path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
49124799/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/hackerearth-love-in-the-time-of-screens/data.csv') df.drop(columns=['user_id', 'username'], inplace=True) for i in df: print(i, df[i].isna().sum())
code
49124799/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/hackerearth-love-in-the-time-of-screens/data.csv') df.drop(columns=['user_id', 'username'], inplace=True) df.shape df.drop(columns=['language', 'bio'], inplace=True) df.shape a = df.dtypes for i in a: print(a[0])
code
49124799/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/hackerearth-love-in-the-time-of-screens/data.csv') df.drop(columns=['user_id', 'username'], inplace=True) len(df['language'].value_counts())
code
49124799/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/hackerearth-love-in-the-time-of-screens/data.csv') df.drop(columns=['user_id', 'username'], inplace=True) df.shape df.drop(columns=['language', 'bio'], inplace=True) df.shape
code
49124799/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/hackerearth-love-in-the-time-of-screens/data.csv') df.head()
code
49124799/cell_35
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/hackerearth-love-in-the-time-of-screens/data.csv') data = pd.DataFrame() data.shape
code
49124799/cell_31
[ "text_html_output_1.png" ]
from sklearn.metrics.pairwise import cosine_similarity import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/hackerearth-love-in-the-time-of-screens/data.csv') df.drop(columns=['user_id', 'username'], inplace=True) df.shape lan = [] for i in df['language']: l = i.split(',') for j in l: if j not in lan: lan.append(j) XX = {} for i in lan: l = [] for j in df['language']: if i in j.split(','): l.append(1) else: l.append(0) XX[i] = l df.drop(columns=['language', 'bio'], inplace=True) df.shape a = df.dtypes df.shape X = df.values X.shape ans = [] for i in X: l = [] for j in X: l.append(cosine_similarity([i], [j]) * 100) ans.append(l) a = [] for i in ans: l = [] for j in i: l.append(j[0][0]) a.append(l) a[:2]
code
49124799/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/hackerearth-love-in-the-time-of-screens/data.csv') df.drop(columns=['user_id', 'username'], inplace=True) df.shape df.drop(columns=['language', 'bio'], inplace=True) df.shape a = df.dtypes df.head()
code
49124799/cell_37
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/hackerearth-love-in-the-time-of-screens/data.csv') user_id = df['user_id'] data = pd.DataFrame() data.shape data.set_index(user_id, inplace=True) data.head()
code
2000829/cell_9
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = train.drop(['PassengerId', 'Parch', 'Ticket', 'Cabin', 'Embarked'], axis=1) test = test.drop(['Parch', 'Ticket', 'Cabin', 'Embarked'], axis=1) combine = [train, test] for dataset in combine: dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\\.', expand=False) for dataset in combine: dataset['Title'] = dataset['Title'].replace(['Lady', 'Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Jonkheer', 'Dona'], 'Rare') dataset['Title'] = dataset['Title'].replace(['Countess', 'Lady', 'Sir'], 'Royal') dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs') title_mapping = {'Mr': 1, 'Miss': 2, 'Mrs': 3, 'Master': 4, 'Royal': 5, 'Rare': 6} for dataset in combine: dataset['Title'] = dataset['Title'].map(title_mapping) dataset['Title'] = dataset['Title'].fillna(0) train['Age'] = train['Age'].fillna(-0.5) test['Age'] = test['Age'].fillna(-0.5) bins = [-1, 0, 5, 12, 18, 24, 35, 60, np.inf] labels = ['Unknown', 'Baby', 'Child', 'Teenager', 'Student', 'Young Adult', 'Adult', 'Senior'] train['AgeGroup'] = pd.cut(train['Age'], bins, labels=labels) test['AgeGroup'] = pd.cut(test['Age'], bins, labels=labels) mr_age = train[train['Title'] == 1]['AgeGroup'].mode() miss_age = train[train['Title'] == 2]['AgeGroup'].mode() mrs_age = train[train['Title'] == 3]['AgeGroup'].mode() master_age = train[train['Title'] == 4]['AgeGroup'].mode() royal_age = train[train['Title'] == 5]['AgeGroup'].mode() rare_age = train[train['Title'] == 6]['AgeGroup'].mode() age_title_mapping = {1: 'Young Adult', 2: 'Student', 3: 'Adult', 4: 'Baby', 5: 'Adult', 6: 'Adult'} for x in range(len(train['AgeGroup'])): if train['AgeGroup'][x] == 'Unknown': train['AgeGroup'][x] = age_title_mapping[train['Title'][x]] for x in range(len(test['AgeGroup'])): if test['AgeGroup'][x] == 'Unknown': test['AgeGroup'][x] = age_title_mapping[test['Title'][x]] age_mapping = {'Baby': 1, 'Child': 2, 'Teenager': 3, 'Student': 4, 'Young Adult': 5, 'Adult': 6, 'Senior': 7} train['AgeGroup'] = train['AgeGroup'].map(age_mapping) test['AgeGroup'] = test['AgeGroup'].map(age_mapping) train = train.drop(['Age'], axis=1) test = test.drop(['Age'], axis=1) for x in range(len(test['Fare'])): if pd.isnull(test['Fare'][x]): pclass = test['Pclass'][x] test['Fare'][x] = round(train[train['Pclass'] == pclass]['Fare'].mean(), 4) train['FareBand'] = pd.qcut(train['Fare'], 4, labels=[1, 2, 3, 4]) test['FareBand'] = pd.qcut(test['Fare'], 4, labels=[1, 2, 3, 4]) train = train.drop(['Fare'], axis=1) test = test.drop(['Fare'], axis=1) train = train.drop(['Title', 'Name'], axis=1) test = test.drop(['Title', 'Name'], axis=1) sex_mapping = {'male': 0, 'female': 1} train['Sex'] = train['Sex'].map(sex_mapping) test['Sex'] = test['Sex'].map(sex_mapping) train.head()
code
2000829/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = train.drop(['PassengerId', 'Parch', 'Ticket', 'Cabin', 'Embarked'], axis=1) test = test.drop(['Parch', 'Ticket', 'Cabin', 'Embarked'], axis=1) combine = [train, test] for dataset in combine: dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\\.', expand=False) for dataset in combine: dataset['Title'] = dataset['Title'].replace(['Lady', 'Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Jonkheer', 'Dona'], 'Rare') dataset['Title'] = dataset['Title'].replace(['Countess', 'Lady', 'Sir'], 'Royal') dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs') title_mapping = {'Mr': 1, 'Miss': 2, 'Mrs': 3, 'Master': 4, 'Royal': 5, 'Rare': 6} for dataset in combine: dataset['Title'] = dataset['Title'].map(title_mapping) dataset['Title'] = dataset['Title'].fillna(0) train.describe(include='all')
code
2000829/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
import warnings import tensorflow as tf import numpy as np import pandas as pd import seaborn as sns import warnings warnings.filterwarnings('ignore')
code
2000829/cell_7
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = train.drop(['PassengerId', 'Parch', 'Ticket', 'Cabin', 'Embarked'], axis=1) test = test.drop(['Parch', 'Ticket', 'Cabin', 'Embarked'], axis=1) combine = [train, test] for dataset in combine: dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\\.', expand=False) for dataset in combine: dataset['Title'] = dataset['Title'].replace(['Lady', 'Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Jonkheer', 'Dona'], 'Rare') dataset['Title'] = dataset['Title'].replace(['Countess', 'Lady', 'Sir'], 'Royal') dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs') title_mapping = {'Mr': 1, 'Miss': 2, 'Mrs': 3, 'Master': 4, 'Royal': 5, 'Rare': 6} for dataset in combine: dataset['Title'] = dataset['Title'].map(title_mapping) dataset['Title'] = dataset['Title'].fillna(0) train['Age'] = train['Age'].fillna(-0.5) test['Age'] = test['Age'].fillna(-0.5) bins = [-1, 0, 5, 12, 18, 24, 35, 60, np.inf] labels = ['Unknown', 'Baby', 'Child', 'Teenager', 'Student', 'Young Adult', 'Adult', 'Senior'] train['AgeGroup'] = pd.cut(train['Age'], bins, labels=labels) test['AgeGroup'] = pd.cut(test['Age'], bins, labels=labels) mr_age = train[train['Title'] == 1]['AgeGroup'].mode() miss_age = train[train['Title'] == 2]['AgeGroup'].mode() mrs_age = train[train['Title'] == 3]['AgeGroup'].mode() master_age = train[train['Title'] == 4]['AgeGroup'].mode() royal_age = train[train['Title'] == 5]['AgeGroup'].mode() rare_age = train[train['Title'] == 6]['AgeGroup'].mode() age_title_mapping = {1: 'Young Adult', 2: 'Student', 3: 'Adult', 4: 'Baby', 5: 'Adult', 6: 'Adult'} for x in range(len(train['AgeGroup'])): if train['AgeGroup'][x] == 'Unknown': train['AgeGroup'][x] = age_title_mapping[train['Title'][x]] for x in range(len(test['AgeGroup'])): if test['AgeGroup'][x] == 'Unknown': test['AgeGroup'][x] = age_title_mapping[test['Title'][x]] age_mapping = {'Baby': 1, 'Child': 2, 'Teenager': 3, 'Student': 4, 'Young Adult': 5, 'Adult': 6, 'Senior': 7} train['AgeGroup'] = train['AgeGroup'].map(age_mapping) test['AgeGroup'] = test['AgeGroup'].map(age_mapping) train = train.drop(['Age'], axis=1) test = test.drop(['Age'], axis=1) for x in range(len(test['Fare'])): if pd.isnull(test['Fare'][x]): pclass = test['Pclass'][x] test['Fare'][x] = round(train[train['Pclass'] == pclass]['Fare'].mean(), 4) train['FareBand'] = pd.qcut(train['Fare'], 4, labels=[1, 2, 3, 4]) test['FareBand'] = pd.qcut(test['Fare'], 4, labels=[1, 2, 3, 4]) train = train.drop(['Fare'], axis=1) test = test.drop(['Fare'], axis=1) test.describe(include='all')
code
2000829/cell_15
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import tensorflow as tf train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = train.drop(['PassengerId', 'Parch', 'Ticket', 'Cabin', 'Embarked'], axis=1) test = test.drop(['Parch', 'Ticket', 'Cabin', 'Embarked'], axis=1) combine = [train, test] for dataset in combine: dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\\.', expand=False) for dataset in combine: dataset['Title'] = dataset['Title'].replace(['Lady', 'Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Jonkheer', 'Dona'], 'Rare') dataset['Title'] = dataset['Title'].replace(['Countess', 'Lady', 'Sir'], 'Royal') dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs') title_mapping = {'Mr': 1, 'Miss': 2, 'Mrs': 3, 'Master': 4, 'Royal': 5, 'Rare': 6} for dataset in combine: dataset['Title'] = dataset['Title'].map(title_mapping) dataset['Title'] = dataset['Title'].fillna(0) train['Age'] = train['Age'].fillna(-0.5) test['Age'] = test['Age'].fillna(-0.5) bins = [-1, 0, 5, 12, 18, 24, 35, 60, np.inf] labels = ['Unknown', 'Baby', 'Child', 'Teenager', 'Student', 'Young Adult', 'Adult', 'Senior'] train['AgeGroup'] = pd.cut(train['Age'], bins, labels=labels) test['AgeGroup'] = pd.cut(test['Age'], bins, labels=labels) mr_age = train[train['Title'] == 1]['AgeGroup'].mode() miss_age = train[train['Title'] == 2]['AgeGroup'].mode() mrs_age = train[train['Title'] == 3]['AgeGroup'].mode() master_age = train[train['Title'] == 4]['AgeGroup'].mode() royal_age = train[train['Title'] == 5]['AgeGroup'].mode() rare_age = train[train['Title'] == 6]['AgeGroup'].mode() age_title_mapping = {1: 'Young Adult', 2: 'Student', 3: 'Adult', 4: 'Baby', 5: 'Adult', 6: 'Adult'} for x in range(len(train['AgeGroup'])): if train['AgeGroup'][x] == 'Unknown': train['AgeGroup'][x] = age_title_mapping[train['Title'][x]] for x in range(len(test['AgeGroup'])): if test['AgeGroup'][x] == 'Unknown': test['AgeGroup'][x] = age_title_mapping[test['Title'][x]] age_mapping = {'Baby': 1, 'Child': 2, 'Teenager': 3, 'Student': 4, 'Young Adult': 5, 'Adult': 6, 'Senior': 7} train['AgeGroup'] = train['AgeGroup'].map(age_mapping) test['AgeGroup'] = test['AgeGroup'].map(age_mapping) train = train.drop(['Age'], axis=1) test = test.drop(['Age'], axis=1) for x in range(len(test['Fare'])): if pd.isnull(test['Fare'][x]): pclass = test['Pclass'][x] test['Fare'][x] = round(train[train['Pclass'] == pclass]['Fare'].mean(), 4) train['FareBand'] = pd.qcut(train['Fare'], 4, labels=[1, 2, 3, 4]) test['FareBand'] = pd.qcut(test['Fare'], 4, labels=[1, 2, 3, 4]) train = train.drop(['Fare'], axis=1) test = test.drop(['Fare'], axis=1) train = train.drop(['Title', 'Name'], axis=1) test = test.drop(['Title', 'Name'], axis=1) sex_mapping = {'male': 0, 'female': 1} train['Sex'] = train['Sex'].map(sex_mapping) test['Sex'] = test['Sex'].map(sex_mapping) X = tf.placeholder(np.float32, [None, 5]) Y = tf.placeholder(np.float32, [None, 1]) def xavier_init(n_inputs, n_outputs, uniform=True): if uniform: init_range = tf.sqrt(6.0 / (n_inputs + n_outputs)) return tf.random_uniform_initializer(-init_range, init_range) else: stddev = tf.sqrt(3.0 / (n_inputs + n_outputs)) return tf.truncated_normal_initializer(stddev=stddev) W1 = tf.get_variable('W1', shape=[5, 40], initializer=xavier_init(5, 40)) W2 = tf.get_variable('W2', shape=[40, 40], initializer=xavier_init(40, 40)) W3 = tf.get_variable('W3', shape=[40, 1], initializer=xavier_init(40, 1)) B1 = tf.Variable(tf.random_normal([40])) B2 = tf.Variable(tf.random_normal([40])) B3 = tf.Variable(tf.random_normal([1])) keep_prob = tf.placeholder(tf.float32) L1 = tf.nn.relu(tf.add(tf.matmul(X, W1), B1)) L1 = tf.nn.dropout(L1, keep_prob=keep_prob) L2 = tf.nn.relu(tf.add(tf.matmul(L1, W2), B2)) L2 = tf.nn.dropout(L2, keep_prob=keep_prob) hypothesis = tf.add(tf.matmul(L2, W3), B3) trainY = pd.DataFrame(train['Survived']) train = train.drop(['Survived'], axis=1) trainx = np.array(train, dtype=np.float32) trainy = np.array(trainY, dtype=np.float32) print(trainy.dtype)
code
2000829/cell_3
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = train.drop(['PassengerId', 'Parch', 'Ticket', 'Cabin', 'Embarked'], axis=1) test = test.drop(['Parch', 'Ticket', 'Cabin', 'Embarked'], axis=1) test.describe(include='all')
code
2000829/cell_12
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import tensorflow as tf train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = train.drop(['PassengerId', 'Parch', 'Ticket', 'Cabin', 'Embarked'], axis=1) test = test.drop(['Parch', 'Ticket', 'Cabin', 'Embarked'], axis=1) combine = [train, test] for dataset in combine: dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\\.', expand=False) for dataset in combine: dataset['Title'] = dataset['Title'].replace(['Lady', 'Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Jonkheer', 'Dona'], 'Rare') dataset['Title'] = dataset['Title'].replace(['Countess', 'Lady', 'Sir'], 'Royal') dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs') title_mapping = {'Mr': 1, 'Miss': 2, 'Mrs': 3, 'Master': 4, 'Royal': 5, 'Rare': 6} for dataset in combine: dataset['Title'] = dataset['Title'].map(title_mapping) dataset['Title'] = dataset['Title'].fillna(0) train['Age'] = train['Age'].fillna(-0.5) test['Age'] = test['Age'].fillna(-0.5) bins = [-1, 0, 5, 12, 18, 24, 35, 60, np.inf] labels = ['Unknown', 'Baby', 'Child', 'Teenager', 'Student', 'Young Adult', 'Adult', 'Senior'] train['AgeGroup'] = pd.cut(train['Age'], bins, labels=labels) test['AgeGroup'] = pd.cut(test['Age'], bins, labels=labels) mr_age = train[train['Title'] == 1]['AgeGroup'].mode() miss_age = train[train['Title'] == 2]['AgeGroup'].mode() mrs_age = train[train['Title'] == 3]['AgeGroup'].mode() master_age = train[train['Title'] == 4]['AgeGroup'].mode() royal_age = train[train['Title'] == 5]['AgeGroup'].mode() rare_age = train[train['Title'] == 6]['AgeGroup'].mode() age_title_mapping = {1: 'Young Adult', 2: 'Student', 3: 'Adult', 4: 'Baby', 5: 'Adult', 6: 'Adult'} for x in range(len(train['AgeGroup'])): if train['AgeGroup'][x] == 'Unknown': train['AgeGroup'][x] = age_title_mapping[train['Title'][x]] for x in range(len(test['AgeGroup'])): if test['AgeGroup'][x] == 'Unknown': test['AgeGroup'][x] = age_title_mapping[test['Title'][x]] age_mapping = {'Baby': 1, 'Child': 2, 'Teenager': 3, 'Student': 4, 'Young Adult': 5, 'Adult': 6, 'Senior': 7} train['AgeGroup'] = train['AgeGroup'].map(age_mapping) test['AgeGroup'] = test['AgeGroup'].map(age_mapping) train = train.drop(['Age'], axis=1) test = test.drop(['Age'], axis=1) X = tf.placeholder(np.float32, [None, 5]) Y = tf.placeholder(np.float32, [None, 1]) def xavier_init(n_inputs, n_outputs, uniform=True): if uniform: init_range = tf.sqrt(6.0 / (n_inputs + n_outputs)) return tf.random_uniform_initializer(-init_range, init_range) else: stddev = tf.sqrt(3.0 / (n_inputs + n_outputs)) return tf.truncated_normal_initializer(stddev=stddev) W1 = tf.get_variable('W1', shape=[5, 40], initializer=xavier_init(5, 40)) W2 = tf.get_variable('W2', shape=[40, 40], initializer=xavier_init(40, 40)) W3 = tf.get_variable('W3', shape=[40, 1], initializer=xavier_init(40, 1)) B1 = tf.Variable(tf.random_normal([40])) B2 = tf.Variable(tf.random_normal([40])) B3 = tf.Variable(tf.random_normal([1])) keep_prob = tf.placeholder(tf.float32) L1 = tf.nn.relu(tf.add(tf.matmul(X, W1), B1)) L1 = tf.nn.dropout(L1, keep_prob=keep_prob) L2 = tf.nn.relu(tf.add(tf.matmul(L1, W2), B2)) L2 = tf.nn.dropout(L2, keep_prob=keep_prob) hypothesis = tf.add(tf.matmul(L2, W3), B3) cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=hypothesis, labels=Y)) learning_rate = 0.0005 optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) init = tf.initialize_all_variables()
code
128021577/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/email-spam-classification-dataset-csv/emails.csv') df = df.drop(columns=['Email No.']) df.shape df.isna().sum() df.duplicated().sum() df = df.drop_duplicates() df.duplicated().sum() sns.countplot(data=df, x='Prediction', color=sns.color_palette()[0]) plt.show()
code
128021577/cell_9
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/email-spam-classification-dataset-csv/emails.csv') df = df.drop(columns=['Email No.']) df.shape df.isna().sum()
code
128021577/cell_34
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/email-spam-classification-dataset-csv/emails.csv') df = df.drop(columns=['Email No.']) df.shape df.isna().sum() df.duplicated().sum() df = df.drop_duplicates() df.duplicated().sum() results = {} plt.figure(figsize=(10, 5)) plt.bar(results.keys(), [result['accuracy'] for result in results.values()]) plt.title('Accuracy of Different Models') plt.xlabel('Models') plt.ylabel('Accuracy') plt.ylim(0, 1) plt.show()
code
128021577/cell_33
[ "text_plain_output_1.png" ]
results = {} results
code
128021577/cell_26
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegression LR = LogisticRegression() LR.fit(x_train, y_train) LR_y_pred = LR.predict(x_test)
code
128021577/cell_7
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/email-spam-classification-dataset-csv/emails.csv') df = df.drop(columns=['Email No.']) df.shape
code
128021577/cell_8
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/email-spam-classification-dataset-csv/emails.csv') df = df.drop(columns=['Email No.']) df.shape df.describe()
code
128021577/cell_35
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/email-spam-classification-dataset-csv/emails.csv') df = df.drop(columns=['Email No.']) df.shape df.isna().sum() df.duplicated().sum() df = df.drop_duplicates() df.duplicated().sum() results = {} plt.ylim(0, 1) plt.figure(figsize=(10, 5)) plt.bar(results.keys(), [result['precision'] for result in results.values()]) plt.title('Precision of Different Models') plt.xlabel('Models') plt.ylabel('Precision') plt.ylim(0, 1) plt.show()
code
128021577/cell_10
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/email-spam-classification-dataset-csv/emails.csv') df = df.drop(columns=['Email No.']) df.shape df.isna().sum() df.duplicated().sum()
code
128021577/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/email-spam-classification-dataset-csv/emails.csv') df = df.drop(columns=['Email No.']) df.shape df.isna().sum() df.duplicated().sum() df = df.drop_duplicates() df.duplicated().sum()
code
128021577/cell_5
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/email-spam-classification-dataset-csv/emails.csv') df.head()
code
128021577/cell_36
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('/kaggle/input/email-spam-classification-dataset-csv/emails.csv') df = df.drop(columns=['Email No.']) df.shape df.isna().sum() df.duplicated().sum() df = df.drop_duplicates() df.duplicated().sum() results = {} plt.ylim(0, 1) plt.ylim(0, 1) plt.figure(figsize=(10, 5)) plt.bar(results.keys(), [result['recall'] for result in results.values()]) plt.title('Recall of Different Models') plt.xlabel('Models') plt.ylabel('Recall') plt.ylim(0, 1) plt.show()
code
1007017/cell_6
[ "text_plain_output_1.png" ]
import pandas TRAIN_PATH = '../input/train.csv' TEST_PATH = '../input/test.csv' train = pandas.read_csv(TRAIN_PATH) test = pandas.read_csv(TEST_PATH) train.isnull().any()
code
1007017/cell_26
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier from sklearn.metrics import mean_absolute_error age_rf = RandomForestRegressor() age_rf.fit(age_train[['Pclass', 'encodedTitle', 'SibSpGroup1', 'SibSpGroup2', 'SibSpGroup3', 'ParChGT2']], age_train['Age']) age_validation = age_validation.assign(rf_age=age_rf.predict(age_validation[['Pclass', 'encodedTitle', 'SibSpGroup1', 'SibSpGroup2', 'SibSpGroup3', 'ParChGT2']])) mean_absolute_error(age_validation['Age'], age_validation['rf_age'], sample_weight=None, multioutput='uniform_average')
code
1007017/cell_7
[ "text_plain_output_1.png" ]
import pandas TRAIN_PATH = '../input/train.csv' TEST_PATH = '../input/test.csv' train = pandas.read_csv(TRAIN_PATH) test = pandas.read_csv(TEST_PATH) test.isnull().any()
code
1007017/cell_18
[ "text_plain_output_1.png" ]
from sklearn import preprocessing import pandas import re TRAIN_PATH = '../input/train.csv' TEST_PATH = '../input/test.csv' train = pandas.read_csv(TRAIN_PATH) test = pandas.read_csv(TEST_PATH) train.isnull().any() test.isnull().any() def deriveTitles(s): title = re.search('(?:\\S )(?P<title>\\w*)', s).group('title') if title == 'Mr': return 'adult' elif title == 'Don': return 'gentry' elif title == 'Dona': return 'gentry' elif title == 'Miss': return 'miss' elif title == 'Col': return 'military' elif title == 'Rev': return 'other' elif title == 'Lady': return 'gentry' elif title == 'Master': return 'child' elif title == 'Mme': return 'adult' elif title == 'Captain': return 'military' elif title == 'Dr': return 'other' elif title == 'Mrs': return 'adult' elif title == 'Sir': return 'gentry' elif title == 'Jonkheer': return 'gentry' elif title == 'Mlle': return 'miss' elif title == 'Major': return 'military' elif title == 'Ms': return 'miss' elif title == 'the Countess': return 'gentry' else: return 'other' train['title'] = train.Name.apply(deriveTitles) test['title'] = test.Name.apply(deriveTitles) le = preprocessing.LabelEncoder() titles = ['adult', 'gentry', 'miss', 'military', 'other', 'child'] le.fit(titles) train['encodedTitle'] = le.transform(train['title']).astype('int') test['encodedTitle'] = le.transform(test['title']).astype('int') train.Embarked.fillna(value='S', inplace=True) combined = pandas.concat([train, test]) combined.ParChCategories = combined.Parch > 2 combined.boxplot(column='Age', by='Pclass')
code
1007017/cell_28
[ "text_html_output_1.png", "text_plain_output_1.png" ]
from sklearn import linear_model from sklearn import preprocessing from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split import pandas import re TRAIN_PATH = '../input/train.csv' TEST_PATH = '../input/test.csv' train = pandas.read_csv(TRAIN_PATH) test = pandas.read_csv(TEST_PATH) train.isnull().any() test.isnull().any() def deriveTitles(s): title = re.search('(?:\\S )(?P<title>\\w*)', s).group('title') if title == 'Mr': return 'adult' elif title == 'Don': return 'gentry' elif title == 'Dona': return 'gentry' elif title == 'Miss': return 'miss' elif title == 'Col': return 'military' elif title == 'Rev': return 'other' elif title == 'Lady': return 'gentry' elif title == 'Master': return 'child' elif title == 'Mme': return 'adult' elif title == 'Captain': return 'military' elif title == 'Dr': return 'other' elif title == 'Mrs': return 'adult' elif title == 'Sir': return 'gentry' elif title == 'Jonkheer': return 'gentry' elif title == 'Mlle': return 'miss' elif title == 'Major': return 'military' elif title == 'Ms': return 'miss' elif title == 'the Countess': return 'gentry' else: return 'other' train['title'] = train.Name.apply(deriveTitles) test['title'] = test.Name.apply(deriveTitles) le = preprocessing.LabelEncoder() titles = ['adult', 'gentry', 'miss', 'military', 'other', 'child'] le.fit(titles) train['encodedTitle'] = le.transform(train['title']).astype('int') test['encodedTitle'] = le.transform(test['title']).astype('int') train.Embarked.fillna(value='S', inplace=True) combined = pandas.concat([train, test]) combined.ParChCategories = combined.Parch > 2 combined = combined.assign(SibSpGroup1=combined['SibSp'] < 2) combined = combined.assign(SibSpGroup2=combined['SibSp'].between(2, 3, inclusive=True)) combined = combined.assign(SibSpGroup3=combined['SibSp'] > 2) combined = combined.assign(ParChGT2=combined['Parch'] > 2) age_train, age_validation = train_test_split(combined[combined.Age.notnull()], test_size=0.2) age_learn = combined[combined.Age.isnull()] age_rf = RandomForestRegressor() age_rf.fit(age_train[['Pclass', 'encodedTitle', 'SibSpGroup1', 'SibSpGroup2', 'SibSpGroup3', 'ParChGT2']], age_train['Age']) age_validation = age_validation.assign(rf_age=age_rf.predict(age_validation[['Pclass', 'encodedTitle', 'SibSpGroup1', 'SibSpGroup2', 'SibSpGroup3', 'ParChGT2']])) mean_absolute_error(age_validation['Age'], age_validation['rf_age'], sample_weight=None, multioutput='uniform_average') age_encoder = preprocessing.OneHotEncoder().fit(combined[['Pclass', 'encodedTitle', 'SibSpGroup1', 'SibSpGroup2', 'SibSpGroup3', 'ParChGT2']]) age_training_encoded = age_encoder.transform(age_train[['Pclass', 'encodedTitle', 'SibSpGroup1', 'SibSpGroup2', 'SibSpGroup3', 'ParChGT2']]) age_validation_encoded = age_encoder.transform(age_validation[['Pclass', 'encodedTitle', 'SibSpGroup1', 'SibSpGroup2', 'SibSpGroup3', 'ParChGT2']]) age_model = linear_model.RidgeCV(alphas=[0.1, 0.2, 0.3, 0.4, 0.5]) age_estimator = age_model.fit(age_training_encoded, age_train['Age']) linear_age_predictions = age_estimator.predict(age_validation_encoded) mean_absolute_error(age_validation['Age'], linear_age_predictions, sample_weight=None, multioutput='uniform_average')
code
2014045/cell_21
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr df_cavs = df2[df2['teamAbbr'] == 'CLE'] point_diff_cavs = make_point_diff_mat(df_cavs) np.corrcoef(point_diff_cavs.T) bool_point_diff_cavs = make_bool_point_diff_mat(df_cavs) np.corrcoef(bool_point_diff_cavs.T) prob_of_winning_given(bool_point_diff_cavs, DOWN_AT_HALF)
code
2014045/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr print(max_team) print(max_prob_winning_DOWN_at_half)
code
2014045/cell_9
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T)
code
2014045/cell_25
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr df_cavs = df2[df2['teamAbbr'] == 'CLE'] point_diff_cavs = make_point_diff_mat(df_cavs) np.corrcoef(point_diff_cavs.T) bool_point_diff_cavs = make_bool_point_diff_mat(df_cavs) np.corrcoef(bool_point_diff_cavs.T) df_warr = df2[df2.teamAbbr == 'GS'] point_diff_warr = make_point_diff_mat(df_warr) np.corrcoef(point_diff_warr.T)
code
2014045/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2
code
2014045/cell_20
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr df_cavs = df2[df2['teamAbbr'] == 'CLE'] point_diff_cavs = make_point_diff_mat(df_cavs) np.corrcoef(point_diff_cavs.T) bool_point_diff_cavs = make_bool_point_diff_mat(df_cavs) np.corrcoef(bool_point_diff_cavs.T)
code
2014045/cell_29
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr df_cavs = df2[df2['teamAbbr'] == 'CLE'] point_diff_cavs = make_point_diff_mat(df_cavs) np.corrcoef(point_diff_cavs.T) bool_point_diff_cavs = make_bool_point_diff_mat(df_cavs) np.corrcoef(bool_point_diff_cavs.T) df_warr = df2[df2.teamAbbr == 'GS'] point_diff_warr = make_point_diff_mat(df_warr) np.corrcoef(point_diff_warr.T) bool_point_diff_warr = make_bool_point_diff_mat(df_warr) np.corrcoef(bool_point_diff_warr.T) prob_of_winning_given(bool_point_diff_warr, UP_AT_HALF)
code
2014045/cell_26
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr df_cavs = df2[df2['teamAbbr'] == 'CLE'] point_diff_cavs = make_point_diff_mat(df_cavs) np.corrcoef(point_diff_cavs.T) bool_point_diff_cavs = make_bool_point_diff_mat(df_cavs) np.corrcoef(bool_point_diff_cavs.T) df_warr = df2[df2.teamAbbr == 'GS'] point_diff_warr = make_point_diff_mat(df_warr) np.corrcoef(point_diff_warr.T) plt.scatter(point_diff_warr[:, 0], point_diff_warr[:, 1]) plt.ylabel('point differential: end of game') plt.xlabel('point differential: end of first half')
code
2014045/cell_11
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) prob_of_winning_given(bool_point_diff, UP_AT_HALF)
code
2014045/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr df_cavs = df2[df2['teamAbbr'] == 'CLE'] point_diff_cavs = make_point_diff_mat(df_cavs) np.corrcoef(point_diff_cavs.T) plt.scatter(point_diff_cavs[:, 0], point_diff_cavs[:, 1]) plt.ylabel('point differential: end of game') plt.xlabel('point differential: end of first half')
code
2014045/cell_7
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T)
code
2014045/cell_18
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr df_cavs = df2[df2['teamAbbr'] == 'CLE'] point_diff_cavs = make_point_diff_mat(df_cavs) np.corrcoef(point_diff_cavs.T)
code
2014045/cell_28
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr df_cavs = df2[df2['teamAbbr'] == 'CLE'] point_diff_cavs = make_point_diff_mat(df_cavs) np.corrcoef(point_diff_cavs.T) bool_point_diff_cavs = make_bool_point_diff_mat(df_cavs) np.corrcoef(bool_point_diff_cavs.T) df_warr = df2[df2.teamAbbr == 'GS'] point_diff_warr = make_point_diff_mat(df_warr) np.corrcoef(point_diff_warr.T) bool_point_diff_warr = make_bool_point_diff_mat(df_warr) np.corrcoef(bool_point_diff_warr.T) prob_of_winning_given(bool_point_diff_warr, DOWN_AT_HALF)
code
2014045/cell_8
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) plt.scatter(point_diff[:, 0], point_diff[:, 1]) plt.ylabel('point differential: end of game') plt.xlabel('point differential: end of first half')
code
2014045/cell_15
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr print(max_team) print(max_prob_winning_UP_at_half)
code
2014045/cell_22
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr df_cavs = df2[df2['teamAbbr'] == 'CLE'] point_diff_cavs = make_point_diff_mat(df_cavs) np.corrcoef(point_diff_cavs.T) bool_point_diff_cavs = make_bool_point_diff_mat(df_cavs) np.corrcoef(bool_point_diff_cavs.T) prob_of_winning_given(bool_point_diff_cavs, UP_AT_HALF)
code
2014045/cell_10
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) prob_of_winning_given(bool_point_diff, DOWN_AT_HALF)
code
2014045/cell_27
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd df = pd.concat((df16, df17)) df2 = df[['teamAbbr', 'teamPTS', 'teamPTS1', 'teamPTS2', 'opptPTS', 'opptPTS1', 'opptPTS2']] df2.loc[:, 'teamPTSH1'] = df2['teamPTS1'] + df['teamPTS2'] df2.loc[:, 'opptPTSH1'] = df2['opptPTS1'] + df['opptPTS2'] df2.loc[:, 'ptdiffH1'] = df2['teamPTSH1'] - df2['opptPTSH1'] df2.loc[:, 'ptdiff'] = df2['teamPTS'] - df2['opptPTS'] df2 def make_point_diff_mat(df): point_diff_df = df[['ptdiffH1', 'ptdiff']] point_diff = point_diff_df.as_matrix() return point_diff def make_bool_point_diff_mat(df): point_diff = make_point_diff_mat(df) bool_point_diff = np.copy(point_diff) bool_point_diff[bool_point_diff > 0] = 1 bool_point_diff[bool_point_diff < 0] = -1 return bool_point_diff def prob_of_winning_given(bool_point_diff, event): return np.mean((bool_point_diff[bool_point_diff[:, 0] == event][:, 1] + 1) / 2) point_diff = make_point_diff_mat(df2) np.corrcoef(point_diff.T) bool_point_diff = make_bool_point_diff_mat(df2) np.corrcoef(bool_point_diff.T) max_prob_winning_DOWN_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, DOWN_AT_HALF) if prob > max_prob_winning_DOWN_at_half: max_prob_winning_DOWN_at_half = prob max_team = abbr max_prob_winning_UP_at_half = 0 max_team = None for abbr in df2.teamAbbr.unique(): df_team = df2[df.teamAbbr == abbr] bool_point_diff_team = make_bool_point_diff_mat(df_team) prob = prob_of_winning_given(bool_point_diff_team, UP_AT_HALF) if prob > max_prob_winning_UP_at_half: max_prob_winning_UP_at_half = prob max_team = abbr df_cavs = df2[df2['teamAbbr'] == 'CLE'] point_diff_cavs = make_point_diff_mat(df_cavs) np.corrcoef(point_diff_cavs.T) bool_point_diff_cavs = make_bool_point_diff_mat(df_cavs) np.corrcoef(bool_point_diff_cavs.T) df_warr = df2[df2.teamAbbr == 'GS'] point_diff_warr = make_point_diff_mat(df_warr) np.corrcoef(point_diff_warr.T) bool_point_diff_warr = make_bool_point_diff_mat(df_warr) np.corrcoef(bool_point_diff_warr.T)
code
2012289/cell_1
[ "text_html_output_1.png" ]
import pandas as pd import numpy as np import seaborn as sns import matplotlib import matplotlib.pyplot as plt from scipy.stats import skew from scipy.stats.stats import pearsonr train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train = train.drop(['Name'], axis=1) test = test.drop(['Name'], axis=1) train.head()
code
2012289/cell_3
[ "text_plain_output_1.png" ]
import matplotlib import numpy as np import pandas as pd all_data = pd.concat((train.loc[:, 'Pclass':'Embarked'], test.loc[:, 'Pclass':'Embarked'])) matplotlib.rcParams['figure.figsize'] = (14.0, 7.0) prices = pd.DataFrame({'Fare': train['Fare'], 'log(Fare + 1)': np.log1p(train['Fare'])}) prices.hist()
code
2012289/cell_10
[ "text_plain_output_1.png", "image_output_1.png" ]
from scipy.stats import skew from sklearn.linear_model import LogisticRegression import matplotlib import numpy as np import pandas as pd all_data = pd.concat((train.loc[:, 'Pclass':'Embarked'], test.loc[:, 'Pclass':'Embarked'])) matplotlib.rcParams['figure.figsize'] = (14.0, 7.0) prices = pd.DataFrame({'Fare': train['Fare'], 'log(Fare + 1)': np.log1p(train['Fare'])}) numeric_feats = all_data.dtypes[all_data.dtypes != 'object'].index skewed_feats = train[numeric_feats].apply(lambda X: skew(X.dropna())) skewed_feats = skewed_feats[skewed_feats > 0.75] skewed_feats = skewed_feats.index all_data[skewed_feats] = np.log1p(all_data[skewed_feats]) all_data = pd.get_dummies(all_data) all_data = all_data.fillna(all_data.mean()) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.Survived logreg = LogisticRegression() logreg.fit(X_train, y) accuracy = round(logreg.score(X_train, y) * 100, 2) print(accuracy) logreg_preds = logreg.predict(X_test)
code
2012289/cell_12
[ "text_plain_output_1.png" ]
from scipy.stats import skew from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression import matplotlib import numpy as np import pandas as pd all_data = pd.concat((train.loc[:, 'Pclass':'Embarked'], test.loc[:, 'Pclass':'Embarked'])) matplotlib.rcParams['figure.figsize'] = (14.0, 7.0) prices = pd.DataFrame({'Fare': train['Fare'], 'log(Fare + 1)': np.log1p(train['Fare'])}) numeric_feats = all_data.dtypes[all_data.dtypes != 'object'].index skewed_feats = train[numeric_feats].apply(lambda X: skew(X.dropna())) skewed_feats = skewed_feats[skewed_feats > 0.75] skewed_feats = skewed_feats.index all_data[skewed_feats] = np.log1p(all_data[skewed_feats]) all_data = pd.get_dummies(all_data) all_data = all_data.fillna(all_data.mean()) X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.Survived logreg = LogisticRegression() logreg.fit(X_train, y) accuracy = round(logreg.score(X_train, y) * 100, 2) logreg_preds = logreg.predict(X_test) from sklearn.ensemble import RandomForestClassifier random_forest = RandomForestClassifier(n_estimators=100) random_forest.fit(X_train, y) random_forest_preds = random_forest.predict(X_test) random_forest.score(X_train, y) accuracy = round(random_forest.score(X_train, y) * 100, 2) print(accuracy)
code
72112616/cell_9
[ "text_html_output_1.png" ]
X_valid
code
72112616/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') cat_columns = [col for col in df_train.columns if df_train[col].dtype == 'object'] cat_columns
code
72112616/cell_6
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') cat_columns = [col for col in df_train.columns if df_train[col].dtype == 'object'] low_cordinal_cols = [col for col in cat_columns if df_train[col].nunique() < 10] low_cordinal_cols
code
72112616/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
72112616/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') cat_columns = [col for col in df_train.columns if df_train[col].dtype == 'object'] from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import train_test_split y = df_train.target df_train.drop(['target'], axis=1, inplace=True) df_train
code
72112616/cell_18
[ "text_html_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') cat_columns = [col for col in df_train.columns if df_train[col].dtype == 'object'] low_cordinal_cols = [col for col in cat_columns if df_train[col].nunique() < 10] low_cordinal_cols OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_encoder_Train = pd.DataFrame(OH_encoder.fit_transform(X_train[low_cordinal_cols])) OH_encoder_valid = pd.DataFrame(OH_encoder.transform(X_valid[low_cordinal_cols])) OH_encoder_Train.index = X_train.index OH_encoder_valid.index = X_valid.index X_train_drop = X_train.drop(cat_columns, axis=1) X_valid_drop = X_valid.drop(cat_columns, axis=1) OH_encoder_Train = pd.concat([OH_encoder_Train, X_train_drop], axis=1) OH_encoder_valid = pd.concat([OH_encoder_valid, X_valid_drop], axis=1) sample_submission = pd.read_csv('/kaggle/input/30-days-of-ml/sample_submission.csv') sample_submission.head()
code
72112616/cell_16
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') cat_columns = [col for col in df_train.columns if df_train[col].dtype == 'object'] low_cordinal_cols = [col for col in cat_columns if df_train[col].nunique() < 10] low_cordinal_cols OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_encoder_Train = pd.DataFrame(OH_encoder.fit_transform(X_train[low_cordinal_cols])) OH_encoder_valid = pd.DataFrame(OH_encoder.transform(X_valid[low_cordinal_cols])) OH_encoder_Train.index = X_train.index OH_encoder_valid.index = X_valid.index X_train_drop = X_train.drop(cat_columns, axis=1) X_valid_drop = X_valid.drop(cat_columns, axis=1) OH_encoder_Train = pd.concat([OH_encoder_Train, X_train_drop], axis=1) OH_encoder_valid = pd.concat([OH_encoder_valid, X_valid_drop], axis=1) OH_encoder_valid
code
72112616/cell_17
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error from sklearn.preprocessing import OneHotEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') cat_columns = [col for col in df_train.columns if df_train[col].dtype == 'object'] low_cordinal_cols = [col for col in cat_columns if df_train[col].nunique() < 10] low_cordinal_cols OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_encoder_Train = pd.DataFrame(OH_encoder.fit_transform(X_train[low_cordinal_cols])) OH_encoder_valid = pd.DataFrame(OH_encoder.transform(X_valid[low_cordinal_cols])) OH_encoder_Train.index = X_train.index OH_encoder_valid.index = X_valid.index X_train_drop = X_train.drop(cat_columns, axis=1) X_valid_drop = X_valid.drop(cat_columns, axis=1) OH_encoder_Train = pd.concat([OH_encoder_Train, X_train_drop], axis=1) OH_encoder_valid = pd.concat([OH_encoder_valid, X_valid_drop], axis=1) from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error model_randm_forest = RandomForestRegressor(n_estimators=100, random_state=0) model_randm_forest.fit(OH_encoder_Train, y_train) valid_pred = model_randm_forest.predict(OH_encoder_valid) print(mean_absolute_error(y_valid, valid_pred))
code
72112616/cell_14
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') cat_columns = [col for col in df_train.columns if df_train[col].dtype == 'object'] low_cordinal_cols = [col for col in cat_columns if df_train[col].nunique() < 10] low_cordinal_cols OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_encoder_Train = pd.DataFrame(OH_encoder.fit_transform(X_train[low_cordinal_cols])) OH_encoder_valid = pd.DataFrame(OH_encoder.transform(X_valid[low_cordinal_cols])) OH_encoder_Train.index = X_train.index OH_encoder_valid.index = X_valid.index X_train_drop = X_train.drop(cat_columns, axis=1) X_valid_drop = X_valid.drop(cat_columns, axis=1) X_train_drop
code
72112616/cell_12
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import OneHotEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') cat_columns = [col for col in df_train.columns if df_train[col].dtype == 'object'] low_cordinal_cols = [col for col in cat_columns if df_train[col].nunique() < 10] low_cordinal_cols OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_encoder_Train = pd.DataFrame(OH_encoder.fit_transform(X_train[low_cordinal_cols])) OH_encoder_valid = pd.DataFrame(OH_encoder.transform(X_valid[low_cordinal_cols])) OH_encoder_Train.index = X_train.index OH_encoder_valid.index = X_valid.index OH_encoder_valid.head()
code
72112616/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv') cat_columns = [col for col in df_train.columns if df_train[col].dtype == 'object'] df_train[cat_columns].nunique()
code
129039870/cell_6
[ "text_plain_output_1.png" ]
!octave -W myinstall.m
code
129039870/cell_2
[ "text_plain_output_1.png" ]
!apt-get update !apt --yes install octave !apt-get install --yes liboctave-dev
code
129039870/cell_8
[ "text_plain_output_1.png" ]
!octave -W main.m
code
34130462/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd metadata_df = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv', index_col='cord_uid') example_df = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/target_tables/2_relevant_factors/How does temperature and humidity affect the transmission of 2019-nCoV.csv') example_shas = [] example_uids = [] for index, row in example_df.iterrows(): study_title = row['Study'] study_metadata = metadata_df[metadata_df['title'] == study_title] if len(study_metadata) != 0: sha = study_metadata.iloc[0]['sha'] uid = study_metadata.iloc[0].name if str(sha) != 'nan': example_shas.append(sha) example_uids.append(uid) unique_example_uids = set(example_uids) len(unique_example_uids) embeddings_df = pd.read_csv('../input/CORD-19-research-challenge/cord_19_embeddings_4_24/cord_19_embeddings_4_24.csv', header=None, index_col=0) available_uids = unique_example_uids.intersection(embeddings_df.index) example_embeddings_df = embeddings_df.loc[available_uids] example_embeddings_df
code
34130462/cell_23
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd metadata_df = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv', index_col='cord_uid') example_df = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/target_tables/2_relevant_factors/How does temperature and humidity affect the transmission of 2019-nCoV.csv') example_shas = [] example_uids = [] for index, row in example_df.iterrows(): study_title = row['Study'] study_metadata = metadata_df[metadata_df['title'] == study_title] if len(study_metadata) != 0: sha = study_metadata.iloc[0]['sha'] uid = study_metadata.iloc[0].name if str(sha) != 'nan': example_shas.append(sha) example_uids.append(uid) unique_example_uids = set(example_uids) len(unique_example_uids) embeddings_df = pd.read_csv('../input/CORD-19-research-challenge/cord_19_embeddings_4_24/cord_19_embeddings_4_24.csv', header=None, index_col=0) available_uids = unique_example_uids.intersection(embeddings_df.index) example_embeddings_df = embeddings_df.loc[available_uids] for i in range(1, len(embeddings_df.columns), 2): plt.scatter(embeddings_df[i], embeddings_df[i + 1]) plt.scatter(example_embeddings_df[i], example_embeddings_df[i + 1]) plt.show()
code
34130462/cell_6
[ "text_html_output_1.png" ]
import pandas as pd metadata_df = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv', index_col='cord_uid')
code
34130462/cell_7
[ "image_output_11.png", "image_output_239.png", "image_output_98.png", "image_output_337.png", "image_output_121.png", "image_output_180.png", "image_output_331.png", "image_output_379.png", "image_output_384.png", "image_output_303.png", "image_output_157.png", "image_output_74.png", "image_output_279.png", "image_output_181.png", "image_output_290.png", "image_output_156.png", "image_output_310.png", "image_output_204.png", "image_output_299.png", "image_output_330.png", "image_output_174.png", "image_output_244.png", "image_output_82.png", "image_output_305.png", "image_output_173.png", "image_output_24.png", "image_output_209.png", "image_output_380.png", "image_output_159.png", "image_output_139.png", "image_output_104.png", "image_output_220.png", "image_output_46.png", "image_output_207.png", "image_output_327.png", "image_output_295.png", "image_output_251.png", "image_output_232.png", "image_output_208.png", "image_output_106.png", "image_output_85.png", "image_output_349.png", "image_output_368.png", "image_output_373.png", "image_output_149.png", "image_output_108.png", "image_output_270.png", "image_output_150.png", "image_output_383.png", "image_output_25.png", "image_output_266.png", "image_output_190.png", "image_output_228.png", "image_output_183.png", "image_output_202.png", "image_output_275.png", "image_output_312.png", "image_output_77.png", "image_output_179.png", "image_output_319.png", "image_output_148.png", "image_output_47.png", "image_output_344.png", "image_output_141.png", "image_output_233.png", "image_output_229.png", "image_output_316.png", "image_output_242.png", "image_output_171.png", "image_output_78.png", "image_output_219.png", "image_output_227.png", "image_output_170.png", "image_output_17.png", "image_output_30.png", "image_output_257.png", "image_output_73.png", "image_output_309.png", "image_output_221.png", "image_output_355.png", "image_output_72.png", "image_output_356.png", "image_output_336.png", "image_output_14.png", "image_output_59.png", "image_output_351.png", "image_output_39.png", "image_output_97.png", "image_output_378.png", "image_output_247.png", "image_output_357.png", "image_output_361.png", "image_output_28.png", "image_output_86.png", "image_output_137.png", "image_output_160.png", "image_output_234.png", "image_output_84.png", "image_output_125.png", "image_output_81.png", "image_output_300.png", "image_output_165.png", "image_output_194.png", "image_output_342.png", "image_output_273.png", "image_output_23.png", "image_output_136.png", "image_output_367.png", "image_output_34.png", "image_output_308.png", "image_output_64.png", "image_output_282.png", "image_output_119.png", "image_output_360.png", "image_output_237.png", "image_output_225.png", "image_output_131.png", "image_output_134.png", "image_output_178.png", "image_output_177.png", "image_output_377.png", "image_output_188.png", "image_output_144.png", "image_output_335.png", "image_output_252.png", "image_output_13.png", "image_output_128.png", "image_output_184.png", "image_output_155.png", "image_output_40.png", "image_output_224.png", "image_output_5.png", "image_output_48.png", "image_output_114.png", "image_output_146.png", "image_output_68.png", "image_output_195.png", "image_output_142.png", "image_output_280.png", "image_output_109.png", "image_output_75.png", "image_output_18.png", "image_output_127.png", "image_output_143.png", "image_output_324.png", "image_output_314.png", "image_output_313.png", "image_output_283.png", "image_output_58.png", "image_output_245.png", "image_output_118.png", "image_output_145.png", "image_output_254.png", "image_output_269.png", "image_output_296.png", "image_output_110.png", "image_output_116.png", "image_output_286.png", "image_output_277.png", "image_output_169.png", "image_output_271.png", "image_output_374.png", "image_output_107.png", "image_output_92.png", "image_output_21.png", "image_output_372.png", "image_output_248.png", "image_output_120.png", "image_output_276.png", "image_output_256.png", "image_output_332.png", "image_output_105.png", "image_output_52.png", "image_output_288.png", "image_output_362.png", "image_output_307.png", "image_output_292.png", "image_output_60.png", "image_output_7.png", "image_output_343.png", "image_output_62.png", "image_output_96.png", "image_output_186.png", "image_output_182.png", "image_output_152.png", "image_output_322.png", "image_output_185.png", "image_output_235.png", "image_output_167.png", "image_output_56.png", "image_output_196.png", "image_output_346.png", "image_output_31.png", "image_output_65.png", "image_output_115.png", "image_output_291.png", "image_output_20.png", "image_output_359.png", "image_output_69.png", "image_output_298.png", "image_output_369.png", "image_output_241.png", "image_output_32.png", "image_output_53.png", "image_output_230.png", "image_output_352.png", "image_output_4.png", "image_output_304.png", "image_output_51.png", "image_output_274.png", "image_output_338.png", "image_output_318.png", "image_output_162.png", "image_output_210.png", "image_output_103.png", "image_output_348.png", "image_output_226.png", "image_output_201.png", "image_output_253.png", "image_output_341.png", "image_output_117.png", "image_output_217.png", "image_output_339.png", "image_output_83.png", "image_output_382.png", "image_output_317.png", "image_output_213.png", "image_output_172.png", "image_output_42.png", "image_output_306.png", "image_output_381.png", "image_output_240.png", "image_output_35.png", "image_output_263.png", "image_output_311.png", "image_output_90.png", "image_output_302.png", "image_output_41.png", "image_output_57.png", "image_output_260.png", "image_output_222.png", "image_output_329.png", "image_output_36.png", "image_output_265.png", "image_output_8.png", "image_output_37.png", "image_output_66.png", "image_output_16.png", "image_output_192.png", "image_output_211.png", "image_output_163.png", "image_output_91.png", "image_output_70.png", "image_output_138.png", "image_output_158.png", "image_output_285.png", "image_output_67.png", "image_output_27.png", "image_output_353.png", "image_output_354.png", "image_output_287.png", "image_output_261.png", "image_output_333.png", "image_output_122.png", "image_output_54.png", "image_output_297.png", "image_output_323.png", "image_output_189.png", "image_output_363.png", "image_output_6.png", "image_output_301.png", "image_output_45.png", "image_output_246.png", "image_output_365.png", "image_output_250.png", "image_output_63.png", "image_output_71.png", "image_output_153.png", "image_output_126.png", "image_output_281.png", "image_output_80.png", "image_output_289.png", "image_output_112.png", "image_output_164.png", "image_output_293.png", "image_output_326.png", "image_output_347.png", "image_output_95.png", "image_output_123.png", "image_output_147.png", "image_output_198.png", "image_output_370.png", "image_output_212.png", "image_output_278.png", "image_output_364.png", "image_output_340.png", "image_output_243.png", "image_output_93.png", "image_output_205.png", "image_output_206.png", "image_output_214.png", "image_output_12.png", "image_output_284.png", "image_output_161.png", "image_output_231.png", "image_output_22.png", "image_output_132.png", "image_output_328.png", "image_output_320.png", "image_output_89.png", "image_output_315.png", "image_output_268.png", "image_output_55.png", "image_output_133.png", "image_output_216.png", "image_output_218.png", "image_output_191.png", "image_output_151.png", "image_output_200.png", "image_output_294.png", "image_output_94.png", "image_output_3.png", "image_output_111.png", "image_output_101.png", "image_output_366.png", "image_output_249.png", "image_output_135.png", "image_output_29.png", "image_output_238.png", "image_output_325.png", "image_output_193.png", "image_output_187.png", "image_output_44.png", "image_output_199.png", "image_output_130.png", "image_output_43.png", "image_output_2.png", "image_output_375.png", "image_output_262.png", "image_output_1.png", "image_output_350.png", "image_output_10.png", "image_output_259.png", "image_output_168.png", "image_output_258.png", "image_output_236.png", "image_output_154.png", "image_output_102.png", "image_output_176.png", "image_output_321.png", "image_output_175.png", "image_output_124.png", "image_output_88.png", "image_output_272.png", "image_output_33.png", "image_output_140.png", "image_output_345.png", "image_output_358.png", "image_output_87.png", "image_output_255.png", "image_output_50.png", "image_output_15.png", "image_output_267.png", "image_output_99.png", "image_output_49.png", "image_output_197.png", "image_output_100.png", "image_output_129.png", "image_output_166.png", "image_output_76.png", "image_output_223.png", "image_output_9.png", "image_output_19.png", "image_output_371.png", "image_output_79.png", "image_output_215.png", "image_output_61.png", "image_output_203.png", "image_output_38.png", "image_output_334.png", "image_output_113.png", "image_output_26.png", "image_output_376.png", "image_output_264.png" ]
import pandas as pd metadata_df = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv', index_col='cord_uid') metadata_df
code
34130462/cell_15
[ "text_html_output_1.png" ]
import pandas as pd metadata_df = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv', index_col='cord_uid') example_df = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/target_tables/2_relevant_factors/How does temperature and humidity affect the transmission of 2019-nCoV.csv') example_shas = [] example_uids = [] for index, row in example_df.iterrows(): study_title = row['Study'] study_metadata = metadata_df[metadata_df['title'] == study_title] if len(study_metadata) != 0: sha = study_metadata.iloc[0]['sha'] uid = study_metadata.iloc[0].name if str(sha) != 'nan': example_shas.append(sha) example_uids.append(uid) example_uids
code
34130462/cell_17
[ "text_html_output_1.png" ]
import pandas as pd metadata_df = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv', index_col='cord_uid') example_df = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/target_tables/2_relevant_factors/How does temperature and humidity affect the transmission of 2019-nCoV.csv') example_shas = [] example_uids = [] for index, row in example_df.iterrows(): study_title = row['Study'] study_metadata = metadata_df[metadata_df['title'] == study_title] if len(study_metadata) != 0: sha = study_metadata.iloc[0]['sha'] uid = study_metadata.iloc[0].name if str(sha) != 'nan': example_shas.append(sha) example_uids.append(uid) unique_example_uids = set(example_uids) len(unique_example_uids)
code
34130462/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd metadata_df = pd.read_csv('../input/CORD-19-research-challenge/metadata.csv', index_col='cord_uid') example_df = pd.read_csv('../input/CORD-19-research-challenge/Kaggle/target_tables/2_relevant_factors/How does temperature and humidity affect the transmission of 2019-nCoV.csv') example_df
code
32068850/cell_42
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbc.index sbc.columns sbc.shape[0] sbc.shape[1] sbc.loc['Harvey Mudd College'] sbc.loc[['Cooper Union', 'Harvey Mudd College', 'Amherst College', 'Auburn University']] sbc.iloc[100:-100] sbc[sbc['Mid-Career Median Salary'] > 100000]
code
32068850/cell_81
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbr.groupby('Region')['Starting Median Salary'].mean() sbr.groupby('Region')['Starting Median Salary'].size()
code
32068850/cell_83
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbr.groupby('Region')['Starting Median Salary'].mean() sbr.groupby('Region')['Starting Median Salary'].size() sbr['Region'].value_counts()
code
32068850/cell_57
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbc.index sbc.columns sbc.shape[0] sbc.shape[1] sbc.loc['Harvey Mudd College'] sbc.loc[['Cooper Union', 'Harvey Mudd College', 'Amherst College', 'Auburn University']] sbc.iloc[100:-100] round(sbc['Mid-Career Median Salary'].std(), 2)
code
32068850/cell_33
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbc.index sbc.columns sbc.shape[0] sbc.shape[1] sbc.loc['Harvey Mudd College']
code
32068850/cell_87
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbc.index sbc.columns sbc.shape[0] sbc.shape[1] sbc.loc['Harvey Mudd College'] sbc.loc[['Cooper Union', 'Harvey Mudd College', 'Amherst College', 'Auburn University']] sbc.iloc[100:-100] sbc = sbc.sort_values('School Name') sbc.groupby('School Type')['Starting Median Salary'].mean().plot.bar()
code
32068850/cell_55
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') round(sbm['Mid-Career Median Salary'].std(), 2)
code
32068850/cell_6
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32068850/cell_76
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbr.groupby('Region')['Starting Median Salary'].mean()
code
32068850/cell_39
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbm[sbm['Mid-Career Median Salary'] > 100000]
code
32068850/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbc.index sbc.columns sbc.shape[0]
code
32068850/cell_91
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbc.index sbc.columns sbc.shape[0] sbc.shape[1] sbc.loc['Harvey Mudd College'] sbc.loc[['Cooper Union', 'Harvey Mudd College', 'Amherst College', 'Auburn University']] sbc.iloc[100:-100] sbc = sbc.sort_values('School Name') sbc[sbc['School Type'] == 'Ivy League'].sort_values('Starting Median Salary')['Starting Median Salary'].plot.barh()
code
32068850/cell_65
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbc.index sbc.columns sbc.shape[0] sbc.shape[1] sbc.loc['Harvey Mudd College'] sbc.loc[['Cooper Union', 'Harvey Mudd College', 'Amherst College', 'Auburn University']] sbc.iloc[100:-100] sbc = sbc.sort_values('School Name') sbc.head()
code
32068850/cell_48
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') round(sbm['Mid-Career Median Salary'].mean(), 2)
code
32068850/cell_73
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbr.head()
code
32068850/cell_67
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbm = sbm.sort_values('Mid-Career Median Salary', ascending=False) sbm['Starting Median Salary'].max()
code
32068850/cell_19
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbc.tail()
code
32068850/cell_69
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbm = sbm.sort_values('Mid-Career Median Salary', ascending=False) sbm['Starting Median Salary'].idxmax()
code
32068850/cell_52
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbc.index sbc.columns sbc.shape[0] sbc.shape[1] sbc.loc['Harvey Mudd College'] sbc.loc[['Cooper Union', 'Harvey Mudd College', 'Amherst College', 'Auburn University']] sbc.iloc[100:-100] round(sbc['Mid-Career Median Salary'].median(), 2)
code
32068850/cell_49
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') round(sbm['Mid-Career Median Salary'].median(), 2)
code
32068850/cell_18
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbc.head()
code
32068850/cell_89
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbc.index sbc.columns sbc.shape[0] sbc.shape[1] sbc.loc['Harvey Mudd College'] sbc.loc[['Cooper Union', 'Harvey Mudd College', 'Amherst College', 'Auburn University']] sbc.iloc[100:-100] sbc = sbc.sort_values('School Name') sbc['School Type'].value_counts().plot.pie()
code
32068850/cell_51
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbc.index sbc.columns sbc.shape[0] sbc.shape[1] sbc.loc['Harvey Mudd College'] sbc.loc[['Cooper Union', 'Harvey Mudd College', 'Amherst College', 'Auburn University']] sbc.iloc[100:-100] round(sbc['Mid-Career Median Salary'].mean(), 2)
code
32068850/cell_62
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major') sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name') sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name') sbm = sbm.sort_values('Mid-Career Median Salary', ascending=False) sbm.head()
code