path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
90124932/cell_4
[ "text_plain_output_1.png" ]
import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_img_csv = '../input/mura-dataset/MURA-v1.1/train_image_paths.csv' train_images_paths = pd.read_csv(os.path.join(train_img_csv), dtype=str, header=None) train_images_paths.columns = ['image_path'] train_images_paths['label'] = train_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') train_images_paths['category'] = train_images_paths['image_path'].apply(lambda x: x.split('/')[2]) valid_img_csv = '../input/testdata/abdekho_valid.csv' valid_images_paths = pd.read_csv(os.path.join(valid_img_csv), dtype=str, header=None) valid_images_paths.columns = ['image_path'] valid_images_paths['label'] = valid_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') valid_images_paths['category'] = valid_images_paths['image_path'].apply(lambda x: x.split('/')[2]) print(len(train_images_paths)) print(len(valid_images_paths))
code
90124932/cell_6
[ "text_plain_output_1.png" ]
from keras.models import Sequential,Model,load_model,Input import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf import pandas as pd import os from glob import glob import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 from keras.models import Model import numpy as np import pandas as pd import matplotlib.pyplot as plt import os from glob import glob import numpy as np from keras import regularizers from keras.models import Sequential, Model, load_model, Input from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, GlobalAveragePooling2D from keras_preprocessing.image import ImageDataGenerator import keras.layers as Layers from keras.callbacks import EarlyStopping, ModelCheckpoint import keras.optimizers as Optimizer from keras import applications from tensorflow import keras import math import pandas as pd import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 import tensorflow_addons as tfa train_img_csv = '../input/mura-dataset/MURA-v1.1/train_image_paths.csv' train_images_paths = pd.read_csv(os.path.join(train_img_csv), dtype=str, header=None) train_images_paths.columns = ['image_path'] train_images_paths['label'] = train_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') train_images_paths['category'] = train_images_paths['image_path'].apply(lambda x: x.split('/')[2]) valid_img_csv = '../input/testdata/abdekho_valid.csv' valid_images_paths = pd.read_csv(os.path.join(valid_img_csv), dtype=str, header=None) valid_images_paths.columns = ['image_path'] valid_images_paths['label'] = valid_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') valid_images_paths['category'] = valid_images_paths['image_path'].apply(lambda x: x.split('/')[2]) input_image = Input(shape=(224, 224, 3), name='original_img') dense_model_1 = tf.keras.applications.DenseNet169(include_top=False, weights='imagenet') dense_model_1.trainable = True for layer in dense_model_1.layers[:350]: layer.trainable = False x = dense_model_1(input_image) print('x1', x.shape) x = tf.keras.layers.GlobalAveragePooling2D()(x) print('x2', x.shape) x = tf.keras.layers.Dense(81, activation='relu')(x) print('x3', x.shape) x = tf.keras.layers.Dense(81, activation='relu')(x) print('x4', x.shape) x = tf.keras.layers.Dense(42, activation='relu')(x) print('x5', x.shape) preds_dense_net = tf.keras.layers.Dense(1, activation='sigmoid')(x) print('x6', preds_dense_net.shape) dense_model_2 = tf.keras.applications.Xception(weights='imagenet', include_top=False) dense_model_2.trainable = True for layer in dense_model_2.layers[:116]: layer.trainable = False y = dense_model_2(input_image) y = tf.keras.layers.GlobalAveragePooling2D()(y) y = tf.keras.layers.Dense(81, activation='relu')(y) y = tf.keras.layers.Dense(81, activation='relu')(y) y = tf.keras.layers.Dense(42, activation='relu')(y) preds_resnet_net = tf.keras.layers.Dense(1, activation='sigmoid')(y) dense_model_3 = tf.keras.applications.MobileNet(include_top=False, weights='imagenet') dense_model_3.trainable = True for layer in dense_model_3.layers[:70]: layer.trainable = False z = dense_model_3(input_image) z = tf.keras.layers.GlobalAveragePooling2D()(z) z = tf.keras.layers.Dense(81, activation='relu')(z) z = tf.keras.layers.Dense(81, activation='relu')(z) z = tf.keras.layers.Dense(42, activation='relu')(z) preds_mobi_net = tf.keras.layers.Dense(1, activation='sigmoid')(z) mean_nn_only = tf.reduce_mean(tf.stack([preds_mobi_net, preds_resnet_net, preds_dense_net], axis=0), axis=0) model = tf.keras.models.Model(input_image, mean_nn_only)
code
90124932/cell_1
[ "text_plain_output_1.png" ]
import tensorflow as tf import pandas as pd import os from glob import glob import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 from keras.models import Model import numpy as np import pandas as pd import matplotlib.pyplot as plt import os from glob import glob import numpy as np from keras import regularizers from keras.models import Sequential, Model, load_model, Input from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, GlobalAveragePooling2D from keras_preprocessing.image import ImageDataGenerator import keras.layers as Layers from keras.callbacks import EarlyStopping, ModelCheckpoint import keras.optimizers as Optimizer print(tf.__version__) from keras import applications from tensorflow import keras import math import pandas as pd import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 import tensorflow_addons as tfa
code
90124932/cell_7
[ "text_plain_output_1.png" ]
from keras.models import Sequential,Model,load_model,Input from keras_preprocessing.image import ImageDataGenerator import math import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf import tensorflow_addons as tfa import pandas as pd import os from glob import glob import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 from keras.models import Model import numpy as np import pandas as pd import matplotlib.pyplot as plt import os from glob import glob import numpy as np from keras import regularizers from keras.models import Sequential, Model, load_model, Input from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, GlobalAveragePooling2D from keras_preprocessing.image import ImageDataGenerator import keras.layers as Layers from keras.callbacks import EarlyStopping, ModelCheckpoint import keras.optimizers as Optimizer from keras import applications from tensorflow import keras import math import pandas as pd import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 import tensorflow_addons as tfa train_img_csv = '../input/mura-dataset/MURA-v1.1/train_image_paths.csv' train_images_paths = pd.read_csv(os.path.join(train_img_csv), dtype=str, header=None) train_images_paths.columns = ['image_path'] train_images_paths['label'] = train_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') train_images_paths['category'] = train_images_paths['image_path'].apply(lambda x: x.split('/')[2]) valid_img_csv = '../input/testdata/abdekho_valid.csv' valid_images_paths = pd.read_csv(os.path.join(valid_img_csv), dtype=str, header=None) valid_images_paths.columns = ['image_path'] valid_images_paths['label'] = valid_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') valid_images_paths['category'] = valid_images_paths['image_path'].apply(lambda x: x.split('/')[2]) train_images_paths_XR_ELBOW = train_images_paths[train_images_paths['category'] == 'XR_ELBOW'] valid_images_paths_XR_ELBOW = valid_images_paths[valid_images_paths['category'] == 'XR_ELBOW'] train_images_paths_XR_FINGER = train_images_paths[train_images_paths['category'] == 'XR_FINGER'] valid_images_paths_XR_FINGER = valid_images_paths[valid_images_paths['category'] == 'XR_FINGER'] train_images_paths_XR_FOREARM = train_images_paths[train_images_paths['category'] == 'XR_FOREARM'] valid_images_paths_XR_FOREARM = valid_images_paths[valid_images_paths['category'] == 'XR_FOREARM'] train_images_paths_XR_HAND = train_images_paths[train_images_paths['category'] == 'XR_HAND'] valid_images_paths_XR_HAND = valid_images_paths[valid_images_paths['category'] == 'XR_HAND'] train_images_paths_XR_HUMERUS = train_images_paths[train_images_paths['category'] == 'XR_HUMERUS'] valid_images_paths_XR_HUMERUS = valid_images_paths[valid_images_paths['category'] == 'XR_HUMERUS'] train_images_paths_XR_SHOULDER = train_images_paths[train_images_paths['category'] == 'XR_SHOULDER'] valid_images_paths_XR_SHOULDER = valid_images_paths[valid_images_paths['category'] == 'XR_SHOULDER'] train_images_paths_XR_WRIST = train_images_paths[train_images_paths['category'] == 'XR_WRIST'] valid_images_paths_XR_WRIST = valid_images_paths[valid_images_paths['category'] == 'XR_WRIST'] datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=10, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=10) images_path_dir = '../input/mura-dataset' batchsize = 32 targetsize = (224, 224) classmode = 'binary' train_generator = datagen.flow_from_dataframe(dataframe=train_images_paths, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator = test_datagen.flow_from_dataframe(dataframe=valid_images_paths, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_ELBOW = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_ELBOW, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_ELBOW = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_ELBOW, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_FINGER = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_FINGER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_FINGER = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_FINGER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_FOREARM = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_FOREARM, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_FOREARM = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_FOREARM, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_HAND = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_HAND, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_HAND = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_HAND, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_HUMERUS = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_HUMERUS, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_HUMERUS = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_HUMERUS, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_SHOULDER = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_SHOULDER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_SHOULDER = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_SHOULDER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_WRIST = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_WRIST, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_WRIST = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_WRIST, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) input_image = Input(shape=(224, 224, 3), name='original_img') dense_model_1 = tf.keras.applications.DenseNet169(include_top=False, weights='imagenet') dense_model_1.trainable = True for layer in dense_model_1.layers[:350]: layer.trainable = False x = dense_model_1(input_image) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dense(81, activation='relu')(x) x = tf.keras.layers.Dense(81, activation='relu')(x) x = tf.keras.layers.Dense(42, activation='relu')(x) preds_dense_net = tf.keras.layers.Dense(1, activation='sigmoid')(x) dense_model_2 = tf.keras.applications.Xception(weights='imagenet', include_top=False) dense_model_2.trainable = True for layer in dense_model_2.layers[:116]: layer.trainable = False y = dense_model_2(input_image) y = tf.keras.layers.GlobalAveragePooling2D()(y) y = tf.keras.layers.Dense(81, activation='relu')(y) y = tf.keras.layers.Dense(81, activation='relu')(y) y = tf.keras.layers.Dense(42, activation='relu')(y) preds_resnet_net = tf.keras.layers.Dense(1, activation='sigmoid')(y) dense_model_3 = tf.keras.applications.MobileNet(include_top=False, weights='imagenet') dense_model_3.trainable = True for layer in dense_model_3.layers[:70]: layer.trainable = False z = dense_model_3(input_image) z = tf.keras.layers.GlobalAveragePooling2D()(z) z = tf.keras.layers.Dense(81, activation='relu')(z) z = tf.keras.layers.Dense(81, activation='relu')(z) z = tf.keras.layers.Dense(42, activation='relu')(z) preds_mobi_net = tf.keras.layers.Dense(1, activation='sigmoid')(z) mean_nn_only = tf.reduce_mean(tf.stack([preds_mobi_net, preds_resnet_net, preds_dense_net], axis=0), axis=0) model = tf.keras.models.Model(input_image, mean_nn_only) STEP_SIZE_TRAIN = math.ceil(train_generator.n / train_generator.batch_size) STEP_SIZE_VALID = math.ceil(valid_generator.n / valid_generator.batch_size) print(STEP_SIZE_TRAIN) print(STEP_SIZE_VALID) model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.01), loss='binary_crossentropy', metrics=['accuracy', tfa.metrics.CohenKappa(num_classes=2), tf.keras.metrics.Precision(0.6), tf.keras.metrics.Recall(0.3), tf.keras.metrics.AUC()]) history = model.fit_generator(train_generator, epochs=20, verbose=1, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=valid_generator, validation_steps=STEP_SIZE_VALID)
code
90124932/cell_8
[ "text_plain_output_1.png" ]
from keras.models import Sequential,Model,load_model,Input from keras_preprocessing.image import ImageDataGenerator import math import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt # showing and rendering figures import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf import tensorflow_addons as tfa import pandas as pd import os from glob import glob import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 from keras.models import Model import numpy as np import pandas as pd import matplotlib.pyplot as plt import os from glob import glob import numpy as np from keras import regularizers from keras.models import Sequential, Model, load_model, Input from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, GlobalAveragePooling2D from keras_preprocessing.image import ImageDataGenerator import keras.layers as Layers from keras.callbacks import EarlyStopping, ModelCheckpoint import keras.optimizers as Optimizer from keras import applications from tensorflow import keras import math import pandas as pd import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 import tensorflow_addons as tfa train_img_csv = '../input/mura-dataset/MURA-v1.1/train_image_paths.csv' train_images_paths = pd.read_csv(os.path.join(train_img_csv), dtype=str, header=None) train_images_paths.columns = ['image_path'] train_images_paths['label'] = train_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') train_images_paths['category'] = train_images_paths['image_path'].apply(lambda x: x.split('/')[2]) valid_img_csv = '../input/testdata/abdekho_valid.csv' valid_images_paths = pd.read_csv(os.path.join(valid_img_csv), dtype=str, header=None) valid_images_paths.columns = ['image_path'] valid_images_paths['label'] = valid_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') valid_images_paths['category'] = valid_images_paths['image_path'].apply(lambda x: x.split('/')[2]) train_images_paths_XR_ELBOW = train_images_paths[train_images_paths['category'] == 'XR_ELBOW'] valid_images_paths_XR_ELBOW = valid_images_paths[valid_images_paths['category'] == 'XR_ELBOW'] train_images_paths_XR_FINGER = train_images_paths[train_images_paths['category'] == 'XR_FINGER'] valid_images_paths_XR_FINGER = valid_images_paths[valid_images_paths['category'] == 'XR_FINGER'] train_images_paths_XR_FOREARM = train_images_paths[train_images_paths['category'] == 'XR_FOREARM'] valid_images_paths_XR_FOREARM = valid_images_paths[valid_images_paths['category'] == 'XR_FOREARM'] train_images_paths_XR_HAND = train_images_paths[train_images_paths['category'] == 'XR_HAND'] valid_images_paths_XR_HAND = valid_images_paths[valid_images_paths['category'] == 'XR_HAND'] train_images_paths_XR_HUMERUS = train_images_paths[train_images_paths['category'] == 'XR_HUMERUS'] valid_images_paths_XR_HUMERUS = valid_images_paths[valid_images_paths['category'] == 'XR_HUMERUS'] train_images_paths_XR_SHOULDER = train_images_paths[train_images_paths['category'] == 'XR_SHOULDER'] valid_images_paths_XR_SHOULDER = valid_images_paths[valid_images_paths['category'] == 'XR_SHOULDER'] train_images_paths_XR_WRIST = train_images_paths[train_images_paths['category'] == 'XR_WRIST'] valid_images_paths_XR_WRIST = valid_images_paths[valid_images_paths['category'] == 'XR_WRIST'] datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=10, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=10) images_path_dir = '../input/mura-dataset' batchsize = 32 targetsize = (224, 224) classmode = 'binary' train_generator = datagen.flow_from_dataframe(dataframe=train_images_paths, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator = test_datagen.flow_from_dataframe(dataframe=valid_images_paths, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_ELBOW = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_ELBOW, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_ELBOW = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_ELBOW, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_FINGER = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_FINGER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_FINGER = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_FINGER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_FOREARM = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_FOREARM, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_FOREARM = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_FOREARM, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_HAND = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_HAND, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_HAND = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_HAND, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_HUMERUS = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_HUMERUS, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_HUMERUS = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_HUMERUS, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_SHOULDER = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_SHOULDER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_SHOULDER = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_SHOULDER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_WRIST = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_WRIST, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_WRIST = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_WRIST, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) input_image = Input(shape=(224, 224, 3), name='original_img') dense_model_1 = tf.keras.applications.DenseNet169(include_top=False, weights='imagenet') dense_model_1.trainable = True for layer in dense_model_1.layers[:350]: layer.trainable = False x = dense_model_1(input_image) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dense(81, activation='relu')(x) x = tf.keras.layers.Dense(81, activation='relu')(x) x = tf.keras.layers.Dense(42, activation='relu')(x) preds_dense_net = tf.keras.layers.Dense(1, activation='sigmoid')(x) dense_model_2 = tf.keras.applications.Xception(weights='imagenet', include_top=False) dense_model_2.trainable = True for layer in dense_model_2.layers[:116]: layer.trainable = False y = dense_model_2(input_image) y = tf.keras.layers.GlobalAveragePooling2D()(y) y = tf.keras.layers.Dense(81, activation='relu')(y) y = tf.keras.layers.Dense(81, activation='relu')(y) y = tf.keras.layers.Dense(42, activation='relu')(y) preds_resnet_net = tf.keras.layers.Dense(1, activation='sigmoid')(y) dense_model_3 = tf.keras.applications.MobileNet(include_top=False, weights='imagenet') dense_model_3.trainable = True for layer in dense_model_3.layers[:70]: layer.trainable = False z = dense_model_3(input_image) z = tf.keras.layers.GlobalAveragePooling2D()(z) z = tf.keras.layers.Dense(81, activation='relu')(z) z = tf.keras.layers.Dense(81, activation='relu')(z) z = tf.keras.layers.Dense(42, activation='relu')(z) preds_mobi_net = tf.keras.layers.Dense(1, activation='sigmoid')(z) mean_nn_only = tf.reduce_mean(tf.stack([preds_mobi_net, preds_resnet_net, preds_dense_net], axis=0), axis=0) model = tf.keras.models.Model(input_image, mean_nn_only) STEP_SIZE_TRAIN = math.ceil(train_generator.n / train_generator.batch_size) STEP_SIZE_VALID = math.ceil(valid_generator.n / valid_generator.batch_size) model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.01), loss='binary_crossentropy', metrics=['accuracy', tfa.metrics.CohenKappa(num_classes=2), tf.keras.metrics.Precision(0.6), tf.keras.metrics.Recall(0.3), tf.keras.metrics.AUC()]) history = model.fit_generator(train_generator, epochs=20, verbose=1, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=valid_generator, validation_steps=STEP_SIZE_VALID) epochs = range(1, 21) plt.plot(epochs, history.history['accuracy'], 'g', label='training accuracy') plt.plot(epochs, history.history['val_accuracy'], 'b', label='validation accuracy') plt.title('Training and Validation accuracy Wrist') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend() plt.show() plt.savefig('acc_densenet_forearm.png') plt.plot(epochs, history.history['loss'], 'r', label='training loss') plt.plot(epochs, history.history['val_loss'], 'c', label='validation loss') plt.title('Training and Validation loss Wrist') plt.ylabel('loss') plt.xlabel('epoch') plt.legend() plt.show() plt.savefig('loss_densenet_forearm.png') plt.plot(epochs, history.history['cohen_kappa'], 'y', label='training cohen_kappa') plt.plot(epochs, history.history['val_cohen_kappa'], 'm', label='validation cohen_kappa') plt.title('Training and Validation cohen_kappa Wrist') plt.ylabel('Accuracy, Loss & cohen_kappa') plt.xlabel('epoch') plt.legend() plt.savefig('kappa_densenet_forearm.png')
code
90124932/cell_14
[ "text_plain_output_1.png" ]
from keras.models import Sequential,Model,load_model,Input from keras_preprocessing.image import ImageDataGenerator import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf import pandas as pd import os from glob import glob import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 from keras.models import Model import numpy as np import pandas as pd import matplotlib.pyplot as plt import os from glob import glob import numpy as np from keras import regularizers from keras.models import Sequential, Model, load_model, Input from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, GlobalAveragePooling2D from keras_preprocessing.image import ImageDataGenerator import keras.layers as Layers from keras.callbacks import EarlyStopping, ModelCheckpoint import keras.optimizers as Optimizer from keras import applications from tensorflow import keras import math import pandas as pd import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 import tensorflow_addons as tfa train_img_csv = '../input/mura-dataset/MURA-v1.1/train_image_paths.csv' train_images_paths = pd.read_csv(os.path.join(train_img_csv), dtype=str, header=None) train_images_paths.columns = ['image_path'] train_images_paths['label'] = train_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') train_images_paths['category'] = train_images_paths['image_path'].apply(lambda x: x.split('/')[2]) valid_img_csv = '../input/testdata/abdekho_valid.csv' valid_images_paths = pd.read_csv(os.path.join(valid_img_csv), dtype=str, header=None) valid_images_paths.columns = ['image_path'] valid_images_paths['label'] = valid_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') valid_images_paths['category'] = valid_images_paths['image_path'].apply(lambda x: x.split('/')[2]) train_images_paths_XR_ELBOW = train_images_paths[train_images_paths['category'] == 'XR_ELBOW'] valid_images_paths_XR_ELBOW = valid_images_paths[valid_images_paths['category'] == 'XR_ELBOW'] train_images_paths_XR_FINGER = train_images_paths[train_images_paths['category'] == 'XR_FINGER'] valid_images_paths_XR_FINGER = valid_images_paths[valid_images_paths['category'] == 'XR_FINGER'] train_images_paths_XR_FOREARM = train_images_paths[train_images_paths['category'] == 'XR_FOREARM'] valid_images_paths_XR_FOREARM = valid_images_paths[valid_images_paths['category'] == 'XR_FOREARM'] train_images_paths_XR_HAND = train_images_paths[train_images_paths['category'] == 'XR_HAND'] valid_images_paths_XR_HAND = valid_images_paths[valid_images_paths['category'] == 'XR_HAND'] train_images_paths_XR_HUMERUS = train_images_paths[train_images_paths['category'] == 'XR_HUMERUS'] valid_images_paths_XR_HUMERUS = valid_images_paths[valid_images_paths['category'] == 'XR_HUMERUS'] train_images_paths_XR_SHOULDER = train_images_paths[train_images_paths['category'] == 'XR_SHOULDER'] valid_images_paths_XR_SHOULDER = valid_images_paths[valid_images_paths['category'] == 'XR_SHOULDER'] train_images_paths_XR_WRIST = train_images_paths[train_images_paths['category'] == 'XR_WRIST'] valid_images_paths_XR_WRIST = valid_images_paths[valid_images_paths['category'] == 'XR_WRIST'] datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=10, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=10) images_path_dir = '../input/mura-dataset' batchsize = 32 targetsize = (224, 224) classmode = 'binary' train_generator = datagen.flow_from_dataframe(dataframe=train_images_paths, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator = test_datagen.flow_from_dataframe(dataframe=valid_images_paths, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_ELBOW = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_ELBOW, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_ELBOW = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_ELBOW, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_FINGER = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_FINGER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_FINGER = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_FINGER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_FOREARM = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_FOREARM, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_FOREARM = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_FOREARM, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_HAND = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_HAND, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_HAND = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_HAND, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_HUMERUS = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_HUMERUS, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_HUMERUS = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_HUMERUS, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_SHOULDER = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_SHOULDER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_SHOULDER = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_SHOULDER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_WRIST = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_WRIST, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_WRIST = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_WRIST, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) input_image = Input(shape=(224, 224, 3), name='original_img') dense_model_1 = tf.keras.applications.DenseNet169(include_top=False, weights='imagenet') dense_model_1.trainable = True for layer in dense_model_1.layers[:350]: layer.trainable = False x = dense_model_1(input_image) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dense(81, activation='relu')(x) x = tf.keras.layers.Dense(81, activation='relu')(x) x = tf.keras.layers.Dense(42, activation='relu')(x) preds_dense_net = tf.keras.layers.Dense(1, activation='sigmoid')(x) dense_model_2 = tf.keras.applications.Xception(weights='imagenet', include_top=False) dense_model_2.trainable = True for layer in dense_model_2.layers[:116]: layer.trainable = False y = dense_model_2(input_image) y = tf.keras.layers.GlobalAveragePooling2D()(y) y = tf.keras.layers.Dense(81, activation='relu')(y) y = tf.keras.layers.Dense(81, activation='relu')(y) y = tf.keras.layers.Dense(42, activation='relu')(y) preds_resnet_net = tf.keras.layers.Dense(1, activation='sigmoid')(y) dense_model_3 = tf.keras.applications.MobileNet(include_top=False, weights='imagenet') dense_model_3.trainable = True for layer in dense_model_3.layers[:70]: layer.trainable = False z = dense_model_3(input_image) z = tf.keras.layers.GlobalAveragePooling2D()(z) z = tf.keras.layers.Dense(81, activation='relu')(z) z = tf.keras.layers.Dense(81, activation='relu')(z) z = tf.keras.layers.Dense(42, activation='relu')(z) preds_mobi_net = tf.keras.layers.Dense(1, activation='sigmoid')(z) mean_nn_only = tf.reduce_mean(tf.stack([preds_mobi_net, preds_resnet_net, preds_dense_net], axis=0), axis=0) model = tf.keras.models.Model(input_image, mean_nn_only) valid_img_csv = '../input/testdata/abdekho_valid.csv' valid_images_paths = pd.read_csv(os.path.join(valid_img_csv), dtype=str, header=None) valid_images_paths.columns = ['image_path'] valid_images_paths['label'] = valid_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') valid_images_paths['category'] = valid_images_paths['image_path'].apply(lambda x: x.split('/')[2]) valid_images_paths_XR_ELBOW = valid_images_paths[valid_images_paths['category'] == 'XR_ELBOW'] valid_images_paths_XR_FINGER = valid_images_paths[valid_images_paths['category'] == 'XR_FINGER'] valid_images_paths_XR_FOREARM = valid_images_paths[valid_images_paths['category'] == 'XR_FOREARM'] valid_images_paths_XR_HAND = valid_images_paths[valid_images_paths['category'] == 'XR_HAND'] valid_images_paths_XR_HUMERUS = valid_images_paths[valid_images_paths['category'] == 'XR_HUMERUS'] valid_images_paths_XR_SHOULDER = valid_images_paths[valid_images_paths['category'] == 'XR_SHOULDER'] valid_images_paths_XR_WRIST = valid_images_paths[valid_images_paths['category'] == 'XR_WRIST'] test_datagen = ImageDataGenerator(rescale=1.0 / 255) images_path_dir = '../input/mura-dataset' batchsize = 16 targetsize = (224, 224) classmode = 'binary' valid_generator = test_datagen.flow_from_dataframe(dataframe=valid_images_paths, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_ELBOW = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_ELBOW, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_FINGER = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_FINGER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_FOREARM = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_FOREARM, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_HAND = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_HAND, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_HUMERUS = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_HUMERUS, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_SHOULDER = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_SHOULDER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_WRIST = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_WRIST, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True)
code
90124932/cell_12
[ "text_plain_output_1.png" ]
from keras.models import Sequential,Model,load_model,Input import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf import pandas as pd import os from glob import glob import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 from keras.models import Model import numpy as np import pandas as pd import matplotlib.pyplot as plt import os from glob import glob import numpy as np from keras import regularizers from keras.models import Sequential, Model, load_model, Input from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D, GlobalAveragePooling2D from keras_preprocessing.image import ImageDataGenerator import keras.layers as Layers from keras.callbacks import EarlyStopping, ModelCheckpoint import keras.optimizers as Optimizer from keras import applications from tensorflow import keras import math import pandas as pd import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 import tensorflow_addons as tfa train_img_csv = '../input/mura-dataset/MURA-v1.1/train_image_paths.csv' train_images_paths = pd.read_csv(os.path.join(train_img_csv), dtype=str, header=None) train_images_paths.columns = ['image_path'] train_images_paths['label'] = train_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') train_images_paths['category'] = train_images_paths['image_path'].apply(lambda x: x.split('/')[2]) valid_img_csv = '../input/testdata/abdekho_valid.csv' valid_images_paths = pd.read_csv(os.path.join(valid_img_csv), dtype=str, header=None) valid_images_paths.columns = ['image_path'] valid_images_paths['label'] = valid_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') valid_images_paths['category'] = valid_images_paths['image_path'].apply(lambda x: x.split('/')[2]) input_image = Input(shape=(224, 224, 3), name='original_img') dense_model_1 = tf.keras.applications.DenseNet169(include_top=False, weights='imagenet') dense_model_1.trainable = True for layer in dense_model_1.layers[:350]: layer.trainable = False x = dense_model_1(input_image) x = tf.keras.layers.GlobalAveragePooling2D()(x) x = tf.keras.layers.Dense(81, activation='relu')(x) x = tf.keras.layers.Dense(81, activation='relu')(x) x = tf.keras.layers.Dense(42, activation='relu')(x) preds_dense_net = tf.keras.layers.Dense(1, activation='sigmoid')(x) dense_model_2 = tf.keras.applications.Xception(weights='imagenet', include_top=False) dense_model_2.trainable = True for layer in dense_model_2.layers[:116]: layer.trainable = False y = dense_model_2(input_image) y = tf.keras.layers.GlobalAveragePooling2D()(y) y = tf.keras.layers.Dense(81, activation='relu')(y) y = tf.keras.layers.Dense(81, activation='relu')(y) y = tf.keras.layers.Dense(42, activation='relu')(y) preds_resnet_net = tf.keras.layers.Dense(1, activation='sigmoid')(y) dense_model_3 = tf.keras.applications.MobileNet(include_top=False, weights='imagenet') dense_model_3.trainable = True for layer in dense_model_3.layers[:70]: layer.trainable = False z = dense_model_3(input_image) z = tf.keras.layers.GlobalAveragePooling2D()(z) z = tf.keras.layers.Dense(81, activation='relu')(z) z = tf.keras.layers.Dense(81, activation='relu')(z) z = tf.keras.layers.Dense(42, activation='relu')(z) preds_mobi_net = tf.keras.layers.Dense(1, activation='sigmoid')(z) mean_nn_only = tf.reduce_mean(tf.stack([preds_mobi_net, preds_resnet_net, preds_dense_net], axis=0), axis=0) model = tf.keras.models.Model(input_image, mean_nn_only) valid_img_csv = '../input/testdata/abdekho_valid.csv' valid_images_paths = pd.read_csv(os.path.join(valid_img_csv), dtype=str, header=None) valid_images_paths.columns = ['image_path'] valid_images_paths['label'] = valid_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') valid_images_paths['category'] = valid_images_paths['image_path'].apply(lambda x: x.split('/')[2]) print(len(valid_images_paths))
code
90124932/cell_5
[ "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
from keras_preprocessing.image import ImageDataGenerator import os import os import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_img_csv = '../input/mura-dataset/MURA-v1.1/train_image_paths.csv' train_images_paths = pd.read_csv(os.path.join(train_img_csv), dtype=str, header=None) train_images_paths.columns = ['image_path'] train_images_paths['label'] = train_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') train_images_paths['category'] = train_images_paths['image_path'].apply(lambda x: x.split('/')[2]) valid_img_csv = '../input/testdata/abdekho_valid.csv' valid_images_paths = pd.read_csv(os.path.join(valid_img_csv), dtype=str, header=None) valid_images_paths.columns = ['image_path'] valid_images_paths['label'] = valid_images_paths['image_path'].map(lambda x: '1' if 'positive' in x else '0') valid_images_paths['category'] = valid_images_paths['image_path'].apply(lambda x: x.split('/')[2]) train_images_paths_XR_ELBOW = train_images_paths[train_images_paths['category'] == 'XR_ELBOW'] valid_images_paths_XR_ELBOW = valid_images_paths[valid_images_paths['category'] == 'XR_ELBOW'] train_images_paths_XR_FINGER = train_images_paths[train_images_paths['category'] == 'XR_FINGER'] valid_images_paths_XR_FINGER = valid_images_paths[valid_images_paths['category'] == 'XR_FINGER'] train_images_paths_XR_FOREARM = train_images_paths[train_images_paths['category'] == 'XR_FOREARM'] valid_images_paths_XR_FOREARM = valid_images_paths[valid_images_paths['category'] == 'XR_FOREARM'] train_images_paths_XR_HAND = train_images_paths[train_images_paths['category'] == 'XR_HAND'] valid_images_paths_XR_HAND = valid_images_paths[valid_images_paths['category'] == 'XR_HAND'] train_images_paths_XR_HUMERUS = train_images_paths[train_images_paths['category'] == 'XR_HUMERUS'] valid_images_paths_XR_HUMERUS = valid_images_paths[valid_images_paths['category'] == 'XR_HUMERUS'] train_images_paths_XR_SHOULDER = train_images_paths[train_images_paths['category'] == 'XR_SHOULDER'] valid_images_paths_XR_SHOULDER = valid_images_paths[valid_images_paths['category'] == 'XR_SHOULDER'] train_images_paths_XR_WRIST = train_images_paths[train_images_paths['category'] == 'XR_WRIST'] valid_images_paths_XR_WRIST = valid_images_paths[valid_images_paths['category'] == 'XR_WRIST'] datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=10, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1.0 / 255, rotation_range=10) images_path_dir = '../input/mura-dataset' batchsize = 32 targetsize = (224, 224) classmode = 'binary' train_generator = datagen.flow_from_dataframe(dataframe=train_images_paths, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator = test_datagen.flow_from_dataframe(dataframe=valid_images_paths, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_ELBOW = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_ELBOW, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_ELBOW = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_ELBOW, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_FINGER = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_FINGER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_FINGER = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_FINGER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_FOREARM = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_FOREARM, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_FOREARM = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_FOREARM, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_HAND = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_HAND, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_HAND = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_HAND, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_HUMERUS = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_HUMERUS, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_HUMERUS = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_HUMERUS, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_SHOULDER = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_SHOULDER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_SHOULDER = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_SHOULDER, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) train_generator_XR_WRIST = datagen.flow_from_dataframe(dataframe=train_images_paths_XR_WRIST, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True) valid_generator_XR_WRIST = test_datagen.flow_from_dataframe(dataframe=valid_images_paths_XR_WRIST, directory=images_path_dir, x_col='image_path', y_col='label', target_size=targetsize, class_mode=classmode, batch_size=batchsize, suffle=True)
code
72068023/cell_42
[ "text_plain_output_1.png" ]
from numba import njit, jit, cuda, guvectorize from scipy.signal import butter, filtfilt, sosfiltfilt from scipy.signal import cwt, ricker from scipy.signal import spectrogram import glob import librosa import matplotlib.pyplot as plt import numpy as np # linear algebra import pathlib import torch import torch import glob import pathlib head = pathlib.Path('../input/g2net-gravitational-wave-detection') train_files = sorted(glob.glob('../input/g2net-gravitational-wave-detection/train/*/*/*/*.npy')) wave = np.load(train_files[0]) from numba import njit, jit, cuda, guvectorize @njit(nogil=True) def min_max_scaler(wave): for i in range(len(wave)): wave[i] = (wave[i] - min(wave[i])) / (max(wave[i]) - min(wave[i])) wave[i] = 2 * wave[i] - 1 return wave wave1 = min_max_scaler(wave) from scipy.signal import butter, filtfilt, sosfiltfilt T = 2 fs = 2048.0 cutoff = 2.5 nyq = 0.5 * fs order = 3 n = int(T * fs) normal_cutoff = cutoff / nyq normal_cutoff = (21.83 / fs, 500 / fs) def butter_bandpass_filter(data, normal_cutoff, fs, order=2): b, a = butter(order, normal_cutoff, btype='bandpass', analog=False) y = filtfilt(b, a, data) return y def butter_bandpass_filter(data, low, high, fs, order): sos = butter(order, [low, high], btype='bandpass', output='sos', fs=fs) normalization = np.sqrt((high - low) / (fs / 2)) return sosfiltfilt(sos, data) / normalization def butter_lowpass_filter(data, normal_cutoff, fs, order): b, a = butter(order, normal_cutoff, btype='lowpass', analog=False) y = filtfilt(b, a, data) return y data = torch.from_numpy(wave) y = butter_bandpass_filter(data, 21.83, 500, fs, 4) from scipy.signal import spectrogram for i in range(len(wave)): f, t, Sxx = spectrogram(wave1[i], fs=10) plt.pcolormesh(t, f, Sxx, shading='gouraud') def wrapper_plot(m): m() stacked = [] for j in range(len(wave1)): melspec = librosa.feature.melspectrogram(wave1[j], sr=4096, n_mels=128, fmin=21.83, fmax=2048) melspec = librosa.power_to_db(melspec) melspec = melspec.transpose((1, 0)) stacked.append(melspec) image = np.vstack(stacked) wave.shape cwt(wave[0], signal.ricker, np.arange(1, 300)) class CWT(nn.Module): def __init__(self, widths, wavelet='ricker', channels=1, filter_len=2000): """PyTorch implementation of a continuous wavelet transform. Args: widths (iterable): The wavelet scales to use, e.g. np.arange(1, 33) wavelet (str, optional): Name of wavelet. Either "ricker" or "morlet". Defaults to "ricker". channels (int, optional): Number of audio channels in the input. Defaults to 3. filter_len (int, optional): Size of the wavelet filter bank. Set to the number of samples but can be smaller to save memory. Defaults to 2000. """ super().__init__() self.widths = widths self.wavelet = getattr(self, wavelet) self.filter_len = filter_len self.channels = channels self.wavelet_bank = self._build_wavelet_bank() def ricker(self, points, a): A = 2 / (np.sqrt(3 * a) * np.pi ** 0.25) wsq = a ** 2 vec = torch.arange(0, points) - (points - 1.0) / 2 xsq = vec ** 2 mod = 1 - xsq / wsq gauss = torch.exp(-xsq / (2 * wsq)) total = A * mod * gauss return total def morlet(self, points, s): x = torch.arange(0, points) - (points - 1.0) / 2 x = x / s wavelet = torch.exp(-x ** 2.0 / 2.0) * torch.cos(5.0 * x) output = np.sqrt(1 / s) * wavelet return output def cmorlet(self, points, s, wavelet_width=1, center_freq=1): x = torch.arange(0, points) - (points - 1.0) / 2 x = x / s norm_constant = np.sqrt(np.pi * wavelet_width) exp_term = torch.exp(-x ** 2 / wavelet_width) kernel_base = exp_term / norm_constant kernel = kernel_base * torch.exp(1j * 2 * np.pi * center_freq * x) return kernel def _build_wavelet_bank(self): """This function builds a 2D wavelet filter using wavelets at different scales Returns: tensor: Tensor of shape (num_widths, 1, channels, filter_len) """ wavelet_bank = [torch.conj(torch.flip(self.wavelet(self.filter_len, w), [-1])) for w in self.widths] wavelet_bank = torch.stack(wavelet_bank) wavelet_bank = wavelet_bank.view(wavelet_bank.shape[0], 1, 1, wavelet_bank.shape[1]) wavelet_bank = torch.cat([wavelet_bank] * self.channels, 2) return wavelet_bank def forward(self, x): """Compute CWT arrays from a batch of multi-channel inputs Args: x (torch.tensor): Tensor of shape (batch_size, channels, time) Returns: torch.tensor: Tensor of shape (batch_size, channels, widths, time) """ x = x.unsqueeze(1) if self.wavelet_bank.is_complex(): wavelet_real = self.wavelet_bank.real.to(device=x.device, dtype=x.dtype) wavelet_imag = self.wavelet_bank.imag.to(device=x.device, dtype=x.dtype) output_real = nn.functional.conv2d(x, wavelet_real, padding='same') output_imag = nn.functional.conv2d(x, wavelet_imag, padding='same') output_real = torch.transpose(output_real, 1, 2) output_imag = torch.transpose(output_imag, 1, 2) return torch.complex(output_real, output_imag) else: self.wavelet_bank = self.wavelet_bank.to(device=x.device, dtype=x.dtype) output = nn.functional.conv2d(x, self.wavelet_bank, padding='same') return torch.transpose(output, 1, 2) widths = np.arange(20, 120) pycwt = CWT(widths, 'cmorlet', 3, 4096) def apply_qtransform(waves, transform=CQT1992v2(sr=2048, fmin=21.83, fmax=1024, hop_length=64), cuda=False): waves = min_max_scaler(butter_bandpass_filter(waves, 21.83, 500, fs, 4)) waves = torch.from_numpy(waves).float().view(1, 3, 4096) if cuda: waves = waves.cuda() image = pycwt(waves) return image imgs = [] for i in range(10): img = apply_qtransform(wave, transform=CQT1992v2(sr=2048, fmin=21.83, n_bins=63, hop_length=64)) imgs.append(img) img[0, 0].shape
code
72068023/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
from numba import njit, jit, cuda, guvectorize from scipy.signal import butter, filtfilt, sosfiltfilt from scipy.signal import spectrogram import glob import matplotlib.pyplot as plt import numpy as np # linear algebra import pathlib import torch import glob import pathlib head = pathlib.Path('../input/g2net-gravitational-wave-detection') train_files = sorted(glob.glob('../input/g2net-gravitational-wave-detection/train/*/*/*/*.npy')) wave = np.load(train_files[0]) from numba import njit, jit, cuda, guvectorize @njit(nogil=True) def min_max_scaler(wave): for i in range(len(wave)): wave[i] = (wave[i] - min(wave[i])) / (max(wave[i]) - min(wave[i])) wave[i] = 2 * wave[i] - 1 return wave wave1 = min_max_scaler(wave) from scipy.signal import butter, filtfilt, sosfiltfilt T = 2 fs = 2048.0 cutoff = 2.5 nyq = 0.5 * fs order = 3 n = int(T * fs) normal_cutoff = cutoff / nyq normal_cutoff = (21.83 / fs, 500 / fs) def butter_bandpass_filter(data, normal_cutoff, fs, order=2): b, a = butter(order, normal_cutoff, btype='bandpass', analog=False) y = filtfilt(b, a, data) return y def butter_bandpass_filter(data, low, high, fs, order): sos = butter(order, [low, high], btype='bandpass', output='sos', fs=fs) normalization = np.sqrt((high - low) / (fs / 2)) return sosfiltfilt(sos, data) / normalization def butter_lowpass_filter(data, normal_cutoff, fs, order): b, a = butter(order, normal_cutoff, btype='lowpass', analog=False) y = filtfilt(b, a, data) return y data = torch.from_numpy(wave) y = butter_bandpass_filter(data, 21.83, 500, fs, 4) from scipy.signal import spectrogram plt.figure(dpi=120) for i in range(len(wave)): f, t, Sxx = spectrogram(wave1[i], fs=10) plt.pcolormesh(t, f, Sxx, shading='gouraud')
code
72068023/cell_25
[ "image_output_1.png" ]
t.min()
code
72068023/cell_4
[ "text_plain_output_1.png" ]
import fastai import fastai import torch fastai.__version__
code
72068023/cell_33
[ "text_plain_output_1.png" ]
import gc import gc gc.collect()
code
72068023/cell_40
[ "text_plain_output_1.png" ]
from numba import njit, jit, cuda, guvectorize from scipy.signal import butter, filtfilt, sosfiltfilt from scipy.signal import cwt, ricker from scipy.signal import spectrogram import glob import librosa import matplotlib.pyplot as plt import numpy as np # linear algebra import pathlib import torch import torch import glob import pathlib head = pathlib.Path('../input/g2net-gravitational-wave-detection') train_files = sorted(glob.glob('../input/g2net-gravitational-wave-detection/train/*/*/*/*.npy')) wave = np.load(train_files[0]) from numba import njit, jit, cuda, guvectorize @njit(nogil=True) def min_max_scaler(wave): for i in range(len(wave)): wave[i] = (wave[i] - min(wave[i])) / (max(wave[i]) - min(wave[i])) wave[i] = 2 * wave[i] - 1 return wave wave1 = min_max_scaler(wave) from scipy.signal import butter, filtfilt, sosfiltfilt T = 2 fs = 2048.0 cutoff = 2.5 nyq = 0.5 * fs order = 3 n = int(T * fs) normal_cutoff = cutoff / nyq normal_cutoff = (21.83 / fs, 500 / fs) def butter_bandpass_filter(data, normal_cutoff, fs, order=2): b, a = butter(order, normal_cutoff, btype='bandpass', analog=False) y = filtfilt(b, a, data) return y def butter_bandpass_filter(data, low, high, fs, order): sos = butter(order, [low, high], btype='bandpass', output='sos', fs=fs) normalization = np.sqrt((high - low) / (fs / 2)) return sosfiltfilt(sos, data) / normalization def butter_lowpass_filter(data, normal_cutoff, fs, order): b, a = butter(order, normal_cutoff, btype='lowpass', analog=False) y = filtfilt(b, a, data) return y data = torch.from_numpy(wave) y = butter_bandpass_filter(data, 21.83, 500, fs, 4) from scipy.signal import spectrogram for i in range(len(wave)): f, t, Sxx = spectrogram(wave1[i], fs=10) plt.pcolormesh(t, f, Sxx, shading='gouraud') def wrapper_plot(m): m() stacked = [] for j in range(len(wave1)): melspec = librosa.feature.melspectrogram(wave1[j], sr=4096, n_mels=128, fmin=21.83, fmax=2048) melspec = librosa.power_to_db(melspec) melspec = melspec.transpose((1, 0)) stacked.append(melspec) image = np.vstack(stacked) wave.shape cwt(wave[0], signal.ricker, np.arange(1, 300)) class CWT(nn.Module): def __init__(self, widths, wavelet='ricker', channels=1, filter_len=2000): """PyTorch implementation of a continuous wavelet transform. Args: widths (iterable): The wavelet scales to use, e.g. np.arange(1, 33) wavelet (str, optional): Name of wavelet. Either "ricker" or "morlet". Defaults to "ricker". channels (int, optional): Number of audio channels in the input. Defaults to 3. filter_len (int, optional): Size of the wavelet filter bank. Set to the number of samples but can be smaller to save memory. Defaults to 2000. """ super().__init__() self.widths = widths self.wavelet = getattr(self, wavelet) self.filter_len = filter_len self.channels = channels self.wavelet_bank = self._build_wavelet_bank() def ricker(self, points, a): A = 2 / (np.sqrt(3 * a) * np.pi ** 0.25) wsq = a ** 2 vec = torch.arange(0, points) - (points - 1.0) / 2 xsq = vec ** 2 mod = 1 - xsq / wsq gauss = torch.exp(-xsq / (2 * wsq)) total = A * mod * gauss return total def morlet(self, points, s): x = torch.arange(0, points) - (points - 1.0) / 2 x = x / s wavelet = torch.exp(-x ** 2.0 / 2.0) * torch.cos(5.0 * x) output = np.sqrt(1 / s) * wavelet return output def cmorlet(self, points, s, wavelet_width=1, center_freq=1): x = torch.arange(0, points) - (points - 1.0) / 2 x = x / s norm_constant = np.sqrt(np.pi * wavelet_width) exp_term = torch.exp(-x ** 2 / wavelet_width) kernel_base = exp_term / norm_constant kernel = kernel_base * torch.exp(1j * 2 * np.pi * center_freq * x) return kernel def _build_wavelet_bank(self): """This function builds a 2D wavelet filter using wavelets at different scales Returns: tensor: Tensor of shape (num_widths, 1, channels, filter_len) """ wavelet_bank = [torch.conj(torch.flip(self.wavelet(self.filter_len, w), [-1])) for w in self.widths] wavelet_bank = torch.stack(wavelet_bank) wavelet_bank = wavelet_bank.view(wavelet_bank.shape[0], 1, 1, wavelet_bank.shape[1]) wavelet_bank = torch.cat([wavelet_bank] * self.channels, 2) return wavelet_bank def forward(self, x): """Compute CWT arrays from a batch of multi-channel inputs Args: x (torch.tensor): Tensor of shape (batch_size, channels, time) Returns: torch.tensor: Tensor of shape (batch_size, channels, widths, time) """ x = x.unsqueeze(1) if self.wavelet_bank.is_complex(): wavelet_real = self.wavelet_bank.real.to(device=x.device, dtype=x.dtype) wavelet_imag = self.wavelet_bank.imag.to(device=x.device, dtype=x.dtype) output_real = nn.functional.conv2d(x, wavelet_real, padding='same') output_imag = nn.functional.conv2d(x, wavelet_imag, padding='same') output_real = torch.transpose(output_real, 1, 2) output_imag = torch.transpose(output_imag, 1, 2) return torch.complex(output_real, output_imag) else: self.wavelet_bank = self.wavelet_bank.to(device=x.device, dtype=x.dtype) output = nn.functional.conv2d(x, self.wavelet_bank, padding='same') return torch.transpose(output, 1, 2) widths = np.arange(20, 120) pycwt = CWT(widths, 'cmorlet', 3, 4096) def apply_qtransform(waves, transform=CQT1992v2(sr=2048, fmin=21.83, fmax=1024, hop_length=64), cuda=False): waves = min_max_scaler(butter_bandpass_filter(waves, 21.83, 500, fs, 4)) waves = torch.from_numpy(waves).float().view(1, 3, 4096) if cuda: waves = waves.cuda() image = pycwt(waves) return image imgs = [] for i in range(10): img = apply_qtransform(wave, transform=CQT1992v2(sr=2048, fmin=21.83, n_bins=63, hop_length=64)) imgs.append(img) print(img.shape)
code
72068023/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
from scipy.signal import butter, filtfilt, sosfiltfilt import glob import matplotlib.pyplot as plt import numpy as np # linear algebra import pathlib import torch import glob import pathlib head = pathlib.Path('../input/g2net-gravitational-wave-detection') train_files = sorted(glob.glob('../input/g2net-gravitational-wave-detection/train/*/*/*/*.npy')) wave = np.load(train_files[0]) from scipy.signal import butter, filtfilt, sosfiltfilt T = 2 fs = 2048.0 cutoff = 2.5 nyq = 0.5 * fs order = 3 n = int(T * fs) normal_cutoff = cutoff / nyq normal_cutoff = (21.83 / fs, 500 / fs) def butter_bandpass_filter(data, normal_cutoff, fs, order=2): b, a = butter(order, normal_cutoff, btype='bandpass', analog=False) y = filtfilt(b, a, data) return y def butter_bandpass_filter(data, low, high, fs, order): sos = butter(order, [low, high], btype='bandpass', output='sos', fs=fs) normalization = np.sqrt((high - low) / (fs / 2)) return sosfiltfilt(sos, data) / normalization def butter_lowpass_filter(data, normal_cutoff, fs, order): b, a = butter(order, normal_cutoff, btype='lowpass', analog=False) y = filtfilt(b, a, data) return y data = torch.from_numpy(wave) y = butter_bandpass_filter(data, 21.83, 500, fs, 4) plt.figure(dpi=120) plt.plot(range(len(wave[0])), y[0])
code
72068023/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
from scipy.signal import butter, filtfilt, sosfiltfilt import glob import matplotlib.pyplot as plt import numpy as np # linear algebra import pathlib import torch import glob import pathlib head = pathlib.Path('../input/g2net-gravitational-wave-detection') train_files = sorted(glob.glob('../input/g2net-gravitational-wave-detection/train/*/*/*/*.npy')) wave = np.load(train_files[0]) from scipy.signal import butter, filtfilt, sosfiltfilt T = 2 fs = 2048.0 cutoff = 2.5 nyq = 0.5 * fs order = 3 n = int(T * fs) normal_cutoff = cutoff / nyq normal_cutoff = (21.83 / fs, 500 / fs) def butter_bandpass_filter(data, normal_cutoff, fs, order=2): b, a = butter(order, normal_cutoff, btype='bandpass', analog=False) y = filtfilt(b, a, data) return y def butter_bandpass_filter(data, low, high, fs, order): sos = butter(order, [low, high], btype='bandpass', output='sos', fs=fs) normalization = np.sqrt((high - low) / (fs / 2)) return sosfiltfilt(sos, data) / normalization def butter_lowpass_filter(data, normal_cutoff, fs, order): b, a = butter(order, normal_cutoff, btype='lowpass', analog=False) y = filtfilt(b, a, data) return y data = torch.from_numpy(wave) y = butter_bandpass_filter(data, 21.83, 500, fs, 4) plt.figure(dpi=120) plt.plot(range(len(wave[0])), y[0])
code
72068023/cell_24
[ "image_output_1.png" ]
from numba import njit, jit, cuda, guvectorize from scipy.signal import butter, filtfilt, sosfiltfilt from scipy.signal import spectrogram import glob import librosa import matplotlib.pyplot as plt import numpy as np # linear algebra import pathlib import torch import glob import pathlib head = pathlib.Path('../input/g2net-gravitational-wave-detection') train_files = sorted(glob.glob('../input/g2net-gravitational-wave-detection/train/*/*/*/*.npy')) wave = np.load(train_files[0]) from numba import njit, jit, cuda, guvectorize @njit(nogil=True) def min_max_scaler(wave): for i in range(len(wave)): wave[i] = (wave[i] - min(wave[i])) / (max(wave[i]) - min(wave[i])) wave[i] = 2 * wave[i] - 1 return wave wave1 = min_max_scaler(wave) from scipy.signal import butter, filtfilt, sosfiltfilt T = 2 fs = 2048.0 cutoff = 2.5 nyq = 0.5 * fs order = 3 n = int(T * fs) normal_cutoff = cutoff / nyq normal_cutoff = (21.83 / fs, 500 / fs) def butter_bandpass_filter(data, normal_cutoff, fs, order=2): b, a = butter(order, normal_cutoff, btype='bandpass', analog=False) y = filtfilt(b, a, data) return y def butter_bandpass_filter(data, low, high, fs, order): sos = butter(order, [low, high], btype='bandpass', output='sos', fs=fs) normalization = np.sqrt((high - low) / (fs / 2)) return sosfiltfilt(sos, data) / normalization def butter_lowpass_filter(data, normal_cutoff, fs, order): b, a = butter(order, normal_cutoff, btype='lowpass', analog=False) y = filtfilt(b, a, data) return y data = torch.from_numpy(wave) y = butter_bandpass_filter(data, 21.83, 500, fs, 4) from scipy.signal import spectrogram for i in range(len(wave)): f, t, Sxx = spectrogram(wave1[i], fs=10) plt.pcolormesh(t, f, Sxx, shading='gouraud') def wrapper_plot(m): m() stacked = [] for j in range(len(wave1)): melspec = librosa.feature.melspectrogram(wave1[j], sr=4096, n_mels=128, fmin=21.83, fmax=2048) melspec = librosa.power_to_db(melspec) melspec = melspec.transpose((1, 0)) stacked.append(melspec) image = np.vstack(stacked) wrapper_plot(lambda: plt.imshow(image))
code
72068023/cell_10
[ "text_plain_output_1.png" ]
import glob import matplotlib.pyplot as plt import numpy as np # linear algebra import pathlib import glob import pathlib head = pathlib.Path('../input/g2net-gravitational-wave-detection') train_files = sorted(glob.glob('../input/g2net-gravitational-wave-detection/train/*/*/*/*.npy')) wave = np.load(train_files[0]) plt.figure(dpi=120) for i in range(len(wave)): plt.plot(range(len(wave[i])), wave[i], label=f'label_{i}') plt.legend()
code
72068023/cell_37
[ "text_plain_output_1.png" ]
from numba import njit, jit, cuda, guvectorize from scipy.signal import butter, filtfilt, sosfiltfilt from scipy.signal import cwt, ricker from scipy.signal import spectrogram import glob import librosa import matplotlib.pyplot as plt import numpy as np # linear algebra import pathlib import torch import torch import glob import pathlib head = pathlib.Path('../input/g2net-gravitational-wave-detection') train_files = sorted(glob.glob('../input/g2net-gravitational-wave-detection/train/*/*/*/*.npy')) wave = np.load(train_files[0]) from numba import njit, jit, cuda, guvectorize @njit(nogil=True) def min_max_scaler(wave): for i in range(len(wave)): wave[i] = (wave[i] - min(wave[i])) / (max(wave[i]) - min(wave[i])) wave[i] = 2 * wave[i] - 1 return wave wave1 = min_max_scaler(wave) from scipy.signal import butter, filtfilt, sosfiltfilt T = 2 fs = 2048.0 cutoff = 2.5 nyq = 0.5 * fs order = 3 n = int(T * fs) normal_cutoff = cutoff / nyq normal_cutoff = (21.83 / fs, 500 / fs) def butter_bandpass_filter(data, normal_cutoff, fs, order=2): b, a = butter(order, normal_cutoff, btype='bandpass', analog=False) y = filtfilt(b, a, data) return y def butter_bandpass_filter(data, low, high, fs, order): sos = butter(order, [low, high], btype='bandpass', output='sos', fs=fs) normalization = np.sqrt((high - low) / (fs / 2)) return sosfiltfilt(sos, data) / normalization def butter_lowpass_filter(data, normal_cutoff, fs, order): b, a = butter(order, normal_cutoff, btype='lowpass', analog=False) y = filtfilt(b, a, data) return y data = torch.from_numpy(wave) y = butter_bandpass_filter(data, 21.83, 500, fs, 4) from scipy.signal import spectrogram for i in range(len(wave)): f, t, Sxx = spectrogram(wave1[i], fs=10) plt.pcolormesh(t, f, Sxx, shading='gouraud') def wrapper_plot(m): m() stacked = [] for j in range(len(wave1)): melspec = librosa.feature.melspectrogram(wave1[j], sr=4096, n_mels=128, fmin=21.83, fmax=2048) melspec = librosa.power_to_db(melspec) melspec = melspec.transpose((1, 0)) stacked.append(melspec) image = np.vstack(stacked) wave.shape cwt(wave[0], signal.ricker, np.arange(1, 300))
code
72068023/cell_36
[ "text_plain_output_1.png" ]
import glob import numpy as np # linear algebra import pathlib import glob import pathlib head = pathlib.Path('../input/g2net-gravitational-wave-detection') train_files = sorted(glob.glob('../input/g2net-gravitational-wave-detection/train/*/*/*/*.npy')) wave = np.load(train_files[0]) wave.shape
code
90123330/cell_24
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt Nomes = 'Masculino Feminino'.split() Med = [1500, 1500] import matplotlib.pyplot as plt Nomes = 'Masculino Feminino'.split() Med = [1500, 1500] plt.pie(Med, labels=Nomes) plt.show()
code
90123330/cell_22
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt Nomes = 'Masculino Feminino'.split() Med = [1500, 1500] plt.pie(Med, labels=Nomes) plt.show()
code
74054195/cell_42
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression model_lr_smt = LogisticRegression(solver='liblinear') model_lr_smt.fit(X_train, y_train)
code
74054195/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) main_df = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df = main_df.copy() df.isnull().sum() legit = df[df.Class == 0] fraud = df[df.Class == 1] fraud.Amount.describe()
code
74054195/cell_23
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) main_df = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df = main_df.copy() df.isnull().sum() legit = df[df.Class == 0] fraud = df[df.Class == 1] legit_sample = legit.sample(n=492) new_df = pd.concat([legit_sample, fraud], axis=0) new_df.shape new_df.groupby('Class').mean() X = new_df.drop(columns='Class', axis=1) Y = new_df['Class'] Y.shape
code
74054195/cell_30
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score, plot_roc_curve, classification_report import numpy as np import numpy as np # linear algebra import seaborn as sns model_lr = LogisticRegression(max_iter=120, random_state=0, n_jobs=20, solver='liblinear') model_lr.fit(X_train, y_train) trn_lr_pred = model_lr.predict(X_train) trn_lr_acc = accuracy_score(trn_lr_pred, y_train) tst_lr_pred = model_lr.predict(X_test) tst_lr_acc = accuracy_score(tst_lr_pred, y_test) cm1 = confusion_matrix(y_test, tst_lr_pred) sns.heatmap(cm1 / np.sum(cm1), annot=True, fmt='0.2%', cmap='Reds')
code
74054195/cell_44
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score, plot_roc_curve, classification_report model_lr = LogisticRegression(max_iter=120, random_state=0, n_jobs=20, solver='liblinear') model_lr.fit(X_train, y_train) trn_lr_pred = model_lr.predict(X_train) trn_lr_acc = accuracy_score(trn_lr_pred, y_train) tst_lr_pred = model_lr.predict(X_test) tst_lr_acc = accuracy_score(tst_lr_pred, y_test) trn_lr_smt_pred = model_lr.predict(X_train) trn_lr_smt_acc = accuracy_score(trn_lr_smt_pred, y_train) tst_lr_smt_pred = model_lr.predict(X_test) tst_lr_smt_acc = accuracy_score(tst_lr_smt_pred, y_test) print(round(tst_lr_smt_acc * 100, 2))
code
74054195/cell_20
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) main_df = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df = main_df.copy() df.isnull().sum() legit = df[df.Class == 0] fraud = df[df.Class == 1] legit_sample = legit.sample(n=492) new_df = pd.concat([legit_sample, fraud], axis=0) new_df.shape new_df.groupby('Class').mean()
code
74054195/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) main_df = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df = main_df.copy() df.info()
code
74054195/cell_40
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score, plot_roc_curve, classification_report import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns main_df = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df = main_df.copy() df.isnull().sum() legit = df[df.Class == 0] fraud = df[df.Class == 1] df.groupby('Class').mean() model_lr = LogisticRegression(max_iter=120, random_state=0, n_jobs=20, solver='liblinear') model_lr.fit(X_train, y_train) trn_lr_pred = model_lr.predict(X_train) trn_lr_acc = accuracy_score(trn_lr_pred, y_train) tst_lr_pred = model_lr.predict(X_test) tst_lr_acc = accuracy_score(tst_lr_pred, y_test) cm1 = confusion_matrix(y_test, tst_lr_pred) df.shape X1 = df.drop(columns='Class', axis=1) y1 = df['Class'] (X1.shape, y1.shape) unique_original, counts_original = np.unique(y1, return_counts=True) unique_oversampled, counts_oversampled = np.unique(y_oversampled, return_counts=True) print('Original fraud class distribution:', dict(zip(unique_original, counts_original))) print('New transformed fraud class distribution:', dict(zip(unique_oversampled, counts_oversampled)))
code
74054195/cell_39
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline pipeline = Pipeline([('model', LogisticRegression(solver='liblinear'))]) pipeline.fit(X_oversampled, y_oversampled)
code
74054195/cell_26
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression model_lr = LogisticRegression(max_iter=120, random_state=0, n_jobs=20, solver='liblinear') model_lr.fit(X_train, y_train)
code
74054195/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) main_df = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df = main_df.copy() df.isnull().sum() legit = df[df.Class == 0] fraud = df[df.Class == 1] print(legit.shape) print(fraud.shape)
code
74054195/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) main_df = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df = main_df.copy() df.isnull().sum() legit = df[df.Class == 0] fraud = df[df.Class == 1] legit_sample = legit.sample(n=492) new_df = pd.concat([legit_sample, fraud], axis=0) new_df.shape new_df['Class'].value_counts()
code
74054195/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
74054195/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) main_df = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df = main_df.copy() df.isnull().sum()
code
74054195/cell_45
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score, plot_roc_curve, classification_report import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns main_df = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df = main_df.copy() df.isnull().sum() legit = df[df.Class == 0] fraud = df[df.Class == 1] df.groupby('Class').mean() model_lr = LogisticRegression(max_iter=120, random_state=0, n_jobs=20, solver='liblinear') model_lr.fit(X_train, y_train) trn_lr_pred = model_lr.predict(X_train) trn_lr_acc = accuracy_score(trn_lr_pred, y_train) tst_lr_pred = model_lr.predict(X_test) tst_lr_acc = accuracy_score(tst_lr_pred, y_test) cm1 = confusion_matrix(y_test, tst_lr_pred) df.shape X1 = df.drop(columns='Class', axis=1) y1 = df['Class'] (X1.shape, y1.shape) unique_original, counts_original = np.unique(y1, return_counts=True) unique_oversampled, counts_oversampled = np.unique(y_oversampled, return_counts=True) trn_lr_smt_pred = model_lr.predict(X_train) trn_lr_smt_acc = accuracy_score(trn_lr_smt_pred, y_train) tst_lr_smt_pred = model_lr.predict(X_test) tst_lr_smt_acc = accuracy_score(tst_lr_smt_pred, y_test) cm2 = confusion_matrix(y_test, tst_lr_smt_pred) sns.heatmap(cm2 / np.sum(cm2), annot=True, fmt='0.2%', cmap='Reds')
code
74054195/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) main_df = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df = main_df.copy() df.isnull().sum() legit = df[df.Class == 0] fraud = df[df.Class == 1] legit_sample = legit.sample(n=492) new_df = pd.concat([legit_sample, fraud], axis=0) new_df.shape new_df.head()
code
74054195/cell_32
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score, plot_roc_curve, classification_report model_lr = LogisticRegression(max_iter=120, random_state=0, n_jobs=20, solver='liblinear') model_lr.fit(X_train, y_train) trn_lr_pred = model_lr.predict(X_train) trn_lr_acc = accuracy_score(trn_lr_pred, y_train) tst_lr_pred = model_lr.predict(X_test) tst_lr_acc = accuracy_score(tst_lr_pred, y_test) print(classification_report(y_test, tst_lr_pred))
code
74054195/cell_28
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score, plot_roc_curve, classification_report model_lr = LogisticRegression(max_iter=120, random_state=0, n_jobs=20, solver='liblinear') model_lr.fit(X_train, y_train) trn_lr_pred = model_lr.predict(X_train) trn_lr_acc = accuracy_score(trn_lr_pred, y_train) tst_lr_pred = model_lr.predict(X_test) tst_lr_acc = accuracy_score(tst_lr_pred, y_test) print(round(tst_lr_acc * 100, 2))
code
74054195/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) main_df = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df = main_df.copy() df.isnull().sum() df['Class'].value_counts()
code
74054195/cell_47
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score, plot_roc_curve, classification_report model_lr = LogisticRegression(max_iter=120, random_state=0, n_jobs=20, solver='liblinear') model_lr.fit(X_train, y_train) trn_lr_pred = model_lr.predict(X_train) trn_lr_acc = accuracy_score(trn_lr_pred, y_train) tst_lr_pred = model_lr.predict(X_test) tst_lr_acc = accuracy_score(tst_lr_pred, y_test) trn_lr_smt_pred = model_lr.predict(X_train) trn_lr_smt_acc = accuracy_score(trn_lr_smt_pred, y_train) tst_lr_smt_pred = model_lr.predict(X_test) tst_lr_smt_acc = accuracy_score(tst_lr_smt_pred, y_test) print(classification_report(y_test, tst_lr_smt_pred))
code
74054195/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) main_df = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df = main_df.copy() df.isnull().sum() legit = df[df.Class == 0] fraud = df[df.Class == 1] legit_sample = legit.sample(n=492) new_df = pd.concat([legit_sample, fraud], axis=0) new_df.shape
code
74054195/cell_35
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) main_df = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df = main_df.copy() df.isnull().sum() legit = df[df.Class == 0] fraud = df[df.Class == 1] df.groupby('Class').mean() df.shape
code
74054195/cell_43
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score, plot_roc_curve, classification_report model_lr = LogisticRegression(max_iter=120, random_state=0, n_jobs=20, solver='liblinear') model_lr.fit(X_train, y_train) trn_lr_pred = model_lr.predict(X_train) trn_lr_acc = accuracy_score(trn_lr_pred, y_train) tst_lr_pred = model_lr.predict(X_test) tst_lr_acc = accuracy_score(tst_lr_pred, y_test) trn_lr_smt_pred = model_lr.predict(X_train) trn_lr_smt_acc = accuracy_score(trn_lr_smt_pred, y_train) print(round(trn_lr_smt_acc * 100, 2))
code
74054195/cell_31
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score, plot_roc_curve, classification_report import matplotlib.pyplot as plt model_lr = LogisticRegression(max_iter=120, random_state=0, n_jobs=20, solver='liblinear') model_lr.fit(X_train, y_train) trn_lr_pred = model_lr.predict(X_train) trn_lr_acc = accuracy_score(trn_lr_pred, y_train) tst_lr_pred = model_lr.predict(X_test) tst_lr_acc = accuracy_score(tst_lr_pred, y_test) fig, ax = plt.subplots(figsize=(12, 8)) plot_roc_curve(model_lr, X_test, y_test, color='darkgreen', ax=ax)
code
74054195/cell_46
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score, plot_roc_curve, classification_report import matplotlib.pyplot as plt model_lr = LogisticRegression(max_iter=120, random_state=0, n_jobs=20, solver='liblinear') model_lr.fit(X_train, y_train) trn_lr_pred = model_lr.predict(X_train) trn_lr_acc = accuracy_score(trn_lr_pred, y_train) tst_lr_pred = model_lr.predict(X_test) tst_lr_acc = accuracy_score(tst_lr_pred, y_test) fig, ax = plt.subplots(figsize=(12, 8)) plot_roc_curve(model_lr, X_test, y_test, color='darkgreen', ax=ax) model_lr_smt = LogisticRegression(solver='liblinear') model_lr_smt.fit(X_train, y_train) fig, ax = plt.subplots(figsize=(12, 8)) plot_roc_curve(model_lr_smt, X_test, y_test, color='darkgreen', ax=ax)
code
74054195/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) main_df = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df = main_df.copy() df.isnull().sum() legit = df[df.Class == 0] fraud = df[df.Class == 1] df.groupby('Class').mean()
code
74054195/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) main_df = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df = main_df.copy() df.isnull().sum() legit = df[df.Class == 0] fraud = df[df.Class == 1] legit_sample = legit.sample(n=492) new_df = pd.concat([legit_sample, fraud], axis=0) new_df.shape new_df.groupby('Class').mean() X = new_df.drop(columns='Class', axis=1) Y = new_df['Class'] X.shape
code
74054195/cell_27
[ "text_html_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score, plot_roc_curve, classification_report model_lr = LogisticRegression(max_iter=120, random_state=0, n_jobs=20, solver='liblinear') model_lr.fit(X_train, y_train) trn_lr_pred = model_lr.predict(X_train) trn_lr_acc = accuracy_score(trn_lr_pred, y_train) print(round(trn_lr_acc * 100, 2))
code
74054195/cell_37
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) main_df = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df = main_df.copy() df.isnull().sum() legit = df[df.Class == 0] fraud = df[df.Class == 1] df.groupby('Class').mean() df.shape X1 = df.drop(columns='Class', axis=1) y1 = df['Class'] (X1.shape, y1.shape)
code
74054195/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) main_df = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df = main_df.copy() df.isnull().sum() legit = df[df.Class == 0] fraud = df[df.Class == 1] legit.Amount.describe()
code
74054195/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) main_df = pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv') df = main_df.copy() df.head()
code
106202730/cell_4
[ "image_output_1.png" ]
import igraph as ig import igraph as ig import igraph as ig import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import igraph as ig import matplotlib.pyplot as plt g = ig.Graph.Famous('Zachary') # Compute cliques cliques = g.cliques(4, 4) # Plot each clique highlighted in a separate axes fig, axs = plt.subplots(3, 4, figsize = (20,10)) axs = axs.ravel() for clique, ax in zip(cliques, axs): ig.plot( ig.VertexCover(g, [clique]), mark_groups=True, palette=ig.RainbowPalette(), edge_width=0.5, target=ax, ) plt.axis('off') plt.show() import igraph as ig import matplotlib.pyplot as plt g = ig.Graph.Famous('Zachary') # Compute cliques cliques = g.maximal_cliques(min = 4)# (4, 4) # Plot each clique highlighted in a separate axes fig, axs = plt.subplots(1, 4, figsize = (20,10)) axs = axs.ravel() for clique, ax in zip(cliques, axs): ig.plot( ig.VertexCover(g, [clique]), mark_groups=True, palette=ig.RainbowPalette(), edge_width=0.5, target=ax, ) plt.axis('off') plt.show() () import igraph as ig import matplotlib.pyplot as plt g = ig.Graph.Famous('Zachary') cliques = g.largest_cliques() fig, axs = plt.subplots(1, 2, figsize=(20, 10)) axs = axs.ravel() for clique, ax in zip(cliques, axs): ig.plot(ig.VertexCover(g, [clique]), mark_groups=True, palette=ig.RainbowPalette(), edge_width=0.5, target=ax) plt.axis('off') plt.show()
code
106202730/cell_2
[ "image_output_1.png" ]
import igraph as ig import matplotlib.pyplot as plt import igraph as ig import matplotlib.pyplot as plt g = ig.Graph.Famous('Zachary') cliques = g.cliques(4, 4) fig, axs = plt.subplots(3, 4, figsize=(20, 10)) axs = axs.ravel() for clique, ax in zip(cliques, axs): ig.plot(ig.VertexCover(g, [clique]), mark_groups=True, palette=ig.RainbowPalette(), edge_width=0.5, target=ax) plt.axis('off') plt.show()
code
106202730/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
106202730/cell_8
[ "image_output_1.png" ]
import igraph as ig import igraph as ig import igraph as ig import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import igraph as ig import matplotlib.pyplot as plt g = ig.Graph.Famous('Zachary') # Compute cliques cliques = g.cliques(4, 4) # Plot each clique highlighted in a separate axes fig, axs = plt.subplots(3, 4, figsize = (20,10)) axs = axs.ravel() for clique, ax in zip(cliques, axs): ig.plot( ig.VertexCover(g, [clique]), mark_groups=True, palette=ig.RainbowPalette(), edge_width=0.5, target=ax, ) plt.axis('off') plt.show() import igraph as ig import matplotlib.pyplot as plt g = ig.Graph.Famous('Zachary') # Compute cliques cliques = g.maximal_cliques(min = 4)# (4, 4) # Plot each clique highlighted in a separate axes fig, axs = plt.subplots(1, 4, figsize = (20,10)) axs = axs.ravel() for clique, ax in zip(cliques, axs): ig.plot( ig.VertexCover(g, [clique]), mark_groups=True, palette=ig.RainbowPalette(), edge_width=0.5, target=ax, ) plt.axis('off') plt.show() () import igraph as ig import matplotlib.pyplot as plt g = ig.Graph.Famous('Zachary') # Compute cliques cliques = g.largest_cliques()# (min = 4)# (4, 4) # Plot each clique highlighted in a separate axes fig, axs = plt.subplots(1, 2, figsize = (20,10)) axs = axs.ravel() for clique, ax in zip(cliques, axs): ig.plot( ig.VertexCover(g, [clique]), mark_groups=True, palette=ig.RainbowPalette(), edge_width=0.5, target=ax, ) plt.axis('off') plt.show() subgraph_vs = g.subgraph(cliques[0]) fig, axs = plt.subplots(1, 2, figsize=(20, 10)) ig.plot(subgraph_vs, mark_groups=True, palette=ig.RainbowPalette(), edge_width=0.5, target=axs[0]) plt.axis('off') plt.show()
code
106202730/cell_3
[ "image_output_1.png" ]
import igraph as ig import igraph as ig import matplotlib.pyplot as plt import matplotlib.pyplot as plt import igraph as ig import matplotlib.pyplot as plt g = ig.Graph.Famous('Zachary') # Compute cliques cliques = g.cliques(4, 4) # Plot each clique highlighted in a separate axes fig, axs = plt.subplots(3, 4, figsize = (20,10)) axs = axs.ravel() for clique, ax in zip(cliques, axs): ig.plot( ig.VertexCover(g, [clique]), mark_groups=True, palette=ig.RainbowPalette(), edge_width=0.5, target=ax, ) plt.axis('off') plt.show() import igraph as ig import matplotlib.pyplot as plt g = ig.Graph.Famous('Zachary') cliques = g.maximal_cliques(min=4) fig, axs = plt.subplots(1, 4, figsize=(20, 10)) axs = axs.ravel() for clique, ax in zip(cliques, axs): ig.plot(ig.VertexCover(g, [clique]), mark_groups=True, palette=ig.RainbowPalette(), edge_width=0.5, target=ax) plt.axis('off') plt.show()
code
106202730/cell_5
[ "text_plain_output_1.png" ]
import igraph as ig import igraph as ig import igraph as ig import matplotlib.pyplot as plt import matplotlib.pyplot as plt import matplotlib.pyplot as plt import igraph as ig import matplotlib.pyplot as plt g = ig.Graph.Famous('Zachary') # Compute cliques cliques = g.cliques(4, 4) # Plot each clique highlighted in a separate axes fig, axs = plt.subplots(3, 4, figsize = (20,10)) axs = axs.ravel() for clique, ax in zip(cliques, axs): ig.plot( ig.VertexCover(g, [clique]), mark_groups=True, palette=ig.RainbowPalette(), edge_width=0.5, target=ax, ) plt.axis('off') plt.show() import igraph as ig import matplotlib.pyplot as plt g = ig.Graph.Famous('Zachary') # Compute cliques cliques = g.maximal_cliques(min = 4)# (4, 4) # Plot each clique highlighted in a separate axes fig, axs = plt.subplots(1, 4, figsize = (20,10)) axs = axs.ravel() for clique, ax in zip(cliques, axs): ig.plot( ig.VertexCover(g, [clique]), mark_groups=True, palette=ig.RainbowPalette(), edge_width=0.5, target=ax, ) plt.axis('off') plt.show() () import igraph as ig import matplotlib.pyplot as plt g = ig.Graph.Famous('Zachary') # Compute cliques cliques = g.largest_cliques()# (min = 4)# (4, 4) # Plot each clique highlighted in a separate axes fig, axs = plt.subplots(1, 2, figsize = (20,10)) axs = axs.ravel() for clique, ax in zip(cliques, axs): ig.plot( ig.VertexCover(g, [clique]), mark_groups=True, palette=ig.RainbowPalette(), edge_width=0.5, target=ax, ) plt.axis('off') plt.show() cliques[0]
code
50211763/cell_9
[ "text_plain_output_1.png" ]
sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo,Selamat Datang' sapa = 'Hallo, Selamat Datang' print(sapa[1:20])
code
50211763/cell_4
[ "text_plain_output_1.png" ]
sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' print(sapa[0])
code
50211763/cell_20
[ "text_plain_output_1.png" ]
string = 'Qbert' add_string = '!!!' a = string.replace('b', '*') print(a + str(add_string))
code
50211763/cell_6
[ "text_plain_output_1.png" ]
sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' print(sapa[-3:])
code
50211763/cell_2
[ "text_plain_output_1.png" ]
sapa = 'Hallo, Selamat Datang' print('Jumlah total karakter dalam string :', len(sapa))
code
50211763/cell_11
[ "text_plain_output_1.png" ]
sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo,Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' print(sapa.replace('a', 'e'))
code
50211763/cell_7
[ "text_plain_output_1.png" ]
sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' print(sapa[::-1])
code
50211763/cell_18
[ "text_plain_output_1.png" ]
def vowelcheck(): l = input('Enter a word : ') if 'a' in l: return 'Your word contains a vowel' if 'e' in l: return 'Your word contains a vowel' if 'i' in l: return 'Your word contains a vowel' if 'o' in l: return 'Your word contains a vowel' if 'u' in l: return 'Your word contains a vowel' else: return 'your word has only consonants ' print(vowelcheck())
code
50211763/cell_8
[ "text_plain_output_1.png" ]
sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo,Selamat Datang' print(sapa[7])
code
50211763/cell_16
[ "text_plain_output_1.png" ]
str1 = input('Please Enter your Own String : ') total = 1 for i in range(len(str1)): if str1[i] == ' ' or str1 == '\n' or str1 == '\t': total = total + 1 class py_solution: def is_valid_parenthese(self, str1): stack, pchar = ([], {'(': ')', '{': '}', '[': ']'}) for parenthese in str1: if parenthese in pchar: stack.append(parenthese) elif len(stack) == 0 or pchar[stack.pop()] != parenthese: return False return len(stack) == 0 print(py_solution().is_valid_parenthese('(){}[]')) print(py_solution().is_valid_parenthese('()[{)}')) print(py_solution().is_valid_parenthese('()'))
code
50211763/cell_3
[ "text_plain_output_1.png" ]
sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' print(sapa * 10)
code
50211763/cell_14
[ "text_plain_output_1.png" ]
str1 = input('Please Enter your Own String : ') total = 1 for i in range(len(str1)): if str1[i] == ' ' or str1 == '\n' or str1 == '\t': total = total + 1 print('Total Number of Words in this String = ', total)
code
50211763/cell_10
[ "text_plain_output_1.png" ]
sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo,Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' print(sapa.upper())
code
50211763/cell_12
[ "text_plain_output_1.png" ]
sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo,Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' print(sapa.replace('Hallo, Selamat Datang', ' '))
code
50211763/cell_5
[ "text_plain_output_1.png" ]
sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' sapa = 'Hallo, Selamat Datang' print(sapa[:3])
code
105193863/cell_21
[ "text_plain_output_1.png" ]
from tensorflow.keras import layers, models, Input from tensorflow.keras import layers,models from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout from tensorflow.keras.models import Model import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, models import numpy as np import matplotlib.pyplot as plt import os, PIL, pathlib data_dir = '../input/kafeidou/49-data' data_dir = pathlib.Path(data_dir) image_count = len(list(data_dir.glob('*/*.png'))) batch_size = 32 img_height = 224 img_width = 224 """ 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789 """ train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='training', seed=123, image_size=(img_height, img_width), batch_size=batch_size) """ 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789 """ val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='validation', seed=123, image_size=(img_height, img_width), batch_size=batch_size) class_names = train_ds.class_names plt.figure(figsize=(10, 4)) # 图形的宽为10高为5 for images, labels in train_ds.take(1): for i in range(10): ax = plt.subplot(2, 5, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.title(class_names[labels[i]]) plt.axis("off") AUTOTUNE = tf.data.AUTOTUNE train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) normalization_layer = layers.experimental.preprocessing.Rescaling(1.0 / 255) train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y)) val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y)) from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping epochs = 50 callbacks = [ModelCheckpoint('vgg16_best.h5', monitor='val_accuracy', verbose=1, save_best_only=True, save_weights_only=True), EarlyStopping(monitor='val_accuracy', min_delta=0.001, patience=10, verbose=1)] def plt_history(history): acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(len(loss)) def compile_model(model): initial_learning_rate = 0.0001 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps=30, decay_rate=0.92, staircase=True) opt = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate) model.compile(optimizer=opt, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model = tf.keras.applications.VGG16(weights='imagenet', input_shape=(224, 224, 3), include_top=False) output = model.output output = tf.keras.layers.Flatten()(output) output = tf.keras.layers.Dense(1024, activation='relu', name='dese-1024')(output) output = tf.keras.layers.Dense(512, activation='relu', name='dese-512')(output) output = tf.keras.layers.Dense(len(class_names), activation='softmax', name='softmax-result')(output) model = tf.keras.models.Model(model.input, output, name='VGG16') model.summary() compile_model(model) history = model.fit(train_ds, validation_data=val_ds, epochs=epochs, callbacks=callbacks) from tensorflow.keras import layers, models, Input from tensorflow.keras.models import Model from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout def VGG16(nb_classes, input_shape): input_tensor = Input(shape=input_shape) x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(input_tensor) x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x) x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x) x = Flatten()(x) x = Dense(1024, activation='relu', name='fc1')(x) x = Dense(512, activation='relu', name='fc2')(x) output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x) model = Model(input_tensor, output_tensor) return model model = VGG16(len(class_names), (img_width, img_height, 3)) model.summary()
code
105193863/cell_9
[ "image_output_1.png" ]
import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, models import numpy as np import matplotlib.pyplot as plt import os, PIL, pathlib data_dir = '../input/kafeidou/49-data' data_dir = pathlib.Path(data_dir) image_count = len(list(data_dir.glob('*/*.png'))) batch_size = 32 img_height = 224 img_width = 224 """ 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789 """ train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='training', seed=123, image_size=(img_height, img_width), batch_size=batch_size) class_names = train_ds.class_names print(class_names)
code
105193863/cell_23
[ "text_plain_output_1.png" ]
from tensorflow.keras import layers, models, Input from tensorflow.keras import layers,models from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout from tensorflow.keras.models import Model import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, models import numpy as np import matplotlib.pyplot as plt import os, PIL, pathlib data_dir = '../input/kafeidou/49-data' data_dir = pathlib.Path(data_dir) image_count = len(list(data_dir.glob('*/*.png'))) batch_size = 32 img_height = 224 img_width = 224 """ 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789 """ train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='training', seed=123, image_size=(img_height, img_width), batch_size=batch_size) """ 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789 """ val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='validation', seed=123, image_size=(img_height, img_width), batch_size=batch_size) class_names = train_ds.class_names plt.figure(figsize=(10, 4)) # 图形的宽为10高为5 for images, labels in train_ds.take(1): for i in range(10): ax = plt.subplot(2, 5, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.title(class_names[labels[i]]) plt.axis("off") AUTOTUNE = tf.data.AUTOTUNE train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) normalization_layer = layers.experimental.preprocessing.Rescaling(1.0 / 255) train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y)) val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y)) from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping epochs = 50 callbacks = [ModelCheckpoint('vgg16_best.h5', monitor='val_accuracy', verbose=1, save_best_only=True, save_weights_only=True), EarlyStopping(monitor='val_accuracy', min_delta=0.001, patience=10, verbose=1)] def plt_history(history): acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(len(loss)) def compile_model(model): initial_learning_rate = 0.0001 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps=30, decay_rate=0.92, staircase=True) opt = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate) model.compile(optimizer=opt, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model = tf.keras.applications.VGG16(weights='imagenet', input_shape=(224, 224, 3), include_top=False) output = model.output output = tf.keras.layers.Flatten()(output) output = tf.keras.layers.Dense(1024, activation='relu', name='dese-1024')(output) output = tf.keras.layers.Dense(512, activation='relu', name='dese-512')(output) output = tf.keras.layers.Dense(len(class_names), activation='softmax', name='softmax-result')(output) model = tf.keras.models.Model(model.input, output, name='VGG16') model.summary() compile_model(model) history = model.fit(train_ds, validation_data=val_ds, epochs=epochs, callbacks=callbacks) from tensorflow.keras import layers, models, Input from tensorflow.keras.models import Model from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout def VGG16(nb_classes, input_shape): input_tensor = Input(shape=input_shape) x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(input_tensor) x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x) x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x) x = Flatten()(x) x = Dense(1024, activation='relu', name='fc1')(x) x = Dense(512, activation='relu', name='fc2')(x) output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x) model = Model(input_tensor, output_tensor) return model model = VGG16(len(class_names), (img_width, img_height, 3)) model.summary() compile_model(model) history = model.fit(train_ds, validation_data=val_ds, epochs=epochs, callbacks=callbacks) plt_history(history)
code
105193863/cell_19
[ "text_plain_output_1.png" ]
from tensorflow.keras import layers,models from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, models import numpy as np import matplotlib.pyplot as plt import os, PIL, pathlib data_dir = '../input/kafeidou/49-data' data_dir = pathlib.Path(data_dir) image_count = len(list(data_dir.glob('*/*.png'))) batch_size = 32 img_height = 224 img_width = 224 """ 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789 """ train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='training', seed=123, image_size=(img_height, img_width), batch_size=batch_size) """ 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789 """ val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='validation', seed=123, image_size=(img_height, img_width), batch_size=batch_size) class_names = train_ds.class_names plt.figure(figsize=(10, 4)) # 图形的宽为10高为5 for images, labels in train_ds.take(1): for i in range(10): ax = plt.subplot(2, 5, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.title(class_names[labels[i]]) plt.axis("off") AUTOTUNE = tf.data.AUTOTUNE train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) normalization_layer = layers.experimental.preprocessing.Rescaling(1.0 / 255) train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y)) val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y)) from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping epochs = 50 callbacks = [ModelCheckpoint('vgg16_best.h5', monitor='val_accuracy', verbose=1, save_best_only=True, save_weights_only=True), EarlyStopping(monitor='val_accuracy', min_delta=0.001, patience=10, verbose=1)] def plt_history(history): acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(len(loss)) def compile_model(model): initial_learning_rate = 0.0001 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps=30, decay_rate=0.92, staircase=True) opt = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate) model.compile(optimizer=opt, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model = tf.keras.applications.VGG16(weights='imagenet', input_shape=(224, 224, 3), include_top=False) output = model.output output = tf.keras.layers.Flatten()(output) output = tf.keras.layers.Dense(1024, activation='relu', name='dese-1024')(output) output = tf.keras.layers.Dense(512, activation='relu', name='dese-512')(output) output = tf.keras.layers.Dense(len(class_names), activation='softmax', name='softmax-result')(output) model = tf.keras.models.Model(model.input, output, name='VGG16') model.summary() compile_model(model) history = model.fit(train_ds, validation_data=val_ds, epochs=epochs, callbacks=callbacks) plt_history(history)
code
105193863/cell_7
[ "text_plain_output_1.png" ]
import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, models import numpy as np import matplotlib.pyplot as plt import os, PIL, pathlib data_dir = '../input/kafeidou/49-data' data_dir = pathlib.Path(data_dir) image_count = len(list(data_dir.glob('*/*.png'))) batch_size = 32 img_height = 224 img_width = 224 """ 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789 """ train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='training', seed=123, image_size=(img_height, img_width), batch_size=batch_size)
code
105193863/cell_18
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from tensorflow.keras import layers,models from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, models import numpy as np import matplotlib.pyplot as plt import os, PIL, pathlib data_dir = '../input/kafeidou/49-data' data_dir = pathlib.Path(data_dir) image_count = len(list(data_dir.glob('*/*.png'))) batch_size = 32 img_height = 224 img_width = 224 """ 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789 """ train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='training', seed=123, image_size=(img_height, img_width), batch_size=batch_size) """ 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789 """ val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='validation', seed=123, image_size=(img_height, img_width), batch_size=batch_size) class_names = train_ds.class_names plt.figure(figsize=(10, 4)) # 图形的宽为10高为5 for images, labels in train_ds.take(1): for i in range(10): ax = plt.subplot(2, 5, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.title(class_names[labels[i]]) plt.axis("off") AUTOTUNE = tf.data.AUTOTUNE train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) normalization_layer = layers.experimental.preprocessing.Rescaling(1.0 / 255) train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y)) val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y)) from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping epochs = 50 callbacks = [ModelCheckpoint('vgg16_best.h5', monitor='val_accuracy', verbose=1, save_best_only=True, save_weights_only=True), EarlyStopping(monitor='val_accuracy', min_delta=0.001, patience=10, verbose=1)] def plt_history(history): acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(len(loss)) def compile_model(model): initial_learning_rate = 0.0001 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps=30, decay_rate=0.92, staircase=True) opt = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate) model.compile(optimizer=opt, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model = tf.keras.applications.VGG16(weights='imagenet', input_shape=(224, 224, 3), include_top=False) output = model.output output = tf.keras.layers.Flatten()(output) output = tf.keras.layers.Dense(1024, activation='relu', name='dese-1024')(output) output = tf.keras.layers.Dense(512, activation='relu', name='dese-512')(output) output = tf.keras.layers.Dense(len(class_names), activation='softmax', name='softmax-result')(output) model = tf.keras.models.Model(model.input, output, name='VGG16') model.summary() compile_model(model) history = model.fit(train_ds, validation_data=val_ds, epochs=epochs, callbacks=callbacks)
code
105193863/cell_8
[ "text_plain_output_1.png" ]
import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, models import numpy as np import matplotlib.pyplot as plt import os, PIL, pathlib data_dir = '../input/kafeidou/49-data' data_dir = pathlib.Path(data_dir) image_count = len(list(data_dir.glob('*/*.png'))) batch_size = 32 img_height = 224 img_width = 224 """ 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789 """ train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='training', seed=123, image_size=(img_height, img_width), batch_size=batch_size) """ 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789 """ val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='validation', seed=123, image_size=(img_height, img_width), batch_size=batch_size)
code
105193863/cell_16
[ "text_plain_output_1.png" ]
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, models import numpy as np import matplotlib.pyplot as plt import os, PIL, pathlib data_dir = '../input/kafeidou/49-data' data_dir = pathlib.Path(data_dir) image_count = len(list(data_dir.glob('*/*.png'))) batch_size = 32 img_height = 224 img_width = 224 """ 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789 """ train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='training', seed=123, image_size=(img_height, img_width), batch_size=batch_size) """ 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789 """ val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='validation', seed=123, image_size=(img_height, img_width), batch_size=batch_size) class_names = train_ds.class_names plt.figure(figsize=(10, 4)) # 图形的宽为10高为5 for images, labels in train_ds.take(1): for i in range(10): ax = plt.subplot(2, 5, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.title(class_names[labels[i]]) plt.axis("off") AUTOTUNE = tf.data.AUTOTUNE train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping epochs = 50 callbacks = [ModelCheckpoint('vgg16_best.h5', monitor='val_accuracy', verbose=1, save_best_only=True, save_weights_only=True), EarlyStopping(monitor='val_accuracy', min_delta=0.001, patience=10, verbose=1)] def plt_history(history): acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(len(loss)) def compile_model(model): initial_learning_rate = 0.0001 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps=30, decay_rate=0.92, staircase=True) opt = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate) model.compile(optimizer=opt, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model = tf.keras.applications.VGG16(weights='imagenet', input_shape=(224, 224, 3), include_top=False) output = model.output output = tf.keras.layers.Flatten()(output) output = tf.keras.layers.Dense(1024, activation='relu', name='dese-1024')(output) output = tf.keras.layers.Dense(512, activation='relu', name='dese-512')(output) output = tf.keras.layers.Dense(len(class_names), activation='softmax', name='softmax-result')(output) model = tf.keras.models.Model(model.input, output, name='VGG16') model.summary()
code
105193863/cell_3
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
from IPython.display import clear_output !pip install -q tensorflow==2.4.1 clear_output() import tensorflow as tf gpus = tf.config.list_physical_devices("GPU") if gpus: tf.config.experimental.set_memory_growth(gpus[0], True) #设置GPU显存用量按需使用 tf.config.set_visible_devices([gpus[0]],"GPU")
code
105193863/cell_22
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
from tensorflow.keras import layers, models, Input from tensorflow.keras import layers,models from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout from tensorflow.keras.models import Model import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, models import numpy as np import matplotlib.pyplot as plt import os, PIL, pathlib data_dir = '../input/kafeidou/49-data' data_dir = pathlib.Path(data_dir) image_count = len(list(data_dir.glob('*/*.png'))) batch_size = 32 img_height = 224 img_width = 224 """ 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789 """ train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='training', seed=123, image_size=(img_height, img_width), batch_size=batch_size) """ 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789 """ val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='validation', seed=123, image_size=(img_height, img_width), batch_size=batch_size) class_names = train_ds.class_names plt.figure(figsize=(10, 4)) # 图形的宽为10高为5 for images, labels in train_ds.take(1): for i in range(10): ax = plt.subplot(2, 5, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.title(class_names[labels[i]]) plt.axis("off") AUTOTUNE = tf.data.AUTOTUNE train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) normalization_layer = layers.experimental.preprocessing.Rescaling(1.0 / 255) train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y)) val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y)) from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping epochs = 50 callbacks = [ModelCheckpoint('vgg16_best.h5', monitor='val_accuracy', verbose=1, save_best_only=True, save_weights_only=True), EarlyStopping(monitor='val_accuracy', min_delta=0.001, patience=10, verbose=1)] def plt_history(history): acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(len(loss)) def compile_model(model): initial_learning_rate = 0.0001 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps=30, decay_rate=0.92, staircase=True) opt = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate) model.compile(optimizer=opt, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model = tf.keras.applications.VGG16(weights='imagenet', input_shape=(224, 224, 3), include_top=False) output = model.output output = tf.keras.layers.Flatten()(output) output = tf.keras.layers.Dense(1024, activation='relu', name='dese-1024')(output) output = tf.keras.layers.Dense(512, activation='relu', name='dese-512')(output) output = tf.keras.layers.Dense(len(class_names), activation='softmax', name='softmax-result')(output) model = tf.keras.models.Model(model.input, output, name='VGG16') model.summary() compile_model(model) history = model.fit(train_ds, validation_data=val_ds, epochs=epochs, callbacks=callbacks) from tensorflow.keras import layers, models, Input from tensorflow.keras.models import Model from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout def VGG16(nb_classes, input_shape): input_tensor = Input(shape=input_shape) x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(input_tensor) x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x) x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x) x = Flatten()(x) x = Dense(1024, activation='relu', name='fc1')(x) x = Dense(512, activation='relu', name='fc2')(x) output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x) model = Model(input_tensor, output_tensor) return model model = VGG16(len(class_names), (img_width, img_height, 3)) model.summary() compile_model(model) history = model.fit(train_ds, validation_data=val_ds, epochs=epochs, callbacks=callbacks)
code
105193863/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, models import numpy as np import matplotlib.pyplot as plt import os, PIL, pathlib data_dir = '../input/kafeidou/49-data' data_dir = pathlib.Path(data_dir) image_count = len(list(data_dir.glob('*/*.png'))) batch_size = 32 img_height = 224 img_width = 224 """ 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789 """ train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir, validation_split=0.2, subset='training', seed=123, image_size=(img_height, img_width), batch_size=batch_size) class_names = train_ds.class_names plt.figure(figsize=(10, 4)) for images, labels in train_ds.take(1): for i in range(10): ax = plt.subplot(2, 5, i + 1) plt.imshow(images[i].numpy().astype('uint8')) plt.title(class_names[labels[i]]) plt.axis('off')
code
105193863/cell_5
[ "image_output_1.png" ]
from tensorflow import keras from tensorflow.keras import layers, models import numpy as np import matplotlib.pyplot as plt import os, PIL, pathlib data_dir = '../input/kafeidou/49-data' data_dir = pathlib.Path(data_dir) image_count = len(list(data_dir.glob('*/*.png'))) print('图片总数为:', image_count)
code
88075725/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) omicron_data = pd.read_csv('/kaggle/input/omicron-covid19-variant-daily-cases/covid-variants.csv') omicron_data = pd.DataFrame(omicron_data) omicron_data.loc[(omicron_data['location'] == 'Thailand') & (omicron_data['variant'] == 'Omicron')]
code
88075725/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) omicron_data = pd.read_csv('/kaggle/input/omicron-covid19-variant-daily-cases/covid-variants.csv') omicron_data = pd.DataFrame(omicron_data) omicron_data.loc[(omicron_data['location'] == 'Thailand') & (omicron_data['variant'] == 'Omicron')] omicron_num_seq_Thailand = omicron_data[omicron_data['location'] == 'Thailand']['num_sequences_total'] omicron_date_Thailand = omicron_data[omicron_data['location'] == 'Thailand']['date'] plt.figure(figsize=(50, 10)) plt.xlabel('date') plt.ylabel('total cases') plt.title('Omicron Cases in Thailand') plt.plot(omicron_date_Thailand, omicron_num_seq_Thailand) plt.show()
code
88075725/cell_3
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
88075725/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) omicron_data = pd.read_csv('/kaggle/input/omicron-covid19-variant-daily-cases/covid-variants.csv') omicron_data = pd.DataFrame(omicron_data) omicron_data.head()
code
33096616/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image import matplotlib.pyplot as plt import os base = '/kaggle/input/alaska2-image-steganalysis/' id = '{:05d}'.format(20) cover_path = os.path.join(base, 'Cover', id + '.jpg') img = plt.imread(cover_path) from PIL import Image def genData(data): newd = [] for i in data: newd.append(format(ord(i), '08b')) return newd def modPix(pix, data): datalist = genData(data) lendata = len(datalist) imdata = iter(pix) for i in range(lendata): pix = [value for value in imdata.__next__()[:3] + imdata.__next__()[:3] + imdata.__next__()[:3]] for j in range(0, 8): if datalist[i][j] == '0' and pix[j] % 2 != 0: if pix[j] % 2 != 0: pix[j] -= 1 elif datalist[i][j] == '1' and pix[j] % 2 == 0: pix[j] -= 1 if i == lendata - 1: if pix[-1] % 2 == 0: pix[-1] -= 1 elif pix[-1] % 2 != 0: pix[-1] -= 1 pix = tuple(pix) yield pix[0:3] yield pix[3:6] yield pix[6:9] def encode_enc(newimg, data): w = newimg.size[0] x, y = (0, 0) for pixel in modPix(newimg.getdata(), data): newimg.putpixel((x, y), pixel) if x == w - 1: x = 0 y += 1 else: x += 1 return newimg def encode(): img = input('Enter image name(with extension): ') image = Image.open(img, 'r') data = input('Enter data to be encoded : ') if len(data) == 0: raise ValueError('Data is empty') newimg = image.copy() img = encode_enc(newimg, data) plt.imshow(img) def decode(): img = input('Enter image name(with extension) :') image = Image.open(img, 'r') data = '' imgdata = iter(image.getdata()) while True: pixels = [value for value in imgdata.__next__()[:3] + imgdata.__next__()[:3] + imgdata.__next__()[:3]] binstr = '' for i in pixels[:8]: if i % 2 == 0: binstr += '0' else: binstr += '1' data += chr(int(binstr, 2)) if pixels[-1] % 2 != 0: return data def main(): a = int(input(':: Welcome to Steganography ::\n1. Encode\n 2. Decode\n')) if a == 1: encode() elif a == 2: print('Decoded word- ' + decode()) else: raise Exception('Enter correct input') if __name__ == '__main__': main()
code
33096616/cell_4
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import os base = '/kaggle/input/alaska2-image-steganalysis/' id = '{:05d}'.format(20) cover_path = os.path.join(base, 'Cover', id + '.jpg') img = plt.imread(cover_path) cover_path
code
33096616/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import os base = '/kaggle/input/alaska2-image-steganalysis/' id = '{:05d}'.format(20) cover_path = os.path.join(base, 'Cover', id + '.jpg') img = plt.imread(cover_path) plt.imshow(img)
code
90123428/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.dtypes train_data.isnull().sum() test_data.isnull().sum() train_data.fillna(train_data.Age.mean(), inplace=True) train_data['Cabin'].fillna('Unknown', inplace=True) train_data['Embarked'].fillna('Unknown', inplace=True) test_data.fillna(test_data['Age'].mean(), inplace=True) test_data.fillna(test_data['Fare'].mean(), inplace=True) test_data['Cabin'].fillna('Unknown', inplace=True) train_data.groupby(['Sex'])['Survived'].value_counts(normalize=True) train_data.groupby(['Pclass'])['Survived'].value_counts(normalize=True) y = train_data['Survived'].values features = train_data[['Pclass', 'Sex', 'SibSp', 'Parch']] X = pd.get_dummies(features) X.head()
code
90123428/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') train_data.dtypes train_data.isnull().sum() test_data.isnull().sum() train_data.fillna(train_data.Age.mean(), inplace=True) train_data['Cabin'].fillna('Unknown', inplace=True) train_data['Embarked'].fillna('Unknown', inplace=True) test_data.fillna(test_data['Age'].mean(), inplace=True) test_data.fillna(test_data['Fare'].mean(), inplace=True) test_data['Cabin'].fillna('Unknown', inplace=True) test_data['Age'].describe()
code
90123428/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') test_data.isnull().sum()
code
90123428/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') test_data.head()
code
90123428/cell_23
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.neighbors import KNeighborsClassifier import numpy as np # linear algebra Ks = 100 mean_acc = np.zeros(Ks - 1) std_acc = np.zeros(Ks - 1) for n in range(1, Ks): neigh = KNeighborsClassifier(n_neighbors=n).fit(x_train, y_train) yhat = neigh.predict(x_test) mean_acc[n - 1] = metrics.accuracy_score(y_test, yhat) std_acc[n - 1] = np.std(yhat == y_test) / np.sqrt(yhat.shape[0]) print('The best accuracy was with', mean_acc.max(), 'with k=', mean_acc.argmax() + 1)
code
90123428/cell_33
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV from sklearn.tree import DecisionTreeClassifier parameters = {'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [2 * n for n in range(1, 10)], 'max_features': ['auto', 'sqrt'], 'min_samples_leaf': [1, 2, 4], 'min_samples_split': [2, 5, 10]} tree = DecisionTreeClassifier() tree_cv = GridSearchCV(tree, parameters, cv=10) tree_cv.fit(x_train, y_train) parameters = {'C': [0.01, 0.1, 1], 'penalty': ['l2'], 'solver': ['lbfgs', 'newton-cg', 'liblinear', 'sag', 'saga']} lr = LogisticRegression() logreg_cv = GridSearchCV(lr, parameters, cv=10) logreg_cv.fit(x_train, y_train) print('tuned hpyerparameters :(best parameters) ', logreg_cv.best_params_) print('accuracy :', logreg_cv.best_score_)
code
90123428/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv('/kaggle/input/titanic/test.csv') test_data['Age'].describe()
code