path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
128003343/cell_41
[ "text_plain_output_1.png" ]
import pandas as pd SHEET_ID = '10DM_ZqwV6CvOryD6u3pYHb5scjEfiwfkitUGTCG8l7Y' SHEET_NAME = 'AAPL' url = f'https://docs.google.com/spreadsheets/d/{SHEET_ID}/gviz/tq?tqx=out:csv&sheet={SHEET_NAME}' df = pd.read_csv(url, decimal=',') df_retention_ab = df.groupby('version').agg({'userid': 'count', 'retention_1': 'mean', 'retention_7': 'mean', 'sum_gamerounds': 'sum'}) df_retention_ab df_c = df[df['version'] == 'gate_30'] df_t = df[df['version'] == 'gate_40'] #calc of difference of retentionin between 2 groups ret1_dif = (df_c.describe(include='all').loc['mean']['retention_1'] - df_t.describe(include='all').loc['mean']['retention_1']) / df_t.describe(include='all').loc['mean']['retention_1'] ret7_dif = (df_c.describe(include='all').loc['mean']['retention_7'] - df_t.describe(include='all').loc['mean']['retention_7']) / df_t.describe(include='all').loc['mean']['retention_7'] ret1_dif, ret7_dif k1 = df_t['retention_1'].sum() k2 = df_c['retention_1'].sum() (k1, k2) n1 = df_t.shape[0] n2 = df_c.shape[0] (n1, n2) k1 = df_t['retention_7'].sum() k2 = df_c['retention_7'].sum() (k1, k2)
code
128003343/cell_52
[ "text_plain_output_1.png" ]
from statsmodels.stats import proportion import math import numpy as np import pandas as pd SHEET_ID = '10DM_ZqwV6CvOryD6u3pYHb5scjEfiwfkitUGTCG8l7Y' SHEET_NAME = 'AAPL' url = f'https://docs.google.com/spreadsheets/d/{SHEET_ID}/gviz/tq?tqx=out:csv&sheet={SHEET_NAME}' df = pd.read_csv(url, decimal=',') df_retention_ab = df.groupby('version').agg({'userid': 'count', 'retention_1': 'mean', 'retention_7': 'mean', 'sum_gamerounds': 'sum'}) df_retention_ab df_c = df[df['version'] == 'gate_30'] df_t = df[df['version'] == 'gate_40'] #calc of difference of retentionin between 2 groups ret1_dif = (df_c.describe(include='all').loc['mean']['retention_1'] - df_t.describe(include='all').loc['mean']['retention_1']) / df_t.describe(include='all').loc['mean']['retention_1'] ret7_dif = (df_c.describe(include='all').loc['mean']['retention_7'] - df_t.describe(include='all').loc['mean']['retention_7']) / df_t.describe(include='all').loc['mean']['retention_7'] ret1_dif, ret7_dif k1 = df_t['retention_1'].sum() k2 = df_c['retention_1'].sum() (k1, k2) n1 = df_t.shape[0] n2 = df_c.shape[0] (n1, n2) z_score, z_pvalue = proportion.proportions_ztest(np.array([k1, k2]), np.array([n1, n2])) chisq, pvalue, table = proportion.proportions_chisquare(np.array([k1, k2]), np.array([n1, n2])) k1 = df_t['retention_7'].sum() k2 = df_c['retention_7'].sum() (k1, k2) n1 = df_t.shape[0] n2 = df_c.shape[0] (n1, n2) z_score, z_pvalue = proportion.proportions_ztest(np.array([k1, k2]), np.array([n1, n2])) # Критерий пропорций (для кликов, конверсий) alpha = 0.05 # power = 0.9 # n = df_retention_ab['userid'].min() # Количество наблюдений. p_x = df_t.describe(include='all').loc['mean']['retention_7'] # Конверсии. p_y = df_c.describe(include='all').loc['mean']['retention_7'] h = 2 * math.asin(np.sqrt(p_x)) - 2 * math.asin(np.sqrt(p_y)) h
code
128003343/cell_7
[ "text_html_output_1.png" ]
import pandas as pd SHEET_ID = '10DM_ZqwV6CvOryD6u3pYHb5scjEfiwfkitUGTCG8l7Y' SHEET_NAME = 'AAPL' url = f'https://docs.google.com/spreadsheets/d/{SHEET_ID}/gviz/tq?tqx=out:csv&sheet={SHEET_NAME}' df = pd.read_csv(url, decimal=',') df.info()
code
128003343/cell_18
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns SHEET_ID = '10DM_ZqwV6CvOryD6u3pYHb5scjEfiwfkitUGTCG8l7Y' SHEET_NAME = 'AAPL' url = f'https://docs.google.com/spreadsheets/d/{SHEET_ID}/gviz/tq?tqx=out:csv&sheet={SHEET_NAME}' df = pd.read_csv(url, decimal=',') df_retention_ab = df.groupby('version').agg({'userid': 'count', 'retention_1': 'mean', 'retention_7': 'mean', 'sum_gamerounds': 'sum'}) df_retention_ab sns.boxplot(x=df['version'], y=df['sum_gamerounds'], showfliers=False) plt.title('number of rounds distribution in 2 groups')
code
128003343/cell_32
[ "image_output_1.png" ]
import pandas as pd SHEET_ID = '10DM_ZqwV6CvOryD6u3pYHb5scjEfiwfkitUGTCG8l7Y' SHEET_NAME = 'AAPL' url = f'https://docs.google.com/spreadsheets/d/{SHEET_ID}/gviz/tq?tqx=out:csv&sheet={SHEET_NAME}' df = pd.read_csv(url, decimal=',') df_retention_ab = df.groupby('version').agg({'userid': 'count', 'retention_1': 'mean', 'retention_7': 'mean', 'sum_gamerounds': 'sum'}) df_retention_ab df_c = df[df['version'] == 'gate_30'] df_t = df[df['version'] == 'gate_40'] #calc of difference of retentionin between 2 groups ret1_dif = (df_c.describe(include='all').loc['mean']['retention_1'] - df_t.describe(include='all').loc['mean']['retention_1']) / df_t.describe(include='all').loc['mean']['retention_1'] ret7_dif = (df_c.describe(include='all').loc['mean']['retention_7'] - df_t.describe(include='all').loc['mean']['retention_7']) / df_t.describe(include='all').loc['mean']['retention_7'] ret1_dif, ret7_dif n1 = df_t.shape[0] n2 = df_c.shape[0] (n1, n2)
code
128003343/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd SHEET_ID = '10DM_ZqwV6CvOryD6u3pYHb5scjEfiwfkitUGTCG8l7Y' SHEET_NAME = 'AAPL' url = f'https://docs.google.com/spreadsheets/d/{SHEET_ID}/gviz/tq?tqx=out:csv&sheet={SHEET_NAME}' df = pd.read_csv(url, decimal=',') df.describe()
code
128003343/cell_15
[ "text_html_output_1.png" ]
import pandas as pd SHEET_ID = '10DM_ZqwV6CvOryD6u3pYHb5scjEfiwfkitUGTCG8l7Y' SHEET_NAME = 'AAPL' url = f'https://docs.google.com/spreadsheets/d/{SHEET_ID}/gviz/tq?tqx=out:csv&sheet={SHEET_NAME}' df = pd.read_csv(url, decimal=',') df_retention_ab = df.groupby('version').agg({'userid': 'count', 'retention_1': 'mean', 'retention_7': 'mean', 'sum_gamerounds': 'sum'}) df_retention_ab
code
128003343/cell_47
[ "text_plain_output_1.png" ]
import pandas as pd SHEET_ID = '10DM_ZqwV6CvOryD6u3pYHb5scjEfiwfkitUGTCG8l7Y' SHEET_NAME = 'AAPL' url = f'https://docs.google.com/spreadsheets/d/{SHEET_ID}/gviz/tq?tqx=out:csv&sheet={SHEET_NAME}' df = pd.read_csv(url, decimal=',') df_retention_ab = df.groupby('version').agg({'userid': 'count', 'retention_1': 'mean', 'retention_7': 'mean', 'sum_gamerounds': 'sum'}) df_retention_ab df[(df['retention_1'] == 0) & (df['retention_7'] == 1)]
code
128003343/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd SHEET_ID = '10DM_ZqwV6CvOryD6u3pYHb5scjEfiwfkitUGTCG8l7Y' SHEET_NAME = 'AAPL' url = f'https://docs.google.com/spreadsheets/d/{SHEET_ID}/gviz/tq?tqx=out:csv&sheet={SHEET_NAME}' df = pd.read_csv(url, decimal=',') df_retention_ab = df.groupby('version').agg({'userid': 'count', 'retention_1': 'mean', 'retention_7': 'mean', 'sum_gamerounds': 'sum'}) df_retention_ab df_c = df[df['version'] == 'gate_30'] df_t = df[df['version'] == 'gate_40'] ret1_dif = (df_c.describe(include='all').loc['mean']['retention_1'] - df_t.describe(include='all').loc['mean']['retention_1']) / df_t.describe(include='all').loc['mean']['retention_1'] ret7_dif = (df_c.describe(include='all').loc['mean']['retention_7'] - df_t.describe(include='all').loc['mean']['retention_7']) / df_t.describe(include='all').loc['mean']['retention_7'] (ret1_dif, ret7_dif)
code
128003343/cell_43
[ "text_plain_output_1.png" ]
from statsmodels.stats import proportion import numpy as np import pandas as pd SHEET_ID = '10DM_ZqwV6CvOryD6u3pYHb5scjEfiwfkitUGTCG8l7Y' SHEET_NAME = 'AAPL' url = f'https://docs.google.com/spreadsheets/d/{SHEET_ID}/gviz/tq?tqx=out:csv&sheet={SHEET_NAME}' df = pd.read_csv(url, decimal=',') df_retention_ab = df.groupby('version').agg({'userid': 'count', 'retention_1': 'mean', 'retention_7': 'mean', 'sum_gamerounds': 'sum'}) df_retention_ab df_c = df[df['version'] == 'gate_30'] df_t = df[df['version'] == 'gate_40'] #calc of difference of retentionin between 2 groups ret1_dif = (df_c.describe(include='all').loc['mean']['retention_1'] - df_t.describe(include='all').loc['mean']['retention_1']) / df_t.describe(include='all').loc['mean']['retention_1'] ret7_dif = (df_c.describe(include='all').loc['mean']['retention_7'] - df_t.describe(include='all').loc['mean']['retention_7']) / df_t.describe(include='all').loc['mean']['retention_7'] ret1_dif, ret7_dif k1 = df_t['retention_1'].sum() k2 = df_c['retention_1'].sum() (k1, k2) n1 = df_t.shape[0] n2 = df_c.shape[0] (n1, n2) z_score, z_pvalue = proportion.proportions_ztest(np.array([k1, k2]), np.array([n1, n2])) chisq, pvalue, table = proportion.proportions_chisquare(np.array([k1, k2]), np.array([n1, n2])) k1 = df_t['retention_7'].sum() k2 = df_c['retention_7'].sum() (k1, k2) n1 = df_t.shape[0] n2 = df_c.shape[0] (n1, n2) z_score, z_pvalue = proportion.proportions_ztest(np.array([k1, k2]), np.array([n1, n2])) print('Results are ', 'z_score =%.3f, pvalue = %.3f' % (z_score, z_pvalue))
code
128003343/cell_31
[ "text_plain_output_1.png" ]
import pandas as pd SHEET_ID = '10DM_ZqwV6CvOryD6u3pYHb5scjEfiwfkitUGTCG8l7Y' SHEET_NAME = 'AAPL' url = f'https://docs.google.com/spreadsheets/d/{SHEET_ID}/gviz/tq?tqx=out:csv&sheet={SHEET_NAME}' df = pd.read_csv(url, decimal=',') df_retention_ab = df.groupby('version').agg({'userid': 'count', 'retention_1': 'mean', 'retention_7': 'mean', 'sum_gamerounds': 'sum'}) df_retention_ab df_c = df[df['version'] == 'gate_30'] df_t = df[df['version'] == 'gate_40'] #calc of difference of retentionin between 2 groups ret1_dif = (df_c.describe(include='all').loc['mean']['retention_1'] - df_t.describe(include='all').loc['mean']['retention_1']) / df_t.describe(include='all').loc['mean']['retention_1'] ret7_dif = (df_c.describe(include='all').loc['mean']['retention_7'] - df_t.describe(include='all').loc['mean']['retention_7']) / df_t.describe(include='all').loc['mean']['retention_7'] ret1_dif, ret7_dif k1 = df_t['retention_1'].sum() k2 = df_c['retention_1'].sum() (k1, k2)
code
128003343/cell_24
[ "text_plain_output_1.png" ]
from scipy.stats import ttest_1samp, mannwhitneyu, shapiro, norm, t, kstest, shapiro import pandas as pd SHEET_ID = '10DM_ZqwV6CvOryD6u3pYHb5scjEfiwfkitUGTCG8l7Y' SHEET_NAME = 'AAPL' url = f'https://docs.google.com/spreadsheets/d/{SHEET_ID}/gviz/tq?tqx=out:csv&sheet={SHEET_NAME}' df = pd.read_csv(url, decimal=',') df_retention_ab = df.groupby('version').agg({'userid': 'count', 'retention_1': 'mean', 'retention_7': 'mean', 'sum_gamerounds': 'sum'}) df_retention_ab print(kstest(df['sum_gamerounds'], 'norm'))
code
128003343/cell_27
[ "text_html_output_1.png" ]
from scipy.stats import ttest_1samp, mannwhitneyu, shapiro, norm, t, kstest, shapiro import pandas as pd SHEET_ID = '10DM_ZqwV6CvOryD6u3pYHb5scjEfiwfkitUGTCG8l7Y' SHEET_NAME = 'AAPL' url = f'https://docs.google.com/spreadsheets/d/{SHEET_ID}/gviz/tq?tqx=out:csv&sheet={SHEET_NAME}' df = pd.read_csv(url, decimal=',') df_retention_ab = df.groupby('version').agg({'userid': 'count', 'retention_1': 'mean', 'retention_7': 'mean', 'sum_gamerounds': 'sum'}) df_retention_ab df_c = df[df['version'] == 'gate_30'] df_t = df[df['version'] == 'gate_40'] #calc of difference of retentionin between 2 groups ret1_dif = (df_c.describe(include='all').loc['mean']['retention_1'] - df_t.describe(include='all').loc['mean']['retention_1']) / df_t.describe(include='all').loc['mean']['retention_1'] ret7_dif = (df_c.describe(include='all').loc['mean']['retention_7'] - df_t.describe(include='all').loc['mean']['retention_7']) / df_t.describe(include='all').loc['mean']['retention_7'] ret1_dif, ret7_dif mannwhitneyu(x=df_c['sum_gamerounds'].values, y=df_t['sum_gamerounds'].values)
code
128003343/cell_37
[ "text_plain_output_1.png" ]
if abs(pvalue) < 0.05: print('We may reject the null hypothesis!') else: print('We have failed to reject the null hypothesis')
code
128003343/cell_12
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd SHEET_ID = '10DM_ZqwV6CvOryD6u3pYHb5scjEfiwfkitUGTCG8l7Y' SHEET_NAME = 'AAPL' url = f'https://docs.google.com/spreadsheets/d/{SHEET_ID}/gviz/tq?tqx=out:csv&sheet={SHEET_NAME}' df = pd.read_csv(url, decimal=',') df['userid'].nunique() == df['userid'].count()
code
128003343/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd SHEET_ID = '10DM_ZqwV6CvOryD6u3pYHb5scjEfiwfkitUGTCG8l7Y' SHEET_NAME = 'AAPL' url = f'https://docs.google.com/spreadsheets/d/{SHEET_ID}/gviz/tq?tqx=out:csv&sheet={SHEET_NAME}' df = pd.read_csv(url, decimal=',') df.head(10)
code
128003343/cell_36
[ "text_plain_output_1.png" ]
from statsmodels.stats import proportion import numpy as np import pandas as pd SHEET_ID = '10DM_ZqwV6CvOryD6u3pYHb5scjEfiwfkitUGTCG8l7Y' SHEET_NAME = 'AAPL' url = f'https://docs.google.com/spreadsheets/d/{SHEET_ID}/gviz/tq?tqx=out:csv&sheet={SHEET_NAME}' df = pd.read_csv(url, decimal=',') df_retention_ab = df.groupby('version').agg({'userid': 'count', 'retention_1': 'mean', 'retention_7': 'mean', 'sum_gamerounds': 'sum'}) df_retention_ab df_c = df[df['version'] == 'gate_30'] df_t = df[df['version'] == 'gate_40'] #calc of difference of retentionin between 2 groups ret1_dif = (df_c.describe(include='all').loc['mean']['retention_1'] - df_t.describe(include='all').loc['mean']['retention_1']) / df_t.describe(include='all').loc['mean']['retention_1'] ret7_dif = (df_c.describe(include='all').loc['mean']['retention_7'] - df_t.describe(include='all').loc['mean']['retention_7']) / df_t.describe(include='all').loc['mean']['retention_7'] ret1_dif, ret7_dif k1 = df_t['retention_1'].sum() k2 = df_c['retention_1'].sum() (k1, k2) n1 = df_t.shape[0] n2 = df_c.shape[0] (n1, n2) z_score, z_pvalue = proportion.proportions_ztest(np.array([k1, k2]), np.array([n1, n2])) chisq, pvalue, table = proportion.proportions_chisquare(np.array([k1, k2]), np.array([n1, n2])) print('Results are ', 'chisq =%.3f, pvalue = %.3f' % (chisq, pvalue))
code
330371/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() df['Parch'].value_counts(sort=False)
code
330371/cell_25
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() df['Sex'].value_counts()
code
330371/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.head()
code
330371/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() df['Fare'].value_counts().head(20)
code
330371/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.info()
code
330371/cell_40
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() ages_mean = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='mean') ages_mean ages_std = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='std') ages_std
code
330371/cell_29
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() df['Cabin'].value_counts(dropna=False)[:20]
code
330371/cell_39
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() ages_mean = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='mean') ages_mean
code
330371/cell_41
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() ages_mean = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='mean') ages_mean ages_std = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='std') ages_std def age_guesser(person): gender = person['Sex'] mean_age = ages_mean[gender].loc[person['Title'], person['Pclass']] std = ages_std[gender].loc[person['Title'], person['Pclass']] persons_age = np.random.randint(mean_age - std, mean_age + std) return persons_age unknown_age = df['Age'].isnull() people_w_unknown_age = df.loc[unknown_age, ['Age', 'Title', 'Sex', 'Pclass']] people_w_unknown_age['Age'] = people_w_unknown_age.apply(age_guesser, axis=1) people_w_unknown_age.head(10)
code
330371/cell_54
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() ages_mean = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='mean') ages_mean ages_std = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='std') ages_std def age_guesser(person): gender = person['Sex'] mean_age = ages_mean[gender].loc[person['Title'], person['Pclass']] std = ages_std[gender].loc[person['Title'], person['Pclass']] persons_age = np.random.randint(mean_age - std, mean_age + std) return persons_age unknown_age = df['Age'].isnull() people_w_unknown_age = df.loc[unknown_age, ['Age', 'Title', 'Sex', 'Pclass']] people_w_unknown_age['Age'] = people_w_unknown_age.apply(age_guesser, axis=1) known_age = df['Age'].notnull() people_w_known_age = df.loc[known_age, ['Age', 'Title', 'Sex', 'Pclass']] df['new_age'] = pd.concat([people_w_known_age['Age'], people_w_unknown_age['Age']]) df['parent'] = 0 df.loc[(df.Parch > 0) & (df.new_age >= 18), 'parent'] = 1 df['child'] = 0 df.loc[(df.Parch > 0) & (df.new_age < 18), 'child'] = 1 df.pivot_table('Survived', index=['Sex', 'Pclass'], columns=['family'], margins=True)
code
330371/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() df['SibSp'].value_counts(sort=False)
code
330371/cell_50
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() ages_mean = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='mean') ages_mean ages_std = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='std') ages_std def age_guesser(person): gender = person['Sex'] mean_age = ages_mean[gender].loc[person['Title'], person['Pclass']] std = ages_std[gender].loc[person['Title'], person['Pclass']] persons_age = np.random.randint(mean_age - std, mean_age + std) return persons_age unknown_age = df['Age'].isnull() people_w_unknown_age = df.loc[unknown_age, ['Age', 'Title', 'Sex', 'Pclass']] people_w_unknown_age['Age'] = people_w_unknown_age.apply(age_guesser, axis=1) known_age = df['Age'].notnull() people_w_known_age = df.loc[known_age, ['Age', 'Title', 'Sex', 'Pclass']] df['new_age'] = pd.concat([people_w_known_age['Age'], people_w_unknown_age['Age']]) df['parent'] = 0 df.loc[(df.Parch > 0) & (df.new_age >= 18), 'parent'] = 1 df['child'] = 0 df.loc[(df.Parch > 0) & (df.new_age < 18), 'child'] = 1 df['family'] = df['SibSp'] + df['Parch'] df['family'].value_counts()
code
330371/cell_52
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() ages_mean = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='mean') ages_mean ages_std = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='std') ages_std def age_guesser(person): gender = person['Sex'] mean_age = ages_mean[gender].loc[person['Title'], person['Pclass']] std = ages_std[gender].loc[person['Title'], person['Pclass']] persons_age = np.random.randint(mean_age - std, mean_age + std) return persons_age unknown_age = df['Age'].isnull() people_w_unknown_age = df.loc[unknown_age, ['Age', 'Title', 'Sex', 'Pclass']] people_w_unknown_age['Age'] = people_w_unknown_age.apply(age_guesser, axis=1) known_age = df['Age'].notnull() people_w_known_age = df.loc[known_age, ['Age', 'Title', 'Sex', 'Pclass']] df['new_age'] = pd.concat([people_w_known_age['Age'], people_w_unknown_age['Age']]) for pclass in [1, 2, 3]: df[df['Pclass'] == pclass]['Age'].plot.kde(figsize=(12, 10)) df[df['Pclass'] == pclass]['new_age'].plot.kde() plt.xlim(-10, 90) plt.ylim(0, 0.05) plt.xlim(-10, 90) plt.ylim(0, 0.05) plt.xlim(0, None) df['parent'] = 0 df.loc[(df.Parch > 0) & (df.new_age >= 18), 'parent'] = 1 df['child'] = 0 df.loc[(df.Parch > 0) & (df.new_age < 18), 'child'] = 1 sns.factorplot(x='Sex', y='Survived', data=df, kind='bar', size=5, ci=None, hue='family') plt.title('Survival Rate by Gender and Family Size')
code
330371/cell_7
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe()
code
330371/cell_45
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() ages_mean = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='mean') ages_mean ages_std = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='std') ages_std def age_guesser(person): gender = person['Sex'] mean_age = ages_mean[gender].loc[person['Title'], person['Pclass']] std = ages_std[gender].loc[person['Title'], person['Pclass']] persons_age = np.random.randint(mean_age - std, mean_age + std) return persons_age unknown_age = df['Age'].isnull() people_w_unknown_age = df.loc[unknown_age, ['Age', 'Title', 'Sex', 'Pclass']] people_w_unknown_age['Age'] = people_w_unknown_age.apply(age_guesser, axis=1) known_age = df['Age'].notnull() people_w_known_age = df.loc[known_age, ['Age', 'Title', 'Sex', 'Pclass']] df['new_age'] = pd.concat([people_w_known_age['Age'], people_w_unknown_age['Age']]) for pclass in [1, 2, 3]: plt.subplot(211) df[df['Pclass'] == pclass]['Age'].plot.kde(figsize=(12, 10)) plt.subplot(212) df[df['Pclass'] == pclass]['new_age'].plot.kde() plt.suptitle('Age Density by Passenger Class', size=12) plt.subplot(211) plt.xlabel('Age - before filling missing values') plt.legend(('1st Class', '2nd Class', '3rd Class')) plt.xlim(-10, 90) plt.ylim(0, 0.05) plt.subplot(212) plt.xlabel('Age - values filled') plt.legend(('1st Class', '2nd Class', '3rd Class')) plt.xlim(-10, 90) plt.ylim(0, 0.05)
code
330371/cell_49
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() ages_mean = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='mean') ages_mean ages_std = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='std') ages_std def age_guesser(person): gender = person['Sex'] mean_age = ages_mean[gender].loc[person['Title'], person['Pclass']] std = ages_std[gender].loc[person['Title'], person['Pclass']] persons_age = np.random.randint(mean_age - std, mean_age + std) return persons_age unknown_age = df['Age'].isnull() people_w_unknown_age = df.loc[unknown_age, ['Age', 'Title', 'Sex', 'Pclass']] people_w_unknown_age['Age'] = people_w_unknown_age.apply(age_guesser, axis=1) known_age = df['Age'].notnull() people_w_known_age = df.loc[known_age, ['Age', 'Title', 'Sex', 'Pclass']] df['new_age'] = pd.concat([people_w_known_age['Age'], people_w_unknown_age['Age']]) df['parent'] = 0 df.loc[(df.Parch > 0) & (df.new_age >= 18), 'parent'] = 1 df['child'] = 0 df.loc[(df.Parch > 0) & (df.new_age < 18), 'child'] = 1 df.tail(5)
code
330371/cell_51
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() ages_mean = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='mean') ages_mean ages_std = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='std') ages_std def age_guesser(person): gender = person['Sex'] mean_age = ages_mean[gender].loc[person['Title'], person['Pclass']] std = ages_std[gender].loc[person['Title'], person['Pclass']] persons_age = np.random.randint(mean_age - std, mean_age + std) return persons_age unknown_age = df['Age'].isnull() people_w_unknown_age = df.loc[unknown_age, ['Age', 'Title', 'Sex', 'Pclass']] people_w_unknown_age['Age'] = people_w_unknown_age.apply(age_guesser, axis=1) known_age = df['Age'].notnull() people_w_known_age = df.loc[known_age, ['Age', 'Title', 'Sex', 'Pclass']] df['new_age'] = pd.concat([people_w_known_age['Age'], people_w_unknown_age['Age']]) for pclass in [1, 2, 3]: df[df['Pclass'] == pclass]['Age'].plot.kde(figsize=(12, 10)) df[df['Pclass'] == pclass]['new_age'].plot.kde() plt.xlim(-10, 90) plt.ylim(0, 0.05) plt.xlim(-10, 90) plt.ylim(0, 0.05) plt.xlim(0, None) df['parent'] = 0 df.loc[(df.Parch > 0) & (df.new_age >= 18), 'parent'] = 1 df['child'] = 0 df.loc[(df.Parch > 0) & (df.new_age < 18), 'child'] = 1 sns.factorplot(x='family', y='Survived', data=df, kind='bar', size=5, ci=None) plt.title('Survival Rate by Family Size')
code
330371/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() df.select_dtypes(include=['object']).describe()
code
330371/cell_16
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() df['Age'].value_counts(dropna=False)[:20]
code
330371/cell_47
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() ages_mean = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='mean') ages_mean ages_std = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='std') ages_std def age_guesser(person): gender = person['Sex'] mean_age = ages_mean[gender].loc[person['Title'], person['Pclass']] std = ages_std[gender].loc[person['Title'], person['Pclass']] persons_age = np.random.randint(mean_age - std, mean_age + std) return persons_age unknown_age = df['Age'].isnull() people_w_unknown_age = df.loc[unknown_age, ['Age', 'Title', 'Sex', 'Pclass']] people_w_unknown_age['Age'] = people_w_unknown_age.apply(age_guesser, axis=1) known_age = df['Age'].notnull() people_w_known_age = df.loc[known_age, ['Age', 'Title', 'Sex', 'Pclass']] df['new_age'] = pd.concat([people_w_known_age['Age'], people_w_unknown_age['Age']]) for pclass in [1, 2, 3]: df[df['Pclass'] == pclass]['Age'].plot.kde(figsize=(12, 10)) df[df['Pclass'] == pclass]['new_age'].plot.kde() plt.xlim(-10, 90) plt.ylim(0, 0.05) plt.xlim(-10, 90) plt.ylim(0, 0.05) sns.regplot(x='new_age', y='Survived', data=df, x_bins=50, x_ci=None) plt.xlim(0, None) plt.title('Survival Rate by Age Group')
code
330371/cell_17
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() df['Age'].hist(bins=20)
code
330371/cell_35
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() sns.factorplot(x='Sex', y='Survived', data=df, kind='bar', size=5, ci=None) plt.title('Survival Rate by Gender')
code
330371/cell_43
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() ages_mean = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='mean') ages_mean ages_std = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='std') ages_std def age_guesser(person): gender = person['Sex'] mean_age = ages_mean[gender].loc[person['Title'], person['Pclass']] std = ages_std[gender].loc[person['Title'], person['Pclass']] persons_age = np.random.randint(mean_age - std, mean_age + std) return persons_age unknown_age = df['Age'].isnull() people_w_unknown_age = df.loc[unknown_age, ['Age', 'Title', 'Sex', 'Pclass']] people_w_unknown_age['Age'] = people_w_unknown_age.apply(age_guesser, axis=1) known_age = df['Age'].notnull() people_w_known_age = df.loc[known_age, ['Age', 'Title', 'Sex', 'Pclass']] df['new_age'] = pd.concat([people_w_known_age['Age'], people_w_unknown_age['Age']]) df.head(7)
code
330371/cell_31
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() df['Embarked'].value_counts(dropna=False)
code
330371/cell_53
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() ages_mean = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='mean') ages_mean ages_std = df.pivot_table('Age', index=['Title'], columns=['Sex', 'Pclass'], aggfunc='std') ages_std def age_guesser(person): gender = person['Sex'] mean_age = ages_mean[gender].loc[person['Title'], person['Pclass']] std = ages_std[gender].loc[person['Title'], person['Pclass']] persons_age = np.random.randint(mean_age - std, mean_age + std) return persons_age unknown_age = df['Age'].isnull() people_w_unknown_age = df.loc[unknown_age, ['Age', 'Title', 'Sex', 'Pclass']] people_w_unknown_age['Age'] = people_w_unknown_age.apply(age_guesser, axis=1) known_age = df['Age'].notnull() people_w_known_age = df.loc[known_age, ['Age', 'Title', 'Sex', 'Pclass']] df['new_age'] = pd.concat([people_w_known_age['Age'], people_w_unknown_age['Age']]) for pclass in [1, 2, 3]: df[df['Pclass'] == pclass]['Age'].plot.kde(figsize=(12, 10)) df[df['Pclass'] == pclass]['new_age'].plot.kde() plt.xlim(-10, 90) plt.ylim(0, 0.05) plt.xlim(-10, 90) plt.ylim(0, 0.05) plt.xlim(0, None) df['parent'] = 0 df.loc[(df.Parch > 0) & (df.new_age >= 18), 'parent'] = 1 df['child'] = 0 df.loc[(df.Parch > 0) & (df.new_age < 18), 'child'] = 1 sns.factorplot(x='Pclass', y='Survived', data=df, kind='bar', size=5, aspect=1.5, ci=None, hue='family') plt.title('Survival Rate by Class and Family Size')
code
330371/cell_10
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() df['Survived'].value_counts()
code
330371/cell_27
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() df['Ticket'].value_counts()[:20]
code
330371/cell_37
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() sns.factorplot(x='Pclass', y='Survived', hue='Sex', data=df, kind='bar', size=5, aspect=1.5, ci=None) plt.title('Survival Rate by Class and Gender')
code
330371/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() df['Pclass'].value_counts(sort=False)
code
330371/cell_36
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns df = pd.read_csv('../input/train.csv', index_col='PassengerId') df.dropna().describe() sns.factorplot(x='Pclass', y='Survived', data=df, kind='bar', size=5, ci=None) plt.title('Survival Rate by Class')
code
1007016/cell_13
[ "application_vnd.jupyter.stderr_output_1.png" ]
d = pd.read_csv('../input/train.csv') t = pd.read_csv('../input/test.csv') X_t = t.loc[:, ['Class1', 'Class2', 'Male', 'Age', 'SibSp', 'Parch', 'Fare']]
code
1007016/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
d = pd.read_csv('../input/train.csv') d['Male'] = d['Sex'] == 'male' n = d['Age'].mean() d['Class1'] = d['Pclass'] == 1 d['Class2'] = d['Pclass'] == 2 d['Age'].fillna(n, inplace=True)
code
1007016/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
d = pd.read_csv('../input/train.csv') d.head()
code
1007016/cell_11
[ "application_vnd.jupyter.stderr_output_1.png" ]
d = pd.read_csv('../input/train.csv') t = pd.read_csv('../input/test.csv')
code
1007016/cell_1
[ "application_vnd.jupyter.stderr_output_1.png" ]
d = pd.read_csv('../input/train.csv')
code
1007016/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.tree import DecisionTreeClassifier d = pd.read_csv('../input/train.csv') X = d.loc[:, ['Class1', 'Class2', 'Male', 'Age', 'SibSp', 'Parch', 'Fare']] y = d['Survived'] thisclf = DecisionTreeClassifier() thisclf.fit(X, y)
code
1007016/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.tree import DecisionTreeClassifier d = pd.read_csv('../input/train.csv') X = d.loc[:, ['Class1', 'Class2', 'Male', 'Age', 'SibSp', 'Parch', 'Fare']] y = d['Survived'] thisclf = DecisionTreeClassifier() thisclf.fit(X, y) d['predicted'] = thisclf.predict(X)
code
1007016/cell_15
[ "application_vnd.jupyter.stderr_output_1.png" ]
d = pd.read_csv('../input/train.csv') t = pd.read_csv('../input/test.csv') X_t = t.loc[:, ['Class1', 'Class2', 'Male', 'Age', 'SibSp', 'Parch', 'Fare']] t_out = t.loc[:, ['PassengerId', 'Survived']]
code
1007016/cell_16
[ "application_vnd.jupyter.stderr_output_1.png" ]
d = pd.read_csv('../input/train.csv') t = pd.read_csv('../input/test.csv') X_t = t.loc[:, ['Class1', 'Class2', 'Male', 'Age', 'SibSp', 'Parch', 'Fare']] t_out = t.loc[:, ['PassengerId', 'Survived']] t_out.to_csv('out.csv')
code
1007016/cell_14
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.tree import DecisionTreeClassifier d = pd.read_csv('../input/train.csv') X = d.loc[:, ['Class1', 'Class2', 'Male', 'Age', 'SibSp', 'Parch', 'Fare']] y = d['Survived'] thisclf = DecisionTreeClassifier() thisclf.fit(X, y) d['predicted'] = thisclf.predict(X) t = pd.read_csv('../input/test.csv') X_t = t.loc[:, ['Class1', 'Class2', 'Male', 'Age', 'SibSp', 'Parch', 'Fare']] t['Survived'] = thisclf.predict(X_t)
code
1007016/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.metrics import accuracy_score d = pd.read_csv('../input/train.csv') X = d.loc[:, ['Class1', 'Class2', 'Male', 'Age', 'SibSp', 'Parch', 'Fare']] y = d['Survived'] accuracy_score(y, d['predicted'])
code
1007016/cell_12
[ "application_vnd.jupyter.stderr_output_1.png" ]
d = pd.read_csv('../input/train.csv') t = pd.read_csv('../input/test.csv') t['Male'] = t['Sex'] == 'male' nn = t['Age'].mean() t['Class1'] = t['Pclass'] == 1 t['Class2'] = t['Pclass'] == 2 t['Age'].fillna(nn, inplace=True) f = t['Fare'].mean() t['Fare'].fillna(f, inplace=True)
code
1007016/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
d = pd.read_csv('../input/train.csv') X = d.loc[:, ['Class1', 'Class2', 'Male', 'Age', 'SibSp', 'Parch', 'Fare']] y = d['Survived']
code
73084725/cell_13
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_train.isna().sum() df_train.hist()
code
73084725/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_train.isna().sum() y = df_train['y'].copy() df_train.drop(['y'], axis='columns', inplace=True) df_train['y'] = y df_train.columns
code
73084725/cell_33
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_test = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/test.csv') df_test df_train.isna().sum() df_test.isna().sum() table = pd.crosstab(df_train['Holiday'], df_train['Functioning Day']) y = df_train['y'].copy() df_train.drop(['y'], axis='columns', inplace=True) df_train['y'] = y df_train.columns df_test.columns data_all = pd.concat((df_train, df_test), ignore_index=True) data_all.isna().sum() data_all.columns
code
73084725/cell_44
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_test = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/test.csv') df_test df_train.isna().sum() df_test.isna().sum() table = pd.crosstab(df_train['Holiday'], df_train['Functioning Day']) y = df_train['y'].copy() df_train.drop(['y'], axis='columns', inplace=True) df_train['y'] = y df_train.columns df_test.columns data_all = pd.concat((df_train, df_test), ignore_index=True) data_all.isna().sum() data_all.columns Mean_encoded_Seasons = data_all.groupby('Seasons')['y'].mean().to_dict() data_all['Seasons'] = data_all['Seasons'].map(Mean_encoded_Seasons) Mean_encoded_dew = data_all.groupby('month')['y'].mean().to_dict() data_all['month'] = data_all['month'].map(Mean_encoded_dew) data_all['Seasons'].value_counts()
code
73084725/cell_6
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_train.describe()
code
73084725/cell_40
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_test = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/test.csv') df_test df_train.isna().sum() df_test.isna().sum() table = pd.crosstab(df_train['Holiday'], df_train['Functioning Day']) y = df_train['y'].copy() df_train.drop(['y'], axis='columns', inplace=True) df_train['y'] = y df_train.columns df_test.columns data_all = pd.concat((df_train, df_test), ignore_index=True) data_all.isna().sum() data_all.columns Mean_encoded_Seasons = data_all.groupby('Seasons')['y'].mean().to_dict() data_all['Seasons'] = data_all['Seasons'].map(Mean_encoded_Seasons) Mean_encoded_dew = data_all.groupby('month')['y'].mean().to_dict() data_all['month'] = data_all['month'].map(Mean_encoded_dew) data_all
code
73084725/cell_29
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_test = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/test.csv') df_test df_train.isna().sum() df_test.isna().sum() table = pd.crosstab(df_train['Holiday'], df_train['Functioning Day']) y = df_train['y'].copy() df_train.drop(['y'], axis='columns', inplace=True) df_train['y'] = y df_train.columns df_test.columns data_all = pd.concat((df_train, df_test), ignore_index=True) data_all
code
73084725/cell_26
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_test = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/test.csv') df_test df_train.isna().sum() df_test.isna().sum() table = pd.crosstab(df_train['Holiday'], df_train['Functioning Day']) y = df_train['y'].copy() df_train.drop(['y'], axis='columns', inplace=True) df_train['y'] = y df_train.columns df_test.columns data_all = pd.concat((df_train, df_test), ignore_index=True) data_all
code
73084725/cell_48
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_test = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/test.csv') df_test df_train.isna().sum() df_test.isna().sum() table = pd.crosstab(df_train['Holiday'], df_train['Functioning Day']) y = df_train['y'].copy() df_train.drop(['y'], axis='columns', inplace=True) df_train['y'] = y df_train.columns df_test.columns data_all = pd.concat((df_train, df_test), ignore_index=True) data_all['Date'] = pd.to_datetime(data_all['Date'], format='%d/%m/%Y') data_all[['Date']] data_all.isna().sum() data_all.columns Mean_encoded_Seasons = data_all.groupby('Seasons')['y'].mean().to_dict() data_all['Seasons'] = data_all['Seasons'].map(Mean_encoded_Seasons) Mean_encoded_dew = data_all.groupby('month')['y'].mean().to_dict() data_all['month'] = data_all['month'].map(Mean_encoded_dew) data_with_dummies = pd.get_dummies(data_all, columns=['Functioning Day', 'day', 'Holiday'], drop_first=True) data_with_dummies
code
73084725/cell_54
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_test = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/test.csv') df_test df_train.isna().sum() df_test.isna().sum() table = pd.crosstab(df_train['Holiday'], df_train['Functioning Day']) y = df_train['y'].copy() df_train.drop(['y'], axis='columns', inplace=True) df_train['y'] = y df_train.columns df_test.columns data_all = pd.concat((df_train, df_test), ignore_index=True) data_all['Date'] = pd.to_datetime(data_all['Date'], format='%d/%m/%Y') data_all[['Date']] data_all.isna().sum() data_all.columns Mean_encoded_Seasons = data_all.groupby('Seasons')['y'].mean().to_dict() data_all['Seasons'] = data_all['Seasons'].map(Mean_encoded_Seasons) Mean_encoded_dew = data_all.groupby('month')['y'].mean().to_dict() data_all['month'] = data_all['month'].map(Mean_encoded_dew) data_with_dummies = pd.get_dummies(data_all, columns=['Functioning Day', 'day', 'Holiday'], drop_first=True) data_with_dummies data_with_dummies.drop(['ID', 'Date', 'Dew point temperature(�C)', 'Snowfall (cm)', 'y'], axis='columns', inplace=True) data_with_dummies['y'] = y train_data = data_with_dummies[data_with_dummies['y'].notna()] test_data = data_with_dummies[data_with_dummies['y'].isna()] train_data.drop(['y'], axis='columns', inplace=True) test_data.drop(['y'], axis=1, inplace=True)
code
73084725/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_train.isna().sum()
code
73084725/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_train.describe()
code
73084725/cell_45
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_test = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/test.csv') df_test df_train.isna().sum() df_test.isna().sum() table = pd.crosstab(df_train['Holiday'], df_train['Functioning Day']) y = df_train['y'].copy() df_train.drop(['y'], axis='columns', inplace=True) df_train['y'] = y df_train.columns df_test.columns data_all = pd.concat((df_train, df_test), ignore_index=True) data_all.isna().sum() data_all.columns Mean_encoded_Seasons = data_all.groupby('Seasons')['y'].mean().to_dict() data_all['Seasons'] = data_all['Seasons'].map(Mean_encoded_Seasons) Mean_encoded_dew = data_all.groupby('month')['y'].mean().to_dict() data_all['month'] = data_all['month'].map(Mean_encoded_dew) data_all['Holiday'].value_counts()
code
73084725/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_train.isna().sum() df_train.describe()
code
73084725/cell_32
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_test = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/test.csv') df_test df_train.isna().sum() df_test.isna().sum() table = pd.crosstab(df_train['Holiday'], df_train['Functioning Day']) y = df_train['y'].copy() df_train.drop(['y'], axis='columns', inplace=True) df_train['y'] = y df_train.columns df_test.columns data_all = pd.concat((df_train, df_test), ignore_index=True) data_all.isna().sum()
code
73084725/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_test = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/test.csv') df_test
code
73084725/cell_15
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_test = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/test.csv') df_test df_train.isna().sum() table = pd.crosstab(df_train['Holiday'], df_train['Functioning Day']) table
code
73084725/cell_47
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_test = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/test.csv') df_test df_train.isna().sum() df_test.isna().sum() table = pd.crosstab(df_train['Holiday'], df_train['Functioning Day']) y = df_train['y'].copy() df_train.drop(['y'], axis='columns', inplace=True) df_train['y'] = y df_train.columns df_test.columns data_all = pd.concat((df_train, df_test), ignore_index=True) data_all.isna().sum() data_all.columns Mean_encoded_Seasons = data_all.groupby('Seasons')['y'].mean().to_dict() data_all['Seasons'] = data_all['Seasons'].map(Mean_encoded_Seasons) Mean_encoded_dew = data_all.groupby('month')['y'].mean().to_dict() data_all['month'] = data_all['month'].map(Mean_encoded_dew) data_all['day'].value_counts()
code
73084725/cell_31
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_test = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/test.csv') df_test df_train.isna().sum() df_test.isna().sum() table = pd.crosstab(df_train['Holiday'], df_train['Functioning Day']) y = df_train['y'].copy() df_train.drop(['y'], axis='columns', inplace=True) df_train['y'] = y df_train.columns df_test.columns data_all = pd.concat((df_train, df_test), ignore_index=True) data_all
code
73084725/cell_46
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_test = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/test.csv') df_test df_train.isna().sum() df_test.isna().sum() table = pd.crosstab(df_train['Holiday'], df_train['Functioning Day']) y = df_train['y'].copy() df_train.drop(['y'], axis='columns', inplace=True) df_train['y'] = y df_train.columns df_test.columns data_all = pd.concat((df_train, df_test), ignore_index=True) data_all.isna().sum() data_all.columns Mean_encoded_Seasons = data_all.groupby('Seasons')['y'].mean().to_dict() data_all['Seasons'] = data_all['Seasons'].map(Mean_encoded_Seasons) Mean_encoded_dew = data_all.groupby('month')['y'].mean().to_dict() data_all['month'] = data_all['month'].map(Mean_encoded_dew) data_all['Functioning Day'].value_counts()
code
73084725/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_test = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/test.csv') df_test df_test.isna().sum() df_test.columns
code
73084725/cell_27
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_test = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/test.csv') df_test df_train.isna().sum() df_test.isna().sum() table = pd.crosstab(df_train['Holiday'], df_train['Functioning Day']) y = df_train['y'].copy() df_train.drop(['y'], axis='columns', inplace=True) df_train['y'] = y df_train.columns df_test.columns data_all = pd.concat((df_train, df_test), ignore_index=True) data_all['Date'] = pd.to_datetime(data_all['Date'], format='%d/%m/%Y') data_all[['Date']]
code
73084725/cell_12
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/train.csv') df_test = pd.read_csv('/kaggle/input/seoul-bike-rental-ai-pro-iti/test.csv') df_test df_test.isna().sum()
code
73084725/cell_5
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
128039471/cell_21
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/students-performance-in-exams/StudentsPerformance.csv') df.count() plt.hist(df[(df['test preparation course'] == 'none') & (df['gender'] == 'male')]['math score'], label='Male-None') plt.hist(df[(df['test preparation course'] == 'completed') & (df['gender'] == 'male')]['math score'], label='Male-Completed') plt.legend() plt.show()
code
128039471/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/students-performance-in-exams/StudentsPerformance.csv') df.count() plt.hist(df[df['gender'] == 'male']['math score'], label='male') plt.legend() plt.show()
code
128039471/cell_20
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/students-performance-in-exams/StudentsPerformance.csv') df.count() plt.hist(df[df['test preparation course'] == 'none']['math score'], label='All-None') plt.hist(df[df['test preparation course'] == 'completed']['math score'], label='ALL-completed') plt.legend() plt.show()
code
128039471/cell_6
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/students-performance-in-exams/StudentsPerformance.csv') df.count() total_count = len(df) total_count
code
128039471/cell_7
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/students-performance-in-exams/StudentsPerformance.csv') df.count() men_count = len(df[df['gender'] == 'male']) female_count = len(df[df['gender'] == 'female']) print('men_count:', men_count) print('female_count:', female_count)
code
128039471/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/students-performance-in-exams/StudentsPerformance.csv') df.count() avg_all_test_completed = df[df['test preparation course'] == 'completed']['math score'].mean() avg_all_test_none = df[df['test preparation course'] == 'none']['math score'].mean() print('avg_all_test_completed:', avg_all_test_completed) print('avg_all_test_none:', avg_all_test_none) avg_men_test_completed = df[(df['test preparation course'] == 'completed') & (df['gender'] == 'male')]['math score'].mean() avg_men_test_none = df[(df['test preparation course'] == 'none') & (df['gender'] == 'male')]['math score'].mean() print('avg_men_test_completed:', avg_men_test_completed) print('avg_men_test_none:', avg_men_test_none) avg_female_test_completed = df[(df['test preparation course'] == 'completed') & (df['gender'] == 'female')]['math score'].mean() avg_female_test_none = df[(df['test preparation course'] == 'none') & (df['gender'] == 'female')]['math score'].mean() print('avg_female__test_completed:', avg_female_test_completed) print('avg_female_test_none:', avg_female_test_none)
code
128039471/cell_8
[ "image_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/students-performance-in-exams/StudentsPerformance.csv') df.count() total_count = len(df) total_count men_count = len(df[df['gender'] == 'male']) female_count = len(df[df['gender'] == 'female']) proportion_men = men_count / total_count proportion_female = female_count / total_count print('proportion_men:', proportion_men) print('proportion_female:', proportion_female)
code
128039471/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/students-performance-in-exams/StudentsPerformance.csv') df.count() std_ms_all = df['math score'].std() std_ms_men = df[df['gender'] == 'male']['math score'].std() std_ms_female = df[df['gender'] == 'female']['math score'].std() print('std_ms_all:', std_ms_all) print('std_ms_men:', std_ms_men) print('std_ms_female:', std_ms_female)
code
128039471/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/students-performance-in-exams/StudentsPerformance.csv') df.head()
code
128039471/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/students-performance-in-exams/StudentsPerformance.csv') df.count() plt.hist(df[df['gender'] == 'male']['math score'], label='female') plt.legend() plt.show()
code
128039471/cell_22
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/students-performance-in-exams/StudentsPerformance.csv') df.count() plt.hist(df[(df['test preparation course'] == 'none') & (df['gender'] == 'female')]['math score'], label='Female-None') plt.hist(df[(df['test preparation course'] == 'completed') & (df['gender'] == 'female')]['math score'], label='Female-Completed') plt.legend() plt.show()
code
128039471/cell_10
[ "text_html_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/students-performance-in-exams/StudentsPerformance.csv') df.count() avg_ms_all = df['math score'].mean() avg_ms_men = df[df['gender'] == 'male']['math score'].mean() avg_ms_female = df[df['gender'] == 'female']['math score'].mean() print('avg_ms_all:', avg_ms_all) print('avg_ms_men:', avg_ms_men) print('avg_ms_female:', avg_ms_female)
code
128039471/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd df = pd.read_csv('/kaggle/input/students-performance-in-exams/StudentsPerformance.csv') df.count() plt.hist(df['math score'], label='ALL') plt.legend() plt.show()
code
128039471/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd df = pd.read_csv('/kaggle/input/students-performance-in-exams/StudentsPerformance.csv') df.count()
code
34150890/cell_2
[ "text_plain_output_1.png" ]
import os import os import numpy as np import pandas as pd import os import numpy as np import pandas as pd import os import keras from keras.layers import Conv2D, MaxPool2D, Flatten, Dense, Dropout, BatchNormalization from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras import regularizers from sklearn.model_selection import train_test_split import cv2 import matplotlib.pyplot as plt import seaborn as sns from keras.applications import VGG16 from keras import models from keras import layers from keras import optimizers print(os.listdir('../input'))
code
34150890/cell_11
[ "text_plain_output_1.png" ]
from keras import layers from keras import models from keras.applications import VGG16 from sklearn.model_selection import train_test_split import cv2 import keras import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import os import os import numpy as np import pandas as pd import os import numpy as np import pandas as pd import os import keras from keras.layers import Conv2D, MaxPool2D, Flatten, Dense, Dropout, BatchNormalization from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras import regularizers from sklearn.model_selection import train_test_split import cv2 import matplotlib.pyplot as plt import seaborn as sns from keras.applications import VGG16 from keras import models from keras import layers from keras import optimizers os.listdir('../input/isl-dataset-double-handed') train_dir = '../input/isl-dataset-double-handed/ISL_Dataset' def load_unique(): size_img = 224,224 images_for_plot = [] labels_for_plot = [] for folder in os.listdir(train_dir): for file in os.listdir(train_dir + '/' + folder): filepath = train_dir + '/' + folder + '/' + file image = cv2.imread(filepath) final_img = cv2.resize(image, size_img) final_img = cv2.cvtColor(final_img, cv2.COLOR_BGR2RGB) images_for_plot.append(final_img) labels_for_plot.append(folder) break return images_for_plot, labels_for_plot images_for_plot, labels_for_plot = load_unique() print("unique_labels = ", labels_for_plot) fig = plt.figure(figsize = (15,15)) def plot_images(fig, image, label, row, col, index): fig.add_subplot(row, col, index) plt.axis('off') plt.imshow(image) plt.title(label) return image_index = 0 row = 4 col = 6 for i in range(1,25): plot_images(fig, images_for_plot[image_index], labels_for_plot[image_index], row, col, i) image_index = image_index + 1 plt.show() l1 = [] def load_data(): """ Loads data and preprocess. Returns train and test data along with labels. """ images = [] labels = [] size = (224, 224) for folder in os.listdir(train_dir): for image in os.listdir(train_dir + '/' + folder): temp_img = cv2.imread(train_dir + '/' + folder + '/' + image) temp_img = cv2.resize(temp_img, size) images.append(temp_img) labels.append(ord(folder) - 97) images = np.array(images) for i in range(len(images)): images[i] = images[i].astype('float32') / 255 l1 = labels labels = keras.utils.to_categorical(labels) X_train, X_test, Y_train, Y_test = train_test_split(images, labels, test_size=0.25) return (X_train, X_test, Y_train, Y_test, l1) def create_model1(): vgg_conv = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3)) for layer in vgg_conv.layers[:-4]: layer.trainable = False model = models.Sequential() model.add(vgg_conv) model.add(layers.Flatten()) model.add(layers.Dense(1024, activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(26, activation='softmax')) model.compile(optimizer='adam', loss=keras.losses.categorical_crossentropy, metrics=['accuracy']) model.summary() return model def fit_model(): model_hist = model.fit(X_train, Y_train, batch_size=64, epochs=8, validation_split=0.15) return model_hist model = create_model1() curr_model_hist = fit_model() plt.plot(curr_model_hist.history['accuracy']) plt.plot(curr_model_hist.history['val_accuracy']) plt.legend(['train', 'test'], loc='lower right') plt.title('accuracy plot - train vs test') plt.xlabel('epoch') plt.ylabel('accuracy') plt.show() plt.plot(curr_model_hist.history['loss']) plt.plot(curr_model_hist.history['val_loss']) plt.legend(['training loss', 'validation loss'], loc='upper right') plt.title('loss plot - training vs vaidation') plt.xlabel('epoch') plt.ylabel('loss') plt.show()
code