path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
32067430/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32067430/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) team_stats = pd.read_csv('/kaggle/input/college-basketball-dataset/cbb.csv') avg_off = team_stats['ADJOE'].mean() avg_def = team_stats['ADJDE'].mean() avg_def - team_stats[team_stats['POSTSEASON'] == 'Champions']['ADJDE'].mean()
code
32067430/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) team_stats = pd.read_csv('/kaggle/input/college-basketball-dataset/cbb.csv') avg_off = team_stats['ADJOE'].mean() avg_def = team_stats['ADJDE'].mean() print(avg_off, avg_def, sep=',')
code
32070671/cell_21
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np df = pd.read_csv('animes.csv') for c in df.columns[12:]: df[c] = df[c].astype('int') idx = [] for i in df.columns: idx.append(i.replace('genre_', '')) df.columns = idx import seaborn as sns import matplotlib.pyplot as plt number_genre = df[df.columns[12:]].sum(axis=1).value_counts().sort_index() colors = [] maxg = max(number_genre) for n in number_genre: x = 0.8 - n / (2 * maxg) colors.append((0.7, x, x)) average = number_genre.mean() plt.text(9.6, 120, 'average', fontsize=14) def transf(x): if x == 0: return 1 else: return x def weight_df(df, col_start=12): fact = df[df.columns[col_start:]].sum(axis=1).apply(lambda x: transf(x)) df_va = df.values for m in range(len(df_va)): df_va[m] for i in range(col_start, len(df_va[m])): df_va[m][i] = df_va[m][i] / fact[m] return pd.DataFrame(df_va, columns=df.columns) lst = [['anime 1', 1, 1, 0, 1, 1, 0], ['anime 2', 0, 0, 0, 0, 0, 1], ['anime 3', 1, 0, 1, 1, 0, 0]] cols = ['Anime', 'category_1', 'category_2', 'category_3', 'category_4', 'category_5', 'category_6'] example = pd.DataFrame(lst, columns=cols) example weight_df(example, col_start=1)
code
32070671/cell_9
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np df = pd.read_csv('animes.csv') df.describe()
code
32070671/cell_23
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np df = pd.read_csv('animes.csv') for c in df.columns[12:]: df[c] = df[c].astype('int') idx = [] for i in df.columns: idx.append(i.replace('genre_', '')) df.columns = idx import seaborn as sns import matplotlib.pyplot as plt number_genre = df[df.columns[12:]].sum(axis=1).value_counts().sort_index() colors = [] maxg = max(number_genre) for n in number_genre: x = 0.8 - n / (2 * maxg) colors.append((0.7, x, x)) average = number_genre.mean() plt.text(9.6, 120, 'average', fontsize=14) def transf(x): if x == 0: return 1 else: return x def weight_df(df, col_start=12): fact = df[df.columns[col_start:]].sum(axis=1).apply(lambda x: transf(x)) df_va = df.values for m in range(len(df_va)): df_va[m] for i in range(col_start, len(df_va[m])): df_va[m][i] = df_va[m][i] / fact[m] return pd.DataFrame(df_va, columns=df.columns) lst = [['anime 1', 1, 1, 0, 1, 1, 0], ['anime 2', 0, 0, 0, 0, 0, 1], ['anime 3', 1, 0, 1, 1, 0, 0]] cols = ['Anime', 'category_1', 'category_2', 'category_3', 'category_4', 'category_5', 'category_6'] example = pd.DataFrame(lst, columns=cols) example df_weighted = weight_df(df) nb_0_genre = (df[df.columns[12:]].sum(axis=1) == 0).sum() weighted_betw = df_weighted[df_weighted.columns[12:]].sum() weighted_betw['NO genre'] = nb_0_genre distrib_genre = 100 * weighted_betw / weighted_betw.sum() distrib_genre = distrib_genre.sort_values(ascending=False) plt.figure(figsize=(15, 10)) bar = sns.barplot(distrib_genre.index, distrib_genre) plt.title('Distribution of genres', fontsize=18) plt.ylabel('%', fontsize=18) bar.tick_params(labelsize=16) for item in bar.get_xticklabels(): item.set_rotation(90)
code
32070671/cell_20
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np df = pd.read_csv('animes.csv') for c in df.columns[12:]: df[c] = df[c].astype('int') idx = [] for i in df.columns: idx.append(i.replace('genre_', '')) df.columns = idx import seaborn as sns import matplotlib.pyplot as plt number_genre = df[df.columns[12:]].sum(axis=1).value_counts().sort_index() colors = [] maxg = max(number_genre) for n in number_genre: x = 0.8 - n / (2 * maxg) colors.append((0.7, x, x)) average = number_genre.mean() plt.text(9.6, 120, 'average', fontsize=14) def transf(x): if x == 0: return 1 else: return x def weight_df(df, col_start=12): fact = df[df.columns[col_start:]].sum(axis=1).apply(lambda x: transf(x)) df_va = df.values for m in range(len(df_va)): df_va[m] for i in range(col_start, len(df_va[m])): df_va[m][i] = df_va[m][i] / fact[m] return pd.DataFrame(df_va, columns=df.columns) lst = [['anime 1', 1, 1, 0, 1, 1, 0], ['anime 2', 0, 0, 0, 0, 0, 1], ['anime 3', 1, 0, 1, 1, 0, 0]] cols = ['Anime', 'category_1', 'category_2', 'category_3', 'category_4', 'category_5', 'category_6'] example = pd.DataFrame(lst, columns=cols) example
code
32070671/cell_26
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np df = pd.read_csv('animes.csv') for c in df.columns[12:]: df[c] = df[c].astype('int') idx = [] for i in df.columns: idx.append(i.replace('genre_', '')) df.columns = idx import seaborn as sns import matplotlib.pyplot as plt number_genre = df[df.columns[12:]].sum(axis=1).value_counts().sort_index() colors = [] maxg = max(number_genre) for n in number_genre: x = 0.8 - n / (2 * maxg) colors.append((0.7, x, x)) average = number_genre.mean() plt.text(9.6, 120, 'average', fontsize=14) def transf(x): if x == 0: return 1 else: return x def weight_df(df, col_start=12): fact = df[df.columns[col_start:]].sum(axis=1).apply(lambda x: transf(x)) df_va = df.values for m in range(len(df_va)): df_va[m] for i in range(col_start, len(df_va[m])): df_va[m][i] = df_va[m][i] / fact[m] return pd.DataFrame(df_va, columns=df.columns) lst = [['anime 1', 1, 1, 0, 1, 1, 0], ['anime 2', 0, 0, 0, 0, 0, 1], ['anime 3', 1, 0, 1, 1, 0, 0]] cols = ['Anime', 'category_1', 'category_2', 'category_3', 'category_4', 'category_5', 'category_6'] example = pd.DataFrame(lst, columns=cols) example df_weighted = weight_df(df) nb_0_genre = (df[df.columns[12:]].sum(axis=1) == 0).sum() weighted_betw = df_weighted[df_weighted.columns[12:]].sum() weighted_betw['NO genre'] = nb_0_genre distrib_genre = 100 * weighted_betw / weighted_betw.sum() distrib_genre = distrib_genre.sort_values(ascending=False) def create_bins(v): if v > 10000: return '>10000' elif v > 2000: return '2000-10000' elif v > 500: return '500-2000' elif v > 100: return '100-500' elif v >= 10: return '10-100' else: return '<10' df['votes_cat'] = df['votes'].apply(create_bins)
code
32070671/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np df = pd.read_csv('animes.csv') for c in df.columns[12:]: df[c] = df[c].astype('int') idx = [] for i in df.columns: idx.append(i.replace('genre_', '')) df.columns = idx
code
32070671/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd import numpy as np df = pd.read_csv('animes.csv')
code
32070671/cell_16
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np df = pd.read_csv('animes.csv') for c in df.columns[12:]: df[c] = df[c].astype('int') idx = [] for i in df.columns: idx.append(i.replace('genre_', '')) df.columns = idx import seaborn as sns import matplotlib.pyplot as plt number_genre = df[df.columns[12:]].sum(axis=1).value_counts().sort_index() colors = [] maxg = max(number_genre) for n in number_genre: x = 0.8 - n / (2 * maxg) colors.append((0.7, x, x)) average = number_genre.mean() plt.figure(figsize=(10, 6)) number_genre.plot.bar(color=colors) plt.title('Repartition of the number of genres', fontsize=18) plt.axhline(average, 0, 1, color='black', lw=3) plt.text(9.6, 120, 'average', fontsize=14) plt.ylabel('Animes count', fontsize=14) plt.xlabel('\nNumber of genres', fontsize=14) plt.show()
code
32070671/cell_24
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np df = pd.read_csv('animes.csv') for c in df.columns[12:]: df[c] = df[c].astype('int') idx = [] for i in df.columns: idx.append(i.replace('genre_', '')) df.columns = idx import seaborn as sns import matplotlib.pyplot as plt number_genre = df[df.columns[12:]].sum(axis=1).value_counts().sort_index() colors = [] maxg = max(number_genre) for n in number_genre: x = 0.8 - n / (2 * maxg) colors.append((0.7, x, x)) average = number_genre.mean() plt.text(9.6, 120, 'average', fontsize=14) def transf(x): if x == 0: return 1 else: return x def weight_df(df, col_start=12): fact = df[df.columns[col_start:]].sum(axis=1).apply(lambda x: transf(x)) df_va = df.values for m in range(len(df_va)): df_va[m] for i in range(col_start, len(df_va[m])): df_va[m][i] = df_va[m][i] / fact[m] return pd.DataFrame(df_va, columns=df.columns) lst = [['anime 1', 1, 1, 0, 1, 1, 0], ['anime 2', 0, 0, 0, 0, 0, 1], ['anime 3', 1, 0, 1, 1, 0, 0]] cols = ['Anime', 'category_1', 'category_2', 'category_3', 'category_4', 'category_5', 'category_6'] example = pd.DataFrame(lst, columns=cols) example df_weighted = weight_df(df) nb_0_genre = (df[df.columns[12:]].sum(axis=1) == 0).sum() weighted_betw = df_weighted[df_weighted.columns[12:]].sum() weighted_betw['NO genre'] = nb_0_genre distrib_genre = 100 * weighted_betw / weighted_betw.sum() distrib_genre = distrib_genre.sort_values(ascending=False) # Display the results plt.figure(figsize =(15,10)) bar = sns.barplot(distrib_genre.index, distrib_genre) plt.title("Distribution of genres", fontsize = 18) plt.ylabel("%", fontsize = 18) bar.tick_params(labelsize=16) # Rotate the x-labels for item in bar.get_xticklabels(): item.set_rotation(90) mean_ratings = [] for g in df_weighted.columns[12:]: rating = (df_weighted['rate'] * df_weighted[g]).sum() / df_weighted[g].sum() mean_ratings.append([g, rating]) mean_ratings = pd.DataFrame(mean_ratings, columns=['Genre', 'Rating']).sort_values(by='Rating', ascending=False) plt.figure(figsize=(15, 10)) bar = sns.barplot('Genre', 'Rating', data=mean_ratings, palette='coolwarm') plt.title('Mean Rating for each Genre', fontsize=18) plt.ylabel('Mean Rating', fontsize=18) plt.xlabel('') bar.tick_params(labelsize=16) for item in bar.get_xticklabels(): item.set_rotation(90)
code
32070671/cell_22
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np df = pd.read_csv('animes.csv') for c in df.columns[12:]: df[c] = df[c].astype('int') idx = [] for i in df.columns: idx.append(i.replace('genre_', '')) df.columns = idx import seaborn as sns import matplotlib.pyplot as plt number_genre = df[df.columns[12:]].sum(axis=1).value_counts().sort_index() colors = [] maxg = max(number_genre) for n in number_genre: x = 0.8 - n / (2 * maxg) colors.append((0.7, x, x)) average = number_genre.mean() plt.text(9.6, 120, 'average', fontsize=14) def transf(x): if x == 0: return 1 else: return x def weight_df(df, col_start=12): fact = df[df.columns[col_start:]].sum(axis=1).apply(lambda x: transf(x)) df_va = df.values for m in range(len(df_va)): df_va[m] for i in range(col_start, len(df_va[m])): df_va[m][i] = df_va[m][i] / fact[m] return pd.DataFrame(df_va, columns=df.columns) lst = [['anime 1', 1, 1, 0, 1, 1, 0], ['anime 2', 0, 0, 0, 0, 0, 1], ['anime 3', 1, 0, 1, 1, 0, 0]] cols = ['Anime', 'category_1', 'category_2', 'category_3', 'category_4', 'category_5', 'category_6'] example = pd.DataFrame(lst, columns=cols) example df_weighted = weight_df(df) nb_0_genre = (df[df.columns[12:]].sum(axis=1) == 0).sum() weighted_betw = df_weighted[df_weighted.columns[12:]].sum() weighted_betw['NO genre'] = nb_0_genre distrib_genre = 100 * weighted_betw / weighted_betw.sum() distrib_genre = distrib_genre.sort_values(ascending=False)
code
32070671/cell_12
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np df = pd.read_csv('animes.csv') for c in df.columns[12:]: df[c] = df[c].astype('int') idx = [] for i in df.columns: idx.append(i.replace('genre_', '')) df.columns = idx import seaborn as sns import matplotlib.pyplot as plt sns.heatmap(df.isnull()) plt.title('Missing values?', fontsize=18) plt.show()
code
16166543/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns data_lokasi = pd.read_csv('../input/catatan_lokasi.csv') profil_karyawan = pd.read_csv('../input/data_profil.csv') profil_karyawan.head()
code
16166543/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns data_lokasi = pd.read_csv('../input/catatan_lokasi.csv') profil_karyawan = pd.read_csv('../input/data_profil.csv') data_lokasi.head()
code
50226402/cell_13
[ "text_plain_output_1.png" ]
def linearSearch(array, n, x): for i in range(0, n): if array[i] == x: return i return -1 array = [10, 20, 30, 40, 50, 60, 70] x = 50 n = len(array) result = linearSearch(array, n, x) def binary_search_recursive(array, element, start, end): if start > end: return -1 mid = (start + end) // 2 if element == array[mid]: return mid if element < array[mid]: return binary_search_recursive(array, element, start, mid - 1) else: return binary_search_recursive(array, element, mid + 1, end) element = 50 array = [10, 20, 30, 40, 50, 60, 70] def selectionSort(array, size): for step in range(size): min_idx = step for i in range(step + 1, size): if array[i] < array[min_idx]: min_idx = i array[step], array[min_idx] = (array[min_idx], array[step]) data = [10, 5, 30, 15, 50, 6, 25] size = len(data) selectionSort(data, size) def insertionSort(array): for step in range(1, len(array)): key = array[step] j = step - 1 while j >= 0 and key < array[j]: array[j + 1] = array[j] j = j - 1 array[j + 1] = key data = [10, 5, 30, 15, 50, 6, 25] insertionSort(data) print('Sorted Array in Ascending Order:') print(data)
code
50226402/cell_9
[ "text_plain_output_1.png" ]
def linearSearch(array, n, x): for i in range(0, n): if array[i] == x: return i return -1 array = [10, 20, 30, 40, 50, 60, 70] x = 50 n = len(array) result = linearSearch(array, n, x) def binary_search_recursive(array, element, start, end): if start > end: return -1 mid = (start + end) // 2 if element == array[mid]: return mid if element < array[mid]: return binary_search_recursive(array, element, start, mid - 1) else: return binary_search_recursive(array, element, mid + 1, end) element = 50 array = [10, 20, 30, 40, 50, 60, 70] print('Searching for {}'.format(element)) print('Index of {}: {}'.format(element, binary_search_recursive(array, element, 0, len(array))))
code
50226402/cell_4
[ "text_plain_output_1.png" ]
A = [1, 22, 30, 35, 300, 1000] A = [1, 22, 30, 35, 300, 1000] print(A.index(35))
code
50226402/cell_6
[ "text_plain_output_1.png" ]
def linearSearch(array, n, x): for i in range(0, n): if array[i] == x: return i return -1 array = [10, 20, 30, 40, 50, 60, 70] x = 50 n = len(array) result = linearSearch(array, n, x) if result == -1: print('Element not found') else: print('Element found at index: ', result)
code
50226402/cell_2
[ "text_plain_output_1.png" ]
A = [1, 22, 30, 35, 300, 1000] print(A)
code
50226402/cell_11
[ "text_plain_output_1.png" ]
def linearSearch(array, n, x): for i in range(0, n): if array[i] == x: return i return -1 array = [10, 20, 30, 40, 50, 60, 70] x = 50 n = len(array) result = linearSearch(array, n, x) def binary_search_recursive(array, element, start, end): if start > end: return -1 mid = (start + end) // 2 if element == array[mid]: return mid if element < array[mid]: return binary_search_recursive(array, element, start, mid - 1) else: return binary_search_recursive(array, element, mid + 1, end) element = 50 array = [10, 20, 30, 40, 50, 60, 70] def selectionSort(array, size): for step in range(size): min_idx = step for i in range(step + 1, size): if array[i] < array[min_idx]: min_idx = i array[step], array[min_idx] = (array[min_idx], array[step]) data = [10, 5, 30, 15, 50, 6, 25] size = len(data) selectionSort(data, size) print('Sorted Array in Ascending Order:') print(data)
code
104115755/cell_21
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/adverse-food-events/CAERS_ASCII_2004_2017Q2.csv') df.shape df.columns df.rename(columns={'PRI_Reported Brand/Product Name': 'products_name', 'SYM_One Row Coded Symptoms': 'symptoms', 'CI_Gender': 'gender', 'CI_Age at Adverse Event': 'age', 'CI_Age Unit': 'age_unit', 'RA_Report #': 'no_report', 'RA_CAERS Created Date': 'created_date', 'AEC_Event Start Date': 'start_date', 'PRI_Product Role': 'products_role', 'PRI_FDA Industry Code': 'industry_code', 'AEC_One Row Outcomes': 'Outcomes', 'PRI_FDA Industry Name': 'products_types'}, inplace=True) df.columns df.duplicated('no_report').value_counts() df.drop_duplicates('no_report', keep='last', inplace=True) df.duplicated('no_report').value_counts() plt.figure(figsize=(12, 15)) sns.set_style('ticks') product = df['products_types'].sort_values(ascending=False) sns.countplot(data=df, y=product) plt.tight_layout() plt.title('Reports by Industry\n', fontsize=20) plt.yticks(fontsize=15) plt.xticks(fontsize=15) plt.show() df.products_types.value_counts().sort_values(ascending=False)
code
104115755/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/adverse-food-events/CAERS_ASCII_2004_2017Q2.csv') df.shape df.columns df.rename(columns={'PRI_Reported Brand/Product Name': 'products_name', 'SYM_One Row Coded Symptoms': 'symptoms', 'CI_Gender': 'gender', 'CI_Age at Adverse Event': 'age', 'CI_Age Unit': 'age_unit', 'RA_Report #': 'no_report', 'RA_CAERS Created Date': 'created_date', 'AEC_Event Start Date': 'start_date', 'PRI_Product Role': 'products_role', 'PRI_FDA Industry Code': 'industry_code', 'AEC_One Row Outcomes': 'Outcomes', 'PRI_FDA Industry Name': 'products_types'}, inplace=True) df.columns df.head(10)
code
104115755/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/adverse-food-events/CAERS_ASCII_2004_2017Q2.csv') df.shape df.columns df.rename(columns={'PRI_Reported Brand/Product Name': 'products_name', 'SYM_One Row Coded Symptoms': 'symptoms', 'CI_Gender': 'gender', 'CI_Age at Adverse Event': 'age', 'CI_Age Unit': 'age_unit', 'RA_Report #': 'no_report', 'RA_CAERS Created Date': 'created_date', 'AEC_Event Start Date': 'start_date', 'PRI_Product Role': 'products_role', 'PRI_FDA Industry Code': 'industry_code', 'AEC_One Row Outcomes': 'Outcomes', 'PRI_FDA Industry Name': 'products_types'}, inplace=True) df.columns
code
104115755/cell_25
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/adverse-food-events/CAERS_ASCII_2004_2017Q2.csv') df.shape df.columns df.rename(columns={'PRI_Reported Brand/Product Name': 'products_name', 'SYM_One Row Coded Symptoms': 'symptoms', 'CI_Gender': 'gender', 'CI_Age at Adverse Event': 'age', 'CI_Age Unit': 'age_unit', 'RA_Report #': 'no_report', 'RA_CAERS Created Date': 'created_date', 'AEC_Event Start Date': 'start_date', 'PRI_Product Role': 'products_role', 'PRI_FDA Industry Code': 'industry_code', 'AEC_One Row Outcomes': 'Outcomes', 'PRI_FDA Industry Name': 'products_types'}, inplace=True) df.columns df['created_date'] = pd.to_datetime(df['created_date'], format='%m/%d/%Y') df['start_date'] = pd.to_datetime(df['start_date'], format='%m/%d/%Y') df.duplicated('no_report').value_counts() df.drop_duplicates('no_report', keep='last', inplace=True) df.duplicated('no_report').value_counts() sns.set_style('ticks') product = df['products_types'].sort_values(ascending=False) plt.tight_layout() plt.yticks(fontsize=15) plt.xticks(fontsize=15) df.products_types.value_counts().sort_values(ascending=False) sns.set_style('ticks') df['products_name'].value_counts()[1:40].sort_values(ascending=True).plot.barh() plt.tight_layout() plt.xticks(fontsize=15) plt.yticks(fontsize=15) df['products_name'].value_counts()[0:41].sort_values(ascending=False) symptoms = [] for _, reactions in df['symptoms'].astype(object).str.split(',').iteritems(): symptoms += [str(l).strip().title() for l in pd.Series(reactions).astype(object)] outcome_df = pd.DataFrame({'Symptoms': pd.Series(symptoms).value_counts().index, 'Count': pd.Series(symptoms).value_counts()})[:100] fig, ax = plt.subplots(figsize=(10, 23)) sns.barplot(x='Count', y='Symptoms', data=outcome_df).set_title('Health event counts by product type')
code
104115755/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/adverse-food-events/CAERS_ASCII_2004_2017Q2.csv') df.shape df.columns df.rename(columns={'PRI_Reported Brand/Product Name': 'products_name', 'SYM_One Row Coded Symptoms': 'symptoms', 'CI_Gender': 'gender', 'CI_Age at Adverse Event': 'age', 'CI_Age Unit': 'age_unit', 'RA_Report #': 'no_report', 'RA_CAERS Created Date': 'created_date', 'AEC_Event Start Date': 'start_date', 'PRI_Product Role': 'products_role', 'PRI_FDA Industry Code': 'industry_code', 'AEC_One Row Outcomes': 'Outcomes', 'PRI_FDA Industry Name': 'products_types'}, inplace=True) df.columns df.duplicated('no_report').value_counts() df.drop_duplicates('no_report', keep='last', inplace=True) df.duplicated('no_report').value_counts() sns.set_style('ticks') product = df['products_types'].sort_values(ascending=False) plt.tight_layout() plt.yticks(fontsize=15) plt.xticks(fontsize=15) df.products_types.value_counts().sort_values(ascending=False) plt.figure(figsize=(12, 15)) sns.set_style('ticks') df['products_name'].value_counts()[1:40].sort_values(ascending=True).plot.barh() plt.tight_layout() plt.xticks(fontsize=15) plt.yticks(fontsize=15) plt.show() df['products_name'].value_counts()[0:41].sort_values(ascending=False)
code
104115755/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/adverse-food-events/CAERS_ASCII_2004_2017Q2.csv') df.shape
code
104115755/cell_26
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/adverse-food-events/CAERS_ASCII_2004_2017Q2.csv') df.shape df.columns df.rename(columns={'PRI_Reported Brand/Product Name': 'products_name', 'SYM_One Row Coded Symptoms': 'symptoms', 'CI_Gender': 'gender', 'CI_Age at Adverse Event': 'age', 'CI_Age Unit': 'age_unit', 'RA_Report #': 'no_report', 'RA_CAERS Created Date': 'created_date', 'AEC_Event Start Date': 'start_date', 'PRI_Product Role': 'products_role', 'PRI_FDA Industry Code': 'industry_code', 'AEC_One Row Outcomes': 'Outcomes', 'PRI_FDA Industry Name': 'products_types'}, inplace=True) df.columns df['created_date'] = pd.to_datetime(df['created_date'], format='%m/%d/%Y') df['start_date'] = pd.to_datetime(df['start_date'], format='%m/%d/%Y') df.duplicated('no_report').value_counts() df.drop_duplicates('no_report', keep='last', inplace=True) df.duplicated('no_report').value_counts() sns.set_style('ticks') product = df['products_types'].sort_values(ascending=False) plt.tight_layout() plt.yticks(fontsize=15) plt.xticks(fontsize=15) df.products_types.value_counts().sort_values(ascending=False) sns.set_style('ticks') df['products_name'].value_counts()[1:40].sort_values(ascending=True).plot.barh() plt.tight_layout() plt.xticks(fontsize=15) plt.yticks(fontsize=15) df['products_name'].value_counts()[0:41].sort_values(ascending=False) symptoms=[] for _, reactions in df['symptoms'].astype(object).str.split(",").iteritems(): symptoms += [str(l).strip().title() for l in pd.Series(reactions).astype(object)] outcome_df=pd.DataFrame({'Symptoms':pd.Series(symptoms).value_counts().index, 'Count':pd.Series(symptoms).value_counts()})[:100] fig, ax = plt.subplots(figsize=(10,23)) sns.barplot(x='Count',y='Symptoms', data=outcome_df).set_title('Health event counts by product type') plt.figure(figsize=(10, 10)) df['gender'].value_counts().plot.pie(autopct='%.2f', legend=True) plt.tight_layout()
code
104115755/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
104115755/cell_7
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/adverse-food-events/CAERS_ASCII_2004_2017Q2.csv') df.shape df.columns
code
104115755/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/adverse-food-events/CAERS_ASCII_2004_2017Q2.csv') df.shape df.columns df.rename(columns={'PRI_Reported Brand/Product Name': 'products_name', 'SYM_One Row Coded Symptoms': 'symptoms', 'CI_Gender': 'gender', 'CI_Age at Adverse Event': 'age', 'CI_Age Unit': 'age_unit', 'RA_Report #': 'no_report', 'RA_CAERS Created Date': 'created_date', 'AEC_Event Start Date': 'start_date', 'PRI_Product Role': 'products_role', 'PRI_FDA Industry Code': 'industry_code', 'AEC_One Row Outcomes': 'Outcomes', 'PRI_FDA Industry Name': 'products_types'}, inplace=True) df.columns df.duplicated('no_report').value_counts() df.drop_duplicates('no_report', keep='last', inplace=True) print('Duplicate Data') df.duplicated('no_report').value_counts()
code
104115755/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/adverse-food-events/CAERS_ASCII_2004_2017Q2.csv') df.shape df.columns df.rename(columns={'PRI_Reported Brand/Product Name': 'products_name', 'SYM_One Row Coded Symptoms': 'symptoms', 'CI_Gender': 'gender', 'CI_Age at Adverse Event': 'age', 'CI_Age Unit': 'age_unit', 'RA_Report #': 'no_report', 'RA_CAERS Created Date': 'created_date', 'AEC_Event Start Date': 'start_date', 'PRI_Product Role': 'products_role', 'PRI_FDA Industry Code': 'industry_code', 'AEC_One Row Outcomes': 'Outcomes', 'PRI_FDA Industry Name': 'products_types'}, inplace=True) df.columns print('Data is NULL:\n', df[df.columns[df.isnull().sum() != 0]].isnull().sum()) plt.figure(figsize=(8, 8)) sns.heatmap(df.isnull()) plt.show()
code
104115755/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/adverse-food-events/CAERS_ASCII_2004_2017Q2.csv') df.shape df.columns df.rename(columns={'PRI_Reported Brand/Product Name': 'products_name', 'SYM_One Row Coded Symptoms': 'symptoms', 'CI_Gender': 'gender', 'CI_Age at Adverse Event': 'age', 'CI_Age Unit': 'age_unit', 'RA_Report #': 'no_report', 'RA_CAERS Created Date': 'created_date', 'AEC_Event Start Date': 'start_date', 'PRI_Product Role': 'products_role', 'PRI_FDA Industry Code': 'industry_code', 'AEC_One Row Outcomes': 'Outcomes', 'PRI_FDA Industry Name': 'products_types'}, inplace=True) df.columns print('Duplicate Data\n') df.duplicated('no_report').value_counts()
code
104115755/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/adverse-food-events/CAERS_ASCII_2004_2017Q2.csv') df.shape df.columns df.rename(columns={'PRI_Reported Brand/Product Name': 'products_name', 'SYM_One Row Coded Symptoms': 'symptoms', 'CI_Gender': 'gender', 'CI_Age at Adverse Event': 'age', 'CI_Age Unit': 'age_unit', 'RA_Report #': 'no_report', 'RA_CAERS Created Date': 'created_date', 'AEC_Event Start Date': 'start_date', 'PRI_Product Role': 'products_role', 'PRI_FDA Industry Code': 'industry_code', 'AEC_One Row Outcomes': 'Outcomes', 'PRI_FDA Industry Name': 'products_types'}, inplace=True) df.columns df.info()
code
104115755/cell_5
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/adverse-food-events/CAERS_ASCII_2004_2017Q2.csv') df.head()
code
2045135/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2020652/cell_4
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.head()
code
2020652/cell_1
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from subprocess import check_output import pandas as pd import numpy as np import xgboost as xgb from scipy.optimize import minimize from sklearn.cross_validation import StratifiedShuffleSplit from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import log_loss import os from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2020652/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') target = train['target'] train.drop(['id', 'target'], axis=1, inplace=True) train.shape
code
34148902/cell_25
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from torch import nn, optim from torch.autograd import Variable from torch.utils.data import DataLoader import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import torch import torch.nn.functional as F use_gpu = torch.cuda.is_available() use_gpu df_train_path = '/kaggle/input/digit-recognizer/train.csv' df_test_path = '/kaggle/input/digit-recognizer/test.csv' X_train = pd.read_csv(df_train_path) X_test = pd.read_csv(df_test_path) y_train = X_train['label'] X_train = X_train.drop('label', axis=1) sns.set_style('darkgrid') y_train.unique() sample_id = 50 X_train /= 255.0 X_test /= 255.0 X_train = X_train.values y_train = y_train.values X_test = X_test.values from sklearn.model_selection import train_test_split X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1, random_state=2) X_train = torch.from_numpy(X_train).type(torch.FloatTensor) X_val = torch.from_numpy(X_val).type(torch.FloatTensor) y_train = torch.from_numpy(y_train).type(torch.LongTensor) y_val = torch.from_numpy(y_val).type(torch.LongTensor) batch_size = 100 num_epochs = 20 train = torch.utils.data.TensorDataset(X_train, y_train) val = torch.utils.data.TensorDataset(X_val, y_val) train_loader = DataLoader(train, batch_size=batch_size, shuffle=False) val_loader = DataLoader(val, batch_size=batch_size, shuffle=False) class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, (5, 5), padding=2) self.conv2 = nn.Conv2d(6, 16, (5, 5)) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) shape = x.size()[1:] features = 1 for s in shape: features *= s x = x.view(-1, features) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x class CNNModel(nn.Module): def __init__(self): super(CNNModel, self).__init__() self.cnn1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=0) self.relu1 = nn.ReLU() self.maxpool1 = nn.MaxPool2d(kernel_size=2) self.cnn2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1, padding=0) self.relu2 = nn.ReLU() self.maxpool2 = nn.MaxPool2d(kernel_size=2) self.fc1 = nn.Linear(32 * 4 * 4, 10) def forward(self, x): out = self.cnn1(x) out = self.relu1(out) out = self.maxpool1(out) out = self.cnn2(out) out = self.relu2(out) out = self.maxpool2(out) out = out.view(out.size(0), -1) out = self.fc1(out) return out class LeNet_dropout(nn.Module): def __init__(self): super(LeNet_dropout, self).__init__() self.conv1 = nn.Conv2d(1, 6, (5, 5), padding=2) self.dropout1 = nn.Dropout2d(p=0.2) self.conv2 = nn.Conv2d(6, 16, (5, 5)) self.dropout2 = nn.Dropout2d(p=0.2) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) x = self.dropout1(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) x = self.dropout2(x) shape = x.size()[1:] features = 1 for s in shape: features *= s x = x.view(-1, features) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x model = LeNet() if use_gpu: model = model.cuda() model = LeNet_dropout() if use_gpu: model = net.cuda() model = CNNModel() if use_gpu: model = net.cuda() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.001) count = 0 loss_list = [] val_loss_list = [] iteration_list = [] accuracy_list = [] for epoch in range(num_epochs): for images, labels in train_loader: train_batch = Variable(images.view(batch_size, 1, 28, 28), requires_grad=True) labels_batch = Variable(labels, requires_grad=False) if use_gpu: train_batch = train_batch.cuda() labels_batch = labels_batch.cuda() optimizer.zero_grad() outputs = model(train_batch) loss = criterion(outputs, labels_batch) loss.backward() optimizer.step() count += 1 if count % 50 == 0: correct = 0 total = 0 for images, labels in val_loader: val_batch = Variable(images.view(-1, 1, 28, 28), requires_grad=False) labels_batch = Variable(labels, requires_grad=False) if use_gpu: val_batch = val_batch.cuda() labels_batch = labels_batch.cuda() outputs = model(val_batch) pred = torch.max(outputs.data, 1)[1] val_loss = criterion(outputs, labels_batch) total += len(labels) correct += (pred == labels_batch).sum() accuracy = correct / float(total) * 100 loss_list.append(loss.data) val_loss_list.append(val_loss.data) iteration_list.append(count) accuracy_list.append(accuracy) if count % 500 == 0: print('Iteration: {}, Loss: {}, Accuracy: {}'.format(count, loss.data, accuracy))
code
34148902/cell_4
[ "image_output_2.png", "image_output_1.png" ]
import torch use_gpu = torch.cuda.is_available() use_gpu
code
34148902/cell_26
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from torch import nn, optim from torch.autograd import Variable from torch.utils.data import DataLoader import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import torch import torch.nn.functional as F use_gpu = torch.cuda.is_available() use_gpu df_train_path = '/kaggle/input/digit-recognizer/train.csv' df_test_path = '/kaggle/input/digit-recognizer/test.csv' X_train = pd.read_csv(df_train_path) X_test = pd.read_csv(df_test_path) y_train = X_train['label'] X_train = X_train.drop('label', axis=1) sns.set_style('darkgrid') y_train.unique() sample_id = 50 X_train /= 255.0 X_test /= 255.0 X_train = X_train.values y_train = y_train.values X_test = X_test.values from sklearn.model_selection import train_test_split X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1, random_state=2) X_train = torch.from_numpy(X_train).type(torch.FloatTensor) X_val = torch.from_numpy(X_val).type(torch.FloatTensor) y_train = torch.from_numpy(y_train).type(torch.LongTensor) y_val = torch.from_numpy(y_val).type(torch.LongTensor) batch_size = 100 num_epochs = 20 train = torch.utils.data.TensorDataset(X_train, y_train) val = torch.utils.data.TensorDataset(X_val, y_val) train_loader = DataLoader(train, batch_size=batch_size, shuffle=False) val_loader = DataLoader(val, batch_size=batch_size, shuffle=False) class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, (5, 5), padding=2) self.conv2 = nn.Conv2d(6, 16, (5, 5)) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) shape = x.size()[1:] features = 1 for s in shape: features *= s x = x.view(-1, features) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x class CNNModel(nn.Module): def __init__(self): super(CNNModel, self).__init__() self.cnn1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=0) self.relu1 = nn.ReLU() self.maxpool1 = nn.MaxPool2d(kernel_size=2) self.cnn2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1, padding=0) self.relu2 = nn.ReLU() self.maxpool2 = nn.MaxPool2d(kernel_size=2) self.fc1 = nn.Linear(32 * 4 * 4, 10) def forward(self, x): out = self.cnn1(x) out = self.relu1(out) out = self.maxpool1(out) out = self.cnn2(out) out = self.relu2(out) out = self.maxpool2(out) out = out.view(out.size(0), -1) out = self.fc1(out) return out class LeNet_dropout(nn.Module): def __init__(self): super(LeNet_dropout, self).__init__() self.conv1 = nn.Conv2d(1, 6, (5, 5), padding=2) self.dropout1 = nn.Dropout2d(p=0.2) self.conv2 = nn.Conv2d(6, 16, (5, 5)) self.dropout2 = nn.Dropout2d(p=0.2) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) x = self.dropout1(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) x = self.dropout2(x) shape = x.size()[1:] features = 1 for s in shape: features *= s x = x.view(-1, features) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x model = LeNet() if use_gpu: model = model.cuda() model = LeNet_dropout() if use_gpu: model = net.cuda() model = CNNModel() if use_gpu: model = net.cuda() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.001) count = 0 loss_list = [] val_loss_list = [] iteration_list = [] accuracy_list = [] for epoch in range(num_epochs): for images, labels in train_loader: train_batch = Variable(images.view(batch_size, 1, 28, 28), requires_grad=True) labels_batch = Variable(labels, requires_grad=False) if use_gpu: train_batch = train_batch.cuda() labels_batch = labels_batch.cuda() optimizer.zero_grad() outputs = model(train_batch) loss = criterion(outputs, labels_batch) loss.backward() optimizer.step() count += 1 if count % 50 == 0: correct = 0 total = 0 for images, labels in val_loader: val_batch = Variable(images.view(-1, 1, 28, 28), requires_grad=False) labels_batch = Variable(labels, requires_grad=False) if use_gpu: val_batch = val_batch.cuda() labels_batch = labels_batch.cuda() outputs = model(val_batch) pred = torch.max(outputs.data, 1)[1] val_loss = criterion(outputs, labels_batch) total += len(labels) correct += (pred == labels_batch).sum() accuracy = correct / float(total) * 100 loss_list.append(loss.data) val_loss_list.append(val_loss.data) iteration_list.append(count) accuracy_list.append(accuracy) plt.figure(figsize=(15, 8)) plt.plot(iteration_list, loss_list, label='training') plt.plot(iteration_list, val_loss_list, label='validation') plt.xlabel('Number of iteration') plt.ylabel('Loss') plt.title('CNN: Loss vs Number of iteration') plt.legend() plt.show() plt.figure(figsize=(15, 8)) plt.plot(iteration_list, accuracy_list, color='red') plt.xlabel('Number of iteration') plt.ylabel('Accuracy') plt.title('CNN: Accuracy vs Number of iteration') plt.show()
code
34148902/cell_7
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_train_path = '/kaggle/input/digit-recognizer/train.csv' df_test_path = '/kaggle/input/digit-recognizer/test.csv' X_train = pd.read_csv(df_train_path) X_test = pd.read_csv(df_test_path) y_train = X_train['label'] X_train = X_train.drop('label', axis=1) sns.set_style('darkgrid') plt.figure(figsize=(12, 8)) sns.countplot(y_train) y_train.unique()
code
34148902/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_train_path = '/kaggle/input/digit-recognizer/train.csv' df_test_path = '/kaggle/input/digit-recognizer/test.csv' X_train = pd.read_csv(df_train_path) X_test = pd.read_csv(df_test_path) y_train = X_train['label'] X_train = X_train.drop('label', axis=1) sns.set_style('darkgrid') y_train.unique() sample_id = 50 plt.imshow(X_train.loc[sample_id].values.reshape(28, 28)) plt.title(str(y_train[sample_id])) plt.show()
code
34148902/cell_3
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import torch from torch import nn, optim import torch.nn.functional as F from torch.autograd import Variable from torch.utils.data import DataLoader import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34148902/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.model_selection import train_test_split from torch import nn, optim from torch.autograd import Variable from torch.utils.data import DataLoader import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import torch import torch.nn.functional as F use_gpu = torch.cuda.is_available() use_gpu df_train_path = '/kaggle/input/digit-recognizer/train.csv' df_test_path = '/kaggle/input/digit-recognizer/test.csv' X_train = pd.read_csv(df_train_path) X_test = pd.read_csv(df_test_path) y_train = X_train['label'] X_train = X_train.drop('label', axis=1) sns.set_style('darkgrid') y_train.unique() sample_id = 50 X_train /= 255.0 X_test /= 255.0 X_train = X_train.values y_train = y_train.values X_test = X_test.values from sklearn.model_selection import train_test_split X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1, random_state=2) X_train = torch.from_numpy(X_train).type(torch.FloatTensor) X_val = torch.from_numpy(X_val).type(torch.FloatTensor) y_train = torch.from_numpy(y_train).type(torch.LongTensor) y_val = torch.from_numpy(y_val).type(torch.LongTensor) batch_size = 100 num_epochs = 20 train = torch.utils.data.TensorDataset(X_train, y_train) val = torch.utils.data.TensorDataset(X_val, y_val) train_loader = DataLoader(train, batch_size=batch_size, shuffle=False) val_loader = DataLoader(val, batch_size=batch_size, shuffle=False) class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, (5, 5), padding=2) self.conv2 = nn.Conv2d(6, 16, (5, 5)) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) shape = x.size()[1:] features = 1 for s in shape: features *= s x = x.view(-1, features) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x class CNNModel(nn.Module): def __init__(self): super(CNNModel, self).__init__() self.cnn1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=0) self.relu1 = nn.ReLU() self.maxpool1 = nn.MaxPool2d(kernel_size=2) self.cnn2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1, padding=0) self.relu2 = nn.ReLU() self.maxpool2 = nn.MaxPool2d(kernel_size=2) self.fc1 = nn.Linear(32 * 4 * 4, 10) def forward(self, x): out = self.cnn1(x) out = self.relu1(out) out = self.maxpool1(out) out = self.cnn2(out) out = self.relu2(out) out = self.maxpool2(out) out = out.view(out.size(0), -1) out = self.fc1(out) return out class LeNet_dropout(nn.Module): def __init__(self): super(LeNet_dropout, self).__init__() self.conv1 = nn.Conv2d(1, 6, (5, 5), padding=2) self.dropout1 = nn.Dropout2d(p=0.2) self.conv2 = nn.Conv2d(6, 16, (5, 5)) self.dropout2 = nn.Dropout2d(p=0.2) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) x = self.dropout1(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, (2, 2)) x = self.dropout2(x) shape = x.size()[1:] features = 1 for s in shape: features *= s x = x.view(-1, features) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x model = LeNet() if use_gpu: model = model.cuda() model = LeNet_dropout() if use_gpu: model = net.cuda() model = CNNModel() if use_gpu: model = net.cuda() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.001) count = 0 loss_list = [] val_loss_list = [] iteration_list = [] accuracy_list = [] for epoch in range(num_epochs): for images, labels in train_loader: train_batch = Variable(images.view(batch_size, 1, 28, 28), requires_grad=True) labels_batch = Variable(labels, requires_grad=False) if use_gpu: train_batch = train_batch.cuda() labels_batch = labels_batch.cuda() optimizer.zero_grad() outputs = model(train_batch) loss = criterion(outputs, labels_batch) loss.backward() optimizer.step() count += 1 if count % 50 == 0: correct = 0 total = 0 for images, labels in val_loader: val_batch = Variable(images.view(-1, 1, 28, 28), requires_grad=False) labels_batch = Variable(labels, requires_grad=False) if use_gpu: val_batch = val_batch.cuda() labels_batch = labels_batch.cuda() outputs = model(val_batch) pred = torch.max(outputs.data, 1)[1] val_loss = criterion(outputs, labels_batch) total += len(labels) correct += (pred == labels_batch).sum() accuracy = correct / float(total) * 100 loss_list.append(loss.data) val_loss_list.append(val_loss.data) iteration_list.append(count) accuracy_list.append(accuracy) output_file = np.ndarray(shape=(n_test_samples, 2), dtype=int) for test_idx in range(n_test_samples): test_sample = X_test[test_idx].clone().unsqueeze(dim=1) test_sample = test_sample.type(torch.FloatTensor) if use_gpu: test_sample = test_sample.cuda() pred = net(test_sample) _, pred = torch.max(pred, 1) output_file[test_idx][0] = test_idx + 1 output_file[test_idx][1] = pred if test_idx % 1000 == 0: print(f'testing sample #{test_idx}') submission = pd.DataFrame(output_file, dtype=int, columns=['ImageId', 'Label'])
code
323646/cell_13
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier import pandas as pd act_train = pd.read_csv('../input/act_train.csv') act_test = pd.read_csv('../input/act_test.csv') act_train_char_10 = act_train[act_train['char_10'].notnull().values] act_test_char_10 = act_test[act_test['char_10'].notnull().values] drop_list = ['char_1', 'char_2', 'char_3', 'char_4', 'char_5', 'char_6', 'char_7', 'char_8', 'char_9'] act_train_char_10.drop(drop_list, axis=1, inplace=True) act_test_char_10.drop(drop_list, axis=1, inplace=True) act_train_char_X = act_train[act_train['char_10'].isnull().values] act_test_char_X = act_test[act_test['char_10'].isnull().values] drop_list = ['char_10'] act_train_char_X.drop(drop_list, axis=1, inplace=True) act_test_char_X.drop(drop_list, axis=1, inplace=True) people = pd.read_csv('../input/people.csv') act_train_char_10 = pd.merge(act_train_char_10, people, on='people_id', how='left') act_test_char_10 = pd.merge(act_test_char_10, people, on='people_id', how='left') act_train_char_X = pd.merge(act_train_char_X, people, on='people_id', how='left') act_test_char_X = pd.merge(act_test_char_X, people, on='people_id', how='left') act_train_char_10.drop(['date_x', 'date_y'], axis=1, inplace=True) act_test_char_10.drop(['date_x', 'date_y'], axis=1, inplace=True) rename_dict = {'char_10_x': 'char_10_act', 'char_10_y': 'char_10_peo'} act_train_char_10.rename(columns=rename_dict, inplace=True) act_test_char_10.rename(columns=rename_dict, inplace=True) act_train_char_X.drop(['date_x', 'date_y'], axis=1, inplace=True) act_test_char_X.drop(['date_x', 'date_y'], axis=1, inplace=True) rename_dict = {'char_1_x': 'char_1_act', 'char_2_x': 'char_2_act', 'char_3_x': 'char_3_act', 'char_4_x': 'char_4_act', 'char_5_x': 'char_5_act', 'char_6_x': 'char_6_act', 'char_7_x': 'char_7_act', 'char_8_x': 'char_8_act', 'char_9_x': 'char_9_act', 'char_1_y': 'char_1_peo', 'char_2_y': 'char_2_peo', 'char_3_y': 'char_3_peo', 'char_4_y': 'char_4_peo', 'char_5_y': 'char_5_peo', 'char_6_y': 'char_6_peo', 'char_7_y': 'char_7_peo', 'char_8_y': 'char_8_peo', 'char_9_y': 'char_9_peo'} act_train_char_X.rename(columns=rename_dict, inplace=True) act_test_char_X.rename(columns=rename_dict, inplace=True) act_train_char_10 = act_train_char_10.astype(str) act_test_char_10 = act_test_char_10.astype(str) act_train_char_X = act_train_char_X.astype(str) act_test_char_X = act_test_char_X.astype(str) act_train_char_10 = act_train_char_10.replace(['True', 'False'], [1, 0]) act_test_char_10 = act_test_char_10.replace(['True', 'False'], [1, 0]) act_train_char_X = act_train_char_X.replace(['True', 'False'], [1, 0]) act_test_char_X = act_test_char_X.replace(['True', 'False'], [1, 0]) features_char_10 = list(act_train_char_10.columns.values) features_char_X = list(act_train_char_X.columns.values) features_char_10.remove('people_id') features_char_10.remove('activity_id') features_char_10.remove('outcome') features_char_X.remove('people_id') features_char_X.remove('activity_id') features_char_X.remove('outcome') label = ['outcome'] VALIDATION_SIZE = 10000 dtc_char_10 = DecisionTreeClassifier() dtc_char_10.fit(act_train_char_10[features_char_10].ix[VALIDATION_SIZE:], act_train_char_10[label].ix[VALIDATION_SIZE:]) print('Accuracy_Char_10 = ' + str(dtc_char_10.score(act_train_char_10[features_char_10].ix[:VALIDATION_SIZE], act_train_char_10[label].ix[:VALIDATION_SIZE]))) dct_char_X = LogisticRegression() dct_char_X.fit(act_train_char_X[features_char_X].ix[VALIDATION_SIZE:], act_train_char_X[label].ix[VALIDATION_SIZE:]) print('Accuracy_Char_X = ' + str(dct_char_X.score(act_train_char_X[features_char_X].ix[:VALIDATION_SIZE], act_train_char_X[label].ix[:VALIDATION_SIZE])))
code
323646/cell_3
[ "text_plain_output_4.png", "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd act_train = pd.read_csv('../input/act_train.csv') act_test = pd.read_csv('../input/act_test.csv') act_train_char_10 = act_train[act_train['char_10'].notnull().values] act_test_char_10 = act_test[act_test['char_10'].notnull().values] drop_list = ['char_1', 'char_2', 'char_3', 'char_4', 'char_5', 'char_6', 'char_7', 'char_8', 'char_9'] act_train_char_10.drop(drop_list, axis=1, inplace=True) act_test_char_10.drop(drop_list, axis=1, inplace=True) act_train_char_X = act_train[act_train['char_10'].isnull().values] act_test_char_X = act_test[act_test['char_10'].isnull().values] drop_list = ['char_10'] act_train_char_X.drop(drop_list, axis=1, inplace=True) act_test_char_X.drop(drop_list, axis=1, inplace=True)
code
323646/cell_14
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression import pandas as pd act_train = pd.read_csv('../input/act_train.csv') act_test = pd.read_csv('../input/act_test.csv') act_train_char_10 = act_train[act_train['char_10'].notnull().values] act_test_char_10 = act_test[act_test['char_10'].notnull().values] drop_list = ['char_1', 'char_2', 'char_3', 'char_4', 'char_5', 'char_6', 'char_7', 'char_8', 'char_9'] act_train_char_10.drop(drop_list, axis=1, inplace=True) act_test_char_10.drop(drop_list, axis=1, inplace=True) act_train_char_X = act_train[act_train['char_10'].isnull().values] act_test_char_X = act_test[act_test['char_10'].isnull().values] drop_list = ['char_10'] act_train_char_X.drop(drop_list, axis=1, inplace=True) act_test_char_X.drop(drop_list, axis=1, inplace=True) people = pd.read_csv('../input/people.csv') act_train_char_10 = pd.merge(act_train_char_10, people, on='people_id', how='left') act_test_char_10 = pd.merge(act_test_char_10, people, on='people_id', how='left') act_train_char_X = pd.merge(act_train_char_X, people, on='people_id', how='left') act_test_char_X = pd.merge(act_test_char_X, people, on='people_id', how='left') act_train_char_10.drop(['date_x', 'date_y'], axis=1, inplace=True) act_test_char_10.drop(['date_x', 'date_y'], axis=1, inplace=True) rename_dict = {'char_10_x': 'char_10_act', 'char_10_y': 'char_10_peo'} act_train_char_10.rename(columns=rename_dict, inplace=True) act_test_char_10.rename(columns=rename_dict, inplace=True) act_train_char_X.drop(['date_x', 'date_y'], axis=1, inplace=True) act_test_char_X.drop(['date_x', 'date_y'], axis=1, inplace=True) rename_dict = {'char_1_x': 'char_1_act', 'char_2_x': 'char_2_act', 'char_3_x': 'char_3_act', 'char_4_x': 'char_4_act', 'char_5_x': 'char_5_act', 'char_6_x': 'char_6_act', 'char_7_x': 'char_7_act', 'char_8_x': 'char_8_act', 'char_9_x': 'char_9_act', 'char_1_y': 'char_1_peo', 'char_2_y': 'char_2_peo', 'char_3_y': 'char_3_peo', 'char_4_y': 'char_4_peo', 'char_5_y': 'char_5_peo', 'char_6_y': 'char_6_peo', 'char_7_y': 'char_7_peo', 'char_8_y': 'char_8_peo', 'char_9_y': 'char_9_peo'} act_train_char_X.rename(columns=rename_dict, inplace=True) act_test_char_X.rename(columns=rename_dict, inplace=True) act_train_char_10 = act_train_char_10.astype(str) act_test_char_10 = act_test_char_10.astype(str) act_train_char_X = act_train_char_X.astype(str) act_test_char_X = act_test_char_X.astype(str) act_train_char_10 = act_train_char_10.replace(['True', 'False'], [1, 0]) act_test_char_10 = act_test_char_10.replace(['True', 'False'], [1, 0]) act_train_char_X = act_train_char_X.replace(['True', 'False'], [1, 0]) act_test_char_X = act_test_char_X.replace(['True', 'False'], [1, 0]) features_char_10 = list(act_train_char_10.columns.values) features_char_X = list(act_train_char_X.columns.values) features_char_10.remove('people_id') features_char_10.remove('activity_id') features_char_10.remove('outcome') features_char_X.remove('people_id') features_char_X.remove('activity_id') features_char_X.remove('outcome') label = ['outcome'] VALIDATION_SIZE = 10000 rfc_char_10 = RandomForestClassifier() rfc_char_10.fit(act_train_char_10[features_char_10].ix[VALIDATION_SIZE:], act_train_char_10[label].ix[VALIDATION_SIZE:]) print('Accuracy_Char_10 = ' + str(rfc_char_10.score(act_train_char_10[features_char_10].ix[:VALIDATION_SIZE], act_train_char_10[label].ix[:VALIDATION_SIZE]))) rfc_char_X = LogisticRegression() rfc_char_X.fit(act_train_char_X[features_char_X].ix[VALIDATION_SIZE:], act_train_char_X[label].ix[VALIDATION_SIZE:]) print('Accuracy_Char_X = ' + str(rfc_char_X.score(act_train_char_X[features_char_X].ix[:VALIDATION_SIZE], act_train_char_X[label].ix[:VALIDATION_SIZE])))
code
323646/cell_12
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LogisticRegression import pandas as pd act_train = pd.read_csv('../input/act_train.csv') act_test = pd.read_csv('../input/act_test.csv') act_train_char_10 = act_train[act_train['char_10'].notnull().values] act_test_char_10 = act_test[act_test['char_10'].notnull().values] drop_list = ['char_1', 'char_2', 'char_3', 'char_4', 'char_5', 'char_6', 'char_7', 'char_8', 'char_9'] act_train_char_10.drop(drop_list, axis=1, inplace=True) act_test_char_10.drop(drop_list, axis=1, inplace=True) act_train_char_X = act_train[act_train['char_10'].isnull().values] act_test_char_X = act_test[act_test['char_10'].isnull().values] drop_list = ['char_10'] act_train_char_X.drop(drop_list, axis=1, inplace=True) act_test_char_X.drop(drop_list, axis=1, inplace=True) people = pd.read_csv('../input/people.csv') act_train_char_10 = pd.merge(act_train_char_10, people, on='people_id', how='left') act_test_char_10 = pd.merge(act_test_char_10, people, on='people_id', how='left') act_train_char_X = pd.merge(act_train_char_X, people, on='people_id', how='left') act_test_char_X = pd.merge(act_test_char_X, people, on='people_id', how='left') act_train_char_10.drop(['date_x', 'date_y'], axis=1, inplace=True) act_test_char_10.drop(['date_x', 'date_y'], axis=1, inplace=True) rename_dict = {'char_10_x': 'char_10_act', 'char_10_y': 'char_10_peo'} act_train_char_10.rename(columns=rename_dict, inplace=True) act_test_char_10.rename(columns=rename_dict, inplace=True) act_train_char_X.drop(['date_x', 'date_y'], axis=1, inplace=True) act_test_char_X.drop(['date_x', 'date_y'], axis=1, inplace=True) rename_dict = {'char_1_x': 'char_1_act', 'char_2_x': 'char_2_act', 'char_3_x': 'char_3_act', 'char_4_x': 'char_4_act', 'char_5_x': 'char_5_act', 'char_6_x': 'char_6_act', 'char_7_x': 'char_7_act', 'char_8_x': 'char_8_act', 'char_9_x': 'char_9_act', 'char_1_y': 'char_1_peo', 'char_2_y': 'char_2_peo', 'char_3_y': 'char_3_peo', 'char_4_y': 'char_4_peo', 'char_5_y': 'char_5_peo', 'char_6_y': 'char_6_peo', 'char_7_y': 'char_7_peo', 'char_8_y': 'char_8_peo', 'char_9_y': 'char_9_peo'} act_train_char_X.rename(columns=rename_dict, inplace=True) act_test_char_X.rename(columns=rename_dict, inplace=True) act_train_char_10 = act_train_char_10.astype(str) act_test_char_10 = act_test_char_10.astype(str) act_train_char_X = act_train_char_X.astype(str) act_test_char_X = act_test_char_X.astype(str) act_train_char_10 = act_train_char_10.replace(['True', 'False'], [1, 0]) act_test_char_10 = act_test_char_10.replace(['True', 'False'], [1, 0]) act_train_char_X = act_train_char_X.replace(['True', 'False'], [1, 0]) act_test_char_X = act_test_char_X.replace(['True', 'False'], [1, 0]) features_char_10 = list(act_train_char_10.columns.values) features_char_X = list(act_train_char_X.columns.values) features_char_10.remove('people_id') features_char_10.remove('activity_id') features_char_10.remove('outcome') features_char_X.remove('people_id') features_char_X.remove('activity_id') features_char_X.remove('outcome') label = ['outcome'] VALIDATION_SIZE = 10000 log_reg_char_10 = LogisticRegression() log_reg_char_10.fit(act_train_char_10[features_char_10].ix[VALIDATION_SIZE:], act_train_char_10[label].ix[VALIDATION_SIZE:]) print('Accuracy_Char_10 = ' + str(log_reg_char_10.score(act_train_char_10[features_char_10].ix[:VALIDATION_SIZE], act_train_char_10[label].ix[:VALIDATION_SIZE]))) log_reg_char_X = LogisticRegression() log_reg_char_X.fit(act_train_char_X[features_char_X].ix[VALIDATION_SIZE:], act_train_char_X[label].ix[VALIDATION_SIZE:]) print('Accuracy_Char_X = ' + str(log_reg_char_X.score(act_train_char_X[features_char_X].ix[:VALIDATION_SIZE], act_train_char_X[label].ix[:VALIDATION_SIZE])))
code
129024559/cell_9
[ "image_output_1.png" ]
import pandas as pd df = pd.read_excel('/kaggle/input/arketing-campaign/marketing_campaign.xlsx') df df.shape
code
129024559/cell_25
[ "text_html_output_1.png" ]
import datetime import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_excel('/kaggle/input/arketing-campaign/marketing_campaign.xlsx') df df.shape df.isnull().sum() df.isnull().sum() df.Year_Birth = pd.to_datetime(df['Year_Birth'], format='%Y') year_now = datetime.date.today().year df['Age'] = df['Year_Birth'].apply(lambda x: year_now - x.year) df.drop('Year_Birth', axis=1, inplace=True) # Income spending by age fig,ax = plt.subplots(1,2,figsize=(18,4)) sns.scatterplot(x='Age',y='Income',data=df, hue='Response',ax=ax[0]) sns.boxplot(x='Age',data=df,ax=ax[1]) plt.show() df['spending'] = df.MntFishProducts + df.MntFruits + df.MntGoldProds + df.MntMeatProducts + df.MntSweetProducts + df.MntWines df.drop(['MntFishProducts', 'MntFruits', 'MntGoldProds', 'MntMeatProducts', 'MntSweetProducts', 'MntWines'], axis=1, inplace=True) fig, ax = plt.subplots(1, 2, figsize=(16, 4)) sns.scatterplot(x='Income', y='spending', data=df, hue='Response', ax=ax[0]) sns.histplot(df.spending, ax=ax[1]) plt.show()
code
129024559/cell_6
[ "image_output_1.png" ]
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import datetime import openpyxl from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import f1_score from sklearn.metrics import recall_score from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split from xgboost import XGBClassifier import lightgbm as lgb
code
129024559/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_excel('/kaggle/input/arketing-campaign/marketing_campaign.xlsx') df df.shape df.isnull().sum() df.isnull().sum() df.describe()
code
129024559/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_excel('/kaggle/input/arketing-campaign/marketing_campaign.xlsx') df df.shape df.isnull().sum() df.isnull().sum() df.head()
code
129024559/cell_8
[ "image_output_1.png" ]
import pandas as pd df = pd.read_excel('/kaggle/input/arketing-campaign/marketing_campaign.xlsx') df
code
129024559/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_excel('/kaggle/input/arketing-campaign/marketing_campaign.xlsx') df df.shape df.isnull().sum() df.isnull().sum() df['Income'].value_counts()
code
129024559/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_excel('/kaggle/input/arketing-campaign/marketing_campaign.xlsx') df df.shape df.isnull().sum() df.isnull().sum() df['Education'].unique()
code
129024559/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_excel('/kaggle/input/arketing-campaign/marketing_campaign.xlsx') df df.shape df.isnull().sum() df.isnull().sum()
code
129024559/cell_22
[ "text_plain_output_1.png" ]
import datetime import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_excel('/kaggle/input/arketing-campaign/marketing_campaign.xlsx') df df.shape df.isnull().sum() df.isnull().sum() df.Year_Birth = pd.to_datetime(df['Year_Birth'], format='%Y') year_now = datetime.date.today().year df['Age'] = df['Year_Birth'].apply(lambda x: year_now - x.year) df.drop('Year_Birth', axis=1, inplace=True) fig, ax = plt.subplots(1, 2, figsize=(18, 4)) sns.scatterplot(x='Age', y='Income', data=df, hue='Response', ax=ax[0]) sns.boxplot(x='Age', data=df, ax=ax[1]) plt.show()
code
129024559/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df = pd.read_excel('/kaggle/input/arketing-campaign/marketing_campaign.xlsx') df df.shape df.info()
code
129024559/cell_27
[ "text_html_output_1.png" ]
import datetime import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_excel('/kaggle/input/arketing-campaign/marketing_campaign.xlsx') df df.shape df.isnull().sum() df.isnull().sum() df.Year_Birth = pd.to_datetime(df['Year_Birth'], format='%Y') year_now = datetime.date.today().year df['Age'] = df['Year_Birth'].apply(lambda x: year_now - x.year) df.drop('Year_Birth', axis=1, inplace=True) # Income spending by age fig,ax = plt.subplots(1,2,figsize=(18,4)) sns.scatterplot(x='Age',y='Income',data=df, hue='Response',ax=ax[0]) sns.boxplot(x='Age',data=df,ax=ax[1]) plt.show() df['spending'] = df.MntFishProducts + df.MntFruits + df.MntGoldProds + df.MntMeatProducts + df.MntSweetProducts + df.MntWines df.drop(['MntFishProducts', 'MntFruits', 'MntGoldProds', 'MntMeatProducts', 'MntSweetProducts', 'MntWines'], axis=1, inplace=True) # Income and spending fig,ax = plt.subplots(1,2,figsize=(16,4)) sns.scatterplot(x='Income',y='spending',data=df,hue='Response',ax=ax[0]) sns.histplot(df.spending,ax=ax[1]) plt.show() fig, ax = plt.subplots(2, 2, figsize=(14, 8)) sns.barplot(x='Education', y='Income', data=df, ax=ax[0, 0]) sns.boxplot(x='Education', y='Income', data=df, ax=ax[0, 1]) sns.barplot(x='Education', y='spending', data=df, ax=ax[1, 0]) sns.boxplot(x='Education', y='spending', data=df, ax=ax[1, 1]) plt.show()
code
129024559/cell_12
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_excel('/kaggle/input/arketing-campaign/marketing_campaign.xlsx') df df.shape df.isnull().sum()
code
33115588/cell_13
[ "text_plain_output_1.png" ]
from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.preprocessing import scale import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns table = pd.read_csv('../input/genre-dataset/genre_dataset.txt') table = table[table.genre.str.contains('jazz and blues') | table.genre.str.contains('soul and reggae')] for i in range(4, len(table.columns)): col = table.iloc[:, [i]].values table.iloc[:, [i]] = scale(col) le = LabelEncoder() table['genre'] = le.fit_transform(table[['genre']]) X_train, X_test = train_test_split(table, test_size=0.2) x_train = X_train.iloc[:, 4:].values y_train = X_train.iloc[:, 0] x_test = X_test.iloc[:, 4:].values y_test = X_test.iloc[:, 0] cls = svm.SVC(kernel='poly') # Ajuste del grado del polinomio smallgrid = {'degree': [2,3,4,5,6,7,8,9,10]} grid1 = GridSearchCV(cls,smallgrid) grid1.fit(x_train,y_train) # Graficar los resultados grid_result1 = pd.DataFrame(grid1.cv_results_) plt = grid_result1.plot(x ='param_degree', y='mean_test_score') plt = plt.set_ylabel("Precisión") param_grid = {'C': [0.1, 1, 10, 100], 'degree': [2, 3, 4, 5]} grid = GridSearchCV(cls, param_grid) grid.fit(x_train, y_train) pvt = pd.pivot_table(pd.DataFrame(grid.cv_results_), values='mean_test_score', index='param_degree', columns='param_C') smallgrid2 = {'C': [2, 4, 6, 8, 10, 12, 14, 16, 18, 20], 'degree': [3]} grid2 = GridSearchCV(cls, smallgrid2) grid2.fit(x_train, y_train) grid_result2 = pd.DataFrame(grid2.cv_results_) plt = grid_result2.plot(x='param_C', y='mean_test_score') plt = plt.set_ylabel('Precisión')
code
33115588/cell_9
[ "text_plain_output_1.png" ]
from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.preprocessing import scale import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) table = pd.read_csv('../input/genre-dataset/genre_dataset.txt') table = table[table.genre.str.contains('jazz and blues') | table.genre.str.contains('soul and reggae')] for i in range(4, len(table.columns)): col = table.iloc[:, [i]].values table.iloc[:, [i]] = scale(col) le = LabelEncoder() table['genre'] = le.fit_transform(table[['genre']]) X_train, X_test = train_test_split(table, test_size=0.2) x_train = X_train.iloc[:, 4:].values y_train = X_train.iloc[:, 0] x_test = X_test.iloc[:, 4:].values y_test = X_test.iloc[:, 0] cls = svm.SVC(kernel='poly') smallgrid = {'degree': [2, 3, 4, 5, 6, 7, 8, 9, 10]} grid1 = GridSearchCV(cls, smallgrid) grid1.fit(x_train, y_train) grid_result1 = pd.DataFrame(grid1.cv_results_) plt = grid_result1.plot(x='param_degree', y='mean_test_score') plt = plt.set_ylabel('Precisión')
code
33115588/cell_4
[ "image_output_1.png" ]
from sklearn.preprocessing import scale import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) table = pd.read_csv('../input/genre-dataset/genre_dataset.txt') table = table[table.genre.str.contains('jazz and blues') | table.genre.str.contains('soul and reggae')] for i in range(4, len(table.columns)): col = table.iloc[:, [i]].values table.iloc[:, [i]] = scale(col) le = LabelEncoder() table['genre'] = le.fit_transform(table[['genre']]) table.head()
code
33115588/cell_11
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.preprocessing import scale import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns table = pd.read_csv('../input/genre-dataset/genre_dataset.txt') table = table[table.genre.str.contains('jazz and blues') | table.genre.str.contains('soul and reggae')] for i in range(4, len(table.columns)): col = table.iloc[:, [i]].values table.iloc[:, [i]] = scale(col) le = LabelEncoder() table['genre'] = le.fit_transform(table[['genre']]) X_train, X_test = train_test_split(table, test_size=0.2) x_train = X_train.iloc[:, 4:].values y_train = X_train.iloc[:, 0] x_test = X_test.iloc[:, 4:].values y_test = X_test.iloc[:, 0] cls = svm.SVC(kernel='poly') # Ajuste del grado del polinomio smallgrid = {'degree': [2,3,4,5,6,7,8,9,10]} grid1 = GridSearchCV(cls,smallgrid) grid1.fit(x_train,y_train) # Graficar los resultados grid_result1 = pd.DataFrame(grid1.cv_results_) plt = grid_result1.plot(x ='param_degree', y='mean_test_score') plt = plt.set_ylabel("Precisión") param_grid = {'C': [0.1, 1, 10, 100], 'degree': [2, 3, 4, 5]} grid = GridSearchCV(cls, param_grid) grid.fit(x_train, y_train) pvt = pd.pivot_table(pd.DataFrame(grid.cv_results_), values='mean_test_score', index='param_degree', columns='param_C') sns.heatmap(pvt, annot=True)
code
33115588/cell_16
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.preprocessing import scale import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) table = pd.read_csv('../input/genre-dataset/genre_dataset.txt') table = table[table.genre.str.contains('jazz and blues') | table.genre.str.contains('soul and reggae')] for i in range(4, len(table.columns)): col = table.iloc[:, [i]].values table.iloc[:, [i]] = scale(col) le = LabelEncoder() table['genre'] = le.fit_transform(table[['genre']]) X_train, X_test = train_test_split(table, test_size=0.2) x_train = X_train.iloc[:, 4:].values y_train = X_train.iloc[:, 0] x_test = X_test.iloc[:, 4:].values y_test = X_test.iloc[:, 0] cls = svm.SVC(kernel='poly') cls_final = svm.SVC(kernel='poly', C=4, degree=3, gamma=0.01) cls_final.fit(x_train, y_train) pred = cls_final.predict(x_test) print('accuracy:', metrics.accuracy_score(y_test, y_pred=pred)) print(metrics.classification_report(y_test, y_pred=pred))
code
33115588/cell_3
[ "image_output_1.png" ]
from sklearn.preprocessing import scale import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) table = pd.read_csv('../input/genre-dataset/genre_dataset.txt') table = table[table.genre.str.contains('jazz and blues') | table.genre.str.contains('soul and reggae')] for i in range(4, len(table.columns)): col = table.iloc[:, [i]].values table.iloc[:, [i]] = scale(col) table.head()
code
33115588/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.preprocessing import scale import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns table = pd.read_csv('../input/genre-dataset/genre_dataset.txt') table = table[table.genre.str.contains('jazz and blues') | table.genre.str.contains('soul and reggae')] for i in range(4, len(table.columns)): col = table.iloc[:, [i]].values table.iloc[:, [i]] = scale(col) le = LabelEncoder() table['genre'] = le.fit_transform(table[['genre']]) X_train, X_test = train_test_split(table, test_size=0.2) x_train = X_train.iloc[:, 4:].values y_train = X_train.iloc[:, 0] x_test = X_test.iloc[:, 4:].values y_test = X_test.iloc[:, 0] cls = svm.SVC(kernel='poly') # Ajuste del grado del polinomio smallgrid = {'degree': [2,3,4,5,6,7,8,9,10]} grid1 = GridSearchCV(cls,smallgrid) grid1.fit(x_train,y_train) # Graficar los resultados grid_result1 = pd.DataFrame(grid1.cv_results_) plt = grid_result1.plot(x ='param_degree', y='mean_test_score') plt = plt.set_ylabel("Precisión") param_grid = {'C': [0.1, 1, 10, 100], 'degree': [2, 3, 4, 5]} grid = GridSearchCV(cls, param_grid) grid.fit(x_train, y_train) pvt = pd.pivot_table(pd.DataFrame(grid.cv_results_), values='mean_test_score', index='param_degree', columns='param_C') smallgrid2 = {'C': [2, 4, 6, 8, 10, 12, 14, 16, 18, 20], 'degree': [3]} grid2 = GridSearchCV(cls, smallgrid2) grid2.fit(x_train, y_train) # Graficar los resultados grid_result2 = pd.DataFrame(grid2.cv_results_) plt = grid_result2.plot(x ='param_C', y='mean_test_score') plt = plt.set_ylabel("Precisión") smallgrid3 = {'gamma': [0.001, 0.01, 0.1], 'C': [4], 'degree': [3]} grid3 = GridSearchCV(cls, smallgrid3) grid3.fit(x_train, y_train) grid_result3 = pd.DataFrame(grid3.cv_results_) plt3 = grid_result3.plot(x='param_gamma', y='mean_test_score')
code
33115588/cell_10
[ "text_html_output_1.png" ]
from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.preprocessing import scale import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) table = pd.read_csv('../input/genre-dataset/genre_dataset.txt') table = table[table.genre.str.contains('jazz and blues') | table.genre.str.contains('soul and reggae')] for i in range(4, len(table.columns)): col = table.iloc[:, [i]].values table.iloc[:, [i]] = scale(col) le = LabelEncoder() table['genre'] = le.fit_transform(table[['genre']]) X_train, X_test = train_test_split(table, test_size=0.2) x_train = X_train.iloc[:, 4:].values y_train = X_train.iloc[:, 0] x_test = X_test.iloc[:, 4:].values y_test = X_test.iloc[:, 0] cls = svm.SVC(kernel='poly') param_grid = {'C': [0.1, 1, 10, 100], 'degree': [2, 3, 4, 5]} grid = GridSearchCV(cls, param_grid) grid.fit(x_train, y_train)
code
33115588/cell_12
[ "image_output_1.png" ]
from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.preprocessing import scale import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) table = pd.read_csv('../input/genre-dataset/genre_dataset.txt') table = table[table.genre.str.contains('jazz and blues') | table.genre.str.contains('soul and reggae')] for i in range(4, len(table.columns)): col = table.iloc[:, [i]].values table.iloc[:, [i]] = scale(col) le = LabelEncoder() table['genre'] = le.fit_transform(table[['genre']]) X_train, X_test = train_test_split(table, test_size=0.2) x_train = X_train.iloc[:, 4:].values y_train = X_train.iloc[:, 0] x_test = X_test.iloc[:, 4:].values y_test = X_test.iloc[:, 0] cls = svm.SVC(kernel='poly') smallgrid2 = {'C': [2, 4, 6, 8, 10, 12, 14, 16, 18, 20], 'degree': [3]} grid2 = GridSearchCV(cls, smallgrid2) grid2.fit(x_train, y_train)
code
17121947/cell_21
[ "text_plain_output_1.png" ]
from sklearn.ensemble import GradientBoostingClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score from sklearn.svm import LinearSVC (X_train.shape, y_train.shape) logRegModel = LogisticRegression() logRegModel.fit(X_train, y_train) svc = LinearSVC(random_state=43) svc.fit(X_train, y_train) gbClf = GradientBoostingClassifier() gbClf.fit(X_train, y_train) from sklearn.metrics import roc_auc_score print('GradientBoost roc_auc score:', roc_auc_score(y_true=y_test, y_score=gbClf.predict(X_test)) * 100) print('Logistic Regression roc_auc score:', roc_auc_score(y_true=y_test, y_score=logRegModel.predict(X_test)) * 100) print('SVM roc_auc score:', roc_auc_score(y_true=y_test, y_score=svc.predict(X_test)) * 100)
code
17121947/cell_13
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression (X_train.shape, y_train.shape) logRegModel = LogisticRegression() logRegModel.fit(X_train, y_train)
code
17121947/cell_25
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from xgboost import XGBClassifier,plot_importance (X_train.shape, y_train.shape) xgbClf = XGBClassifier(n_estimators=1000) xgbClf.fit(X_train, y_train) plot_importance(xgbClf)
code
17121947/cell_20
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.ensemble import GradientBoostingClassifier (X_train.shape, y_train.shape) gbClf = GradientBoostingClassifier() gbClf.fit(X_train, y_train) print('GradientBoost accuracy:', gbClf.score(X_test, y_test) * 100)
code
17121947/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
from xgboost import XGBClassifier,plot_importance (X_train.shape, y_train.shape) xgbClf = XGBClassifier(n_estimators=1000) xgbClf.fit(X_train, y_train) xgbClf.score(X_test, y_test) * 100
code
17121947/cell_11
[ "text_plain_output_1.png", "image_output_1.png" ]
(X_train.shape, y_train.shape)
code
17121947/cell_19
[ "text_plain_output_1.png" ]
from sklearn.ensemble import GradientBoostingClassifier (X_train.shape, y_train.shape) gbClf = GradientBoostingClassifier() gbClf.fit(X_train, y_train)
code
17121947/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from matplotlib import pyplot as plt import os print(os.listdir('../input'))
code
17121947/cell_8
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import StandardScaler import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from matplotlib import pyplot as plt import os scaler = StandardScaler() sourceDataFile = os.listdir('../input') f = open('../input/' + sourceDataFile[0]) creditDF = pd.read_csv(f) X = creditDF.iloc[:, 0:30] y = creditDF.iloc[:, 30:31] scaledX = pd.DataFrame(scaler.fit_transform(X), columns=X.columns) pd.plotting.scatter_matrix(scaledX.corr(), figsize=(30, 30))
code
17121947/cell_16
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.svm import LinearSVC (X_train.shape, y_train.shape) svc = LinearSVC(random_state=43) svc.fit(X_train, y_train)
code
17121947/cell_17
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.svm import LinearSVC (X_train.shape, y_train.shape) logRegModel = LogisticRegression() logRegModel.fit(X_train, y_train) svc = LinearSVC(random_state=43) svc.fit(X_train, y_train) print('Logistic regression accuracy:', logRegModel.score(X_test, y_test) * 100) print('SVC accuracy:', svc.score(X_test, y_test) * 100)
code
17121947/cell_24
[ "text_plain_output_1.png" ]
from xgboost import XGBClassifier,plot_importance (X_train.shape, y_train.shape) xgbClf = XGBClassifier(n_estimators=1000) xgbClf.fit(X_train, y_train)
code
121149216/cell_21
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mo = pd.read_csv('../input/ukrainian-market-mobile-phones-data/phones_data.csv') mo.shape mo.columns mo.dtypes mo.isnull().sum()
code
121149216/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mo = pd.read_csv('../input/ukrainian-market-mobile-phones-data/phones_data.csv') mo.shape mo.columns mo.head(5)
code
121149216/cell_9
[ "text_html_output_2.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mo = pd.read_csv('../input/ukrainian-market-mobile-phones-data/phones_data.csv') mo.shape
code
121149216/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mo = pd.read_csv('../input/ukrainian-market-mobile-phones-data/phones_data.csv') mo.shape mo.columns mo.dtypes mo.isnull().sum() viz_data = mo.copy(True) viz_data['release_date'].value_counts(normalize=True).sort_values(ascending=False) mo['brand_name'].value_counts()
code
121149216/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mo = pd.read_csv('../input/ukrainian-market-mobile-phones-data/phones_data.csv') mo.shape mo.columns mo.dtypes mo.isnull().sum() viz_data = mo.copy(True) viz_data['release_date'].value_counts(normalize=True).sort_values(ascending=False)
code
121149216/cell_33
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mo = pd.read_csv('../input/ukrainian-market-mobile-phones-data/phones_data.csv') mo.shape mo.columns mo.dtypes mo.isnull().sum() viz_data = mo.copy(True) viz_data['release_date'].value_counts(normalize=True).sort_values(ascending=False) pvt = mo.pivot_table(index='model_name', values='sellers_amount', aggfunc=['min', 'mean', 'max', 'sum', 'std', 'count']) pvt mo[(mo.screen_size < 6) & (mo.screen_size > 2)]
code
121149216/cell_40
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mo = pd.read_csv('../input/ukrainian-market-mobile-phones-data/phones_data.csv') mo.shape mo.columns mo.dtypes mo.isnull().sum() viz_data = mo.copy(True) viz_data['release_date'].value_counts(normalize=True).sort_values(ascending=False) pvt = mo.pivot_table(index='model_name', values='sellers_amount', aggfunc=['min', 'mean', 'max', 'sum', 'std', 'count']) pvt mo[(mo.screen_size < 6) & (mo.screen_size > 2)] br_data = mo.copy(True) br_data = mo.groupby('brand_name').count() br_data = br_data.sort_values('model_name', ascending=False) px.bar(x=br_data.index, y=br_data.model_name, color_discrete_sequence=['red'], labels={'x': 'Brand', 'y': 'Phones amount'})
code
121149216/cell_29
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mo = pd.read_csv('../input/ukrainian-market-mobile-phones-data/phones_data.csv') mo.shape mo.columns mo.dtypes mo.isnull().sum() viz_data = mo.copy(True) viz_data['release_date'].value_counts(normalize=True).sort_values(ascending=False) mo['best_price'].mean()
code
121149216/cell_11
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mo = pd.read_csv('../input/ukrainian-market-mobile-phones-data/phones_data.csv') mo.shape mo.columns
code
121149216/cell_19
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mo = pd.read_csv('../input/ukrainian-market-mobile-phones-data/phones_data.csv') mo.shape mo.columns mo.dtypes mo.info()
code
121149216/cell_7
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mo = pd.read_csv('../input/ukrainian-market-mobile-phones-data/phones_data.csv') mo
code
121149216/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mo = pd.read_csv('../input/ukrainian-market-mobile-phones-data/phones_data.csv') mo.shape mo.columns mo.tail(5)
code
121149216/cell_3
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt, seaborn as sns, plotly.express as px, plotly.figure_factory as ff import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
121149216/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mo = pd.read_csv('../input/ukrainian-market-mobile-phones-data/phones_data.csv') mo.shape mo.columns mo.dtypes
code
121149216/cell_35
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) mo = pd.read_csv('../input/ukrainian-market-mobile-phones-data/phones_data.csv') mo.shape mo.columns mo.dtypes mo.isnull().sum() viz_data = mo.copy(True) viz_data['release_date'].value_counts(normalize=True).sort_values(ascending=False) pvt = mo.pivot_table(index='model_name', values='sellers_amount', aggfunc=['min', 'mean', 'max', 'sum', 'std', 'count']) pvt mo[(mo.screen_size < 6) & (mo.screen_size > 2)] mo.describe()
code