_l)
dataframe['L_label'] = predt
dataframe = dataframe[dataframe.L_label >= 0]
train, test = train_test_split(dataframe, test_size=0.2, random_state=234)
trainsent = train.sent.values
trainlabel = train.L_label.values
testsent = test.sent.values
testlabel = test.L_label.values
return (trainsent, trainlabel, testsent, testlabel, keylist, report)
allweaklabf = loop_labing(keylist, valuelist, viruslist)
trainsent, trainlabel, valsent, vallabel, keylist, report = snorkel_process(keylist, allsent, allweaklabf)
testsent = allsent.sent.values
testlabel = allsent.newpid.values | code |
32062359/cell_2 | [
"text_plain_output_1.png"
] | #!pip install -U git+https://github.com/dgunning/cord19.git
!pip install -U git+https://github.com/dgunning/cord19.git@5b68c9a807f74f529b34d959f584712520da2f03
!pip install langdetect
!pip install pandas
!pip install tqdm
!pip install snorkel | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.