path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
32065763/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/indonesian-abusive-and-hate-speech-twitter-text/data.csv', encoding='latin-1') alay_dict = pd.read_csv('../input/indonesian-abusive-and-hate-speech-twitter-text/new_kamusalay.csv', encoding='latin-1', header=None) alay_dict = alay_dict.rename(columns={0: 'original', 1: 'replacement'}) id_stopword_dict = pd.read_csv('../input/indonesian-stoplist/stopwordbahasa.csv', header=None) id_stopword_dict = id_stopword_dict.rename(columns={0: 'stopword'}) data.HS.value_counts() data.Abusive.value_counts() print('Toxic shape: ', data[(data['HS'] == 1) | (data['Abusive'] == 1)].shape) print('Non-toxic shape: ', data[(data['HS'] == 0) & (data['Abusive'] == 0)].shape)
code
32065763/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/indonesian-abusive-and-hate-speech-twitter-text/data.csv', encoding='latin-1') alay_dict = pd.read_csv('../input/indonesian-abusive-and-hate-speech-twitter-text/new_kamusalay.csv', encoding='latin-1', header=None) alay_dict = alay_dict.rename(columns={0: 'original', 1: 'replacement'}) id_stopword_dict = pd.read_csv('../input/indonesian-stoplist/stopwordbahasa.csv', header=None) id_stopword_dict = id_stopword_dict.rename(columns={0: 'stopword'}) print('Shape: ', alay_dict.shape) alay_dict.head(15)
code
2037113/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dframe = pd.read_csv('../input/mushrooms.csv') y = dframe['class'] X = dframe.drop('class', axis=1) sns.countplot(x='stalk-surface-below-ring', data=dframe)
code
2037113/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dframe = pd.read_csv('../input/mushrooms.csv') y = dframe['class'] X = dframe.drop('class', axis=1) sns.countplot(x='odor', data=dframe)
code
2037113/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dframe = pd.read_csv('../input/mushrooms.csv') y = dframe['class'] X = dframe.drop('class', axis=1) sns.countplot(x='cap-shape', data=dframe)
code
2037113/cell_25
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dframe = pd.read_csv('../input/mushrooms.csv') y = dframe['class'] X = dframe.drop('class', axis=1) sns.countplot(x='veil-color', data=dframe)
code
2037113/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dframe = pd.read_csv('../input/mushrooms.csv') y = dframe['class'] X = dframe.drop('class', axis=1) sns.countplot(x='stalk-color-below-ring', data=dframe)
code
2037113/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dframe = pd.read_csv('../input/mushrooms.csv') y = dframe['class'] X = dframe.drop('class', axis=1) sns.countplot(x='stalk-surface-above-ring', data=dframe)
code
2037113/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dframe = pd.read_csv('../input/mushrooms.csv') y = dframe['class'] X = dframe.drop('class', axis=1) X.columns X.info()
code
2037113/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dframe = pd.read_csv('../input/mushrooms.csv') y = dframe['class'] X = dframe.drop('class', axis=1) sns.countplot(x='cap-color', data=dframe)
code
2037113/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dframe = pd.read_csv('../input/mushrooms.csv') y = dframe['class'] X = dframe.drop('class', axis=1) sns.countplot(x='stalk-root', data=dframe)
code
2037113/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2037113/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dframe = pd.read_csv('../input/mushrooms.csv') y = dframe['class'] X = dframe.drop('class', axis=1) sns.countplot(x='stalk-shape', data=dframe)
code
2037113/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dframe = pd.read_csv('../input/mushrooms.csv') y = dframe['class'] X = dframe.drop('class', axis=1) sns.countplot(x='gill-spacing', data=dframe)
code
2037113/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dframe = pd.read_csv('../input/mushrooms.csv') y = dframe['class'] X = dframe.drop('class', axis=1) sns.countplot(x='gill-size', data=dframe)
code
2037113/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dframe = pd.read_csv('../input/mushrooms.csv') dframe.head()
code
2037113/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dframe = pd.read_csv('../input/mushrooms.csv') y = dframe['class'] X = dframe.drop('class', axis=1) sns.countplot(x='gill-color', data=dframe)
code
2037113/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dframe = pd.read_csv('../input/mushrooms.csv') y = dframe['class'] X = dframe.drop('class', axis=1) sns.countplot(x='veil-type', data=dframe)
code
2037113/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dframe = pd.read_csv('../input/mushrooms.csv') y = dframe['class'] X = dframe.drop('class', axis=1) sns.countplot(x='gill-attachment', data=dframe)
code
2037113/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dframe = pd.read_csv('../input/mushrooms.csv') y = dframe['class'] X = dframe.drop('class', axis=1) sns.countplot(x='stalk-color-above-ring', data=dframe)
code
2037113/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dframe = pd.read_csv('../input/mushrooms.csv') y = dframe['class'] X = dframe.drop('class', axis=1) sns.countplot(x='cap-surface', data=dframe)
code
2037113/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns dframe = pd.read_csv('../input/mushrooms.csv') y = dframe['class'] X = dframe.drop('class', axis=1) sns.countplot(x='bruises', data=dframe)
code
2037113/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) dframe = pd.read_csv('../input/mushrooms.csv') y = dframe['class'] X = dframe.drop('class', axis=1) X.columns
code
2043287/cell_13
[ "text_plain_output_1.png" ]
from keras.layers import Dense, Activation, Dropout from keras.models import Sequential from keras.optimizers import RMSprop model = Sequential() model.add(Dense(400, input_dim=784, activation='relu')) model.add(Dropout(0.4)) model.add(Dense(200, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(300, activation='sigmoid')) model.add(Dropout(0.2)) model.add(Dense(10, activation='softmax')) model.compile(optimizer=RMSprop(), loss='categorical_crossentropy', metrics=['accuracy']) epochs = 50 batch_size = 128 model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1) score = model.evaluate(X_validate, y_validate, batch_size=32) model2 = Sequential() model2.add(Dense(400, input_dim=784, activation='relu')) model.add(Dropout(0.4)) model2.add(Dense(200, activation='relu')) model.add(Dropout(0.3)) model2.add(Dense(100, activation='relu')) model.add(Dropout(0.2)) model2.add(Dense(50, activation='relu')) model2.add(Dense(10, activation='softmax')) model2.compile(optimizer=RMSprop(), loss='categorical_crossentropy', metrics=['accuracy']) epochs = 20 batch_size = 128 model2.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1) score = model2.evaluate(X_validate, y_validate, batch_size=32) model3 = Sequential() model3.add(Dense(400, input_dim=784, activation='relu')) model.add(Dropout(0.4)) model3.add(Dense(200, activation='sigmoid')) model.add(Dropout(0.3)) model3.add(Dense(100, activation='sigmoid')) model.add(Dropout(0.2)) model3.add(Dense(50, activation='sigmoid')) model3.add(Dense(10, activation='softmax')) model3.compile(optimizer=RMSprop(), loss='categorical_crossentropy', metrics=['accuracy']) epochs = 20 batch_size = 128 model3.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1) score = model3.evaluate(X_validate, y_validate, batch_size=32) print("Network's test score [loss, accuracy]: {0}".format(score))
code
2043287/cell_6
[ "text_plain_output_1.png" ]
from keras.layers import Dense, Activation, Dropout from keras.models import Sequential from keras.optimizers import RMSprop model = Sequential() model.add(Dense(400, input_dim=784, activation='relu')) model.add(Dropout(0.4)) model.add(Dense(200, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(300, activation='sigmoid')) model.add(Dropout(0.2)) model.add(Dense(10, activation='softmax')) model.compile(optimizer=RMSprop(), loss='categorical_crossentropy', metrics=['accuracy']) epochs = 50 batch_size = 128 model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1) score = model.evaluate(X_validate, y_validate, batch_size=32) print("Network's test score [loss, accuracy]: {0}".format(score))
code
2043287/cell_1
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Dense, Activation, Dropout from keras.optimizers import RMSprop from keras.utils.np_utils import to_categorical from sklearn.cross_validation import train_test_split from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
2043287/cell_16
[ "text_plain_output_1.png" ]
from keras.layers import Dense, Activation, Dropout from keras.models import Sequential from keras.optimizers import RMSprop from keras.utils.np_utils import to_categorical from sklearn.cross_validation import train_test_split import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) training_data = pd.read_csv('../input/fashion-mnist_train.csv') testing_data = pd.read_csv('../input/fashion-mnist_test.csv') X = np.array(training_data.iloc[:, 1:]) y = to_categorical(np.array(training_data.iloc[:, 0])) X_train, X_validate, y_train, y_validate = train_test_split(X, y) model = Sequential() model.add(Dense(400, input_dim=784, activation='relu')) model.add(Dropout(0.4)) model.add(Dense(200, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(300, activation='sigmoid')) model.add(Dropout(0.2)) model.add(Dense(10, activation='softmax')) model.compile(optimizer=RMSprop(), loss='categorical_crossentropy', metrics=['accuracy']) epochs = 50 batch_size = 128 model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1) score = model.evaluate(X_validate, y_validate, batch_size=32) model2 = Sequential() model2.add(Dense(400, input_dim=784, activation='relu')) model.add(Dropout(0.4)) model2.add(Dense(200, activation='relu')) model.add(Dropout(0.3)) model2.add(Dense(100, activation='relu')) model.add(Dropout(0.2)) model2.add(Dense(50, activation='relu')) model2.add(Dense(10, activation='softmax')) model2.compile(optimizer=RMSprop(), loss='categorical_crossentropy', metrics=['accuracy']) epochs = 20 batch_size = 128 model2.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1) score = model2.evaluate(X_validate, y_validate, batch_size=32) model3 = Sequential() model3.add(Dense(400, input_dim=784, activation='relu')) model.add(Dropout(0.4)) model3.add(Dense(200, activation='sigmoid')) model.add(Dropout(0.3)) model3.add(Dense(100, activation='sigmoid')) model.add(Dropout(0.2)) model3.add(Dense(50, activation='sigmoid')) model3.add(Dense(10, activation='softmax')) model3.compile(optimizer=RMSprop(), loss='categorical_crossentropy', metrics=['accuracy']) epochs = 20 batch_size = 128 model3.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1) score = model3.evaluate(X_validate, y_validate, batch_size=32) X_test = np.array(testing_data.iloc[:, 1:]) y_test = to_categorical(np.array(testing_data.iloc[:, 0])) score = model.evaluate(X_test, y_test, batch_size=32) print("Network one's test score [loss, accuracy]: {0}".format(score))
code
2043287/cell_17
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.layers import Dense, Activation, Dropout from keras.models import Sequential from keras.optimizers import RMSprop from keras.utils.np_utils import to_categorical from sklearn.cross_validation import train_test_split import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) training_data = pd.read_csv('../input/fashion-mnist_train.csv') testing_data = pd.read_csv('../input/fashion-mnist_test.csv') X = np.array(training_data.iloc[:, 1:]) y = to_categorical(np.array(training_data.iloc[:, 0])) X_train, X_validate, y_train, y_validate = train_test_split(X, y) model = Sequential() model.add(Dense(400, input_dim=784, activation='relu')) model.add(Dropout(0.4)) model.add(Dense(200, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(300, activation='sigmoid')) model.add(Dropout(0.2)) model.add(Dense(10, activation='softmax')) model.compile(optimizer=RMSprop(), loss='categorical_crossentropy', metrics=['accuracy']) epochs = 50 batch_size = 128 model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1) score = model.evaluate(X_validate, y_validate, batch_size=32) model2 = Sequential() model2.add(Dense(400, input_dim=784, activation='relu')) model.add(Dropout(0.4)) model2.add(Dense(200, activation='relu')) model.add(Dropout(0.3)) model2.add(Dense(100, activation='relu')) model.add(Dropout(0.2)) model2.add(Dense(50, activation='relu')) model2.add(Dense(10, activation='softmax')) model2.compile(optimizer=RMSprop(), loss='categorical_crossentropy', metrics=['accuracy']) epochs = 20 batch_size = 128 model2.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1) score = model2.evaluate(X_validate, y_validate, batch_size=32) model3 = Sequential() model3.add(Dense(400, input_dim=784, activation='relu')) model.add(Dropout(0.4)) model3.add(Dense(200, activation='sigmoid')) model.add(Dropout(0.3)) model3.add(Dense(100, activation='sigmoid')) model.add(Dropout(0.2)) model3.add(Dense(50, activation='sigmoid')) model3.add(Dense(10, activation='softmax')) model3.compile(optimizer=RMSprop(), loss='categorical_crossentropy', metrics=['accuracy']) epochs = 20 batch_size = 128 model3.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1) score = model3.evaluate(X_validate, y_validate, batch_size=32) X_test = np.array(testing_data.iloc[:, 1:]) y_test = to_categorical(np.array(testing_data.iloc[:, 0])) score3 = model3.evaluate(X_test, y_test, batch_size=32) print("Network three's test score [loss, accuracy]: {0}".format(score3))
code
2043287/cell_10
[ "text_plain_output_1.png" ]
from keras.layers import Dense, Activation, Dropout from keras.models import Sequential from keras.optimizers import RMSprop model = Sequential() model.add(Dense(400, input_dim=784, activation='relu')) model.add(Dropout(0.4)) model.add(Dense(200, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(300, activation='sigmoid')) model.add(Dropout(0.2)) model.add(Dense(10, activation='softmax')) model.compile(optimizer=RMSprop(), loss='categorical_crossentropy', metrics=['accuracy']) epochs = 50 batch_size = 128 model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1) score = model.evaluate(X_validate, y_validate, batch_size=32) model2 = Sequential() model2.add(Dense(400, input_dim=784, activation='relu')) model.add(Dropout(0.4)) model2.add(Dense(200, activation='relu')) model.add(Dropout(0.3)) model2.add(Dense(100, activation='relu')) model.add(Dropout(0.2)) model2.add(Dense(50, activation='relu')) model2.add(Dense(10, activation='softmax')) model2.compile(optimizer=RMSprop(), loss='categorical_crossentropy', metrics=['accuracy']) epochs = 20 batch_size = 128 model2.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1) score = model2.evaluate(X_validate, y_validate, batch_size=32) print("Network's test score [loss, accuracy]: {0}".format(score))
code
90105356/cell_13
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import shutil from sklearn import preprocessing from sklearn.preprocessing import StandardScaler import statsmodels.api as sm from scipy.stats import skew from sklearn.preprocessing import OneHotEncoder sns.set() pd.set_option('display.max_columns', None) pth_train = '../input/house-prices-advanced-regression-techniques/train.csv' pth_test = '../input/house-prices-advanced-regression-techniques/test.csv' raw_train = pd.read_csv(pth_train) raw_test = pd.read_csv(pth_test) categorical_nominal_cols = ['MSSubClass', 'MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'Foundation', 'Heating', 'Electrical', 'Functional', 'GarageType', 'MiscFeature', 'SaleType', 'SaleCondition'] categorical_ordinal_cols = ['OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageYrBlt', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive', 'PoolQC', 'Fence'] categorical_bool_cols = ['CentralAir'] categorical_ordinal2encode = {} categorical_ordinal2encode['ExterQual'] = {'Po': 0, 'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4} categorical_ordinal2encode['ExterCond'] = categorical_ordinal2encode['ExterQual'].copy() categorical_ordinal2encode['BsmtQual'] = {'NA': 0, 'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5} categorical_ordinal2encode['BsmtCond'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['BsmtExposure'] = {'NA': 0, 'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} categorical_ordinal2encode['BsmtFinType1'] = {'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} categorical_ordinal2encode['BsmtFinType2'] = categorical_ordinal2encode['BsmtFinType1'].copy() categorical_ordinal2encode['HeatingQC'] = categorical_ordinal2encode['ExterQual'].copy() categorical_ordinal2encode['KitchenQual'] = categorical_ordinal2encode['HeatingQC'].copy() categorical_ordinal2encode['FireplaceQu'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['GarageFinish'] = {'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} categorical_ordinal2encode['GarageQual'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['GarageCond'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['PavedDrive'] = {'N': 0, 'P': 1, 'Y': 2} categorical_ordinal2encode['PoolQC'] = {'NA': 0, 'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4} categorical_ordinal2encode['Fence'] = {'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} total_col = 4 total_row = len(categorical_ordinal_cols)//total_col if len(categorical_ordinal_cols) % total_col > 0: total_row += 1 idx = 0 fig, axs = plt.subplots(total_row, total_col, figsize=(15,total_row * 4)) for i in range(total_row): for j in range(total_col): if idx < len(categorical_ordinal_cols): title = categorical_ordinal_cols[idx] if title in categorical_ordinal2encode: vc = raw_train[title].value_counts().reset_index() vc.rename(columns={'index':'code'}, inplace=True) vc['index'] = vc['code'].copy() vc['index'] = vc['index'].map(categorical_ordinal2encode[title]) vc.set_index('index', inplace=True) vc = vc.sort_index() sns.barplot(data=vc ,x='code', y=title, color='orange', ax = axs[i][j]) else: vc = raw_train[title].value_counts().sort_index() sns.barplot(x=vc.index, y=vc, color='orange', ax = axs[i][j]) axs[i][j].set_ylabel('frequency') axs[i][j].set_xlabel('level') axs[i][j].set_title(title) idx += 1 plt.tight_layout() plt.show() ordinal_columns = ['OverallQual', 'OverallCond', 'ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageFinish', 'GarageQual', 'PavedDrive', 'PoolQC', 'Fence'] ordinal_column_transforms = {} ordinal_column_fillna = {} ordinal_column_transforms['OverallQual'] = [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [0, 0, 0, 0, 1, 2, 3, 4, 4, 4]] ordinal_column_transforms['OverallCond'] = [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [0, 0, 0, 0, 1, 2, 3, 4, 4, 4]] ordinal_column_transforms['ExterQual'] = [['Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 0, 1, 1]] ordinal_column_transforms['ExterCond'] = [['Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 0, 1, 1]] ordinal_column_transforms['BsmtQual'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 1, 2, 2]] ordinal_column_transforms['BsmtCond'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 1, 2, 2]] ordinal_column_transforms['BsmtExposure'] = [['NA', 'No', 'Mn', 'Av', 'Gd'], [0, 0, 1, 2, 2]] ordinal_column_transforms['BsmtFinType1'] = [['NA', 'Unf', 'LwQ', 'Rec', 'BLQ', 'ALQ', 'GLQ'], [0, 0, 0, 1, 1, 2, 2]] ordinal_column_transforms['BsmtFinType2'] = [['NA', 'Unf', 'LwQ', 'Rec', 'BLQ', 'ALQ', 'GLQ'], [0, 0, 0, 1, 1, 2, 2]] ordinal_column_transforms['HeatingQC'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 0, 1, 2, 2]] ordinal_column_transforms['KitchenQual'] = [['Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 2, 2]] ordinal_column_transforms['FireplaceQu'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 1, 2, 2]] ordinal_column_transforms['GarageFinish'] = [['NA', 'Unf', 'RFn', 'Fin'], [0, 1, 2, 3]] ordinal_column_transforms['GarageQual'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 1, 2, 2]] ordinal_column_transforms['PavedDrive'] = [['N', 'P', 'Y'], [0, 0, 1]] ordinal_column_transforms['PoolQC'] = [['NA', 'Fa', 'TA', 'Gd', 'Ex'], [0, 1, 1, 2, 3]] ordinal_column_transforms['Fence'] = [['NA', 'MnWw', 'GdWo', 'MnPrv', 'GdPrv'], [0, 0, 1, 1, 2]] for title in ordinal_columns: print('raw_train', raw_train[title].isna().sum()) print('raw_test', raw_test[title].isna().sum()) vc = raw_train[title].value_counts().sort_index() raw_train[title].replace(ordinal_column_transforms[title][0], ordinal_column_transforms[title][1], inplace=True) raw_test[title].replace(ordinal_column_transforms[title][0], ordinal_column_transforms[title][1], inplace=True) raw_test[title].fillna(0, inplace=True) raw_test[title].fillna(0, inplace=True) vc_changed = raw_train[title].value_counts().sort_index() total_row, total_vc = (raw_train.shape[0], vc.sum()) gap = total_row - total_vc print('total_row :', total_row) print('total value count :', total_vc) print('total null value :', gap, '\n') fig, axs = plt.subplots(1, 2, figsize=(15, 3)) if title in categorical_ordinal2encode: vc = vc.reset_index() vc.rename(columns={'index': 'code'}, inplace=True) vc['index'] = vc['code'].copy() vc['index'] = vc['index'].map(categorical_ordinal2encode[title]) vc.set_index('index', inplace=True) vc = vc.sort_index() sns.barplot(data=vc, x='code', y=title, color='violet', ax=axs[0]) else: sns.barplot(x=vc.index, y=vc, color='violet', ax=axs[0]) axs[0].set_title('BEFORE', fontsize=12) axs[0].set_ylabel('frequency') axs[0].set_xlabel('level') sns.barplot(x=vc_changed.index, y=vc_changed, color='violet', ax=axs[1]) axs[1].set_title('AFTER', fontsize=12) axs[1].set_ylabel('frequency') axs[1].set_xlabel('level') fig.suptitle(title + ' (BEFORE - AFTER)', fontsize=15) plt.tight_layout() plt.show()
code
90105356/cell_9
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import shutil from sklearn import preprocessing from sklearn.preprocessing import StandardScaler import statsmodels.api as sm from scipy.stats import skew from sklearn.preprocessing import OneHotEncoder sns.set() pd.set_option('display.max_columns', None) pth_train = '../input/house-prices-advanced-regression-techniques/train.csv' pth_test = '../input/house-prices-advanced-regression-techniques/test.csv' raw_train = pd.read_csv(pth_train) raw_test = pd.read_csv(pth_test) categorical_nominal_cols = ['MSSubClass', 'MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'Foundation', 'Heating', 'Electrical', 'Functional', 'GarageType', 'MiscFeature', 'SaleType', 'SaleCondition'] categorical_ordinal_cols = ['OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageYrBlt', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive', 'PoolQC', 'Fence'] categorical_bool_cols = ['CentralAir'] categorical_ordinal2encode = {} categorical_ordinal2encode['ExterQual'] = {'Po': 0, 'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4} categorical_ordinal2encode['ExterCond'] = categorical_ordinal2encode['ExterQual'].copy() categorical_ordinal2encode['BsmtQual'] = {'NA': 0, 'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5} categorical_ordinal2encode['BsmtCond'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['BsmtExposure'] = {'NA': 0, 'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} categorical_ordinal2encode['BsmtFinType1'] = {'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} categorical_ordinal2encode['BsmtFinType2'] = categorical_ordinal2encode['BsmtFinType1'].copy() categorical_ordinal2encode['HeatingQC'] = categorical_ordinal2encode['ExterQual'].copy() categorical_ordinal2encode['KitchenQual'] = categorical_ordinal2encode['HeatingQC'].copy() categorical_ordinal2encode['FireplaceQu'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['GarageFinish'] = {'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} categorical_ordinal2encode['GarageQual'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['GarageCond'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['PavedDrive'] = {'N': 0, 'P': 1, 'Y': 2} categorical_ordinal2encode['PoolQC'] = {'NA': 0, 'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4} categorical_ordinal2encode['Fence'] = {'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} total_col = 4 total_row = len(categorical_ordinal_cols) // total_col if len(categorical_ordinal_cols) % total_col > 0: total_row += 1 idx = 0 fig, axs = plt.subplots(total_row, total_col, figsize=(15, total_row * 4)) for i in range(total_row): for j in range(total_col): if idx < len(categorical_ordinal_cols): title = categorical_ordinal_cols[idx] if title in categorical_ordinal2encode: vc = raw_train[title].value_counts().reset_index() vc.rename(columns={'index': 'code'}, inplace=True) vc['index'] = vc['code'].copy() vc['index'] = vc['index'].map(categorical_ordinal2encode[title]) vc.set_index('index', inplace=True) vc = vc.sort_index() sns.barplot(data=vc, x='code', y=title, color='orange', ax=axs[i][j]) else: vc = raw_train[title].value_counts().sort_index() sns.barplot(x=vc.index, y=vc, color='orange', ax=axs[i][j]) axs[i][j].set_ylabel('frequency') axs[i][j].set_xlabel('level') axs[i][j].set_title(title) idx += 1 plt.tight_layout() plt.show()
code
90105356/cell_19
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import shutil from sklearn import preprocessing from sklearn.preprocessing import StandardScaler import statsmodels.api as sm from scipy.stats import skew from sklearn.preprocessing import OneHotEncoder sns.set() pd.set_option('display.max_columns', None) pth_train = '../input/house-prices-advanced-regression-techniques/train.csv' pth_test = '../input/house-prices-advanced-regression-techniques/test.csv' raw_train = pd.read_csv(pth_train) raw_test = pd.read_csv(pth_test) categorical_nominal_cols = ['MSSubClass', 'MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'Foundation', 'Heating', 'Electrical', 'Functional', 'GarageType', 'MiscFeature', 'SaleType', 'SaleCondition'] categorical_ordinal_cols = ['OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageYrBlt', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive', 'PoolQC', 'Fence'] categorical_bool_cols = ['CentralAir'] categorical_ordinal2encode = {} categorical_ordinal2encode['ExterQual'] = {'Po': 0, 'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4} categorical_ordinal2encode['ExterCond'] = categorical_ordinal2encode['ExterQual'].copy() categorical_ordinal2encode['BsmtQual'] = {'NA': 0, 'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5} categorical_ordinal2encode['BsmtCond'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['BsmtExposure'] = {'NA': 0, 'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} categorical_ordinal2encode['BsmtFinType1'] = {'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} categorical_ordinal2encode['BsmtFinType2'] = categorical_ordinal2encode['BsmtFinType1'].copy() categorical_ordinal2encode['HeatingQC'] = categorical_ordinal2encode['ExterQual'].copy() categorical_ordinal2encode['KitchenQual'] = categorical_ordinal2encode['HeatingQC'].copy() categorical_ordinal2encode['FireplaceQu'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['GarageFinish'] = {'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} categorical_ordinal2encode['GarageQual'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['GarageCond'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['PavedDrive'] = {'N': 0, 'P': 1, 'Y': 2} categorical_ordinal2encode['PoolQC'] = {'NA': 0, 'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4} categorical_ordinal2encode['Fence'] = {'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} total_col = 4 total_row = len(categorical_ordinal_cols)//total_col if len(categorical_ordinal_cols) % total_col > 0: total_row += 1 idx = 0 fig, axs = plt.subplots(total_row, total_col, figsize=(15,total_row * 4)) for i in range(total_row): for j in range(total_col): if idx < len(categorical_ordinal_cols): title = categorical_ordinal_cols[idx] if title in categorical_ordinal2encode: vc = raw_train[title].value_counts().reset_index() vc.rename(columns={'index':'code'}, inplace=True) vc['index'] = vc['code'].copy() vc['index'] = vc['index'].map(categorical_ordinal2encode[title]) vc.set_index('index', inplace=True) vc = vc.sort_index() sns.barplot(data=vc ,x='code', y=title, color='orange', ax = axs[i][j]) else: vc = raw_train[title].value_counts().sort_index() sns.barplot(x=vc.index, y=vc, color='orange', ax = axs[i][j]) axs[i][j].set_ylabel('frequency') axs[i][j].set_xlabel('level') axs[i][j].set_title(title) idx += 1 plt.tight_layout() plt.show() ordinal_columns = ['OverallQual', 'OverallCond', 'ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageFinish', 'GarageQual', 'PavedDrive', 'PoolQC', 'Fence'] ordinal_column_transforms = {} ordinal_column_fillna = {} ordinal_column_transforms['OverallQual'] = [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [0, 0, 0, 0, 1, 2, 3, 4, 4, 4]] ordinal_column_transforms['OverallCond'] = [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [0, 0, 0, 0, 1, 2, 3, 4, 4, 4]] ordinal_column_transforms['ExterQual'] = [['Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 0, 1, 1]] ordinal_column_transforms['ExterCond'] = [['Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 0, 1, 1]] ordinal_column_transforms['BsmtQual'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 1, 2, 2]] ordinal_column_transforms['BsmtCond'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 1, 2, 2]] ordinal_column_transforms['BsmtExposure'] = [['NA', 'No', 'Mn', 'Av', 'Gd'], [0, 0, 1, 2, 2]] ordinal_column_transforms['BsmtFinType1'] = [['NA', 'Unf', 'LwQ', 'Rec', 'BLQ', 'ALQ', 'GLQ'], [0, 0, 0, 1, 1, 2, 2]] ordinal_column_transforms['BsmtFinType2'] = [['NA', 'Unf', 'LwQ', 'Rec', 'BLQ', 'ALQ', 'GLQ'], [0, 0, 0, 1, 1, 2, 2]] ordinal_column_transforms['HeatingQC'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 0, 1, 2, 2]] ordinal_column_transforms['KitchenQual'] = [['Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 2, 2]] ordinal_column_transforms['FireplaceQu'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 1, 2, 2]] ordinal_column_transforms['GarageFinish'] = [['NA', 'Unf', 'RFn', 'Fin'], [0, 1, 2, 3]] ordinal_column_transforms['GarageQual'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 1, 2, 2]] ordinal_column_transforms['PavedDrive'] = [['N', 'P', 'Y'], [0, 0, 1]] ordinal_column_transforms['PoolQC'] = [['NA', 'Fa', 'TA', 'Gd', 'Ex'], [0, 1, 1, 2, 3]] ordinal_column_transforms['Fence'] = [['NA', 'MnWw', 'GdWo', 'MnPrv', 'GdPrv'], [0, 0, 1, 1, 2]] for title in ordinal_columns: print('raw_train',raw_train[title].isna().sum()) print('raw_test',raw_test[title].isna().sum()) vc = raw_train[title].value_counts().sort_index() raw_train[title].replace(ordinal_column_transforms[title][0],ordinal_column_transforms[title][1], inplace=True) raw_test[title].replace(ordinal_column_transforms[title][0],ordinal_column_transforms[title][1], inplace=True) raw_test[title].fillna(0, inplace=True) raw_test[title].fillna(0, inplace=True) vc_changed = raw_train[title].value_counts().sort_index() total_row, total_vc = raw_train.shape[0], vc.sum() gap = total_row - total_vc print('total_row :',total_row) print('total value count :',total_vc) print('total null value :',gap,'\n') fig, axs = plt.subplots(1,2,figsize=(15,3)) if title in categorical_ordinal2encode: vc = vc.reset_index() vc.rename(columns={'index':'code'}, inplace=True) vc['index'] = vc['code'].copy() vc['index'] = vc['index'].map(categorical_ordinal2encode[title]) vc.set_index('index', inplace=True) vc = vc.sort_index() sns.barplot(data=vc ,x='code', y=title, color='violet', ax = axs[0]) else: sns.barplot(x=vc.index, y=vc, color='violet', ax=axs[0]) axs[0].set_title('BEFORE',fontsize=12) axs[0].set_ylabel('frequency') axs[0].set_xlabel('level') sns.barplot(x=vc_changed.index, y=vc_changed, color='violet', ax=axs[1]) axs[1].set_title('AFTER',fontsize=12) axs[1].set_ylabel('frequency') axs[1].set_xlabel('level') fig.suptitle(title+' (BEFORE - AFTER)',fontsize=15) # plt.title(title+' (BEFORE - AFTER)', fontsize=15) plt.tight_layout() plt.show() raw_test['SalePrice'] = np.zeros(raw_test.shape[0], dtype=np.int64) raw_all = pd.concat((raw_train, raw_test), axis=0) check_null_cols = raw_all.isna().sum() check_null_cols_ver2 = check_null_cols[check_null_cols > 0] / raw_all.shape[0] * 100 check_null_cols_ver3 = check_null_cols_ver2[check_null_cols_ver2 > 50] raw_all_ver2 = raw_all.drop(columns=check_null_cols_ver3.index) check_null_cols = raw_all_ver2.isna().sum() check_null_cols_ver2 = check_null_cols[check_null_cols > 0] / raw_all_ver2.shape[0] * 100 round(check_null_cols_ver2, 2) raw_all_ver3 = raw_all_ver2.copy() for column in check_null_cols_ver2.index: if column in categorical_ordinal_cols: vc = raw_all_ver3[column].value_counts() raw_all_ver3[column].fillna(vc.idxmax(), inplace=True) elif column in categorical_nominal_cols: raw_all_ver3[column].fillna('unknown', inplace=True) else: mean = raw_all_ver3[column].mean() raw_all_ver3[column].fillna(mean, inplace=True) print('Check empty cell') check_null_cols = raw_all_ver3.isna().sum() check_null_cols_ver2 = check_null_cols[check_null_cols > 0] / raw_all_ver3.shape[0] * 100 round(check_null_cols_ver2, 2)
code
90105356/cell_15
[ "image_output_11.png", "text_plain_output_5.png", "text_plain_output_15.png", "image_output_17.png", "text_plain_output_9.png", "image_output_14.png", "text_plain_output_4.png", "text_plain_output_13.png", "image_output_13.png", "image_output_5.png", "text_plain_output_14.png", "text_plain_output_10.png", "text_plain_output_6.png", "image_output_7.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_7.png", "image_output_8.png", "text_plain_output_16.png", "image_output_16.png", "text_plain_output_8.png", "image_output_6.png", "image_output_12.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png", "image_output_10.png", "text_plain_output_17.png", "text_plain_output_11.png", "text_plain_output_12.png", "image_output_15.png", "image_output_9.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import shutil from sklearn import preprocessing from sklearn.preprocessing import StandardScaler import statsmodels.api as sm from scipy.stats import skew from sklearn.preprocessing import OneHotEncoder sns.set() pd.set_option('display.max_columns', None) pth_train = '../input/house-prices-advanced-regression-techniques/train.csv' pth_test = '../input/house-prices-advanced-regression-techniques/test.csv' raw_train = pd.read_csv(pth_train) raw_test = pd.read_csv(pth_test) categorical_nominal_cols = ['MSSubClass', 'MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'Foundation', 'Heating', 'Electrical', 'Functional', 'GarageType', 'MiscFeature', 'SaleType', 'SaleCondition'] categorical_ordinal_cols = ['OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageYrBlt', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive', 'PoolQC', 'Fence'] categorical_bool_cols = ['CentralAir'] categorical_ordinal2encode = {} categorical_ordinal2encode['ExterQual'] = {'Po': 0, 'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4} categorical_ordinal2encode['ExterCond'] = categorical_ordinal2encode['ExterQual'].copy() categorical_ordinal2encode['BsmtQual'] = {'NA': 0, 'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5} categorical_ordinal2encode['BsmtCond'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['BsmtExposure'] = {'NA': 0, 'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} categorical_ordinal2encode['BsmtFinType1'] = {'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} categorical_ordinal2encode['BsmtFinType2'] = categorical_ordinal2encode['BsmtFinType1'].copy() categorical_ordinal2encode['HeatingQC'] = categorical_ordinal2encode['ExterQual'].copy() categorical_ordinal2encode['KitchenQual'] = categorical_ordinal2encode['HeatingQC'].copy() categorical_ordinal2encode['FireplaceQu'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['GarageFinish'] = {'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} categorical_ordinal2encode['GarageQual'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['GarageCond'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['PavedDrive'] = {'N': 0, 'P': 1, 'Y': 2} categorical_ordinal2encode['PoolQC'] = {'NA': 0, 'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4} categorical_ordinal2encode['Fence'] = {'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} total_col = 4 total_row = len(categorical_ordinal_cols)//total_col if len(categorical_ordinal_cols) % total_col > 0: total_row += 1 idx = 0 fig, axs = plt.subplots(total_row, total_col, figsize=(15,total_row * 4)) for i in range(total_row): for j in range(total_col): if idx < len(categorical_ordinal_cols): title = categorical_ordinal_cols[idx] if title in categorical_ordinal2encode: vc = raw_train[title].value_counts().reset_index() vc.rename(columns={'index':'code'}, inplace=True) vc['index'] = vc['code'].copy() vc['index'] = vc['index'].map(categorical_ordinal2encode[title]) vc.set_index('index', inplace=True) vc = vc.sort_index() sns.barplot(data=vc ,x='code', y=title, color='orange', ax = axs[i][j]) else: vc = raw_train[title].value_counts().sort_index() sns.barplot(x=vc.index, y=vc, color='orange', ax = axs[i][j]) axs[i][j].set_ylabel('frequency') axs[i][j].set_xlabel('level') axs[i][j].set_title(title) idx += 1 plt.tight_layout() plt.show() ordinal_columns = ['OverallQual', 'OverallCond', 'ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageFinish', 'GarageQual', 'PavedDrive', 'PoolQC', 'Fence'] ordinal_column_transforms = {} ordinal_column_fillna = {} ordinal_column_transforms['OverallQual'] = [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [0, 0, 0, 0, 1, 2, 3, 4, 4, 4]] ordinal_column_transforms['OverallCond'] = [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [0, 0, 0, 0, 1, 2, 3, 4, 4, 4]] ordinal_column_transforms['ExterQual'] = [['Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 0, 1, 1]] ordinal_column_transforms['ExterCond'] = [['Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 0, 1, 1]] ordinal_column_transforms['BsmtQual'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 1, 2, 2]] ordinal_column_transforms['BsmtCond'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 1, 2, 2]] ordinal_column_transforms['BsmtExposure'] = [['NA', 'No', 'Mn', 'Av', 'Gd'], [0, 0, 1, 2, 2]] ordinal_column_transforms['BsmtFinType1'] = [['NA', 'Unf', 'LwQ', 'Rec', 'BLQ', 'ALQ', 'GLQ'], [0, 0, 0, 1, 1, 2, 2]] ordinal_column_transforms['BsmtFinType2'] = [['NA', 'Unf', 'LwQ', 'Rec', 'BLQ', 'ALQ', 'GLQ'], [0, 0, 0, 1, 1, 2, 2]] ordinal_column_transforms['HeatingQC'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 0, 1, 2, 2]] ordinal_column_transforms['KitchenQual'] = [['Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 2, 2]] ordinal_column_transforms['FireplaceQu'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 1, 2, 2]] ordinal_column_transforms['GarageFinish'] = [['NA', 'Unf', 'RFn', 'Fin'], [0, 1, 2, 3]] ordinal_column_transforms['GarageQual'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 1, 2, 2]] ordinal_column_transforms['PavedDrive'] = [['N', 'P', 'Y'], [0, 0, 1]] ordinal_column_transforms['PoolQC'] = [['NA', 'Fa', 'TA', 'Gd', 'Ex'], [0, 1, 1, 2, 3]] ordinal_column_transforms['Fence'] = [['NA', 'MnWw', 'GdWo', 'MnPrv', 'GdPrv'], [0, 0, 1, 1, 2]] for title in ordinal_columns: print('raw_train',raw_train[title].isna().sum()) print('raw_test',raw_test[title].isna().sum()) vc = raw_train[title].value_counts().sort_index() raw_train[title].replace(ordinal_column_transforms[title][0],ordinal_column_transforms[title][1], inplace=True) raw_test[title].replace(ordinal_column_transforms[title][0],ordinal_column_transforms[title][1], inplace=True) raw_test[title].fillna(0, inplace=True) raw_test[title].fillna(0, inplace=True) vc_changed = raw_train[title].value_counts().sort_index() total_row, total_vc = raw_train.shape[0], vc.sum() gap = total_row - total_vc print('total_row :',total_row) print('total value count :',total_vc) print('total null value :',gap,'\n') fig, axs = plt.subplots(1,2,figsize=(15,3)) if title in categorical_ordinal2encode: vc = vc.reset_index() vc.rename(columns={'index':'code'}, inplace=True) vc['index'] = vc['code'].copy() vc['index'] = vc['index'].map(categorical_ordinal2encode[title]) vc.set_index('index', inplace=True) vc = vc.sort_index() sns.barplot(data=vc ,x='code', y=title, color='violet', ax = axs[0]) else: sns.barplot(x=vc.index, y=vc, color='violet', ax=axs[0]) axs[0].set_title('BEFORE',fontsize=12) axs[0].set_ylabel('frequency') axs[0].set_xlabel('level') sns.barplot(x=vc_changed.index, y=vc_changed, color='violet', ax=axs[1]) axs[1].set_title('AFTER',fontsize=12) axs[1].set_ylabel('frequency') axs[1].set_xlabel('level') fig.suptitle(title+' (BEFORE - AFTER)',fontsize=15) # plt.title(title+' (BEFORE - AFTER)', fontsize=15) plt.tight_layout() plt.show() raw_test['SalePrice'] = np.zeros(raw_test.shape[0], dtype=np.int64) raw_all = pd.concat((raw_train, raw_test), axis=0) check_null_cols = raw_all.isna().sum() check_null_cols_ver2 = check_null_cols[check_null_cols > 0] / raw_all.shape[0] * 100 check_null_cols_ver3 = check_null_cols_ver2[check_null_cols_ver2 > 50] raw_all_ver2 = raw_all.drop(columns=check_null_cols_ver3.index) print('Remove feature unnecessary') print('Before', raw_all.shape) print('After', raw_all_ver2.shape)
code
90105356/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import shutil from sklearn import preprocessing from sklearn.preprocessing import StandardScaler import statsmodels.api as sm from scipy.stats import skew from sklearn.preprocessing import OneHotEncoder sns.set() pd.set_option('display.max_columns', None) pth_train = '../input/house-prices-advanced-regression-techniques/train.csv' pth_test = '../input/house-prices-advanced-regression-techniques/test.csv' raw_train = pd.read_csv(pth_train) raw_test = pd.read_csv(pth_test) categorical_nominal_cols = ['MSSubClass', 'MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'Foundation', 'Heating', 'Electrical', 'Functional', 'GarageType', 'MiscFeature', 'SaleType', 'SaleCondition'] categorical_ordinal_cols = ['OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageYrBlt', 'GarageFinish', 'GarageQual', 'GarageCond', 'PavedDrive', 'PoolQC', 'Fence'] categorical_bool_cols = ['CentralAir'] categorical_ordinal2encode = {} categorical_ordinal2encode['ExterQual'] = {'Po': 0, 'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4} categorical_ordinal2encode['ExterCond'] = categorical_ordinal2encode['ExterQual'].copy() categorical_ordinal2encode['BsmtQual'] = {'NA': 0, 'Po': 1, 'Fa': 2, 'TA': 3, 'Gd': 4, 'Ex': 5} categorical_ordinal2encode['BsmtCond'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['BsmtExposure'] = {'NA': 0, 'No': 1, 'Mn': 2, 'Av': 3, 'Gd': 4} categorical_ordinal2encode['BsmtFinType1'] = {'NA': 0, 'Unf': 1, 'LwQ': 2, 'Rec': 3, 'BLQ': 4, 'ALQ': 5, 'GLQ': 6} categorical_ordinal2encode['BsmtFinType2'] = categorical_ordinal2encode['BsmtFinType1'].copy() categorical_ordinal2encode['HeatingQC'] = categorical_ordinal2encode['ExterQual'].copy() categorical_ordinal2encode['KitchenQual'] = categorical_ordinal2encode['HeatingQC'].copy() categorical_ordinal2encode['FireplaceQu'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['GarageFinish'] = {'NA': 0, 'Unf': 1, 'RFn': 2, 'Fin': 3} categorical_ordinal2encode['GarageQual'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['GarageCond'] = categorical_ordinal2encode['BsmtQual'].copy() categorical_ordinal2encode['PavedDrive'] = {'N': 0, 'P': 1, 'Y': 2} categorical_ordinal2encode['PoolQC'] = {'NA': 0, 'Fa': 1, 'TA': 2, 'Gd': 3, 'Ex': 4} categorical_ordinal2encode['Fence'] = {'NA': 0, 'MnWw': 1, 'GdWo': 2, 'MnPrv': 3, 'GdPrv': 4} total_col = 4 total_row = len(categorical_ordinal_cols)//total_col if len(categorical_ordinal_cols) % total_col > 0: total_row += 1 idx = 0 fig, axs = plt.subplots(total_row, total_col, figsize=(15,total_row * 4)) for i in range(total_row): for j in range(total_col): if idx < len(categorical_ordinal_cols): title = categorical_ordinal_cols[idx] if title in categorical_ordinal2encode: vc = raw_train[title].value_counts().reset_index() vc.rename(columns={'index':'code'}, inplace=True) vc['index'] = vc['code'].copy() vc['index'] = vc['index'].map(categorical_ordinal2encode[title]) vc.set_index('index', inplace=True) vc = vc.sort_index() sns.barplot(data=vc ,x='code', y=title, color='orange', ax = axs[i][j]) else: vc = raw_train[title].value_counts().sort_index() sns.barplot(x=vc.index, y=vc, color='orange', ax = axs[i][j]) axs[i][j].set_ylabel('frequency') axs[i][j].set_xlabel('level') axs[i][j].set_title(title) idx += 1 plt.tight_layout() plt.show() ordinal_columns = ['OverallQual', 'OverallCond', 'ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'HeatingQC', 'KitchenQual', 'FireplaceQu', 'GarageFinish', 'GarageQual', 'PavedDrive', 'PoolQC', 'Fence'] ordinal_column_transforms = {} ordinal_column_fillna = {} ordinal_column_transforms['OverallQual'] = [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [0, 0, 0, 0, 1, 2, 3, 4, 4, 4]] ordinal_column_transforms['OverallCond'] = [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [0, 0, 0, 0, 1, 2, 3, 4, 4, 4]] ordinal_column_transforms['ExterQual'] = [['Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 0, 1, 1]] ordinal_column_transforms['ExterCond'] = [['Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 0, 1, 1]] ordinal_column_transforms['BsmtQual'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 1, 2, 2]] ordinal_column_transforms['BsmtCond'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 1, 2, 2]] ordinal_column_transforms['BsmtExposure'] = [['NA', 'No', 'Mn', 'Av', 'Gd'], [0, 0, 1, 2, 2]] ordinal_column_transforms['BsmtFinType1'] = [['NA', 'Unf', 'LwQ', 'Rec', 'BLQ', 'ALQ', 'GLQ'], [0, 0, 0, 1, 1, 2, 2]] ordinal_column_transforms['BsmtFinType2'] = [['NA', 'Unf', 'LwQ', 'Rec', 'BLQ', 'ALQ', 'GLQ'], [0, 0, 0, 1, 1, 2, 2]] ordinal_column_transforms['HeatingQC'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 0, 1, 2, 2]] ordinal_column_transforms['KitchenQual'] = [['Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 2, 2]] ordinal_column_transforms['FireplaceQu'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 1, 2, 2]] ordinal_column_transforms['GarageFinish'] = [['NA', 'Unf', 'RFn', 'Fin'], [0, 1, 2, 3]] ordinal_column_transforms['GarageQual'] = [['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'], [0, 0, 1, 1, 2, 2]] ordinal_column_transforms['PavedDrive'] = [['N', 'P', 'Y'], [0, 0, 1]] ordinal_column_transforms['PoolQC'] = [['NA', 'Fa', 'TA', 'Gd', 'Ex'], [0, 1, 1, 2, 3]] ordinal_column_transforms['Fence'] = [['NA', 'MnWw', 'GdWo', 'MnPrv', 'GdPrv'], [0, 0, 1, 1, 2]] for title in ordinal_columns: print('raw_train',raw_train[title].isna().sum()) print('raw_test',raw_test[title].isna().sum()) vc = raw_train[title].value_counts().sort_index() raw_train[title].replace(ordinal_column_transforms[title][0],ordinal_column_transforms[title][1], inplace=True) raw_test[title].replace(ordinal_column_transforms[title][0],ordinal_column_transforms[title][1], inplace=True) raw_test[title].fillna(0, inplace=True) raw_test[title].fillna(0, inplace=True) vc_changed = raw_train[title].value_counts().sort_index() total_row, total_vc = raw_train.shape[0], vc.sum() gap = total_row - total_vc print('total_row :',total_row) print('total value count :',total_vc) print('total null value :',gap,'\n') fig, axs = plt.subplots(1,2,figsize=(15,3)) if title in categorical_ordinal2encode: vc = vc.reset_index() vc.rename(columns={'index':'code'}, inplace=True) vc['index'] = vc['code'].copy() vc['index'] = vc['index'].map(categorical_ordinal2encode[title]) vc.set_index('index', inplace=True) vc = vc.sort_index() sns.barplot(data=vc ,x='code', y=title, color='violet', ax = axs[0]) else: sns.barplot(x=vc.index, y=vc, color='violet', ax=axs[0]) axs[0].set_title('BEFORE',fontsize=12) axs[0].set_ylabel('frequency') axs[0].set_xlabel('level') sns.barplot(x=vc_changed.index, y=vc_changed, color='violet', ax=axs[1]) axs[1].set_title('AFTER',fontsize=12) axs[1].set_ylabel('frequency') axs[1].set_xlabel('level') fig.suptitle(title+' (BEFORE - AFTER)',fontsize=15) # plt.title(title+' (BEFORE - AFTER)', fontsize=15) plt.tight_layout() plt.show() raw_test['SalePrice'] = np.zeros(raw_test.shape[0], dtype=np.int64) raw_all = pd.concat((raw_train, raw_test), axis=0) check_null_cols = raw_all.isna().sum() check_null_cols_ver2 = check_null_cols[check_null_cols > 0] / raw_all.shape[0] * 100 check_null_cols_ver3 = check_null_cols_ver2[check_null_cols_ver2 > 50] raw_all_ver2 = raw_all.drop(columns=check_null_cols_ver3.index) print('Check empty cell') check_null_cols = raw_all_ver2.isna().sum() check_null_cols_ver2 = check_null_cols[check_null_cols > 0] / raw_all_ver2.shape[0] * 100 round(check_null_cols_ver2, 2)
code
128016851/cell_25
[ "image_output_1.png" ]
from sklearn.metrics import make_scorer,mean_squared_error, r2_score, mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns def summary(df): result = pd.DataFrame(df.dtypes, columns=['data type']) result['#duplicate'] = df.duplicated().sum() result['#missing'] = df.isnull().sum().values result['#unique'] = df.nunique().values return result train_df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') train_df.drop(['id'], axis=1, inplace=True) test_df.drop(['id'], axis=1, inplace=True) train_df.describe().T # explore correlation of features corr = train_df.corr() mask = np.triu(corr) ax, fig = plt.subplots(figsize = (13,13)) sns.heatmap(corr, mask = mask, annot = True, fmt=".3f") fig, axes = plt.subplots(6, 3, figsize = (13, 13)) fig.suptitle('Histogram for all numerical variables in the dataset') for i, col in enumerate(train_df.columns): ax = axes[i//3, i%3] sns.histplot(x = col, data = train_df, kde = True, ax = ax) ax.axvline(x=train_df[col].mean(), c='r', ls='-', lw=1) plt.xticks(rotation=90) X = train_df.drop(['yield'], axis=1) y = train_df['yield'] X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=14) def adj_r2_score(predictors, targets, predictions): r2 = r2_score(targets, predictions) n = predictors.shape[0] k = predictors.shape[1] return 1 - (1 - r2) * (n - 1) / (n - k - 1) def mape_score(targets, predictions): return np.mean(np.abs(targets - predictions) / targets) * 100 def model_performance_regression(model, predictors, target): """ Function to compute different metrics to check regression model performance model: regressor predictors: independent variables target: dependent variable """ pred = model.predict(predictors) r2 = r2_score(target, pred) adjr2 = adj_r2_score(predictors, target, pred) rmse = np.sqrt(mean_squared_error(target, pred)) mae = mean_absolute_error(target, pred) mape = mape_score(target, pred) df_perf = pd.DataFrame({'RMSE': rmse, 'MAE': mae, 'R-squared': r2, 'Adj. R-squared': adjr2, 'MAPE': mape}, index=[0]) return df_perf dt_regressor = DecisionTreeRegressor(random_state=1) dt_regressor.fit(X_train, y_train) dt_regressor_perf_test = model_performance_regression(dt_regressor, X_val, y_val) dt_regressor_perf_test
code
128016851/cell_30
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor,BaggingRegressor from sklearn.metrics import make_scorer,mean_squared_error, r2_score, mean_absolute_error from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns def summary(df): result = pd.DataFrame(df.dtypes, columns=['data type']) result['#duplicate'] = df.duplicated().sum() result['#missing'] = df.isnull().sum().values result['#unique'] = df.nunique().values return result train_df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') train_df.drop(['id'], axis=1, inplace=True) test_df.drop(['id'], axis=1, inplace=True) train_df.describe().T # explore correlation of features corr = train_df.corr() mask = np.triu(corr) ax, fig = plt.subplots(figsize = (13,13)) sns.heatmap(corr, mask = mask, annot = True, fmt=".3f") fig, axes = plt.subplots(6, 3, figsize = (13, 13)) fig.suptitle('Histogram for all numerical variables in the dataset') for i, col in enumerate(train_df.columns): ax = axes[i//3, i%3] sns.histplot(x = col, data = train_df, kde = True, ax = ax) ax.axvline(x=train_df[col].mean(), c='r', ls='-', lw=1) plt.xticks(rotation=90) X = train_df.drop(['yield'], axis=1) y = train_df['yield'] X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=14) def adj_r2_score(predictors, targets, predictions): r2 = r2_score(targets, predictions) n = predictors.shape[0] k = predictors.shape[1] return 1 - (1 - r2) * (n - 1) / (n - k - 1) def mape_score(targets, predictions): return np.mean(np.abs(targets - predictions) / targets) * 100 def model_performance_regression(model, predictors, target): """ Function to compute different metrics to check regression model performance model: regressor predictors: independent variables target: dependent variable """ pred = model.predict(predictors) r2 = r2_score(target, pred) adjr2 = adj_r2_score(predictors, target, pred) rmse = np.sqrt(mean_squared_error(target, pred)) mae = mean_absolute_error(target, pred) mape = mape_score(target, pred) df_perf = pd.DataFrame({'RMSE': rmse, 'MAE': mae, 'R-squared': r2, 'Adj. R-squared': adjr2, 'MAPE': mape}, index=[0]) return df_perf dtree_tuned = DecisionTreeRegressor(random_state=1) parameters = {'max_depth': np.arange(2, 9), 'criterion': ['squared_error', 'friedman_mse'], 'min_samples_leaf': [1, 3, 5, 7], 'max_leaf_nodes': [2, 5, 7] + [None]} scorer = make_scorer(mean_absolute_error, greater_is_better=False) grid_obj = GridSearchCV(dtree_tuned, parameters, scoring=scorer, cv=5) grid_obj = grid_obj.fit(X_train, y_train) dtree_tuned_regressor = grid_obj.best_estimator_ dtree_tuned_regressor.fit(X_train, y_train) features = list(X_train.columns) importances = dtree_tuned_regressor.feature_importances_ indices = np.argsort(importances) plt.barh(range(len(indices)), importances[indices], color='violet', align='center') plt.yticks(range(len(indices)), [features[i] for i in indices]) bagging_estimator = BaggingRegressor(random_state=1) bagging_estimator.fit(X_train, y_train) bagging_estimator_perf_test = model_performance_regression(bagging_estimator, X_val, y_val) bagging_estimator_perf_test
code
128016851/cell_20
[ "image_output_1.png" ]
from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns def summary(df): result = pd.DataFrame(df.dtypes, columns=['data type']) result['#duplicate'] = df.duplicated().sum() result['#missing'] = df.isnull().sum().values result['#unique'] = df.nunique().values return result train_df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') train_df.drop(['id'], axis=1, inplace=True) test_df.drop(['id'], axis=1, inplace=True) train_df.describe().T # explore correlation of features corr = train_df.corr() mask = np.triu(corr) ax, fig = plt.subplots(figsize = (13,13)) sns.heatmap(corr, mask = mask, annot = True, fmt=".3f") fig, axes = plt.subplots(6, 3, figsize = (13, 13)) fig.suptitle('Histogram for all numerical variables in the dataset') for i, col in enumerate(train_df.columns): ax = axes[i//3, i%3] sns.histplot(x = col, data = train_df, kde = True, ax = ax) ax.axvline(x=train_df[col].mean(), c='r', ls='-', lw=1) plt.xticks(rotation=90) X = train_df.drop(['yield'], axis=1) y = train_df['yield'] X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=14) print(X_train.shape, X_val.shape, y_train.shape, y_val.shape)
code
128016851/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd def summary(df): result = pd.DataFrame(df.dtypes, columns=['data type']) result['#duplicate'] = df.duplicated().sum() result['#missing'] = df.isnull().sum().values result['#unique'] = df.nunique().values return result train_df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') summary(train_df)
code
128016851/cell_26
[ "text_plain_output_1.png" ]
from sklearn.metrics import make_scorer,mean_squared_error, r2_score, mean_absolute_error from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns def summary(df): result = pd.DataFrame(df.dtypes, columns=['data type']) result['#duplicate'] = df.duplicated().sum() result['#missing'] = df.isnull().sum().values result['#unique'] = df.nunique().values return result train_df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') train_df.drop(['id'], axis=1, inplace=True) test_df.drop(['id'], axis=1, inplace=True) train_df.describe().T # explore correlation of features corr = train_df.corr() mask = np.triu(corr) ax, fig = plt.subplots(figsize = (13,13)) sns.heatmap(corr, mask = mask, annot = True, fmt=".3f") fig, axes = plt.subplots(6, 3, figsize = (13, 13)) fig.suptitle('Histogram for all numerical variables in the dataset') for i, col in enumerate(train_df.columns): ax = axes[i//3, i%3] sns.histplot(x = col, data = train_df, kde = True, ax = ax) ax.axvline(x=train_df[col].mean(), c='r', ls='-', lw=1) plt.xticks(rotation=90) X = train_df.drop(['yield'], axis=1) y = train_df['yield'] X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=14) def adj_r2_score(predictors, targets, predictions): r2 = r2_score(targets, predictions) n = predictors.shape[0] k = predictors.shape[1] return 1 - (1 - r2) * (n - 1) / (n - k - 1) def mape_score(targets, predictions): return np.mean(np.abs(targets - predictions) / targets) * 100 def model_performance_regression(model, predictors, target): """ Function to compute different metrics to check regression model performance model: regressor predictors: independent variables target: dependent variable """ pred = model.predict(predictors) r2 = r2_score(target, pred) adjr2 = adj_r2_score(predictors, target, pred) rmse = np.sqrt(mean_squared_error(target, pred)) mae = mean_absolute_error(target, pred) mape = mape_score(target, pred) df_perf = pd.DataFrame({'RMSE': rmse, 'MAE': mae, 'R-squared': r2, 'Adj. R-squared': adjr2, 'MAPE': mape}, index=[0]) return df_perf dtree_tuned = DecisionTreeRegressor(random_state=1) parameters = {'max_depth': np.arange(2, 9), 'criterion': ['squared_error', 'friedman_mse'], 'min_samples_leaf': [1, 3, 5, 7], 'max_leaf_nodes': [2, 5, 7] + [None]} scorer = make_scorer(mean_absolute_error, greater_is_better=False) grid_obj = GridSearchCV(dtree_tuned, parameters, scoring=scorer, cv=5) grid_obj = grid_obj.fit(X_train, y_train) dtree_tuned_regressor = grid_obj.best_estimator_ dtree_tuned_regressor.fit(X_train, y_train) print('Best parameters are {} with CV score={}:'.format(grid_obj.best_params_, grid_obj.best_score_))
code
128016851/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns
code
128016851/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd def summary(df): result = pd.DataFrame(df.dtypes, columns=['data type']) result['#duplicate'] = df.duplicated().sum() result['#missing'] = df.isnull().sum().values result['#unique'] = df.nunique().values return result train_df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') train_df.drop(['id'], axis=1, inplace=True) test_df.drop(['id'], axis=1, inplace=True) train_df.describe().T
code
128016851/cell_28
[ "text_plain_output_1.png" ]
from sklearn.metrics import make_scorer,mean_squared_error, r2_score, mean_absolute_error from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns def summary(df): result = pd.DataFrame(df.dtypes, columns=['data type']) result['#duplicate'] = df.duplicated().sum() result['#missing'] = df.isnull().sum().values result['#unique'] = df.nunique().values return result train_df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') train_df.drop(['id'], axis=1, inplace=True) test_df.drop(['id'], axis=1, inplace=True) train_df.describe().T # explore correlation of features corr = train_df.corr() mask = np.triu(corr) ax, fig = plt.subplots(figsize = (13,13)) sns.heatmap(corr, mask = mask, annot = True, fmt=".3f") fig, axes = plt.subplots(6, 3, figsize = (13, 13)) fig.suptitle('Histogram for all numerical variables in the dataset') for i, col in enumerate(train_df.columns): ax = axes[i//3, i%3] sns.histplot(x = col, data = train_df, kde = True, ax = ax) ax.axvline(x=train_df[col].mean(), c='r', ls='-', lw=1) plt.xticks(rotation=90) X = train_df.drop(['yield'], axis=1) y = train_df['yield'] X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=14) def adj_r2_score(predictors, targets, predictions): r2 = r2_score(targets, predictions) n = predictors.shape[0] k = predictors.shape[1] return 1 - (1 - r2) * (n - 1) / (n - k - 1) def mape_score(targets, predictions): return np.mean(np.abs(targets - predictions) / targets) * 100 def model_performance_regression(model, predictors, target): """ Function to compute different metrics to check regression model performance model: regressor predictors: independent variables target: dependent variable """ pred = model.predict(predictors) r2 = r2_score(target, pred) adjr2 = adj_r2_score(predictors, target, pred) rmse = np.sqrt(mean_squared_error(target, pred)) mae = mean_absolute_error(target, pred) mape = mape_score(target, pred) df_perf = pd.DataFrame({'RMSE': rmse, 'MAE': mae, 'R-squared': r2, 'Adj. R-squared': adjr2, 'MAPE': mape}, index=[0]) return df_perf dtree_tuned = DecisionTreeRegressor(random_state=1) parameters = {'max_depth': np.arange(2, 9), 'criterion': ['squared_error', 'friedman_mse'], 'min_samples_leaf': [1, 3, 5, 7], 'max_leaf_nodes': [2, 5, 7] + [None]} scorer = make_scorer(mean_absolute_error, greater_is_better=False) grid_obj = GridSearchCV(dtree_tuned, parameters, scoring=scorer, cv=5) grid_obj = grid_obj.fit(X_train, y_train) dtree_tuned_regressor = grid_obj.best_estimator_ dtree_tuned_regressor.fit(X_train, y_train) features = list(X_train.columns) importances = dtree_tuned_regressor.feature_importances_ indices = np.argsort(importances) plt.figure(figsize=(5, 5)) plt.title('Feature Importances') plt.barh(range(len(indices)), importances[indices], color='violet', align='center') plt.yticks(range(len(indices)), [features[i] for i in indices]) plt.xlabel('Relative Importance') plt.show()
code
128016851/cell_8
[ "text_html_output_1.png" ]
import pandas as pd def summary(df): result = pd.DataFrame(df.dtypes, columns=['data type']) result['#duplicate'] = df.duplicated().sum() result['#missing'] = df.isnull().sum().values result['#unique'] = df.nunique().values return result train_df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') summary(test_df)
code
128016851/cell_15
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns def summary(df): result = pd.DataFrame(df.dtypes, columns=['data type']) result['#duplicate'] = df.duplicated().sum() result['#missing'] = df.isnull().sum().values result['#unique'] = df.nunique().values return result train_df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') train_df.drop(['id'], axis=1, inplace=True) test_df.drop(['id'], axis=1, inplace=True) train_df.describe().T # explore correlation of features corr = train_df.corr() mask = np.triu(corr) ax, fig = plt.subplots(figsize = (13,13)) sns.heatmap(corr, mask = mask, annot = True, fmt=".3f") fig, axes = plt.subplots(6, 3, figsize=(13, 13)) fig.suptitle('Histogram for all numerical variables in the dataset') for i, col in enumerate(train_df.columns): ax = axes[i // 3, i % 3] sns.histplot(x=col, data=train_df, kde=True, ax=ax) ax.axvline(x=train_df[col].mean(), c='r', ls='-', lw=1)
code
128016851/cell_16
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns def summary(df): result = pd.DataFrame(df.dtypes, columns=['data type']) result['#duplicate'] = df.duplicated().sum() result['#missing'] = df.isnull().sum().values result['#unique'] = df.nunique().values return result train_df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') train_df.drop(['id'], axis=1, inplace=True) test_df.drop(['id'], axis=1, inplace=True) train_df.describe().T # explore correlation of features corr = train_df.corr() mask = np.triu(corr) ax, fig = plt.subplots(figsize = (13,13)) sns.heatmap(corr, mask = mask, annot = True, fmt=".3f") fig, axes = plt.subplots(6, 3, figsize = (13, 13)) fig.suptitle('Histogram for all numerical variables in the dataset') for i, col in enumerate(train_df.columns): ax = axes[i//3, i%3] sns.histplot(x = col, data = train_df, kde = True, ax = ax) ax.axvline(x=train_df[col].mean(), c='r', ls='-', lw=1) plt.figure(figsize=(15, 8)) sns.boxplot(x='variable', y='value', data=pd.melt(train_df.drop(['yield'], axis=1))).set_title('Boxplot of each feature', size=15) plt.xticks(rotation=90) plt.show()
code
128016851/cell_31
[ "image_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor,BaggingRegressor from sklearn.metrics import make_scorer,mean_squared_error, r2_score, mean_absolute_error from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns def summary(df): result = pd.DataFrame(df.dtypes, columns=['data type']) result['#duplicate'] = df.duplicated().sum() result['#missing'] = df.isnull().sum().values result['#unique'] = df.nunique().values return result train_df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') train_df.drop(['id'], axis=1, inplace=True) test_df.drop(['id'], axis=1, inplace=True) train_df.describe().T # explore correlation of features corr = train_df.corr() mask = np.triu(corr) ax, fig = plt.subplots(figsize = (13,13)) sns.heatmap(corr, mask = mask, annot = True, fmt=".3f") fig, axes = plt.subplots(6, 3, figsize = (13, 13)) fig.suptitle('Histogram for all numerical variables in the dataset') for i, col in enumerate(train_df.columns): ax = axes[i//3, i%3] sns.histplot(x = col, data = train_df, kde = True, ax = ax) ax.axvline(x=train_df[col].mean(), c='r', ls='-', lw=1) plt.xticks(rotation=90) X = train_df.drop(['yield'], axis=1) y = train_df['yield'] X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=14) def adj_r2_score(predictors, targets, predictions): r2 = r2_score(targets, predictions) n = predictors.shape[0] k = predictors.shape[1] return 1 - (1 - r2) * (n - 1) / (n - k - 1) def mape_score(targets, predictions): return np.mean(np.abs(targets - predictions) / targets) * 100 def model_performance_regression(model, predictors, target): """ Function to compute different metrics to check regression model performance model: regressor predictors: independent variables target: dependent variable """ pred = model.predict(predictors) r2 = r2_score(target, pred) adjr2 = adj_r2_score(predictors, target, pred) rmse = np.sqrt(mean_squared_error(target, pred)) mae = mean_absolute_error(target, pred) mape = mape_score(target, pred) df_perf = pd.DataFrame({'RMSE': rmse, 'MAE': mae, 'R-squared': r2, 'Adj. R-squared': adjr2, 'MAPE': mape}, index=[0]) return df_perf dtree_tuned = DecisionTreeRegressor(random_state=1) parameters = {'max_depth': np.arange(2, 9), 'criterion': ['squared_error', 'friedman_mse'], 'min_samples_leaf': [1, 3, 5, 7], 'max_leaf_nodes': [2, 5, 7] + [None]} scorer = make_scorer(mean_absolute_error, greater_is_better=False) grid_obj = GridSearchCV(dtree_tuned, parameters, scoring=scorer, cv=5) grid_obj = grid_obj.fit(X_train, y_train) dtree_tuned_regressor = grid_obj.best_estimator_ dtree_tuned_regressor.fit(X_train, y_train) features = list(X_train.columns) importances = dtree_tuned_regressor.feature_importances_ indices = np.argsort(importances) plt.barh(range(len(indices)), importances[indices], color='violet', align='center') plt.yticks(range(len(indices)), [features[i] for i in indices]) bagging_tuned = BaggingRegressor(random_state=1) parameters = {'n_estimators': [10, 15, 20, 50, 100, 200], 'max_samples': [0.8, 1], 'max_features': [0.8, 1]} scorer = make_scorer(mean_absolute_error, greater_is_better=False) grid_obj = GridSearchCV(bagging_tuned, parameters, scoring=scorer, cv=5) grid_obj = grid_obj.fit(X_train, y_train) bagging_tuned_regressor = grid_obj.best_estimator_ bagging_tuned_regressor.fit(X_train, y_train) print('Best parameters are {} with CV score={}:'.format(grid_obj.best_params_, grid_obj.best_score_))
code
128016851/cell_14
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns def summary(df): result = pd.DataFrame(df.dtypes, columns=['data type']) result['#duplicate'] = df.duplicated().sum() result['#missing'] = df.isnull().sum().values result['#unique'] = df.nunique().values return result train_df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') train_df.drop(['id'], axis=1, inplace=True) test_df.drop(['id'], axis=1, inplace=True) train_df.describe().T corr = train_df.corr() mask = np.triu(corr) ax, fig = plt.subplots(figsize=(13, 13)) sns.heatmap(corr, mask=mask, annot=True, fmt='.3f')
code
128016851/cell_27
[ "text_html_output_1.png" ]
from sklearn.metrics import make_scorer,mean_squared_error, r2_score, mean_absolute_error from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns def summary(df): result = pd.DataFrame(df.dtypes, columns=['data type']) result['#duplicate'] = df.duplicated().sum() result['#missing'] = df.isnull().sum().values result['#unique'] = df.nunique().values return result train_df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') train_df.drop(['id'], axis=1, inplace=True) test_df.drop(['id'], axis=1, inplace=True) train_df.describe().T # explore correlation of features corr = train_df.corr() mask = np.triu(corr) ax, fig = plt.subplots(figsize = (13,13)) sns.heatmap(corr, mask = mask, annot = True, fmt=".3f") fig, axes = plt.subplots(6, 3, figsize = (13, 13)) fig.suptitle('Histogram for all numerical variables in the dataset') for i, col in enumerate(train_df.columns): ax = axes[i//3, i%3] sns.histplot(x = col, data = train_df, kde = True, ax = ax) ax.axvline(x=train_df[col].mean(), c='r', ls='-', lw=1) plt.xticks(rotation=90) X = train_df.drop(['yield'], axis=1) y = train_df['yield'] X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=14) def adj_r2_score(predictors, targets, predictions): r2 = r2_score(targets, predictions) n = predictors.shape[0] k = predictors.shape[1] return 1 - (1 - r2) * (n - 1) / (n - k - 1) def mape_score(targets, predictions): return np.mean(np.abs(targets - predictions) / targets) * 100 def model_performance_regression(model, predictors, target): """ Function to compute different metrics to check regression model performance model: regressor predictors: independent variables target: dependent variable """ pred = model.predict(predictors) r2 = r2_score(target, pred) adjr2 = adj_r2_score(predictors, target, pred) rmse = np.sqrt(mean_squared_error(target, pred)) mae = mean_absolute_error(target, pred) mape = mape_score(target, pred) df_perf = pd.DataFrame({'RMSE': rmse, 'MAE': mae, 'R-squared': r2, 'Adj. R-squared': adjr2, 'MAPE': mape}, index=[0]) return df_perf dtree_tuned = DecisionTreeRegressor(random_state=1) parameters = {'max_depth': np.arange(2, 9), 'criterion': ['squared_error', 'friedman_mse'], 'min_samples_leaf': [1, 3, 5, 7], 'max_leaf_nodes': [2, 5, 7] + [None]} scorer = make_scorer(mean_absolute_error, greater_is_better=False) grid_obj = GridSearchCV(dtree_tuned, parameters, scoring=scorer, cv=5) grid_obj = grid_obj.fit(X_train, y_train) dtree_tuned_regressor = grid_obj.best_estimator_ dtree_tuned_regressor.fit(X_train, y_train) dtree_tuned_regressor_perf_test = model_performance_regression(dtree_tuned_regressor, X_val, y_val) dtree_tuned_regressor_perf_test
code
128016851/cell_12
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd def summary(df): result = pd.DataFrame(df.dtypes, columns=['data type']) result['#duplicate'] = df.duplicated().sum() result['#missing'] = df.isnull().sum().values result['#unique'] = df.nunique().values return result train_df = pd.read_csv('/kaggle/input/playground-series-s3e14/train.csv') test_df = pd.read_csv('/kaggle/input/playground-series-s3e14/test.csv') train_df.drop(['id'], axis=1, inplace=True) test_df.drop(['id'], axis=1, inplace=True) test_df.describe().T
code
74050861/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') train_data.shape train_data.isnull().any() train_data.apply(lambda x: x.isnull().sum() / len(x) * 100) train_data['Cabin'] = train_data.Cabin.fillna(train_data['Cabin'].mode()[1]) train_data['Age'] = train_data['Age'].fillna(train_data['Age'].mean()) train_data['Embarked'].value_counts()
code
74050861/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') train_data.shape train_data.isnull().any()
code
74050861/cell_30
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') test_data.columns
code
74050861/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') train_data.shape train_data.isnull().any() train_data.apply(lambda x: x.isnull().sum() / len(x) * 100) train_data['Cabin'] = train_data.Cabin.fillna(train_data['Cabin'].mode()[1]) train_data['Age'] = train_data['Age'].fillna(train_data['Age'].mean()) train_data.columns train_data.groupby('Cabin')['Survived'].sum().sort_values(ascending=False) train_data.groupby('Survived').mean() train_data.dtypes
code
74050861/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') train_data.shape
code
74050861/cell_29
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') train_data.shape train_data.isnull().any() train_data.apply(lambda x: x.isnull().sum() / len(x) * 100) train_data['Cabin'] = train_data.Cabin.fillna(train_data['Cabin'].mode()[1]) train_data['Age'] = train_data['Age'].fillna(train_data['Age'].mean()) train_data.columns train_data.groupby('Cabin')['Survived'].sum().sort_values(ascending=False) train_data.groupby('Survived').mean() train_data.dtypes x = train_data.drop(['Name', 'Cabin', 'Ticket', 'Survived'], axis=1) y = train_data[['Survived']] x = pd.get_dummies(x) rm_model = RandomForestClassifier(n_estimators=10) rm_model.fit(x, y) y_pred = rm_model.predict(x) print(classification_report(y, y_pred))
code
74050861/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') train_data.shape train_data.isnull().any() train_data.apply(lambda x: x.isnull().sum() / len(x) * 100) train_data['Cabin'].value_counts()
code
74050861/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') train_data.shape train_data.isnull().any() train_data.apply(lambda x: x.isnull().sum() / len(x) * 100) train_data['Cabin'] = train_data.Cabin.fillna(train_data['Cabin'].mode()[1]) train_data['Age'] = train_data['Age'].fillna(train_data['Age'].mean()) train_data.columns train_data.groupby('Cabin')['Survived'].sum().sort_values(ascending=False) train_data.groupby('Survived').mean()
code
74050861/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
74050861/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') train_data.shape train_data.info()
code
74050861/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') train_data.shape train_data.isnull().any() train_data.apply(lambda x: x.isnull().sum() / len(x) * 100) train_data['Cabin'] = train_data.Cabin.fillna(train_data['Cabin'].mode()[1]) train_data['Age'] = train_data['Age'].fillna(train_data['Age'].mean()) train_data.columns train_data.groupby('Cabin')['Survived'].sum().sort_values(ascending=False)
code
74050861/cell_32
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') test_data.columns test_data = test_data.drop(['Cabin', 'Name', 'Ticket'], axis=1) test_data.isnull().sum()
code
74050861/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') train_data.shape train_data.describe()
code
74050861/cell_15
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') train_data.shape train_data.isnull().any() train_data.apply(lambda x: x.isnull().sum() / len(x) * 100) train_data['Cabin'] = train_data.Cabin.fillna(train_data['Cabin'].mode()[1]) train_data['Age'] = train_data['Age'].fillna(train_data['Age'].mean()) train_data.columns
code
74050861/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') train_data.shape train_data.isnull().any() train_data.apply(lambda x: x.isnull().sum() / len(x) * 100) train_data['Cabin'] = train_data.Cabin.fillna(train_data['Cabin'].mode()[1]) train_data['Age'] = train_data['Age'].fillna(train_data['Age'].mean()) train_data.columns plt.plot(figsize=(20, 16)) sns.heatmap(train_data.corr(), annot=True)
code
74050861/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') train_data.shape train_data.isnull().any() train_data.apply(lambda x: x.isnull().sum() / len(x) * 100) train_data['Cabin'] = train_data.Cabin.fillna(train_data['Cabin'].mode()[1]) train_data['Age'] = train_data['Age'].fillna(train_data['Age'].mean()) train_data.columns sns.countplot(x='Survived', hue='Sex', data=train_data)
code
74050861/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') train_data.shape train_data.isnull().any() train_data.apply(lambda x: x.isnull().sum() / len(x) * 100) train_data['Cabin'] = train_data.Cabin.fillna(train_data['Cabin'].mode()[1]) train_data['Age'] = train_data['Age'].fillna(train_data['Age'].mean()) train_data.columns train_data.groupby('Cabin')['Survived'].sum().sort_values(ascending=False) train_data.groupby('Survived').mean() train_data.dtypes x = train_data.drop(['Name', 'Cabin', 'Ticket', 'Survived'], axis=1) y = train_data[['Survived']] x.head()
code
74050861/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') train_data.shape train_data.isnull().any() train_data.apply(lambda x: x.isnull().sum() / len(x) * 100)
code
74050861/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') train_data.shape train_data.isnull().any() train_data.apply(lambda x: x.isnull().sum() / len(x) * 100) train_data['Cabin'] = train_data.Cabin.fillna(train_data['Cabin'].mode()[1]) train_data['Age'] = train_data['Age'].fillna(train_data['Age'].mean()) train_data.columns train_data.groupby('Cabin')['Survived'].sum().sort_values(ascending=False) train_data.groupby('Survived').mean() train_data.dtypes x = train_data.drop(['Name', 'Cabin', 'Ticket', 'Survived'], axis=1) y = train_data[['Survived']] x = pd.get_dummies(x) rm_model = RandomForestClassifier(n_estimators=10) rm_model.fit(x, y)
code
74050861/cell_5
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train_data = pd.read_csv('../input/titanic/train.csv') test_data = pd.read_csv('../input/titanic/test.csv') train_data.head(10)
code
73067436/cell_20
[ "text_plain_output_1.png" ]
from circlify import circlify, Circle from warnings import filterwarnings import matplotlib.lines as lines import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.lines as lines import matplotlib.gridspec as gridspec import seaborn as sns from warnings import filterwarnings filterwarnings('ignore') plt.rcParams['font.family'] = 'monospace' df = pd.read_csv('../input/predict-test-scores-of-students/test_scores.csv') cmap0 = ['#68595b', '#7098af', '#6f636c', '#907c7b'] cmap1 = ['#484146', '#8da0b3', '#796d72', '#9fa9ba'] cmap2 = ['#545457', '#a79698', '#5284a2', '#bbbcc4'] bg_color = '#fbfbfb' txt_color = '#5c5c5c' # check for missing values fig, ax = plt.subplots(tight_layout=True, figsize=(12,6)) fig.patch.set_facecolor(bg_color) ax.set_facecolor(bg_color) mv = df.isna() ax = sns.heatmap(data=mv, cmap=sns.color_palette(cmap0), cbar=False, ax=ax, ) ax.set_ylabel('') ax.set_yticks([]) ax.set_xticklabels(labels=mv.columns,rotation=45) ax.tick_params(length=0) fig.text( s=':Missing Values', x=0, y=1.1, fontsize=17, fontweight='bold', color=txt_color, va='top', ha='left' ) fig.text( s=''' we can't see any ... ''', x=0, y=1.075, fontsize=11, fontstyle='italic', color=txt_color, va='top', ha='left' ) plt.show() def despine_ax(ax, spines=['top', 'left', 'right', 'bottom']): for spine in spines: ax.spines[spine].set_visible(False) def get_line(x=[0, 0], y=[0, 0], alpha=0.5, lw=1): return lines.Line2D(xdata=x, ydata=y, lw=lw, alpha=alpha, color='#aeaeae', transform=fig.transFigure, figure=fig) fig, (ax0, ax1) = plt.subplots(2, 1, tight_layout=True, sharex=True, figsize=(12,6)) fig.patch.set_facecolor(bg_color) mean = df['posttest'].mean() median = df['posttest'].median() ax0.boxplot( data=df, x='posttest', vert=False, patch_artist=True, boxprops=dict(facecolor=cmap0[1], lw=0, alpha=0.75), whiskerprops=dict(color='gray', lw=1, ls='--'), capprops=dict(color='gray', lw=1, ls='--'), medianprops=dict(color='#fff', lw=0), flierprops=dict(markerfacecolor=cmap0[0],alpha=0.75), zorder=0 ) ax1 = sns.kdeplot( data=df, x='posttest', shade=True, color=cmap0[0], edgecolor='#000', lw=1, zorder=0, alpha=0.8, ax=ax1 ) ax0.axvline(x=mean, ymin=0.4, ymax=0.6, color=bg_color, ls=':', zorder=1, label='mean') ax1.axvline(x=mean, ymin=0, ymax=0.9, color=bg_color, ls=':', zorder=1) ax0.axvline(x=median, ymin=0.4, ymax=0.6, color=bg_color, ls='--', zorder=1) ax1.axvline(x=median, ymin=0, ymax=0.9, color=bg_color, ls='--', zorder=1) ax0.axis('off') ax0.set_facecolor(bg_color) ax1.set_ylabel('') ax1.set_xlabel('') ax1.set_yticks([]) ax1.tick_params(length=0) ax1.set_facecolor(bg_color) despine_ax(ax1, ['top','left','right']) fig.text( s=':Posttest - Distribution', x=0, y=1.05, fontsize=17, fontweight='bold', color=txt_color, va='top', ha='left' ) fig.text( s=''' in the plot below we can see signs of a binominal distribution, with one peak at around 57-62 and the other at approx. 72-79 points. ''', x=0, y=1.02, fontsize=11, fontstyle='italic', color=txt_color, va='top', ha='left' ) fig.text( s=f"Mean: {np.round(mean,1)}\nMedian: {np.round(median,1)}", x=0.56, y=0.925, fontsize=9, fontstyle='italic', color=txt_color, va='top', ha='left' ) l1 = get_line(x=[0.55,0.55], y=[0.85,0.95]) fig.lines.extend([l1]) plt.show() fig, ax = plt.subplots(tight_layout=True, figsize=(12,2.5)) fig.patch.set_facecolor(bg_color) uniq_scores = df['posttest'].nunique() ax.barh( y=1, width=uniq_scores, color=cmap0[1], alpha=0.75,lw=1, edgecolor='white' ) ax.barh( y=1, width=100-uniq_scores, left=uniq_scores, color=cmap1[1], alpha=0.25, lw=1, edgecolor='white' ) ax.axis('off') ax.annotate( s=f"{uniq_scores}", xy=(35,1.05), va='center', ha='center', fontsize=36, fontweight='bold', fontfamily='serif', color='#fff' ) ax.annotate( s='unqiue scores', xy=(35,0.85), va='center', ha='center', fontsize=16, fontstyle='italic', fontfamily='serif', color='#fff' ) fig.text( s=':Unique Number of Scores', x=0, y=1.25, fontsize=17, fontweight='bold', color=txt_color, va='top', ha='left' ) fig.text( s=''' 68 unique scores have been scored from a total of 100 possible outcomes. ''', x=0, y=1.2, fontsize=11, fontstyle='italic', color=txt_color, va='top', ha='left' ) l1 = get_line(x=[0.645,0.645], y=[0,1], lw=3, alpha=1) fig.lines.extend([l1]) plt.show() from circlify import circlify, Circle schools_by_num_students = df.groupby('school').count()[['posttest']].reset_index().sort_values(by='posttest', ascending=False).rename(columns={'posttest': 'count'}) schools_by_num_students['ratio'] = df['school'].value_counts().values / len(df['school']) schools_by_num_students = schools_by_num_students[:10] fig, ax = plt.subplots(tight_layout=True, figsize=(8, 8)) fig.patch.set_facecolor(bg_color) ax.patch.set_facecolor(bg_color) circles = circlify(data=schools_by_num_students['count'].tolist(), show_enclosure=False, target_enclosure=Circle(x=0, y=0, r=1)) lim = max((max(abs(circle.x) + circle.r, abs(circle.y) + circle.r) for circle in circles)) ax.set_xlim(-lim, lim) ax.set_ylim(-lim, lim) labels = schools_by_num_students['school'][::-1] counts = schools_by_num_students['count'][::-1] ratios = schools_by_num_students['ratio'][::-1] for circle, label, count, ratio in zip(circles, labels, counts, ratios): x, y, r = circle ax.add_patch(plt.Circle((x, y), r, lw=1, fill=True, alpha=1 * (ratio * 10), facecolor=cmap0[1])) ax.annotate(s=f'{label}', xy=(x, y), fontweight='bold', va='center', ha='center', color='#fff') ax.annotate(s=f'#{count} ({int(ratio * 100)}%)', xy=(x, y - 0.04), fontstyle='italic', fontsize=9, va='center', ha='center', color='#fff') ax.axis('off') fig.text(s=':TOP 10 - Schools', x=0, y=1, fontsize=17, fontweight='bold', color=txt_color, va='top', ha='left') fig.text(s='\n by number of students\n ', x=0, y=0.985, fontsize=11, fontstyle='italic', color=txt_color, va='top', ha='left') fig.text(s=f"{df['school'].nunique()}", x=1.04, y=0.8, fontsize=52, fontfamily='serif', color=txt_color, va='top', ha='left') fig.text(s='\n unique \n schools', x=1.13, y=0.82, fontsize=11, fontfamily='serif', color=txt_color, va='top', ha='left') fig.text(s='\n The students are nearly \n equally distributed\n among the total of 23 \n different schools\n ', x=1, y=0.65, fontsize=11, fontstyle='italic', color=txt_color, va='top', ha='left') l1 = get_line(x=[1, 1], y=[0.45, 0.8]) fig.lines.extend([l1]) plt.show()
code
73067436/cell_11
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/predict-test-scores-of-students/test_scores.csv') df.info()
code
73067436/cell_19
[ "image_output_1.png" ]
!pip install circlify
code
73067436/cell_8
[ "image_output_1.png" ]
import seaborn as sns cmap0 = ['#68595b', '#7098af', '#6f636c', '#907c7b'] cmap1 = ['#484146', '#8da0b3', '#796d72', '#9fa9ba'] cmap2 = ['#545457', '#a79698', '#5284a2', '#bbbcc4'] bg_color = '#fbfbfb' txt_color = '#5c5c5c' sns.palplot(cmap0) sns.palplot(cmap1) sns.palplot(cmap2)
code
73067436/cell_15
[ "image_output_1.png" ]
from warnings import filterwarnings import matplotlib.lines as lines import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.lines as lines import matplotlib.gridspec as gridspec import seaborn as sns from warnings import filterwarnings filterwarnings('ignore') plt.rcParams['font.family'] = 'monospace' df = pd.read_csv('../input/predict-test-scores-of-students/test_scores.csv') cmap0 = ['#68595b', '#7098af', '#6f636c', '#907c7b'] cmap1 = ['#484146', '#8da0b3', '#796d72', '#9fa9ba'] cmap2 = ['#545457', '#a79698', '#5284a2', '#bbbcc4'] bg_color = '#fbfbfb' txt_color = '#5c5c5c' # check for missing values fig, ax = plt.subplots(tight_layout=True, figsize=(12,6)) fig.patch.set_facecolor(bg_color) ax.set_facecolor(bg_color) mv = df.isna() ax = sns.heatmap(data=mv, cmap=sns.color_palette(cmap0), cbar=False, ax=ax, ) ax.set_ylabel('') ax.set_yticks([]) ax.set_xticklabels(labels=mv.columns,rotation=45) ax.tick_params(length=0) fig.text( s=':Missing Values', x=0, y=1.1, fontsize=17, fontweight='bold', color=txt_color, va='top', ha='left' ) fig.text( s=''' we can't see any ... ''', x=0, y=1.075, fontsize=11, fontstyle='italic', color=txt_color, va='top', ha='left' ) plt.show() def despine_ax(ax, spines=['top', 'left', 'right', 'bottom']): for spine in spines: ax.spines[spine].set_visible(False) def get_line(x=[0, 0], y=[0, 0], alpha=0.5, lw=1): return lines.Line2D(xdata=x, ydata=y, lw=lw, alpha=alpha, color='#aeaeae', transform=fig.transFigure, figure=fig) fig, (ax0, ax1) = plt.subplots(2, 1, tight_layout=True, sharex=True, figsize=(12, 6)) fig.patch.set_facecolor(bg_color) mean = df['posttest'].mean() median = df['posttest'].median() ax0.boxplot(data=df, x='posttest', vert=False, patch_artist=True, boxprops=dict(facecolor=cmap0[1], lw=0, alpha=0.75), whiskerprops=dict(color='gray', lw=1, ls='--'), capprops=dict(color='gray', lw=1, ls='--'), medianprops=dict(color='#fff', lw=0), flierprops=dict(markerfacecolor=cmap0[0], alpha=0.75), zorder=0) ax1 = sns.kdeplot(data=df, x='posttest', shade=True, color=cmap0[0], edgecolor='#000', lw=1, zorder=0, alpha=0.8, ax=ax1) ax0.axvline(x=mean, ymin=0.4, ymax=0.6, color=bg_color, ls=':', zorder=1, label='mean') ax1.axvline(x=mean, ymin=0, ymax=0.9, color=bg_color, ls=':', zorder=1) ax0.axvline(x=median, ymin=0.4, ymax=0.6, color=bg_color, ls='--', zorder=1) ax1.axvline(x=median, ymin=0, ymax=0.9, color=bg_color, ls='--', zorder=1) ax0.axis('off') ax0.set_facecolor(bg_color) ax1.set_ylabel('') ax1.set_xlabel('') ax1.set_yticks([]) ax1.tick_params(length=0) ax1.set_facecolor(bg_color) despine_ax(ax1, ['top', 'left', 'right']) fig.text(s=':Posttest - Distribution', x=0, y=1.05, fontsize=17, fontweight='bold', color=txt_color, va='top', ha='left') fig.text(s='\n in the plot below we can see signs\n of a binominal distribution, with \n one peak at around 57-62 and the other \n at approx. 72-79 points.\n ', x=0, y=1.02, fontsize=11, fontstyle='italic', color=txt_color, va='top', ha='left') fig.text(s=f'Mean: {np.round(mean, 1)}\nMedian: {np.round(median, 1)}', x=0.56, y=0.925, fontsize=9, fontstyle='italic', color=txt_color, va='top', ha='left') l1 = get_line(x=[0.55, 0.55], y=[0.85, 0.95]) fig.lines.extend([l1]) plt.show()
code
73067436/cell_16
[ "image_output_1.png" ]
from warnings import filterwarnings import matplotlib.lines as lines import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.lines as lines import matplotlib.gridspec as gridspec import seaborn as sns from warnings import filterwarnings filterwarnings('ignore') plt.rcParams['font.family'] = 'monospace' df = pd.read_csv('../input/predict-test-scores-of-students/test_scores.csv') cmap0 = ['#68595b', '#7098af', '#6f636c', '#907c7b'] cmap1 = ['#484146', '#8da0b3', '#796d72', '#9fa9ba'] cmap2 = ['#545457', '#a79698', '#5284a2', '#bbbcc4'] bg_color = '#fbfbfb' txt_color = '#5c5c5c' # check for missing values fig, ax = plt.subplots(tight_layout=True, figsize=(12,6)) fig.patch.set_facecolor(bg_color) ax.set_facecolor(bg_color) mv = df.isna() ax = sns.heatmap(data=mv, cmap=sns.color_palette(cmap0), cbar=False, ax=ax, ) ax.set_ylabel('') ax.set_yticks([]) ax.set_xticklabels(labels=mv.columns,rotation=45) ax.tick_params(length=0) fig.text( s=':Missing Values', x=0, y=1.1, fontsize=17, fontweight='bold', color=txt_color, va='top', ha='left' ) fig.text( s=''' we can't see any ... ''', x=0, y=1.075, fontsize=11, fontstyle='italic', color=txt_color, va='top', ha='left' ) plt.show() def despine_ax(ax, spines=['top', 'left', 'right', 'bottom']): for spine in spines: ax.spines[spine].set_visible(False) def get_line(x=[0, 0], y=[0, 0], alpha=0.5, lw=1): return lines.Line2D(xdata=x, ydata=y, lw=lw, alpha=alpha, color='#aeaeae', transform=fig.transFigure, figure=fig) fig, (ax0, ax1) = plt.subplots(2, 1, tight_layout=True, sharex=True, figsize=(12,6)) fig.patch.set_facecolor(bg_color) mean = df['posttest'].mean() median = df['posttest'].median() ax0.boxplot( data=df, x='posttest', vert=False, patch_artist=True, boxprops=dict(facecolor=cmap0[1], lw=0, alpha=0.75), whiskerprops=dict(color='gray', lw=1, ls='--'), capprops=dict(color='gray', lw=1, ls='--'), medianprops=dict(color='#fff', lw=0), flierprops=dict(markerfacecolor=cmap0[0],alpha=0.75), zorder=0 ) ax1 = sns.kdeplot( data=df, x='posttest', shade=True, color=cmap0[0], edgecolor='#000', lw=1, zorder=0, alpha=0.8, ax=ax1 ) ax0.axvline(x=mean, ymin=0.4, ymax=0.6, color=bg_color, ls=':', zorder=1, label='mean') ax1.axvline(x=mean, ymin=0, ymax=0.9, color=bg_color, ls=':', zorder=1) ax0.axvline(x=median, ymin=0.4, ymax=0.6, color=bg_color, ls='--', zorder=1) ax1.axvline(x=median, ymin=0, ymax=0.9, color=bg_color, ls='--', zorder=1) ax0.axis('off') ax0.set_facecolor(bg_color) ax1.set_ylabel('') ax1.set_xlabel('') ax1.set_yticks([]) ax1.tick_params(length=0) ax1.set_facecolor(bg_color) despine_ax(ax1, ['top','left','right']) fig.text( s=':Posttest - Distribution', x=0, y=1.05, fontsize=17, fontweight='bold', color=txt_color, va='top', ha='left' ) fig.text( s=''' in the plot below we can see signs of a binominal distribution, with one peak at around 57-62 and the other at approx. 72-79 points. ''', x=0, y=1.02, fontsize=11, fontstyle='italic', color=txt_color, va='top', ha='left' ) fig.text( s=f"Mean: {np.round(mean,1)}\nMedian: {np.round(median,1)}", x=0.56, y=0.925, fontsize=9, fontstyle='italic', color=txt_color, va='top', ha='left' ) l1 = get_line(x=[0.55,0.55], y=[0.85,0.95]) fig.lines.extend([l1]) plt.show() fig, ax = plt.subplots(tight_layout=True, figsize=(12, 2.5)) fig.patch.set_facecolor(bg_color) uniq_scores = df['posttest'].nunique() ax.barh(y=1, width=uniq_scores, color=cmap0[1], alpha=0.75, lw=1, edgecolor='white') ax.barh(y=1, width=100 - uniq_scores, left=uniq_scores, color=cmap1[1], alpha=0.25, lw=1, edgecolor='white') ax.axis('off') ax.annotate(s=f'{uniq_scores}', xy=(35, 1.05), va='center', ha='center', fontsize=36, fontweight='bold', fontfamily='serif', color='#fff') ax.annotate(s='unqiue scores', xy=(35, 0.85), va='center', ha='center', fontsize=16, fontstyle='italic', fontfamily='serif', color='#fff') fig.text(s=':Unique Number of Scores', x=0, y=1.25, fontsize=17, fontweight='bold', color=txt_color, va='top', ha='left') fig.text(s='\n 68 unique scores have been scored \n from a total of 100 possible outcomes.\n ', x=0, y=1.2, fontsize=11, fontstyle='italic', color=txt_color, va='top', ha='left') l1 = get_line(x=[0.645, 0.645], y=[0, 1], lw=3, alpha=1) fig.lines.extend([l1]) plt.show()
code
73067436/cell_10
[ "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/predict-test-scores-of-students/test_scores.csv') print(f'Shape: {df.shape}') print('--' * 20) df.head(3)
code
73067436/cell_12
[ "text_plain_output_1.png" ]
from warnings import filterwarnings import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.lines as lines import matplotlib.gridspec as gridspec import seaborn as sns from warnings import filterwarnings filterwarnings('ignore') plt.rcParams['font.family'] = 'monospace' df = pd.read_csv('../input/predict-test-scores-of-students/test_scores.csv') cmap0 = ['#68595b', '#7098af', '#6f636c', '#907c7b'] cmap1 = ['#484146', '#8da0b3', '#796d72', '#9fa9ba'] cmap2 = ['#545457', '#a79698', '#5284a2', '#bbbcc4'] bg_color = '#fbfbfb' txt_color = '#5c5c5c' fig, ax = plt.subplots(tight_layout=True, figsize=(12, 6)) fig.patch.set_facecolor(bg_color) ax.set_facecolor(bg_color) mv = df.isna() ax = sns.heatmap(data=mv, cmap=sns.color_palette(cmap0), cbar=False, ax=ax) ax.set_ylabel('') ax.set_yticks([]) ax.set_xticklabels(labels=mv.columns, rotation=45) ax.tick_params(length=0) fig.text(s=':Missing Values', x=0, y=1.1, fontsize=17, fontweight='bold', color=txt_color, va='top', ha='left') fig.text(s="\n we can't see any ...\n ", x=0, y=1.075, fontsize=11, fontstyle='italic', color=txt_color, va='top', ha='left') plt.show()
code
33115163/cell_9
[ "text_html_output_1.png" ]
import pandas as pd test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') train.info()
code
33115163/cell_57
[ "text_plain_output_1.png" ]
from keras.layers import Dense from keras.models import Sequential model_1 = Sequential() model_1.add(Dense(25, input_dim=20, activation='relu')) model_1.add(Dense(25, activation='relu')) model_1.add(Dense(4, activation='softmax')) model_1.summary() model_1.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) hist_1 = model_1.fit(X_train, y_train, epochs=20, batch_size=25, validation_data=(X_val, y_val))
code
33115163/cell_56
[ "text_plain_output_1.png" ]
from keras.layers import Dense from keras.models import Sequential model_1 = Sequential() model_1.add(Dense(25, input_dim=20, activation='relu')) model_1.add(Dense(25, activation='relu')) model_1.add(Dense(4, activation='softmax')) model_1.summary()
code
33115163/cell_30
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] df = pd.melt(train[categorical]) #numerical attributes fig = plt.figure(figsize=(15,20)) for i,col in enumerate(numerical): ax=plt.subplot(5,3,i+1) train[col].plot.hist(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() skewed = ['clock_speed', 'fc', 'm_dep', 'px_height', 'sc_w'] no_skewed = ['battery_power', 'int_memory', 'mobile_wt', 'n_cores', 'pc', 'px_width', 'ram', 'sc_h', 'talk_time'] #correlation between attributes corr = train.corr() fig, (ax) = plt.subplots(1,1,sharey = True, figsize = (20,10)) sns.heatmap(corr, cmap = 'Blues') #variables with symmetrical distributions group_no_skewed = train.groupby('price_range')[no_skewed].mean().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_no_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_no_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() group_skewed = train.groupby('price_range')[skewed].median().reset_index() fig = plt.figure(figsize=(15, 20)) for i, col in enumerate(group_skewed.iloc[:, 1:].columns): ax = plt.subplot(5, 3, i + 1) group_skewed.iloc[:, 1:][col].plot.bar(ax=ax).tick_params(axis='x', labelrotation=360) ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.1)) plt.show()
code
33115163/cell_33
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] df = pd.melt(train[categorical]) #numerical attributes fig = plt.figure(figsize=(15,20)) for i,col in enumerate(numerical): ax=plt.subplot(5,3,i+1) train[col].plot.hist(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() skewed = ['clock_speed', 'fc', 'm_dep', 'px_height', 'sc_w'] no_skewed = ['battery_power', 'int_memory', 'mobile_wt', 'n_cores', 'pc', 'px_width', 'ram', 'sc_h', 'talk_time'] #correlation between attributes corr = train.corr() fig, (ax) = plt.subplots(1,1,sharey = True, figsize = (20,10)) sns.heatmap(corr, cmap = 'Blues') #variables with symmetrical distributions group_no_skewed = train.groupby('price_range')[no_skewed].mean().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_no_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_no_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() #variables with skewed distributions group_skewed = train.groupby('price_range')[skewed].median().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() sns.catplot('price_range', col='blue', hue='wifi', data=train, kind='count', col_wrap=2)
code
33115163/cell_44
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] df = pd.melt(train[categorical]) #numerical attributes fig = plt.figure(figsize=(15,20)) for i,col in enumerate(numerical): ax=plt.subplot(5,3,i+1) train[col].plot.hist(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() skewed = ['clock_speed', 'fc', 'm_dep', 'px_height', 'sc_w'] no_skewed = ['battery_power', 'int_memory', 'mobile_wt', 'n_cores', 'pc', 'px_width', 'ram', 'sc_h', 'talk_time'] #correlation between attributes corr = train.corr() fig, (ax) = plt.subplots(1,1,sharey = True, figsize = (20,10)) sns.heatmap(corr, cmap = 'Blues') #variables with symmetrical distributions group_no_skewed = train.groupby('price_range')[no_skewed].mean().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_no_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_no_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() #variables with skewed distributions group_skewed = train.groupby('price_range')[skewed].median().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() from sklearn.preprocessing import MinMaxScaler scaler_train = MinMaxScaler() train_num_scaled = scaler_train.fit_transform(train[numerical]) scaler_train.data_max_ scaler_train.data_min_ train_num_scaled = pd.DataFrame(train_num_scaled, columns=train[numerical].columns) train_num_scaled
code
33115163/cell_55
[ "text_html_output_1.png" ]
import tensorflow.keras from keras.models import Sequential from keras.layers import Dense
code
33115163/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') train.head()
code
33115163/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] df = pd.melt(train[categorical]) #numerical attributes fig = plt.figure(figsize=(15,20)) for i,col in enumerate(numerical): ax=plt.subplot(5,3,i+1) train[col].plot.hist(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() skewed = ['clock_speed', 'fc', 'm_dep', 'px_height', 'sc_w'] no_skewed = ['battery_power', 'int_memory', 'mobile_wt', 'n_cores', 'pc', 'px_width', 'ram', 'sc_h', 'talk_time'] #correlation between attributes corr = train.corr() fig, (ax) = plt.subplots(1,1,sharey = True, figsize = (20,10)) sns.heatmap(corr, cmap = 'Blues') group_no_skewed = train.groupby('price_range')[no_skewed].mean().reset_index() fig = plt.figure(figsize=(15, 20)) for i, col in enumerate(group_no_skewed.iloc[:, 1:].columns): ax = plt.subplot(5, 3, i + 1) group_no_skewed.iloc[:, 1:][col].plot.bar(ax=ax).tick_params(axis='x', labelrotation=360) ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.1)) plt.show()
code
33115163/cell_39
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] df = pd.melt(train[categorical]) #numerical attributes fig = plt.figure(figsize=(15,20)) for i,col in enumerate(numerical): ax=plt.subplot(5,3,i+1) train[col].plot.hist(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() skewed = ['clock_speed', 'fc', 'm_dep', 'px_height', 'sc_w'] no_skewed = ['battery_power', 'int_memory', 'mobile_wt', 'n_cores', 'pc', 'px_width', 'ram', 'sc_h', 'talk_time'] #correlation between attributes corr = train.corr() fig, (ax) = plt.subplots(1,1,sharey = True, figsize = (20,10)) sns.heatmap(corr, cmap = 'Blues') #variables with symmetrical distributions group_no_skewed = train.groupby('price_range')[no_skewed].mean().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_no_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_no_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() #variables with skewed distributions group_skewed = train.groupby('price_range')[skewed].median().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() sns.catplot('price_range', col='touch_screen', data=train, kind='count')
code
33115163/cell_26
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] df = pd.melt(train[categorical]) #numerical attributes fig = plt.figure(figsize=(15,20)) for i,col in enumerate(numerical): ax=plt.subplot(5,3,i+1) train[col].plot.hist(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() #correlation between attributes corr = train.corr() fig, (ax) = plt.subplots(1,1,sharey = True, figsize = (20,10)) sns.heatmap(corr, cmap = 'Blues') train.groupby('price_range').mean()['ram'].plot(kind='bar', legend=True).tick_params(axis='x', labelrotation=360)
code
33115163/cell_61
[ "text_plain_output_1.png", "image_output_1.png" ]
from keras.layers import Dense from keras.models import Sequential from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import tensorflow as tf test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] df = pd.melt(train[categorical]) #numerical attributes fig = plt.figure(figsize=(15,20)) for i,col in enumerate(numerical): ax=plt.subplot(5,3,i+1) train[col].plot.hist(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() skewed = ['clock_speed', 'fc', 'm_dep', 'px_height', 'sc_w'] no_skewed = ['battery_power', 'int_memory', 'mobile_wt', 'n_cores', 'pc', 'px_width', 'ram', 'sc_h', 'talk_time'] #correlation between attributes corr = train.corr() fig, (ax) = plt.subplots(1,1,sharey = True, figsize = (20,10)) sns.heatmap(corr, cmap = 'Blues') #variables with symmetrical distributions group_no_skewed = train.groupby('price_range')[no_skewed].mean().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_no_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_no_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() #variables with skewed distributions group_skewed = train.groupby('price_range')[skewed].median().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() from sklearn.preprocessing import MinMaxScaler scaler_train = MinMaxScaler() train_num_scaled = scaler_train.fit_transform(train[numerical]) scaler_train.data_max_ scaler_train.data_min_ train_num_scaled = pd.DataFrame(train_num_scaled, columns=train[numerical].columns) train_num_scaled from sklearn.preprocessing import MinMaxScaler scaler_test = MinMaxScaler() test_num_scaled = scaler_test.fit_transform(test[numerical]) scaler_test.data_max_ scaler_test.data_min_ test_num_scaled = pd.DataFrame(test_num_scaled, columns=test[numerical].columns) test_final = pd.concat([test[categorical], test_num_scaled], axis=1) import tensorflow as tf X = pd.concat([train[categorical], train_num_scaled], axis=1) y = tf.keras.utils.to_categorical(train['price_range'], 4) model_1 = Sequential() model_1.add(Dense(25, input_dim=20, activation='relu')) model_1.add(Dense(25, activation='relu')) model_1.add(Dense(4, activation='softmax')) model_1.summary() model_1.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) hist_1 = model_1.fit(X_train, y_train, epochs=20, batch_size=25, validation_data=(X_val, y_val)) score = model_1.evaluate(X_val, y_val, verbose=0) prediction_test = np.argmax(model_1.predict(test_final), axis=1) pd.DataFrame({'id': test['id'], 'price_range': prediction_test})
code
33115163/cell_60
[ "text_plain_output_1.png" ]
from keras.layers import Dense from keras.models import Sequential model_1 = Sequential() model_1.add(Dense(25, input_dim=20, activation='relu')) model_1.add(Dense(25, activation='relu')) model_1.add(Dense(4, activation='softmax')) model_1.summary() model_1.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) hist_1 = model_1.fit(X_train, y_train, epochs=20, batch_size=25, validation_data=(X_val, y_val)) score = model_1.evaluate(X_val, y_val, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1])
code
33115163/cell_50
[ "text_html_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import tensorflow as tf test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] df = pd.melt(train[categorical]) #numerical attributes fig = plt.figure(figsize=(15,20)) for i,col in enumerate(numerical): ax=plt.subplot(5,3,i+1) train[col].plot.hist(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() skewed = ['clock_speed', 'fc', 'm_dep', 'px_height', 'sc_w'] no_skewed = ['battery_power', 'int_memory', 'mobile_wt', 'n_cores', 'pc', 'px_width', 'ram', 'sc_h', 'talk_time'] #correlation between attributes corr = train.corr() fig, (ax) = plt.subplots(1,1,sharey = True, figsize = (20,10)) sns.heatmap(corr, cmap = 'Blues') #variables with symmetrical distributions group_no_skewed = train.groupby('price_range')[no_skewed].mean().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_no_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_no_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() #variables with skewed distributions group_skewed = train.groupby('price_range')[skewed].median().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() from sklearn.preprocessing import MinMaxScaler scaler_train = MinMaxScaler() train_num_scaled = scaler_train.fit_transform(train[numerical]) scaler_train.data_max_ scaler_train.data_min_ train_num_scaled = pd.DataFrame(train_num_scaled, columns=train[numerical].columns) train_num_scaled from sklearn.preprocessing import MinMaxScaler scaler_test = MinMaxScaler() test_num_scaled = scaler_test.fit_transform(test[numerical]) scaler_test.data_max_ scaler_test.data_min_ test_num_scaled = pd.DataFrame(test_num_scaled, columns=test[numerical].columns) test_final = pd.concat([test[categorical], test_num_scaled], axis=1) import tensorflow as tf X = pd.concat([train[categorical], train_num_scaled], axis=1) y = tf.keras.utils.to_categorical(train['price_range'], 4) X.head()
code
33115163/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') test.head()
code
33115163/cell_45
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import MinMaxScaler import pandas as pd test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] from sklearn.preprocessing import MinMaxScaler scaler_test = MinMaxScaler() test_num_scaled = scaler_test.fit_transform(test[numerical]) scaler_test.data_max_ scaler_test.data_min_
code
33115163/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] fig = plt.figure(figsize=(15, 20)) for i, col in enumerate(numerical): ax = plt.subplot(5, 3, i + 1) train[col].plot.hist(ax=ax).tick_params(axis='x', labelrotation=360) ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.1)) plt.show()
code
33115163/cell_51
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import tensorflow as tf test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] df = pd.melt(train[categorical]) #numerical attributes fig = plt.figure(figsize=(15,20)) for i,col in enumerate(numerical): ax=plt.subplot(5,3,i+1) train[col].plot.hist(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() skewed = ['clock_speed', 'fc', 'm_dep', 'px_height', 'sc_w'] no_skewed = ['battery_power', 'int_memory', 'mobile_wt', 'n_cores', 'pc', 'px_width', 'ram', 'sc_h', 'talk_time'] #correlation between attributes corr = train.corr() fig, (ax) = plt.subplots(1,1,sharey = True, figsize = (20,10)) sns.heatmap(corr, cmap = 'Blues') #variables with symmetrical distributions group_no_skewed = train.groupby('price_range')[no_skewed].mean().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_no_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_no_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() #variables with skewed distributions group_skewed = train.groupby('price_range')[skewed].median().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() from sklearn.preprocessing import MinMaxScaler scaler_train = MinMaxScaler() train_num_scaled = scaler_train.fit_transform(train[numerical]) scaler_train.data_max_ scaler_train.data_min_ train_num_scaled = pd.DataFrame(train_num_scaled, columns=train[numerical].columns) train_num_scaled from sklearn.preprocessing import MinMaxScaler scaler_test = MinMaxScaler() test_num_scaled = scaler_test.fit_transform(test[numerical]) scaler_test.data_max_ scaler_test.data_min_ test_num_scaled = pd.DataFrame(test_num_scaled, columns=test[numerical].columns) test_final = pd.concat([test[categorical], test_num_scaled], axis=1) import tensorflow as tf X = pd.concat([train[categorical], train_num_scaled], axis=1) y = tf.keras.utils.to_categorical(train['price_range'], 4) y
code
33115163/cell_59
[ "application_vnd.jupyter.stderr_output_1.png" ]
from keras.layers import Dense from keras.models import Sequential import matplotlib.pyplot as plt import pandas as pd import seaborn as sns test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] df = pd.melt(train[categorical]) #numerical attributes fig = plt.figure(figsize=(15,20)) for i,col in enumerate(numerical): ax=plt.subplot(5,3,i+1) train[col].plot.hist(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() skewed = ['clock_speed', 'fc', 'm_dep', 'px_height', 'sc_w'] no_skewed = ['battery_power', 'int_memory', 'mobile_wt', 'n_cores', 'pc', 'px_width', 'ram', 'sc_h', 'talk_time'] #correlation between attributes corr = train.corr() fig, (ax) = plt.subplots(1,1,sharey = True, figsize = (20,10)) sns.heatmap(corr, cmap = 'Blues') #variables with symmetrical distributions group_no_skewed = train.groupby('price_range')[no_skewed].mean().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_no_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_no_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() #variables with skewed distributions group_skewed = train.groupby('price_range')[skewed].median().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() model_1 = Sequential() model_1.add(Dense(25, input_dim=20, activation='relu')) model_1.add(Dense(25, activation='relu')) model_1.add(Dense(4, activation='softmax')) model_1.summary() model_1.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) hist_1 = model_1.fit(X_train, y_train, epochs=20, batch_size=25, validation_data=(X_val, y_val)) plt.plot(hist_1.history['loss']) plt.plot(hist_1.history['val_loss']) plt.title('Model Loss Progression During Training/Validation') plt.ylabel('Training and Validation Losses') plt.xlabel('Epoch Number') plt.legend(['Training Loss', 'Validation Loss'])
code
33115163/cell_15
[ "text_html_output_1.png" ]
numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] print(len(numerical)) print(len(categorical))
code
33115163/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] df = pd.melt(train[categorical]) sns.countplot(data=df, x='variable', hue='value')
code
33115163/cell_47
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] df = pd.melt(train[categorical]) #numerical attributes fig = plt.figure(figsize=(15,20)) for i,col in enumerate(numerical): ax=plt.subplot(5,3,i+1) train[col].plot.hist(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() skewed = ['clock_speed', 'fc', 'm_dep', 'px_height', 'sc_w'] no_skewed = ['battery_power', 'int_memory', 'mobile_wt', 'n_cores', 'pc', 'px_width', 'ram', 'sc_h', 'talk_time'] #correlation between attributes corr = train.corr() fig, (ax) = plt.subplots(1,1,sharey = True, figsize = (20,10)) sns.heatmap(corr, cmap = 'Blues') #variables with symmetrical distributions group_no_skewed = train.groupby('price_range')[no_skewed].mean().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_no_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_no_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() #variables with skewed distributions group_skewed = train.groupby('price_range')[skewed].median().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() from sklearn.preprocessing import MinMaxScaler scaler_train = MinMaxScaler() train_num_scaled = scaler_train.fit_transform(train[numerical]) scaler_train.data_max_ scaler_train.data_min_ train_num_scaled = pd.DataFrame(train_num_scaled, columns=train[numerical].columns) train_num_scaled from sklearn.preprocessing import MinMaxScaler scaler_test = MinMaxScaler() test_num_scaled = scaler_test.fit_transform(test[numerical]) scaler_test.data_max_ scaler_test.data_min_ test_num_scaled = pd.DataFrame(test_num_scaled, columns=test[numerical].columns) test_final = pd.concat([test[categorical], test_num_scaled], axis=1) test_final.head()
code
33115163/cell_35
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] df = pd.melt(train[categorical]) #numerical attributes fig = plt.figure(figsize=(15,20)) for i,col in enumerate(numerical): ax=plt.subplot(5,3,i+1) train[col].plot.hist(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() skewed = ['clock_speed', 'fc', 'm_dep', 'px_height', 'sc_w'] no_skewed = ['battery_power', 'int_memory', 'mobile_wt', 'n_cores', 'pc', 'px_width', 'ram', 'sc_h', 'talk_time'] #correlation between attributes corr = train.corr() fig, (ax) = plt.subplots(1,1,sharey = True, figsize = (20,10)) sns.heatmap(corr, cmap = 'Blues') #variables with symmetrical distributions group_no_skewed = train.groupby('price_range')[no_skewed].mean().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_no_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_no_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() #variables with skewed distributions group_skewed = train.groupby('price_range')[skewed].median().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() sns.catplot('price_range', col='three_g', hue='four_g', data=train, kind='count', col_wrap=2)
code