path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
90150781/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/flight-price-prediction/Clean_Dataset.csv') df.shape df.drop('Unnamed: 0', axis=1, inplace=True) df.isnull().sum() df.info()
code
90150781/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/flight-price-prediction/Clean_Dataset.csv') df.shape df.drop('Unnamed: 0', axis=1, inplace=True) df.isnull().sum() df.columns df.airline.value_counts() plt.figure(figsize=(10, 8)) plt1 = df.airline.value_counts().plot(kind='bar') plt.title('Airline histogram', fontsize=20) plt1.set(xlabel = 'airline', ylabel='Frequency of airline') plt.figure(figsize=(20,8)) plt.subplot(1,2,1) plt.title('Source histogram') plt1 = df['source_city'].value_counts().plot(kind='bar') plt1.set(xlabel = 'Source city', ylabel='Frequency of source city') plt.subplot(1,2,2) plt.title('Destination histogram') plt1 = df['destination_city'].value_counts().plot(kind='bar') plt1.set(xlabel = 'Destination city', ylabel='Frequency of destination city') plt.show() df.departure_time.value_counts() plt.figure(figsize=(20, 8)) plt.subplot(1, 2, 1) plt.title('Departure time histogram') plt1 = df.departure_time.value_counts().plot(kind='bar') plt1.set(xlabel='Departure time', ylabel='Frequency of Departure time') plt.subplot(1, 2, 2) plt.title('Arrival time histogram') plt1 = df.arrival_time.value_counts().plot(kind='bar') plt1.set(xlabel='Arrival time', ylabel='Frequency of Arrival time') plt.show()
code
90150781/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/flight-price-prediction/Clean_Dataset.csv') df.shape df.drop('Unnamed: 0', axis=1, inplace=True) df['class'].value_counts()
code
90150781/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/flight-price-prediction/Clean_Dataset.csv') df.shape df.drop('Unnamed: 0', axis=1, inplace=True) df.isnull().sum() df.columns df.airline.value_counts() plt.figure(figsize=(10, 8)) plt1 = df.airline.value_counts().plot(kind='bar') plt.title('Airline histogram', fontsize=20) plt1.set(xlabel='airline', ylabel='Frequency of airline')
code
90150781/cell_16
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/flight-price-prediction/Clean_Dataset.csv') df.shape df.drop('Unnamed: 0', axis=1, inplace=True) df.isnull().sum() df.columns df.airline.value_counts() plt.figure(figsize=(10, 8)) plt1 = df.airline.value_counts().plot(kind='bar') plt.title('Airline histogram', fontsize=20) plt1.set(xlabel = 'airline', ylabel='Frequency of airline') plt.figure(figsize=(20, 8)) plt.subplot(1, 2, 1) plt.title('Source histogram') plt1 = df['source_city'].value_counts().plot(kind='bar') plt1.set(xlabel='Source city', ylabel='Frequency of source city') plt.subplot(1, 2, 2) plt.title('Destination histogram') plt1 = df['destination_city'].value_counts().plot(kind='bar') plt1.set(xlabel='Destination city', ylabel='Frequency of destination city') plt.show()
code
90150781/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/flight-price-prediction/Clean_Dataset.csv') df.shape df.drop('Unnamed: 0', axis=1, inplace=True) df.isnull().sum() df.columns df.airline.value_counts() plt.figure(figsize=(10, 8)) plt1 = df.airline.value_counts().plot(kind='bar') plt.title('Airline histogram', fontsize=20) plt1.set(xlabel = 'airline', ylabel='Frequency of airline') df.departure_time.value_counts()
code
90150781/cell_22
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/flight-price-prediction/Clean_Dataset.csv') df.shape df.drop('Unnamed: 0', axis=1, inplace=True) df.isnull().sum() df.columns df.airline.value_counts() plt.figure(figsize=(10, 8)) plt1 = df.airline.value_counts().plot(kind='bar') plt.title('Airline histogram', fontsize=20) plt1.set(xlabel = 'airline', ylabel='Frequency of airline') plt.figure(figsize=(20,8)) plt.subplot(1,2,1) plt.title('Source histogram') plt1 = df['source_city'].value_counts().plot(kind='bar') plt1.set(xlabel = 'Source city', ylabel='Frequency of source city') plt.subplot(1,2,2) plt.title('Destination histogram') plt1 = df['destination_city'].value_counts().plot(kind='bar') plt1.set(xlabel = 'Destination city', ylabel='Frequency of destination city') plt.show() df.departure_time.value_counts() plt.figure(figsize=(20,8)) plt.subplot(1,2,1) plt.title('Departure time histogram') plt1 = df.departure_time.value_counts().plot(kind='bar') plt1.set(xlabel = 'Departure time', ylabel='Frequency of Departure time') plt.subplot(1,2,2) plt.title('Arrival time histogram') plt1 = df.arrival_time.value_counts().plot(kind='bar') plt1.set(xlabel = 'Arrival time', ylabel='Frequency of Arrival time') plt.show() df.stops.value_counts() df.columns
code
90150781/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/flight-price-prediction/Clean_Dataset.csv') df.shape df.drop('Unnamed: 0', axis=1, inplace=True) df.isnull().sum() df.describe()
code
90150781/cell_12
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/flight-price-prediction/Clean_Dataset.csv') df.shape df.drop('Unnamed: 0', axis=1, inplace=True) df.isnull().sum() df.columns
code
90150781/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/flight-price-prediction/Clean_Dataset.csv') df1 = pd.read_csv('/kaggle/input/flight-price-prediction/business.csv') df2 = pd.read_csv('/kaggle/input/flight-price-prediction/economy.csv') print(df1.shape) print(df2.shape)
code
105201476/cell_11
[ "text_plain_output_1.png" ]
from fastai.tabular.all import df_shrink from time import sleep import gc import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os files_static = [f'/kaggle/input/cccscicandmal2020/StaticAnalysis/{f}' for f in os.listdir('/kaggle/input/cccscicandmal2020/StaticAnalysis') if f.endswith('.csv') and (not f.endswith('Riskware.csv'))] for f in files_static: df_static = pd.read_csv(f, sep=',', encoding='utf-8') df_static = df_shrink(df_static) nans = df_static.isna().sum().sort_index(ascending=False) if nans.iloc[0] > 0: df_static = df_static.dropna(axis=0) label = f.split('/')[-1].split('.')[0] if 'Ben' in label: df_static['Label'] = 'Benign' else: df_static['Label'] = label dupli = df_static.duplicated().sum() df_static.drop_duplicates(inplace=True) df_static.reset_index(inplace=True, drop=True) df_static.columns = [f'F{i}' for i in range(9504)] + ['Label'] df_static.to_parquet(f'static-{label}.parquet') df_static.drop(df_static.index[:], inplace=True) del df_static, nans, dupli sleep(5) gc.collect() files_static = [f'/kaggle/working/{f}' for f in os.listdir('/kaggle/working') if f.endswith('.parquet')] df_static = pd.concat(objs=[pd.read_parquet(f) for f in files_static], copy=False, ignore_index=True) df_static.to_parquet('cicandmal2020-static.parquet') df_static.shape
code
105201476/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: if 'StaticAnalysis' in dirname: print(os.path.join(dirname, filename))
code
105201476/cell_7
[ "text_plain_output_1.png" ]
from fastai.tabular.all import df_shrink from time import sleep import gc import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd import os files_static = [f'/kaggle/input/cccscicandmal2020/StaticAnalysis/{f}' for f in os.listdir('/kaggle/input/cccscicandmal2020/StaticAnalysis') if f.endswith('.csv') and (not f.endswith('Riskware.csv'))] for f in files_static: print(f) df_static = pd.read_csv(f, sep=',', encoding='utf-8') df_static = df_shrink(df_static) nans = df_static.isna().sum().sort_index(ascending=False) if nans.iloc[0] > 0: print(f'Found N/A values in any of the columns of {f}, DROPPING') df_static = df_static.dropna(axis=0) label = f.split('/')[-1].split('.')[0] if 'Ben' in label: df_static['Label'] = 'Benign' else: df_static['Label'] = label dupli = df_static.duplicated().sum() if dupli > 0: print(f, dupli, 'fully duplicate rows to remove') df_static.drop_duplicates(inplace=True) df_static.reset_index(inplace=True, drop=True) df_static.columns = [f'F{i}' for i in range(9504)] + ['Label'] print(df_static.Label.value_counts()) df_static.to_parquet(f'static-{label}.parquet') df_static.drop(df_static.index[:], inplace=True) del df_static, nans, dupli sleep(5) gc.collect()
code
105201476/cell_5
[ "text_plain_output_5.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_4.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
!ls -lath /kaggle/input/cccscicandmal2020/StaticAnalysis
code
329772/cell_6
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def cleanResults(raceColumns,dfResultsTemp,appendScore): for raceCol in raceColumns: dfResultsTemp.index = dfResultsTemp.index.str.replace(r"(\w)([A-Z])", r"\1 \2") dfResultsTemp.index = dfResultsTemp.index.str.title() dfResultsTemp.index = dfResultsTemp.index.str.replace('\([A-Z\ 0-9]*\)','') dfResultsTemp.index = dfResultsTemp.index.str.strip() dfResultsTemp.index = dfResultsTemp.index.str.replace('Riccardo Andrea Leccese','Rikki Leccese') dfResultsTemp[raceCol] = dfResultsTemp[raceCol].astype(str) dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('^DNF$',str(len(dfResults)+1)) dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('\(|\)|UFD|DNF|RET|SCP|RDG|RCT|DCT|DNS-[0-9]*|DNC-[0-9]*|OCS-[0-9]*|[0-9\.]*DNC|-|\/','') dfResultsTemp[raceCol] = pd.to_numeric(dfResultsTemp[raceCol]) dfResultsTemp[raceCol] = dfResultsTemp[raceCol] + appendScore return dfResultsTemp def mergeResults(raceColumns, raceName, dfResultsTemp, dfResults): for raceCol in raceColumns: raceIndex = raceName + '-' + raceCol dfResultsTemp[raceIndex] = dfResultsTemp[raceCol] del dfResultsTemp[raceCol] dfResults = pd.merge(dfResults, dfResultsTemp[[raceIndex]], left_index=True, right_index=True, how='outer') return dfResults dfResults = pd.DataFrame() raceName = '20160323-LaVentana-HydrofoilProTour' raceColumns = ['Q2', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6'] dfResultsTempGold = pd.read_csv('../input/' + raceName + '-Gold.csv') dfResultsTempGold = dfResultsTempGold.set_index(dfResultsTempGold['Name'] + ' ' + dfResultsTempGold['LastName']) dfResultsTempGold = cleanResults(raceColumns, dfResultsTempGold, 0) dfResultsTempSilver = pd.read_csv('../input/' + raceName + '-Silver.csv') dfResultsTempSilver = dfResultsTempSilver.set_index(dfResultsTempSilver['Name'] + ' ' + dfResultsTempSilver['LastName']) dfResultsTempSilver = cleanResults(raceColumns, dfResultsTempSilver, len(dfResultsTempGold)) dfResultsTemp = dfResultsTempGold.append(dfResultsTempSilver) dfResults = mergeResults(raceColumns, raceName, dfResultsTemp, dfResults)
code
329772/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def cleanResults(raceColumns,dfResultsTemp,appendScore): for raceCol in raceColumns: dfResultsTemp.index = dfResultsTemp.index.str.replace(r"(\w)([A-Z])", r"\1 \2") dfResultsTemp.index = dfResultsTemp.index.str.title() dfResultsTemp.index = dfResultsTemp.index.str.replace('\([A-Z\ 0-9]*\)','') dfResultsTemp.index = dfResultsTemp.index.str.strip() dfResultsTemp.index = dfResultsTemp.index.str.replace('Riccardo Andrea Leccese','Rikki Leccese') dfResultsTemp[raceCol] = dfResultsTemp[raceCol].astype(str) dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('^DNF$',str(len(dfResults)+1)) dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('\(|\)|UFD|DNF|RET|SCP|RDG|RCT|DCT|DNS-[0-9]*|DNC-[0-9]*|OCS-[0-9]*|[0-9\.]*DNC|-|\/','') dfResultsTemp[raceCol] = pd.to_numeric(dfResultsTemp[raceCol]) dfResultsTemp[raceCol] = dfResultsTemp[raceCol] + appendScore return dfResultsTemp def mergeResults(raceColumns, raceName, dfResultsTemp, dfResults): for raceCol in raceColumns: raceIndex = raceName + '-' + raceCol dfResultsTemp[raceIndex] = dfResultsTemp[raceCol] del dfResultsTemp[raceCol] dfResults = pd.merge(dfResults, dfResultsTemp[[raceIndex]], left_index=True, right_index=True, how='outer') return dfResults dfResults = pd.DataFrame() raceName = '20160323-LaVentana-HydrofoilProTour' raceColumns = ['Q2', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6'] dfResultsTempGold = pd.read_csv('../input/' + raceName + '-Gold.csv') dfResultsTempGold = dfResultsTempGold.set_index(dfResultsTempGold['Name'] + ' ' + dfResultsTempGold['LastName']) dfResultsTempGold = cleanResults(raceColumns, dfResultsTempGold, 0) dfResultsTempSilver = pd.read_csv('../input/' + raceName + '-Silver.csv') dfResultsTempSilver = dfResultsTempSilver.set_index(dfResultsTempSilver['Name'] + ' ' + dfResultsTempSilver['LastName']) dfResultsTempSilver = cleanResults(raceColumns, dfResultsTempSilver, len(dfResultsTempGold)) dfResultsTemp = dfResultsTempGold.append(dfResultsTempSilver) dfResults = mergeResults(raceColumns, raceName, dfResultsTemp, dfResults) raceName = '20160717-Gizzeria-IKAGoldCup' raceColumns = ['CF 2', 'F 1', 'F 2', 'F 3', 'F 4', 'F 5', 'F 6', 'F 7', 'F 8', 'F 9', 'F 10'] dfResultsTempGold = pd.read_csv('../input/' + raceName + '-Gold.csv') dfResultsTempGold = dfResultsTempGold.set_index(dfResultsTempGold['Name']) dfResultsTempGold = cleanResults(raceColumns, dfResultsTempGold, 0) raceColumns = ['CF 2', 'F 1', 'F 2', 'F 3', 'F 4', 'F 5', 'F 6', 'F 8'] dfResultsTempSilver = pd.read_csv('../input/' + raceName + '-Silver.csv') dfResultsTempSilver = dfResultsTempSilver.set_index(dfResultsTempSilver['Name']) dfResultsTempSilver = cleanResults(raceColumns, dfResultsTempSilver, len(dfResultsTempGold)) raceColumns = ['CF 2', 'F 1', 'F 2', 'F 3', 'F 4', 'F 5', 'F 6'] dfResultsTemp = dfResultsTempGold.append(dfResultsTempSilver) dfResultsTempBronze = pd.read_csv('../input/' + raceName + '-Bronze.csv', encoding='ISO-8859-1') dfResultsTempBronze = dfResultsTempBronze.set_index(dfResultsTempBronze['Name']) dfResultsTempBronze = cleanResults(raceColumns, dfResultsTempBronze, len(dfResultsTemp)) dfResultsTemp = dfResultsTemp.append(dfResultsTempBronze) dfResults = mergeResults(raceColumns, raceName, dfResultsTemp, dfResults)
code
329772/cell_8
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def cleanResults(raceColumns,dfResultsTemp,appendScore): for raceCol in raceColumns: dfResultsTemp.index = dfResultsTemp.index.str.replace(r"(\w)([A-Z])", r"\1 \2") dfResultsTemp.index = dfResultsTemp.index.str.title() dfResultsTemp.index = dfResultsTemp.index.str.replace('\([A-Z\ 0-9]*\)','') dfResultsTemp.index = dfResultsTemp.index.str.strip() dfResultsTemp.index = dfResultsTemp.index.str.replace('Riccardo Andrea Leccese','Rikki Leccese') dfResultsTemp[raceCol] = dfResultsTemp[raceCol].astype(str) dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('^DNF$',str(len(dfResults)+1)) dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('\(|\)|UFD|DNF|RET|SCP|RDG|RCT|DCT|DNS-[0-9]*|DNC-[0-9]*|OCS-[0-9]*|[0-9\.]*DNC|-|\/','') dfResultsTemp[raceCol] = pd.to_numeric(dfResultsTemp[raceCol]) dfResultsTemp[raceCol] = dfResultsTemp[raceCol] + appendScore return dfResultsTemp def mergeResults(raceColumns, raceName, dfResultsTemp, dfResults): for raceCol in raceColumns: raceIndex = raceName + '-' + raceCol dfResultsTemp[raceIndex] = dfResultsTemp[raceCol] del dfResultsTemp[raceCol] dfResults = pd.merge(dfResults, dfResultsTemp[[raceIndex]], left_index=True, right_index=True, how='outer') return dfResults dfResults = pd.DataFrame() raceName = '20160323-LaVentana-HydrofoilProTour' raceColumns = ['Q2', 'R1', 'R2', 'R3', 'R4', 'R5', 'R6'] dfResultsTempGold = pd.read_csv('../input/' + raceName + '-Gold.csv') dfResultsTempGold = dfResultsTempGold.set_index(dfResultsTempGold['Name'] + ' ' + dfResultsTempGold['LastName']) dfResultsTempGold = cleanResults(raceColumns, dfResultsTempGold, 0) dfResultsTempSilver = pd.read_csv('../input/' + raceName + '-Silver.csv') dfResultsTempSilver = dfResultsTempSilver.set_index(dfResultsTempSilver['Name'] + ' ' + dfResultsTempSilver['LastName']) dfResultsTempSilver = cleanResults(raceColumns, dfResultsTempSilver, len(dfResultsTempGold)) dfResultsTemp = dfResultsTempGold.append(dfResultsTempSilver) dfResults = mergeResults(raceColumns, raceName, dfResultsTemp, dfResults) raceName = '20160717-Gizzeria-IKAGoldCup' raceColumns = ['CF 2', 'F 1', 'F 2', 'F 3', 'F 4', 'F 5', 'F 6', 'F 7', 'F 8', 'F 9', 'F 10'] dfResultsTempGold = pd.read_csv('../input/' + raceName + '-Gold.csv') dfResultsTempGold = dfResultsTempGold.set_index(dfResultsTempGold['Name']) dfResultsTempGold = cleanResults(raceColumns, dfResultsTempGold, 0) raceColumns = ['CF 2', 'F 1', 'F 2', 'F 3', 'F 4', 'F 5', 'F 6', 'F 8'] dfResultsTempSilver = pd.read_csv('../input/' + raceName + '-Silver.csv') dfResultsTempSilver = dfResultsTempSilver.set_index(dfResultsTempSilver['Name']) dfResultsTempSilver = cleanResults(raceColumns, dfResultsTempSilver, len(dfResultsTempGold)) raceColumns = ['CF 2', 'F 1', 'F 2', 'F 3', 'F 4', 'F 5', 'F 6'] dfResultsTemp = dfResultsTempGold.append(dfResultsTempSilver) dfResultsTempBronze = pd.read_csv('../input/' + raceName + '-Bronze.csv', encoding='ISO-8859-1') dfResultsTempBronze = dfResultsTempBronze.set_index(dfResultsTempBronze['Name']) dfResultsTempBronze = cleanResults(raceColumns, dfResultsTempBronze, len(dfResultsTemp)) dfResultsTemp = dfResultsTemp.append(dfResultsTempBronze) dfResults = mergeResults(raceColumns, raceName, dfResultsTemp, dfResults) raceName = '20160807-SanFracisco-HydrofoilProTour' dfResultsTemp = pd.read_csv('../input/' + raceName + '.csv') dfResultsTemp = dfResultsTemp.set_index(dfResultsTemp['Name']) raceColumns = ['R1', 'R2', 'R3', 'R4', 'R5', 'R6', 'R7', 'R8', 'R9', 'R10', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16'] dfResultsTemp = cleanResults(raceColumns, dfResultsTemp, 0) dfResults = mergeResults(raceColumns, raceName, dfResultsTemp, dfResults)
code
329772/cell_5
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) def cleanResults(raceColumns,dfResultsTemp,appendScore): for raceCol in raceColumns: dfResultsTemp.index = dfResultsTemp.index.str.replace(r"(\w)([A-Z])", r"\1 \2") dfResultsTemp.index = dfResultsTemp.index.str.title() dfResultsTemp.index = dfResultsTemp.index.str.replace('\([A-Z\ 0-9]*\)','') dfResultsTemp.index = dfResultsTemp.index.str.strip() dfResultsTemp.index = dfResultsTemp.index.str.replace('Riccardo Andrea Leccese','Rikki Leccese') dfResultsTemp[raceCol] = dfResultsTemp[raceCol].astype(str) dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('^DNF$',str(len(dfResults)+1)) dfResultsTemp[raceCol] = dfResultsTemp[raceCol].str.replace('\(|\)|UFD|DNF|RET|SCP|RDG|RCT|DCT|DNS-[0-9]*|DNC-[0-9]*|OCS-[0-9]*|[0-9\.]*DNC|-|\/','') dfResultsTemp[raceCol] = pd.to_numeric(dfResultsTemp[raceCol]) dfResultsTemp[raceCol] = dfResultsTemp[raceCol] + appendScore return dfResultsTemp def mergeResults(raceColumns, raceName, dfResultsTemp, dfResults): for raceCol in raceColumns: raceIndex = raceName + '-' + raceCol dfResultsTemp[raceIndex] = dfResultsTemp[raceCol] del dfResultsTemp[raceCol] dfResults = pd.merge(dfResults, dfResultsTemp[[raceIndex]], left_index=True, right_index=True, how='outer') return dfResults dfResults = pd.DataFrame()
code
33098146/cell_4
[ "text_html_output_1.png" ]
import os import pandas as pd base_path = '/kaggle' if os.path.exists(base_path): input_path = os.path.join(base_path, 'input', 'nlp-getting-started') output_path = os.path.join(base_path, 'working') else: base_path = 'data' input_path = base_path output_path = os.path.join(base_path, 'submissions') train_file = os.path.join(input_path, 'train.csv') test_file = os.path.join(input_path, 'test.csv') train_df = pd.read_csv(train_file) test_df = pd.read_csv(test_file) train_df.head()
code
33098146/cell_1
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
# Upgrade packages for work with new Pandas version !pip install --upgrade pandas-profiling !pip install --upgrade hypertools !pip install --upgrade pandas
code
90109387/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) train_data.isnull().sum() train_data.describe()
code
90109387/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) train_data.isnull().sum() train_data['target'].value_counts().plot(kind='bar', color='red')
code
90109387/cell_34
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) train_data.isnull().sum() corr_matrix = train_data.corr() numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] num_columns = [col for col in train_data.columns if train_data[col].dtype in numerics and col != 'target'] num_columns cat_columns = [col for col in train_data.columns if train_data[col].dtype not in numerics] cat_columns for i in range(train_data[num_columns].shape[1]): plt.figure() plt.hist(train_data[num_columns].iloc[:, i]) plt.xlabel(train_data[num_columns].columns[i]) plt.ylabel('frequency')
code
90109387/cell_44
[ "image_output_11.png", "image_output_17.png", "image_output_14.png", "image_output_13.png", "image_output_5.png", "image_output_18.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_16.png", "image_output_6.png", "image_output_12.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_15.png", "image_output_9.png", "image_output_19.png" ]
from sklearn.decomposition import PCA import pandas as pd train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) pca = PCA(n_components=1) cont1_2 = pca.fit_transform(all_data[['cont1', 'cont2']]) print(pca.explained_variance_ratio_) cont1_2
code
90109387/cell_55
[ "text_html_output_1.png" ]
from sklearn.decomposition import PCA import pandas as pd train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) pca = PCA(n_components=1) cont1_2 = pca.fit_transform(all_data[['cont1', 'cont2']]) cont1_2 all_data['cont1_2'] = cont1_2 all_data.drop('cont1', axis=1, inplace=True) all_data.drop('cont2', axis=1, inplace=True) pca1 = PCA(n_components=1) cont0_10 = pca1.fit_transform(all_data[['cont0', 'cont10']]) cont0_10 all_data['cont0_10'] = cont0_10 all_data.drop('cont10', axis=1, inplace=True) all_data.drop('cont0', axis=1, inplace=True) all_data = all_data[['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9', 'cat10', 'cat11', 'cat12', 'cat13', 'cat14', 'cat15', 'cat16', 'cat17', 'cat18', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont1_2', 'cont0_10', 'target']] train_data = all_data.iloc[0:300000, :] test_data = all_data.iloc[300000:, :].drop(['target'], axis=1) all_data.head()
code
90109387/cell_6
[ "text_html_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') test_data
code
90109387/cell_26
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) train_data.isnull().sum() corr_matrix = train_data.corr() plt.figure(figsize=(10, 10)) sns.heatmap(corr_matrix, xticklabels=corr_matrix.columns.values, yticklabels=corr_matrix.columns.values, annot=True)
code
90109387/cell_41
[ "image_output_11.png", "image_output_5.png", "image_output_7.png", "image_output_4.png", "image_output_8.png", "image_output_6.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "image_output_9.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) train_data.isnull().sum() corr_matrix = train_data.corr() corr_matrix[corr_matrix > 0.8][corr_matrix != 1].fillna('OK')
code
90109387/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') train_data.shape
code
90109387/cell_19
[ "text_html_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) train_data.isnull().sum() len(train_data['cat10'].unique())
code
90109387/cell_50
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.decomposition import PCA import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) train_data.isnull().sum() corr_matrix = train_data.corr() numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] num_columns = [col for col in train_data.columns if train_data[col].dtype in numerics and col != 'target'] num_columns cat_columns = [col for col in train_data.columns if train_data[col].dtype not in numerics] cat_columns #thanks to @ANDRESHG num_rows, num_cols = len(num_columns),2 f, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=(15, 15)) f.suptitle('Distribution of Features', fontsize=16) for index, column in enumerate(num_columns): i,j = (index // num_cols, index % num_cols) sns.kdeplot(train_data.loc[train_data['target'] == 0, column], color="r", shade=True, ax=axes[index,0]) sns.kdeplot(train_data.loc[train_data['target'] == 1, column], color="g", shade=True, ax=axes[index,0]) sns.histplot(data=train_data,x=column,hue='target', kde=False, palette='Paired_r', bins=10, ax=axes[index,1],multiple='stack') pca = PCA(n_components=1) cont1_2 = pca.fit_transform(all_data[['cont1', 'cont2']]) cont1_2 all_data['cont1_2'] = cont1_2 all_data.drop('cont1', axis=1, inplace=True) all_data.drop('cont2', axis=1, inplace=True) pca1 = PCA(n_components=1) cont0_10 = pca1.fit_transform(all_data[['cont0', 'cont10']]) cont0_10 all_data['cont0_10'] = cont0_10 all_data.drop('cont10', axis=1, inplace=True) all_data.drop('cont0', axis=1, inplace=True) all_data = all_data[['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9', 'cat10', 'cat11', 'cat12', 'cat13', 'cat14', 'cat15', 'cat16', 'cat17', 'cat18', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont1_2', 'cont0_10', 'target']] train_data = all_data.iloc[0:300000, :] test_data = all_data.iloc[300000:, :].drop(['target'], axis=1) train_data.head()
code
90109387/cell_7
[ "text_html_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data
code
90109387/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) train_data.isnull().sum() corr_matrix = train_data.corr() numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] num_columns = [col for col in train_data.columns if train_data[col].dtype in numerics and col != 'target'] num_columns cat_columns = [col for col in train_data.columns if train_data[col].dtype not in numerics] cat_columns
code
90109387/cell_15
[ "text_html_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) train_data.isnull().sum()
code
90109387/cell_38
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) train_data.isnull().sum() corr_matrix = train_data.corr() numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] num_columns = [col for col in train_data.columns if train_data[col].dtype in numerics and col != 'target'] num_columns cat_columns = [col for col in train_data.columns if train_data[col].dtype not in numerics] cat_columns num_rows, num_cols = (len(num_columns), 2) f, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=(15, 15)) f.suptitle('Distribution of Features', fontsize=16) for index, column in enumerate(num_columns): i, j = (index // num_cols, index % num_cols) sns.kdeplot(train_data.loc[train_data['target'] == 0, column], color='r', shade=True, ax=axes[index, 0]) sns.kdeplot(train_data.loc[train_data['target'] == 1, column], color='g', shade=True, ax=axes[index, 0]) sns.histplot(data=train_data, x=column, hue='target', kde=False, palette='Paired_r', bins=10, ax=axes[index, 1], multiple='stack')
code
90109387/cell_3
[ "text_plain_output_1.png" ]
import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) import numpy as np import pandas as pd import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import GridSearchCV from sklearn.model_selection import cross_val_score from sklearn.model_selection import cross_validate from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt
code
90109387/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) train_data.isnull().sum() for i in range(18): print('category{}'.format(i), train_data['cat{}'.format(i)].unique(), '\n')
code
90109387/cell_31
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) train_data.isnull().sum() corr_matrix = train_data.corr() numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] num_columns = [col for col in train_data.columns if train_data[col].dtype in numerics and col != 'target'] num_columns
code
90109387/cell_46
[ "image_output_1.png" ]
from sklearn.decomposition import PCA import pandas as pd train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) pca = PCA(n_components=1) cont1_2 = pca.fit_transform(all_data[['cont1', 'cont2']]) cont1_2 all_data['cont1_2'] = cont1_2 all_data.drop('cont1', axis=1, inplace=True) all_data.drop('cont2', axis=1, inplace=True) pca1 = PCA(n_components=1) cont0_10 = pca1.fit_transform(all_data[['cont0', 'cont10']]) print(pca1.explained_variance_ratio_) cont0_10
code
90109387/cell_14
[ "text_html_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) train_data.info()
code
90109387/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) train_data.isnull().sum() train_data['target'].value_counts()
code
90109387/cell_53
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
from sklearn.decomposition import PCA import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) train_data.isnull().sum() corr_matrix = train_data.corr() numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] num_columns = [col for col in train_data.columns if train_data[col].dtype in numerics and col != 'target'] num_columns cat_columns = [col for col in train_data.columns if train_data[col].dtype not in numerics] cat_columns #thanks to @ANDRESHG num_rows, num_cols = len(num_columns),2 f, axes = plt.subplots(nrows=num_rows, ncols=num_cols, figsize=(15, 15)) f.suptitle('Distribution of Features', fontsize=16) for index, column in enumerate(num_columns): i,j = (index // num_cols, index % num_cols) sns.kdeplot(train_data.loc[train_data['target'] == 0, column], color="r", shade=True, ax=axes[index,0]) sns.kdeplot(train_data.loc[train_data['target'] == 1, column], color="g", shade=True, ax=axes[index,0]) sns.histplot(data=train_data,x=column,hue='target', kde=False, palette='Paired_r', bins=10, ax=axes[index,1],multiple='stack') pca = PCA(n_components=1) cont1_2 = pca.fit_transform(all_data[['cont1', 'cont2']]) cont1_2 all_data['cont1_2'] = cont1_2 all_data.drop('cont1', axis=1, inplace=True) all_data.drop('cont2', axis=1, inplace=True) pca1 = PCA(n_components=1) cont0_10 = pca1.fit_transform(all_data[['cont0', 'cont10']]) cont0_10 all_data['cont0_10'] = cont0_10 all_data.drop('cont10', axis=1, inplace=True) all_data.drop('cont0', axis=1, inplace=True) all_data = all_data[['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9', 'cat10', 'cat11', 'cat12', 'cat13', 'cat14', 'cat15', 'cat16', 'cat17', 'cat18', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont1_2', 'cont0_10', 'target']] train_data = all_data.iloc[0:300000, :] test_data = all_data.iloc[300000:, :].drop(['target'], axis=1) corr_matrix_new = train_data.corr() corr_matrix_new[corr_matrix_new > 0.8][corr_matrix != 1].fillna('OK')
code
90109387/cell_27
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) train_data.isnull().sum() corr_matrix = train_data.corr() correlation_with_target = corr_matrix['target'] correlation_with_target.abs().sort_values(ascending=False)
code
90109387/cell_12
[ "text_html_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') train_data.shape train_data.head()
code
90109387/cell_5
[ "text_html_output_1.png" ]
import pandas as pd train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') train_data
code
90109387/cell_36
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_data = pd.read_csv('../input/tabular-playground-series-mar-2021/train.csv') test_data = pd.read_csv('../input/tabular-playground-series-mar-2021/test.csv') all_data = pd.concat([train_data, test_data]) all_data train_data.shape all_data.drop('id', axis=1, inplace=True) train_data.drop('id', axis=1, inplace=True) test_data.drop('id', axis=1, inplace=True) train_data.isnull().sum() corr_matrix = train_data.corr() numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] num_columns = [col for col in train_data.columns if train_data[col].dtype in numerics and col != 'target'] num_columns cat_columns = [col for col in train_data.columns if train_data[col].dtype not in numerics] cat_columns for i in range(train_data[cat_columns].shape[1]): plt.figure() plt.hist(train_data[cat_columns].iloc[:, i]) plt.xlabel(train_data[cat_columns].columns[i]) plt.ylabel('frequency')
code
1004405/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
from nltk.corpus import stopwords import nltk import re import re import nltk from bs4 import BeautifulSoup from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer english_stemmer = nltk.stem.SnowballStemmer('english') from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer def description_to_wordlist(description, remove_stopwords=True): description_text = re.sub('[^a-zA-Z]', ' ', description) words = review_text.lower().split() if remove_stopwords: stops = set(stopwords.words('english')) words = [w for w in words if not w in stops] b = [] stemmer = english_stemmer for word in words: b.append(stemmer.stem(word)) return b description_low = [] for description in X_train_low['description']: description_low.append(' '.join(description_to_wordlist(review))) description_med = [] for description in X_train_med['description']: description_med.append(' '.join(description_to_wordlist(review))) description_high = [] for description in X_train_high['description']: description_high.append(' '.join(description_to_wordlist(review)))
code
1004405/cell_13
[ "text_html_output_1.png" ]
from sklearn import preprocessing import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_json(open('../input/train.json', 'r')) from sklearn import preprocessing le = preprocessing.LabelEncoder() le.fit(df['building_id'])
code
1004405/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_json(open('../input/train.json', 'r')) df.columns num_feats = ['bathrooms', 'bedrooms', 'latitude', 'longitude', 'price', 'num_photos', 'num_features', 'num_description_words', 'created_year', 'created_month', 'created_day', 'building_id', 'price_per_bedroom', 'price_per_bathroom'] X = df[num_feats] y = df['interest_level'] X.head()
code
1004405/cell_30
[ "text_plain_output_1.png" ]
from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import log_loss clf = RandomForestClassifier(n_estimators=1500) clf.fit(X_train, y_train) y_val_pred = clf.predict_proba(X_val) log_loss(y_val, y_val_pred) from sklearn.ensemble import BaggingClassifier b1 = BaggingClassifier(n_estimators=2000) b1.fit(X_train, y_train) y_val_pred = b1.predict_proba(X_val) log_loss(y_val, y_val_pred)
code
1004405/cell_33
[ "text_plain_output_1.png" ]
from sklearn import svm from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import log_loss from sklearn.neighbors import KNeighborsClassifier clf = RandomForestClassifier(n_estimators=1500) clf.fit(X_train, y_train) y_val_pred = clf.predict_proba(X_val) log_loss(y_val, y_val_pred) from sklearn.ensemble import BaggingClassifier b1 = BaggingClassifier(n_estimators=2000) b1.fit(X_train, y_train) y_val_pred = b1.predict_proba(X_val) log_loss(y_val, y_val_pred) from sklearn.ensemble import GradientBoostingClassifier gbc = GradientBoostingClassifier() gbc.fit(X_train, y_train) y_val_pred = gbc.predict_proba(X_val) log_loss(y_val, y_val_pred) from sklearn import svm clf = svm.SVC() clf.fit(X_train, y_train) y_val_pred = clf.predict_proba(X_val) log_loss(y_val, y_val_pred) from sklearn.neighbors import KNeighborsClassifier neigh = KNeighborsClassifier(n_neighbors=3) neigh.fit(X_train, y_train) y_val_pred = neigh.predict_proba(X_val) log_loss(y_val, y_val_pred)
code
1004405/cell_6
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_json(open('../input/train.json', 'r')) print(df.shape)
code
1004405/cell_2
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
1004405/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_json(open('../input/train.json', 'r')) df['street_address'].value_counts().plot(kind='hist', bins=50)
code
1004405/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_json(open('../input/train.json', 'r')) df.head()
code
1004405/cell_32
[ "text_plain_output_1.png" ]
from sklearn import svm from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import log_loss clf = RandomForestClassifier(n_estimators=1500) clf.fit(X_train, y_train) y_val_pred = clf.predict_proba(X_val) log_loss(y_val, y_val_pred) from sklearn.ensemble import BaggingClassifier b1 = BaggingClassifier(n_estimators=2000) b1.fit(X_train, y_train) y_val_pred = b1.predict_proba(X_val) log_loss(y_val, y_val_pred) from sklearn.ensemble import GradientBoostingClassifier gbc = GradientBoostingClassifier() gbc.fit(X_train, y_train) y_val_pred = gbc.predict_proba(X_val) log_loss(y_val, y_val_pred) from sklearn import svm clf = svm.SVC() clf.fit(X_train, y_train) y_val_pred = clf.predict_proba(X_val) log_loss(y_val, y_val_pred)
code
1004405/cell_28
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import log_loss clf = RandomForestClassifier(n_estimators=1500) clf.fit(X_train, y_train) y_val_pred = clf.predict_proba(X_val) log_loss(y_val, y_val_pred)
code
1004405/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_json(open('../input/train.json', 'r')) print(df.shape)
code
1004405/cell_15
[ "text_plain_output_1.png" ]
from sklearn import preprocessing import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_json(open('../input/train.json', 'r')) from sklearn import preprocessing le = preprocessing.LabelEncoder() le.fit(df['building_id']) df['building_id'] = le.fit_transform(df['building_id']) df['building_id'].head()
code
1004405/cell_35
[ "text_plain_output_1.png" ]
from sklearn import svm from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import log_loss import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_json(open('../input/train.json', 'r')) df['num_photos'] = df['photos'].apply(len) df['num_features'] = df['features'].apply(len) df['num_description_words'] = df['description'].apply(lambda x: len(x.split(' '))) df['created'] = pd.to_datetime(df['created']) df['created_year'] = df['created'].dt.year df['created_month'] = df['created'].dt.month df['created_day'] = df['created'].dt.day df['price_per_bedroom'] = df['bedrooms'] / df['price'] df['price_per_bathroom'] = df['bathrooms'] / df['price'] df.columns num_feats = ['bathrooms', 'bedrooms', 'latitude', 'longitude', 'price', 'num_photos', 'num_features', 'num_description_words', 'created_year', 'created_month', 'created_day', 'building_id', 'price_per_bedroom', 'price_per_bathroom'] X = df[num_feats] y = df['interest_level'] clf = RandomForestClassifier(n_estimators=1500) clf.fit(X_train, y_train) y_val_pred = clf.predict_proba(X_val) log_loss(y_val, y_val_pred) from sklearn.ensemble import BaggingClassifier b1 = BaggingClassifier(n_estimators=2000) b1.fit(X_train, y_train) y_val_pred = b1.predict_proba(X_val) log_loss(y_val, y_val_pred) from sklearn.ensemble import GradientBoostingClassifier gbc = GradientBoostingClassifier() gbc.fit(X_train, y_train) y_val_pred = gbc.predict_proba(X_val) log_loss(y_val, y_val_pred) from sklearn import svm clf = svm.SVC() clf.fit(X_train, y_train) y_val_pred = clf.predict_proba(X_val) log_loss(y_val, y_val_pred) df = pd.read_json(open('../input/test.json', 'r')) print(df.shape) df['num_photos'] = df['photos'].apply(len) df['num_features'] = df['features'].apply(len) df['num_description_words'] = df['description'].apply(lambda x: len(x.split(' '))) df['created'] = pd.to_datetime(df['created']) df['created_year'] = df['created'].dt.year df['created_month'] = df['created'].dt.month df['created_day'] = df['created'].dt.day X = df[num_feats] y = clf.predict_proba(X)
code
1004405/cell_31
[ "text_html_output_1.png" ]
from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import log_loss clf = RandomForestClassifier(n_estimators=1500) clf.fit(X_train, y_train) y_val_pred = clf.predict_proba(X_val) log_loss(y_val, y_val_pred) from sklearn.ensemble import BaggingClassifier b1 = BaggingClassifier(n_estimators=2000) b1.fit(X_train, y_train) y_val_pred = b1.predict_proba(X_val) log_loss(y_val, y_val_pred) from sklearn.ensemble import GradientBoostingClassifier gbc = GradientBoostingClassifier() gbc.fit(X_train, y_train) y_val_pred = gbc.predict_proba(X_val) log_loss(y_val, y_val_pred)
code
1004405/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_json(open('../input/train.json', 'r')) df.columns
code
1004405/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_json(open('../input/train.json', 'r')) print(df['building_id'].value_counts().nlargest(50))
code
1004405/cell_37
[ "text_plain_output_1.png" ]
from sklearn import svm from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import log_loss import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_json(open('../input/train.json', 'r')) df['num_photos'] = df['photos'].apply(len) df['num_features'] = df['features'].apply(len) df['num_description_words'] = df['description'].apply(lambda x: len(x.split(' '))) df['created'] = pd.to_datetime(df['created']) df['created_year'] = df['created'].dt.year df['created_month'] = df['created'].dt.month df['created_day'] = df['created'].dt.day df['price_per_bedroom'] = df['bedrooms'] / df['price'] df['price_per_bathroom'] = df['bathrooms'] / df['price'] df.columns num_feats = ['bathrooms', 'bedrooms', 'latitude', 'longitude', 'price', 'num_photos', 'num_features', 'num_description_words', 'created_year', 'created_month', 'created_day', 'building_id', 'price_per_bedroom', 'price_per_bathroom'] X = df[num_feats] y = df['interest_level'] clf = RandomForestClassifier(n_estimators=1500) clf.fit(X_train, y_train) y_val_pred = clf.predict_proba(X_val) log_loss(y_val, y_val_pred) from sklearn.ensemble import BaggingClassifier b1 = BaggingClassifier(n_estimators=2000) b1.fit(X_train, y_train) y_val_pred = b1.predict_proba(X_val) log_loss(y_val, y_val_pred) from sklearn.ensemble import GradientBoostingClassifier gbc = GradientBoostingClassifier() gbc.fit(X_train, y_train) y_val_pred = gbc.predict_proba(X_val) log_loss(y_val, y_val_pred) from sklearn import svm clf = svm.SVC() clf.fit(X_train, y_train) y_val_pred = clf.predict_proba(X_val) log_loss(y_val, y_val_pred) df = pd.read_json(open('../input/test.json', 'r')) df['num_photos'] = df['photos'].apply(len) df['num_features'] = df['features'].apply(len) df['num_description_words'] = df['description'].apply(lambda x: len(x.split(' '))) df['created'] = pd.to_datetime(df['created']) df['created_year'] = df['created'].dt.year df['created_month'] = df['created'].dt.month df['created_day'] = df['created'].dt.day X = df[num_feats] y = clf.predict_proba(X) labels2idx = {label: i for i, label in enumerate(clf.classes_)} labels2idx sub = pd.DataFrame() sub['listing_id'] = df['listing_id'] for label in ['high', 'medium', 'low']: sub[label] = y[:, labels2idx[label]] sub.to_csv('submission_rf.csv', index=False)
code
1004405/cell_36
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn import svm from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import log_loss import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_json(open('../input/train.json', 'r')) df['num_photos'] = df['photos'].apply(len) df['num_features'] = df['features'].apply(len) df['num_description_words'] = df['description'].apply(lambda x: len(x.split(' '))) df['created'] = pd.to_datetime(df['created']) df['created_year'] = df['created'].dt.year df['created_month'] = df['created'].dt.month df['created_day'] = df['created'].dt.day df['price_per_bedroom'] = df['bedrooms'] / df['price'] df['price_per_bathroom'] = df['bathrooms'] / df['price'] df.columns num_feats = ['bathrooms', 'bedrooms', 'latitude', 'longitude', 'price', 'num_photos', 'num_features', 'num_description_words', 'created_year', 'created_month', 'created_day', 'building_id', 'price_per_bedroom', 'price_per_bathroom'] X = df[num_feats] y = df['interest_level'] clf = RandomForestClassifier(n_estimators=1500) clf.fit(X_train, y_train) y_val_pred = clf.predict_proba(X_val) log_loss(y_val, y_val_pred) from sklearn.ensemble import BaggingClassifier b1 = BaggingClassifier(n_estimators=2000) b1.fit(X_train, y_train) y_val_pred = b1.predict_proba(X_val) log_loss(y_val, y_val_pred) from sklearn.ensemble import GradientBoostingClassifier gbc = GradientBoostingClassifier() gbc.fit(X_train, y_train) y_val_pred = gbc.predict_proba(X_val) log_loss(y_val, y_val_pred) from sklearn import svm clf = svm.SVC() clf.fit(X_train, y_train) y_val_pred = clf.predict_proba(X_val) log_loss(y_val, y_val_pred) df = pd.read_json(open('../input/test.json', 'r')) df['num_photos'] = df['photos'].apply(len) df['num_features'] = df['features'].apply(len) df['num_description_words'] = df['description'].apply(lambda x: len(x.split(' '))) df['created'] = pd.to_datetime(df['created']) df['created_year'] = df['created'].dt.year df['created_month'] = df['created'].dt.month df['created_day'] = df['created'].dt.day X = df[num_feats] y = clf.predict_proba(X) labels2idx = {label: i for i, label in enumerate(clf.classes_)} labels2idx
code
128027861/cell_42
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import precision_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import seaborn as sns plt.rcParams.update({'font.size': 14}) df = pd.read_csv('/kaggle/input/airways-customer-data/filtered_customer_booking.csv', index_col=0) df = df.reset_index(drop=True) df_final = df from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder(handle_unknown='ignore') encoder_df = pd.DataFrame(encoder.fit_transform(df[['sales_channel']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'Internet', 1: 'Mobile'}) df_final = df_final.join(encoder_df) encoder_df = pd.DataFrame(encoder.fit_transform(df[['trip_type']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'RoundTRip', 1: 'OneWayTrip', 2: 'CircleTrip'}) df_final = df_final.join(encoder_df) df_final.drop(['sales_channel', 'trip_type', 'booking_origin', 'route'], axis=1, inplace=True) df_final = df_final.drop('booking_complete', axis=1) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_df = scaler.fit_transform(df_final) scaled_df = pd.DataFrame(scaled_df, columns=df_final.columns) corr = scaled_df.corr() from sklearn.model_selection import train_test_split X = scaled_df.iloc[:, :-1] y = scaled_df['label'] X_train, X_test, y_train, y_test = train_test_split(X.to_numpy(), y.to_numpy(), test_size=0.2, random_state=42) """ Create functions to fit and predict the values of whether customer would complete the booking. Also functions with metrics to evaluate the model prediction. """ def model_fit_predict(model, X, y, X_predict): model.fit(X, y) return model.predict(X_predict) def acc_score(y_true, y_pred): return accuracy_score(y_true, y_pred) def pre_score(y_true, y_pred): return precision_score(y_true, y_pred) def f_score(y_true, y_pred): return f1_score(y_true, y_pred) clf_rf = RandomForestClassifier(max_depth=50, min_samples_split=5, random_state=0) y_pred_train = model_fit_predict(clf_rf, X_train, y_train, X_train) set(y_pred_train) f1 = round(f1_score(y_train, y_pred_train), 2) acc = round(accuracy_score(y_train, y_pred_train), 2) pre = round(precision_score(y_train, y_pred_train), 2) clf_rf = RandomForestClassifier(max_depth=50, min_samples_split=5, random_state=0) y_pred_test = model_fit_predict(clf_rf, X_train, y_train, X_test) f1 = round(f1_score(y_test, y_pred_test), 2) acc = round(accuracy_score(y_test, y_pred_test), 2) pre = round(precision_score(y_test, y_pred_test), 2) sorted_idx = clf_rf.feature_importances_.argsort() plt.barh(scaled_df.iloc[:, :-1].columns[sorted_idx], clf_rf.feature_importances_[sorted_idx]) scaled_df.label.value_counts() scaled_df_0 = scaled_df[scaled_df.label == 0].sample(n=8000) scaled_df_new = pd.concat([scaled_df[scaled_df.label == 1], scaled_df_0], ignore_index=True) scaled_df_new = scaled_df_new.sample(frac=1).reset_index(drop=True) scaled_df_new
code
128027861/cell_13
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import pandas as pd df = pd.read_csv('/kaggle/input/airways-customer-data/filtered_customer_booking.csv', index_col=0) df = df.reset_index(drop=True) df_final = df from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder(handle_unknown='ignore') encoder_df = pd.DataFrame(encoder.fit_transform(df[['sales_channel']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'Internet', 1: 'Mobile'}) df_final = df_final.join(encoder_df) encoder_df = pd.DataFrame(encoder.fit_transform(df[['trip_type']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'RoundTRip', 1: 'OneWayTrip', 2: 'CircleTrip'}) df_final = df_final.join(encoder_df) df_final.drop(['sales_channel', 'trip_type', 'booking_origin', 'route'], axis=1, inplace=True) df_final = df_final.drop('booking_complete', axis=1) df_final
code
128027861/cell_34
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import precision_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler from yellowbrick.classifier import ConfusionMatrix import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import seaborn as sns plt.rcParams.update({'font.size': 14}) df = pd.read_csv('/kaggle/input/airways-customer-data/filtered_customer_booking.csv', index_col=0) df = df.reset_index(drop=True) df_final = df from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder(handle_unknown='ignore') encoder_df = pd.DataFrame(encoder.fit_transform(df[['sales_channel']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'Internet', 1: 'Mobile'}) df_final = df_final.join(encoder_df) encoder_df = pd.DataFrame(encoder.fit_transform(df[['trip_type']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'RoundTRip', 1: 'OneWayTrip', 2: 'CircleTrip'}) df_final = df_final.join(encoder_df) df_final.drop(['sales_channel', 'trip_type', 'booking_origin', 'route'], axis=1, inplace=True) df_final = df_final.drop('booking_complete', axis=1) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_df = scaler.fit_transform(df_final) scaled_df = pd.DataFrame(scaled_df, columns=df_final.columns) corr = scaled_df.corr() from sklearn.model_selection import train_test_split X = scaled_df.iloc[:, :-1] y = scaled_df['label'] X_train, X_test, y_train, y_test = train_test_split(X.to_numpy(), y.to_numpy(), test_size=0.2, random_state=42) """ Create functions to fit and predict the values of whether customer would complete the booking. Also functions with metrics to evaluate the model prediction. """ def model_fit_predict(model, X, y, X_predict): model.fit(X, y) return model.predict(X_predict) def acc_score(y_true, y_pred): return accuracy_score(y_true, y_pred) def pre_score(y_true, y_pred): return precision_score(y_true, y_pred) def f_score(y_true, y_pred): return f1_score(y_true, y_pred) clf_rf = RandomForestClassifier(max_depth=50, min_samples_split=5, random_state=0) y_pred_train = model_fit_predict(clf_rf, X_train, y_train, X_train) set(y_pred_train) f1 = round(f1_score(y_train, y_pred_train), 2) acc = round(accuracy_score(y_train, y_pred_train), 2) pre = round(precision_score(y_train, y_pred_train), 2) cm = ConfusionMatrix(clf_rf, classes=[0, 1]) cm.fit(X_train, y_train) cm.score(X_train, y_train) clf_rf = RandomForestClassifier(max_depth=50, min_samples_split=5, random_state=0) y_pred_test = model_fit_predict(clf_rf, X_train, y_train, X_test) f1 = round(f1_score(y_test, y_pred_test), 2) acc = round(accuracy_score(y_test, y_pred_test), 2) pre = round(precision_score(y_test, y_pred_test), 2) cm = ConfusionMatrix(clf_rf, classes=[0, 1]) cm.fit(X_train, y_train) cm.score(X_test, y_test)
code
128027861/cell_33
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import precision_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import seaborn as sns plt.rcParams.update({'font.size': 14}) df = pd.read_csv('/kaggle/input/airways-customer-data/filtered_customer_booking.csv', index_col=0) df = df.reset_index(drop=True) df_final = df from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder(handle_unknown='ignore') encoder_df = pd.DataFrame(encoder.fit_transform(df[['sales_channel']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'Internet', 1: 'Mobile'}) df_final = df_final.join(encoder_df) encoder_df = pd.DataFrame(encoder.fit_transform(df[['trip_type']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'RoundTRip', 1: 'OneWayTrip', 2: 'CircleTrip'}) df_final = df_final.join(encoder_df) df_final.drop(['sales_channel', 'trip_type', 'booking_origin', 'route'], axis=1, inplace=True) df_final = df_final.drop('booking_complete', axis=1) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_df = scaler.fit_transform(df_final) scaled_df = pd.DataFrame(scaled_df, columns=df_final.columns) corr = scaled_df.corr() from sklearn.model_selection import train_test_split X = scaled_df.iloc[:, :-1] y = scaled_df['label'] X_train, X_test, y_train, y_test = train_test_split(X.to_numpy(), y.to_numpy(), test_size=0.2, random_state=42) """ Create functions to fit and predict the values of whether customer would complete the booking. Also functions with metrics to evaluate the model prediction. """ def model_fit_predict(model, X, y, X_predict): model.fit(X, y) return model.predict(X_predict) def acc_score(y_true, y_pred): return accuracy_score(y_true, y_pred) def pre_score(y_true, y_pred): return precision_score(y_true, y_pred) def f_score(y_true, y_pred): return f1_score(y_true, y_pred) clf_rf = RandomForestClassifier(max_depth=50, min_samples_split=5, random_state=0) y_pred_train = model_fit_predict(clf_rf, X_train, y_train, X_train) set(y_pred_train) f1 = round(f1_score(y_train, y_pred_train), 2) acc = round(accuracy_score(y_train, y_pred_train), 2) pre = round(precision_score(y_train, y_pred_train), 2) clf_rf = RandomForestClassifier(max_depth=50, min_samples_split=5, random_state=0) y_pred_test = model_fit_predict(clf_rf, X_train, y_train, X_test) f1 = round(f1_score(y_test, y_pred_test), 2) acc = round(accuracy_score(y_test, y_pred_test), 2) pre = round(precision_score(y_test, y_pred_test), 2) print(f'Accuracy, precision and f1-score for training data are {acc}, {pre} and {f1} respectively')
code
128027861/cell_20
[ "text_html_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import seaborn as sns plt.rcParams.update({'font.size': 14}) df = pd.read_csv('/kaggle/input/airways-customer-data/filtered_customer_booking.csv', index_col=0) df = df.reset_index(drop=True) df_final = df from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder(handle_unknown='ignore') encoder_df = pd.DataFrame(encoder.fit_transform(df[['sales_channel']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'Internet', 1: 'Mobile'}) df_final = df_final.join(encoder_df) encoder_df = pd.DataFrame(encoder.fit_transform(df[['trip_type']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'RoundTRip', 1: 'OneWayTrip', 2: 'CircleTrip'}) df_final = df_final.join(encoder_df) df_final.drop(['sales_channel', 'trip_type', 'booking_origin', 'route'], axis=1, inplace=True) df_final = df_final.drop('booking_complete', axis=1) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_df = scaler.fit_transform(df_final) scaled_df = pd.DataFrame(scaled_df, columns=df_final.columns) corr = scaled_df.corr() plt.figure(figsize=(10, 7)) sns.heatmap(corr)
code
128027861/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import precision_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import seaborn as sns plt.rcParams.update({'font.size': 14}) df = pd.read_csv('/kaggle/input/airways-customer-data/filtered_customer_booking.csv', index_col=0) df = df.reset_index(drop=True) df_final = df from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder(handle_unknown='ignore') encoder_df = pd.DataFrame(encoder.fit_transform(df[['sales_channel']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'Internet', 1: 'Mobile'}) df_final = df_final.join(encoder_df) encoder_df = pd.DataFrame(encoder.fit_transform(df[['trip_type']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'RoundTRip', 1: 'OneWayTrip', 2: 'CircleTrip'}) df_final = df_final.join(encoder_df) df_final.drop(['sales_channel', 'trip_type', 'booking_origin', 'route'], axis=1, inplace=True) df_final = df_final.drop('booking_complete', axis=1) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_df = scaler.fit_transform(df_final) scaled_df = pd.DataFrame(scaled_df, columns=df_final.columns) corr = scaled_df.corr() from sklearn.model_selection import train_test_split X = scaled_df.iloc[:, :-1] y = scaled_df['label'] X_train, X_test, y_train, y_test = train_test_split(X.to_numpy(), y.to_numpy(), test_size=0.2, random_state=42) """ Create functions to fit and predict the values of whether customer would complete the booking. Also functions with metrics to evaluate the model prediction. """ def model_fit_predict(model, X, y, X_predict): model.fit(X, y) return model.predict(X_predict) def acc_score(y_true, y_pred): return accuracy_score(y_true, y_pred) def pre_score(y_true, y_pred): return precision_score(y_true, y_pred) def f_score(y_true, y_pred): return f1_score(y_true, y_pred) clf_rf = RandomForestClassifier(max_depth=50, min_samples_split=5, random_state=0) y_pred_train = model_fit_predict(clf_rf, X_train, y_train, X_train) set(y_pred_train) f1 = round(f1_score(y_train, y_pred_train), 2) acc = round(accuracy_score(y_train, y_pred_train), 2) pre = round(precision_score(y_train, y_pred_train), 2) print(f'Accuracy, precision and f1-score for training data are {acc}, {pre} and {f1} respectively')
code
128027861/cell_2
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import seaborn as sns plt.rcParams.update({'font.size': 14})
code
128027861/cell_45
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import seaborn as sns plt.rcParams.update({'font.size': 14}) df = pd.read_csv('/kaggle/input/airways-customer-data/filtered_customer_booking.csv', index_col=0) df = df.reset_index(drop=True) df_final = df from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder(handle_unknown='ignore') encoder_df = pd.DataFrame(encoder.fit_transform(df[['sales_channel']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'Internet', 1: 'Mobile'}) df_final = df_final.join(encoder_df) encoder_df = pd.DataFrame(encoder.fit_transform(df[['trip_type']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'RoundTRip', 1: 'OneWayTrip', 2: 'CircleTrip'}) df_final = df_final.join(encoder_df) df_final.drop(['sales_channel', 'trip_type', 'booking_origin', 'route'], axis=1, inplace=True) df_final = df_final.drop('booking_complete', axis=1) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_df = scaler.fit_transform(df_final) scaled_df = pd.DataFrame(scaled_df, columns=df_final.columns) corr = scaled_df.corr() from sklearn.model_selection import train_test_split X = scaled_df.iloc[:, :-1] y = scaled_df['label'] X_train, X_test, y_train, y_test = train_test_split(X.to_numpy(), y.to_numpy(), test_size=0.2, random_state=42) """ Create functions to fit and predict the values of whether customer would complete the booking. Also functions with metrics to evaluate the model prediction. """ def model_fit_predict(model, X, y, X_predict): model.fit(X, y) return model.predict(X_predict) def acc_score(y_true, y_pred): return accuracy_score(y_true, y_pred) def pre_score(y_true, y_pred): return precision_score(y_true, y_pred) def f_score(y_true, y_pred): return f1_score(y_true, y_pred) clf_rf = RandomForestClassifier(max_depth=50, min_samples_split=5, random_state=0) y_pred_train = model_fit_predict(clf_rf, X_train, y_train, X_train) set(y_pred_train) f1 = round(f1_score(y_train, y_pred_train), 2) acc = round(accuracy_score(y_train, y_pred_train), 2) pre = round(precision_score(y_train, y_pred_train), 2) clf_rf = RandomForestClassifier(max_depth=50, min_samples_split=5, random_state=0) y_pred_test = model_fit_predict(clf_rf, X_train, y_train, X_test) f1 = round(f1_score(y_test, y_pred_test), 2) acc = round(accuracy_score(y_test, y_pred_test), 2) pre = round(precision_score(y_test, y_pred_test), 2) sorted_idx = clf_rf.feature_importances_.argsort() plt.barh(scaled_df.iloc[:, :-1].columns[sorted_idx], clf_rf.feature_importances_[sorted_idx]) clf_rf = RandomForestClassifier(n_estimators=50, max_depth=50, min_samples_split=5, random_state=0) y_pred_test = model_fit_predict(clf_rf, X_train, y_train, X_test) f1 = round(f1_score(y_test, y_pred_test), 2) acc = round(accuracy_score(y_test, y_pred_test), 2) pre = round(precision_score(y_test, y_pred_test), 2) recall = round(recall_score(y_test, y_pred_test), 2) specificity = round(recall_score(y_test, y_pred_test, pos_label=0), 2) print(f'Accuracy, precision, recall and f1-score for training data are {acc}, {pre}, {recall}, {specificity} and {f1} respectively')
code
128027861/cell_18
[ "text_html_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler import pandas as pd df = pd.read_csv('/kaggle/input/airways-customer-data/filtered_customer_booking.csv', index_col=0) df = df.reset_index(drop=True) df_final = df from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder(handle_unknown='ignore') encoder_df = pd.DataFrame(encoder.fit_transform(df[['sales_channel']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'Internet', 1: 'Mobile'}) df_final = df_final.join(encoder_df) encoder_df = pd.DataFrame(encoder.fit_transform(df[['trip_type']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'RoundTRip', 1: 'OneWayTrip', 2: 'CircleTrip'}) df_final = df_final.join(encoder_df) df_final.drop(['sales_channel', 'trip_type', 'booking_origin', 'route'], axis=1, inplace=True) df_final = df_final.drop('booking_complete', axis=1) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_df = scaler.fit_transform(df_final) scaled_df = pd.DataFrame(scaled_df, columns=df_final.columns) scaled_df
code
128027861/cell_38
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import precision_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import seaborn as sns plt.rcParams.update({'font.size': 14}) df = pd.read_csv('/kaggle/input/airways-customer-data/filtered_customer_booking.csv', index_col=0) df = df.reset_index(drop=True) df_final = df from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder(handle_unknown='ignore') encoder_df = pd.DataFrame(encoder.fit_transform(df[['sales_channel']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'Internet', 1: 'Mobile'}) df_final = df_final.join(encoder_df) encoder_df = pd.DataFrame(encoder.fit_transform(df[['trip_type']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'RoundTRip', 1: 'OneWayTrip', 2: 'CircleTrip'}) df_final = df_final.join(encoder_df) df_final.drop(['sales_channel', 'trip_type', 'booking_origin', 'route'], axis=1, inplace=True) df_final = df_final.drop('booking_complete', axis=1) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_df = scaler.fit_transform(df_final) scaled_df = pd.DataFrame(scaled_df, columns=df_final.columns) corr = scaled_df.corr() from sklearn.model_selection import train_test_split X = scaled_df.iloc[:, :-1] y = scaled_df['label'] X_train, X_test, y_train, y_test = train_test_split(X.to_numpy(), y.to_numpy(), test_size=0.2, random_state=42) """ Create functions to fit and predict the values of whether customer would complete the booking. Also functions with metrics to evaluate the model prediction. """ def model_fit_predict(model, X, y, X_predict): model.fit(X, y) return model.predict(X_predict) def acc_score(y_true, y_pred): return accuracy_score(y_true, y_pred) def pre_score(y_true, y_pred): return precision_score(y_true, y_pred) def f_score(y_true, y_pred): return f1_score(y_true, y_pred) clf_rf = RandomForestClassifier(max_depth=50, min_samples_split=5, random_state=0) y_pred_train = model_fit_predict(clf_rf, X_train, y_train, X_train) set(y_pred_train) f1 = round(f1_score(y_train, y_pred_train), 2) acc = round(accuracy_score(y_train, y_pred_train), 2) pre = round(precision_score(y_train, y_pred_train), 2) clf_rf = RandomForestClassifier(max_depth=50, min_samples_split=5, random_state=0) y_pred_test = model_fit_predict(clf_rf, X_train, y_train, X_test) f1 = round(f1_score(y_test, y_pred_test), 2) acc = round(accuracy_score(y_test, y_pred_test), 2) pre = round(precision_score(y_test, y_pred_test), 2) sorted_idx = clf_rf.feature_importances_.argsort() plt.barh(scaled_df.iloc[:, :-1].columns[sorted_idx], clf_rf.feature_importances_[sorted_idx]) scaled_df.label.value_counts()
code
128027861/cell_35
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import precision_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import seaborn as sns plt.rcParams.update({'font.size': 14}) df = pd.read_csv('/kaggle/input/airways-customer-data/filtered_customer_booking.csv', index_col=0) df = df.reset_index(drop=True) df_final = df from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder(handle_unknown='ignore') encoder_df = pd.DataFrame(encoder.fit_transform(df[['sales_channel']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'Internet', 1: 'Mobile'}) df_final = df_final.join(encoder_df) encoder_df = pd.DataFrame(encoder.fit_transform(df[['trip_type']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'RoundTRip', 1: 'OneWayTrip', 2: 'CircleTrip'}) df_final = df_final.join(encoder_df) df_final.drop(['sales_channel', 'trip_type', 'booking_origin', 'route'], axis=1, inplace=True) df_final = df_final.drop('booking_complete', axis=1) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_df = scaler.fit_transform(df_final) scaled_df = pd.DataFrame(scaled_df, columns=df_final.columns) corr = scaled_df.corr() from sklearn.model_selection import train_test_split X = scaled_df.iloc[:, :-1] y = scaled_df['label'] X_train, X_test, y_train, y_test = train_test_split(X.to_numpy(), y.to_numpy(), test_size=0.2, random_state=42) """ Create functions to fit and predict the values of whether customer would complete the booking. Also functions with metrics to evaluate the model prediction. """ def model_fit_predict(model, X, y, X_predict): model.fit(X, y) return model.predict(X_predict) def acc_score(y_true, y_pred): return accuracy_score(y_true, y_pred) def pre_score(y_true, y_pred): return precision_score(y_true, y_pred) def f_score(y_true, y_pred): return f1_score(y_true, y_pred) clf_rf = RandomForestClassifier(max_depth=50, min_samples_split=5, random_state=0) y_pred_train = model_fit_predict(clf_rf, X_train, y_train, X_train) set(y_pred_train) f1 = round(f1_score(y_train, y_pred_train), 2) acc = round(accuracy_score(y_train, y_pred_train), 2) pre = round(precision_score(y_train, y_pred_train), 2) clf_rf = RandomForestClassifier(max_depth=50, min_samples_split=5, random_state=0) y_pred_test = model_fit_predict(clf_rf, X_train, y_train, X_test) f1 = round(f1_score(y_test, y_pred_test), 2) acc = round(accuracy_score(y_test, y_pred_test), 2) pre = round(precision_score(y_test, y_pred_test), 2) plt.figure(figsize=(10, 5)) sorted_idx = clf_rf.feature_importances_.argsort() plt.barh(scaled_df.iloc[:, :-1].columns[sorted_idx], clf_rf.feature_importances_[sorted_idx]) plt.xlabel('Random Forest Feature Importance')
code
128027861/cell_31
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from yellowbrick.classifier import ConfusionMatrix clf_rf = RandomForestClassifier(max_depth=50, min_samples_split=5, random_state=0) cm = ConfusionMatrix(clf_rf, classes=[0, 1]) cm.fit(X_train, y_train) cm.score(X_train, y_train)
code
128027861/cell_46
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import precision_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler from yellowbrick.classifier import ConfusionMatrix import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import seaborn as sns plt.rcParams.update({'font.size': 14}) df = pd.read_csv('/kaggle/input/airways-customer-data/filtered_customer_booking.csv', index_col=0) df = df.reset_index(drop=True) df_final = df from sklearn.preprocessing import OneHotEncoder encoder = OneHotEncoder(handle_unknown='ignore') encoder_df = pd.DataFrame(encoder.fit_transform(df[['sales_channel']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'Internet', 1: 'Mobile'}) df_final = df_final.join(encoder_df) encoder_df = pd.DataFrame(encoder.fit_transform(df[['trip_type']]).toarray()) encoder_df = encoder_df.rename(columns={0: 'RoundTRip', 1: 'OneWayTrip', 2: 'CircleTrip'}) df_final = df_final.join(encoder_df) df_final.drop(['sales_channel', 'trip_type', 'booking_origin', 'route'], axis=1, inplace=True) df_final = df_final.drop('booking_complete', axis=1) from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaled_df = scaler.fit_transform(df_final) scaled_df = pd.DataFrame(scaled_df, columns=df_final.columns) corr = scaled_df.corr() from sklearn.model_selection import train_test_split X = scaled_df.iloc[:, :-1] y = scaled_df['label'] X_train, X_test, y_train, y_test = train_test_split(X.to_numpy(), y.to_numpy(), test_size=0.2, random_state=42) """ Create functions to fit and predict the values of whether customer would complete the booking. Also functions with metrics to evaluate the model prediction. """ def model_fit_predict(model, X, y, X_predict): model.fit(X, y) return model.predict(X_predict) def acc_score(y_true, y_pred): return accuracy_score(y_true, y_pred) def pre_score(y_true, y_pred): return precision_score(y_true, y_pred) def f_score(y_true, y_pred): return f1_score(y_true, y_pred) clf_rf = RandomForestClassifier(max_depth=50, min_samples_split=5, random_state=0) y_pred_train = model_fit_predict(clf_rf, X_train, y_train, X_train) set(y_pred_train) f1 = round(f1_score(y_train, y_pred_train), 2) acc = round(accuracy_score(y_train, y_pred_train), 2) pre = round(precision_score(y_train, y_pred_train), 2) cm = ConfusionMatrix(clf_rf, classes=[0, 1]) cm.fit(X_train, y_train) cm.score(X_train, y_train) clf_rf = RandomForestClassifier(max_depth=50, min_samples_split=5, random_state=0) y_pred_test = model_fit_predict(clf_rf, X_train, y_train, X_test) f1 = round(f1_score(y_test, y_pred_test), 2) acc = round(accuracy_score(y_test, y_pred_test), 2) pre = round(precision_score(y_test, y_pred_test), 2) cm = ConfusionMatrix(clf_rf, classes=[0, 1]) cm.fit(X_train, y_train) cm.score(X_test, y_test) sorted_idx = clf_rf.feature_importances_.argsort() plt.barh(scaled_df.iloc[:, :-1].columns[sorted_idx], clf_rf.feature_importances_[sorted_idx]) clf_rf = RandomForestClassifier(n_estimators=50, max_depth=50, min_samples_split=5, random_state=0) cm = ConfusionMatrix(clf_rf, classes=[0, 1]) cm.fit(X_train, y_train) cm.score(X_test, y_test)
code
128027861/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/airways-customer-data/filtered_customer_booking.csv', index_col=0) df = df.reset_index(drop=True) df
code
17109112/cell_21
[ "text_plain_output_1.png" ]
from torchvision import models, transforms, datasets import matplotlib.pyplot as plt import numpy as np import os import torch import torchvision torch.__version__ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') data_dir = '../input/dogscats/dogscats/dogscats/' normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) vgg_format = transforms.Compose([transforms.CenterCrop(224), transforms.ToTensor(), normalize]) dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format) for x in ['train', 'valid']} dset_classes = dsets['valid'].classes dset_classes load_train = torch.utils.data.DataLoader(dsets['train'], batch_size=64, shuffle=True, num_workers=6) load_test = torch.utils.data.DataLoader(dsets['valid'], batch_size=5, shuffle=True, num_workers=6) inputs_try.shape def imshow(inp, title=None): inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = np.clip(std * inp + mean, 0, 1) plt.pause(0.001) out = torchvision.utils.make_grid(inputs_try) inputs, classes = next(iter(load_train)) n_images = 8 out = torchvision.utils.make_grid(inputs[0:n_images]) inputs, classes = next(iter(load_test)) n_images = 8 out = torchvision.utils.make_grid(inputs[0:n_images]) imshow(out, title=[dset_classes[x] for x in classes[0:n_images]])
code
17109112/cell_4
[ "image_output_1.png" ]
import sys import sys sys.version
code
17109112/cell_34
[ "text_plain_output_1.png" ]
from torchvision import models, transforms, datasets import matplotlib.pyplot as plt import numpy as np import os import torch import torchvision torch.__version__ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') data_dir = '../input/dogscats/dogscats/dogscats/' normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) vgg_format = transforms.Compose([transforms.CenterCrop(224), transforms.ToTensor(), normalize]) dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format) for x in ['train', 'valid']} dset_classes = dsets['valid'].classes dset_classes load_train = torch.utils.data.DataLoader(dsets['train'], batch_size=64, shuffle=True, num_workers=6) load_test = torch.utils.data.DataLoader(dsets['valid'], batch_size=5, shuffle=True, num_workers=6) inputs_try.shape def imshow(inp, title=None): inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = np.clip(std * inp + mean, 0, 1) plt.pause(0.001) out = torchvision.utils.make_grid(inputs_try) inputs, classes = next(iter(load_train)) n_images = 8 out = torchvision.utils.make_grid(inputs[0:n_images]) inputs, classes = next(iter(load_test)) n_images = 8 out = torchvision.utils.make_grid(inputs[0:n_images]) model_vgg = models.vgg16(pretrained=True) inputs_try, lables_try = (inputs_try.to(device), labels_try.to(device)) model_vgg = model_vgg.to(device) out = torchvision.utils.make_grid(inputs_try.data.cpu()) imshow(out, title=[dset_classes[x] for x in labels_try.data.cpu()])
code
17109112/cell_23
[ "text_plain_output_1.png" ]
from torchvision import models, transforms, datasets model_vgg = models.vgg16(pretrained=True)
code
17109112/cell_33
[ "text_plain_output_1.png" ]
import json import json fpath = '../input/imagenet-class-index/imagenet_class_index.json' with open(fpath) as f: class_dict = json.load(f) dic_imagenet = [class_dict[str(i)][1] for i in range(len(class_dict))] print([dic_imagenet[i] for i in preds_try.data])
code
17109112/cell_20
[ "text_plain_output_1.png" ]
from torchvision import models, transforms, datasets import matplotlib.pyplot as plt import numpy as np import os import torch import torchvision torch.__version__ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') data_dir = '../input/dogscats/dogscats/dogscats/' normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) vgg_format = transforms.Compose([transforms.CenterCrop(224), transforms.ToTensor(), normalize]) dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format) for x in ['train', 'valid']} dset_classes = dsets['valid'].classes dset_classes load_train = torch.utils.data.DataLoader(dsets['train'], batch_size=64, shuffle=True, num_workers=6) inputs_try.shape def imshow(inp, title=None): inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = np.clip(std * inp + mean, 0, 1) plt.pause(0.001) out = torchvision.utils.make_grid(inputs_try) inputs, classes = next(iter(load_train)) n_images = 8 out = torchvision.utils.make_grid(inputs[0:n_images]) imshow(out, title=[dset_classes[x] for x in classes[0:n_images]])
code
17109112/cell_29
[ "image_output_1.png" ]
from torchvision import models, transforms, datasets import torch torch.__version__ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') inputs_try.shape model_vgg = models.vgg16(pretrained=True) inputs_try, lables_try = (inputs_try.to(device), labels_try.to(device)) model_vgg = model_vgg.to(device) outputs_try = model_vgg(inputs_try) outputs_try.shape
code
17109112/cell_39
[ "text_plain_output_1.png" ]
from torchvision import models, transforms, datasets import os import torch import torch.nn as nn torch.__version__ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') data_dir = '../input/dogscats/dogscats/dogscats/' normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) vgg_format = transforms.Compose([transforms.CenterCrop(224), transforms.ToTensor(), normalize]) dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format) for x in ['train', 'valid']} load_train = torch.utils.data.DataLoader(dsets['train'], batch_size=64, shuffle=True, num_workers=6) load_test = torch.utils.data.DataLoader(dsets['valid'], batch_size=5, shuffle=True, num_workers=6) inputs_try.shape model_vgg = models.vgg16(pretrained=True) inputs_try, lables_try = (inputs_try.to(device), labels_try.to(device)) model_vgg = model_vgg.to(device) outputs_try = model_vgg(inputs_try) outputs_try.shape m_softm = nn.Softmax(dim=1) probs = m_softm(outputs_try) vals_try, preds_try = torch.max(probs, dim=1) torch.sum(probs, 1) for param in model_vgg.parameters(): param.requires_grad = False model_vgg.classifier._modules['6'] = nn.Linear(4096, 2) model_vgg.classifier._modules['7'] = torch.nn.LogSoftmax(dim=1) print(model_vgg.classifier)
code
17109112/cell_48
[ "text_plain_output_1.png" ]
predictions, all_proba, all_classes = test_model(model_vgg, load_test, size=dset_sizes['valid'])
code
17109112/cell_11
[ "text_plain_output_1.png" ]
from torchvision import models, transforms, datasets import os data_dir = '../input/dogscats/dogscats/dogscats/' normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) vgg_format = transforms.Compose([transforms.CenterCrop(224), transforms.ToTensor(), normalize]) dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format) for x in ['train', 'valid']} dset_sizes = {x: len(dsets[x]) for x in ['train', 'valid']} dset_sizes
code
17109112/cell_19
[ "text_plain_output_1.png" ]
from torchvision import models, transforms, datasets import matplotlib.pyplot as plt import numpy as np import os import torchvision data_dir = '../input/dogscats/dogscats/dogscats/' normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) vgg_format = transforms.Compose([transforms.CenterCrop(224), transforms.ToTensor(), normalize]) dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format) for x in ['train', 'valid']} dset_classes = dsets['valid'].classes dset_classes inputs_try.shape def imshow(inp, title=None): inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = np.clip(std * inp + mean, 0, 1) plt.pause(0.001) out = torchvision.utils.make_grid(inputs_try) imshow(out, title=[dset_classes[x] for x in labels_try])
code
17109112/cell_7
[ "text_plain_output_1.png" ]
import os data_dir = '../input/dogscats/dogscats/dogscats/' print(os.listdir('../input/dogscats/dogscats/dogscats/'))
code
17109112/cell_49
[ "text_plain_output_1.png" ]
from torchvision import models, transforms, datasets import matplotlib.pyplot as plt import numpy as np import os import torch import torch.nn as nn import torchvision torch.__version__ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') data_dir = '../input/dogscats/dogscats/dogscats/' normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) vgg_format = transforms.Compose([transforms.CenterCrop(224), transforms.ToTensor(), normalize]) dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format) for x in ['train', 'valid']} dset_classes = dsets['valid'].classes dset_classes load_train = torch.utils.data.DataLoader(dsets['train'], batch_size=64, shuffle=True, num_workers=6) load_test = torch.utils.data.DataLoader(dsets['valid'], batch_size=5, shuffle=True, num_workers=6) inputs_try.shape def imshow(inp, title=None): inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = np.clip(std * inp + mean, 0, 1) plt.pause(0.001) out = torchvision.utils.make_grid(inputs_try) inputs, classes = next(iter(load_train)) n_images = 8 out = torchvision.utils.make_grid(inputs[0:n_images]) inputs, classes = next(iter(load_test)) n_images = 8 out = torchvision.utils.make_grid(inputs[0:n_images]) model_vgg = models.vgg16(pretrained=True) inputs_try, lables_try = (inputs_try.to(device), labels_try.to(device)) model_vgg = model_vgg.to(device) outputs_try = model_vgg(inputs_try) outputs_try.shape m_softm = nn.Softmax(dim=1) probs = m_softm(outputs_try) vals_try, preds_try = torch.max(probs, dim=1) torch.sum(probs, 1) out = torchvision.utils.make_grid(inputs_try.data.cpu()) for param in model_vgg.parameters(): param.requires_grad = False model_vgg.classifier._modules['6'] = nn.Linear(4096, 2) model_vgg.classifier._modules['7'] = torch.nn.LogSoftmax(dim=1) model_vgg = model_vgg.to(device) criterion = nn.NLLLoss() lr = 0.001 optimizer_vgg = torch.optim.SGD(model_vgg.classifier[6].parameters(), lr=lr) def train_model(model, dataloader, size, epochs=1, optimizer=None): model.train() for epoch in range(epochs): running_loss = 0.0 running_corrects = 0 for inputs, classes in dataloader: inputs = inputs.to(device) classes = classes.to(device) outputs = model(inputs) loss = criterion(outputs, classes) optimizer = optimizer optimizer.zero_grad() loss.backward() optimizer.step() _, preds = torch.max(outputs.data, 1) running_loss += loss.data.item() running_corrects += torch.sum(preds == classes.data) epoch_loss = running_loss / size epoch_acc = running_corrects.data.item() / size def test_model(model, dataloader, size): model.eval() predictions = np.zeros(size) all_classes = np.zeros(size) all_proba = np.zeros((size, 2)) i = 0 running_loss = 0.0 running_corrects = 0 for inputs, classes in dataloader: inputs = inputs.to(device) classes = classes.to(device) outputs = model(inputs) loss = criterion(outputs, classes) _, preds = torch.max(outputs.data, 1) running_loss += loss.data.item() running_corrects += torch.sum(preds == classes.data) predictions[i:i + len(classes)] = preds.to('cpu').numpy() all_classes[i:i + len(classes)] = classes.to('cpu').numpy() all_proba[i:i + len(classes)] = outputs.data.to('cpu').numpy() i += len(classes) epoch_loss = running_loss / size epoch_acc = running_corrects.data.item() / size return (predictions, all_proba, all_classes) inputs, classes = next(iter(load_test)) out = torchvision.utils.make_grid(inputs[0:n_images]) imshow(out, title=[dset_classes[x] for x in classes[0:n_images]])
code
17109112/cell_32
[ "text_plain_output_1.png" ]
vals_try
code
17109112/cell_28
[ "image_output_1.png" ]
from torchvision import models, transforms, datasets import torch torch.__version__ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') inputs_try.shape model_vgg = models.vgg16(pretrained=True) inputs_try, lables_try = (inputs_try.to(device), labels_try.to(device)) model_vgg = model_vgg.to(device) outputs_try = model_vgg(inputs_try) outputs_try
code
17109112/cell_15
[ "text_plain_output_1.png" ]
from torchvision import models, transforms, datasets import os import torch torch.__version__ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') data_dir = '../input/dogscats/dogscats/dogscats/' normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) vgg_format = transforms.Compose([transforms.CenterCrop(224), transforms.ToTensor(), normalize]) dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format) for x in ['train', 'valid']} load_train = torch.utils.data.DataLoader(dsets['train'], batch_size=64, shuffle=True, num_workers=6) load_test = torch.utils.data.DataLoader(dsets['valid'], batch_size=5, shuffle=True, num_workers=6) count = 1 for data in load_test: print(count, end=',') if count == 1: inputs_try, labels_try = data count += 1
code
17109112/cell_16
[ "text_plain_output_1.png" ]
labels_try
code
17109112/cell_3
[ "image_output_1.png" ]
import torch torch.__version__
code
17109112/cell_17
[ "text_plain_output_1.png" ]
inputs_try.shape
code
17109112/cell_31
[ "application_vnd.jupyter.stderr_output_1.png" ]
from torchvision import models, transforms, datasets import os import torch import torch.nn as nn torch.__version__ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') data_dir = '../input/dogscats/dogscats/dogscats/' normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) vgg_format = transforms.Compose([transforms.CenterCrop(224), transforms.ToTensor(), normalize]) dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format) for x in ['train', 'valid']} load_train = torch.utils.data.DataLoader(dsets['train'], batch_size=64, shuffle=True, num_workers=6) load_test = torch.utils.data.DataLoader(dsets['valid'], batch_size=5, shuffle=True, num_workers=6) inputs_try.shape model_vgg = models.vgg16(pretrained=True) inputs_try, lables_try = (inputs_try.to(device), labels_try.to(device)) model_vgg = model_vgg.to(device) outputs_try = model_vgg(inputs_try) outputs_try.shape m_softm = nn.Softmax(dim=1) probs = m_softm(outputs_try) vals_try, preds_try = torch.max(probs, dim=1) torch.sum(probs, 1)
code
17109112/cell_46
[ "text_plain_output_1.png" ]
train_model(model_vgg, load_train, size=dset_sizes['train'], epochs=2, optimizer=optimizer_vgg)
code