path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
1005893/cell_2
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8')) import csv import tflearn import tensorflow as tf from keras.utils.np_utils import to_categorical
code
1005893/cell_5
[ "text_plain_output_1.png" ]
from keras.utils.np_utils import to_categorical import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import tensorflow as tf import tflearn df_trn = pd.read_csv('../input/train.csv') df_tst = pd.read_csv('../input/test.csv') x_trn = df_trn.ix[:, 1:].values y_trn = df_trn.ix[:, 0].values y_trn_cat = to_categorical(y_trn) tf.reset_default_graph() net = tflearn.input_data([None, 784]) net = tflearn.fully_connected(net, 256, activation='ReLU') net = tflearn.fully_connected(net, 128, activation='ReLU') net = tflearn.fully_connected(net, 64, activation='ReLU') net = tflearn.fully_connected(net, 10, activation='softmax') net = tflearn.regression(net, optimizer='sgd', learning_rate=0.1, loss='categorical_crossentropy') model = tflearn.DNN(net) model.fit(x_trn, y_trn_cat, validation_set=0, show_metric=True, batch_size=1000, n_epoch=100)
code
326660/cell_2
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
import numpy as np import pandas as pd import pandas as pd import numpy as np import seaborn as sns train_types = {'Agencia_ID': np.uint16, 'Ruta_SAK': np.uint16, 'Cliente_ID': np.uint32, 'Producto_ID': np.uint16, 'Demanda_uni_equil': np.uint32} test_types = {'Agencia_ID': np.uint16, 'Ruta_SAK': np.uint16, 'Cliente_ID': np.uint32, 'Producto_ID': np.uint16, 'id': np.uint32} df_train = pd.read_csv('../input/train.csv', usecols=train_types.keys(), dtype=train_types) df_test = pd.read_csv('../input/test.csv', usecols=test_types.keys(), dtype=test_types) df_client = pd.read_csv('../input/cliente_tabla.csv') df_product = pd.read_csv('../input/producto_tabla.csv') df_town = pd.read_csv('../input/town_state.csv') print('Train Data\n', df_train.head(1), '\n') print('Test Data\n', df_test.head(1), '\n') print('Client Data\n', df_client.head(1), '\n') print('Product Data\n', df_product.head(1), '\n') print('Town Data\n', df_town.head(1), '\n')
code
326660/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns import pandas as pd import numpy as np import seaborn as sns train_types = {'Agencia_ID': np.uint16, 'Ruta_SAK': np.uint16, 'Cliente_ID': np.uint32, 'Producto_ID': np.uint16, 'Demanda_uni_equil': np.uint32} test_types = {'Agencia_ID': np.uint16, 'Ruta_SAK': np.uint16, 'Cliente_ID': np.uint32, 'Producto_ID': np.uint16, 'id': np.uint32} df_train = pd.read_csv('../input/train.csv', usecols=train_types.keys(), dtype=train_types) df_test = pd.read_csv('../input/test.csv', usecols=test_types.keys(), dtype=test_types) df_client = pd.read_csv('../input/cliente_tabla.csv') df_product = pd.read_csv('../input/producto_tabla.csv') df_town = pd.read_csv('../input/town_state.csv') sns.distplot(np.log1p(df_train['Demanda_uni_equil']), kde=False)
code
326660/cell_5
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_4.png", "application_vnd.jupyter.stderr_output_3.png", "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns import pandas as pd import numpy as np import seaborn as sns train_types = {'Agencia_ID': np.uint16, 'Ruta_SAK': np.uint16, 'Cliente_ID': np.uint32, 'Producto_ID': np.uint16, 'Demanda_uni_equil': np.uint32} test_types = {'Agencia_ID': np.uint16, 'Ruta_SAK': np.uint16, 'Cliente_ID': np.uint32, 'Producto_ID': np.uint16, 'id': np.uint32} df_train = pd.read_csv('../input/train.csv', usecols=train_types.keys(), dtype=train_types) df_test = pd.read_csv('../input/test.csv', usecols=test_types.keys(), dtype=test_types) df_client = pd.read_csv('../input/cliente_tabla.csv') df_product = pd.read_csv('../input/producto_tabla.csv') df_town = pd.read_csv('../input/town_state.csv') agencies_subset = np.zeros(len(df_train)) for i in range(4): this_agency = df_train['Agencia_ID'].unique()[i] agencies_subset += df_train['Agencia_ID'] == this_agency print(agencies_subset)
code
18141740/cell_4
[ "image_output_1.png" ]
import datetime as dt import matplotlib.pyplot as plt import pandas as pd df_source = pd.read_csv('../input/periodic_traffic.csv') df_source['rep_date'] = pd.to_datetime(df_source['_time']) df_source.drop(['_time'], axis=1, inplace=True) df_source_time = df_source.copy() df_source_time['rep_time'] = df_source_time['rep_date'].apply(lambda x: dt.datetime.strptime(x.strftime('%H:%M'), '%H:%M')) df_source_time.drop(['rep_date'], axis=1, inplace=True) df_source = df_source.set_index('rep_date') df_source_time = df_source_time.set_index('rep_time') df_source_time['C9'].plot() plt.show()
code
18141740/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
import os import numpy as np import pandas as pd from pandas import DataFrame import datetime as dt import matplotlib as mpl import matplotlib.pyplot as plt import os import lowess as lo print(os.listdir('../input'))
code
18141740/cell_3
[ "text_html_output_2.png", "text_html_output_1.png", "text_plain_output_1.png" ]
import datetime as dt import pandas as pd df_source = pd.read_csv('../input/periodic_traffic.csv') df_source['rep_date'] = pd.to_datetime(df_source['_time']) df_source.drop(['_time'], axis=1, inplace=True) df_source_time = df_source.copy() df_source_time['rep_time'] = df_source_time['rep_date'].apply(lambda x: dt.datetime.strptime(x.strftime('%H:%M'), '%H:%M')) df_source_time.drop(['rep_date'], axis=1, inplace=True) df_source = df_source.set_index('rep_date') df_source_time = df_source_time.set_index('rep_time') print('Rows found in the DataFrame:\n{}\n'.format(len(df_source.index))) display(df_source.tail(3)) display(df_source_time.tail(3))
code
18141740/cell_5
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from pandas import DataFrame import datetime as dt import lowess as lo import matplotlib.pyplot as plt import numpy as np import pandas as pd df_source = pd.read_csv('../input/periodic_traffic.csv') df_source['rep_date'] = pd.to_datetime(df_source['_time']) df_source.drop(['_time'], axis=1, inplace=True) df_source_time = df_source.copy() df_source_time['rep_time'] = df_source_time['rep_date'].apply(lambda x: dt.datetime.strptime(x.strftime('%H:%M'), '%H:%M')) df_source_time.drop(['rep_date'], axis=1, inplace=True) df_source = df_source.set_index('rep_date') df_source_time = df_source_time.set_index('rep_time') v_window = 8 k_out = 1.5 k_norm = 1.5 i = df_source_time.index.shape[0] x = np.linspace(-10, 10, i) def f_out(x): name = x.index[0] if x[name] > x[name + '_lo'] + k_out * x[name + '_std_first_step']: x[name + '_adj'] = np.nan elif x[name] < x[name + '_lo'] - k_out * x[name + '_std_first_step']: x[name + '_adj'] = np.nan else: x[name + '_adj'] = x[name] return x def f_low(df_x): df_res = DataFrame(df_x) name = df_res.columns[0] i = df_x.index.shape[0] x = np.linspace(-10, 10, i) df_res[name + '_lo'] = lo.lowess(x, df_x.values, x) df_res[name + '_std_first_step'] = df_x.rolling(window=v_window, min_periods=0).std().fillna(method='bfill').shift(-int(v_window / 2)) df_res = df_res.apply(f_out, axis=1) df_res[name + '_adj_first_step'] = df_res[name + '_adj'].fillna(method='bfill') df_res[name + '_adj'] = lo.lowess(x, np.array(df_res[name + '_adj_first_step']), x) df_res[name + '_std'] = df_res[name + '_adj_first_step'].rolling(window=v_window, min_periods=0).std().fillna(method='bfill').shift(-int(v_window / 2)) return df_res l = list(df_source_time.columns) print('Список полученных для анализа фич:\n{}'.format(l)) for name in l: df = f_low(df_source_time[name].sort_index(axis=0)) display(df.head()) fig, ax = plt.subplots(1, figsize=(12, 9)) ax.plot(df[name], 'b.', label='Original') ax.plot(df[name + '_lo'] + k_out * df[name + '_std_first_step'], 'g', label='Границы фильтрации выбросов') ax.plot(df[name + '_lo'] - k_out * df[name + '_std_first_step'], 'g', label='Границы фильтрации выбросов') ax.plot(df[name + '_lo'], 'r', label='Восстановленный график на первом шаге') ax.plot(df[name + '_adj'] + k_norm * df[name + '_std'], 'k', label='Верхняя граница нормального трафика') ax.plot(df[name + '_adj'] - k_norm * df[name + '_std'], 'k', label='Нижняя граница нормального трафика') ax.plot(df[name + '_adj'], 'y', label='Восстановленный график на втором шаге') ax.set_title(name) plt.legend() plt.show()
code
73081315/cell_4
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30days-folds/train_folds.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) train.head()
code
73081315/cell_6
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30days-folds/train_folds.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) sum(train.isnull().sum()) y = train['target'] features = train.drop(['target'], axis=1) features.head()
code
73081315/cell_7
[ "application_vnd.jupyter.stderr_output_9.png", "application_vnd.jupyter.stderr_output_7.png", "text_plain_output_4.png", "text_plain_output_10.png", "text_plain_output_6.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "text_plain_output_8.png", "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder from xgboost import XGBRegressor import pandas as pd import time train = pd.read_csv('../input/30days-folds/train_folds.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) sum(train.isnull().sum()) y = train['target'] features = train.drop(['target'], axis=1) final_predictions = [] ordinal_encoder = OrdinalEncoder() model = RandomForestRegressor(random_state=1) for fold in range(5): X_test = test.copy() X_train = train[train.kfold != fold].reset_index(drop=True) X_valid = train[train.kfold == fold].reset_index(drop=True) y_train = X_train['target'] y_valid = X_valid['target'] X_train.drop(['target', 'kfold'], axis=1, inplace=True) X_valid.drop(['target', 'kfold'], axis=1, inplace=True) object_cols = [col for col in X_train.columns if X_train[col].dtype == 'object'] X_train[object_cols] = ordinal_encoder.fit_transform(X_train[object_cols]) X_valid[object_cols] = ordinal_encoder.transform(X_valid[object_cols]) X_test[object_cols] = ordinal_encoder.transform(X_test[object_cols]) model = XGBRegressor(random_state=fold, n_jobs=4) start_time = time.time() model.fit(X_train, y_train) end_time = time.time() preds_valid = model.predict(X_valid) preds_test = model.predict(X_test) final_predictions.append(preds_test) print(fold, round(mean_squared_error(y_valid, preds_valid, squared=False), 4), end_time - start_time, sep=' - ')
code
73081315/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/30days-folds/train_folds.csv', index_col=0) test = pd.read_csv('../input/30-days-of-ml/test.csv', index_col=0) sum(train.isnull().sum())
code
72099958/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/openintro-possum/possum.csv') df cat = ['sex', 'Pop', 'site'] fig,ax=plt.subplots(3, figsize=(10,10)) ax=ax.ravel() for index, col in enumerate(cat): sns.boxplot(x='age',y=col,data=df, ax=ax[index]) df['site'] = df['site'].apply(lambda x: str(x)) fig,ax=plt.subplots(figsize=(15,15)) sns.heatmap(df.corr(),annot=True) plt.show() #to a limited degree, body dimensions are to some degree correlated with age num = ['hdlngth', 'skullw', 'totlngth', 'taill', 'footlgth', 'earconch', 'eye', 'chest', 'belly'] fig, ax = plt.subplots(3, 3, figsize=(10, 10), constrained_layout=True) ax = ax.ravel() for index, col in enumerate(num): sns.histplot(x=col, data=df, ax=ax[index], kde=True) ax[index].set_title(f'Skewness:{df[col].skew(axis=0)}')
code
72099958/cell_9
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/openintro-possum/possum.csv') df df['site'] = df['site'].apply(lambda x: str(x)) df.info()
code
72099958/cell_4
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/openintro-possum/possum.csv') df df.info()
code
72099958/cell_23
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/openintro-possum/possum.csv') df cat = ['sex', 'Pop', 'site'] fig,ax=plt.subplots(3, figsize=(10,10)) ax=ax.ravel() for index, col in enumerate(cat): sns.boxplot(x='age',y=col,data=df, ax=ax[index]) df['site'] = df['site'].apply(lambda x: str(x)) fig,ax=plt.subplots(figsize=(15,15)) sns.heatmap(df.corr(),annot=True) plt.show() #to a limited degree, body dimensions are to some degree correlated with age num = ['hdlngth', 'skullw', 'totlngth', 'taill', 'footlgth', 'earconch', 'eye', 'chest', 'belly'] #numerical columns EDA fig,ax=plt.subplots(3,3, figsize=(10,10),constrained_layout=True) ax=ax.ravel() for index, col in enumerate(num): sns.histplot(x=col,data=df,ax=ax[index], kde=True) ax[index].set_title(f'Skewness:{df[col].skew(axis = 0)}') #Some regression techniques don't work well skewed data, so we are doing this to detech is that's the case num = ['hdlngth', 'skullw', 'totlngth', 'taill', 'footlgth', 'earconch', 'eye', 'chest', 'belly'] #numerical columns EDA fig,ax=plt.subplots(3,3, figsize=(10,10),constrained_layout=True) ax=ax.ravel() for index, col in enumerate(num): log = (f'{col}_log') df[log] = df[col].apply(lambda x:np.log(x+1)) sns.histplot(x=f'{col}_log',data=df,ax=ax[index], kde=True) ax[index].set_title(f'Skewness:{df[log].skew(axis = 0)}') df['age_log'] = df['age'].apply(lambda x: np.log(x + 1)) df.dropna(axis=0, inplace=True) df.columns
code
72099958/cell_20
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/openintro-possum/possum.csv') df cat = ['sex', 'Pop', 'site'] fig,ax=plt.subplots(3, figsize=(10,10)) ax=ax.ravel() for index, col in enumerate(cat): sns.boxplot(x='age',y=col,data=df, ax=ax[index]) df['site'] = df['site'].apply(lambda x: str(x)) fig,ax=plt.subplots(figsize=(15,15)) sns.heatmap(df.corr(),annot=True) plt.show() #to a limited degree, body dimensions are to some degree correlated with age num = ['hdlngth', 'skullw', 'totlngth', 'taill', 'footlgth', 'earconch', 'eye', 'chest', 'belly'] #numerical columns EDA fig,ax=plt.subplots(3,3, figsize=(10,10),constrained_layout=True) ax=ax.ravel() for index, col in enumerate(num): sns.histplot(x=col,data=df,ax=ax[index], kde=True) ax[index].set_title(f'Skewness:{df[col].skew(axis = 0)}') #Some regression techniques don't work well skewed data, so we are doing this to detech is that's the case num = ['hdlngth', 'skullw', 'totlngth', 'taill', 'footlgth', 'earconch', 'eye', 'chest', 'belly'] #numerical columns EDA fig,ax=plt.subplots(3,3, figsize=(10,10),constrained_layout=True) ax=ax.ravel() for index, col in enumerate(num): log = (f'{col}_log') df[log] = df[col].apply(lambda x:np.log(x+1)) sns.histplot(x=f'{col}_log',data=df,ax=ax[index], kde=True) ax[index].set_title(f'Skewness:{df[log].skew(axis = 0)}') df['age_log'] = df['age'].apply(lambda x: np.log(x + 1)) df.dropna(axis=0, inplace=True) df.info()
code
72099958/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/openintro-possum/possum.csv') df cat = ['sex', 'Pop', 'site'] for col in cat: print(f'In {col}: {df[col].unique()}')
code
72099958/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
72099958/cell_7
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/openintro-possum/possum.csv') df cat = ['sex', 'Pop', 'site'] fig, ax = plt.subplots(3, figsize=(10, 10)) ax = ax.ravel() for index, col in enumerate(cat): sns.boxplot(x='age', y=col, data=df, ax=ax[index])
code
72099958/cell_18
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/openintro-possum/possum.csv') df cat = ['sex', 'Pop', 'site'] fig,ax=plt.subplots(3, figsize=(10,10)) ax=ax.ravel() for index, col in enumerate(cat): sns.boxplot(x='age',y=col,data=df, ax=ax[index]) df['site'] = df['site'].apply(lambda x: str(x)) fig,ax=plt.subplots(figsize=(15,15)) sns.heatmap(df.corr(),annot=True) plt.show() #to a limited degree, body dimensions are to some degree correlated with age num = ['hdlngth', 'skullw', 'totlngth', 'taill', 'footlgth', 'earconch', 'eye', 'chest', 'belly'] #numerical columns EDA fig,ax=plt.subplots(3,3, figsize=(10,10),constrained_layout=True) ax=ax.ravel() for index, col in enumerate(num): sns.histplot(x=col,data=df,ax=ax[index], kde=True) ax[index].set_title(f'Skewness:{df[col].skew(axis = 0)}') #Some regression techniques don't work well skewed data, so we are doing this to detech is that's the case num = ['hdlngth', 'skullw', 'totlngth', 'taill', 'footlgth', 'earconch', 'eye', 'chest', 'belly'] #numerical columns EDA fig,ax=plt.subplots(3,3, figsize=(10,10),constrained_layout=True) ax=ax.ravel() for index, col in enumerate(num): log = (f'{col}_log') df[log] = df[col].apply(lambda x:np.log(x+1)) sns.histplot(x=f'{col}_log',data=df,ax=ax[index], kde=True) ax[index].set_title(f'Skewness:{df[log].skew(axis = 0)}') df['age_log'] = df['age'].apply(lambda x: np.log(x + 1)) df.head()
code
72099958/cell_15
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/openintro-possum/possum.csv') df cat = ['sex', 'Pop', 'site'] fig,ax=plt.subplots(3, figsize=(10,10)) ax=ax.ravel() for index, col in enumerate(cat): sns.boxplot(x='age',y=col,data=df, ax=ax[index]) df['site'] = df['site'].apply(lambda x: str(x)) fig,ax=plt.subplots(figsize=(15,15)) sns.heatmap(df.corr(),annot=True) plt.show() #to a limited degree, body dimensions are to some degree correlated with age num = ['hdlngth', 'skullw', 'totlngth', 'taill', 'footlgth', 'earconch', 'eye', 'chest', 'belly'] #numerical columns EDA fig,ax=plt.subplots(3,3, figsize=(10,10),constrained_layout=True) ax=ax.ravel() for index, col in enumerate(num): sns.histplot(x=col,data=df,ax=ax[index], kde=True) ax[index].set_title(f'Skewness:{df[col].skew(axis = 0)}') #Some regression techniques don't work well skewed data, so we are doing this to detech is that's the case num = ['hdlngth', 'skullw', 'totlngth', 'taill', 'footlgth', 'earconch', 'eye', 'chest', 'belly'] #numerical columns EDA fig,ax=plt.subplots(3,3, figsize=(10,10),constrained_layout=True) ax=ax.ravel() for index, col in enumerate(num): log = (f'{col}_log') df[log] = df[col].apply(lambda x:np.log(x+1)) sns.histplot(x=f'{col}_log',data=df,ax=ax[index], kde=True) ax[index].set_title(f'Skewness:{df[log].skew(axis = 0)}') sns.histplot(x='age', data=df, kde=True) plt.title(f'Skewness:{df.age.skew(axis=0)}') plt.show()
code
72099958/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/openintro-possum/possum.csv') df cat = ['sex', 'Pop', 'site'] fig,ax=plt.subplots(3, figsize=(10,10)) ax=ax.ravel() for index, col in enumerate(cat): sns.boxplot(x='age',y=col,data=df, ax=ax[index]) df['site'] = df['site'].apply(lambda x: str(x)) fig,ax=plt.subplots(figsize=(15,15)) sns.heatmap(df.corr(),annot=True) plt.show() #to a limited degree, body dimensions are to some degree correlated with age num = ['hdlngth', 'skullw', 'totlngth', 'taill', 'footlgth', 'earconch', 'eye', 'chest', 'belly'] #numerical columns EDA fig,ax=plt.subplots(3,3, figsize=(10,10),constrained_layout=True) ax=ax.ravel() for index, col in enumerate(num): sns.histplot(x=col,data=df,ax=ax[index], kde=True) ax[index].set_title(f'Skewness:{df[col].skew(axis = 0)}') #Some regression techniques don't work well skewed data, so we are doing this to detech is that's the case num = ['hdlngth', 'skullw', 'totlngth', 'taill', 'footlgth', 'earconch', 'eye', 'chest', 'belly'] #numerical columns EDA fig,ax=plt.subplots(3,3, figsize=(10,10),constrained_layout=True) ax=ax.ravel() for index, col in enumerate(num): log = (f'{col}_log') df[log] = df[col].apply(lambda x:np.log(x+1)) sns.histplot(x=f'{col}_log',data=df,ax=ax[index], kde=True) ax[index].set_title(f'Skewness:{df[log].skew(axis = 0)}') df['age_log'] = df['age'].apply(lambda x: np.log(x + 1)) sns.histplot(x='age_log', data=df, kde=True) plt.title(f'Skewness:{df.age_log.skew(axis=0)}') plt.show()
code
72099958/cell_3
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/openintro-possum/possum.csv') df
code
72099958/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/openintro-possum/possum.csv') df cat = ['sex', 'Pop', 'site'] fig,ax=plt.subplots(3, figsize=(10,10)) ax=ax.ravel() for index, col in enumerate(cat): sns.boxplot(x='age',y=col,data=df, ax=ax[index]) df['site'] = df['site'].apply(lambda x: str(x)) fig,ax=plt.subplots(figsize=(15,15)) sns.heatmap(df.corr(),annot=True) plt.show() #to a limited degree, body dimensions are to some degree correlated with age num = ['hdlngth', 'skullw', 'totlngth', 'taill', 'footlgth', 'earconch', 'eye', 'chest', 'belly'] #numerical columns EDA fig,ax=plt.subplots(3,3, figsize=(10,10),constrained_layout=True) ax=ax.ravel() for index, col in enumerate(num): sns.histplot(x=col,data=df,ax=ax[index], kde=True) ax[index].set_title(f'Skewness:{df[col].skew(axis = 0)}') #Some regression techniques don't work well skewed data, so we are doing this to detech is that's the case num = ['hdlngth', 'skullw', 'totlngth', 'taill', 'footlgth', 'earconch', 'eye', 'chest', 'belly'] fig, ax = plt.subplots(3, 3, figsize=(10, 10), constrained_layout=True) ax = ax.ravel() for index, col in enumerate(num): log = f'{col}_log' df[log] = df[col].apply(lambda x: np.log(x + 1)) sns.histplot(x=f'{col}_log', data=df, ax=ax[index], kde=True) ax[index].set_title(f'Skewness:{df[log].skew(axis=0)}')
code
72099958/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/openintro-possum/possum.csv') df cat = ['sex', 'Pop', 'site'] fig,ax=plt.subplots(3, figsize=(10,10)) ax=ax.ravel() for index, col in enumerate(cat): sns.boxplot(x='age',y=col,data=df, ax=ax[index]) df['site'] = df['site'].apply(lambda x: str(x)) fig, ax = plt.subplots(figsize=(15, 15)) sns.heatmap(df.corr(), annot=True) plt.show()
code
17137459/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt # plotting import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df1 = pd.read_csv('../input/BlackFriday.csv', delimiter=',') import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(16, 6)) sns.set(style="whitegrid") ax = sns.violinplot(x=df1['Age'], y=df1['Purchase'], palette='Set2') produtos = df1['Product_ID'].value_counts().head(10) plt.figure(figsize=(16, 6)) for i, v in produtos.iteritems(): plt.bar(i, v, label = i) plt.text(i, v, v, va='bottom', ha='center') plt.title('Produtos mais comprados') plt.show() occupation = df1['Occupation'].value_counts().head(5) aux = pd.DataFrame for i, v in occupation.iteritems(): if aux.empty: aux = df1[df1['Occupation'] == i] else: aux = aux.append(df1[df1['Occupation'] == i]) plt.figure(figsize=(20, 10)) sns.boxenplot(x=aux['Occupation'], y=aux['Purchase'], hue=aux['Age'])
code
17137459/cell_7
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt # plotting import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df1 = pd.read_csv('../input/BlackFriday.csv', delimiter=',') import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(16, 6)) sns.set(style="whitegrid") ax = sns.violinplot(x=df1['Age'], y=df1['Purchase'], palette='Set2') produtos = df1['Product_ID'].value_counts().head(10) plt.figure(figsize=(16, 6)) for i, v in produtos.iteritems(): plt.bar(i, v, label=i) plt.text(i, v, v, va='bottom', ha='center') plt.title('Produtos mais comprados') plt.show()
code
17137459/cell_3
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df1 = pd.read_csv('../input/BlackFriday.csv', delimiter=',') df1.head(10)
code
17137459/cell_14
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt # plotting import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df1 = pd.read_csv('../input/BlackFriday.csv', delimiter=',') import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(16, 6)) sns.set(style="whitegrid") ax = sns.violinplot(x=df1['Age'], y=df1['Purchase'], palette='Set2') produtos = df1['Product_ID'].value_counts().head(10) plt.figure(figsize=(16, 6)) for i, v in produtos.iteritems(): plt.bar(i, v, label = i) plt.text(i, v, v, va='bottom', ha='center') plt.title('Produtos mais comprados') plt.show() occupation = df1['Occupation'].value_counts().head(5) aux = pd.DataFrame for i, v in occupation.iteritems(): if aux.empty: aux = df1[df1['Occupation'] == i] else: aux = aux.append(df1[df1['Occupation'] == i]) purchase = df1[df1['Purchase'] > 9000] plt.figure(figsize=(16, 6)) sns.catplot(x='Marital_Status', y='Purchase', hue='Marital_Status', margin_titles=True, kind='box', col='Occupation', data=purchase, aspect=0.4, col_wrap=7)
code
17137459/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import matplotlib.pyplot as plt # plotting import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df1 = pd.read_csv('../input/BlackFriday.csv', delimiter=',') import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(16, 6)) sns.set(style='whitegrid') ax = sns.violinplot(x=df1['Age'], y=df1['Purchase'], palette='Set2')
code
73068056/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv', index_col='id') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv', index_col='id') df_train.head()
code
73068056/cell_29
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error from sklearn.preprocessing import OneHotEncoder import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/30-days-of-ml/train.csv', index_col='id') df_test = pd.read_csv('/kaggle/input/30-days-of-ml/test.csv', index_col='id') X = df_train.copy() X_test = df_test.copy() y = X.pop('target') s = X_train.dtypes == 'object' object_cols = list(s[s].index) OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False) OH_cols_train = pd.DataFrame(OH_encoder.fit_transform(X_train[object_cols])) OH_cols_valid = pd.DataFrame(OH_encoder.transform(X_valid[object_cols])) OH_cols_test = pd.DataFrame(OH_encoder.transform(X_test[object_cols])) OH_cols_train.index = X_train.index OH_cols_valid.index = X_valid.index OH_cols_test.index = X_test.index num_X_train = X_train.drop(object_cols, axis=1) num_X_valid = X_valid.drop(object_cols, axis=1) num_X_test = X_test.drop(object_cols, axis=1) OH_X_train = pd.concat([num_X_train, OH_cols_train], axis=1) OH_X_valid = pd.concat([num_X_valid, OH_cols_valid], axis=1) OH_X_test = pd.concat([num_X_test, OH_cols_test], axis=1) X_train = OH_X_train X_valid = OH_X_valid X_test = OH_X_test model = RandomForestRegressor(random_state=1) model.fit(X_train, y_train) preds_valid = model.predict(X_valid) print(mean_squared_error(y_valid, preds_valid, squared=False))
code
73068056/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import OrdinalEncoder from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error from category_encoders import MEstimateEncoder from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.feature_selection import mutual_info_regression from sklearn.model_selection import KFold, cross_val_score from xgboost import XGBRegressor import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
73068056/cell_27
[ "text_html_output_1.png" ]
s = X_train.dtypes == 'object' object_cols = list(s[s].index) print('Categorical variables:') print(object_cols)
code
34139290/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/goodreadsbooks/books.csv', error_bad_lines=False) df.rename(columns={' num_pages': 'num_pages'}, inplace=True) df.columns df['publication_year'] = [i.split('/')[2] for i in df['publication_date']] df['decade'] = [int(i) // 10 * 10 for i in df['publication_year']] df_lang_year = df.groupby(['decade', 'language_code']).count().reset_index() df_lang_year plt.figure(figsize=(20, 10)) plt.xlabel('Year') plt.ylabel('Number of Books') ax1 = sns.lineplot(x='decade', y='bookID', hue='language_code', data=df_lang_year) ax1.set_ylabel('Number of Books') ax1.set_xlabel('Decade')
code
34139290/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/goodreadsbooks/books.csv', error_bad_lines=False) df.rename(columns={' num_pages': 'num_pages'}, inplace=True) df.columns
code
34139290/cell_25
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/goodreadsbooks/books.csv', error_bad_lines=False) df.rename(columns={' num_pages': 'num_pages'}, inplace=True) df.columns df['publication_year'] = [i.split('/')[2] for i in df['publication_date']] df['decade'] = [int(i) // 10 * 10 for i in df['publication_year']] df_lang_year = df.groupby(['decade', 'language_code']).count().reset_index() df_lang_year plt.figure(figsize=(20,10)) plt.xlabel('Year') plt.ylabel('Number of Books') ax1 = sns.lineplot(x="decade", y="bookID", hue="language_code", #style="event", data=df_lang_year) ax1.set_ylabel('Number of Books') ax1.set_xlabel('Decade') x = df.groupby('language_code')['bookID'].count().reset_index().sort_values(by = 'bookID',ascending=False) plt.figure(figsize=(15,10)) ax1 = sns.barplot(x = 'language_code', y = 'bookID', data = x) ax1.set_xlabel('Language Code') ax1.set_ylabel('Number of Books') ax1.set_yscale("log") # ax1.set_ticklabels(x['bookID'], minor=False) plt.figure(figsize=(15,15)) chart = sns.countplot( data=df, x='language_code' ) ax1.set_xlabel('Language Code') ax1.set_ylabel('Number of Books') df['updated_language'] = ['en' if i in ('eng','en-US', 'en-GB', 'en-CA') else i for i in df['language_code']] x = df.groupby('updated_language')['bookID'].count().reset_index().sort_values(by = 'bookID',ascending=False) plt.figure(figsize=(15,10)) ax1 = sns.barplot(x = 'updated_language', y = 'bookID', data = x) ax1.set_xlabel('Language Code') ax1.set_ylabel('Number of Books') ax1.set_yscale("log") # ax1.set_ticklabels(x['bookID'], minor=False) authors = df.groupby('authors')['bookID'].count().reset_index().sort_values(by = 'bookID', ascending = False).head(10) plt.figure(figsize=(15,10)) au = sns.barplot(x = 'authors', y = 'bookID', data = authors) au.set_xlabel('Authors') au.set_ylabel('Number of Books') # Other way to rotate labels # au.set_xticklabels(au.get_xticklabels(), # rotation=45, # fontweight='light', # fontsize='x-large') plt.xticks( rotation=45, horizontalalignment='right', fontweight='light', fontsize='x-large' ) df['average_rating_rounded'] = df['average_rating'].round(1) plt.figure(figsize=(20, 15)) ax1 = sns.countplot(data=df, x='average_rating_rounded') ax1.set_xlabel('Average Rating') ax1.set_ylabel('Number of Books')
code
34139290/cell_4
[ "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/goodreadsbooks/books.csv', error_bad_lines=False) df.head()
code
34139290/cell_20
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/goodreadsbooks/books.csv', error_bad_lines=False) df.rename(columns={' num_pages': 'num_pages'}, inplace=True) df.columns df['publication_year'] = [i.split('/')[2] for i in df['publication_date']] df['decade'] = [int(i) // 10 * 10 for i in df['publication_year']] df_lang_year = df.groupby(['decade', 'language_code']).count().reset_index() df_lang_year plt.figure(figsize=(20,10)) plt.xlabel('Year') plt.ylabel('Number of Books') ax1 = sns.lineplot(x="decade", y="bookID", hue="language_code", #style="event", data=df_lang_year) ax1.set_ylabel('Number of Books') ax1.set_xlabel('Decade') x = df.groupby('language_code')['bookID'].count().reset_index().sort_values(by = 'bookID',ascending=False) plt.figure(figsize=(15,10)) ax1 = sns.barplot(x = 'language_code', y = 'bookID', data = x) ax1.set_xlabel('Language Code') ax1.set_ylabel('Number of Books') ax1.set_yscale("log") # ax1.set_ticklabels(x['bookID'], minor=False) plt.figure(figsize=(15,15)) chart = sns.countplot( data=df, x='language_code' ) ax1.set_xlabel('Language Code') ax1.set_ylabel('Number of Books') df['updated_language'] = ['en' if i in ('eng', 'en-US', 'en-GB', 'en-CA') else i for i in df['language_code']] x = df.groupby('updated_language')['bookID'].count().reset_index().sort_values(by='bookID', ascending=False) plt.figure(figsize=(15, 10)) ax1 = sns.barplot(x='updated_language', y='bookID', data=x) ax1.set_xlabel('Language Code') ax1.set_ylabel('Number of Books') ax1.set_yscale('log')
code
34139290/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/goodreadsbooks/books.csv', error_bad_lines=False) print(df.dtypes)
code
34139290/cell_18
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/goodreadsbooks/books.csv', error_bad_lines=False) df.rename(columns={' num_pages': 'num_pages'}, inplace=True) df.columns df['publication_year'] = [i.split('/')[2] for i in df['publication_date']] df['decade'] = [int(i) // 10 * 10 for i in df['publication_year']] df_lang_year = df.groupby(['decade', 'language_code']).count().reset_index() df_lang_year plt.figure(figsize=(20,10)) plt.xlabel('Year') plt.ylabel('Number of Books') ax1 = sns.lineplot(x="decade", y="bookID", hue="language_code", #style="event", data=df_lang_year) ax1.set_ylabel('Number of Books') ax1.set_xlabel('Decade') x = df.groupby('language_code')['bookID'].count().reset_index().sort_values(by = 'bookID',ascending=False) plt.figure(figsize=(15,10)) ax1 = sns.barplot(x = 'language_code', y = 'bookID', data = x) ax1.set_xlabel('Language Code') ax1.set_ylabel('Number of Books') ax1.set_yscale("log") # ax1.set_ticklabels(x['bookID'], minor=False) plt.figure(figsize=(15, 15)) chart = sns.countplot(data=df, x='language_code') ax1.set_xlabel('Language Code') ax1.set_ylabel('Number of Books')
code
34139290/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/goodreadsbooks/books.csv', error_bad_lines=False) df.rename(columns={' num_pages': 'num_pages'}, inplace=True) df.columns df['publication_year'] = [i.split('/')[2] for i in df['publication_date']] df['decade'] = [int(i) // 10 * 10 for i in df['publication_year']] df_lang_year = df.groupby(['decade', 'language_code']).count().reset_index() df_lang_year plt.figure(figsize=(20,10)) plt.xlabel('Year') plt.ylabel('Number of Books') ax1 = sns.lineplot(x="decade", y="bookID", hue="language_code", #style="event", data=df_lang_year) ax1.set_ylabel('Number of Books') ax1.set_xlabel('Decade') x = df.groupby('language_code')['bookID'].count().reset_index().sort_values(by='bookID', ascending=False) plt.figure(figsize=(15, 10)) ax1 = sns.barplot(x='language_code', y='bookID', data=x) ax1.set_xlabel('Language Code') ax1.set_ylabel('Number of Books') ax1.set_yscale('log')
code
34139290/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('../input/goodreadsbooks/books.csv', error_bad_lines=False) df.rename(columns={' num_pages': 'num_pages'}, inplace=True) df.columns df['publication_year'] = [i.split('/')[2] for i in df['publication_date']] df['decade'] = [int(i) // 10 * 10 for i in df['publication_year']] df_lang_year = df.groupby(['decade', 'language_code']).count().reset_index() df_lang_year plt.figure(figsize=(20,10)) plt.xlabel('Year') plt.ylabel('Number of Books') ax1 = sns.lineplot(x="decade", y="bookID", hue="language_code", #style="event", data=df_lang_year) ax1.set_ylabel('Number of Books') ax1.set_xlabel('Decade') x = df.groupby('language_code')['bookID'].count().reset_index().sort_values(by = 'bookID',ascending=False) plt.figure(figsize=(15,10)) ax1 = sns.barplot(x = 'language_code', y = 'bookID', data = x) ax1.set_xlabel('Language Code') ax1.set_ylabel('Number of Books') ax1.set_yscale("log") # ax1.set_ticklabels(x['bookID'], minor=False) plt.figure(figsize=(15,15)) chart = sns.countplot( data=df, x='language_code' ) ax1.set_xlabel('Language Code') ax1.set_ylabel('Number of Books') df['updated_language'] = ['en' if i in ('eng','en-US', 'en-GB', 'en-CA') else i for i in df['language_code']] x = df.groupby('updated_language')['bookID'].count().reset_index().sort_values(by = 'bookID',ascending=False) plt.figure(figsize=(15,10)) ax1 = sns.barplot(x = 'updated_language', y = 'bookID', data = x) ax1.set_xlabel('Language Code') ax1.set_ylabel('Number of Books') ax1.set_yscale("log") # ax1.set_ticklabels(x['bookID'], minor=False) authors = df.groupby('authors')['bookID'].count().reset_index().sort_values(by='bookID', ascending=False).head(10) plt.figure(figsize=(15, 10)) au = sns.barplot(x='authors', y='bookID', data=authors) au.set_xlabel('Authors') au.set_ylabel('Number of Books') plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize='x-large')
code
34139290/cell_12
[ "text_html_output_1.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/goodreadsbooks/books.csv', error_bad_lines=False) df.rename(columns={' num_pages': 'num_pages'}, inplace=True) df.columns df['publication_year'] = [i.split('/')[2] for i in df['publication_date']] df['decade'] = [int(i) // 10 * 10 for i in df['publication_year']] df_lang_year = df.groupby(['decade', 'language_code']).count().reset_index() df_lang_year
code
34139290/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/goodreadsbooks/books.csv', error_bad_lines=False) df.describe(include='all')
code
18116881/cell_63
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') cat_cols = ['Survived', 'Sex', 'Pclass', 'Embarked', 'Parch', 'SibSp'] fig, axs = plt.subplots(2, 3, figsize=(16, 9)) plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0.3) for i in range(2): for j in range(3): c = i * 3 + j ax = axs[i][j] sns.countplot(train_set[cat_cols[c]], hue=train_set['Survived'], ax = ax) ax.set_title(cat_cols[c], fontsize=14, fontweight='bold') ax.grid() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() test_set.at[152, 'Fare'] = np.nanmedian(test_set[(test_set['Pclass'] == 3) & (test_set['Embarked'] == 'S')]['Fare']) sns.distplot(test_set['Fare'])
code
18116881/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') train_set.info()
code
18116881/cell_25
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') def missing_zero_values_table(df): zero_val = (df == 0.0).astype(int).sum(axis=0) mis_val = df.isnull().sum() mis_val_percent = 100 * df.isnull().sum() / len(df) mz_table = pd.concat([zero_val, mis_val, mis_val_percent], axis=1) mz_table = mz_table.rename(columns={0: 'Zero Values', 1: 'Missing Values', 2: '% of Total Values'}) mz_table['Data Type'] = df.dtypes mz_table = mz_table[mz_table.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1) return mz_table missing_zero_values_table(test_set)
code
18116881/cell_57
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') cat_cols = ['Survived', 'Sex', 'Pclass', 'Embarked', 'Parch', 'SibSp'] fig, axs = plt.subplots(2, 3, figsize=(16, 9)) plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0.3) for i in range(2): for j in range(3): c = i * 3 + j ax = axs[i][j] sns.countplot(train_set[cat_cols[c]], hue=train_set['Survived'], ax = ax) ax.set_title(cat_cols[c], fontsize=14, fontweight='bold') ax.grid() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() test_set.at[152, 'Fare'] = np.nanmedian(test_set[(test_set['Pclass'] == 3) & (test_set['Embarked'] == 'S')]['Fare']) test_set['Title'].value_counts()
code
18116881/cell_56
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') cat_cols = ['Survived', 'Sex', 'Pclass', 'Embarked', 'Parch', 'SibSp'] fig, axs = plt.subplots(2, 3, figsize=(16, 9)) plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0.3) for i in range(2): for j in range(3): c = i * 3 + j ax = axs[i][j] sns.countplot(train_set[cat_cols[c]], hue=train_set['Survived'], ax = ax) ax.set_title(cat_cols[c], fontsize=14, fontweight='bold') ax.grid() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() test_set.at[152, 'Fare'] = np.nanmedian(test_set[(test_set['Pclass'] == 3) & (test_set['Embarked'] == 'S')]['Fare']) def extract_title(name): return name.split(',')[1].split()[0].strip() def refine_title(title): if title in ['Mr.', 'Sir.', 'Major.', 'Dr.', 'Capt.']: return 'mr' elif title == 'Master.': return 'master' elif title in ['Miss.', 'Ms.']: return 'miss' elif title in ['Mrs.', 'Lady.']: return 'mrs' else: return 'other' test_set['Title'] = test_set['Name'].apply(extract_title) test_set['Title'] = test_set['Title'].apply(refine_title)
code
18116881/cell_23
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') def missing_zero_values_table(df): zero_val = (df == 0.0).astype(int).sum(axis=0) mis_val = df.isnull().sum() mis_val_percent = 100 * df.isnull().sum() / len(df) mz_table = pd.concat([zero_val, mis_val, mis_val_percent], axis=1) mz_table = mz_table.rename(columns={0: 'Zero Values', 1: 'Missing Values', 2: '% of Total Values'}) mz_table['Data Type'] = df.dtypes mz_table = mz_table[mz_table.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1) return mz_table missing_zero_values_table(train_set)
code
18116881/cell_30
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') train_set['Embarked'][61] = 'S' train_set['Embarked'][829] = 'S'
code
18116881/cell_44
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') train_set['Name']
code
18116881/cell_20
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') cat_cols = ['Survived', 'Sex', 'Pclass', 'Embarked', 'Parch', 'SibSp'] fig, axs = plt.subplots(2, 3, figsize=(16, 9)) plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0.3) for i in range(2): for j in range(3): c = i * 3 + j ax = axs[i][j] sns.countplot(train_set[cat_cols[c]], hue=train_set['Survived'], ax = ax) ax.set_title(cat_cols[c], fontsize=14, fontweight='bold') ax.grid() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() plt.show()
code
18116881/cell_65
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') cat_cols = ['Survived', 'Sex', 'Pclass', 'Embarked', 'Parch', 'SibSp'] fig, axs = plt.subplots(2, 3, figsize=(16, 9)) plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0.3) for i in range(2): for j in range(3): c = i * 3 + j ax = axs[i][j] sns.countplot(train_set[cat_cols[c]], hue=train_set['Survived'], ax = ax) ax.set_title(cat_cols[c], fontsize=14, fontweight='bold') ax.grid() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() def missing_zero_values_table(df): zero_val = (df == 0.0).astype(int).sum(axis=0) mis_val = df.isnull().sum() mis_val_percent = 100 * df.isnull().sum() / len(df) mz_table = pd.concat([zero_val, mis_val, mis_val_percent], axis=1) mz_table = mz_table.rename(columns={0: 'Zero Values', 1: 'Missing Values', 2: '% of Total Values'}) mz_table['Data Type'] = df.dtypes mz_table = mz_table[mz_table.iloc[:, 1] != 0].sort_values('% of Total Values', ascending=False).round(1) return mz_table test_set.at[152, 'Fare'] = np.nanmedian(test_set[(test_set['Pclass'] == 3) & (test_set['Embarked'] == 'S')]['Fare']) fare_bins = [-np.inf, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, np.inf] fare_labels = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] train_set['FareBin'] = pd.cut(train_set['Fare'], bins=fare_bins, labels=fare_labels) test_set['FareBin'] = pd.cut(test_set['Fare'], bins=fare_bins, labels=fare_labels)
code
18116881/cell_48
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') def extract_title(name): return name.split(',')[1].split()[0].strip() train_set['Title'] = train_set['Name'].apply(extract_title)
code
18116881/cell_41
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') cat_cols = ['Survived', 'Sex', 'Pclass', 'Embarked', 'Parch', 'SibSp'] fig, axs = plt.subplots(2, 3, figsize=(16, 9)) plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0.3) for i in range(2): for j in range(3): c = i * 3 + j ax = axs[i][j] sns.countplot(train_set[cat_cols[c]], hue=train_set['Survived'], ax = ax) ax.set_title(cat_cols[c], fontsize=14, fontweight='bold') ax.grid() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() test_set.at[152, 'Fare'] = np.nanmedian(test_set[(test_set['Pclass'] == 3) & (test_set['Embarked'] == 'S')]['Fare']) train_set['FamilySize'] = train_set['SibSp'] + train_set['Parch'] + 1 test_set['FamilySize'] = test_set['SibSp'] + test_set['Parch'] + 1
code
18116881/cell_54
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') train_set['Title'].value_counts()
code
18116881/cell_67
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') cat_cols = ['Survived', 'Sex', 'Pclass', 'Embarked', 'Parch', 'SibSp'] fig, axs = plt.subplots(2, 3, figsize=(16, 9)) plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0.3) for i in range(2): for j in range(3): c = i * 3 + j ax = axs[i][j] sns.countplot(train_set[cat_cols[c]], hue=train_set['Survived'], ax = ax) ax.set_title(cat_cols[c], fontsize=14, fontweight='bold') ax.grid() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() test_set.at[152, 'Fare'] = np.nanmedian(test_set[(test_set['Pclass'] == 3) & (test_set['Embarked'] == 'S')]['Fare']) test_set.head()
code
18116881/cell_60
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') cat_cols = ['Survived', 'Sex', 'Pclass', 'Embarked', 'Parch', 'SibSp'] fig, axs = plt.subplots(2, 3, figsize=(16, 9)) plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0.3) for i in range(2): for j in range(3): c = i * 3 + j ax = axs[i][j] sns.countplot(train_set[cat_cols[c]], hue=train_set['Survived'], ax = ax) ax.set_title(cat_cols[c], fontsize=14, fontweight='bold') ax.grid() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() sns.distplot(train_set['Fare'])
code
18116881/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') train_set.head()
code
18116881/cell_49
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') train_set['Title'].value_counts()
code
18116881/cell_18
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') cat_cols = ['Survived', 'Sex', 'Pclass', 'Embarked', 'Parch', 'SibSp'] fig, axs = plt.subplots(2, 3, figsize=(16, 9)) plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0.3) for i in range(2): for j in range(3): c = i * 3 + j ax = axs[i][j] sns.countplot(train_set[cat_cols[c]], hue=train_set['Survived'], ax = ax) ax.set_title(cat_cols[c], fontsize=14, fontweight='bold') ax.grid() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() plt.show()
code
18116881/cell_32
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') train_set[train_set['Age'].isna()]['Sex'].value_counts()
code
18116881/cell_58
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') train_set.head()
code
18116881/cell_28
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') train_set[(train_set['Pclass'] == 1) & (train_set['Embarked'] == 'Q')]['Sex'].value_counts()
code
18116881/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') train_set.describe()
code
18116881/cell_16
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') cat_cols = ['Survived', 'Sex', 'Pclass', 'Embarked', 'Parch', 'SibSp'] fig, axs = plt.subplots(2, 3, figsize=(16, 9)) plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0.3) for i in range(2): for j in range(3): c = i * 3 + j ax = axs[i][j] sns.countplot(train_set[cat_cols[c]], hue=train_set['Survived'], ax = ax) ax.set_title(cat_cols[c], fontsize=14, fontweight='bold') ax.grid() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() plt.show()
code
18116881/cell_38
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') cat_cols = ['Survived', 'Sex', 'Pclass', 'Embarked', 'Parch', 'SibSp'] fig, axs = plt.subplots(2, 3, figsize=(16, 9)) plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0.3) for i in range(2): for j in range(3): c = i * 3 + j ax = axs[i][j] sns.countplot(train_set[cat_cols[c]], hue=train_set['Survived'], ax = ax) ax.set_title(cat_cols[c], fontsize=14, fontweight='bold') ax.grid() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() test_set.at[152, 'Fare'] = np.nanmedian(test_set[(test_set['Pclass'] == 3) & (test_set['Embarked'] == 'S')]['Fare']) test_set['Fare'][152]
code
18116881/cell_66
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') train_set.head()
code
18116881/cell_35
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') test_set[test_set['Fare'].isna()]
code
18116881/cell_14
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') cat_cols = ['Survived', 'Sex', 'Pclass', 'Embarked', 'Parch', 'SibSp'] fig, axs = plt.subplots(2, 3, figsize=(16, 9)) plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0.3) for i in range(2): for j in range(3): c = i * 3 + j ax = axs[i][j] sns.countplot(train_set[cat_cols[c]], hue=train_set['Survived'], ax = ax) ax.set_title(cat_cols[c], fontsize=14, fontweight='bold') ax.grid() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() plt.show()
code
18116881/cell_53
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') def refine_title(title): if title in ['Mr.', 'Sir.', 'Major.', 'Dr.', 'Capt.']: return 'mr' elif title == 'Master.': return 'master' elif title in ['Miss.', 'Ms.']: return 'miss' elif title in ['Mrs.', 'Lady.']: return 'mrs' else: return 'other' train_set['Title'] = train_set['Title'].apply(refine_title)
code
18116881/cell_27
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') train_set[train_set['Embarked'].isna()]
code
18116881/cell_37
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') cat_cols = ['Survived', 'Sex', 'Pclass', 'Embarked', 'Parch', 'SibSp'] fig, axs = plt.subplots(2, 3, figsize=(16, 9)) plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0.3) for i in range(2): for j in range(3): c = i * 3 + j ax = axs[i][j] sns.countplot(train_set[cat_cols[c]], hue=train_set['Survived'], ax = ax) ax.set_title(cat_cols[c], fontsize=14, fontweight='bold') ax.grid() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 80, 5) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Age', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Pclass', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() bins = np.arange(0, 550, 50) g = sns.FacetGrid(train_set, row='Sex', col='Embarked', hue='Survived', margin_titles=True, size=3, aspect=1.1) g.map(sns.distplot, 'Fare', kde=False, bins=bins, hist_kws=dict(alpha=0.6)) g.add_legend() test_set.at[152, 'Fare'] = np.nanmedian(test_set[(test_set['Pclass'] == 3) & (test_set['Embarked'] == 'S')]['Fare'])
code
18116881/cell_12
[ "application_vnd.jupyter.stderr_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv') cat_cols = ['Survived', 'Sex', 'Pclass', 'Embarked', 'Parch', 'SibSp'] fig, axs = plt.subplots(2, 3, figsize=(16, 9)) plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0.3) for i in range(2): for j in range(3): c = i * 3 + j ax = axs[i][j] sns.countplot(train_set[cat_cols[c]], hue=train_set['Survived'], ax=ax) ax.set_title(cat_cols[c], fontsize=14, fontweight='bold') ax.grid()
code
18116881/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd train_set = pd.read_csv('train.csv') test_set = pd.read_csv('test.csv')
code
128014857/cell_4
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_drug = pd.read_csv('../input/drugsets/drug200.csv') df_drug
code
128014857/cell_23
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_drug = pd.read_csv('../input/drugsets/drug200.csv') df_drug name_cols = ['Sex', 'Drug', 'BP', 'Cholesterol'] name_cols = ['Sex', 'BP', 'Cholesterol'] for name_col in name_cols: df_Dr = df_drug.groupby(['Drug', name_col]).size().reset_index(name='Count') df_drug.corr() df_drug['Na_to_K_Bigger_Than_15'] = [1 if i >= 15.015 else 0 for i in df_drug.Na_to_K] df_drug.head()
code
128014857/cell_44
[ "text_html_output_1.png" ]
from sklearn import linear_model, naive_bayes, neighbors, svm from sklearn.base import BaseEstimator, TransformerMixin from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from typing import Tuple import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_drug = pd.read_csv('../input/drugsets/drug200.csv') df_drug def find_boxplot_boundaries( col: pd.Series, Na_to_K_coeff: float = 1.5 ) -> Tuple[float, float]: """Findx minimum and maximum in boxplot. Args: col: a pandas serires of input. Na_to_K_coeff: Na_to_K coefficient in box plot """ Q1 = col.quantile(0.25) Q3 = col.quantile(0.75) IQR = Q3 - Q1 lower = Q1 - Na_to_K_coeff * IQR upper = Q3 + Na_to_K_coeff * IQR return lower, upper class BoxplotOutlierClipper(BaseEstimator, TransformerMixin): def __init__(self, Na_to_K_coeff: float = 1.5): self.Na_to_K = Na_to_K_coeff self.lower = None self.upper = None def fit(self, X: pd.Series): self.lower, self.upper = find_boxplot_boundaries(X, self.Na_to_K) return self def transform(self, X): return X.clip(self.lower, self.upper) X_train = pd.get_dummies(X_train) X_test = pd.get_dummies(X_test) log_reg = linear_model.LogisticRegression(max_iter=5000) log_reg.fit(X_train, y_train) log_reg_acc = 100 * log_reg.score(X_test, y_test) y_pred = log_reg.predict(X_test) print('Logistic Regression Predictions: \n', log_reg.predict(X_test), '\n Accuracy:', log_reg_acc, '%') print(classification_report(y_test, y_pred)) print(confusion_matrix(y_test, y_pred))
code
128014857/cell_39
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_drug = pd.read_csv('../input/drugsets/drug200.csv') df_drug name_cols = ['Sex', 'Drug', 'BP', 'Cholesterol'] name_cols = ['Sex', 'BP', 'Cholesterol'] for name_col in name_cols: df_Dr = df_drug.groupby(['Drug', name_col]).size().reset_index(name='Count') fig, axes = plt.subplots(1, 2, figsize=(9,6)) sns.swarmplot(ax=axes[0], x = "Drug", y = 'Age', data = df_drug, color = "green") # plt.legend(df_drug['Drug'].value_counts().index) sns.swarmplot(ax=axes[1], x = "Drug", y = "Na_to_K", data = df_drug) # plt.legend(df_drug['Drug'].value_counts().index) df_drug.corr() clipped_Na_to_K = BoxplotOutlierClipper().fit_transform(df_drug["Na_to_K"]) fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 5)) df_drug['Na_to_K'].hist(bins=50, ax=axes[0]) clipped_Na_to_K.hist(bins=50, ax=axes[1]) #clipped_Na_to_K.to_frame().boxplot(ax=axes[2],vert=True) fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 5)) sns.boxplot(ax=axes[0], x = df_drug['Na_to_K']) sns.boxplot(ax=axes[1], x = clipped_Na_to_K) df_drug['Na_to_K_Bigger_Than_15'] = [1 if i >= 15.015 else 0 for i in df_drug.Na_to_K] df_drug['Age > 50'] = [1 if i >= 50 else 0 for i in df_drug.Age] df_drug = df_drug.drop(['Na_to_K', 'Age'], axis=1) X = df_drug.drop(['Drug'], axis=1) y = df_drug['Drug'] sns.set_theme(style='darkgrid') sns.countplot(y=y_train, data=df_drug) sns.color_palette('husl', 8) plt.ylabel('Drug Type') plt.xlabel('Total') plt.show()
code
128014857/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
128014857/cell_19
[ "text_plain_output_3.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_drug = pd.read_csv('../input/drugsets/drug200.csv') df_drug name_cols = ['Sex', 'Drug', 'BP', 'Cholesterol'] name_cols = ['Sex', 'BP', 'Cholesterol'] for name_col in name_cols: df_Dr = df_drug.groupby(['Drug', name_col]).size().reset_index(name='Count') fig, axes = plt.subplots(1, 2, figsize=(9,6)) sns.swarmplot(ax=axes[0], x = "Drug", y = 'Age', data = df_drug, color = "green") # plt.legend(df_drug['Drug'].value_counts().index) sns.swarmplot(ax=axes[1], x = "Drug", y = "Na_to_K", data = df_drug) # plt.legend(df_drug['Drug'].value_counts().index) df_drug.corr() clipped_Na_to_K = BoxplotOutlierClipper().fit_transform(df_drug["Na_to_K"]) fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 5)) df_drug['Na_to_K'].hist(bins=50, ax=axes[0]) clipped_Na_to_K.hist(bins=50, ax=axes[1]) #clipped_Na_to_K.to_frame().boxplot(ax=axes[2],vert=True) fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 5)) sns.boxplot(ax=axes[0], x=df_drug['Na_to_K']) sns.boxplot(ax=axes[1], x=clipped_Na_to_K)
code
128014857/cell_7
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_drug = pd.read_csv('../input/drugsets/drug200.csv') df_drug df_drug['Age'].describe()
code
128014857/cell_18
[ "text_plain_output_4.png", "text_plain_output_3.png", "image_output_4.png", "text_plain_output_2.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_drug = pd.read_csv('../input/drugsets/drug200.csv') df_drug name_cols = ['Sex', 'Drug', 'BP', 'Cholesterol'] name_cols = ['Sex', 'BP', 'Cholesterol'] for name_col in name_cols: df_Dr = df_drug.groupby(['Drug', name_col]).size().reset_index(name='Count') fig, axes = plt.subplots(1, 2, figsize=(9,6)) sns.swarmplot(ax=axes[0], x = "Drug", y = 'Age', data = df_drug, color = "green") # plt.legend(df_drug['Drug'].value_counts().index) sns.swarmplot(ax=axes[1], x = "Drug", y = "Na_to_K", data = df_drug) # plt.legend(df_drug['Drug'].value_counts().index) df_drug.corr() clipped_Na_to_K = BoxplotOutlierClipper().fit_transform(df_drug['Na_to_K']) fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(15, 5)) df_drug['Na_to_K'].hist(bins=50, ax=axes[0]) clipped_Na_to_K.hist(bins=50, ax=axes[1])
code
128014857/cell_8
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_drug = pd.read_csv('../input/drugsets/drug200.csv') df_drug name_cols = ['Sex', 'Drug', 'BP', 'Cholesterol'] for name_col in name_cols: print('\n') plt.figure(dpi=200) print(df_drug[name_col].value_counts()) sns.countplot(x=df_drug[name_col]) plt.title(str(name_col) + ' Counts') plt.show()
code
128014857/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_drug = pd.read_csv('../input/drugsets/drug200.csv') df_drug name_cols = ['Sex', 'Drug', 'BP', 'Cholesterol'] name_cols = ['Sex', 'BP', 'Cholesterol'] for name_col in name_cols: df_Dr = df_drug.groupby(['Drug', name_col]).size().reset_index(name='Count') fig, axes = plt.subplots(1, 2, figsize=(9,6)) sns.swarmplot(ax=axes[0], x = "Drug", y = 'Age', data = df_drug, color = "green") # plt.legend(df_drug['Drug'].value_counts().index) sns.swarmplot(ax=axes[1], x = "Drug", y = "Na_to_K", data = df_drug) # plt.legend(df_drug['Drug'].value_counts().index) df_drug.corr() sns.boxplot(data=df_drug[['Na_to_K', 'Age']])
code
128014857/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_drug = pd.read_csv('../input/drugsets/drug200.csv') df_drug name_cols = ['Sex', 'Drug', 'BP', 'Cholesterol'] name_cols = ['Sex', 'BP', 'Cholesterol'] for name_col in name_cols: df_Dr = df_drug.groupby(['Drug', name_col]).size().reset_index(name='Count') df_drug.corr() df_drug['Na_to_K_Bigger_Than_15'] = [1 if i >= 15.015 else 0 for i in df_drug.Na_to_K] df_drug['Age > 50'] = [1 if i >= 50 else 0 for i in df_drug.Age] df_drug = df_drug.drop(['Na_to_K', 'Age'], axis=1) df_drug.head()
code
128014857/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_drug = pd.read_csv('../input/drugsets/drug200.csv') df_drug name_cols = ['Sex', 'Drug', 'BP', 'Cholesterol'] name_cols = ['Sex', 'BP', 'Cholesterol'] for name_col in name_cols: df_Dr = df_drug.groupby(['Drug', name_col]).size().reset_index(name='Count') df_drug.corr()
code
128014857/cell_10
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_drug = pd.read_csv('../input/drugsets/drug200.csv') df_drug name_cols = ['Sex', 'Drug', 'BP', 'Cholesterol'] name_cols = ['Sex', 'BP', 'Cholesterol'] for name_col in name_cols: print('\n') plt.figure(dpi=200) df_Dr = df_drug.groupby(['Drug', name_col]).size().reset_index(name='Count') print(df_Dr) sns.barplot(x='Drug', y='Count', hue=name_col, data=df_Dr) plt.title(str(name_col) + '--Drugs') plt.show()
code
128014857/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df_drug = pd.read_csv('../input/drugsets/drug200.csv') df_drug name_cols = ['Sex', 'Drug', 'BP', 'Cholesterol'] name_cols = ['Sex', 'BP', 'Cholesterol'] for name_col in name_cols: df_Dr = df_drug.groupby(['Drug', name_col]).size().reset_index(name='Count') fig, axes = plt.subplots(1, 2, figsize=(9, 6)) sns.swarmplot(ax=axes[0], x='Drug', y='Age', data=df_drug, color='green') sns.swarmplot(ax=axes[1], x='Drug', y='Na_to_K', data=df_drug)
code
128014857/cell_5
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_drug = pd.read_csv('../input/drugsets/drug200.csv') df_drug df_drug.info()
code
128014857/cell_36
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.base import BaseEstimator, TransformerMixin from typing import Tuple import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_drug = pd.read_csv('../input/drugsets/drug200.csv') df_drug def find_boxplot_boundaries( col: pd.Series, Na_to_K_coeff: float = 1.5 ) -> Tuple[float, float]: """Findx minimum and maximum in boxplot. Args: col: a pandas serires of input. Na_to_K_coeff: Na_to_K coefficient in box plot """ Q1 = col.quantile(0.25) Q3 = col.quantile(0.75) IQR = Q3 - Q1 lower = Q1 - Na_to_K_coeff * IQR upper = Q3 + Na_to_K_coeff * IQR return lower, upper class BoxplotOutlierClipper(BaseEstimator, TransformerMixin): def __init__(self, Na_to_K_coeff: float = 1.5): self.Na_to_K = Na_to_K_coeff self.lower = None self.upper = None def fit(self, X: pd.Series): self.lower, self.upper = find_boxplot_boundaries(X, self.Na_to_K) return self def transform(self, X): return X.clip(self.lower, self.upper) X_train = pd.get_dummies(X_train) X_test = pd.get_dummies(X_test) X_train
code
49129249/cell_21
[ "text_plain_output_1.png" ]
from imutils import paths from tqdm import tqdm import torchvision.transforms as transforms data_dir = '../input/super-hero/Q4-superheroes_image_data/' train_dir = data_dir + 'CAX_Superhero_Train' test_dir = data_dir + 'CAX_Superhero_Test' def create_img_df(dir): img_list = list(paths.list_images(dir)) data = pd.DataFrame(columns=['File_name', 'Target']) for i, ipaths in tqdm(enumerate(img_list), total=len(img_list)): data.loc[i, 'image_path'] = ipaths data.loc[i, 'File_name'] = os.path.basename(ipaths) data.loc[i, 'Target'] = os.path.split(os.path.dirname(ipaths))[-1] return data train_csv = create_img_df(train_dir) transformer = transforms.Compose([transforms.Resize(130), transforms.CenterCrop(129), transforms.ToTensor()]) train_dataset = heroDataset(train_csv, train_dir, transform=transformer) train_dataset[1][0].shape
code
49129249/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
from imutils import paths from tqdm import tqdm data_dir = '../input/super-hero/Q4-superheroes_image_data/' train_dir = data_dir + 'CAX_Superhero_Train' test_dir = data_dir + 'CAX_Superhero_Test' def create_img_df(dir): img_list = list(paths.list_images(dir)) data = pd.DataFrame(columns=['File_name', 'Target']) for i, ipaths in tqdm(enumerate(img_list), total=len(img_list)): data.loc[i, 'image_path'] = ipaths data.loc[i, 'File_name'] = os.path.basename(ipaths) data.loc[i, 'Target'] = os.path.split(os.path.dirname(ipaths))[-1] return data train_csv = create_img_df(train_dir) train_csv.tail(2)
code
49129249/cell_23
[ "text_plain_output_1.png" ]
from PIL import Image from imutils import paths from torch.utils.data import Dataset, random_split, DataLoader from tqdm import tqdm import torchvision.transforms as transforms data_dir = '../input/super-hero/Q4-superheroes_image_data/' train_dir = data_dir + 'CAX_Superhero_Train' test_dir = data_dir + 'CAX_Superhero_Test' label_enc = {'Ant-Man': 0, 'Aquaman': 1, 'Avengers': 2, 'Batman': 3, 'Black Panther': 4, 'Captain America': 5, 'Catwoman': 6, 'Ghost Rider': 7, 'Hulk': 8, 'Iron Man': 9, 'Spiderman': 10, 'Superman': 11} label_deco = {0: 'Ant-Man', 1: 'Aquaman', 2: 'Avengers', 3: 'Batman', 4: 'Black Panther', 5: 'Captain America', 6: 'Catwoman', 7: 'Ghost Rider', 8: 'Hulk', 9: 'Iron Man', 10: 'Spiderman', 11: 'Superman'} def create_img_df(dir): img_list = list(paths.list_images(dir)) data = pd.DataFrame(columns=['File_name', 'Target']) for i, ipaths in tqdm(enumerate(img_list), total=len(img_list)): data.loc[i, 'image_path'] = ipaths data.loc[i, 'File_name'] = os.path.basename(ipaths) data.loc[i, 'Target'] = os.path.split(os.path.dirname(ipaths))[-1] return data train_csv = create_img_df(train_dir) #counting number of images under each category plt.figure(figsize=(10,6)) g=sns.countplot(train_csv['Target']) g.set_xticklabels(g.get_xticklabels(),rotation=40); def encode_label(label): target = torch.zeros(12, dtype=torch.float) target[int(label)] = 1.0 return target def decode_target(target, text_labels=False, threshold=0.5): label = None for i, x in enumerate(target): if x >= threshold: label = i break if text_labels: return f'{label_deco[label]}({label})' return label transformer = transforms.Compose([transforms.Resize(130), transforms.CenterCrop(129), transforms.ToTensor()]) class heroDataset(Dataset): def __init__(self, csv_file, root_dir, transform=None): self.df = csv_file self.transform = transform self.root_dir = root_dir def __len__(self): return len(self.df) def __getitem__(self, idx): row = self.df.loc[idx] img_id, img_label = (row['File_name'], row['Target']) img = Image.open(row['image_path']) if self.transform: img = self.transform(img) return (img, encode_label(img_label)) train_dataset = heroDataset(train_csv, train_dir, transform=transformer) def show_sample(img, target): pass show_sample(*train_dataset[250])
code
49129249/cell_30
[ "text_plain_output_1.png", "image_output_1.png" ]
from torch.utils.data import Dataset, random_split, DataLoader batch_size = 50 input_size = 129 * 129 output_size = 12 train_dl = DataLoader(train_ds, batch_size, shuffle=True, num_workers=2, pin_memory=True) val_dl = DataLoader(val_ds, batch_size * 2, num_workers=2, pin_memory=True) for a, b in val_dl: print(a.shape, b.shape, sep='\n') break
code
49129249/cell_20
[ "text_html_output_1.png" ]
from imutils import paths from tqdm import tqdm import torchvision.transforms as transforms data_dir = '../input/super-hero/Q4-superheroes_image_data/' train_dir = data_dir + 'CAX_Superhero_Train' test_dir = data_dir + 'CAX_Superhero_Test' def create_img_df(dir): img_list = list(paths.list_images(dir)) data = pd.DataFrame(columns=['File_name', 'Target']) for i, ipaths in tqdm(enumerate(img_list), total=len(img_list)): data.loc[i, 'image_path'] = ipaths data.loc[i, 'File_name'] = os.path.basename(ipaths) data.loc[i, 'Target'] = os.path.split(os.path.dirname(ipaths))[-1] return data train_csv = create_img_df(train_dir) transformer = transforms.Compose([transforms.Resize(130), transforms.CenterCrop(129), transforms.ToTensor()]) train_dataset = heroDataset(train_csv, train_dir, transform=transformer) train_dataset[250]
code