path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
33115163/cell_43
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import pandas as pd import seaborn as sns test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] df = pd.melt(train[categorical]) #numerical attributes fig = plt.figure(figsize=(15,20)) for i,col in enumerate(numerical): ax=plt.subplot(5,3,i+1) train[col].plot.hist(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() skewed = ['clock_speed', 'fc', 'm_dep', 'px_height', 'sc_w'] no_skewed = ['battery_power', 'int_memory', 'mobile_wt', 'n_cores', 'pc', 'px_width', 'ram', 'sc_h', 'talk_time'] #correlation between attributes corr = train.corr() fig, (ax) = plt.subplots(1,1,sharey = True, figsize = (20,10)) sns.heatmap(corr, cmap = 'Blues') #variables with symmetrical distributions group_no_skewed = train.groupby('price_range')[no_skewed].mean().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_no_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_no_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() #variables with skewed distributions group_skewed = train.groupby('price_range')[skewed].median().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() from sklearn.preprocessing import MinMaxScaler scaler_train = MinMaxScaler() train_num_scaled = scaler_train.fit_transform(train[numerical]) scaler_train.data_max_ scaler_train.data_min_
code
33115163/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] df = pd.melt(train[categorical]) #numerical attributes fig = plt.figure(figsize=(15,20)) for i,col in enumerate(numerical): ax=plt.subplot(5,3,i+1) train[col].plot.hist(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() #correlation between attributes corr = train.corr() fig, (ax) = plt.subplots(1,1,sharey = True, figsize = (20,10)) sns.heatmap(corr, cmap = 'Blues') corr.sort_values(by=['price_range'], ascending=False).iloc[0].sort_values(ascending=False)
code
33115163/cell_22
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] df = pd.melt(train[categorical]) #numerical attributes fig = plt.figure(figsize=(15,20)) for i,col in enumerate(numerical): ax=plt.subplot(5,3,i+1) train[col].plot.hist(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() corr = train.corr() fig, ax = plt.subplots(1, 1, sharey=True, figsize=(20, 10)) sns.heatmap(corr, cmap='Blues')
code
33115163/cell_53
[ "text_html_output_1.png" ]
print(X_train.shape) print(y_train.shape) print(X_val.shape) print(y_val.shape)
code
33115163/cell_10
[ "text_html_output_1.png" ]
import pandas as pd test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') test.info()
code
33115163/cell_37
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns test = pd.read_csv('../input/mobile-price-classification/test.csv') train = pd.read_csv('../input/mobile-price-classification/train.csv') numerical = ['battery_power', 'clock_speed', 'fc', 'int_memory', 'm_dep', 'mobile_wt', 'n_cores', 'pc', 'px_height', 'px_width', 'ram', 'sc_h', 'sc_w', 'talk_time'] categorical = ['blue', 'dual_sim', 'four_g', 'three_g', 'touch_screen', 'wifi'] df = pd.melt(train[categorical]) #numerical attributes fig = plt.figure(figsize=(15,20)) for i,col in enumerate(numerical): ax=plt.subplot(5,3,i+1) train[col].plot.hist(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() skewed = ['clock_speed', 'fc', 'm_dep', 'px_height', 'sc_w'] no_skewed = ['battery_power', 'int_memory', 'mobile_wt', 'n_cores', 'pc', 'px_width', 'ram', 'sc_h', 'talk_time'] #correlation between attributes corr = train.corr() fig, (ax) = plt.subplots(1,1,sharey = True, figsize = (20,10)) sns.heatmap(corr, cmap = 'Blues') #variables with symmetrical distributions group_no_skewed = train.groupby('price_range')[no_skewed].mean().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_no_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_no_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() #variables with skewed distributions group_skewed = train.groupby('price_range')[skewed].median().reset_index() fig = plt.figure(figsize=(15,20)) for i,col in enumerate(group_skewed.iloc[:,1:].columns): ax=plt.subplot(5,3,i+1) group_skewed.iloc[:,1:][col].plot.bar(ax = ax).tick_params(axis = 'x',labelrotation = 360) ax.legend(loc = 'upper center', bbox_to_anchor=(0.5, 1.1)) plt.show() sns.catplot('price_range', col='dual_sim', data=train, kind='count')
code
2013301/cell_9
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd pd.options.mode.chained_assignment = None DOWN_AT_HALF = -1 TIE_AT_HALF = 0 UP_AT_HALF = 1 df16 = pd.read_csv('../input/2016-17_teamBoxScore.csv') df17 = pd.read_csv('../input/2017-18_teamBoxScore.csv') df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) prob_of_winning_given(bool_point_diff, DOWN_AT_HALF)
code
2013301/cell_25
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd pd.options.mode.chained_assignment = None DOWN_AT_HALF = -1 TIE_AT_HALF = 0 UP_AT_HALF = 1 df16 = pd.read_csv('../input/2016-17_teamBoxScore.csv') df17 = pd.read_csv('../input/2017-18_teamBoxScore.csv') df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr df_cavs = df2[df2['teamAbbr'] == 'CLE'] point_diff_cavs = make_point_diff_mat(df_cavs) np.corrcoef(point_diff_cavs.T) bool_point_diff_cavs = make_bool_point_diff_mat(df_cavs) np.corrcoef(bool_point_diff_cavs.T) df_warr = df2[df2.teamAbbr == 'GS'] point_diff_warr = make_point_diff_mat(df_warr) np.corrcoef(point_diff_warr.T) bool_point_diff_warr = make_bool_point_diff_mat(df_warr) np.corrcoef(bool_point_diff_warr.T) prob_of_winning_given(bool_point_diff_warr, DOWN_AT_HALF)
code
2013301/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd import numpy as np import pandas as pd pd.options.mode.chained_assignment = None DOWN_AT_HALF = -1 TIE_AT_HALF = 0 UP_AT_HALF = 1 df16 = pd.read_csv('../input/2016-17_teamBoxScore.csv') df17 = pd.read_csv('../input/2017-18_teamBoxScore.csv') df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2
code
2013301/cell_23
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd pd.options.mode.chained_assignment = None DOWN_AT_HALF = -1 TIE_AT_HALF = 0 UP_AT_HALF = 1 df16 = pd.read_csv('../input/2016-17_teamBoxScore.csv') df17 = pd.read_csv('../input/2017-18_teamBoxScore.csv') df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr df_cavs = df2[df2['teamAbbr'] == 'CLE'] point_diff_cavs = make_point_diff_mat(df_cavs) np.corrcoef(point_diff_cavs.T) bool_point_diff_cavs = make_bool_point_diff_mat(df_cavs) np.corrcoef(bool_point_diff_cavs.T) df_warr = df2[df2.teamAbbr == 'GS'] point_diff_warr = make_point_diff_mat(df_warr) np.corrcoef(point_diff_warr.T)
code
2013301/cell_20
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd pd.options.mode.chained_assignment = None DOWN_AT_HALF = -1 TIE_AT_HALF = 0 UP_AT_HALF = 1 df16 = pd.read_csv('../input/2016-17_teamBoxScore.csv') df17 = pd.read_csv('../input/2017-18_teamBoxScore.csv') df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr df_cavs = df2[df2['teamAbbr'] == 'CLE'] point_diff_cavs = make_point_diff_mat(df_cavs) np.corrcoef(point_diff_cavs.T) bool_point_diff_cavs = make_bool_point_diff_mat(df_cavs) np.corrcoef(bool_point_diff_cavs.T) prob_of_winning_given(bool_point_diff_cavs, UP_AT_HALF)
code
2013301/cell_26
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd pd.options.mode.chained_assignment = None DOWN_AT_HALF = -1 TIE_AT_HALF = 0 UP_AT_HALF = 1 df16 = pd.read_csv('../input/2016-17_teamBoxScore.csv') df17 = pd.read_csv('../input/2017-18_teamBoxScore.csv') df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr df_cavs = df2[df2['teamAbbr'] == 'CLE'] point_diff_cavs = make_point_diff_mat(df_cavs) np.corrcoef(point_diff_cavs.T) bool_point_diff_cavs = make_bool_point_diff_mat(df_cavs) np.corrcoef(bool_point_diff_cavs.T) df_warr = df2[df2.teamAbbr == 'GS'] point_diff_warr = make_point_diff_mat(df_warr) np.corrcoef(point_diff_warr.T) bool_point_diff_warr = make_bool_point_diff_mat(df_warr) np.corrcoef(bool_point_diff_warr.T) prob_of_winning_given(bool_point_diff_warr, UP_AT_HALF)
code
2013301/cell_19
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd pd.options.mode.chained_assignment = None DOWN_AT_HALF = -1 TIE_AT_HALF = 0 UP_AT_HALF = 1 df16 = pd.read_csv('../input/2016-17_teamBoxScore.csv') df17 = pd.read_csv('../input/2017-18_teamBoxScore.csv') df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr df_cavs = df2[df2['teamAbbr'] == 'CLE'] point_diff_cavs = make_point_diff_mat(df_cavs) np.corrcoef(point_diff_cavs.T) bool_point_diff_cavs = make_bool_point_diff_mat(df_cavs) np.corrcoef(bool_point_diff_cavs.T) prob_of_winning_given(bool_point_diff_cavs, DOWN_AT_HALF)
code
2013301/cell_7
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd pd.options.mode.chained_assignment = None DOWN_AT_HALF = -1 TIE_AT_HALF = 0 UP_AT_HALF = 1 df16 = pd.read_csv('../input/2016-17_teamBoxScore.csv') df17 = pd.read_csv('../input/2017-18_teamBoxScore.csv') df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T)
code
2013301/cell_18
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd pd.options.mode.chained_assignment = None DOWN_AT_HALF = -1 TIE_AT_HALF = 0 UP_AT_HALF = 1 df16 = pd.read_csv('../input/2016-17_teamBoxScore.csv') df17 = pd.read_csv('../input/2017-18_teamBoxScore.csv') df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr df_cavs = df2[df2['teamAbbr'] == 'CLE'] point_diff_cavs = make_point_diff_mat(df_cavs) np.corrcoef(point_diff_cavs.T) bool_point_diff_cavs = make_bool_point_diff_mat(df_cavs) np.corrcoef(bool_point_diff_cavs.T)
code
2013301/cell_8
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd pd.options.mode.chained_assignment = None DOWN_AT_HALF = -1 TIE_AT_HALF = 0 UP_AT_HALF = 1 df16 = pd.read_csv('../input/2016-17_teamBoxScore.csv') df17 = pd.read_csv('../input/2017-18_teamBoxScore.csv') df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T)
code
2013301/cell_17
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd pd.options.mode.chained_assignment = None DOWN_AT_HALF = -1 TIE_AT_HALF = 0 UP_AT_HALF = 1 df16 = pd.read_csv('../input/2016-17_teamBoxScore.csv') df17 = pd.read_csv('../input/2017-18_teamBoxScore.csv') df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr df_cavs = df2[df2['teamAbbr'] == 'CLE'] point_diff_cavs = make_point_diff_mat(df_cavs) np.corrcoef(point_diff_cavs.T)
code
2013301/cell_24
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd pd.options.mode.chained_assignment = None DOWN_AT_HALF = -1 TIE_AT_HALF = 0 UP_AT_HALF = 1 df16 = pd.read_csv('../input/2016-17_teamBoxScore.csv') df17 = pd.read_csv('../input/2017-18_teamBoxScore.csv') df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr df_cavs = df2[df2['teamAbbr'] == 'CLE'] point_diff_cavs = make_point_diff_mat(df_cavs) np.corrcoef(point_diff_cavs.T) bool_point_diff_cavs = make_bool_point_diff_mat(df_cavs) np.corrcoef(bool_point_diff_cavs.T) df_warr = df2[df2.teamAbbr == 'GS'] point_diff_warr = make_point_diff_mat(df_warr) np.corrcoef(point_diff_warr.T) bool_point_diff_warr = make_bool_point_diff_mat(df_warr) np.corrcoef(bool_point_diff_warr.T)
code
2013301/cell_14
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd pd.options.mode.chained_assignment = None DOWN_AT_HALF = -1 TIE_AT_HALF = 0 UP_AT_HALF = 1 df16 = pd.read_csv('../input/2016-17_teamBoxScore.csv') df17 = pd.read_csv('../input/2017-18_teamBoxScore.csv') df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr print(max_team) print(max_prob_winning_UP_at_half)
code
2013301/cell_10
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd pd.options.mode.chained_assignment = None DOWN_AT_HALF = -1 TIE_AT_HALF = 0 UP_AT_HALF = 1 df16 = pd.read_csv('../input/2016-17_teamBoxScore.csv') df17 = pd.read_csv('../input/2017-18_teamBoxScore.csv') df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) prob_of_winning_given(bool_point_diff, UP_AT_HALF)
code
2013301/cell_12
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import numpy as np import pandas as pd pd.options.mode.chained_assignment = None DOWN_AT_HALF = -1 TIE_AT_HALF = 0 UP_AT_HALF = 1 df16 = pd.read_csv('../input/2016-17_teamBoxScore.csv') df17 = pd.read_csv('../input/2017-18_teamBoxScore.csv') df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr print(max_team) print(max_prob_winning_DOWN_at_half)
code
104127726/cell_4
[ "text_plain_output_1.png" ]
!nvidia-smi
code
104127726/cell_3
[ "text_plain_output_1.png" ]
# Installing requierd libraires !pip install --upgrade -q fastai !pip install timm -q !pip install albumentations==0.4.6 -q !pip install transformers -q
code
104127726/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') print(f'Using device: {device}')
code
1005555/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/911.csv') dataset[dataset['Category'] == 'Traffic']['Sub-Category'].value_counts().head(6)
code
1005555/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/911.csv') dataset['Category'].value_counts()
code
1005555/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/911.csv') dataset.info()
code
1005555/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/911.csv') dataset['title'].value_counts().head(5)
code
1005555/cell_11
[ "text_html_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/911.csv') dataset[dataset['Category'] == 'EMS']['Sub-Category'].value_counts().head(6)
code
1005555/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/911.csv') dataset['dayofweek'].value_counts()
code
1005555/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns dataset = pd.read_csv('../input/911.csv') sns.countplot('dayofweek', data=dataset)
code
1005555/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns dataset = pd.read_csv('../input/911.csv') sns.countplot('Category', data=dataset)
code
1005555/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns dataset = pd.read_csv('../input/911.csv') sns.countplot('timezone', data=dataset)
code
1005555/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/911.csv') dataset['title'].nunique()
code
1005555/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/911.csv') dataset[dataset['Category'] == 'Fire']['Sub-Category'].value_counts().head(6)
code
1005555/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/911.csv') dataset.head(5)
code
74060454/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import matplotlib.pyplot as plt import seaborn as sns house_df = pd.read_csv('../input/housesalesprediction/kc_house_data.csv') house_df.isnull().sum() house_df.drop(15870, inplace=True) plt.figure(figsize=(12, 10)) plt.scatter(house_df['sqft_living'], house_df['price'], color='green') plt.show()
code
74060454/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns house_df = pd.read_csv('../input/housesalesprediction/kc_house_data.csv') my_submission = pd.DataFrame({'Id': test.Id, 'SalePrice': predicted_prices}) my_submission.to_csv('submission.csv', index=False)
code
74060454/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns house_df = pd.read_csv('../input/housesalesprediction/kc_house_data.csv') house_df.isnull().sum() house_df.info()
code
74060454/cell_23
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.model_selection import train_test_split import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns house_df = pd.read_csv('../input/housesalesprediction/kc_house_data.csv') house_df.isnull().sum() house_df.drop(15870, inplace=True) from sklearn.model_selection import train_test_split y = house_df['price'] X = house_df[['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long', 'sqft_living15', 'sqft_lot15']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) from sklearn.linear_model import LinearRegression lr = LinearRegression(fit_intercept=True) lr.fit(X_train, y_train) pred = lr.predict(X_test) from sklearn.metrics import r2_score print('R^2:', r2_score(y_test, pred))
code
74060454/cell_2
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns house_df = pd.read_csv('../input/housesalesprediction/kc_house_data.csv') house_df.head()
code
74060454/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import matplotlib.pyplot as plt import seaborn as sns house_df = pd.read_csv('../input/housesalesprediction/kc_house_data.csv') house_df.isnull().sum() house_df.drop(15870, inplace=True) plt.figure(figsize=(12, 10)) plt.hist(x=house_df['floors']) plt.show()
code
74060454/cell_19
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import matplotlib.pyplot as plt import seaborn as sns house_df = pd.read_csv('../input/housesalesprediction/kc_house_data.csv') house_df.isnull().sum() house_df.drop(15870, inplace=True) from sklearn.model_selection import train_test_split y = house_df['price'] X = house_df[['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long', 'sqft_living15', 'sqft_lot15']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) from sklearn.linear_model import LinearRegression lr = LinearRegression(fit_intercept=True) lr.fit(X_train, y_train) pred = lr.predict(X_test) plt.figure(figsize=(21, 15), dpi=96) sns.set_theme(style='white') sns.jointplot(x=y_test, y=pred, kind='reg', line_kws={'color': 'red'}) plt.show()
code
74060454/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
74060454/cell_7
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import matplotlib.pyplot as plt import seaborn as sns house_df = pd.read_csv('../input/housesalesprediction/kc_house_data.csv') house_df.isnull().sum() plt.figure(figsize=(12, 10)) sns.scatterplot(x=house_df['bedrooms'], y=house_df['price'], color='teal') plt.show()
code
74060454/cell_18
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns house_df = pd.read_csv('../input/housesalesprediction/kc_house_data.csv') house_df.isnull().sum() house_df.drop(15870, inplace=True) from sklearn.model_selection import train_test_split y = house_df['price'] X = house_df[['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long', 'sqft_living15', 'sqft_lot15']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) from sklearn.linear_model import LinearRegression lr = LinearRegression(fit_intercept=True) lr.fit(X_train, y_train) pred = lr.predict(X_test) train_score = lr.score(X_train, y_train) print(f'Train score of trained model: {train_score * 100}') test_score = lr.score(X_test, y_test) print(f'Test score of trained model: {test_score * 100}')
code
74060454/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns house_df = pd.read_csv('../input/housesalesprediction/kc_house_data.csv') house_df.isnull().sum() house_df[house_df['bedrooms'] > 30]
code
74060454/cell_16
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns house_df = pd.read_csv('../input/housesalesprediction/kc_house_data.csv') house_df.isnull().sum() house_df.drop(15870, inplace=True) from sklearn.model_selection import train_test_split y = house_df['price'] X = house_df[['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long', 'sqft_living15', 'sqft_lot15']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) from sklearn.linear_model import LinearRegression lr = LinearRegression(fit_intercept=True) lr.fit(X_train, y_train)
code
74060454/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns house_df = pd.read_csv('../input/housesalesprediction/kc_house_data.csv') house_df.isnull().sum()
code
74060454/cell_24
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import sklearn.metrics as m import matplotlib.pyplot as plt import seaborn as sns house_df = pd.read_csv('../input/housesalesprediction/kc_house_data.csv') house_df.isnull().sum() house_df.drop(15870, inplace=True) from sklearn.model_selection import train_test_split y = house_df['price'] X = house_df[['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long', 'sqft_living15', 'sqft_lot15']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) from sklearn.linear_model import LinearRegression lr = LinearRegression(fit_intercept=True) lr.fit(X_train, y_train) pred = lr.predict(X_test) import sklearn.metrics as m n = X_test.shape[0] p = X_test.shape[1] - 1 R2 = m.r2_score(y_test, pred) adj_rsquared = 1 - (1 - R2) * ((n - 1) / (n - p - 1)) print('Adjusted R Squared: {}'.format(adj_rsquared))
code
74060454/cell_14
[ "image_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns house_df = pd.read_csv('../input/housesalesprediction/kc_house_data.csv') house_df.isnull().sum() house_df.drop(15870, inplace=True) from sklearn.model_selection import train_test_split y = house_df['price'] X = house_df[['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long', 'sqft_living15', 'sqft_lot15']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) print(f'Total # of sample in whole dataset: {len(X)}') print('*****' * 10) print(f'Total # of sample in train dataset: {len(X_train)}') print(f'Shape of X_train: {X_train.shape}') print('*****' * 10) print(f'Total # of sample in test dataset: {len(X_test)}') print(f'Shape of X_test: {X_test.shape}')
code
74060454/cell_22
[ "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error,mean_absolute_error from sklearn.model_selection import train_test_split import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns house_df = pd.read_csv('../input/housesalesprediction/kc_house_data.csv') house_df.isnull().sum() house_df.drop(15870, inplace=True) from sklearn.model_selection import train_test_split y = house_df['price'] X = house_df[['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode', 'lat', 'long', 'sqft_living15', 'sqft_lot15']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) from sklearn.linear_model import LinearRegression lr = LinearRegression(fit_intercept=True) lr.fit(X_train, y_train) pred = lr.predict(X_test) import sklearn.metrics from sklearn.metrics import mean_squared_error, mean_absolute_error print('Mean Squared Error:', mean_squared_error(y_test, pred)) print() print('Root Mean Squared Error:', np.sqrt(mean_squared_error(y_test, pred))) print() print('Mean Absolute Error:', mean_absolute_error(y_test, pred)) print() print('Mean Absolute Percentage Error:', np.mean(np.abs((y_test - pred) / y_test)) * 100)
code
74060454/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import matplotlib.pyplot as plt import seaborn as sns house_df = pd.read_csv('../input/housesalesprediction/kc_house_data.csv') house_df.isnull().sum() house_df.drop(15870, inplace=True) plt.figure(figsize=(12, 10)) sns.barplot(x=house_df['bedrooms'], y=house_df['price'], color='teal') plt.show()
code
74060454/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import matplotlib.pyplot as plt import seaborn as sns house_df = pd.read_csv('../input/housesalesprediction/kc_house_data.csv') house_df.isnull().sum() house_df.drop(15870, inplace=True) plt.figure(figsize=(12, 10)) sns.barplot(x=house_df['bathrooms'], y=house_df['price'], color='olive') plt.show()
code
74060454/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns house_df = pd.read_csv('../input/housesalesprediction/kc_house_data.csv') house_df.isnull().sum() house_df.describe()
code
128049389/cell_9
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedKFold from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler import numpy as np import numpy as np import pandas as pd import pandas as pd import pandas as pd import tensorflow as tf df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') df_train = df_train.drop('id', axis=1) df_test = df_test.drop('id', axis=1) df_train['prognosis'] = pd.Categorical(df_train['prognosis']) X_train = df_train.drop('prognosis', axis=1) y_train = df_train['prognosis'] scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(df_test) X_train, X_val, y_train, y_val = train_test_split(X_train_scaled, y_train, test_size=0.2, random_state=42) params = {'n_estimators': [100, 200, 300], 'max_depth': [5, 10, 15, None], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4]} rf = RandomForestClassifier(random_state=42) skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) grid_search = GridSearchCV(rf, params, cv=skf, n_jobs=-1, verbose=2) grid_search.fit(X_train, y_train) best_params = grid_search.best_params_ best_score = grid_search.best_score_ y_pred_val = grid_search.predict(X_val) acc_score_val = accuracy_score(y_val, y_pred_val) class_report = classification_report(y_val, y_pred_val) import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report from sklearn.model_selection import GridSearchCV df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') le = LabelEncoder() df_train['prognosis'] = le.fit_transform(df_train['prognosis']) X_train, X_val, y_train, y_val = train_test_split(df_train.drop(['id', 'prognosis'], axis=1), df_train['prognosis'], test_size=0.2, random_state=42) rfc = RandomForestClassifier(random_state=42) rfc.fit(X_train, y_train) y_pred_val = rfc.predict(X_val) acc_score_val = accuracy_score(y_val, y_pred_val) prec_score_val = precision_score(y_val, y_pred_val, average='weighted') rec_score_val = recall_score(y_val, y_pred_val, average='weighted') f1_score_val = f1_score(y_val, y_pred_val, average='weighted') class_report_val = classification_report(y_val, y_pred_val) param_grid = {'n_estimators': [10, 50, 100, 200], 'max_depth': [None, 10, 20, 30], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4]} grid_search = GridSearchCV(estimator=rfc, param_grid=param_grid, cv=5) grid_search.fit(X_train, y_train) rfc_final = grid_search.best_estimator_ rfc_final.fit(df_train.drop(['id', 'prognosis'], axis=1), df_train['prognosis']) y_pred_test = rfc_final.predict(df_test.drop(['id'], axis=1)) submission_df = pd.DataFrame({'id': df_test['id'], 'prognosis': le.inverse_transform(y_pred_test)}) submission_df import pandas as pd import numpy as np import tensorflow as tf from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') le = LabelEncoder() df_train['prognosis'] = le.fit_transform(df_train['prognosis']) X_train, X_val, y_train, y_val = train_test_split(df_train.drop(['id', 'prognosis'], axis=1), df_train['prognosis'], test_size=0.2, random_state=42) model = tf.keras.Sequential([tf.keras.layers.Dense(128, input_shape=(X_train.shape[1],), activation='relu'), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(11, activation='softmax')]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(X_train, y_train, epochs=50, batch_size=32, validation_data=(X_val, y_val)) y_pred_val = model.predict(X_val) y_pred_val = np.argmax(y_pred_val, axis=1) acc_score_val = accuracy_score(y_val, y_pred_val) prec_score_val = precision_score(y_val, y_pred_val, average='weighted') rec_score_val = recall_score(y_val, y_pred_val, average='weighted') f1_score_val = f1_score(y_val, y_pred_val, average='weighted') class_report_val = classification_report(y_val, y_pred_val) print('Validation Accuracy Score:', acc_score_val) print('Validation Precision Score:', prec_score_val) print('Validation Recall Score:', rec_score_val) print('Validation F1 Score:', f1_score_val) print('Validation Classification Report:\n', class_report_val) X_test = df_test.drop(['id'], axis=1) y_pred_test = model.predict(X_test) y_pred_test = le.inverse_transform(np.argmax(y_pred_test, axis=1)) df_submission = pd.DataFrame({'id': df_test['id'], 'prognosis': y_pred_test}) df_submission.to_csv('submission.csv', index=False)
code
128049389/cell_4
[ "text_html_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') df_test
code
128049389/cell_6
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedKFold from sklearn.preprocessing import StandardScaler import pandas as pd df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') df_train = df_train.drop('id', axis=1) df_test = df_test.drop('id', axis=1) df_train['prognosis'] = pd.Categorical(df_train['prognosis']) X_train = df_train.drop('prognosis', axis=1) y_train = df_train['prognosis'] scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(df_test) X_train, X_val, y_train, y_val = train_test_split(X_train_scaled, y_train, test_size=0.2, random_state=42) params = {'n_estimators': [100, 200, 300], 'max_depth': [5, 10, 15, None], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4]} rf = RandomForestClassifier(random_state=42) skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) grid_search = GridSearchCV(rf, params, cv=skf, n_jobs=-1, verbose=2) grid_search.fit(X_train, y_train) best_params = grid_search.best_params_ best_score = grid_search.best_score_ print('Best Hyperparameters: ', best_params) print('Best Accuracy Score: ', best_score)
code
128049389/cell_1
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import os import pandas as pd import numpy as np from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedKFold from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
128049389/cell_7
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedKFold from sklearn.preprocessing import StandardScaler import pandas as pd df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') df_train = df_train.drop('id', axis=1) df_test = df_test.drop('id', axis=1) df_train['prognosis'] = pd.Categorical(df_train['prognosis']) X_train = df_train.drop('prognosis', axis=1) y_train = df_train['prognosis'] scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(df_test) X_train, X_val, y_train, y_val = train_test_split(X_train_scaled, y_train, test_size=0.2, random_state=42) params = {'n_estimators': [100, 200, 300], 'max_depth': [5, 10, 15, None], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4]} rf = RandomForestClassifier(random_state=42) skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) grid_search = GridSearchCV(rf, params, cv=skf, n_jobs=-1, verbose=2) grid_search.fit(X_train, y_train) best_params = grid_search.best_params_ best_score = grid_search.best_score_ y_pred_val = grid_search.predict(X_val) acc_score_val = accuracy_score(y_val, y_pred_val) print('Validation Accuracy Score:', acc_score_val) class_report = classification_report(y_val, y_pred_val) print(class_report)
code
128049389/cell_8
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedKFold from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler import pandas as pd import pandas as pd df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') df_train = df_train.drop('id', axis=1) df_test = df_test.drop('id', axis=1) df_train['prognosis'] = pd.Categorical(df_train['prognosis']) X_train = df_train.drop('prognosis', axis=1) y_train = df_train['prognosis'] scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(df_test) X_train, X_val, y_train, y_val = train_test_split(X_train_scaled, y_train, test_size=0.2, random_state=42) params = {'n_estimators': [100, 200, 300], 'max_depth': [5, 10, 15, None], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4]} rf = RandomForestClassifier(random_state=42) skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) grid_search = GridSearchCV(rf, params, cv=skf, n_jobs=-1, verbose=2) grid_search.fit(X_train, y_train) best_params = grid_search.best_params_ best_score = grid_search.best_score_ y_pred_val = grid_search.predict(X_val) acc_score_val = accuracy_score(y_val, y_pred_val) class_report = classification_report(y_val, y_pred_val) import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, classification_report from sklearn.model_selection import GridSearchCV df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') le = LabelEncoder() df_train['prognosis'] = le.fit_transform(df_train['prognosis']) X_train, X_val, y_train, y_val = train_test_split(df_train.drop(['id', 'prognosis'], axis=1), df_train['prognosis'], test_size=0.2, random_state=42) rfc = RandomForestClassifier(random_state=42) rfc.fit(X_train, y_train) y_pred_val = rfc.predict(X_val) acc_score_val = accuracy_score(y_val, y_pred_val) prec_score_val = precision_score(y_val, y_pred_val, average='weighted') rec_score_val = recall_score(y_val, y_pred_val, average='weighted') f1_score_val = f1_score(y_val, y_pred_val, average='weighted') class_report_val = classification_report(y_val, y_pred_val) print('Validation Accuracy Score:', acc_score_val) print('Validation Precision Score:', prec_score_val) print('Validation Recall Score:', rec_score_val) print('Validation F1 Score:', f1_score_val) print('Validation Classification Report:\n', class_report_val) param_grid = {'n_estimators': [10, 50, 100, 200], 'max_depth': [None, 10, 20, 30], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4]} grid_search = GridSearchCV(estimator=rfc, param_grid=param_grid, cv=5) grid_search.fit(X_train, y_train) rfc_final = grid_search.best_estimator_ rfc_final.fit(df_train.drop(['id', 'prognosis'], axis=1), df_train['prognosis']) y_pred_test = rfc_final.predict(df_test.drop(['id'], axis=1)) submission_df = pd.DataFrame({'id': df_test['id'], 'prognosis': le.inverse_transform(y_pred_test)}) submission_df
code
128049389/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') df_train.info()
code
128049389/cell_5
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedKFold from sklearn.preprocessing import StandardScaler import pandas as pd df_train = pd.read_csv('/kaggle/input/playground-series-s3e13/train.csv') df_test = pd.read_csv('/kaggle/input/playground-series-s3e13/test.csv') print(df_train.isnull().sum()) df_train = df_train.drop('id', axis=1) df_test = df_test.drop('id', axis=1) df_train['prognosis'] = pd.Categorical(df_train['prognosis']) X_train = df_train.drop('prognosis', axis=1) y_train = df_train['prognosis'] scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(df_test) X_train, X_val, y_train, y_val = train_test_split(X_train_scaled, y_train, test_size=0.2, random_state=42)
code
2008965/cell_4
[ "text_plain_output_1.png" ]
child_happiness = np.full((n_gift_type, n_children), -1 * multiplier, dtype=np.int16) gift_happiness = np.full((n_gift_type, n_children), -1, dtype=np.int16) to_add = (np.arange(n_gift_pref, 0, -1) * ratio_child_happiness + 1) * int(multiplier) for child, wishlist in tqdm(enumerate(child_wishlists)): child_happiness[wishlist, child] += to_add to_add = np.arange(n_child_pref, 0, -1) * ratio_gift_happiness + 1 for gift, goodkids in tqdm(enumerate(gift_goodkids)): gift_happiness[gift, goodkids] += to_add
code
2008965/cell_8
[ "text_plain_output_1.png" ]
children, gifts = zip(*random_sub) for _ in range(100): score = avg_normalized_happiness(children, gifts) print('ANH', score)
code
2008965/cell_12
[ "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
for _ in range(100): score = avg_normalized_happiness(random_sub) print('ANH', score)
code
73092218/cell_13
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_squared_error from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split import numpy as np import pandas as pd import xgboost as xgb train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) sub = pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv') y = train.target X_all = pd.get_dummies(train.drop(['target'], axis=1).append(test)).copy() X, X_test = (X_all[:300000], X_all[300000:]) from sklearn.model_selection import train_test_split X_train, X_valid, y_train, y_valid = train_test_split(X[:5000], y[:5000], test_size=0.2, random_state=42) import xgboost as xgb from sklearn.model_selection import GridSearchCV params = {'max_depth': [2], 'gamma': [0], 'eta': [0], 'subsample': [0.8], 'colsample_bytree': [0.8], 'colsample_bylevel': [1.0], 'n_estimators': [1200]} model = xgb.XGBRFRegressor(eval_metric='rmse', random_state=42, verbosity=1) cv = GridSearchCV(model, params, cv=5) cv.fit(X_train, y_train) cv.best_estimator_ y_train_pred = cv.predict(X_train) y_valid_pred = cv.predict(X_valid) from sklearn.metrics import mean_squared_error print('RMSE train : %.4f, valid : %.4f' % (np.sqrt(mean_squared_error(y_train, y_train_pred)), np.sqrt(mean_squared_error(y_valid, y_valid_pred))))
code
73092218/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) sub = pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv') test.info()
code
73092218/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) sub = pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv') y = train.target X_all = pd.get_dummies(train.drop(['target'], axis=1).append(test)).copy() X, X_test = (X_all[:300000], X_all[300000:]) print(X.shape, y.shape, X_test.shape)
code
73092218/cell_11
[ "text_plain_output_1.png" ]
from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split import pandas as pd import xgboost as xgb train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) sub = pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv') y = train.target X_all = pd.get_dummies(train.drop(['target'], axis=1).append(test)).copy() X, X_test = (X_all[:300000], X_all[300000:]) from sklearn.model_selection import train_test_split X_train, X_valid, y_train, y_valid = train_test_split(X[:5000], y[:5000], test_size=0.2, random_state=42) import xgboost as xgb from sklearn.model_selection import GridSearchCV params = {'max_depth': [2], 'gamma': [0], 'eta': [0], 'subsample': [0.8], 'colsample_bytree': [0.8], 'colsample_bylevel': [1.0], 'n_estimators': [1200]} model = xgb.XGBRFRegressor(eval_metric='rmse', random_state=42, verbosity=1) cv = GridSearchCV(model, params, cv=5) cv.fit(X_train, y_train) cv.best_estimator_
code
73092218/cell_8
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) sub = pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv') y = train.target X_all = pd.get_dummies(train.drop(['target'], axis=1).append(test)).copy() X, X_test = (X_all[:300000], X_all[300000:]) from sklearn.model_selection import train_test_split X_train, X_valid, y_train, y_valid = train_test_split(X[:5000], y[:5000], test_size=0.2, random_state=42) print(X_train.shape, y_train.shape, X_valid.shape, y_valid.shape)
code
73092218/cell_16
[ "text_plain_output_1.png" ]
from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split import pandas as pd import xgboost as xgb train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) sub = pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv') y = train.target X_all = pd.get_dummies(train.drop(['target'], axis=1).append(test)).copy() X, X_test = (X_all[:300000], X_all[300000:]) from sklearn.model_selection import train_test_split X_train, X_valid, y_train, y_valid = train_test_split(X[:5000], y[:5000], test_size=0.2, random_state=42) import xgboost as xgb from sklearn.model_selection import GridSearchCV params = {'max_depth': [2], 'gamma': [0], 'eta': [0], 'subsample': [0.8], 'colsample_bytree': [0.8], 'colsample_bylevel': [1.0], 'n_estimators': [1200]} model = xgb.XGBRFRegressor(eval_metric='rmse', random_state=42, verbosity=1) cv = GridSearchCV(model, params, cv=5) cv.fit(X_train, y_train) cv.best_estimator_ y_train_pred = cv.predict(X_train) y_valid_pred = cv.predict(X_valid) cv.fit(X, y) pred = cv.predict(X_test) sub['target'] = pred sub.to_csv('submission.csv', index=False) print(sub)
code
73092218/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) sub = pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv') train.info()
code
73092218/cell_14
[ "text_plain_output_1.png" ]
from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split import pandas as pd import xgboost as xgb train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) sub = pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv') y = train.target X_all = pd.get_dummies(train.drop(['target'], axis=1).append(test)).copy() X, X_test = (X_all[:300000], X_all[300000:]) from sklearn.model_selection import train_test_split X_train, X_valid, y_train, y_valid = train_test_split(X[:5000], y[:5000], test_size=0.2, random_state=42) import xgboost as xgb from sklearn.model_selection import GridSearchCV params = {'max_depth': [2], 'gamma': [0], 'eta': [0], 'subsample': [0.8], 'colsample_bytree': [0.8], 'colsample_bylevel': [1.0], 'n_estimators': [1200]} model = xgb.XGBRFRegressor(eval_metric='rmse', random_state=42, verbosity=1) cv = GridSearchCV(model, params, cv=5) cv.fit(X_train, y_train) cv.best_estimator_ y_train_pred = cv.predict(X_train) y_valid_pred = cv.predict(X_valid) cv.fit(X, y)
code
73092218/cell_10
[ "text_plain_output_1.png" ]
from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split import pandas as pd import xgboost as xgb train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) sub = pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv') y = train.target X_all = pd.get_dummies(train.drop(['target'], axis=1).append(test)).copy() X, X_test = (X_all[:300000], X_all[300000:]) from sklearn.model_selection import train_test_split X_train, X_valid, y_train, y_valid = train_test_split(X[:5000], y[:5000], test_size=0.2, random_state=42) import xgboost as xgb from sklearn.model_selection import GridSearchCV params = {'max_depth': [2], 'gamma': [0], 'eta': [0], 'subsample': [0.8], 'colsample_bytree': [0.8], 'colsample_bylevel': [1.0], 'n_estimators': [1200]} model = xgb.XGBRFRegressor(eval_metric='rmse', random_state=42, verbosity=1) cv = GridSearchCV(model, params, cv=5) cv.fit(X_train, y_train)
code
73092218/cell_12
[ "text_plain_output_1.png" ]
from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split import pandas as pd import xgboost as xgb train = pd.read_csv('../input/30-days-of-ml/train.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) sub = pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv') y = train.target X_all = pd.get_dummies(train.drop(['target'], axis=1).append(test)).copy() X, X_test = (X_all[:300000], X_all[300000:]) from sklearn.model_selection import train_test_split X_train, X_valid, y_train, y_valid = train_test_split(X[:5000], y[:5000], test_size=0.2, random_state=42) import xgboost as xgb from sklearn.model_selection import GridSearchCV params = {'max_depth': [2], 'gamma': [0], 'eta': [0], 'subsample': [0.8], 'colsample_bytree': [0.8], 'colsample_bylevel': [1.0], 'n_estimators': [1200]} model = xgb.XGBRFRegressor(eval_metric='rmse', random_state=42, verbosity=1) cv = GridSearchCV(model, params, cv=5) cv.fit(X_train, y_train) cv.best_estimator_ y_train_pred = cv.predict(X_train) y_valid_pred = cv.predict(X_valid) print(len(y_train_pred), len(y_valid_pred))
code
72078585/cell_4
[ "text_html_output_1.png" ]
import pandas as pd df_train = pd.read_csv('../input/tabulardata-kfolds-created/train_folds.csv') df_test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv') sample_submission = pd.read_csv('../input/tabular-playground-series-aug-2021/sample_submission.csv') useful_features = [c for c in df_train.columns if c not in ('id', 'loss', 'kfold')] df_train[useful_features]
code
72078585/cell_6
[ "text_plain_output_1.png" ]
from sklearn.metrics import mean_squared_error from xgboost import XGBRegressor import pandas as pd df_train = pd.read_csv('../input/tabulardata-kfolds-created/train_folds.csv') df_test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv') sample_submission = pd.read_csv('../input/tabular-playground-series-aug-2021/sample_submission.csv') useful_features = [c for c in df_train.columns if c not in ('id', 'loss', 'kfold')] df_train[useful_features] from xgboost import XGBRegressor xtrain = df_train[df_train.kfold != 0] xvalid = df_train[df_train.kfold == 0] ytrain = xtrain['loss'] xtrain = xtrain[useful_features] yvalid = xvalid['loss'] xvalid = xvalid[useful_features] model = XGBRegressor(n_estimators=500, random_state=0) model.fit(xtrain, ytrain, early_stopping_rounds=5, eval_set=[(xvalid, yvalid)], verbose=False) preds_valid = model.predict(xvalid) print(mean_squared_error(yvalid, preds_valid, squared=False))
code
72078585/cell_3
[ "text_html_output_1.png" ]
import pandas as pd df_train = pd.read_csv('../input/tabulardata-kfolds-created/train_folds.csv') df_test = pd.read_csv('../input/tabular-playground-series-aug-2021/test.csv') sample_submission = pd.read_csv('../input/tabular-playground-series-aug-2021/sample_submission.csv') sample_submission.head()
code
1006593/cell_13
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd dataset = pd.read_csv('../input/train.csv') X = dataset.iloc[:, [4, 2, 6, 5]].values y = dataset.iloc[:, 1].values from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np fig = plt.figure() fig.set_size_inches(98.5, 90.5) ax = fig.add_subplot(999, projection='3d') i=0 for g , xs ,ys , zs in X: c = y[i] i +=1 if c == 1: cc='blue' #servive else: cc='yellow' #died if g == 1: m = "^" # male else: m = "v" #famle ax.scatter(xs, ys, zs , c=cc , marker=m) ax.set_xlabel('class') ax.set_ylabel('sibsp') ax.set_zlabel('age') plt.show() from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) from sklearn.neighbors import KNeighborsClassifier classifier = KNeighborsClassifier(n_neighbors=4, metric='minkowski', p=2) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) fig = plt.figure() fig.set_size_inches(98.5, 90.5) ax = fig.add_subplot(999, projection='3d') i = 0 for g, xs, ys, zs in X_test: c = y_test[i] if c == 1: cc = 'blue' else: cc = 'red' if g == 1: m = '^' else: m = 'v' if y_pred[i] == y_test[i]: if y_pred[i] == 1: cc = 'green' else: cc = 'yellow' m = '+' i += 1 ax.scatter(xs, ys, zs, c=cc, marker=m) ax.set_xlabel('class') ax.set_ylabel('sibsp') ax.set_zlabel('age') plt.show()
code
1006593/cell_20
[ "text_plain_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd dataset = pd.read_csv('../input/train.csv') X = dataset.iloc[:, [4, 2, 6, 5]].values y = dataset.iloc[:, 1].values from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np fig = plt.figure() fig.set_size_inches(98.5, 90.5) ax = fig.add_subplot(999, projection='3d') i=0 for g , xs ,ys , zs in X: c = y[i] i +=1 if c == 1: cc='blue' #servive else: cc='yellow' #died if g == 1: m = "^" # male else: m = "v" #famle ax.scatter(xs, ys, zs , c=cc , marker=m) ax.set_xlabel('class') ax.set_ylabel('sibsp') ax.set_zlabel('age') plt.show() from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) from sklearn.neighbors import KNeighborsClassifier classifier = KNeighborsClassifier(n_neighbors=4, metric='minkowski', p=2) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) fig = plt.figure() fig.set_size_inches(98.5, 90.5) ax = fig.add_subplot(999, projection='3d') i=0 for g , xs ,ys , zs in X_test: c = y_test[i] if c == 1: cc='blue' #servive else: cc='red' #died if g == 1: m = "^" # male else: m = "v" #famle if y_pred[i] == y_test[i]: if y_pred[i] == 1: cc = 'green' else: cc = 'yellow' m = "+" i +=1 ax.scatter(xs, ys, zs , c=cc , marker=m ) ax.set_xlabel('class') ax.set_ylabel('sibsp') ax.set_zlabel('age') plt.show() realdata = pd.read_csv('../input/test.csv') X_real = realdata.iloc[:, [3, 1, 5, 4]].values X_real from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_real = sc.fit_transform(X_real) y_real_pred = classifier.predict(X_real) fig = plt.figure() fig.set_size_inches(98.5, 90.5) ax = fig.add_subplot(999, projection='3d') i = 0 for g, xs, ys, zs in X_real: c = y_real_pred[i] if c == 1: cc = 'blue' else: cc = 'red' if g == 1: m = '^' else: m = 'v' i += 1 ax.scatter(xs, ys, zs, c=cc, marker=m) ax.set_xlabel('class') ax.set_ylabel('sibsp') ax.set_zlabel('age') plt.show()
code
1006593/cell_19
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler import pandas as pd dataset = pd.read_csv('../input/train.csv') X = dataset.iloc[:, [4, 2, 6, 5]].values y = dataset.iloc[:, 1].values from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) realdata = pd.read_csv('../input/test.csv') X_real = realdata.iloc[:, [3, 1, 5, 4]].values X_real from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_real = sc.fit_transform(X_real)
code
1006593/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd dataset = pd.read_csv('../input/train.csv') X = dataset.iloc[:, [4, 2, 6, 5]].values y = dataset.iloc[:, 1].values from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np fig = plt.figure() fig.set_size_inches(98.5, 90.5) ax = fig.add_subplot(999, projection='3d') i = 0 for g, xs, ys, zs in X: c = y[i] i += 1 if c == 1: cc = 'blue' else: cc = 'yellow' if g == 1: m = '^' else: m = 'v' ax.scatter(xs, ys, zs, c=cc, marker=m) ax.set_xlabel('class') ax.set_ylabel('sibsp') ax.set_zlabel('age') plt.show()
code
1006593/cell_8
[ "image_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import pandas as pd dataset = pd.read_csv('../input/train.csv') X = dataset.iloc[:, [4, 2, 6, 5]].values y = dataset.iloc[:, 1].values from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test)
code
1006593/cell_16
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/train.csv') realdata = pd.read_csv('../input/test.csv') X_real = realdata.iloc[:, [3, 1, 5, 4]].values X_real
code
1006593/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/train.csv') dataset.head()
code
1006593/cell_17
[ "image_output_1.png" ]
from sklearn.preprocessing import Imputer from sklearn.preprocessing import Imputer import pandas as pd dataset = pd.read_csv('../input/train.csv') X = dataset.iloc[:, [4, 2, 6, 5]].values y = dataset.iloc[:, 1].values from sklearn.preprocessing import Imputer imputer = Imputer(missing_values='NaN', strategy='mean', axis=0) imputer = imputer.fit(X[:, 1:]) X[:, 1:] = imputer.transform(X[:, 1:]) realdata = pd.read_csv('../input/test.csv') X_real = realdata.iloc[:, [3, 1, 5, 4]].values X_real from sklearn.preprocessing import Imputer imputer = Imputer(missing_values='NaN', strategy='mean', axis=0) imputer = imputer.fit(X_real[:, 1:]) X_real[:, 1:] = imputer.transform(X_real[:, 1:]) X_real
code
1006593/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd dataset = pd.read_csv('../input/train.csv') realdata = pd.read_csv('../input/test.csv') realdata.head()
code
1006593/cell_10
[ "text_html_output_1.png" ]
from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler import pandas as pd dataset = pd.read_csv('../input/train.csv') X = dataset.iloc[:, [4, 2, 6, 5]].values y = dataset.iloc[:, 1].values from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) from sklearn.neighbors import KNeighborsClassifier classifier = KNeighborsClassifier(n_neighbors=4, metric='minkowski', p=2) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) cm
code
1006593/cell_12
[ "image_output_1.png" ]
from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import matplotlib.pyplot as plt import pandas as pd dataset = pd.read_csv('../input/train.csv') X = dataset.iloc[:, [4, 2, 6, 5]].values y = dataset.iloc[:, 1].values from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np fig = plt.figure() fig.set_size_inches(98.5, 90.5) ax = fig.add_subplot(999, projection='3d') i=0 for g , xs ,ys , zs in X: c = y[i] i +=1 if c == 1: cc='blue' #servive else: cc='yellow' #died if g == 1: m = "^" # male else: m = "v" #famle ax.scatter(xs, ys, zs , c=cc , marker=m) ax.set_xlabel('class') ax.set_ylabel('sibsp') ax.set_zlabel('age') plt.show() from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) from sklearn.neighbors import KNeighborsClassifier classifier = KNeighborsClassifier(n_neighbors=4, metric='minkowski', p=2) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) def getscore(orgin, predicted): score = len(orgin) j = 0 for i in predicted: if i == orgin[j]: j += 1 else: score -= 1 j += 1 result = score / float(len(orgin)) * 100 result = str(result) return result + '%' getscore(y_test, y_pred)
code
49124799/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/hackerearth-love-in-the-time-of-screens/data.csv') df.drop(columns=['user_id', 'username'], inplace=True) df.shape lan = [] for i in df['language']: l = i.split(',') for j in l: if j not in lan: lan.append(j) XX = {} for i in lan: l = [] for j in df['language']: if i in j.split(','): l.append(1) else: l.append(0) XX[i] = l len(XX['english'])
code
49124799/cell_9
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/hackerearth-love-in-the-time-of-screens/data.csv') df.drop(columns=['user_id', 'username'], inplace=True) df.shape
code
49124799/cell_34
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/hackerearth-love-in-the-time-of-screens/data.csv') data = pd.DataFrame() data.head()
code
49124799/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/hackerearth-love-in-the-time-of-screens/data.csv') df.drop(columns=['user_id', 'username'], inplace=True) df.shape df.drop(columns=['language', 'bio'], inplace=True) df.shape a = df.dtypes df.shape
code
49124799/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/hackerearth-love-in-the-time-of-screens/data.csv') df.drop(columns=['user_id', 'username'], inplace=True) df.shape df.drop(columns=['language', 'bio'], inplace=True) df.shape a = df.dtypes df.head()
code
49124799/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/hackerearth-love-in-the-time-of-screens/data.csv') df.drop(columns=['user_id', 'username'], inplace=True) df.head()
code
49124799/cell_29
[ "text_plain_output_1.png" ]
from sklearn.metrics.pairwise import cosine_similarity import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/hackerearth-love-in-the-time-of-screens/data.csv') df.drop(columns=['user_id', 'username'], inplace=True) df.shape lan = [] for i in df['language']: l = i.split(',') for j in l: if j not in lan: lan.append(j) XX = {} for i in lan: l = [] for j in df['language']: if i in j.split(','): l.append(1) else: l.append(0) XX[i] = l df.drop(columns=['language', 'bio'], inplace=True) df.shape a = df.dtypes df.shape X = df.values X.shape ans = [] for i in X: l = [] for j in X: l.append(cosine_similarity([i], [j]) * 100) ans.append(l) ans[1][0][0][0]
code
49124799/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/hackerearth-love-in-the-time-of-screens/data.csv') df.drop(columns=['user_id', 'username'], inplace=True) df.shape df.drop(columns=['language', 'bio'], inplace=True) df.shape a = df.dtypes df.shape X = df.values X.shape
code
49124799/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/hackerearth-love-in-the-time-of-screens/data.csv') df.drop(columns=['user_id', 'username'], inplace=True) df.shape lan = [] for i in df['language']: l = i.split(',') for j in l: if j not in lan: lan.append(j) print(len(lan))
code
49124799/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code