path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
32068850/cell_28 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major')
sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name')
sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name')
sbc.index
sbc.columns
sbc.shape[0]
sbc.shape[1] | code |
32068850/cell_35 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major')
sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name')
sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name')
sbc.index
sbc.columns
sbc.shape[0]
sbc.shape[1]
sbc.loc['Harvey Mudd College']
sbc.loc[['Cooper Union', 'Harvey Mudd College', 'Amherst College', 'Auburn University']] | code |
32068850/cell_31 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major')
sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name')
sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name')
sbc.index
sbc.columns
sbc.shape[0]
sbc.shape[1]
sbc.head() | code |
32068850/cell_24 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major')
sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name')
sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name')
sbc.index
sbc.columns | code |
32068850/cell_14 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major')
sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name')
sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name')
sbm.tail(10) | code |
32068850/cell_22 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major')
sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name')
sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name')
sbc.index | code |
32068850/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major')
sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name')
sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name')
dataFrameList = [sbm, sbc, sbr]
for df in dataFrameList:
for col in df.columns:
i = 0
while i < df.shape[0]:
if isinstance(df[col].iloc[i], str) and df[col].iloc[i][0] == '$':
df[col].iloc[i] = df[col].iloc[i].replace(',', '')
df[col].iloc[i] = df[col].iloc[i].replace('$', '')
df[col].iloc[i] = float(df[col].iloc[i])
i = i + 1 | code |
32068850/cell_37 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major')
sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name')
sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name')
sbc.index
sbc.columns
sbc.shape[0]
sbc.shape[1]
sbc.loc['Harvey Mudd College']
sbc.loc[['Cooper Union', 'Harvey Mudd College', 'Amherst College', 'Auburn University']]
sbc.iloc[100:-100] | code |
32068850/cell_12 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sbm = pd.read_csv('/kaggle/input/college-salaries/degrees-that-pay-back.csv').set_index('Undergraduate Major')
sbc = pd.read_csv('/kaggle/input/college-salaries/salaries-by-college-type.csv').set_index('School Name')
sbr = pd.read_csv('/kaggle/input/college-salaries/salaries-by-region.csv').set_index('School Name')
sbm.head() | code |
1007484/cell_11 | [
"text_html_output_1.png"
] | from scipy import stats, optimize
import numpy as np
import pandas as pd
df = pd.read_csv('../input/fivethirtyeight_ncaa_forecasts (2).csv')
matchups = [[str(x + 1), str(16 - x)] for x in range(8)]
df = df[df.gender == 'mens']
pre = df[df.playin_flag == 1]
data = []
for region in pre.team_region.unique():
for seed in range(2, 17):
res = pre[(pre.team_region == region) & pre.team_seed.isin([str(seed) + 'a', str(seed) + 'b'])]
if res.shape[0] > 1:
data.append([])
for _, row in res.iterrows():
data[-1].extend([row.team_rating, row.rd1_win])
post = df[df.playin_flag == 0]
for region in post.team_region.unique():
for matchup in matchups:
res = post[(post.team_region == region) & post.team_seed.isin(matchup)]
if res.shape[0] > 1:
data.append([])
for _, row in res.iterrows():
data[-1].extend([row.team_rating, row.rd2_win])
match = pd.DataFrame(data, columns=['Team1_Rating', 'Team1_Prob', 'Team2_Rating', 'Team2_Prob'])
match['delta'] = match.Team1_Rating - match.Team2_Rating
match['win_extra'] = match.Team1_Prob - 0.5
def matcher(std, diff, prob):
p = stats.norm.cdf(0, diff, std)
return np.abs(p - prob)
stds = []
for _, row in match.iterrows():
x0 = 1
res = optimize.minimize(matcher, x0=x0, args=(row.delta, row.Team1_Prob))
while res.status != 0 or res.x == x0:
x0 *= 5
res = optimize.minimize(matcher, x0=x0, args=(row.delta, row.Team1_Prob))
if x0 > 1000:
break
stds.append(res.x)
stds | code |
1007484/cell_7 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/fivethirtyeight_ncaa_forecasts (2).csv')
matchups = [[str(x + 1), str(16 - x)] for x in range(8)]
df = df[df.gender == 'mens']
pre = df[df.playin_flag == 1]
data = []
for region in pre.team_region.unique():
for seed in range(2, 17):
res = pre[(pre.team_region == region) & pre.team_seed.isin([str(seed) + 'a', str(seed) + 'b'])]
if res.shape[0] > 1:
data.append([])
for _, row in res.iterrows():
data[-1].extend([row.team_rating, row.rd1_win])
post = df[df.playin_flag == 0]
for region in post.team_region.unique():
for matchup in matchups:
res = post[(post.team_region == region) & post.team_seed.isin(matchup)]
if res.shape[0] > 1:
data.append([])
for _, row in res.iterrows():
data[-1].extend([row.team_rating, row.rd2_win])
match = pd.DataFrame(data, columns=['Team1_Rating', 'Team1_Prob', 'Team2_Rating', 'Team2_Prob'])
match['delta'] = match.Team1_Rating - match.Team2_Rating
match['win_extra'] = match.Team1_Prob - 0.5
sns.regplot('delta', 'win_extra', data=match, order=2) | code |
1007484/cell_3 | [
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/fivethirtyeight_ncaa_forecasts (2).csv')
df.head() | code |
90152893/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
90152893/cell_3 | [
"application_vnd.jupyter.stderr_output_1.png"
] | df = pandas.read_csv('../input/water-potability/water_potability.csv')
df.describe() | code |
73078417/cell_21 | [
"image_output_1.png"
] | import pandas as pd
f = pd.read_csv('../input/time-series-forecasting-with-yahoo-stock-price/yahoo_stock.csv')
air_passengers = pd.read_csv('../input/air-passengers/AirPassengers.csv', header=0, parse_dates=[0], names=['Month', 'Passengers'], index_col=0)
air_passengers.plot() | code |
73078417/cell_9 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | from matplotlib.pylab import plt
from statsmodels.tsa import stattools
import numpy as np
grid = np.linspace(0, 720, 500)
noise = np.random.rand(500)
result_curve = noise
acf_result = stattools.acf(result_curve)
plt.plot(acf_result)
plt.axhline(y=0, linestyle='--')
plt.axhline(y=-1.96 / np.sqrt(len(result_curve)), linestyle='--')
plt.axhline(y=1.96 / np.sqrt(len(result_curve)), linestyle='--') | code |
73078417/cell_2 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | from matplotlib.pylab import plt
pylab.rcParams['figure.figsize'] = (10, 6)
import pandas as pd
import numpy as np | code |
73078417/cell_11 | [
"text_plain_output_1.png"
] | from matplotlib.pylab import plt
from statsmodels.tsa import stattools
import numpy as np
grid = np.linspace(0, 720, 500)
noise = np.random.rand(500)
result_curve = noise
acf_result = stattools.acf(result_curve)
grid = np.linspace(0, 100, 1000)
sin5 = np.sin(grid)
result_curve = sin5
plt.plot(grid, result_curve) | code |
73078417/cell_18 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from matplotlib.pylab import plt
from statsmodels.tsa import stattools
import numpy as np
import pandas as pd
f = pd.read_csv('../input/time-series-forecasting-with-yahoo-stock-price/yahoo_stock.csv')
grid = np.linspace(0, 720, 500)
noise = np.random.rand(500)
result_curve = noise
acf_result = stattools.acf(result_curve)
grid = np.linspace(0, 100, 1000)
sin5 = np.sin(grid)
result_curve = sin5
grid = np.linspace(0, 100, 100)
sin5 = np.sin(grid)
result_curve = sin5
acf_result = stattools.acf(result_curve, nlags=100)
acf_result = stattools.acf(f['Open'], nlags=1000)
diff_f = f.Open - f.Open.shift()
diff_f.dropna(inplace=True)
acf_result = stattools.acf(diff_f)
plt.subplot(121)
plt.plot(acf_result)
plt.axhline(y=0, linestyle='--')
plt.axhline(y=-1.96 / np.sqrt(len(diff_f)), linestyle='--')
plt.axhline(y=1.96 / np.sqrt(len(diff_f)), linestyle='--') | code |
73078417/cell_8 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from matplotlib.pylab import plt
import numpy as np
grid = np.linspace(0, 720, 500)
noise = np.random.rand(500)
result_curve = noise
plt.plot(grid, result_curve) | code |
73078417/cell_15 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from matplotlib.pylab import plt
from statsmodels.tsa import stattools
import numpy as np
import pandas as pd
f = pd.read_csv('../input/time-series-forecasting-with-yahoo-stock-price/yahoo_stock.csv')
grid = np.linspace(0, 720, 500)
noise = np.random.rand(500)
result_curve = noise
acf_result = stattools.acf(result_curve)
grid = np.linspace(0, 100, 1000)
sin5 = np.sin(grid)
result_curve = sin5
grid = np.linspace(0, 100, 100)
sin5 = np.sin(grid)
result_curve = sin5
acf_result = stattools.acf(result_curve, nlags=100)
plt.plot(f['Open']) | code |
73078417/cell_16 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | from matplotlib.pylab import plt
from statsmodels.tsa import stattools
import numpy as np
import pandas as pd
f = pd.read_csv('../input/time-series-forecasting-with-yahoo-stock-price/yahoo_stock.csv')
grid = np.linspace(0, 720, 500)
noise = np.random.rand(500)
result_curve = noise
acf_result = stattools.acf(result_curve)
grid = np.linspace(0, 100, 1000)
sin5 = np.sin(grid)
result_curve = sin5
grid = np.linspace(0, 100, 100)
sin5 = np.sin(grid)
result_curve = sin5
acf_result = stattools.acf(result_curve, nlags=100)
acf_result = stattools.acf(f['Open'], nlags=1000)
plt.subplot(121)
plt.plot(acf_result)
plt.axhline(y=0, linestyle='--')
plt.axhline(y=-1.96 / np.sqrt(len(f['Open'])), linestyle='--')
plt.axhline(y=1.96 / np.sqrt(len(f['Open'])), linestyle='--') | code |
73078417/cell_17 | [
"text_html_output_1.png"
] | import pandas as pd
f = pd.read_csv('../input/time-series-forecasting-with-yahoo-stock-price/yahoo_stock.csv')
diff_f = f.Open - f.Open.shift()
diff_f.plot()
diff_f.dropna(inplace=True) | code |
73078417/cell_14 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | import pandas as pd
f = pd.read_csv('../input/time-series-forecasting-with-yahoo-stock-price/yahoo_stock.csv')
f.head() | code |
73078417/cell_12 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from matplotlib.pylab import plt
from statsmodels.tsa import stattools
import numpy as np
grid = np.linspace(0, 720, 500)
noise = np.random.rand(500)
result_curve = noise
acf_result = stattools.acf(result_curve)
grid = np.linspace(0, 100, 1000)
sin5 = np.sin(grid)
result_curve = sin5
grid = np.linspace(0, 100, 100)
sin5 = np.sin(grid)
result_curve = sin5
acf_result = stattools.acf(result_curve, nlags=100)
plt.plot(acf_result)
plt.axhline(y=0, linestyle='--')
plt.axhline(y=-1.96 / np.sqrt(len(result_curve)), linestyle='--')
plt.axhline(y=1.96 / np.sqrt(len(result_curve)), linestyle='--') | code |
18154941/cell_21 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
tfms = get_transforms(do_flip=True, flip_vert=True, max_warp=0)
data_path = '../input/aptos2019-blindness-detection'
train_label_file = 'train.csv'
train_images_folder = 'train_images'
test_label_file = 'test.csv'
test_images_folder = 'test_images'
image_suffix = '.png'
split_pct = 0.1
bs = 64
size = 224
np.random.seed(42)
src = ImageList.from_csv(data_path, train_label_file, folder=train_images_folder, suffix=image_suffix).split_by_rand_pct(split_pct).label_from_df()
src
data = src.transform(tfms, size=size).databunch(bs=bs).normalize(imagenet_stats)
(data.c, data.classes)
arch = models.vgg16_bn
kappa = KappaScore()
kappa.weights = 'quadratic'
learn = cnn_learner(data, arch, metrics=[kappa], model_dir='../saved_models')
learn.model
learn.lr_find()
learn.recorder.plot(suggestion=True) | code |
18154941/cell_13 | [
"image_output_1.png"
] | import numpy as np # linear algebra
tfms = get_transforms(do_flip=True, flip_vert=True, max_warp=0)
data_path = '../input/aptos2019-blindness-detection'
train_label_file = 'train.csv'
train_images_folder = 'train_images'
test_label_file = 'test.csv'
test_images_folder = 'test_images'
image_suffix = '.png'
split_pct = 0.1
bs = 64
size = 224
np.random.seed(42)
src = ImageList.from_csv(data_path, train_label_file, folder=train_images_folder, suffix=image_suffix).split_by_rand_pct(split_pct).label_from_df()
src
data = src.transform(tfms, size=size).databunch(bs=bs).normalize(imagenet_stats)
(data.c, data.classes) | code |
18154941/cell_9 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
data_path = '../input/aptos2019-blindness-detection'
train_label_file = 'train.csv'
train_images_folder = 'train_images'
test_label_file = 'test.csv'
test_images_folder = 'test_images'
image_suffix = '.png'
fname = os.path.join(data_path, train_label_file)
df = pd.read_csv(fname)
df.head(5) | code |
18154941/cell_4 | [
"text_plain_output_1.png"
] | import torch
import torch
print('Make sure cudnn is enabled:', torch.backends.cudnn.enabled, torch.backends.cudnn.deterministic)
torch.backends.cudnn.deterministic = True
print('Make sure cudnn is enabled:', torch.backends.cudnn.enabled, torch.backends.cudnn.deterministic) | code |
18154941/cell_23 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
tfms = get_transforms(do_flip=True, flip_vert=True, max_warp=0)
data_path = '../input/aptos2019-blindness-detection'
train_label_file = 'train.csv'
train_images_folder = 'train_images'
test_label_file = 'test.csv'
test_images_folder = 'test_images'
image_suffix = '.png'
split_pct = 0.1
bs = 64
size = 224
np.random.seed(42)
src = ImageList.from_csv(data_path, train_label_file, folder=train_images_folder, suffix=image_suffix).split_by_rand_pct(split_pct).label_from_df()
src
data = src.transform(tfms, size=size).databunch(bs=bs).normalize(imagenet_stats)
(data.c, data.classes)
arch = models.vgg16_bn
kappa = KappaScore()
kappa.weights = 'quadratic'
learn = cnn_learner(data, arch, metrics=[kappa], model_dir='../saved_models')
learn.model
learn.lr_find()
lr = 0.01 / 2
learn.fit_one_cycle(5, lr, callbacks=[SaveModelCallback(learn, monitor='kappa_score', mode='max', name='headonly_vgg16_bn')]) | code |
18154941/cell_20 | [
"image_output_1.png"
] | import numpy as np # linear algebra
tfms = get_transforms(do_flip=True, flip_vert=True, max_warp=0)
data_path = '../input/aptos2019-blindness-detection'
train_label_file = 'train.csv'
train_images_folder = 'train_images'
test_label_file = 'test.csv'
test_images_folder = 'test_images'
image_suffix = '.png'
split_pct = 0.1
bs = 64
size = 224
np.random.seed(42)
src = ImageList.from_csv(data_path, train_label_file, folder=train_images_folder, suffix=image_suffix).split_by_rand_pct(split_pct).label_from_df()
src
data = src.transform(tfms, size=size).databunch(bs=bs).normalize(imagenet_stats)
(data.c, data.classes)
arch = models.vgg16_bn
kappa = KappaScore()
kappa.weights = 'quadratic'
learn = cnn_learner(data, arch, metrics=[kappa], model_dir='../saved_models')
learn.model | code |
18154941/cell_29 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import numpy as np # linear algebra
tfms = get_transforms(do_flip=True, flip_vert=True, max_warp=0)
data_path = '../input/aptos2019-blindness-detection'
train_label_file = 'train.csv'
train_images_folder = 'train_images'
test_label_file = 'test.csv'
test_images_folder = 'test_images'
image_suffix = '.png'
split_pct = 0.1
bs = 64
size = 224
np.random.seed(42)
src = ImageList.from_csv(data_path, train_label_file, folder=train_images_folder, suffix=image_suffix).split_by_rand_pct(split_pct).label_from_df()
src
data = src.transform(tfms, size=size).databunch(bs=bs).normalize(imagenet_stats)
(data.c, data.classes)
arch = models.vgg16_bn
kappa = KappaScore()
kappa.weights = 'quadratic'
learn = cnn_learner(data, arch, metrics=[kappa], model_dir='../saved_models')
learn.model
learn.lr_find()
lr = 0.01 / 2
learn.fit_one_cycle(5, lr, callbacks=[SaveModelCallback(learn, monitor='kappa_score', mode='max', name='headonly_vgg16_bn')])
learn.load('headonly_vgg16_bn')
learn.unfreeze()
learn.lr_find()
learn.fit_one_cycle(5, slice(0.0001 / 2, lr / 10), callbacks=[SaveModelCallback(learn, monitor='kappa_score', mode='max', name='best_model_vgg16_bn_224')])
learn.recorder.plot_losses()
learn.recorder.plot_metrics() | code |
18154941/cell_11 | [
"text_html_output_1.png"
] | import numpy as np # linear algebra
data_path = '../input/aptos2019-blindness-detection'
train_label_file = 'train.csv'
train_images_folder = 'train_images'
test_label_file = 'test.csv'
test_images_folder = 'test_images'
image_suffix = '.png'
split_pct = 0.1
bs = 64
size = 224
np.random.seed(42)
src = ImageList.from_csv(data_path, train_label_file, folder=train_images_folder, suffix=image_suffix).split_by_rand_pct(split_pct).label_from_df()
src | code |
18154941/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
18154941/cell_18 | [
"text_plain_output_1.png"
] | import os
import os
import numpy as np
import pandas as pd
import os
data_path = '../input/aptos2019-blindness-detection'
train_label_file = 'train.csv'
train_images_folder = 'train_images'
test_label_file = 'test.csv'
test_images_folder = 'test_images'
image_suffix = '.png'
fname = os.path.join(data_path, train_label_file)
if not os.path.exists('/tmp/.cache/torch/checkpoints/'):
os.makedirs('/tmp/.cache/torch/checkpoints/')
print(os.listdir('/tmp/.cache/torch/checkpoints')) | code |
18154941/cell_32 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import numpy as np # linear algebra
tfms = get_transforms(do_flip=True, flip_vert=True, max_warp=0)
data_path = '../input/aptos2019-blindness-detection'
train_label_file = 'train.csv'
train_images_folder = 'train_images'
test_label_file = 'test.csv'
test_images_folder = 'test_images'
image_suffix = '.png'
split_pct = 0.1
bs = 64
size = 224
np.random.seed(42)
src = ImageList.from_csv(data_path, train_label_file, folder=train_images_folder, suffix=image_suffix).split_by_rand_pct(split_pct).label_from_df()
src
data = src.transform(tfms, size=size).databunch(bs=bs).normalize(imagenet_stats)
(data.c, data.classes)
bs = 16
size = 448
data = src.transform(tfms, size=size).databunch(bs=bs).normalize(imagenet_stats)
(data.c, data.classes) | code |
18154941/cell_28 | [
"image_output_2.png",
"image_output_1.png"
] | import numpy as np # linear algebra
tfms = get_transforms(do_flip=True, flip_vert=True, max_warp=0)
data_path = '../input/aptos2019-blindness-detection'
train_label_file = 'train.csv'
train_images_folder = 'train_images'
test_label_file = 'test.csv'
test_images_folder = 'test_images'
image_suffix = '.png'
split_pct = 0.1
bs = 64
size = 224
np.random.seed(42)
src = ImageList.from_csv(data_path, train_label_file, folder=train_images_folder, suffix=image_suffix).split_by_rand_pct(split_pct).label_from_df()
src
data = src.transform(tfms, size=size).databunch(bs=bs).normalize(imagenet_stats)
(data.c, data.classes)
arch = models.vgg16_bn
kappa = KappaScore()
kappa.weights = 'quadratic'
learn = cnn_learner(data, arch, metrics=[kappa], model_dir='../saved_models')
learn.model
learn.lr_find()
lr = 0.01 / 2
learn.fit_one_cycle(5, lr, callbacks=[SaveModelCallback(learn, monitor='kappa_score', mode='max', name='headonly_vgg16_bn')])
learn.load('headonly_vgg16_bn')
learn.unfreeze()
learn.lr_find()
learn.fit_one_cycle(5, slice(0.0001 / 2, lr / 10), callbacks=[SaveModelCallback(learn, monitor='kappa_score', mode='max', name='best_model_vgg16_bn_224')]) | code |
18154941/cell_24 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import numpy as np # linear algebra
tfms = get_transforms(do_flip=True, flip_vert=True, max_warp=0)
data_path = '../input/aptos2019-blindness-detection'
train_label_file = 'train.csv'
train_images_folder = 'train_images'
test_label_file = 'test.csv'
test_images_folder = 'test_images'
image_suffix = '.png'
split_pct = 0.1
bs = 64
size = 224
np.random.seed(42)
src = ImageList.from_csv(data_path, train_label_file, folder=train_images_folder, suffix=image_suffix).split_by_rand_pct(split_pct).label_from_df()
src
data = src.transform(tfms, size=size).databunch(bs=bs).normalize(imagenet_stats)
(data.c, data.classes)
arch = models.vgg16_bn
kappa = KappaScore()
kappa.weights = 'quadratic'
learn = cnn_learner(data, arch, metrics=[kappa], model_dir='../saved_models')
learn.model
learn.lr_find()
lr = 0.01 / 2
learn.fit_one_cycle(5, lr, callbacks=[SaveModelCallback(learn, monitor='kappa_score', mode='max', name='headonly_vgg16_bn')])
learn.recorder.plot_losses()
learn.recorder.plot_metrics() | code |
18154941/cell_14 | [
"text_plain_output_1.png"
] | import numpy as np # linear algebra
tfms = get_transforms(do_flip=True, flip_vert=True, max_warp=0)
data_path = '../input/aptos2019-blindness-detection'
train_label_file = 'train.csv'
train_images_folder = 'train_images'
test_label_file = 'test.csv'
test_images_folder = 'test_images'
image_suffix = '.png'
split_pct = 0.1
bs = 64
size = 224
np.random.seed(42)
src = ImageList.from_csv(data_path, train_label_file, folder=train_images_folder, suffix=image_suffix).split_by_rand_pct(split_pct).label_from_df()
src
data = src.transform(tfms, size=size).databunch(bs=bs).normalize(imagenet_stats)
(data.c, data.classes)
data.show_batch(rows=3, figsize=(7, 6)) | code |
18154941/cell_10 | [
"text_plain_output_1.png"
] | import os
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import os
data_path = '../input/aptos2019-blindness-detection'
train_label_file = 'train.csv'
train_images_folder = 'train_images'
test_label_file = 'test.csv'
test_images_folder = 'test_images'
image_suffix = '.png'
fname = os.path.join(data_path, train_label_file)
df = pd.read_csv(fname)
_ = df.hist() | code |
18154941/cell_27 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import numpy as np # linear algebra
tfms = get_transforms(do_flip=True, flip_vert=True, max_warp=0)
data_path = '../input/aptos2019-blindness-detection'
train_label_file = 'train.csv'
train_images_folder = 'train_images'
test_label_file = 'test.csv'
test_images_folder = 'test_images'
image_suffix = '.png'
split_pct = 0.1
bs = 64
size = 224
np.random.seed(42)
src = ImageList.from_csv(data_path, train_label_file, folder=train_images_folder, suffix=image_suffix).split_by_rand_pct(split_pct).label_from_df()
src
data = src.transform(tfms, size=size).databunch(bs=bs).normalize(imagenet_stats)
(data.c, data.classes)
arch = models.vgg16_bn
kappa = KappaScore()
kappa.weights = 'quadratic'
learn = cnn_learner(data, arch, metrics=[kappa], model_dir='../saved_models')
learn.model
learn.lr_find()
lr = 0.01 / 2
learn.fit_one_cycle(5, lr, callbacks=[SaveModelCallback(learn, monitor='kappa_score', mode='max', name='headonly_vgg16_bn')])
learn.load('headonly_vgg16_bn')
learn.unfreeze()
learn.lr_find()
learn.recorder.plot(suggestion=True) | code |
128008350/cell_3 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
stimulus = pd.read_excel('/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Stimulus_Description.xlsx')
stimulus['Target Emotion'] = stimulus['Target Emotion'].str.title()
stimulus.info()
stimulus.head() | code |
128008350/cell_5 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
stimulus=pd.read_excel("/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Stimulus_Description.xlsx")
stimulus["Target Emotion"]=stimulus["Target Emotion"].str.title()
stimulus.info()
stimulus.head()
ecg_data = pd.read_excel('/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Self-Annotation Labels/Self-annotation Single Modal_Use.xlsx')
ecg_data['filename'] = 'ECGdata_s' + ecg_data['Session Id'].astype(str) + 'p' + ecg_data['Participant Id'].astype(str) + 'v' + ecg_data['Video Id'].astype(str) + '.dat'
PATH_2 = '/kaggle/input/young-adults-affective-data-ecg-and-gsr-signals/ECG_GSR_Emotions/Raw Data/Single Modal/ECG/'
ecg_data['ECG_list'] = ecg_data['filename'].apply(lambda x: list(pd.read_table(PATH_2 + x, sep=',')))
ecg_data = ecg_data.merge(stimulus.iloc[:, 0:3], left_on=['Session Id', 'Video Id'], right_on=['Session ID', 'Video ID'], how='left')
ecg_data.to_csv('ecg_data.csv', index=False)
ecg_data = pd.read_csv('/kaggle/working/ecg_data.csv')
ecg.data.info()
ecg_data.head() | code |
33098890/cell_13 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dfs = {}
for name in ['train', 'test']:
df = pd.read_csv('/kaggle/input/bike-sharing-demand/%s.csv' % name)
df['_data'] = name
dfs[name] = df
df = dfs['train'].append(dfs['test'])
df.columns = map(str.lower, df.columns)
for col in ['casual', 'registered', 'count']:
df['%s_log' % col] = np.log(df[col] + 1)
dt = pd.DatetimeIndex(df['datetime'])
df.set_index(dt, inplace=True)
df['date'] = dt.date
df['day'] = dt.day
df['month'] = dt.month
df['year'] = dt.year
df['hour'] = dt.hour
df['dow'] = dt.dayofweek
df['woy'] = dt.weekofyear
def get_rmsle(y_pred, y_actual):
diff = np.log(y_pred + 1) - np.log(y_actual + 1)
mean_error = np.square(diff).mean()
return np.sqrt(mean_error)
def get_data():
data = df[df['_data'] == 'train'].copy()
return data
def custom_train_test_split(data, cutoff_day=15):
train = data[data['day'] <= cutoff_day]
test = data[data['day'] > cutoff_day]
return (train, test)
def prep_data(data, input_cols):
X = data[input_cols]
y_r = data['registered_log']
y_c = data['casual_log']
return (X, y_r, y_c)
def predict_on_validation_set(model, input_cols):
data = get_data()
train, test = custom_train_test_split(data)
X_train, y_train_r, y_train_c = prep_data(train, input_cols)
X_test, y_test_r, y_test_c = prep_data(test, input_cols)
model_r = model.fit(X_train, y_train_r)
y_pred_r = np.exp(model_r.predict(X_test)) - 1
model_c = model.fit(X_train, y_train_c)
y_pred_c = np.exp(model_c.predict(X_test)) - 1
y_pred_comb = np.round(y_pred_r + y_pred_c)
y_pred_comb[y_pred_comb < 0] = 0
y_test_comb = np.exp(y_test_r) + np.exp(y_test_c) - 2
score = get_rmsle(y_pred_comb, y_test_comb)
return (y_pred_comb, y_test_comb, score)
df_test = df[df['_data'] == 'test'].copy()
def predict_on_test_set(model, x_cols):
df_train = df[df['_data'] == 'train'].copy()
X_train = df_train[x_cols]
y_train_cas = df_train['casual_log']
y_train_reg = df_train['registered_log']
X_test = df_test[x_cols]
casual_model = model.fit(X_train, y_train_cas)
y_pred_cas = casual_model.predict(X_test)
y_pred_cas = np.exp(y_pred_cas) - 1
registered_model = model.fit(X_train, y_train_reg)
y_pred_reg = registered_model.predict(X_test)
y_pred_reg = np.exp(y_pred_reg) - 1
return y_pred_cas + y_pred_reg
params = {'n_estimators': 1000, 'max_depth': 15, 'random_state': 0, 'min_samples_split': 5, 'n_jobs': -1}
rf_model = RandomForestRegressor(**params)
rf_cols = ['weather', 'temp', 'atemp', 'windspeed', 'workingday', 'season', 'holiday', 'sticky', 'hour', 'dow', 'woy', 'peak']
rf_p, rf_t, rf_score = predict_on_validation_set(rf_model, rf_cols)
params = {'n_estimators': 150, 'max_depth': 5, 'random_state': 0, 'min_samples_leaf': 10, 'learning_rate': 0.1, 'subsample': 0.7, 'loss': 'ls'}
gbm_model = GradientBoostingRegressor(**params)
gbm_cols = ['weather', 'temp', 'atemp', 'humidity', 'windspeed', 'holiday', 'workingday', 'season', 'hour', 'dow', 'year', 'ideal', 'count_season']
gbm_p, gbm_t, gbm_score = predict_on_validation_set(gbm_model, gbm_cols)
y_p = np.round(0.2 * rf_p + 0.8 * gbm_p)
rf_pred = predict_on_test_set(rf_model, rf_cols)
gbm_pred = predict_on_test_set(gbm_model, gbm_cols) | code |
33098890/cell_9 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dfs = {}
for name in ['train', 'test']:
df = pd.read_csv('/kaggle/input/bike-sharing-demand/%s.csv' % name)
df['_data'] = name
dfs[name] = df
df = dfs['train'].append(dfs['test'])
df.columns = map(str.lower, df.columns)
dt = pd.DatetimeIndex(df['datetime'])
df.set_index(dt, inplace=True)
df['date'] = dt.date
df['day'] = dt.day
df['month'] = dt.month
df['year'] = dt.year
df['hour'] = dt.hour
df['dow'] = dt.dayofweek
df['woy'] = dt.weekofyear
df['ideal'] = df[['temp', 'windspeed']].apply(lambda x: (0, 1)[x['temp'] > 27 and x['windspeed'] < 30], axis=1)
df['sticky'] = df[['humidity', 'workingday']].apply(lambda x: (0, 1)[x['workingday'] == 1 and x['humidity'] >= 60], axis=1) | code |
33098890/cell_11 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dfs = {}
for name in ['train', 'test']:
df = pd.read_csv('/kaggle/input/bike-sharing-demand/%s.csv' % name)
df['_data'] = name
dfs[name] = df
df = dfs['train'].append(dfs['test'])
df.columns = map(str.lower, df.columns)
for col in ['casual', 'registered', 'count']:
df['%s_log' % col] = np.log(df[col] + 1)
dt = pd.DatetimeIndex(df['datetime'])
df.set_index(dt, inplace=True)
df['date'] = dt.date
df['day'] = dt.day
df['month'] = dt.month
df['year'] = dt.year
df['hour'] = dt.hour
df['dow'] = dt.dayofweek
df['woy'] = dt.weekofyear
def get_rmsle(y_pred, y_actual):
diff = np.log(y_pred + 1) - np.log(y_actual + 1)
mean_error = np.square(diff).mean()
return np.sqrt(mean_error)
def get_data():
data = df[df['_data'] == 'train'].copy()
return data
def custom_train_test_split(data, cutoff_day=15):
train = data[data['day'] <= cutoff_day]
test = data[data['day'] > cutoff_day]
return (train, test)
def prep_data(data, input_cols):
X = data[input_cols]
y_r = data['registered_log']
y_c = data['casual_log']
return (X, y_r, y_c)
def predict_on_validation_set(model, input_cols):
data = get_data()
train, test = custom_train_test_split(data)
X_train, y_train_r, y_train_c = prep_data(train, input_cols)
X_test, y_test_r, y_test_c = prep_data(test, input_cols)
model_r = model.fit(X_train, y_train_r)
y_pred_r = np.exp(model_r.predict(X_test)) - 1
model_c = model.fit(X_train, y_train_c)
y_pred_c = np.exp(model_c.predict(X_test)) - 1
y_pred_comb = np.round(y_pred_r + y_pred_c)
y_pred_comb[y_pred_comb < 0] = 0
y_test_comb = np.exp(y_test_r) + np.exp(y_test_c) - 2
score = get_rmsle(y_pred_comb, y_test_comb)
return (y_pred_comb, y_test_comb, score)
df_test = df[df['_data'] == 'test'].copy()
def predict_on_test_set(model, x_cols):
df_train = df[df['_data'] == 'train'].copy()
X_train = df_train[x_cols]
y_train_cas = df_train['casual_log']
y_train_reg = df_train['registered_log']
X_test = df_test[x_cols]
casual_model = model.fit(X_train, y_train_cas)
y_pred_cas = casual_model.predict(X_test)
y_pred_cas = np.exp(y_pred_cas) - 1
registered_model = model.fit(X_train, y_train_reg)
y_pred_reg = registered_model.predict(X_test)
y_pred_reg = np.exp(y_pred_reg) - 1
return y_pred_cas + y_pred_reg
params = {'n_estimators': 1000, 'max_depth': 15, 'random_state': 0, 'min_samples_split': 5, 'n_jobs': -1}
rf_model = RandomForestRegressor(**params)
rf_cols = ['weather', 'temp', 'atemp', 'windspeed', 'workingday', 'season', 'holiday', 'sticky', 'hour', 'dow', 'woy', 'peak']
rf_p, rf_t, rf_score = predict_on_validation_set(rf_model, rf_cols)
print(rf_score) | code |
33098890/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
import matplotlib.pyplot as plt | code |
33098890/cell_7 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dfs = {}
for name in ['train', 'test']:
df = pd.read_csv('/kaggle/input/bike-sharing-demand/%s.csv' % name)
df['_data'] = name
dfs[name] = df
df = dfs['train'].append(dfs['test'])
df.columns = map(str.lower, df.columns)
dt = pd.DatetimeIndex(df['datetime'])
df.set_index(dt, inplace=True)
df['date'] = dt.date
df['day'] = dt.day
df['month'] = dt.month
df['year'] = dt.year
df['hour'] = dt.hour
df['dow'] = dt.dayofweek
df['woy'] = dt.weekofyear
df['peak'] = df[['hour', 'workingday']].apply(lambda x: (0, 1)[x['workingday'] == 1 and (x['hour'] == 8 or 17 <= x['hour'] <= 18 or 12 <= x['hour'] <= 13) or (x['workingday'] == 0 and 10 <= x['hour'] <= 19)], axis=1) | code |
33098890/cell_8 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dfs = {}
for name in ['train', 'test']:
df = pd.read_csv('/kaggle/input/bike-sharing-demand/%s.csv' % name)
df['_data'] = name
dfs[name] = df
df = dfs['train'].append(dfs['test'])
df.columns = map(str.lower, df.columns)
dt = pd.DatetimeIndex(df['datetime'])
df.set_index(dt, inplace=True)
df['date'] = dt.date
df['day'] = dt.day
df['month'] = dt.month
df['year'] = dt.year
df['hour'] = dt.hour
df['dow'] = dt.dayofweek
df['woy'] = dt.weekofyear
df['holiday'] = df[['month', 'day', 'holiday', 'year']].apply(lambda x: (x['holiday'], 1)[x['year'] == 2012 and x['month'] == 10 and (x['day'] in [30])], axis=1)
df['holiday'] = df[['month', 'day', 'holiday']].apply(lambda x: (x['holiday'], 1)[x['month'] == 12 and x['day'] in [24, 26, 31]], axis=1)
df['workingday'] = df[['month', 'day', 'workingday']].apply(lambda x: (x['workingday'], 0)[x['month'] == 12 and x['day'] in [24, 31]], axis=1) | code |
33098890/cell_15 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dfs = {}
for name in ['train', 'test']:
df = pd.read_csv('/kaggle/input/bike-sharing-demand/%s.csv' % name)
df['_data'] = name
dfs[name] = df
df = dfs['train'].append(dfs['test'])
df.columns = map(str.lower, df.columns)
for col in ['casual', 'registered', 'count']:
df['%s_log' % col] = np.log(df[col] + 1)
dt = pd.DatetimeIndex(df['datetime'])
df.set_index(dt, inplace=True)
df['date'] = dt.date
df['day'] = dt.day
df['month'] = dt.month
df['year'] = dt.year
df['hour'] = dt.hour
df['dow'] = dt.dayofweek
df['woy'] = dt.weekofyear
def get_rmsle(y_pred, y_actual):
diff = np.log(y_pred + 1) - np.log(y_actual + 1)
mean_error = np.square(diff).mean()
return np.sqrt(mean_error)
def get_data():
data = df[df['_data'] == 'train'].copy()
return data
def custom_train_test_split(data, cutoff_day=15):
train = data[data['day'] <= cutoff_day]
test = data[data['day'] > cutoff_day]
return (train, test)
def prep_data(data, input_cols):
X = data[input_cols]
y_r = data['registered_log']
y_c = data['casual_log']
return (X, y_r, y_c)
def predict_on_validation_set(model, input_cols):
data = get_data()
train, test = custom_train_test_split(data)
X_train, y_train_r, y_train_c = prep_data(train, input_cols)
X_test, y_test_r, y_test_c = prep_data(test, input_cols)
model_r = model.fit(X_train, y_train_r)
y_pred_r = np.exp(model_r.predict(X_test)) - 1
model_c = model.fit(X_train, y_train_c)
y_pred_c = np.exp(model_c.predict(X_test)) - 1
y_pred_comb = np.round(y_pred_r + y_pred_c)
y_pred_comb[y_pred_comb < 0] = 0
y_test_comb = np.exp(y_test_r) + np.exp(y_test_c) - 2
score = get_rmsle(y_pred_comb, y_test_comb)
return (y_pred_comb, y_test_comb, score)
df_test = df[df['_data'] == 'test'].copy()
def predict_on_test_set(model, x_cols):
df_train = df[df['_data'] == 'train'].copy()
X_train = df_train[x_cols]
y_train_cas = df_train['casual_log']
y_train_reg = df_train['registered_log']
X_test = df_test[x_cols]
casual_model = model.fit(X_train, y_train_cas)
y_pred_cas = casual_model.predict(X_test)
y_pred_cas = np.exp(y_pred_cas) - 1
registered_model = model.fit(X_train, y_train_reg)
y_pred_reg = registered_model.predict(X_test)
y_pred_reg = np.exp(y_pred_reg) - 1
return y_pred_cas + y_pred_reg
params = {'n_estimators': 1000, 'max_depth': 15, 'random_state': 0, 'min_samples_split': 5, 'n_jobs': -1}
rf_model = RandomForestRegressor(**params)
rf_cols = ['weather', 'temp', 'atemp', 'windspeed', 'workingday', 'season', 'holiday', 'sticky', 'hour', 'dow', 'woy', 'peak']
rf_p, rf_t, rf_score = predict_on_validation_set(rf_model, rf_cols)
params = {'n_estimators': 150, 'max_depth': 5, 'random_state': 0, 'min_samples_leaf': 10, 'learning_rate': 0.1, 'subsample': 0.7, 'loss': 'ls'}
gbm_model = GradientBoostingRegressor(**params)
gbm_cols = ['weather', 'temp', 'atemp', 'humidity', 'windspeed', 'holiday', 'workingday', 'season', 'hour', 'dow', 'year', 'ideal', 'count_season']
gbm_p, gbm_t, gbm_score = predict_on_validation_set(gbm_model, gbm_cols)
y_p = np.round(0.2 * rf_p + 0.8 * gbm_p)
rf_pred = predict_on_test_set(rf_model, rf_cols)
gbm_pred = predict_on_test_set(gbm_model, gbm_cols)
y_pred = np.round(0.2 * rf_pred + 0.8 * gbm_pred)
df_test['count'] = y_pred
final_df = df_test[['datetime', 'count']].copy()
final_df.to_csv('output5.csv', index=False) | code |
33098890/cell_14 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dfs = {}
for name in ['train', 'test']:
df = pd.read_csv('/kaggle/input/bike-sharing-demand/%s.csv' % name)
df['_data'] = name
dfs[name] = df
df = dfs['train'].append(dfs['test'])
df.columns = map(str.lower, df.columns)
for col in ['casual', 'registered', 'count']:
df['%s_log' % col] = np.log(df[col] + 1)
dt = pd.DatetimeIndex(df['datetime'])
df.set_index(dt, inplace=True)
df['date'] = dt.date
df['day'] = dt.day
df['month'] = dt.month
df['year'] = dt.year
df['hour'] = dt.hour
df['dow'] = dt.dayofweek
df['woy'] = dt.weekofyear
def get_rmsle(y_pred, y_actual):
diff = np.log(y_pred + 1) - np.log(y_actual + 1)
mean_error = np.square(diff).mean()
return np.sqrt(mean_error)
def get_data():
data = df[df['_data'] == 'train'].copy()
return data
def custom_train_test_split(data, cutoff_day=15):
train = data[data['day'] <= cutoff_day]
test = data[data['day'] > cutoff_day]
return (train, test)
def prep_data(data, input_cols):
X = data[input_cols]
y_r = data['registered_log']
y_c = data['casual_log']
return (X, y_r, y_c)
def predict_on_validation_set(model, input_cols):
data = get_data()
train, test = custom_train_test_split(data)
X_train, y_train_r, y_train_c = prep_data(train, input_cols)
X_test, y_test_r, y_test_c = prep_data(test, input_cols)
model_r = model.fit(X_train, y_train_r)
y_pred_r = np.exp(model_r.predict(X_test)) - 1
model_c = model.fit(X_train, y_train_c)
y_pred_c = np.exp(model_c.predict(X_test)) - 1
y_pred_comb = np.round(y_pred_r + y_pred_c)
y_pred_comb[y_pred_comb < 0] = 0
y_test_comb = np.exp(y_test_r) + np.exp(y_test_c) - 2
score = get_rmsle(y_pred_comb, y_test_comb)
return (y_pred_comb, y_test_comb, score)
df_test = df[df['_data'] == 'test'].copy()
def predict_on_test_set(model, x_cols):
df_train = df[df['_data'] == 'train'].copy()
X_train = df_train[x_cols]
y_train_cas = df_train['casual_log']
y_train_reg = df_train['registered_log']
X_test = df_test[x_cols]
casual_model = model.fit(X_train, y_train_cas)
y_pred_cas = casual_model.predict(X_test)
y_pred_cas = np.exp(y_pred_cas) - 1
registered_model = model.fit(X_train, y_train_reg)
y_pred_reg = registered_model.predict(X_test)
y_pred_reg = np.exp(y_pred_reg) - 1
return y_pred_cas + y_pred_reg
params = {'n_estimators': 1000, 'max_depth': 15, 'random_state': 0, 'min_samples_split': 5, 'n_jobs': -1}
rf_model = RandomForestRegressor(**params)
rf_cols = ['weather', 'temp', 'atemp', 'windspeed', 'workingday', 'season', 'holiday', 'sticky', 'hour', 'dow', 'woy', 'peak']
rf_p, rf_t, rf_score = predict_on_validation_set(rf_model, rf_cols)
params = {'n_estimators': 150, 'max_depth': 5, 'random_state': 0, 'min_samples_leaf': 10, 'learning_rate': 0.1, 'subsample': 0.7, 'loss': 'ls'}
gbm_model = GradientBoostingRegressor(**params)
gbm_cols = ['weather', 'temp', 'atemp', 'humidity', 'windspeed', 'holiday', 'workingday', 'season', 'hour', 'dow', 'year', 'ideal', 'count_season']
gbm_p, gbm_t, gbm_score = predict_on_validation_set(gbm_model, gbm_cols)
y_p = np.round(0.2 * rf_p + 0.8 * gbm_p)
rf_pred = predict_on_test_set(rf_model, rf_cols)
gbm_pred = predict_on_test_set(gbm_model, gbm_cols)
y_pred = np.round(0.2 * rf_pred + 0.8 * gbm_pred) | code |
33098890/cell_12 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
import numpy as np
import numpy as np # linear algebra
import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
dfs = {}
for name in ['train', 'test']:
df = pd.read_csv('/kaggle/input/bike-sharing-demand/%s.csv' % name)
df['_data'] = name
dfs[name] = df
df = dfs['train'].append(dfs['test'])
df.columns = map(str.lower, df.columns)
for col in ['casual', 'registered', 'count']:
df['%s_log' % col] = np.log(df[col] + 1)
dt = pd.DatetimeIndex(df['datetime'])
df.set_index(dt, inplace=True)
df['date'] = dt.date
df['day'] = dt.day
df['month'] = dt.month
df['year'] = dt.year
df['hour'] = dt.hour
df['dow'] = dt.dayofweek
df['woy'] = dt.weekofyear
def get_rmsle(y_pred, y_actual):
diff = np.log(y_pred + 1) - np.log(y_actual + 1)
mean_error = np.square(diff).mean()
return np.sqrt(mean_error)
def get_data():
data = df[df['_data'] == 'train'].copy()
return data
def custom_train_test_split(data, cutoff_day=15):
train = data[data['day'] <= cutoff_day]
test = data[data['day'] > cutoff_day]
return (train, test)
def prep_data(data, input_cols):
X = data[input_cols]
y_r = data['registered_log']
y_c = data['casual_log']
return (X, y_r, y_c)
def predict_on_validation_set(model, input_cols):
data = get_data()
train, test = custom_train_test_split(data)
X_train, y_train_r, y_train_c = prep_data(train, input_cols)
X_test, y_test_r, y_test_c = prep_data(test, input_cols)
model_r = model.fit(X_train, y_train_r)
y_pred_r = np.exp(model_r.predict(X_test)) - 1
model_c = model.fit(X_train, y_train_c)
y_pred_c = np.exp(model_c.predict(X_test)) - 1
y_pred_comb = np.round(y_pred_r + y_pred_c)
y_pred_comb[y_pred_comb < 0] = 0
y_test_comb = np.exp(y_test_r) + np.exp(y_test_c) - 2
score = get_rmsle(y_pred_comb, y_test_comb)
return (y_pred_comb, y_test_comb, score)
df_test = df[df['_data'] == 'test'].copy()
def predict_on_test_set(model, x_cols):
df_train = df[df['_data'] == 'train'].copy()
X_train = df_train[x_cols]
y_train_cas = df_train['casual_log']
y_train_reg = df_train['registered_log']
X_test = df_test[x_cols]
casual_model = model.fit(X_train, y_train_cas)
y_pred_cas = casual_model.predict(X_test)
y_pred_cas = np.exp(y_pred_cas) - 1
registered_model = model.fit(X_train, y_train_reg)
y_pred_reg = registered_model.predict(X_test)
y_pred_reg = np.exp(y_pred_reg) - 1
return y_pred_cas + y_pred_reg
params = {'n_estimators': 1000, 'max_depth': 15, 'random_state': 0, 'min_samples_split': 5, 'n_jobs': -1}
rf_model = RandomForestRegressor(**params)
rf_cols = ['weather', 'temp', 'atemp', 'windspeed', 'workingday', 'season', 'holiday', 'sticky', 'hour', 'dow', 'woy', 'peak']
rf_p, rf_t, rf_score = predict_on_validation_set(rf_model, rf_cols)
params = {'n_estimators': 150, 'max_depth': 5, 'random_state': 0, 'min_samples_leaf': 10, 'learning_rate': 0.1, 'subsample': 0.7, 'loss': 'ls'}
gbm_model = GradientBoostingRegressor(**params)
gbm_cols = ['weather', 'temp', 'atemp', 'humidity', 'windspeed', 'holiday', 'workingday', 'season', 'hour', 'dow', 'year', 'ideal', 'count_season']
gbm_p, gbm_t, gbm_score = predict_on_validation_set(gbm_model, gbm_cols)
print(gbm_score)
y_p = np.round(0.2 * rf_p + 0.8 * gbm_p)
print(get_rmsle(y_p, rf_t)) | code |
2022076/cell_21 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import precision_score, recall_score, precision_recall_curve
from sklearn.metrics import roc_curve
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import pandas as pd
df = pd.read_csv('../input/seattleWeather_1948-2017.csv')
df = df.dropna()
X = df.loc[:, ['PRCP', 'TMAX', 'TMIN']].shift(-1).iloc[:-1].values
y = df.iloc[:-1, -1:].values.astype('int')
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X, y)
y_hat = clf.predict(X)
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
precision, recall, _ = precision_recall_curve(y, y_hat)
fig, ax = plt.subplots(1, figsize=(12, 6))
ax.step(recall, precision, color='steelblue',
where='post')
ax.fill_between(recall, precision, step='post', color='lightgray')
plt.suptitle('Precision-Recall Tradeoff for Seattle Rain Prediction')
plt.xlabel('Recall')
plt.ylabel('Precision')
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y, y_hat)
fig, ax = plt.subplots(1, figsize=(12, 6))
plt.plot(fpr, tpr, color='darkorange', label='Model Performace')
plt.plot([0, 1], [0, 1], color='gray', label='Random Performace')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Seattle Rain ROC Curve')
plt.legend(loc='lower right') | code |
2022076/cell_13 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import hamming_loss
import pandas as pd
import numpy as np
import pandas as pd
df = pd.read_csv('../input/seattleWeather_1948-2017.csv')
df = df.dropna()
X = df.loc[:, ['PRCP', 'TMAX', 'TMIN']].shift(-1).iloc[:-1].values
y = df.iloc[:-1, -1:].values.astype('int')
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X, y)
y_hat = clf.predict(X)
from sklearn.metrics import hamming_loss
hamming_loss(y, y_hat) | code |
2022076/cell_2 | [
"text_plain_output_1.png"
] | import pandas as pd
import numpy as np
import pandas as pd
df = pd.read_csv('../input/seattleWeather_1948-2017.csv')
df.head() | code |
2022076/cell_19 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import fbeta_score
import pandas as pd
import numpy as np
import pandas as pd
df = pd.read_csv('../input/seattleWeather_1948-2017.csv')
df = df.dropna()
X = df.loc[:, ['PRCP', 'TMAX', 'TMIN']].shift(-1).iloc[:-1].values
y = df.iloc[:-1, -1:].values.astype('int')
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X, y)
y_hat = clf.predict(X)
from sklearn.metrics import fbeta_score
fbeta_score(y, y_hat, beta=1) | code |
2022076/cell_8 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
import pandas as pd
import numpy as np
import pandas as pd
df = pd.read_csv('../input/seattleWeather_1948-2017.csv')
df = df.dropna()
X = df.loc[:, ['PRCP', 'TMAX', 'TMIN']].shift(-1).iloc[:-1].values
y = df.iloc[:-1, -1:].values.astype('int')
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X, y)
y_hat = clf.predict(X)
from sklearn.metrics import confusion_matrix
confusion_matrix(y, y_hat) | code |
2022076/cell_15 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import precision_score, recall_score, precision_recall_curve
import pandas as pd
import numpy as np
import pandas as pd
df = pd.read_csv('../input/seattleWeather_1948-2017.csv')
df = df.dropna()
X = df.loc[:, ['PRCP', 'TMAX', 'TMIN']].shift(-1).iloc[:-1].values
y = df.iloc[:-1, -1:].values.astype('int')
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X, y)
y_hat = clf.predict(X)
from sklearn.metrics import precision_score, recall_score, precision_recall_curve
print(precision_score(y, y_hat))
print(recall_score(y, y_hat)) | code |
2022076/cell_3 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LogisticRegression
import pandas as pd
import numpy as np
import pandas as pd
df = pd.read_csv('../input/seattleWeather_1948-2017.csv')
df = df.dropna()
X = df.loc[:, ['PRCP', 'TMAX', 'TMIN']].shift(-1).iloc[:-1].values
y = df.iloc[:-1, -1:].values.astype('int')
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X, y)
y_hat = clf.predict(X) | code |
2022076/cell_17 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import precision_score, recall_score, precision_recall_curve
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import pandas as pd
df = pd.read_csv('../input/seattleWeather_1948-2017.csv')
df = df.dropna()
X = df.loc[:, ['PRCP', 'TMAX', 'TMIN']].shift(-1).iloc[:-1].values
y = df.iloc[:-1, -1:].values.astype('int')
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X, y)
y_hat = clf.predict(X)
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
precision, recall, _ = precision_recall_curve(y, y_hat)
fig, ax = plt.subplots(1, figsize=(12, 6))
ax.step(recall, precision, color='steelblue', where='post')
ax.fill_between(recall, precision, step='post', color='lightgray')
plt.suptitle('Precision-Recall Tradeoff for Seattle Rain Prediction')
plt.xlabel('Recall')
plt.ylabel('Precision') | code |
2022076/cell_24 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score
import pandas as pd
import numpy as np
import pandas as pd
df = pd.read_csv('../input/seattleWeather_1948-2017.csv')
df = df.dropna()
X = df.loc[:, ['PRCP', 'TMAX', 'TMIN']].shift(-1).iloc[:-1].values
y = df.iloc[:-1, -1:].values.astype('int')
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X, y)
y_hat = clf.predict(X)
from sklearn.metrics import roc_auc_score
roc_auc_score(y, y_hat) | code |
2022076/cell_10 | [
"text_html_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
df = pd.read_csv('../input/seattleWeather_1948-2017.csv')
df = df.dropna()
X = df.loc[:, ['PRCP', 'TMAX', 'TMIN']].shift(-1).iloc[:-1].values
y = df.iloc[:-1, -1:].values.astype('int')
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X, y)
y_hat = clf.predict(X)
import seaborn as sns
sns.heatmap(confusion_matrix(y, y_hat) / len(y), cmap='Blues', annot=True) | code |
2022076/cell_5 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
import pandas as pd
import numpy as np
import pandas as pd
df = pd.read_csv('../input/seattleWeather_1948-2017.csv')
df = df.dropna()
X = df.loc[:, ['PRCP', 'TMAX', 'TMIN']].shift(-1).iloc[:-1].values
y = df.iloc[:-1, -1:].values.astype('int')
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X, y)
y_hat = clf.predict(X)
from sklearn.metrics import accuracy_score
accuracy_score(y, y_hat) | code |
2026938/cell_9 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from scipy.sparse import csr_matrix, hstack
from sklearn.cross_validation import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.linear_model import Ridge
from sklearn.preprocessing import LabelEncoder, MinMaxScaler, StandardScaler,LabelBinarizer
import numpy as np
import pandas as pd
import time
train = pd.read_csv('../input/train.tsv', sep='\t')
test = pd.read_csv('../input/test.tsv', sep='\t')
def handle_missing(dataset):
dataset['category_name'].fillna(value='NA/NA/NA', inplace=True)
dataset.brand_name.fillna(value='missing', inplace=True)
dataset.item_description.fillna(value='missing', inplace=True)
return dataset
def split_cat(dataset):
dataset['cat1'], dataset['cat2'], dataset['cat3'] = zip(*dataset['category_name'].str.split('/', 2))
return dataset
def label_maker(dataset):
lb = LabelBinarizer(sparse_output=True)
cat1 = lb.fit_transform(dataset['cat1'])
cat2 = lb.fit_transform(dataset['cat2'])
cat3 = lb.fit_transform(dataset['cat3'])
brand_name = lb.fit_transform(dataset['brand_name'])
del lb
return (cat1, cat2, cat3, brand_name)
def get_dums(dataset):
X_dummies = csr_matrix(pd.get_dummies(dataset[['item_condition_id', 'shipping']], sparse=True).values)
return X_dummies
def text_processing(dataset):
cv = CountVectorizer()
name = cv.fit_transform(dataset['name'])
tv = TfidfVectorizer(max_features=51000, ngram_range=(1, 3), stop_words='english')
description = tv.fit_transform(dataset['item_description'])
del cv, tv
return (name, description)
nrow_train = train.shape[0]
merge: pd.DataFrame = pd.concat([train, test])
submission: pd.DataFrame = test[['test_id']]
start_time = time.time()
merge = handle_missing(merge)
merge = split_cat(merge)
cat1, cat2, cat3, brand_name = label_maker(merge)
X_dummies = get_dums(merge)
name, description = text_processing(merge)
sparse_merge = hstack((cat1, cat3, cat3, brand_name, X_dummies, name, description)).tocsr()
X_train = sparse_merge[:nrow_train]
X_test = sparse_merge[nrow_train:]
def model_testing(model, X_train=X_t, y_train=y_t, X_test=X_v, y_test=y_v):
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
error = rmsle(y_test, y_pred)
return model
def rmsle(y, y0):
assert len(y) == len(y0)
return np.sqrt(np.mean(np.power(np.log1p(y) - np.log1p(y0), 2)))
ridge_model = Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver='auto', random_state=None)
start_time = time.time()
y_train = train['log_price'] = np.log(train['price'] + 1)
print('train test splitting...')
X_t, X_v, y_t, y_v = train_test_split(X_train, y_train, test_size=0.01)
print('training model...')
ridge_model.fit(X_train, y_train)
print('TIME:', time.time() - start_time) | code |
2026938/cell_4 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from scipy.sparse import csr_matrix, hstack
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.preprocessing import LabelEncoder, MinMaxScaler, StandardScaler,LabelBinarizer
import pandas as pd
train = pd.read_csv('../input/train.tsv', sep='\t')
test = pd.read_csv('../input/test.tsv', sep='\t')
def handle_missing(dataset):
dataset['category_name'].fillna(value='NA/NA/NA', inplace=True)
dataset.brand_name.fillna(value='missing', inplace=True)
dataset.item_description.fillna(value='missing', inplace=True)
return dataset
def split_cat(dataset):
dataset['cat1'], dataset['cat2'], dataset['cat3'] = zip(*dataset['category_name'].str.split('/', 2))
return dataset
def label_maker(dataset):
lb = LabelBinarizer(sparse_output=True)
cat1 = lb.fit_transform(dataset['cat1'])
cat2 = lb.fit_transform(dataset['cat2'])
cat3 = lb.fit_transform(dataset['cat3'])
brand_name = lb.fit_transform(dataset['brand_name'])
del lb
return (cat1, cat2, cat3, brand_name)
def get_dums(dataset):
X_dummies = csr_matrix(pd.get_dummies(dataset[['item_condition_id', 'shipping']], sparse=True).values)
return X_dummies
def text_processing(dataset):
cv = CountVectorizer()
name = cv.fit_transform(dataset['name'])
tv = TfidfVectorizer(max_features=51000, ngram_range=(1, 3), stop_words='english')
description = tv.fit_transform(dataset['item_description'])
del cv, tv
return (name, description)
nrow_train = train.shape[0]
merge: pd.DataFrame = pd.concat([train, test])
submission: pd.DataFrame = test[['test_id']] | code |
2026938/cell_6 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from scipy.sparse import csr_matrix, hstack
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.preprocessing import LabelEncoder, MinMaxScaler, StandardScaler,LabelBinarizer
import pandas as pd
import time
train = pd.read_csv('../input/train.tsv', sep='\t')
test = pd.read_csv('../input/test.tsv', sep='\t')
def handle_missing(dataset):
dataset['category_name'].fillna(value='NA/NA/NA', inplace=True)
dataset.brand_name.fillna(value='missing', inplace=True)
dataset.item_description.fillna(value='missing', inplace=True)
return dataset
def split_cat(dataset):
dataset['cat1'], dataset['cat2'], dataset['cat3'] = zip(*dataset['category_name'].str.split('/', 2))
return dataset
def label_maker(dataset):
lb = LabelBinarizer(sparse_output=True)
cat1 = lb.fit_transform(dataset['cat1'])
cat2 = lb.fit_transform(dataset['cat2'])
cat3 = lb.fit_transform(dataset['cat3'])
brand_name = lb.fit_transform(dataset['brand_name'])
del lb
return (cat1, cat2, cat3, brand_name)
def get_dums(dataset):
X_dummies = csr_matrix(pd.get_dummies(dataset[['item_condition_id', 'shipping']], sparse=True).values)
return X_dummies
def text_processing(dataset):
cv = CountVectorizer()
name = cv.fit_transform(dataset['name'])
tv = TfidfVectorizer(max_features=51000, ngram_range=(1, 3), stop_words='english')
description = tv.fit_transform(dataset['item_description'])
del cv, tv
return (name, description)
nrow_train = train.shape[0]
merge: pd.DataFrame = pd.concat([train, test])
submission: pd.DataFrame = test[['test_id']]
start_time = time.time()
merge = handle_missing(merge)
merge = split_cat(merge)
cat1, cat2, cat3, brand_name = label_maker(merge)
X_dummies = get_dums(merge)
name, description = text_processing(merge)
sparse_merge = hstack((cat1, cat3, cat3, brand_name, X_dummies, name, description)).tocsr()
X_train = sparse_merge[:nrow_train]
X_test = sparse_merge[nrow_train:] | code |
2026938/cell_2 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd
train = pd.read_csv('../input/train.tsv', sep='\t')
test = pd.read_csv('../input/test.tsv', sep='\t') | code |
2026938/cell_11 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from scipy.sparse import csr_matrix, hstack
from sklearn.cross_validation import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.linear_model import Ridge
from sklearn.preprocessing import LabelEncoder, MinMaxScaler, StandardScaler,LabelBinarizer
import numpy as np
import pandas as pd
import time
train = pd.read_csv('../input/train.tsv', sep='\t')
test = pd.read_csv('../input/test.tsv', sep='\t')
def handle_missing(dataset):
dataset['category_name'].fillna(value='NA/NA/NA', inplace=True)
dataset.brand_name.fillna(value='missing', inplace=True)
dataset.item_description.fillna(value='missing', inplace=True)
return dataset
def split_cat(dataset):
dataset['cat1'], dataset['cat2'], dataset['cat3'] = zip(*dataset['category_name'].str.split('/', 2))
return dataset
def label_maker(dataset):
lb = LabelBinarizer(sparse_output=True)
cat1 = lb.fit_transform(dataset['cat1'])
cat2 = lb.fit_transform(dataset['cat2'])
cat3 = lb.fit_transform(dataset['cat3'])
brand_name = lb.fit_transform(dataset['brand_name'])
del lb
return (cat1, cat2, cat3, brand_name)
def get_dums(dataset):
X_dummies = csr_matrix(pd.get_dummies(dataset[['item_condition_id', 'shipping']], sparse=True).values)
return X_dummies
def text_processing(dataset):
cv = CountVectorizer()
name = cv.fit_transform(dataset['name'])
tv = TfidfVectorizer(max_features=51000, ngram_range=(1, 3), stop_words='english')
description = tv.fit_transform(dataset['item_description'])
del cv, tv
return (name, description)
nrow_train = train.shape[0]
merge: pd.DataFrame = pd.concat([train, test])
submission: pd.DataFrame = test[['test_id']]
start_time = time.time()
merge = handle_missing(merge)
merge = split_cat(merge)
cat1, cat2, cat3, brand_name = label_maker(merge)
X_dummies = get_dums(merge)
name, description = text_processing(merge)
sparse_merge = hstack((cat1, cat3, cat3, brand_name, X_dummies, name, description)).tocsr()
X_train = sparse_merge[:nrow_train]
X_test = sparse_merge[nrow_train:]
def model_testing(model, X_train=X_t, y_train=y_t, X_test=X_v, y_test=y_v):
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
error = rmsle(y_test, y_pred)
return model
def rmsle(y, y0):
assert len(y) == len(y0)
return np.sqrt(np.mean(np.power(np.log1p(y) - np.log1p(y0), 2)))
ridge_model = Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver='auto', random_state=None)
start_time = time.time()
y_train = train['log_price'] = np.log(train['price'] + 1)
X_t, X_v, y_t, y_v = train_test_split(X_train, y_train, test_size=0.01)
ridge_model.fit(X_train, y_train)
def create_submission(model, test=X_test, submission=submission, path='./predictions.csv'):
predictions = model.predict(test)
predictions = pd.Series(np.exp(predictions) - 1)
submission['price'] = predictions
submission.to_csv(path, index=False)
start_time = time.time()
create_submission(ridge_model)
print('TIME:', time.time() - start_time)
print('TOTAL TIME:', time.time() - Time_0) | code |
2026938/cell_1 | [
"application_vnd.jupyter.stderr_output_1.png"
] | Time_0 = time.time()
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.sparse import csr_matrix, hstack
import time
import re
import math
from sklearn.preprocessing import LabelEncoder, MinMaxScaler, StandardScaler, LabelBinarizer
from sklearn.cross_validation import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.metrics import mean_squared_log_error
from sklearn.linear_model import Ridge
from sklearn.ensemble import GradientBoostingRegressor
seed = 90 | code |
2026938/cell_7 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from scipy.sparse import csr_matrix, hstack
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.preprocessing import LabelEncoder, MinMaxScaler, StandardScaler,LabelBinarizer
import numpy as np
import pandas as pd
import time
train = pd.read_csv('../input/train.tsv', sep='\t')
test = pd.read_csv('../input/test.tsv', sep='\t')
def handle_missing(dataset):
dataset['category_name'].fillna(value='NA/NA/NA', inplace=True)
dataset.brand_name.fillna(value='missing', inplace=True)
dataset.item_description.fillna(value='missing', inplace=True)
return dataset
def split_cat(dataset):
dataset['cat1'], dataset['cat2'], dataset['cat3'] = zip(*dataset['category_name'].str.split('/', 2))
return dataset
def label_maker(dataset):
lb = LabelBinarizer(sparse_output=True)
cat1 = lb.fit_transform(dataset['cat1'])
cat2 = lb.fit_transform(dataset['cat2'])
cat3 = lb.fit_transform(dataset['cat3'])
brand_name = lb.fit_transform(dataset['brand_name'])
del lb
return (cat1, cat2, cat3, brand_name)
def get_dums(dataset):
X_dummies = csr_matrix(pd.get_dummies(dataset[['item_condition_id', 'shipping']], sparse=True).values)
return X_dummies
def text_processing(dataset):
cv = CountVectorizer()
name = cv.fit_transform(dataset['name'])
tv = TfidfVectorizer(max_features=51000, ngram_range=(1, 3), stop_words='english')
description = tv.fit_transform(dataset['item_description'])
del cv, tv
return (name, description)
nrow_train = train.shape[0]
merge: pd.DataFrame = pd.concat([train, test])
submission: pd.DataFrame = test[['test_id']]
start_time = time.time()
merge = handle_missing(merge)
merge = split_cat(merge)
cat1, cat2, cat3, brand_name = label_maker(merge)
X_dummies = get_dums(merge)
name, description = text_processing(merge)
sparse_merge = hstack((cat1, cat3, cat3, brand_name, X_dummies, name, description)).tocsr()
X_train = sparse_merge[:nrow_train]
X_test = sparse_merge[nrow_train:]
def model_testing(model, X_train=X_t, y_train=y_t, X_test=X_v, y_test=y_v):
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
error = rmsle(y_test, y_pred)
print(error)
return model
def rmsle(y, y0):
assert len(y) == len(y0)
return np.sqrt(np.mean(np.power(np.log1p(y) - np.log1p(y0), 2))) | code |
2026938/cell_8 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from sklearn.linear_model import Ridge
ridge_model = Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver='auto', random_state=None) | code |
2026938/cell_10 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from scipy.sparse import csr_matrix, hstack
from sklearn.cross_validation import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.linear_model import Ridge
from sklearn.preprocessing import LabelEncoder, MinMaxScaler, StandardScaler,LabelBinarizer
import numpy as np
import pandas as pd
import time
train = pd.read_csv('../input/train.tsv', sep='\t')
test = pd.read_csv('../input/test.tsv', sep='\t')
def handle_missing(dataset):
dataset['category_name'].fillna(value='NA/NA/NA', inplace=True)
dataset.brand_name.fillna(value='missing', inplace=True)
dataset.item_description.fillna(value='missing', inplace=True)
return dataset
def split_cat(dataset):
dataset['cat1'], dataset['cat2'], dataset['cat3'] = zip(*dataset['category_name'].str.split('/', 2))
return dataset
def label_maker(dataset):
lb = LabelBinarizer(sparse_output=True)
cat1 = lb.fit_transform(dataset['cat1'])
cat2 = lb.fit_transform(dataset['cat2'])
cat3 = lb.fit_transform(dataset['cat3'])
brand_name = lb.fit_transform(dataset['brand_name'])
del lb
return (cat1, cat2, cat3, brand_name)
def get_dums(dataset):
X_dummies = csr_matrix(pd.get_dummies(dataset[['item_condition_id', 'shipping']], sparse=True).values)
return X_dummies
def text_processing(dataset):
cv = CountVectorizer()
name = cv.fit_transform(dataset['name'])
tv = TfidfVectorizer(max_features=51000, ngram_range=(1, 3), stop_words='english')
description = tv.fit_transform(dataset['item_description'])
del cv, tv
return (name, description)
nrow_train = train.shape[0]
merge: pd.DataFrame = pd.concat([train, test])
submission: pd.DataFrame = test[['test_id']]
start_time = time.time()
merge = handle_missing(merge)
merge = split_cat(merge)
cat1, cat2, cat3, brand_name = label_maker(merge)
X_dummies = get_dums(merge)
name, description = text_processing(merge)
sparse_merge = hstack((cat1, cat3, cat3, brand_name, X_dummies, name, description)).tocsr()
X_train = sparse_merge[:nrow_train]
X_test = sparse_merge[nrow_train:]
def model_testing(model, X_train=X_t, y_train=y_t, X_test=X_v, y_test=y_v):
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
error = rmsle(y_test, y_pred)
return model
def rmsle(y, y0):
assert len(y) == len(y0)
return np.sqrt(np.mean(np.power(np.log1p(y) - np.log1p(y0), 2)))
ridge_model = Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver='auto', random_state=None)
start_time = time.time()
y_train = train['log_price'] = np.log(train['price'] + 1)
X_t, X_v, y_t, y_v = train_test_split(X_train, y_train, test_size=0.01)
ridge_model.fit(X_train, y_train)
def create_submission(model, test=X_test, submission=submission, path='./predictions.csv'):
predictions = model.predict(test)
predictions = pd.Series(np.exp(predictions) - 1)
submission['price'] = predictions
submission.to_csv(path, index=False)
print(submission.describe()) | code |
2026938/cell_5 | [
"application_vnd.jupyter.stderr_output_1.png"
] | from scipy.sparse import csr_matrix, hstack
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.preprocessing import LabelEncoder, MinMaxScaler, StandardScaler,LabelBinarizer
import pandas as pd
import time
train = pd.read_csv('../input/train.tsv', sep='\t')
test = pd.read_csv('../input/test.tsv', sep='\t')
def handle_missing(dataset):
dataset['category_name'].fillna(value='NA/NA/NA', inplace=True)
dataset.brand_name.fillna(value='missing', inplace=True)
dataset.item_description.fillna(value='missing', inplace=True)
return dataset
def split_cat(dataset):
dataset['cat1'], dataset['cat2'], dataset['cat3'] = zip(*dataset['category_name'].str.split('/', 2))
return dataset
def label_maker(dataset):
lb = LabelBinarizer(sparse_output=True)
cat1 = lb.fit_transform(dataset['cat1'])
cat2 = lb.fit_transform(dataset['cat2'])
cat3 = lb.fit_transform(dataset['cat3'])
brand_name = lb.fit_transform(dataset['brand_name'])
del lb
return (cat1, cat2, cat3, brand_name)
def get_dums(dataset):
X_dummies = csr_matrix(pd.get_dummies(dataset[['item_condition_id', 'shipping']], sparse=True).values)
return X_dummies
def text_processing(dataset):
cv = CountVectorizer()
name = cv.fit_transform(dataset['name'])
tv = TfidfVectorizer(max_features=51000, ngram_range=(1, 3), stop_words='english')
description = tv.fit_transform(dataset['item_description'])
del cv, tv
return (name, description)
start_time = time.time()
print('Handle Missing...')
merge = handle_missing(merge)
print('splitting cat...')
merge = split_cat(merge)
print('making labels...')
cat1, cat2, cat3, brand_name = label_maker(merge)
print('getting dummies...')
X_dummies = get_dums(merge)
print('processing text...')
name, description = text_processing(merge)
print('stacking train...')
sparse_merge = hstack((cat1, cat3, cat3, brand_name, X_dummies, name, description)).tocsr()
print('TIME:', time.time() - start_time) | code |
1010539/cell_13 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = pd.read_hdf('../input/train.h5')
def myticks(x, pos):
exponent = abs(int(np.log10(np.abs(x))))
return exponent
def plot_exp(data, title):
fig, ax =plt.subplots(figsize = (12, 8))
ax.plot(data.t16_exp, data.timestamp)
ax.set_title(title)
ax.set_xlabel('Negative Power of Technical_16')
ax.set_ylabel('Timestamp')
plt.show()
data.technical_16.fillna(0, inplace=True)
data['t16_exp'] = data.technical_16.map(lambda z: int(np.log10(np.abs(z))) - 1 if z != 0 else 0)
plot_exp(data.loc[(data.id == 1201) & (data.t16_exp != 0.0) & ~data.t16_exp.isnull(), ['timestamp', 't16_exp']], 'id = 1201') | code |
1010539/cell_20 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = pd.read_hdf('../input/train.h5')
def myticks(x, pos):
exponent = abs(int(np.log10(np.abs(x))))
return exponent
def plot_exp(data, title):
fig, ax =plt.subplots(figsize = (12, 8))
ax.plot(data.t16_exp, data.timestamp)
ax.set_title(title)
ax.set_xlabel('Negative Power of Technical_16')
ax.set_ylabel('Timestamp')
plt.show()
data.technical_16.fillna(0, inplace=True)
data['t16_exp'] = data.technical_16.map(lambda z: int(np.log10(np.abs(z))) - 1 if z != 0 else 0)
data['t16_first_number'] = data.technical_16 * (10 ** data.t16_exp.abs()).astype('int')
def plot_first_numb(data, title):
fig, ax =plt.subplots(figsize = (12, 8))
ax.plot(data.timestamp, data.t16_first_number,marker = 'v', mfc = 'g')
ax.set_title(title)
ax.set_yticks(range(-10,10))
ax.set_xlabel('Timestamp')
ax.set_ylabel('First_number')
plt.show()
plot_first_numb(data.loc[(data.id == 1201) & (data.t16_exp != 0), ['timestamp', 't16_first_number']], 'id = 1201') | code |
1010539/cell_11 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = pd.read_hdf('../input/train.h5')
def myticks(x, pos):
exponent = abs(int(np.log10(np.abs(x))))
return exponent
def plot_exp(data, title):
fig, ax =plt.subplots(figsize = (12, 8))
ax.plot(data.t16_exp, data.timestamp)
ax.set_title(title)
ax.set_xlabel('Negative Power of Technical_16')
ax.set_ylabel('Timestamp')
plt.show()
data.technical_16.fillna(0, inplace=True)
data['t16_exp'] = data.technical_16.map(lambda z: int(np.log10(np.abs(z))) - 1 if z != 0 else 0)
plot_exp(data.loc[(data.id == 288) & (data.t16_exp != 0) & ~data.t16_exp.isnull(), ['timestamp', 't16_exp']], 'id = 288') | code |
1010539/cell_18 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = pd.read_hdf('../input/train.h5')
def myticks(x, pos):
exponent = abs(int(np.log10(np.abs(x))))
return exponent
def plot_exp(data, title):
fig, ax =plt.subplots(figsize = (12, 8))
ax.plot(data.t16_exp, data.timestamp)
ax.set_title(title)
ax.set_xlabel('Negative Power of Technical_16')
ax.set_ylabel('Timestamp')
plt.show()
data.technical_16.fillna(0, inplace=True)
data['t16_exp'] = data.technical_16.map(lambda z: int(np.log10(np.abs(z))) - 1 if z != 0 else 0)
data['t16_first_number'] = data.technical_16 * (10 ** data.t16_exp.abs()).astype('int')
def plot_first_numb(data, title):
fig, ax =plt.subplots(figsize = (12, 8))
ax.plot(data.timestamp, data.t16_first_number,marker = 'v', mfc = 'g')
ax.set_title(title)
ax.set_yticks(range(-10,10))
ax.set_xlabel('Timestamp')
ax.set_ylabel('First_number')
plt.show()
plot_first_numb(data.loc[(data.id == 300) & (data.t16_exp != 0), ['timestamp', 't16_first_number']], 'id = 300') | code |
1010539/cell_3 | [
"image_output_1.png"
] | import pandas as pd
data = pd.read_hdf('../input/train.h5') | code |
50239241/cell_21 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv('../input/heart-disease-uci/heart.csv')
df.shape
pd.crosstab(df.sex, df.target)
pd.crosstab(df.cp, df.target)
pd.crosstab(df.age, df.trestbps)
df.corr() | code |
50239241/cell_13 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv('../input/heart-disease-uci/heart.csv')
df.shape
pd.crosstab(df.sex, df.target)
pd.crosstab(df.cp, df.target) | code |
50239241/cell_9 | [
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/heart-disease-uci/heart.csv')
df.shape
pd.crosstab(df.sex, df.target) | code |
50239241/cell_4 | [
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/heart-disease-uci/heart.csv')
df.head() | code |
50239241/cell_23 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
df = pd.read_csv('../input/heart-disease-uci/heart.csv')
df.shape
pd.crosstab(df.sex, df.target)
pd.crosstab(df.cp, df.target)
pd.crosstab(df.age, df.trestbps)
df.corr()
corr_matrix = df.corr()
plt.figure(figsize=(15, 10))
sns.heatmap(corr_matrix, fmt='.2f', linewidth=0.5, annot=True, cmap='Blues') | code |
50239241/cell_6 | [
"image_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/heart-disease-uci/heart.csv')
df.shape | code |
50239241/cell_7 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/heart-disease-uci/heart.csv')
df.shape
df['target'].value_counts() | code |
50239241/cell_18 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv('../input/heart-disease-uci/heart.csv')
df.shape
pd.crosstab(df.sex, df.target)
pd.crosstab(df.cp, df.target)
pd.crosstab(df.age, df.trestbps)
plt.figure(figsize=(10, 6))
plt.scatter(df.trestbps[df.target == 1], df.age[df.target == 1])
plt.scatter(df.trestbps[df.target == 0], df.age[df.target == 0])
plt.xlabel('Resting Blood Pressure (mm Hg)')
plt.ylabel('Age (Years)')
plt.title('Relation between the Resting Blood Pressure vs Age')
plt.legend(['Disease', 'No-Disease']) | code |
50239241/cell_17 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv('../input/heart-disease-uci/heart.csv')
df.shape
pd.crosstab(df.sex, df.target)
pd.crosstab(df.cp, df.target)
pd.crosstab(df.age, df.trestbps) | code |
50239241/cell_14 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv('../input/heart-disease-uci/heart.csv')
df.shape
pd.crosstab(df.sex, df.target)
pd.crosstab(df.cp, df.target)
pd.crosstab(df.cp, df.target).plot(kind='bar', rot=0, xlabel='Chest Pain', ylabel='Frequency', title='Frequency Graph between the Chest Pain and Target', colormap='tab20c')
plt.legend(['No-Disease', 'Disease']) | code |
50239241/cell_10 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv('../input/heart-disease-uci/heart.csv')
df.shape
pd.crosstab(df.sex, df.target)
pd.crosstab(df.sex, df.target).plot(kind='bar', rot=0, ylabel='Frequency', xlabel='Sex', title='Frequency graph between the Sex and Target', colormap='tab20c')
plt.legend(['No-Disease', 'Disease']) | code |
50239241/cell_5 | [
"text_html_output_1.png"
] | import pandas as pd
df = pd.read_csv('../input/heart-disease-uci/heart.csv')
df.describe() | code |
34123364/cell_4 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
laureates_data = pd.read_csv('/kaggle/input/nobel-laureates/archive.csv')
print(laureates_data[laureates_data['Laureate Type'] != 'Individual']['Laureate Type']) | code |
34123364/cell_2 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
laureates_data = pd.read_csv('/kaggle/input/nobel-laureates/archive.csv')
print(laureates_data.columns)
print(laureates_data[laureates_data.isnull().any(axis=1)]) | code |
34123364/cell_8 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
laureates_data = pd.read_csv('/kaggle/input/nobel-laureates/archive.csv')
print(laureates_data[laureates_data['Laureate Type'] != 'Individual']['Category'].unique()) | code |
34123364/cell_3 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
laureates_data = pd.read_csv('/kaggle/input/nobel-laureates/archive.csv')
print(laureates_data.head())
print(laureates_data.dtypes) | code |
34123364/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
laureates_data = pd.read_csv('/kaggle/input/nobel-laureates/archive.csv')
print('The number of entries: %d \n\n' % laureates_data[laureates_data['Full Name'].str.contains('Marie Curie')].shape[0])
print(laureates_data[laureates_data['Full Name'].str.contains('Marie Curie')]) | code |
34123364/cell_12 | [
"text_plain_output_1.png"
] | import pandas as pd
import pandas as pd
laureates_data = pd.read_csv('/kaggle/input/nobel-laureates/archive.csv')
name_counts = laureates_data['Full Name'].value_counts()
multi_name = list(name_counts[name_counts > 1].index)
for name in multi_name:
temp = laureates_data[laureates_data['Full Name'] == name].Year.unique()
if len(temp) > 1:
print(name, ' ', temp, '\n') | code |
16132425/cell_4 | [
"image_output_1.png"
] | import matplotlib.pyplot as plt
import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import os
bkshare_df = pd.read_csv('../input/bike_share.csv')
bkshare_df1 = bkshare_df.copy()
def remove_duplicates(bkshare_df1):
bkshare_df1.drop_duplicates(inplace=True)
def descibe_df(bkshare_df1):
pass
def bkshare_corr(bkshare_df1):
pass
remove_duplicates(bkshare_df1)
descibe_df(bkshare_df1)
bkshare_corr(bkshare_df1)
plt.figure(figsize=(10, 5))
ax = sns.heatmap(bkshare_df1.corr(), annot=True)
plt.show(ax) | code |
16132425/cell_2 | [
"text_plain_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import os
bkshare_df = pd.read_csv('../input/bike_share.csv')
bkshare_df1 = bkshare_df.copy()
bkshare_df1.info() | code |
16132425/cell_1 | [
"text_html_output_1.png",
"text_plain_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import os
print(os.listdir('../input'))
bkshare_df = pd.read_csv('../input/bike_share.csv')
bkshare_df1 = bkshare_df.copy()
bkshare_df1.head() | code |
16132425/cell_3 | [
"text_html_output_2.png",
"text_html_output_1.png",
"text_plain_output_2.png",
"text_plain_output_1.png"
] | import os
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import os
bkshare_df = pd.read_csv('../input/bike_share.csv')
bkshare_df1 = bkshare_df.copy()
def remove_duplicates(bkshare_df1):
bkshare_df1.drop_duplicates(inplace=True)
def descibe_df(bkshare_df1):
print('Describing Dataset')
print('------------------')
display(bkshare_df1.describe())
def bkshare_corr(bkshare_df1):
print('Correlation')
print('------------')
display(bkshare_df1.corr())
remove_duplicates(bkshare_df1)
descibe_df(bkshare_df1)
bkshare_corr(bkshare_df1) | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.