path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
90123428/cell_29 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import GridSearchCV
from sklearn.tree import DecisionTreeClassifier
parameters = {'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': [2 * n for n in range(1, 10)], 'max_features': ['auto', 'sqrt'], 'min_samples_leaf': [1, 2, 4], 'min_samples_split': [2, 5, 10]}
tree = DecisionTreeClassifier()
tree_cv = GridSearchCV(tree, parameters, cv=10)
tree_cv.fit(x_train, y_train)
print('tuned hpyerparameters :(best parameters) ', tree_cv.best_params_)
print('accuracy :', tree_cv.best_score_) | code |
90123428/cell_41 | [
"text_plain_output_1.png"
] | print('Your submission was successfully saved!') | code |
90123428/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
90123428/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('/kaggle/input/titanic/train.csv')
train_data.dtypes | code |
90123428/cell_18 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train_data = pd.read_csv('/kaggle/input/titanic/train.csv')
test_data = pd.read_csv('/kaggle/input/titanic/test.csv')
train_data.dtypes
train_data.isnull().sum()
test_data.isnull().sum()
train_data.fillna(train_data.Age.mean(), inplace=True)
train_data['Cabin'].fillna('Unknown', inplace=True)
train_data['Embarked'].fillna('Unknown', inplace=True)
test_data.fillna(test_data['Age'].mean(), inplace=True)
test_data.fillna(test_data['Fare'].mean(), inplace=True)
test_data['Cabin'].fillna('Unknown', inplace=True)
train_data.groupby(['Sex'])['Survived'].value_counts(normalize=True)
train_data.groupby(['Pclass'])['Survived'].value_counts(normalize=True)
sns.barplot(x='Pclass', y='Survived', data=train_data)
plt.xlabel('Passenger Class')
plt.ylabel('Survival Rate')
plt.title('Survival Rates by Passenger Class on the Titanic')
plt.show() | code |
90123428/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('/kaggle/input/titanic/train.csv')
train_data.dtypes
train_data.isnull().sum() | code |
90123428/cell_15 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
train_data = pd.read_csv('/kaggle/input/titanic/train.csv')
test_data = pd.read_csv('/kaggle/input/titanic/test.csv')
train_data.dtypes
train_data.isnull().sum()
test_data.isnull().sum()
train_data.fillna(train_data.Age.mean(), inplace=True)
train_data['Cabin'].fillna('Unknown', inplace=True)
train_data['Embarked'].fillna('Unknown', inplace=True)
test_data.fillna(test_data['Age'].mean(), inplace=True)
test_data.fillna(test_data['Fare'].mean(), inplace=True)
test_data['Cabin'].fillna('Unknown', inplace=True)
train_data.groupby(['Sex'])['Survived'].value_counts(normalize=True)
sns.barplot(x='Sex', y='Survived', data=train_data)
plt.xlabel('Gender')
plt.ylabel('Survival Rate')
plt.title('Survival Rates by Gender on the Titanic')
plt.show() | code |
90123428/cell_16 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('/kaggle/input/titanic/train.csv')
test_data = pd.read_csv('/kaggle/input/titanic/test.csv')
train_data.dtypes
train_data.isnull().sum()
test_data.isnull().sum()
train_data.fillna(train_data.Age.mean(), inplace=True)
train_data['Cabin'].fillna('Unknown', inplace=True)
train_data['Embarked'].fillna('Unknown', inplace=True)
test_data.fillna(test_data['Age'].mean(), inplace=True)
test_data.fillna(test_data['Fare'].mean(), inplace=True)
test_data['Cabin'].fillna('Unknown', inplace=True)
train_data.groupby(['Sex'])['Survived'].value_counts(normalize=True)
train_data.groupby(['Pclass'])['Survived'].value_counts(normalize=True) | code |
90123428/cell_3 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('/kaggle/input/titanic/train.csv')
train_data.head() | code |
90123428/cell_37 | [
"image_output_1.png"
] | from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
import numpy as np # linear algebra
Ks = 100
mean_acc = np.zeros(Ks - 1)
std_acc = np.zeros(Ks - 1)
for n in range(1, Ks):
neigh = KNeighborsClassifier(n_neighbors=n).fit(x_train, y_train)
yhat = neigh.predict(x_test)
mean_acc[n - 1] = metrics.accuracy_score(y_test, yhat)
std_acc[n - 1] = np.std(yhat == y_test) / np.sqrt(yhat.shape[0])
from sklearn.ensemble import RandomForestClassifier
Ns = 200
mean_acc = np.zeros(Ns - 1)
for n in range(1, Ns):
forest = RandomForestClassifier(n_estimators=n).fit(x_train, y_train)
yhat = forest.predict(x_test)
mean_acc[n - 1] = metrics.accuracy_score(y_test, yhat)
print('The best accuracy was ', mean_acc.max(), 'with n = ', mean_acc.argmax() + 1) | code |
90123428/cell_12 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
train_data = pd.read_csv('/kaggle/input/titanic/train.csv')
test_data = pd.read_csv('/kaggle/input/titanic/test.csv')
train_data.dtypes
train_data.isnull().sum()
test_data.isnull().sum()
train_data.fillna(train_data.Age.mean(), inplace=True)
train_data['Cabin'].fillna('Unknown', inplace=True)
train_data['Embarked'].fillna('Unknown', inplace=True)
test_data.fillna(test_data['Age'].mean(), inplace=True)
test_data.fillna(test_data['Fare'].mean(), inplace=True)
test_data['Cabin'].fillna('Unknown', inplace=True)
train_data.groupby(['Sex'])['Survived'].value_counts(normalize=True) | code |
105211208/cell_13 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams.update({'figure.max_open_warning': 0})
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import linear_model
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.preprocessing import RobustScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import warnings
warnings.filterwarnings('ignore')
def visualize(data):
for c in data.columns:
plt.figure()
plt.tight_layout()
sns.set(rc={"figure.figsize":(8, 5)})
if data[c].dtype=='int64' or data[c].dtype=='float64':
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True)
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.boxplot(data[c], ax=ax_box , linewidth= 1.0)
sns.histplot(data[c], ax=ax_hist , bins = 10,kde=True)
else:
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.histplot(data[c], bins = 10)
def evaluate(model,x_train , y_train, x_test , y_test, y_predict):
print(f'score x_train , y_train : {model.score(x_train , y_train)}')
print(f'score x_test , y_test : {model.score(x_test , y_test)}')
print(f'r2_score : {r2_score(y_test, y_predict)}')
print(f'mean absolute err : {mean_absolute_error(y_predict, y_test)}')
print(f'mean squared err : {mean_squared_error(y_test, y_predict)}')
df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df.columns
pd.set_option('display.max_columns', None)
df.isnull().sum()
df.duplicated().sum()
visualize(df.drop(['car_ID', 'CarName'], axis=1))
df.columns | code |
105211208/cell_9 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df.columns
pd.set_option('display.max_columns', None)
df.info() | code |
105211208/cell_25 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams.update({'figure.max_open_warning': 0})
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import linear_model
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.preprocessing import RobustScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import warnings
warnings.filterwarnings('ignore')
def visualize(data):
for c in data.columns:
plt.figure()
plt.tight_layout()
sns.set(rc={"figure.figsize":(8, 5)})
if data[c].dtype=='int64' or data[c].dtype=='float64':
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True)
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.boxplot(data[c], ax=ax_box , linewidth= 1.0)
sns.histplot(data[c], ax=ax_hist , bins = 10,kde=True)
else:
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.histplot(data[c], bins = 10)
def evaluate(model,x_train , y_train, x_test , y_test, y_predict):
print(f'score x_train , y_train : {model.score(x_train , y_train)}')
print(f'score x_test , y_test : {model.score(x_test , y_test)}')
print(f'r2_score : {r2_score(y_test, y_predict)}')
print(f'mean absolute err : {mean_absolute_error(y_predict, y_test)}')
print(f'mean squared err : {mean_squared_error(y_test, y_predict)}')
model = LinearRegression()
model.fit(x_train, y_train)
y_predict = model.predict(x_test)
evaluate(model, x_train, y_train, x_test, y_test, y_predict) | code |
105211208/cell_34 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn import linear_model
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.preprocessing import RobustScaler
import numpy as np
import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams.update({'figure.max_open_warning': 0})
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import linear_model
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.preprocessing import RobustScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import warnings
warnings.filterwarnings('ignore')
def visualize(data):
for c in data.columns:
plt.figure()
plt.tight_layout()
sns.set(rc={"figure.figsize":(8, 5)})
if data[c].dtype=='int64' or data[c].dtype=='float64':
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True)
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.boxplot(data[c], ax=ax_box , linewidth= 1.0)
sns.histplot(data[c], ax=ax_hist , bins = 10,kde=True)
else:
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.histplot(data[c], bins = 10)
def evaluate(model,x_train , y_train, x_test , y_test, y_predict):
print(f'score x_train , y_train : {model.score(x_train , y_train)}')
print(f'score x_test , y_test : {model.score(x_test , y_test)}')
print(f'r2_score : {r2_score(y_test, y_predict)}')
print(f'mean absolute err : {mean_absolute_error(y_predict, y_test)}')
print(f'mean squared err : {mean_squared_error(y_test, y_predict)}')
df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df.columns
pd.set_option('display.max_columns', None)
df.isnull().sum()
df.duplicated().sum()
visualize(df.drop(['car_ID', 'CarName'], axis=1))
df.columns
limits = {}
def IQRoutliers(data):
global limits
for c in data.columns:
if data[c].dtype == 'int64' or data[c].dtype == 'float64':
Q1, Q3 = np.percentile(data[c], [25, 75])
IQR = Q3 - Q1
limits[c] = [Q1 - 1.5 * IQR, Q3 + 1.5 * IQR]
df[c] = np.where(df[c] > limits[c][1], limits[c][1], np.where(df[c] < limits[c][0], limits[c][0], df[c]))
IQRoutliers(df.drop(['car_ID'], axis=1))
visualize(df.drop(['car_ID', 'CarName'], axis=1))
df = pd.get_dummies(df)
model = LinearRegression()
model.fit(x_train, y_train)
y_predict = model.predict(x_test)
evaluate(model, x_train, y_train, x_test, y_test, y_predict)
model = linear_model.Lasso()
model.fit(x_train, y_train)
y_predict = model.predict(x_test)
evaluate(model, x_train, y_train, x_test, y_test, y_predict)
scaler = RobustScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.fit_transform(x_test)
model = linear_model.BayesianRidge()
model.fit(x_train, y_train)
y_predict = model.predict(x_test)
result = pd.DataFrame({'Y_test': y_test, 'Y_predicted': y_predict})
evaluate(model, x_train, y_train, x_test, y_test, y_predict) | code |
105211208/cell_30 | [
"text_plain_output_1.png"
] | from sklearn import linear_model
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams.update({'figure.max_open_warning': 0})
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import linear_model
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.preprocessing import RobustScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import warnings
warnings.filterwarnings('ignore')
def visualize(data):
for c in data.columns:
plt.figure()
plt.tight_layout()
sns.set(rc={"figure.figsize":(8, 5)})
if data[c].dtype=='int64' or data[c].dtype=='float64':
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True)
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.boxplot(data[c], ax=ax_box , linewidth= 1.0)
sns.histplot(data[c], ax=ax_hist , bins = 10,kde=True)
else:
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.histplot(data[c], bins = 10)
def evaluate(model,x_train , y_train, x_test , y_test, y_predict):
print(f'score x_train , y_train : {model.score(x_train , y_train)}')
print(f'score x_test , y_test : {model.score(x_test , y_test)}')
print(f'r2_score : {r2_score(y_test, y_predict)}')
print(f'mean absolute err : {mean_absolute_error(y_predict, y_test)}')
print(f'mean squared err : {mean_squared_error(y_test, y_predict)}')
model = LinearRegression()
model.fit(x_train, y_train)
y_predict = model.predict(x_test)
evaluate(model, x_train, y_train, x_test, y_test, y_predict)
model = linear_model.Lasso()
model.fit(x_train, y_train)
y_predict = model.predict(x_test)
evaluate(model, x_train, y_train, x_test, y_test, y_predict)
sns.regplot(x=y_test, y=y_predict, color='green') | code |
105211208/cell_29 | [
"text_html_output_1.png"
] | from sklearn import linear_model
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams.update({'figure.max_open_warning': 0})
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import linear_model
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.preprocessing import RobustScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import warnings
warnings.filterwarnings('ignore')
def visualize(data):
for c in data.columns:
plt.figure()
plt.tight_layout()
sns.set(rc={"figure.figsize":(8, 5)})
if data[c].dtype=='int64' or data[c].dtype=='float64':
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True)
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.boxplot(data[c], ax=ax_box , linewidth= 1.0)
sns.histplot(data[c], ax=ax_hist , bins = 10,kde=True)
else:
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.histplot(data[c], bins = 10)
def evaluate(model,x_train , y_train, x_test , y_test, y_predict):
print(f'score x_train , y_train : {model.score(x_train , y_train)}')
print(f'score x_test , y_test : {model.score(x_test , y_test)}')
print(f'r2_score : {r2_score(y_test, y_predict)}')
print(f'mean absolute err : {mean_absolute_error(y_predict, y_test)}')
print(f'mean squared err : {mean_squared_error(y_test, y_predict)}')
model = LinearRegression()
model.fit(x_train, y_train)
y_predict = model.predict(x_test)
evaluate(model, x_train, y_train, x_test, y_test, y_predict)
model = linear_model.Lasso()
model.fit(x_train, y_train)
y_predict = model.predict(x_test)
evaluate(model, x_train, y_train, x_test, y_test, y_predict) | code |
105211208/cell_26 | [
"image_output_11.png",
"image_output_24.png",
"text_plain_output_5.png",
"text_plain_output_15.png",
"image_output_17.png",
"text_plain_output_9.png",
"image_output_14.png",
"image_output_23.png",
"text_plain_output_4.png",
"text_plain_output_13.png",
"image_output_13.png",
"image_output_5.png",
"text_plain_output_14.png",
"image_output_18.png",
"image_output_21.png",
"text_plain_output_10.png",
"text_plain_output_6.png",
"image_output_7.png",
"image_output_20.png",
"text_plain_output_3.png",
"image_output_4.png",
"text_plain_output_7.png",
"image_output_8.png",
"image_output_16.png",
"text_plain_output_8.png",
"image_output_6.png",
"image_output_12.png",
"image_output_22.png",
"text_plain_output_2.png",
"text_plain_output_1.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png",
"image_output_10.png",
"text_plain_output_11.png",
"text_plain_output_12.png",
"image_output_15.png",
"image_output_9.png",
"image_output_19.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams.update({'figure.max_open_warning': 0})
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import linear_model
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.preprocessing import RobustScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import warnings
warnings.filterwarnings('ignore')
def visualize(data):
for c in data.columns:
plt.figure()
plt.tight_layout()
sns.set(rc={"figure.figsize":(8, 5)})
if data[c].dtype=='int64' or data[c].dtype=='float64':
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True)
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.boxplot(data[c], ax=ax_box , linewidth= 1.0)
sns.histplot(data[c], ax=ax_hist , bins = 10,kde=True)
else:
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.histplot(data[c], bins = 10)
def evaluate(model,x_train , y_train, x_test , y_test, y_predict):
print(f'score x_train , y_train : {model.score(x_train , y_train)}')
print(f'score x_test , y_test : {model.score(x_test , y_test)}')
print(f'r2_score : {r2_score(y_test, y_predict)}')
print(f'mean absolute err : {mean_absolute_error(y_predict, y_test)}')
print(f'mean squared err : {mean_squared_error(y_test, y_predict)}')
model = LinearRegression()
model.fit(x_train, y_train)
y_predict = model.predict(x_test)
evaluate(model, x_train, y_train, x_test, y_test, y_predict)
sns.regplot(x=y_test, y=y_predict, color='green') | code |
105211208/cell_11 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df.columns
pd.set_option('display.max_columns', None)
df.isnull().sum()
df.duplicated().sum() | code |
105211208/cell_19 | [
"image_output_11.png",
"image_output_24.png",
"text_plain_output_5.png",
"text_plain_output_15.png",
"image_output_17.png",
"text_plain_output_9.png",
"image_output_14.png",
"image_output_23.png",
"text_plain_output_4.png",
"text_plain_output_13.png",
"image_output_13.png",
"image_output_5.png",
"text_plain_output_14.png",
"image_output_18.png",
"image_output_21.png",
"text_plain_output_10.png",
"text_plain_output_6.png",
"image_output_7.png",
"image_output_20.png",
"text_plain_output_3.png",
"image_output_4.png",
"text_plain_output_7.png",
"image_output_8.png",
"image_output_16.png",
"text_plain_output_8.png",
"image_output_6.png",
"image_output_12.png",
"image_output_22.png",
"text_plain_output_2.png",
"text_plain_output_1.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png",
"image_output_10.png",
"text_plain_output_11.png",
"text_plain_output_12.png",
"image_output_15.png",
"image_output_9.png",
"image_output_19.png"
] | from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import numpy as np
import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams.update({'figure.max_open_warning': 0})
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import linear_model
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.preprocessing import RobustScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import warnings
warnings.filterwarnings('ignore')
def visualize(data):
for c in data.columns:
plt.figure()
plt.tight_layout()
sns.set(rc={"figure.figsize":(8, 5)})
if data[c].dtype=='int64' or data[c].dtype=='float64':
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True)
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.boxplot(data[c], ax=ax_box , linewidth= 1.0)
sns.histplot(data[c], ax=ax_hist , bins = 10,kde=True)
else:
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.histplot(data[c], bins = 10)
def evaluate(model,x_train , y_train, x_test , y_test, y_predict):
print(f'score x_train , y_train : {model.score(x_train , y_train)}')
print(f'score x_test , y_test : {model.score(x_test , y_test)}')
print(f'r2_score : {r2_score(y_test, y_predict)}')
print(f'mean absolute err : {mean_absolute_error(y_predict, y_test)}')
print(f'mean squared err : {mean_squared_error(y_test, y_predict)}')
df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df.columns
pd.set_option('display.max_columns', None)
df.isnull().sum()
df.duplicated().sum()
visualize(df.drop(['car_ID', 'CarName'], axis=1))
df.columns
limits = {}
def IQRoutliers(data):
global limits
for c in data.columns:
if data[c].dtype == 'int64' or data[c].dtype == 'float64':
Q1, Q3 = np.percentile(data[c], [25, 75])
IQR = Q3 - Q1
limits[c] = [Q1 - 1.5 * IQR, Q3 + 1.5 * IQR]
df[c] = np.where(df[c] > limits[c][1], limits[c][1], np.where(df[c] < limits[c][0], limits[c][0], df[c]))
IQRoutliers(df.drop(['car_ID'], axis=1))
visualize(df.drop(['car_ID', 'CarName'], axis=1)) | code |
105211208/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df.columns | code |
105211208/cell_18 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import numpy as np
import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams.update({'figure.max_open_warning': 0})
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import linear_model
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.preprocessing import RobustScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import warnings
warnings.filterwarnings('ignore')
def visualize(data):
for c in data.columns:
plt.figure()
plt.tight_layout()
sns.set(rc={"figure.figsize":(8, 5)})
if data[c].dtype=='int64' or data[c].dtype=='float64':
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True)
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.boxplot(data[c], ax=ax_box , linewidth= 1.0)
sns.histplot(data[c], ax=ax_hist , bins = 10,kde=True)
else:
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.histplot(data[c], bins = 10)
def evaluate(model,x_train , y_train, x_test , y_test, y_predict):
print(f'score x_train , y_train : {model.score(x_train , y_train)}')
print(f'score x_test , y_test : {model.score(x_test , y_test)}')
print(f'r2_score : {r2_score(y_test, y_predict)}')
print(f'mean absolute err : {mean_absolute_error(y_predict, y_test)}')
print(f'mean squared err : {mean_squared_error(y_test, y_predict)}')
df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df.columns
pd.set_option('display.max_columns', None)
df.isnull().sum()
df.duplicated().sum()
visualize(df.drop(['car_ID', 'CarName'], axis=1))
df.columns
limits = {}
def IQRoutliers(data):
global limits
for c in data.columns:
if data[c].dtype == 'int64' or data[c].dtype == 'float64':
Q1, Q3 = np.percentile(data[c], [25, 75])
IQR = Q3 - Q1
limits[c] = [Q1 - 1.5 * IQR, Q3 + 1.5 * IQR]
df[c] = np.where(df[c] > limits[c][1], limits[c][1], np.where(df[c] < limits[c][0], limits[c][0], df[c]))
print(limits) | code |
105211208/cell_8 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df.columns
pd.set_option('display.max_columns', None)
df.head() | code |
105211208/cell_35 | [
"text_plain_output_1.png"
] | from sklearn import linear_model
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.preprocessing import RobustScaler
import numpy as np
import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams.update({'figure.max_open_warning': 0})
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import linear_model
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.preprocessing import RobustScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import warnings
warnings.filterwarnings('ignore')
def visualize(data):
for c in data.columns:
plt.figure()
plt.tight_layout()
sns.set(rc={"figure.figsize":(8, 5)})
if data[c].dtype=='int64' or data[c].dtype=='float64':
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True)
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.boxplot(data[c], ax=ax_box , linewidth= 1.0)
sns.histplot(data[c], ax=ax_hist , bins = 10,kde=True)
else:
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.histplot(data[c], bins = 10)
def evaluate(model,x_train , y_train, x_test , y_test, y_predict):
print(f'score x_train , y_train : {model.score(x_train , y_train)}')
print(f'score x_test , y_test : {model.score(x_test , y_test)}')
print(f'r2_score : {r2_score(y_test, y_predict)}')
print(f'mean absolute err : {mean_absolute_error(y_predict, y_test)}')
print(f'mean squared err : {mean_squared_error(y_test, y_predict)}')
df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df.columns
pd.set_option('display.max_columns', None)
df.isnull().sum()
df.duplicated().sum()
visualize(df.drop(['car_ID', 'CarName'], axis=1))
df.columns
limits = {}
def IQRoutliers(data):
global limits
for c in data.columns:
if data[c].dtype == 'int64' or data[c].dtype == 'float64':
Q1, Q3 = np.percentile(data[c], [25, 75])
IQR = Q3 - Q1
limits[c] = [Q1 - 1.5 * IQR, Q3 + 1.5 * IQR]
df[c] = np.where(df[c] > limits[c][1], limits[c][1], np.where(df[c] < limits[c][0], limits[c][0], df[c]))
IQRoutliers(df.drop(['car_ID'], axis=1))
visualize(df.drop(['car_ID', 'CarName'], axis=1))
df = pd.get_dummies(df)
model = LinearRegression()
model.fit(x_train, y_train)
y_predict = model.predict(x_test)
evaluate(model, x_train, y_train, x_test, y_test, y_predict)
model = linear_model.Lasso()
model.fit(x_train, y_train)
y_predict = model.predict(x_test)
evaluate(model, x_train, y_train, x_test, y_test, y_predict)
scaler = RobustScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.fit_transform(x_test)
model = linear_model.BayesianRidge()
model.fit(x_train, y_train)
y_predict = model.predict(x_test)
result = pd.DataFrame({'Y_test': y_test, 'Y_predicted': y_predict})
evaluate(model, x_train, y_train, x_test, y_test, y_predict)
sns.regplot(x=y_test, y=y_predict, color='green') | code |
105211208/cell_22 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import numpy as np
import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams.update({'figure.max_open_warning': 0})
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import linear_model
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.preprocessing import RobustScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import warnings
warnings.filterwarnings('ignore')
def visualize(data):
for c in data.columns:
plt.figure()
plt.tight_layout()
sns.set(rc={"figure.figsize":(8, 5)})
if data[c].dtype=='int64' or data[c].dtype=='float64':
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True)
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.boxplot(data[c], ax=ax_box , linewidth= 1.0)
sns.histplot(data[c], ax=ax_hist , bins = 10,kde=True)
else:
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.histplot(data[c], bins = 10)
def evaluate(model,x_train , y_train, x_test , y_test, y_predict):
print(f'score x_train , y_train : {model.score(x_train , y_train)}')
print(f'score x_test , y_test : {model.score(x_test , y_test)}')
print(f'r2_score : {r2_score(y_test, y_predict)}')
print(f'mean absolute err : {mean_absolute_error(y_predict, y_test)}')
print(f'mean squared err : {mean_squared_error(y_test, y_predict)}')
df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df.columns
pd.set_option('display.max_columns', None)
df.isnull().sum()
df.duplicated().sum()
visualize(df.drop(['car_ID', 'CarName'], axis=1))
df.columns
limits = {}
def IQRoutliers(data):
global limits
for c in data.columns:
if data[c].dtype == 'int64' or data[c].dtype == 'float64':
Q1, Q3 = np.percentile(data[c], [25, 75])
IQR = Q3 - Q1
limits[c] = [Q1 - 1.5 * IQR, Q3 + 1.5 * IQR]
df[c] = np.where(df[c] > limits[c][1], limits[c][1], np.where(df[c] < limits[c][0], limits[c][0], df[c]))
IQRoutliers(df.drop(['car_ID'], axis=1))
visualize(df.drop(['car_ID', 'CarName'], axis=1))
df = pd.get_dummies(df)
df.head() | code |
105211208/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df.columns
pd.set_option('display.max_columns', None)
df.isnull().sum() | code |
105211208/cell_12 | [
"text_plain_output_1.png"
] | from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import pandas as pd
import seaborn as sns
import warnings
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
plt.rcParams.update({'figure.max_open_warning': 0})
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import linear_model
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.preprocessing import RobustScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
import warnings
warnings.filterwarnings('ignore')
def visualize(data):
for c in data.columns:
plt.figure()
plt.tight_layout()
sns.set(rc={"figure.figsize":(8, 5)})
if data[c].dtype=='int64' or data[c].dtype=='float64':
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True)
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.boxplot(data[c], ax=ax_box , linewidth= 1.0)
sns.histplot(data[c], ax=ax_hist , bins = 10,kde=True)
else:
plt.gca().set(xlabel= c,ylabel='Frequency')
sns.histplot(data[c], bins = 10)
def evaluate(model,x_train , y_train, x_test , y_test, y_predict):
print(f'score x_train , y_train : {model.score(x_train , y_train)}')
print(f'score x_test , y_test : {model.score(x_test , y_test)}')
print(f'r2_score : {r2_score(y_test, y_predict)}')
print(f'mean absolute err : {mean_absolute_error(y_predict, y_test)}')
print(f'mean squared err : {mean_squared_error(y_test, y_predict)}')
df = pd.read_csv('../input/car-price-prediction/CarPrice_Assignment.csv')
df.columns
pd.set_option('display.max_columns', None)
df.isnull().sum()
df.duplicated().sum()
visualize(df.drop(['car_ID', 'CarName'], axis=1)) | code |
16118948/cell_21 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
data = pd.read_csv('../input/Mall_Customers.csv')
data.shape
data.isnull().any()
sns.set(style='white', palette='PuBuGn_d', color_codes=True)
size = data['Gender'].value_counts()
plt.figure(1, figsize=(15, 6))
n = 0
color = ['red', 'green', 'blue']
count = 0
for x in ['Age', 'Annual Income (k$)', 'Spending Score (1-100)']:
n += 1
plt.subplot(1, 3, n)
plt.subplots_adjust(hspace=0.5, wspace=0.5)
sns.distplot(data[x], color=color[count])
plt.title('Distplot of {}'.format(x))
count += 1
plt.show() | code |
16118948/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/Mall_Customers.csv')
data.shape
data.isnull().any() | code |
16118948/cell_6 | [
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/Mall_Customers.csv')
data.head() | code |
16118948/cell_2 | [
"text_html_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
16118948/cell_11 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/Mall_Customers.csv')
data.shape
data.describe() | code |
16118948/cell_18 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
data = pd.read_csv('../input/Mall_Customers.csv')
data.shape
data.isnull().any()
sns.set(style='white', palette='PuBuGn_d', color_codes=True)
sns.countplot('Gender', data=data, palette='winter')
size = data['Gender'].value_counts()
print('Female :', size[0] / (size[0] + size[1]) * 100)
print('Male :', size[1] / (size[0] + size[1]) * 100)
plt.title('Gender distirbution') | code |
16118948/cell_8 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/Mall_Customers.csv')
data.shape | code |
16118948/cell_24 | [
"text_plain_output_2.png",
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
data = pd.read_csv('../input/Mall_Customers.csv')
data.shape
data.isnull().any()
sns.set(style='white', palette='PuBuGn_d', color_codes=True)
size = data['Gender'].value_counts()
n = 0
color = ['red', 'green', 'blue']
count = 0
for x in ['Age', 'Annual Income (k$)', 'Spending Score (1-100)']:
n += 1
count += 1
sns.pairplot(data)
plt.plot() | code |
16118948/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
data = pd.read_csv('../input/Mall_Customers.csv')
data.shape
data.info() | code |
74056805/cell_21 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from nltk.classify.scikitlearn import SklearnClassifier
from nltk.corpus import stopwords
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.tag import pos_tag
from nltk.tokenize import TweetTokenizer
from sklearn.naive_bayes import MultinomialNB,BernoulliNB
from time import time
import nltk
import pandas as pd
import random
dataset_columns = ['sentiment', 'ids', 'date', 'flag', 'user', 'text']
dataset_encode = 'ISO-8859-1'
tweet_df = pd.read_csv('../input/twitter-sentiment/training.1600000.processed.noemoticon.csv', encoding=dataset_encode, names=dataset_columns)
new_df = tweet_df[['sentiment', 'text']]
df_pos = tweet_df[tweet_df['sentiment'] == 4]
df_neg = tweet_df[tweet_df['sentiment'] == 0]
new_df = pd.concat([df_pos, df_neg])
len(new_df)
start_time = time()
token = TweetTokenizer(reduce_len=True)
data = []
X = new_df['text'].tolist()
Y = new_df['sentiment'].tolist()
X = new_df['text'].tolist()
Y = new_df['sentiment'].tolist()
for x, y in zip(X, Y):
if y == 4:
data.append((token.tokenize(x), 1))
else:
data.append((token.tokenize(x), 0))
data[:5]
import nltk
nltk.download('all')
def lemmatize_sentence(tokens):
lemmatizer = WordNetLemmatizer()
lemmatized_sentence = []
for word, tag in pos_tag(tokens):
if tag.startswith('NN'):
pos = 'n'
elif tag.startswith('VB'):
pos = 'v'
else:
pos = 'a'
lemmatized_sentence.append(lemmatizer.lemmatize(word, pos))
return lemmatized_sentence
import re, string
from nltk.corpus import stopwords
STOP_WORDS = stopwords.words('english')
def cleaned(token):
if token == 'u':
return 'you'
if token == 'r':
return 'are'
if token == 'some1':
return 'someone'
if token == 'yrs':
return 'years'
if token == 'hrs':
return 'hours'
if token == 'mins':
return 'minutes'
if token == 'secs':
return 'seconds'
if token == 'pls' or token == 'plz':
return 'please'
if token == '2morow':
return 'tomorrow'
if token == '2day':
return 'today'
if token == '4got' or token == '4gotten':
return 'forget'
if token == 'amp' or token == 'quot' or token == 'lt' or (token == 'gt') or (token == '½25'):
return ''
return token
def remove_noise(tweet_tokens):
cleaned_tokens = []
for token, tag in pos_tag(tweet_tokens):
token = re.sub('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+#]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', '', token)
token = re.sub('(@[A-Za-z0-9_]+)', '', token)
if tag.startswith('NN'):
pos = 'n'
elif tag.startswith('VB'):
pos = 'v'
else:
pos = 'a'
lemmatizer = WordNetLemmatizer()
token = lemmatizer.lemmatize(token, pos)
cleaned_token = cleaned(token.lower())
if cleaned_token not in string.punctuation and len(cleaned_token) > 2 and (cleaned_token not in STOP_WORDS):
cleaned_tokens.append(cleaned_token)
return cleaned_tokens
start_time = time()
def list_to_dict(cleaned_tokens):
return dict(([token, True] for token in cleaned_tokens))
cleaned_tokens_list = []
for tokens, label in data:
cleaned_tokens_list.append((remove_noise(tokens), label))
start_time = time()
final_data = []
for tokens, label in cleaned_tokens_list:
final_data.append((list_to_dict(tokens), label))
final_data[:5]
import random
random.Random(140).shuffle(final_data)
trim_index = int(len(final_data) * 0.9)
train_data = final_data[:trim_index]
test_data = final_data[trim_index:]
start_time = time()
from nltk import classify
from nltk import NaiveBayesClassifier
from nltk.classify.scikitlearn import SklearnClassifier
from sklearn.naive_bayes import MultinomialNB, BernoulliNB
classify_BNB = SklearnClassifier(BernoulliNB())
classifier = classify_BNB.train(train_data)
print('Accuracy on train data:', nltk.classify.accuracy(classifier, train_data) * 100)
print('Accuracy on test data:', nltk.classify.accuracy(classifier, test_data) * 100) | code |
74056805/cell_13 | [
"text_html_output_1.png"
] | from nltk.stem.wordnet import WordNetLemmatizer
from nltk.tag import pos_tag
from nltk.tokenize import TweetTokenizer
from time import time
import pandas as pd
dataset_columns = ['sentiment', 'ids', 'date', 'flag', 'user', 'text']
dataset_encode = 'ISO-8859-1'
tweet_df = pd.read_csv('../input/twitter-sentiment/training.1600000.processed.noemoticon.csv', encoding=dataset_encode, names=dataset_columns)
new_df = tweet_df[['sentiment', 'text']]
df_pos = tweet_df[tweet_df['sentiment'] == 4]
df_neg = tweet_df[tweet_df['sentiment'] == 0]
new_df = pd.concat([df_pos, df_neg])
len(new_df)
start_time = time()
token = TweetTokenizer(reduce_len=True)
data = []
X = new_df['text'].tolist()
Y = new_df['sentiment'].tolist()
X = new_df['text'].tolist()
Y = new_df['sentiment'].tolist()
for x, y in zip(X, Y):
if y == 4:
data.append((token.tokenize(x), 1))
else:
data.append((token.tokenize(x), 0))
data[:5]
def lemmatize_sentence(tokens):
lemmatizer = WordNetLemmatizer()
lemmatized_sentence = []
for word, tag in pos_tag(tokens):
if tag.startswith('NN'):
pos = 'n'
elif tag.startswith('VB'):
pos = 'v'
else:
pos = 'a'
lemmatized_sentence.append(lemmatizer.lemmatize(word, pos))
return lemmatized_sentence
print(lemmatize_sentence(data[0][0])) | code |
74056805/cell_9 | [
"text_plain_output_1.png"
] | from nltk.tokenize import TweetTokenizer
from time import time
import pandas as pd
dataset_columns = ['sentiment', 'ids', 'date', 'flag', 'user', 'text']
dataset_encode = 'ISO-8859-1'
tweet_df = pd.read_csv('../input/twitter-sentiment/training.1600000.processed.noemoticon.csv', encoding=dataset_encode, names=dataset_columns)
new_df = tweet_df[['sentiment', 'text']]
df_pos = tweet_df[tweet_df['sentiment'] == 4]
df_neg = tweet_df[tweet_df['sentiment'] == 0]
new_df = pd.concat([df_pos, df_neg])
len(new_df)
start_time = time()
token = TweetTokenizer(reduce_len=True)
data = []
X = new_df['text'].tolist()
Y = new_df['sentiment'].tolist()
X = new_df['text'].tolist()
Y = new_df['sentiment'].tolist()
for x, y in zip(X, Y):
if y == 4:
data.append((token.tokenize(x), 1))
else:
data.append((token.tokenize(x), 0))
print('CPU Time:', time() - start_time)
data[:5] | code |
74056805/cell_4 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | import pandas as pd
dataset_columns = ['sentiment', 'ids', 'date', 'flag', 'user', 'text']
dataset_encode = 'ISO-8859-1'
tweet_df = pd.read_csv('../input/twitter-sentiment/training.1600000.processed.noemoticon.csv', encoding=dataset_encode, names=dataset_columns)
new_df = tweet_df[['sentiment', 'text']]
new_df.head() | code |
74056805/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd
dataset_columns = ['sentiment', 'ids', 'date', 'flag', 'user', 'text']
dataset_encode = 'ISO-8859-1'
tweet_df = pd.read_csv('../input/twitter-sentiment/training.1600000.processed.noemoticon.csv', encoding=dataset_encode, names=dataset_columns)
new_df = tweet_df[['sentiment', 'text']]
df_pos = tweet_df[tweet_df['sentiment'] == 4]
df_neg = tweet_df[tweet_df['sentiment'] == 0]
new_df = pd.concat([df_pos, df_neg])
len(new_df) | code |
74056805/cell_2 | [
"text_plain_output_2.png",
"text_plain_output_1.png"
] | import pandas as pd
dataset_columns = ['sentiment', 'ids', 'date', 'flag', 'user', 'text']
dataset_encode = 'ISO-8859-1'
tweet_df = pd.read_csv('../input/twitter-sentiment/training.1600000.processed.noemoticon.csv', encoding=dataset_encode, names=dataset_columns)
tweet_df.head() | code |
74056805/cell_18 | [
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.tag import pos_tag
from nltk.tokenize import TweetTokenizer
from time import time
import pandas as pd
dataset_columns = ['sentiment', 'ids', 'date', 'flag', 'user', 'text']
dataset_encode = 'ISO-8859-1'
tweet_df = pd.read_csv('../input/twitter-sentiment/training.1600000.processed.noemoticon.csv', encoding=dataset_encode, names=dataset_columns)
new_df = tweet_df[['sentiment', 'text']]
df_pos = tweet_df[tweet_df['sentiment'] == 4]
df_neg = tweet_df[tweet_df['sentiment'] == 0]
new_df = pd.concat([df_pos, df_neg])
len(new_df)
start_time = time()
token = TweetTokenizer(reduce_len=True)
data = []
X = new_df['text'].tolist()
Y = new_df['sentiment'].tolist()
X = new_df['text'].tolist()
Y = new_df['sentiment'].tolist()
for x, y in zip(X, Y):
if y == 4:
data.append((token.tokenize(x), 1))
else:
data.append((token.tokenize(x), 0))
data[:5]
def lemmatize_sentence(tokens):
lemmatizer = WordNetLemmatizer()
lemmatized_sentence = []
for word, tag in pos_tag(tokens):
if tag.startswith('NN'):
pos = 'n'
elif tag.startswith('VB'):
pos = 'v'
else:
pos = 'a'
lemmatized_sentence.append(lemmatizer.lemmatize(word, pos))
return lemmatized_sentence
import re, string
from nltk.corpus import stopwords
STOP_WORDS = stopwords.words('english')
def cleaned(token):
if token == 'u':
return 'you'
if token == 'r':
return 'are'
if token == 'some1':
return 'someone'
if token == 'yrs':
return 'years'
if token == 'hrs':
return 'hours'
if token == 'mins':
return 'minutes'
if token == 'secs':
return 'seconds'
if token == 'pls' or token == 'plz':
return 'please'
if token == '2morow':
return 'tomorrow'
if token == '2day':
return 'today'
if token == '4got' or token == '4gotten':
return 'forget'
if token == 'amp' or token == 'quot' or token == 'lt' or (token == 'gt') or (token == '½25'):
return ''
return token
def remove_noise(tweet_tokens):
cleaned_tokens = []
for token, tag in pos_tag(tweet_tokens):
token = re.sub('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+#]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', '', token)
token = re.sub('(@[A-Za-z0-9_]+)', '', token)
if tag.startswith('NN'):
pos = 'n'
elif tag.startswith('VB'):
pos = 'v'
else:
pos = 'a'
lemmatizer = WordNetLemmatizer()
token = lemmatizer.lemmatize(token, pos)
cleaned_token = cleaned(token.lower())
if cleaned_token not in string.punctuation and len(cleaned_token) > 2 and (cleaned_token not in STOP_WORDS):
cleaned_tokens.append(cleaned_token)
return cleaned_tokens
start_time = time()
def list_to_dict(cleaned_tokens):
return dict(([token, True] for token in cleaned_tokens))
cleaned_tokens_list = []
for tokens, label in data:
cleaned_tokens_list.append((remove_noise(tokens), label))
print('Removed Noise, CPU Time:', time() - start_time)
start_time = time()
final_data = []
for tokens, label in cleaned_tokens_list:
final_data.append((list_to_dict(tokens), label))
print('Data Prepared for model, CPU Time:', time() - start_time)
final_data[:5] | code |
74056805/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
dataset_columns = ['sentiment', 'ids', 'date', 'flag', 'user', 'text']
dataset_encode = 'ISO-8859-1'
tweet_df = pd.read_csv('../input/twitter-sentiment/training.1600000.processed.noemoticon.csv', encoding=dataset_encode, names=dataset_columns)
tweet_df['sentiment'].value_counts() | code |
74056805/cell_17 | [
"text_plain_output_1.png"
] | from nltk.corpus import stopwords
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.tag import pos_tag
from nltk.tokenize import TweetTokenizer
from time import time
import pandas as pd
dataset_columns = ['sentiment', 'ids', 'date', 'flag', 'user', 'text']
dataset_encode = 'ISO-8859-1'
tweet_df = pd.read_csv('../input/twitter-sentiment/training.1600000.processed.noemoticon.csv', encoding=dataset_encode, names=dataset_columns)
new_df = tweet_df[['sentiment', 'text']]
df_pos = tweet_df[tweet_df['sentiment'] == 4]
df_neg = tweet_df[tweet_df['sentiment'] == 0]
new_df = pd.concat([df_pos, df_neg])
len(new_df)
start_time = time()
token = TweetTokenizer(reduce_len=True)
data = []
X = new_df['text'].tolist()
Y = new_df['sentiment'].tolist()
X = new_df['text'].tolist()
Y = new_df['sentiment'].tolist()
for x, y in zip(X, Y):
if y == 4:
data.append((token.tokenize(x), 1))
else:
data.append((token.tokenize(x), 0))
data[:5]
def lemmatize_sentence(tokens):
lemmatizer = WordNetLemmatizer()
lemmatized_sentence = []
for word, tag in pos_tag(tokens):
if tag.startswith('NN'):
pos = 'n'
elif tag.startswith('VB'):
pos = 'v'
else:
pos = 'a'
lemmatized_sentence.append(lemmatizer.lemmatize(word, pos))
return lemmatized_sentence
import re, string
from nltk.corpus import stopwords
STOP_WORDS = stopwords.words('english')
def cleaned(token):
if token == 'u':
return 'you'
if token == 'r':
return 'are'
if token == 'some1':
return 'someone'
if token == 'yrs':
return 'years'
if token == 'hrs':
return 'hours'
if token == 'mins':
return 'minutes'
if token == 'secs':
return 'seconds'
if token == 'pls' or token == 'plz':
return 'please'
if token == '2morow':
return 'tomorrow'
if token == '2day':
return 'today'
if token == '4got' or token == '4gotten':
return 'forget'
if token == 'amp' or token == 'quot' or token == 'lt' or (token == 'gt') or (token == '½25'):
return ''
return token
def remove_noise(tweet_tokens):
cleaned_tokens = []
for token, tag in pos_tag(tweet_tokens):
token = re.sub('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+#]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', '', token)
token = re.sub('(@[A-Za-z0-9_]+)', '', token)
if tag.startswith('NN'):
pos = 'n'
elif tag.startswith('VB'):
pos = 'v'
else:
pos = 'a'
lemmatizer = WordNetLemmatizer()
token = lemmatizer.lemmatize(token, pos)
cleaned_token = cleaned(token.lower())
if cleaned_token not in string.punctuation and len(cleaned_token) > 2 and (cleaned_token not in STOP_WORDS):
cleaned_tokens.append(cleaned_token)
return cleaned_tokens
print(remove_noise(data[0][0])) | code |
74056805/cell_24 | [
"text_plain_output_1.png"
] | from nltk.classify.scikitlearn import SklearnClassifier
from nltk.corpus import stopwords
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.tag import pos_tag
from nltk.tokenize import TweetTokenizer
from sklearn.naive_bayes import MultinomialNB,BernoulliNB
from time import time
import nltk
import pandas as pd
import random
dataset_columns = ['sentiment', 'ids', 'date', 'flag', 'user', 'text']
dataset_encode = 'ISO-8859-1'
tweet_df = pd.read_csv('../input/twitter-sentiment/training.1600000.processed.noemoticon.csv', encoding=dataset_encode, names=dataset_columns)
new_df = tweet_df[['sentiment', 'text']]
df_pos = tweet_df[tweet_df['sentiment'] == 4]
df_neg = tweet_df[tweet_df['sentiment'] == 0]
new_df = pd.concat([df_pos, df_neg])
len(new_df)
start_time = time()
token = TweetTokenizer(reduce_len=True)
data = []
X = new_df['text'].tolist()
Y = new_df['sentiment'].tolist()
X = new_df['text'].tolist()
Y = new_df['sentiment'].tolist()
for x, y in zip(X, Y):
if y == 4:
data.append((token.tokenize(x), 1))
else:
data.append((token.tokenize(x), 0))
data[:5]
import nltk
nltk.download('all')
def lemmatize_sentence(tokens):
lemmatizer = WordNetLemmatizer()
lemmatized_sentence = []
for word, tag in pos_tag(tokens):
if tag.startswith('NN'):
pos = 'n'
elif tag.startswith('VB'):
pos = 'v'
else:
pos = 'a'
lemmatized_sentence.append(lemmatizer.lemmatize(word, pos))
return lemmatized_sentence
import re, string
from nltk.corpus import stopwords
STOP_WORDS = stopwords.words('english')
def cleaned(token):
if token == 'u':
return 'you'
if token == 'r':
return 'are'
if token == 'some1':
return 'someone'
if token == 'yrs':
return 'years'
if token == 'hrs':
return 'hours'
if token == 'mins':
return 'minutes'
if token == 'secs':
return 'seconds'
if token == 'pls' or token == 'plz':
return 'please'
if token == '2morow':
return 'tomorrow'
if token == '2day':
return 'today'
if token == '4got' or token == '4gotten':
return 'forget'
if token == 'amp' or token == 'quot' or token == 'lt' or (token == 'gt') or (token == '½25'):
return ''
return token
def remove_noise(tweet_tokens):
cleaned_tokens = []
for token, tag in pos_tag(tweet_tokens):
token = re.sub('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+#]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', '', token)
token = re.sub('(@[A-Za-z0-9_]+)', '', token)
if tag.startswith('NN'):
pos = 'n'
elif tag.startswith('VB'):
pos = 'v'
else:
pos = 'a'
lemmatizer = WordNetLemmatizer()
token = lemmatizer.lemmatize(token, pos)
cleaned_token = cleaned(token.lower())
if cleaned_token not in string.punctuation and len(cleaned_token) > 2 and (cleaned_token not in STOP_WORDS):
cleaned_tokens.append(cleaned_token)
return cleaned_tokens
start_time = time()
def list_to_dict(cleaned_tokens):
return dict(([token, True] for token in cleaned_tokens))
cleaned_tokens_list = []
for tokens, label in data:
cleaned_tokens_list.append((remove_noise(tokens), label))
start_time = time()
final_data = []
for tokens, label in cleaned_tokens_list:
final_data.append((list_to_dict(tokens), label))
final_data[:5]
import random
random.Random(140).shuffle(final_data)
trim_index = int(len(final_data) * 0.9)
train_data = final_data[:trim_index]
test_data = final_data[trim_index:]
start_time = time()
from nltk import classify
from nltk import NaiveBayesClassifier
from nltk.classify.scikitlearn import SklearnClassifier
from sklearn.naive_bayes import MultinomialNB, BernoulliNB
classify_BNB = SklearnClassifier(BernoulliNB())
classifier = classify_BNB.train(train_data)
custom_tweet = 'I ordered just once from Veg Treat, they screwed up, never used the app again.'
custom_tokens = remove_noise(token.tokenize(custom_tweet))
print(classifier.classify(dict(([token, True] for token in custom_tokens)))) | code |
74056805/cell_10 | [
"text_html_output_1.png"
] | import nltk
import nltk
nltk.download('all') | code |
74056805/cell_12 | [
"text_plain_output_1.png"
] | from nltk.tag import pos_tag
from nltk.tokenize import TweetTokenizer
from time import time
import pandas as pd
dataset_columns = ['sentiment', 'ids', 'date', 'flag', 'user', 'text']
dataset_encode = 'ISO-8859-1'
tweet_df = pd.read_csv('../input/twitter-sentiment/training.1600000.processed.noemoticon.csv', encoding=dataset_encode, names=dataset_columns)
new_df = tweet_df[['sentiment', 'text']]
df_pos = tweet_df[tweet_df['sentiment'] == 4]
df_neg = tweet_df[tweet_df['sentiment'] == 0]
new_df = pd.concat([df_pos, df_neg])
len(new_df)
start_time = time()
token = TweetTokenizer(reduce_len=True)
data = []
X = new_df['text'].tolist()
Y = new_df['sentiment'].tolist()
X = new_df['text'].tolist()
Y = new_df['sentiment'].tolist()
for x, y in zip(X, Y):
if y == 4:
data.append((token.tokenize(x), 1))
else:
data.append((token.tokenize(x), 0))
data[:5]
from nltk.tag import pos_tag
from nltk.stem.wordnet import WordNetLemmatizer
print(pos_tag(data[0][0])) | code |
74056805/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
dataset_columns = ['sentiment', 'ids', 'date', 'flag', 'user', 'text']
dataset_encode = 'ISO-8859-1'
tweet_df = pd.read_csv('../input/twitter-sentiment/training.1600000.processed.noemoticon.csv', encoding=dataset_encode, names=dataset_columns)
df_pos = tweet_df[tweet_df['sentiment'] == 4]
df_neg = tweet_df[tweet_df['sentiment'] == 0]
print(len(df_pos), len(df_neg)) | code |
73077112/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv')
df.shape
df.columns
rows, columns = df.shape
rows
df.isnull().sum() | code |
73077112/cell_9 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv')
df.shape
df.columns
df.tail() | code |
73077112/cell_20 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv')
df.shape
df.columns
rows, columns = df.shape
rows
df.isnull().sum()
df.drop('company', inplace=True, axis=1)
df
df.sort_values(by=['adr'], ascending=False)[['name']][:1] | code |
73077112/cell_6 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv')
df.shape | code |
73077112/cell_26 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv')
df.shape
df.columns
rows, columns = df.shape
rows
df.isnull().sum()
df.drop('company', inplace=True, axis=1)
df
df.sort_values(by=['adr'], ascending=False)[['name']][:1]
df.sort_values(by=['total_of_special_requests'], ascending=False)[['name', 'email']] | code |
73077112/cell_11 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv')
df.shape
df.columns
rows, columns = df.shape
rows | code |
73077112/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv')
df.shape
df.columns | code |
73077112/cell_18 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv')
df.shape
df.columns
rows, columns = df.shape
rows
df.isnull().sum()
df.drop('company', inplace=True, axis=1)
df
df['country'].value_counts(sort=True)[:5] | code |
73077112/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv')
df.shape
df.columns
df.head() | code |
73077112/cell_16 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv')
df.shape
df.columns
rows, columns = df.shape
rows
df.isnull().sum()
df.drop('company', inplace=True, axis=1)
df | code |
73077112/cell_24 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv')
df.shape
df.columns
rows, columns = df.shape
rows
df.isnull().sum()
df.drop('company', inplace=True, axis=1)
df
df.sort_values(by=['adr'], ascending=False)[['name']][:1]
Mean_Stay = df['adr'].mean()
round(Mean_Stay, 2) | code |
73077112/cell_22 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv')
df.shape
df.columns
rows, columns = df.shape
rows
df.isnull().sum()
df.drop('company', inplace=True, axis=1)
df
df.sort_values(by=['adr'], ascending=False)[['name']][:1]
Mean_ADR = df['adr'].mean()
round(Mean_ADR, 2) | code |
73077112/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/hotel-booking/hotel_booking.csv')
df.info() | code |
128048982/cell_13 | [
"text_plain_output_5.png",
"text_plain_output_4.png",
"text_plain_output_6.png",
"text_plain_output_3.png",
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from transformers import AutoTokenizer
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('gpt2')
example = 'def gcd(a, b):\n """Computes gcd(a,b) via the euclidean algorithm."""\n while b > 0:\n a,b = b, a%b\n return a'
tokens = tokenizer.tokenize(example)
print(tokens)
print(len(tokens)) | code |
128048982/cell_6 | [
"text_plain_output_1.png"
] | from datasets import load_dataset
from datasets import load_dataset
dataset = load_dataset('espejelomar/code_search_net_python_10000_examples')
dataset['train'] | code |
128048982/cell_2 | [
"text_plain_output_1.png"
] | def gcd(a, b):
"""Computes gcd(a,b) via the euclidean algorithm."""
while b > 0:
a, b = (b, a % b)
return a
print(f'gcd(1337,143) = {gcd(1337, 143)}')
print(f'gcd(1337,7) = {gcd(1337, 7)}') | code |
128048982/cell_1 | [
"text_plain_output_4.png",
"text_plain_output_3.png",
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from transformers import AutoTokenizer
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('gpt2') | code |
128048982/cell_7 | [
"text_plain_output_1.png"
] | from datasets import load_dataset
from datasets import load_dataset
dataset = load_dataset('espejelomar/code_search_net_python_10000_examples')
dataset['train'][10]['whole_func_string'] | code |
128048982/cell_3 | [
"text_plain_output_1.png"
] | from transformers import AutoTokenizer
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('gpt2')
example = 'def gcd(a, b):\n """Computes gcd(a,b) via the euclidean algorithm."""\n while b > 0:\n a,b = b, a%b\n return a'
tokens = tokenizer.tokenize(example)
print(tokens)
print(len(tokens)) | code |
128048982/cell_10 | [
"text_plain_output_1.png"
] | from datasets import load_dataset
from transformers import AutoTokenizer
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('gpt2')
example = 'def gcd(a, b):\n """Computes gcd(a,b) via the euclidean algorithm."""\n while b > 0:\n a,b = b, a%b\n return a'
tokens = tokenizer.tokenize(example)
from datasets import load_dataset
dataset = load_dataset('espejelomar/code_search_net_python_10000_examples')
def get_training_corpus(size=10):
return (dataset['train'][i:i + size]['whole_func_string'] for i in range(0, len(dataset['train']), size))
training_corpus = get_training_corpus()
updated_tokenizer = tokenizer.train_new_from_iterator(training_corpus, 52000) | code |
128048982/cell_12 | [
"text_plain_output_1.png"
] | from datasets import load_dataset
from transformers import AutoTokenizer
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('gpt2')
example = 'def gcd(a, b):\n """Computes gcd(a,b) via the euclidean algorithm."""\n while b > 0:\n a,b = b, a%b\n return a'
tokens = tokenizer.tokenize(example)
from datasets import load_dataset
dataset = load_dataset('espejelomar/code_search_net_python_10000_examples')
def get_training_corpus(size=10):
return (dataset['train'][i:i + size]['whole_func_string'] for i in range(0, len(dataset['train']), size))
training_corpus = get_training_corpus()
updated_tokenizer = tokenizer.train_new_from_iterator(training_corpus, 52000)
updated_tokens = updated_tokenizer.tokenize(example)
print(updated_tokens)
print(len(updated_tokens)) | code |
128048982/cell_5 | [
"text_plain_output_1.png"
] | from datasets import load_dataset
from datasets import load_dataset
dataset = load_dataset('espejelomar/code_search_net_python_10000_examples') | code |
128005120/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/breast-cancer-wisconsin-data/data.csv')
df.shape
df.isnull().sum()
df.drop(['Unnamed: 32', 'id'], axis=1, inplace=True)
df.diagnosis.value_counts()
df.diagnosis.replace({'M': 1, 'B': 2}, inplace=True)
df.describe() | code |
128005120/cell_9 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/breast-cancer-wisconsin-data/data.csv')
df.shape
df.isnull().sum()
df.drop(['Unnamed: 32', 'id'], axis=1, inplace=True)
df | code |
128005120/cell_25 | [
"text_html_output_1.png"
] | from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=5)
model.fit(x_train, y_train) | code |
128005120/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/breast-cancer-wisconsin-data/data.csv')
df | code |
128005120/cell_34 | [
"text_html_output_1.png"
] | from sklearn.metrics import accuracy_score
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=5)
model.fit(x_train, y_train)
model.score(x_train, y_train) * 100
model.score(x_test, y_test) * 100
y_pred = model.predict(x_test)
acc = accuracy_score(y_test, y_pred) * 100
acc | code |
128005120/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/breast-cancer-wisconsin-data/data.csv')
df.shape
df.info() | code |
128005120/cell_40 | [
"text_plain_output_1.png"
] | from sklearn.metrics import classification_report
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=5)
model.fit(x_train, y_train)
model.score(x_train, y_train) * 100
model.score(x_test, y_test) * 100
y_pred = model.predict(x_test)
report = classification_report(y_test, y_pred)
print(report) | code |
128005120/cell_29 | [
"text_plain_output_1.png"
] | from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=5)
model.fit(x_train, y_train)
model.score(x_train, y_train) * 100
model.score(x_test, y_test) * 100
y_pred = model.predict(x_test)
y_pred | code |
128005120/cell_26 | [
"text_html_output_1.png"
] | from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=5)
model.fit(x_train, y_train)
model.score(x_train, y_train) * 100 | code |
128005120/cell_2 | [
"text_html_output_1.png"
] | import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore') | code |
128005120/cell_19 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/breast-cancer-wisconsin-data/data.csv')
df.shape
df.isnull().sum()
df.drop(['Unnamed: 32', 'id'], axis=1, inplace=True)
df.diagnosis.value_counts()
df.diagnosis.replace({'M': 1, 'B': 2}, inplace=True)
x = df.values[:, 1:]
y = df.values[:, 0]
y | code |
128005120/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
128005120/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/breast-cancer-wisconsin-data/data.csv')
df.shape
df.isnull().sum() | code |
128005120/cell_15 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/breast-cancer-wisconsin-data/data.csv')
df.shape
df.isnull().sum()
df.drop(['Unnamed: 32', 'id'], axis=1, inplace=True)
df.diagnosis.value_counts()
df.diagnosis.replace({'M': 1, 'B': 2}, inplace=True)
df.tail() | code |
128005120/cell_17 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/breast-cancer-wisconsin-data/data.csv')
df.shape
df.isnull().sum()
df.drop(['Unnamed: 32', 'id'], axis=1, inplace=True)
df.diagnosis.value_counts()
df.diagnosis.replace({'M': 1, 'B': 2}, inplace=True)
x = df.values[:, 1:]
x | code |
128005120/cell_31 | [
"text_plain_output_1.png"
] | from sklearn.neighbors import KNeighborsClassifier
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/breast-cancer-wisconsin-data/data.csv')
model = KNeighborsClassifier(n_neighbors=5)
model.fit(x_train, y_train)
model.score(x_train, y_train) * 100
model.score(x_test, y_test) * 100
y_pred = model.predict(x_test)
df1 = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
df1 | code |
128005120/cell_14 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/breast-cancer-wisconsin-data/data.csv')
df.shape
df.isnull().sum()
df.drop(['Unnamed: 32', 'id'], axis=1, inplace=True)
df.diagnosis.value_counts()
df.diagnosis.replace({'M': 1, 'B': 2}, inplace=True)
df.head() | code |
128005120/cell_22 | [
"text_html_output_1.png"
] | print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape) | code |
128005120/cell_10 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/breast-cancer-wisconsin-data/data.csv')
df.shape
df.isnull().sum()
df.drop(['Unnamed: 32', 'id'], axis=1, inplace=True)
df.diagnosis.value_counts() | code |
128005120/cell_27 | [
"text_plain_output_1.png"
] | from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=5)
model.fit(x_train, y_train)
model.score(x_train, y_train) * 100
model.score(x_test, y_test) * 100 | code |
128005120/cell_37 | [
"text_plain_output_1.png"
] | from sklearn.metrics import confusion_matrix
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=5)
model.fit(x_train, y_train)
model.score(x_train, y_train) * 100
model.score(x_test, y_test) * 100
y_pred = model.predict(x_test)
performance = confusion_matrix(y_test, y_pred)
performance | code |
128005120/cell_12 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/breast-cancer-wisconsin-data/data.csv')
df.shape
df.isnull().sum()
df.drop(['Unnamed: 32', 'id'], axis=1, inplace=True)
df.diagnosis.value_counts()
df.diagnosis.replace({'M': 1, 'B': 2}, inplace=True)
df | code |
128005120/cell_5 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/breast-cancer-wisconsin-data/data.csv')
df.shape | code |
90150781/cell_21 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
df = pd.read_csv('/kaggle/input/flight-price-prediction/Clean_Dataset.csv')
df.shape
df.drop('Unnamed: 0', axis=1, inplace=True)
df.isnull().sum()
df.columns
df.airline.value_counts()
plt.figure(figsize=(10, 8))
plt1 = df.airline.value_counts().plot(kind='bar')
plt.title('Airline histogram', fontsize=20)
plt1.set(xlabel = 'airline', ylabel='Frequency of airline')
plt.figure(figsize=(20,8))
plt.subplot(1,2,1)
plt.title('Source histogram')
plt1 = df['source_city'].value_counts().plot(kind='bar')
plt1.set(xlabel = 'Source city', ylabel='Frequency of source city')
plt.subplot(1,2,2)
plt.title('Destination histogram')
plt1 = df['destination_city'].value_counts().plot(kind='bar')
plt1.set(xlabel = 'Destination city', ylabel='Frequency of destination city')
plt.show()
df.departure_time.value_counts()
plt.figure(figsize=(20,8))
plt.subplot(1,2,1)
plt.title('Departure time histogram')
plt1 = df.departure_time.value_counts().plot(kind='bar')
plt1.set(xlabel = 'Departure time', ylabel='Frequency of Departure time')
plt.subplot(1,2,2)
plt.title('Arrival time histogram')
plt1 = df.arrival_time.value_counts().plot(kind='bar')
plt1.set(xlabel = 'Arrival time', ylabel='Frequency of Arrival time')
plt.show()
df.stops.value_counts()
plt.figure(figsize=(20, 8))
plt.subplot(1, 2, 1)
plt.title('Class Histogram')
sns.countplot(df['class'], palette='cubehelix')
plt.subplot(1, 2, 2)
plt.title('Class vs Price')
sns.boxplot(x=df['class'], y=df.price, palette='cubehelix')
plt.show() | code |
90150781/cell_13 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/flight-price-prediction/Clean_Dataset.csv')
df.shape
df.drop('Unnamed: 0', axis=1, inplace=True)
df.isnull().sum()
df.columns
df.airline.value_counts() | code |
90150781/cell_9 | [
"text_plain_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/flight-price-prediction/Clean_Dataset.csv')
df.shape
df.drop('Unnamed: 0', axis=1, inplace=True)
df.isnull().sum() | code |
90150781/cell_4 | [
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/flight-price-prediction/Clean_Dataset.csv')
df.shape | code |
90150781/cell_20 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv('/kaggle/input/flight-price-prediction/Clean_Dataset.csv')
df.shape
df.drop('Unnamed: 0', axis=1, inplace=True)
df.isnull().sum()
df.columns
df.airline.value_counts()
plt.figure(figsize=(10, 8))
plt1 = df.airline.value_counts().plot(kind='bar')
plt.title('Airline histogram', fontsize=20)
plt1.set(xlabel = 'airline', ylabel='Frequency of airline')
plt.figure(figsize=(20,8))
plt.subplot(1,2,1)
plt.title('Source histogram')
plt1 = df['source_city'].value_counts().plot(kind='bar')
plt1.set(xlabel = 'Source city', ylabel='Frequency of source city')
plt.subplot(1,2,2)
plt.title('Destination histogram')
plt1 = df['destination_city'].value_counts().plot(kind='bar')
plt1.set(xlabel = 'Destination city', ylabel='Frequency of destination city')
plt.show()
df.departure_time.value_counts()
plt.figure(figsize=(20,8))
plt.subplot(1,2,1)
plt.title('Departure time histogram')
plt1 = df.departure_time.value_counts().plot(kind='bar')
plt1.set(xlabel = 'Departure time', ylabel='Frequency of Departure time')
plt.subplot(1,2,2)
plt.title('Arrival time histogram')
plt1 = df.arrival_time.value_counts().plot(kind='bar')
plt1.set(xlabel = 'Arrival time', ylabel='Frequency of Arrival time')
plt.show()
df.stops.value_counts() | code |
90150781/cell_6 | [
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('/kaggle/input/flight-price-prediction/Clean_Dataset.csv')
df.shape
df.head() | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.