path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
49129249/cell_39
[ "text_plain_output_1.png" ]
from PIL import Image from imutils import paths from torch.utils.data import Dataset, random_split, DataLoader from torchvision.utils import make_grid from tqdm import tqdm import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms data_dir = '../input/super-hero/Q4-superheroes_image_data/' train_dir = data_dir + 'CAX_Superhero_Train' test_dir = data_dir + 'CAX_Superhero_Test' label_enc = {'Ant-Man': 0, 'Aquaman': 1, 'Avengers': 2, 'Batman': 3, 'Black Panther': 4, 'Captain America': 5, 'Catwoman': 6, 'Ghost Rider': 7, 'Hulk': 8, 'Iron Man': 9, 'Spiderman': 10, 'Superman': 11} label_deco = {0: 'Ant-Man', 1: 'Aquaman', 2: 'Avengers', 3: 'Batman', 4: 'Black Panther', 5: 'Captain America', 6: 'Catwoman', 7: 'Ghost Rider', 8: 'Hulk', 9: 'Iron Man', 10: 'Spiderman', 11: 'Superman'} def create_img_df(dir): img_list = list(paths.list_images(dir)) data = pd.DataFrame(columns=['File_name', 'Target']) for i, ipaths in tqdm(enumerate(img_list), total=len(img_list)): data.loc[i, 'image_path'] = ipaths data.loc[i, 'File_name'] = os.path.basename(ipaths) data.loc[i, 'Target'] = os.path.split(os.path.dirname(ipaths))[-1] return data train_csv = create_img_df(train_dir) #counting number of images under each category plt.figure(figsize=(10,6)) g=sns.countplot(train_csv['Target']) g.set_xticklabels(g.get_xticklabels(),rotation=40); def encode_label(label): target = torch.zeros(12, dtype=torch.float) target[int(label)] = 1.0 return target def decode_target(target, text_labels=False, threshold=0.5): label = None for i, x in enumerate(target): if x >= threshold: label = i break if text_labels: return f'{label_deco[label]}({label})' return label transformer = transforms.Compose([transforms.Resize(130), transforms.CenterCrop(129), transforms.ToTensor()]) class heroDataset(Dataset): def __init__(self, csv_file, root_dir, transform=None): self.df = csv_file self.transform = transform self.root_dir = root_dir def __len__(self): return len(self.df) def __getitem__(self, idx): row = self.df.loc[idx] img_id, img_label = (row['File_name'], row['Target']) img = Image.open(row['image_path']) if self.transform: img = self.transform(img) return (img, encode_label(img_label)) train_dataset = heroDataset(train_csv, train_dir, transform=transformer) def show_sample(img, target): pass torch.manual_seed(10) val_pct = 0.11 val_size = int(val_pct * len(train_dataset)) train_size = len(train_dataset) - val_size batch_size = 50 input_size = 129 * 129 output_size = 12 train_dl = DataLoader(train_ds, batch_size, shuffle=True, num_workers=2, pin_memory=True) val_dl = DataLoader(val_ds, batch_size * 2, num_workers=2, pin_memory=True) for a, b in val_dl: break def show_batch(dl): for images, labels in dl: fig, ax = plt.subplots(figsize=(16, 8)) ax.set_xticks([]); ax.set_yticks([]) data = images ax.imshow(make_grid(data, nrow=15).permute(1, 2, 0)) break def accuracy(outputs, labels): _, preds = torch.max(outputs, dim=1) return torch.tensor(torch.sum(preds == labels).item() / len(preds)) def F_score(output, label, threshold=0.5, beta=1): prob = output > threshold label = label > threshold TP = (prob & label).sum(1).float() TN = (~prob & ~label).sum(1).float() FP = (prob & ~label).sum(1).float() FN = (~prob & label).sum(1).float() precision = torch.mean(TP / (TP + FP + 1e-12)) recall = torch.mean(TP / (TP + FN + 1e-12)) F2 = (1 + beta ** 2) * precision * recall / (beta ** 2 * precision + recall + 1e-12) return F2.mean(0) class ImageClassificationBase(nn.Module): def training_step(self, batch): images, labels = batch out = self(images) loss = F.binary_cross_entropy(out, labels) return loss def validation_step(self, batch): images, labels = batch out = self(images) loss = F.binary_cross_entropy(out, labels) acc = F_score(out, labels) return {'val_loss': loss.detach(), 'val_acc': acc} def validation_epoch_end(self, outputs): batch_losses = [x['val_loss'] for x in outputs] epoch_loss = torch.stack(batch_losses).mean() batch_accs = [x['val_acc'] for x in outputs] epoch_acc = torch.stack(batch_accs).mean() return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()} def epoch_end(self, epoch, result): pass @torch.no_grad() def evaluate(model, val_loader): model.eval() outputs = [model.validation_step(batch) for batch in val_loader] return model.validation_epoch_end(outputs) def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD): history = [] optimizer = opt_func(model.parameters(), lr) for epoch in range(epochs): model.train() train_losses = [] for batch in train_loader: loss = model.training_step(batch) train_losses.append(loss) loss.backward() optimizer.step() optimizer.zero_grad() result = evaluate(model, val_loader) result['train_loss'] = torch.stack(train_losses).mean().item() model.epoch_end(epoch, result) history.append(result) return history def get_default_device(): """Pick GPU if available, else CPU""" if torch.cuda.is_available(): return torch.device('cuda') else: return torch.device('cpu') def to_device(data, device): """Move tensor(s) to chosen device""" if isinstance(data, (list, tuple)): return [to_device(x, device) for x in data] return data.to(device, non_blocking=True) class DeviceDataLoader: """Wrap a dataloader to move data to a device""" def __init__(self, dl, device): self.dl = dl self.device = device def __iter__(self): """Yield a batch of data after moving it to device""" for b in self.dl: yield to_device(b, self.device) def __len__(self): """Number of batches""" return len(self.dl) device = get_default_device() device
code
49129249/cell_2
[ "image_output_1.png" ]
!pip install imutils from imutils import paths
code
49129249/cell_45
[ "image_output_1.png" ]
from PIL import Image from imutils import paths from torch.utils.data import Dataset, random_split, DataLoader from torchvision.utils import make_grid from tqdm import tqdm import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms data_dir = '../input/super-hero/Q4-superheroes_image_data/' train_dir = data_dir + 'CAX_Superhero_Train' test_dir = data_dir + 'CAX_Superhero_Test' label_enc = {'Ant-Man': 0, 'Aquaman': 1, 'Avengers': 2, 'Batman': 3, 'Black Panther': 4, 'Captain America': 5, 'Catwoman': 6, 'Ghost Rider': 7, 'Hulk': 8, 'Iron Man': 9, 'Spiderman': 10, 'Superman': 11} label_deco = {0: 'Ant-Man', 1: 'Aquaman', 2: 'Avengers', 3: 'Batman', 4: 'Black Panther', 5: 'Captain America', 6: 'Catwoman', 7: 'Ghost Rider', 8: 'Hulk', 9: 'Iron Man', 10: 'Spiderman', 11: 'Superman'} def create_img_df(dir): img_list = list(paths.list_images(dir)) data = pd.DataFrame(columns=['File_name', 'Target']) for i, ipaths in tqdm(enumerate(img_list), total=len(img_list)): data.loc[i, 'image_path'] = ipaths data.loc[i, 'File_name'] = os.path.basename(ipaths) data.loc[i, 'Target'] = os.path.split(os.path.dirname(ipaths))[-1] return data train_csv = create_img_df(train_dir) #counting number of images under each category plt.figure(figsize=(10,6)) g=sns.countplot(train_csv['Target']) g.set_xticklabels(g.get_xticklabels(),rotation=40); def encode_label(label): target = torch.zeros(12, dtype=torch.float) target[int(label)] = 1.0 return target def decode_target(target, text_labels=False, threshold=0.5): label = None for i, x in enumerate(target): if x >= threshold: label = i break if text_labels: return f'{label_deco[label]}({label})' return label transformer = transforms.Compose([transforms.Resize(130), transforms.CenterCrop(129), transforms.ToTensor()]) class heroDataset(Dataset): def __init__(self, csv_file, root_dir, transform=None): self.df = csv_file self.transform = transform self.root_dir = root_dir def __len__(self): return len(self.df) def __getitem__(self, idx): row = self.df.loc[idx] img_id, img_label = (row['File_name'], row['Target']) img = Image.open(row['image_path']) if self.transform: img = self.transform(img) return (img, encode_label(img_label)) train_dataset = heroDataset(train_csv, train_dir, transform=transformer) def show_sample(img, target): pass torch.manual_seed(10) val_pct = 0.11 val_size = int(val_pct * len(train_dataset)) train_size = len(train_dataset) - val_size batch_size = 50 input_size = 129 * 129 output_size = 12 train_dl = DataLoader(train_ds, batch_size, shuffle=True, num_workers=2, pin_memory=True) val_dl = DataLoader(val_ds, batch_size * 2, num_workers=2, pin_memory=True) for a, b in val_dl: break def show_batch(dl): for images, labels in dl: fig, ax = plt.subplots(figsize=(16, 8)) ax.set_xticks([]); ax.set_yticks([]) data = images ax.imshow(make_grid(data, nrow=15).permute(1, 2, 0)) break def accuracy(outputs, labels): _, preds = torch.max(outputs, dim=1) return torch.tensor(torch.sum(preds == labels).item() / len(preds)) def F_score(output, label, threshold=0.5, beta=1): prob = output > threshold label = label > threshold TP = (prob & label).sum(1).float() TN = (~prob & ~label).sum(1).float() FP = (prob & ~label).sum(1).float() FN = (~prob & label).sum(1).float() precision = torch.mean(TP / (TP + FP + 1e-12)) recall = torch.mean(TP / (TP + FN + 1e-12)) F2 = (1 + beta ** 2) * precision * recall / (beta ** 2 * precision + recall + 1e-12) return F2.mean(0) class ImageClassificationBase(nn.Module): def training_step(self, batch): images, labels = batch out = self(images) loss = F.binary_cross_entropy(out, labels) return loss def validation_step(self, batch): images, labels = batch out = self(images) loss = F.binary_cross_entropy(out, labels) acc = F_score(out, labels) return {'val_loss': loss.detach(), 'val_acc': acc} def validation_epoch_end(self, outputs): batch_losses = [x['val_loss'] for x in outputs] epoch_loss = torch.stack(batch_losses).mean() batch_accs = [x['val_acc'] for x in outputs] epoch_acc = torch.stack(batch_accs).mean() return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()} def epoch_end(self, epoch, result): pass @torch.no_grad() def evaluate(model, val_loader): model.eval() outputs = [model.validation_step(batch) for batch in val_loader] return model.validation_epoch_end(outputs) def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD): history = [] optimizer = opt_func(model.parameters(), lr) for epoch in range(epochs): model.train() train_losses = [] for batch in train_loader: loss = model.training_step(batch) train_losses.append(loss) loss.backward() optimizer.step() optimizer.zero_grad() result = evaluate(model, val_loader) result['train_loss'] = torch.stack(train_losses).mean().item() model.epoch_end(epoch, result) history.append(result) return history def get_default_device(): """Pick GPU if available, else CPU""" if torch.cuda.is_available(): return torch.device('cuda') else: return torch.device('cpu') def to_device(data, device): """Move tensor(s) to chosen device""" if isinstance(data, (list, tuple)): return [to_device(x, device) for x in data] return data.to(device, non_blocking=True) class DeviceDataLoader: """Wrap a dataloader to move data to a device""" def __init__(self, dl, device): self.dl = dl self.device = device def __iter__(self): """Yield a batch of data after moving it to device""" for b in self.dl: yield to_device(b, self.device) def __len__(self): """Number of batches""" return len(self.dl) device = get_default_device() device train_dl = DeviceDataLoader(train_dl, device) val_dl = DeviceDataLoader(val_dl, device) model2 = to_device(ConvNet(), device) for images, labels in train_dl: print('images.shape:', images.shape) out = model2(images) print('out.shape:', out.shape) print('out[0]:', out[0]) break
code
49129249/cell_32
[ "text_plain_output_1.png" ]
from PIL import Image from imutils import paths from torch.utils.data import Dataset, random_split, DataLoader from torchvision.utils import make_grid from tqdm import tqdm data_dir = '../input/super-hero/Q4-superheroes_image_data/' train_dir = data_dir + 'CAX_Superhero_Train' test_dir = data_dir + 'CAX_Superhero_Test' label_enc = {'Ant-Man': 0, 'Aquaman': 1, 'Avengers': 2, 'Batman': 3, 'Black Panther': 4, 'Captain America': 5, 'Catwoman': 6, 'Ghost Rider': 7, 'Hulk': 8, 'Iron Man': 9, 'Spiderman': 10, 'Superman': 11} label_deco = {0: 'Ant-Man', 1: 'Aquaman', 2: 'Avengers', 3: 'Batman', 4: 'Black Panther', 5: 'Captain America', 6: 'Catwoman', 7: 'Ghost Rider', 8: 'Hulk', 9: 'Iron Man', 10: 'Spiderman', 11: 'Superman'} def create_img_df(dir): img_list = list(paths.list_images(dir)) data = pd.DataFrame(columns=['File_name', 'Target']) for i, ipaths in tqdm(enumerate(img_list), total=len(img_list)): data.loc[i, 'image_path'] = ipaths data.loc[i, 'File_name'] = os.path.basename(ipaths) data.loc[i, 'Target'] = os.path.split(os.path.dirname(ipaths))[-1] return data train_csv = create_img_df(train_dir) #counting number of images under each category plt.figure(figsize=(10,6)) g=sns.countplot(train_csv['Target']) g.set_xticklabels(g.get_xticklabels(),rotation=40); def encode_label(label): target = torch.zeros(12, dtype=torch.float) target[int(label)] = 1.0 return target def decode_target(target, text_labels=False, threshold=0.5): label = None for i, x in enumerate(target): if x >= threshold: label = i break if text_labels: return f'{label_deco[label]}({label})' return label class heroDataset(Dataset): def __init__(self, csv_file, root_dir, transform=None): self.df = csv_file self.transform = transform self.root_dir = root_dir def __len__(self): return len(self.df) def __getitem__(self, idx): row = self.df.loc[idx] img_id, img_label = (row['File_name'], row['Target']) img = Image.open(row['image_path']) if self.transform: img = self.transform(img) return (img, encode_label(img_label)) def show_sample(img, target): pass batch_size = 50 input_size = 129 * 129 output_size = 12 train_dl = DataLoader(train_ds, batch_size, shuffle=True, num_workers=2, pin_memory=True) val_dl = DataLoader(val_ds, batch_size * 2, num_workers=2, pin_memory=True) def show_batch(dl): for images, labels in dl: fig, ax = plt.subplots(figsize=(16, 8)) ax.set_xticks([]); ax.set_yticks([]) data = images ax.imshow(make_grid(data, nrow=15).permute(1, 2, 0)) break show_batch(train_dl)
code
49129249/cell_8
[ "text_plain_output_1.png" ]
from imutils import paths from tqdm import tqdm data_dir = '../input/super-hero/Q4-superheroes_image_data/' train_dir = data_dir + 'CAX_Superhero_Train' test_dir = data_dir + 'CAX_Superhero_Test' def create_img_df(dir): img_list = list(paths.list_images(dir)) data = pd.DataFrame(columns=['File_name', 'Target']) for i, ipaths in tqdm(enumerate(img_list), total=len(img_list)): data.loc[i, 'image_path'] = ipaths data.loc[i, 'File_name'] = os.path.basename(ipaths) data.loc[i, 'Target'] = os.path.split(os.path.dirname(ipaths))[-1] return data train_csv = create_img_df(train_dir)
code
49129249/cell_15
[ "text_html_output_1.png" ]
label_enc = {'Ant-Man': 0, 'Aquaman': 1, 'Avengers': 2, 'Batman': 3, 'Black Panther': 4, 'Captain America': 5, 'Catwoman': 6, 'Ghost Rider': 7, 'Hulk': 8, 'Iron Man': 9, 'Spiderman': 10, 'Superman': 11} label_deco = {0: 'Ant-Man', 1: 'Aquaman', 2: 'Avengers', 3: 'Batman', 4: 'Black Panther', 5: 'Captain America', 6: 'Catwoman', 7: 'Ghost Rider', 8: 'Hulk', 9: 'Iron Man', 10: 'Spiderman', 11: 'Superman'} def encode_label(label): target = torch.zeros(12, dtype=torch.float) target[int(label)] = 1.0 return target def decode_target(target, text_labels=False, threshold=0.5): label = None for i, x in enumerate(target): if x >= threshold: label = i break if text_labels: return f'{label_deco[label]}({label})' return label encoded_lab = encode_label(4) decoded_lab = decode_target(encoded_lab) text = decode_target(encoded_lab, True) print(encoded_lab, decoded_lab, text, sep='\n') del (encoded_lab, decoded_lab, text)
code
49129249/cell_24
[ "text_plain_output_1.png" ]
from PIL import Image from imutils import paths from torch.utils.data import Dataset, random_split, DataLoader from tqdm import tqdm import torchvision.transforms as transforms data_dir = '../input/super-hero/Q4-superheroes_image_data/' train_dir = data_dir + 'CAX_Superhero_Train' test_dir = data_dir + 'CAX_Superhero_Test' label_enc = {'Ant-Man': 0, 'Aquaman': 1, 'Avengers': 2, 'Batman': 3, 'Black Panther': 4, 'Captain America': 5, 'Catwoman': 6, 'Ghost Rider': 7, 'Hulk': 8, 'Iron Man': 9, 'Spiderman': 10, 'Superman': 11} label_deco = {0: 'Ant-Man', 1: 'Aquaman', 2: 'Avengers', 3: 'Batman', 4: 'Black Panther', 5: 'Captain America', 6: 'Catwoman', 7: 'Ghost Rider', 8: 'Hulk', 9: 'Iron Man', 10: 'Spiderman', 11: 'Superman'} def create_img_df(dir): img_list = list(paths.list_images(dir)) data = pd.DataFrame(columns=['File_name', 'Target']) for i, ipaths in tqdm(enumerate(img_list), total=len(img_list)): data.loc[i, 'image_path'] = ipaths data.loc[i, 'File_name'] = os.path.basename(ipaths) data.loc[i, 'Target'] = os.path.split(os.path.dirname(ipaths))[-1] return data train_csv = create_img_df(train_dir) #counting number of images under each category plt.figure(figsize=(10,6)) g=sns.countplot(train_csv['Target']) g.set_xticklabels(g.get_xticklabels(),rotation=40); def encode_label(label): target = torch.zeros(12, dtype=torch.float) target[int(label)] = 1.0 return target def decode_target(target, text_labels=False, threshold=0.5): label = None for i, x in enumerate(target): if x >= threshold: label = i break if text_labels: return f'{label_deco[label]}({label})' return label transformer = transforms.Compose([transforms.Resize(130), transforms.CenterCrop(129), transforms.ToTensor()]) class heroDataset(Dataset): def __init__(self, csv_file, root_dir, transform=None): self.df = csv_file self.transform = transform self.root_dir = root_dir def __len__(self): return len(self.df) def __getitem__(self, idx): row = self.df.loc[idx] img_id, img_label = (row['File_name'], row['Target']) img = Image.open(row['image_path']) if self.transform: img = self.transform(img) return (img, encode_label(img_label)) train_dataset = heroDataset(train_csv, train_dir, transform=transformer) def show_sample(img, target): pass show_sample(*train_dataset[2000])
code
49129249/cell_10
[ "text_plain_output_1.png" ]
from imutils import paths from tqdm import tqdm data_dir = '../input/super-hero/Q4-superheroes_image_data/' train_dir = data_dir + 'CAX_Superhero_Train' test_dir = data_dir + 'CAX_Superhero_Test' def create_img_df(dir): img_list = list(paths.list_images(dir)) data = pd.DataFrame(columns=['File_name', 'Target']) for i, ipaths in tqdm(enumerate(img_list), total=len(img_list)): data.loc[i, 'image_path'] = ipaths data.loc[i, 'File_name'] = os.path.basename(ipaths) data.loc[i, 'Target'] = os.path.split(os.path.dirname(ipaths))[-1] return data train_csv = create_img_df(train_dir) plt.figure(figsize=(10, 6)) g = sns.countplot(train_csv['Target']) g.set_xticklabels(g.get_xticklabels(), rotation=40)
code
49129249/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
from imutils import paths from torch.utils.data import Dataset, random_split, DataLoader from tqdm import tqdm import torchvision.transforms as transforms data_dir = '../input/super-hero/Q4-superheroes_image_data/' train_dir = data_dir + 'CAX_Superhero_Train' test_dir = data_dir + 'CAX_Superhero_Test' label_enc = {'Ant-Man': 0, 'Aquaman': 1, 'Avengers': 2, 'Batman': 3, 'Black Panther': 4, 'Captain America': 5, 'Catwoman': 6, 'Ghost Rider': 7, 'Hulk': 8, 'Iron Man': 9, 'Spiderman': 10, 'Superman': 11} label_deco = {0: 'Ant-Man', 1: 'Aquaman', 2: 'Avengers', 3: 'Batman', 4: 'Black Panther', 5: 'Captain America', 6: 'Catwoman', 7: 'Ghost Rider', 8: 'Hulk', 9: 'Iron Man', 10: 'Spiderman', 11: 'Superman'} def create_img_df(dir): img_list = list(paths.list_images(dir)) data = pd.DataFrame(columns=['File_name', 'Target']) for i, ipaths in tqdm(enumerate(img_list), total=len(img_list)): data.loc[i, 'image_path'] = ipaths data.loc[i, 'File_name'] = os.path.basename(ipaths) data.loc[i, 'Target'] = os.path.split(os.path.dirname(ipaths))[-1] return data train_csv = create_img_df(train_dir) def encode_label(label): target = torch.zeros(12, dtype=torch.float) target[int(label)] = 1.0 return target def decode_target(target, text_labels=False, threshold=0.5): label = None for i, x in enumerate(target): if x >= threshold: label = i break if text_labels: return f'{label_deco[label]}({label})' return label transformer = transforms.Compose([transforms.Resize(130), transforms.CenterCrop(129), transforms.ToTensor()]) train_dataset = heroDataset(train_csv, train_dir, transform=transformer) torch.manual_seed(10) val_pct = 0.11 val_size = int(val_pct * len(train_dataset)) train_size = len(train_dataset) - val_size train_ds, val_ds = random_split(train_dataset, [train_size, val_size]) (len(train_ds), len(val_ds))
code
49129249/cell_12
[ "application_vnd.jupyter.stderr_output_1.png" ]
from imutils import paths from tqdm import tqdm data_dir = '../input/super-hero/Q4-superheroes_image_data/' train_dir = data_dir + 'CAX_Superhero_Train' test_dir = data_dir + 'CAX_Superhero_Test' def create_img_df(dir): img_list = list(paths.list_images(dir)) data = pd.DataFrame(columns=['File_name', 'Target']) for i, ipaths in tqdm(enumerate(img_list), total=len(img_list)): data.loc[i, 'image_path'] = ipaths data.loc[i, 'File_name'] = os.path.basename(ipaths) data.loc[i, 'Target'] = os.path.split(os.path.dirname(ipaths))[-1] return data train_csv = create_img_df(train_dir) train_csv.head(5)
code
73082451/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns corruption = pd.read_csv('../input/crime-in-india-2019/Corruption 2019.csv') corruption.columns corruption.drop(['Category', 'Unnamed: 11', 'Unnamed: 12', 'Unnamed: 13', 'Unnamed: 14'], axis=1, inplace=True) totalcase = corruption.sort_values('Total cases', ascending=False) plt.tick_params(axis='x', which='major', labelsize=15, rotation=90) plt.tick_params(axis='y', which='major', labelsize=15) chargesheet = corruption.sort_values('Cases Charge-sheeted', ascending=False) plt.xticks(rotation=90) pending = corruption.sort_values('Cases Pending Investigation at End of the Year', ascending=False) plt.xticks(rotation=90) previous = corruption.sort_values('Cases Pending Investigation from Previous Year', ascending=False) plt.figure(figsize=(20, 12)) plt.xticks(rotation=90) sns.pointplot(x='State/UT ', y='Cases Pending Investigation from Previous Year', data=previous, color='red')
code
73082451/cell_25
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns corruption = pd.read_csv('../input/crime-in-india-2019/Corruption 2019.csv') corruption.columns corruption.drop(['Category', 'Unnamed: 11', 'Unnamed: 12', 'Unnamed: 13', 'Unnamed: 14'], axis=1, inplace=True) totalcase = corruption.sort_values('Total cases', ascending=False) plt.tick_params(axis='x', which='major', labelsize=15, rotation=90) plt.tick_params(axis='y', which='major', labelsize=15) chargesheet = corruption.sort_values('Cases Charge-sheeted', ascending=False) plt.xticks(rotation=90) pending = corruption.sort_values('Cases Pending Investigation at End of the Year', ascending=False) plt.xticks(rotation=90) previous = corruption.sort_values('Cases Pending Investigation from Previous Year', ascending=False) plt.xticks(rotation=90) reported = corruption.sort_values('Cases Reported during the year', ascending=False) plt.figure(figsize=(20, 12)) plt.xticks(rotation=90) sns.pointplot(x='State/UT ', y='Cases Reported during the year', data=reported, color='red')
code
73082451/cell_4
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) corruption = pd.read_csv('../input/crime-in-india-2019/Corruption 2019.csv') corruption.columns
code
73082451/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns corruption = pd.read_csv('../input/crime-in-india-2019/Corruption 2019.csv') corruption.columns corruption.drop(['Category', 'Unnamed: 11', 'Unnamed: 12', 'Unnamed: 13', 'Unnamed: 14'], axis=1, inplace=True) totalcase = corruption.sort_values('Total cases', ascending=False) plt.figure(figsize=(20, 14)) sns.pointplot(data=totalcase, x='State/UT ', y='Total cases', color='red') plt.title('Total Case of Corruption by state') plt.tick_params(axis='x', which='major', labelsize=15, rotation=90) plt.tick_params(axis='y', which='major', labelsize=15)
code
73082451/cell_7
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) corruption = pd.read_csv('../input/crime-in-india-2019/Corruption 2019.csv') corruption.columns corruption.drop(['Category', 'Unnamed: 11', 'Unnamed: 12', 'Unnamed: 13', 'Unnamed: 14'], axis=1, inplace=True) corruption.head()
code
73082451/cell_18
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns corruption = pd.read_csv('../input/crime-in-india-2019/Corruption 2019.csv') corruption.columns corruption.drop(['Category', 'Unnamed: 11', 'Unnamed: 12', 'Unnamed: 13', 'Unnamed: 14'], axis=1, inplace=True) totalcase = corruption.sort_values('Total cases', ascending=False) plt.tick_params(axis='x', which='major', labelsize=15, rotation=90) plt.tick_params(axis='y', which='major', labelsize=15) chargesheet = corruption.sort_values('Cases Charge-sheeted', ascending=False) plt.xticks(rotation=90) pending = corruption.sort_values('Cases Pending Investigation at End of the Year', ascending=False) plt.figure(figsize=(20, 12)) plt.xticks(rotation=90) sns.pointplot(x='State/UT ', y='Cases Pending Investigation at End of the Year', data=pending, color='red')
code
73082451/cell_8
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns corruption = pd.read_csv('../input/crime-in-india-2019/Corruption 2019.csv') corruption.columns corruption.drop(['Category', 'Unnamed: 11', 'Unnamed: 12', 'Unnamed: 13', 'Unnamed: 14'], axis=1, inplace=True) sns.pairplot(corruption)
code
73082451/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns corruption = pd.read_csv('../input/crime-in-india-2019/Corruption 2019.csv') corruption.columns corruption.drop(['Category', 'Unnamed: 11', 'Unnamed: 12', 'Unnamed: 13', 'Unnamed: 14'], axis=1, inplace=True) totalcase = corruption.sort_values('Total cases', ascending=False) plt.tick_params(axis='x', which='major', labelsize=15, rotation=90) plt.tick_params(axis='y', which='major', labelsize=15) chargesheet = corruption.sort_values('Cases Charge-sheeted', ascending=False) plt.figure(figsize=(20, 12)) plt.xticks(rotation=90) sns.pointplot(x='State/UT ', y='Cases Charge-sheeted', data=chargesheet, color='red')
code
73082451/cell_5
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) corruption = pd.read_csv('../input/crime-in-india-2019/Corruption 2019.csv') corruption.columns corruption.info()
code
16160251/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data frames points = pd.read_csv('../input/points.csv') serves = pd.read_csv('../input/serves.csv') rallies = pd.read_csv('../input/rallies.csv') events = pd.read_csv('../input/events.csv') points[['rallyid', 'winner']].groupby('winner').count()
code
16160251/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data frames points = pd.read_csv('../input/points.csv') serves = pd.read_csv('../input/serves.csv') rallies = pd.read_csv('../input/rallies.csv') events = pd.read_csv('../input/events.csv') rallies.head()
code
16160251/cell_34
[ "text_plain_output_1.png" ]
import pandas as pd # data frames points = pd.read_csv('../input/points.csv') serves = pd.read_csv('../input/serves.csv') rallies = pd.read_csv('../input/rallies.csv') events = pd.read_csv('../input/events.csv') df4 = serves.groupby(['server']).count().iloc[:, :1] df4.columns = ['Serves'] df4
code
16160251/cell_30
[ "text_plain_output_1.png", "image_output_1.png" ]
from statistics import mean import matplotlib.pyplot as plt # visualizations import pandas as pd # data frames import seaborn as sns # visualizations points = pd.read_csv('../input/points.csv') serves = pd.read_csv('../input/serves.csv') rallies = pd.read_csv('../input/rallies.csv') events = pd.read_csv('../input/events.csv') df = points.groupby(['winner', 'serve']).count().iloc[:, :1] df.columns = ['Points Won'] df df2 = points.groupby(['reason']).count().iloc[:, :1] df2.columns = ['Points Won'] df2 df3 = points.groupby(['winner', 'reason']).count().iloc[:, :1] df3.columns = ['Points Won'] df3 f, axes = plt.subplots(1,2, figsize=(15, 5)) sns.countplot(x="reason", data=points, ax=axes[0], palette="Set1") sns.countplot(x="reason", hue='winner',data=points, ax=axes[1] ,palette="Set1") f, axes = plt.subplots(1,2, figsize=(15, 5)) sns.countplot(x="strokes", hue='serve',data=points, palette="Set1", ax=axes[0]) sns.countplot(x="strokes", hue='winner',data=points ,palette="Set1", ax=axes[1]) sns.distplot(points['totaltime'], color='red')
code
16160251/cell_20
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt # visualizations import pandas as pd # data frames import seaborn as sns # visualizations points = pd.read_csv('../input/points.csv') serves = pd.read_csv('../input/serves.csv') rallies = pd.read_csv('../input/rallies.csv') events = pd.read_csv('../input/events.csv') df = points.groupby(['winner', 'serve']).count().iloc[:, :1] df.columns = ['Points Won'] df df2 = points.groupby(['reason']).count().iloc[:, :1] df2.columns = ['Points Won'] df2 df3 = points.groupby(['winner', 'reason']).count().iloc[:, :1] df3.columns = ['Points Won'] df3 f, axes = plt.subplots(1, 2, figsize=(15, 5)) sns.countplot(x='reason', data=points, ax=axes[0], palette='Set1') sns.countplot(x='reason', hue='winner', data=points, ax=axes[1], palette='Set1')
code
16160251/cell_40
[ "text_html_output_1.png" ]
from statistics import mean import matplotlib.pyplot as plt # visualizations import pandas as pd # data frames import seaborn as sns # visualizations points = pd.read_csv('../input/points.csv') serves = pd.read_csv('../input/serves.csv') rallies = pd.read_csv('../input/rallies.csv') events = pd.read_csv('../input/events.csv') df = points.groupby(['winner', 'serve']).count().iloc[:, :1] df.columns = ['Points Won'] df df2 = points.groupby(['reason']).count().iloc[:, :1] df2.columns = ['Points Won'] df2 df3 = points.groupby(['winner', 'reason']).count().iloc[:, :1] df3.columns = ['Points Won'] df3 f, axes = plt.subplots(1,2, figsize=(15, 5)) sns.countplot(x="reason", data=points, ax=axes[0], palette="Set1") sns.countplot(x="reason", hue='winner',data=points, ax=axes[1] ,palette="Set1") f, axes = plt.subplots(1,2, figsize=(15, 5)) sns.countplot(x="strokes", hue='serve',data=points, palette="Set1", ax=axes[0]) sns.countplot(x="strokes", hue='winner',data=points ,palette="Set1", ax=axes[1]) f, axes = plt.subplots(1,2, figsize=(15, 5)) sns.scatterplot(x="totaltime", y="strokes", data=points, ax=axes[0]) sns.scatterplot(x="totaltime", y="strokes", hue="winner" ,data=points, ax=axes[1]) f, axes = plt.subplots(1,2, figsize=(15, 5)) sns.countplot(x="type",data=events, palette="Set1", ax=axes[0]) sns.countplot(x="type", hue="hitter", data=events, palette="Set1", ax=axes[1]) f, axes = plt.subplots(1, 2, figsize=(15, 5)) sns.countplot(y='stroke', data=events, palette='Set1', ax=axes[0]) events1 = events.replace({'__undefined__': 'forehand'}) sns.countplot(y='stroke', data=events1, palette='Set1', ax=axes[1])
code
16160251/cell_26
[ "text_html_output_1.png" ]
from statistics import mean import matplotlib.pyplot as plt # visualizations import pandas as pd # data frames import seaborn as sns # visualizations points = pd.read_csv('../input/points.csv') serves = pd.read_csv('../input/serves.csv') rallies = pd.read_csv('../input/rallies.csv') events = pd.read_csv('../input/events.csv') df = points.groupby(['winner', 'serve']).count().iloc[:, :1] df.columns = ['Points Won'] df df2 = points.groupby(['reason']).count().iloc[:, :1] df2.columns = ['Points Won'] df2 df3 = points.groupby(['winner', 'reason']).count().iloc[:, :1] df3.columns = ['Points Won'] df3 f, axes = plt.subplots(1,2, figsize=(15, 5)) sns.countplot(x="reason", data=points, ax=axes[0], palette="Set1") sns.countplot(x="reason", hue='winner',data=points, ax=axes[1] ,palette="Set1") f, axes = plt.subplots(1, 2, figsize=(15, 5)) sns.countplot(x='strokes', hue='serve', data=points, palette='Set1', ax=axes[0]) sns.countplot(x='strokes', hue='winner', data=points, palette='Set1', ax=axes[1])
code
16160251/cell_19
[ "text_html_output_1.png" ]
import pandas as pd # data frames points = pd.read_csv('../input/points.csv') serves = pd.read_csv('../input/serves.csv') rallies = pd.read_csv('../input/rallies.csv') events = pd.read_csv('../input/events.csv') df = points.groupby(['winner', 'serve']).count().iloc[:, :1] df.columns = ['Points Won'] df df2 = points.groupby(['reason']).count().iloc[:, :1] df2.columns = ['Points Won'] df2 df3 = points.groupby(['winner', 'reason']).count().iloc[:, :1] df3.columns = ['Points Won'] df3
code
16160251/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data frames points = pd.read_csv('../input/points.csv') serves = pd.read_csv('../input/serves.csv') rallies = pd.read_csv('../input/rallies.csv') events = pd.read_csv('../input/events.csv') points.head()
code
16160251/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
from statistics import mean import matplotlib.pyplot as plt # visualizations import pandas as pd # data frames import seaborn as sns # visualizations points = pd.read_csv('../input/points.csv') serves = pd.read_csv('../input/serves.csv') rallies = pd.read_csv('../input/rallies.csv') events = pd.read_csv('../input/events.csv') df = points.groupby(['winner', 'serve']).count().iloc[:, :1] df.columns = ['Points Won'] df df2 = points.groupby(['reason']).count().iloc[:, :1] df2.columns = ['Points Won'] df2 df3 = points.groupby(['winner', 'reason']).count().iloc[:, :1] df3.columns = ['Points Won'] df3 f, axes = plt.subplots(1,2, figsize=(15, 5)) sns.countplot(x="reason", data=points, ax=axes[0], palette="Set1") sns.countplot(x="reason", hue='winner',data=points, ax=axes[1] ,palette="Set1") f, axes = plt.subplots(1,2, figsize=(15, 5)) sns.countplot(x="strokes", hue='serve',data=points, palette="Set1", ax=axes[0]) sns.countplot(x="strokes", hue='winner',data=points ,palette="Set1", ax=axes[1]) f, axes = plt.subplots(1, 2, figsize=(15, 5)) sns.scatterplot(x='totaltime', y='strokes', data=points, ax=axes[0]) sns.scatterplot(x='totaltime', y='strokes', hue='winner', data=points, ax=axes[1])
code
16160251/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data frames points = pd.read_csv('../input/points.csv') serves = pd.read_csv('../input/serves.csv') rallies = pd.read_csv('../input/rallies.csv') events = pd.read_csv('../input/events.csv') df = points.groupby(['winner', 'serve']).count().iloc[:, :1] df.columns = ['Points Won'] df df2 = points.groupby(['reason']).count().iloc[:, :1] df2.columns = ['Points Won'] df2 df3 = points.groupby(['winner', 'reason']).count().iloc[:, :1] df3.columns = ['Points Won'] df3 print('Segundos de juego: ' + str(points.totaltime.sum())) print('Minutos de juego: ' + str(points.totaltime.sum() / 60)) print('Porcentaje de juego durante el partido (2h 4m): ' + str(points.totaltime.sum() / 60 / 124 * 100) + ' %')
code
16160251/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data frames points = pd.read_csv('../input/points.csv') serves = pd.read_csv('../input/serves.csv') rallies = pd.read_csv('../input/rallies.csv') events = pd.read_csv('../input/events.csv') serves.head()
code
16160251/cell_15
[ "text_html_output_1.png" ]
import pandas as pd # data frames points = pd.read_csv('../input/points.csv') serves = pd.read_csv('../input/serves.csv') rallies = pd.read_csv('../input/rallies.csv') events = pd.read_csv('../input/events.csv') df = points.groupby(['winner', 'serve']).count().iloc[:, :1] df.columns = ['Points Won'] df
code
16160251/cell_38
[ "text_plain_output_1.png", "image_output_1.png" ]
from statistics import mean import matplotlib.pyplot as plt # visualizations import pandas as pd # data frames import seaborn as sns # visualizations points = pd.read_csv('../input/points.csv') serves = pd.read_csv('../input/serves.csv') rallies = pd.read_csv('../input/rallies.csv') events = pd.read_csv('../input/events.csv') df = points.groupby(['winner', 'serve']).count().iloc[:, :1] df.columns = ['Points Won'] df df2 = points.groupby(['reason']).count().iloc[:, :1] df2.columns = ['Points Won'] df2 df3 = points.groupby(['winner', 'reason']).count().iloc[:, :1] df3.columns = ['Points Won'] df3 f, axes = plt.subplots(1,2, figsize=(15, 5)) sns.countplot(x="reason", data=points, ax=axes[0], palette="Set1") sns.countplot(x="reason", hue='winner',data=points, ax=axes[1] ,palette="Set1") f, axes = plt.subplots(1,2, figsize=(15, 5)) sns.countplot(x="strokes", hue='serve',data=points, palette="Set1", ax=axes[0]) sns.countplot(x="strokes", hue='winner',data=points ,palette="Set1", ax=axes[1]) f, axes = plt.subplots(1,2, figsize=(15, 5)) sns.scatterplot(x="totaltime", y="strokes", data=points, ax=axes[0]) sns.scatterplot(x="totaltime", y="strokes", hue="winner" ,data=points, ax=axes[1]) f, axes = plt.subplots(1, 2, figsize=(15, 5)) sns.countplot(x='type', data=events, palette='Set1', ax=axes[0]) sns.countplot(x='type', hue='hitter', data=events, palette='Set1', ax=axes[1])
code
16160251/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import os import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import scipy.stats from sklearn import preprocessing from statistics import mean import os print(os.listdir('../input'))
code
16160251/cell_17
[ "text_html_output_1.png" ]
import pandas as pd # data frames points = pd.read_csv('../input/points.csv') serves = pd.read_csv('../input/serves.csv') rallies = pd.read_csv('../input/rallies.csv') events = pd.read_csv('../input/events.csv') df = points.groupby(['winner', 'serve']).count().iloc[:, :1] df.columns = ['Points Won'] df df2 = points.groupby(['reason']).count().iloc[:, :1] df2.columns = ['Points Won'] df2
code
16160251/cell_24
[ "text_html_output_1.png" ]
from statistics import mean import matplotlib.pyplot as plt # visualizations import pandas as pd # data frames import seaborn as sns # visualizations points = pd.read_csv('../input/points.csv') serves = pd.read_csv('../input/serves.csv') rallies = pd.read_csv('../input/rallies.csv') events = pd.read_csv('../input/events.csv') df = points.groupby(['winner', 'serve']).count().iloc[:, :1] df.columns = ['Points Won'] df df2 = points.groupby(['reason']).count().iloc[:, :1] df2.columns = ['Points Won'] df2 df3 = points.groupby(['winner', 'reason']).count().iloc[:, :1] df3.columns = ['Points Won'] df3 f, axes = plt.subplots(1,2, figsize=(15, 5)) sns.countplot(x="reason", data=points, ax=axes[0], palette="Set1") sns.countplot(x="reason", hue='winner',data=points, ax=axes[1] ,palette="Set1") sns.distplot(points['strokes'], color='red') print('The mean of strokes was: ' + str(mean(points['strokes'])))
code
16160251/cell_22
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt # visualizations import pandas as pd # data frames import seaborn as sns # visualizations points = pd.read_csv('../input/points.csv') serves = pd.read_csv('../input/serves.csv') rallies = pd.read_csv('../input/rallies.csv') events = pd.read_csv('../input/events.csv') df = points.groupby(['winner', 'serve']).count().iloc[:, :1] df.columns = ['Points Won'] df df2 = points.groupby(['reason']).count().iloc[:, :1] df2.columns = ['Points Won'] df2 df3 = points.groupby(['winner', 'reason']).count().iloc[:, :1] df3.columns = ['Points Won'] df3 f, axes = plt.subplots(1,2, figsize=(15, 5)) sns.countplot(x="reason", data=points, ax=axes[0], palette="Set1") sns.countplot(x="reason", hue='winner',data=points, ax=axes[1] ,palette="Set1") sns.catplot(x='reason', hue='winner', col='serve', data=points, kind='count', palette='Set1')
code
16160251/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data frames points = pd.read_csv('../input/points.csv') serves = pd.read_csv('../input/serves.csv') rallies = pd.read_csv('../input/rallies.csv') events = pd.read_csv('../input/events.csv') events.head()
code
16160251/cell_36
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data frames points = pd.read_csv('../input/points.csv') serves = pd.read_csv('../input/serves.csv') rallies = pd.read_csv('../input/rallies.csv') events = pd.read_csv('../input/events.csv') rallies1 = rallies.replace({'__undefined__': 'Out/Net (Not Point)'}) df5 = rallies1.groupby(['server', 'winner']).count().iloc[:, :1] df5.columns = ['Points Won'] df5
code
299160/cell_3
[ "text_plain_output_1.png" ]
from time import sleep for i in range(3): print(i) sleep(0.1)
code
122265078/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd import re train_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-train.csv' validation_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-val.csv' test_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-test.csv' train_pd = pd.read_csv(train_path) validation_pd = pd.read_csv(validation_path) test_pd = pd.read_csv(test_path) all_data_list = [train_pd, validation_pd, test_pd] emotions_categories = {'joy': ['joy', 'happy', 'laugh', 'excited', 'surprise'], 'sadness': ['sad', 'disappointed', 'regret', 'depressed', 'lonely'], 'anger': ['angry', 'frustrated', 'annoyed', 'irritated', 'mad'], 'fear': ['afraid', 'scared', 'fear', 'terrified', 'nervous']} def DELETE_EMOJIS(datasetinit): lendata = len(datasetinit) e_pattern = re.compile('[😀-🙏🌀-🗿🚀-\U0001f6ff\U0001f1e0-🇿✂-➰🤀-🧿🤐-🤿🥀-🥿🦀-🧠]+', flags=re.UNICODE) for co_ in range(lendata): tt = datasetinit['text'][co_] tt = e_pattern.sub('', tt) datasetinit['text'][co_] == tt def MULTI_EMOTION_MAPPING(datasetinit): lendata = len(datasetinit) for co_ in range(lendata): val = datasetinit['label'][co_] if val == 'joy': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['joy'])) elif val == 'sadness': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['sadness'])) elif val == 'anger': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['anger'])) elif val == 'fear': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['fear'])) else: pass for x_data, x_name in zip(all_data_list, ['TRAIN', 'VALIDATION', 'TEST']): print(f'PROCESS OF {x_name}\n') MULTI_EMOTION_MAPPING(x_data) x_data.reset_index(drop=True, inplace=True) print(f'[+++] DONE FOR {x_name}\n\n')
code
122265078/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd train_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-train.csv' validation_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-val.csv' test_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-test.csv' train_pd = pd.read_csv(train_path) validation_pd = pd.read_csv(validation_path) test_pd = pd.read_csv(test_path) all_data_list = [train_pd, validation_pd, test_pd] for x_data, x_name in zip(all_data_list, ['TRAIN', 'VALIDATION', 'TEST']): print(f'DATA NAME: {x_name}\n\nDATA:\n{x_data.head()}\n\n\n')
code
122265078/cell_25
[ "text_plain_output_1.png" ]
import pandas as pd import re train_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-train.csv' validation_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-val.csv' test_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-test.csv' train_pd = pd.read_csv(train_path) validation_pd = pd.read_csv(validation_path) test_pd = pd.read_csv(test_path) all_data_list = [train_pd, validation_pd, test_pd] emotions_categories = {'joy': ['joy', 'happy', 'laugh', 'excited', 'surprise'], 'sadness': ['sad', 'disappointed', 'regret', 'depressed', 'lonely'], 'anger': ['angry', 'frustrated', 'annoyed', 'irritated', 'mad'], 'fear': ['afraid', 'scared', 'fear', 'terrified', 'nervous']} def DELETE_EMOJIS(datasetinit): lendata = len(datasetinit) e_pattern = re.compile('[😀-🙏🌀-🗿🚀-\U0001f6ff\U0001f1e0-🇿✂-➰🤀-🧿🤐-🤿🥀-🥿🦀-🧠]+', flags=re.UNICODE) for co_ in range(lendata): tt = datasetinit['text'][co_] tt = e_pattern.sub('', tt) datasetinit['text'][co_] == tt def MULTI_EMOTION_MAPPING(datasetinit): lendata = len(datasetinit) for co_ in range(lendata): val = datasetinit['label'][co_] if val == 'joy': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['joy'])) elif val == 'sadness': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['sadness'])) elif val == 'anger': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['anger'])) elif val == 'fear': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['fear'])) else: pass for x_data, x_name in zip(all_data_list, ['TRAIN', 'VALIDATION', 'TEST']): MULTI_EMOTION_MAPPING(x_data) x_data.reset_index(drop=True, inplace=True) for x_data, x_name in zip(all_data_list, ['TRAIN', 'VALIDATION', 'TEST']): print(f'PROCESS OF {x_name}\n') DELETE_EMOJIS(x_data) x_data.reset_index(drop=True, inplace=True) print(f'[+++] DONE FOR {x_name}\n\n')
code
122265078/cell_23
[ "text_plain_output_1.png" ]
import pandas as pd import re train_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-train.csv' validation_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-val.csv' test_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-test.csv' train_pd = pd.read_csv(train_path) validation_pd = pd.read_csv(validation_path) test_pd = pd.read_csv(test_path) all_data_list = [train_pd, validation_pd, test_pd] emotions_categories = {'joy': ['joy', 'happy', 'laugh', 'excited', 'surprise'], 'sadness': ['sad', 'disappointed', 'regret', 'depressed', 'lonely'], 'anger': ['angry', 'frustrated', 'annoyed', 'irritated', 'mad'], 'fear': ['afraid', 'scared', 'fear', 'terrified', 'nervous']} def DELETE_EMOJIS(datasetinit): lendata = len(datasetinit) e_pattern = re.compile('[😀-🙏🌀-🗿🚀-\U0001f6ff\U0001f1e0-🇿✂-➰🤀-🧿🤐-🤿🥀-🥿🦀-🧠]+', flags=re.UNICODE) for co_ in range(lendata): tt = datasetinit['text'][co_] tt = e_pattern.sub('', tt) datasetinit['text'][co_] == tt def MULTI_EMOTION_MAPPING(datasetinit): lendata = len(datasetinit) for co_ in range(lendata): val = datasetinit['label'][co_] if val == 'joy': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['joy'])) elif val == 'sadness': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['sadness'])) elif val == 'anger': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['anger'])) elif val == 'fear': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['fear'])) else: pass for x_data, x_name in zip(all_data_list, ['TRAIN', 'VALIDATION', 'TEST']): MULTI_EMOTION_MAPPING(x_data) x_data.reset_index(drop=True, inplace=True) for x_data, x_name in zip(all_data_list, ['TRAIN', 'VALIDATION', 'TEST']): print(f"CONTROL FOR MAPPING - {x_name}\n\n{x_data['label'].value_counts()}\n\n\n")
code
122265078/cell_6
[ "text_plain_output_1.png" ]
import nltk nltk.download('stopwords') stop_words_english = nltk.corpus.stopwords.words('english') print(f'TOTAL LENGHT OF STOP WORDS IN ENGLISH: {len(stop_words_english)}')
code
122265078/cell_40
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score,confusion_matrix from sklearn.naive_bayes import MultinomialNB clf = MultinomialNB() clf.fit(xtrain, ytrain) ypred = clf.predict(xtest) print(f'ACCURACY SCORE: {accuracy_score(ytest, ypred)}')
code
122265078/cell_29
[ "text_html_output_1.png" ]
import pandas as pd train_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-train.csv' validation_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-val.csv' test_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-test.csv' train_pd = pd.read_csv(train_path) validation_pd = pd.read_csv(validation_path) test_pd = pd.read_csv(test_path) all_train_data = pd.concat([train_pd, validation_pd, test_pd], ignore_index=True) all_train_data
code
122265078/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd train_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-train.csv' validation_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-val.csv' test_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-test.csv' train_pd = pd.read_csv(train_path) validation_pd = pd.read_csv(validation_path) test_pd = pd.read_csv(test_path) train_pd.head()
code
122265078/cell_41
[ "text_plain_output_1.png" ]
from sklearn.naive_bayes import MultinomialNB clf = MultinomialNB() clf.fit(xtrain, ytrain) ypred = clf.predict(xtest) print(f'MODEL CLASSES:\n\n{clf.classes_}')
code
122265078/cell_52
[ "text_plain_output_1.png" ]
from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB import nltk import pandas as pd nltk.download('stopwords') stop_words_english = nltk.corpus.stopwords.words('english') train_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-train.csv' validation_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-val.csv' test_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-test.csv' train_pd = pd.read_csv(train_path) validation_pd = pd.read_csv(validation_path) test_pd = pd.read_csv(test_path) all_train_data = pd.concat([train_pd, validation_pd, test_pd], ignore_index=True) vectorizer_train = CountVectorizer(stop_words=stop_words_english) xall = vectorizer_train.fit_transform(all_train_data['text']) yall = all_train_data['label'] voc = vectorizer_train.get_feature_names_out() clf = MultinomialNB() clf.fit(xtrain, ytrain) ypred = clf.predict(xtest) test_sentence = "I don't know what's going on in this world, but all you know is that connection will bring freedom. Although we live in an unknown world, the existence of a woman who burns heaven is the cause of all beauty." words_of_sentence = nltk.word_tokenize(test_sentence) words_of_sentence = [w_ for w_ in words_of_sentence if w_ not in stop_words_english] transform_test = vectorizer_train.transform(words_of_sentence) pred_test = clf.predict(transform_test) print(f'PREDICTION:\n\n{pred_test[0]}')
code
122265078/cell_49
[ "image_output_1.png" ]
import nltk nltk.download('stopwords') stop_words_english = nltk.corpus.stopwords.words('english') test_sentence = "I don't know what's going on in this world, but all you know is that connection will bring freedom. Although we live in an unknown world, the existence of a woman who burns heaven is the cause of all beauty." words_of_sentence = nltk.word_tokenize(test_sentence) words_of_sentence = [w_ for w_ in words_of_sentence if w_ not in stop_words_english] print(f'WORDS WITHOUT STOP WORDS:\n\n{words_of_sentence}')
code
122265078/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd train_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-train.csv' validation_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-val.csv' test_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-test.csv' train_pd = pd.read_csv(train_path) validation_pd = pd.read_csv(validation_path) test_pd = pd.read_csv(test_path) all_data_list = [train_pd, validation_pd, test_pd] for x_data, x_name in zip(all_data_list, ['TRAIN', 'VALIDATION', 'TEST']): print(f'COLUMNS FOR {x_name}:\n{x_data.columns}\n\n')
code
122265078/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd train_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-train.csv' validation_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-val.csv' test_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-test.csv' train_pd = pd.read_csv(train_path) validation_pd = pd.read_csv(validation_path) test_pd = pd.read_csv(test_path) all_data_list = [train_pd, validation_pd, test_pd] for x_data, x_name in zip(all_data_list, ['TRAIN', 'VALIDATION', 'TEST']): print(f"VALUE COUNTS FOR {x_name}:\n{x_data['label'].value_counts()}\n\n")
code
122265078/cell_38
[ "text_html_output_1.png" ]
from sklearn.naive_bayes import MultinomialNB clf = MultinomialNB() clf.fit(xtrain, ytrain)
code
122265078/cell_47
[ "text_plain_output_1.png" ]
import nltk nltk.download('stopwords') stop_words_english = nltk.corpus.stopwords.words('english') test_sentence = "I don't know what's going on in this world, but all you know is that connection will bring freedom. Although we live in an unknown world, the existence of a woman who burns heaven is the cause of all beauty." words_of_sentence = nltk.word_tokenize(test_sentence) print(f'WORDS:\n\n{words_of_sentence}')
code
122265078/cell_35
[ "text_html_output_1.png" ]
from sklearn.feature_extraction.text import CountVectorizer import nltk import pandas as pd nltk.download('stopwords') stop_words_english = nltk.corpus.stopwords.words('english') train_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-train.csv' validation_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-val.csv' test_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-test.csv' train_pd = pd.read_csv(train_path) validation_pd = pd.read_csv(validation_path) test_pd = pd.read_csv(test_path) all_train_data = pd.concat([train_pd, validation_pd, test_pd], ignore_index=True) vectorizer_train = CountVectorizer(stop_words=stop_words_english) xall = vectorizer_train.fit_transform(all_train_data['text']) yall = all_train_data['label'] voc = vectorizer_train.get_feature_names_out() print(f'TARGET VOCABULARY:\n\n{voc}')
code
122265078/cell_43
[ "text_plain_output_1.png" ]
from sklearn.metrics import accuracy_score,confusion_matrix from sklearn.naive_bayes import MultinomialNB import matplotlib.pyplot as plt import seaborn as sns emotions_categories = {'joy': ['joy', 'happy', 'laugh', 'excited', 'surprise'], 'sadness': ['sad', 'disappointed', 'regret', 'depressed', 'lonely'], 'anger': ['angry', 'frustrated', 'annoyed', 'irritated', 'mad'], 'fear': ['afraid', 'scared', 'fear', 'terrified', 'nervous']} clf = MultinomialNB() clf.fit(xtrain, ytrain) ypred = clf.predict(xtest) conf_matrix = confusion_matrix(ytest, ypred) plt.style.use('dark_background') plt.figure(figsize=(15, 8)) sns.heatmap(conf_matrix, annot=True, cmap='hot', xticklabels=emotions_categories.values(), yticklabels=emotions_categories.values()) plt.xlabel('PREDICTION') plt.ylabel('ACTUAL') plt.show()
code
122265078/cell_24
[ "text_plain_output_1.png" ]
import pandas as pd import re train_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-train.csv' validation_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-val.csv' test_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-test.csv' train_pd = pd.read_csv(train_path) validation_pd = pd.read_csv(validation_path) test_pd = pd.read_csv(test_path) all_data_list = [train_pd, validation_pd, test_pd] emotions_categories = {'joy': ['joy', 'happy', 'laugh', 'excited', 'surprise'], 'sadness': ['sad', 'disappointed', 'regret', 'depressed', 'lonely'], 'anger': ['angry', 'frustrated', 'annoyed', 'irritated', 'mad'], 'fear': ['afraid', 'scared', 'fear', 'terrified', 'nervous']} def DELETE_EMOJIS(datasetinit): lendata = len(datasetinit) e_pattern = re.compile('[😀-🙏🌀-🗿🚀-\U0001f6ff\U0001f1e0-🇿✂-➰🤀-🧿🤐-🤿🥀-🥿🦀-🧠]+', flags=re.UNICODE) for co_ in range(lendata): tt = datasetinit['text'][co_] tt = e_pattern.sub('', tt) datasetinit['text'][co_] == tt def MULTI_EMOTION_MAPPING(datasetinit): lendata = len(datasetinit) for co_ in range(lendata): val = datasetinit['label'][co_] if val == 'joy': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['joy'])) elif val == 'sadness': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['sadness'])) elif val == 'anger': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['anger'])) elif val == 'fear': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['fear'])) else: pass for x_data, x_name in zip(all_data_list, ['TRAIN', 'VALIDATION', 'TEST']): MULTI_EMOTION_MAPPING(x_data) x_data.reset_index(drop=True, inplace=True) for x_data, x_name in zip(all_data_list, ['TRAIN', 'VALIDATION', 'TEST']): print(f'NULL CONTROL FOR {x_name}:\n{x_data.isnull().sum()}\n\n')
code
122265078/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd train_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-train.csv' validation_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-val.csv' test_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-test.csv' train_pd = pd.read_csv(train_path) validation_pd = pd.read_csv(validation_path) test_pd = pd.read_csv(test_path) all_data_list = [train_pd, validation_pd, test_pd] for x_data, x_name in zip(all_data_list, ['TRAIN', 'VALIDATION', 'TEST']): print(f'NULL CONTROL FOR {x_name}:\n{x_data.isnull().sum()}\n\n')
code
122265078/cell_22
[ "text_plain_output_1.png" ]
import pandas as pd import re train_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-train.csv' validation_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-val.csv' test_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-test.csv' train_pd = pd.read_csv(train_path) validation_pd = pd.read_csv(validation_path) test_pd = pd.read_csv(test_path) all_data_list = [train_pd, validation_pd, test_pd] emotions_categories = {'joy': ['joy', 'happy', 'laugh', 'excited', 'surprise'], 'sadness': ['sad', 'disappointed', 'regret', 'depressed', 'lonely'], 'anger': ['angry', 'frustrated', 'annoyed', 'irritated', 'mad'], 'fear': ['afraid', 'scared', 'fear', 'terrified', 'nervous']} def DELETE_EMOJIS(datasetinit): lendata = len(datasetinit) e_pattern = re.compile('[😀-🙏🌀-🗿🚀-\U0001f6ff\U0001f1e0-🇿✂-➰🤀-🧿🤐-🤿🥀-🥿🦀-🧠]+', flags=re.UNICODE) for co_ in range(lendata): tt = datasetinit['text'][co_] tt = e_pattern.sub('', tt) datasetinit['text'][co_] == tt def MULTI_EMOTION_MAPPING(datasetinit): lendata = len(datasetinit) for co_ in range(lendata): val = datasetinit['label'][co_] if val == 'joy': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['joy'])) elif val == 'sadness': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['sadness'])) elif val == 'anger': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['anger'])) elif val == 'fear': datasetinit['label'][co_] = ','.join((str(xc) for xc in emotions_categories['fear'])) else: pass for x_data, x_name in zip(all_data_list, ['TRAIN', 'VALIDATION', 'TEST']): MULTI_EMOTION_MAPPING(x_data) x_data.reset_index(drop=True, inplace=True) for x_data, x_name in zip(all_data_list, ['TRAIN', 'VALIDATION', 'TEST']): print(f'CONTROL FOR - {x_name}\n\n{x_data.head()}\n\n\n')
code
122265078/cell_27
[ "text_plain_output_1.png" ]
import pandas as pd train_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-train.csv' validation_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-val.csv' test_path = '/kaggle/input/emotion-classification-nlp/emotion-labels-test.csv' train_pd = pd.read_csv(train_path) validation_pd = pd.read_csv(validation_path) test_pd = pd.read_csv(test_path) train_pd.tail()
code
122265078/cell_5
[ "text_plain_output_1.png" ]
import nltk nltk.download('stopwords') stop_words_english = nltk.corpus.stopwords.words('english')
code
16148222/cell_21
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import Dense from tensorflow.keras.layers import LSTM from tensorflow.keras.models import Sequential import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt np.random.seed(1) data = pd.read_csv('../input/AAPL.csv') data['Date'] = pd.to_datetime(data['Date']) X = np.array(data['Open']) X = X.reshape(X.shape[0], 1) X.shape from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0, 1)) X = scaler.fit_transform(X) tp = 20 train = X[:1150] test = X[1150 - tp:] X_train = [] y_train = [] for i in range(tp, train.shape[0]): X_train.append(train[i - tp:i, 0]) y_train.append(train[i, 0]) X_train, y_train = (np.array(X_train), np.array(y_train)) X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_train.shape X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) lstm_model = Sequential() lstm_model.add(LSTM(12, input_shape=(X_train.shape[1], 1), activation='relu', kernel_initializer='lecun_uniform', return_sequences=True)) lstm_model.add(LSTM(12, activation='relu', kernel_initializer='lecun_uniform')) lstm_model.add(Dense(1)) lstm_model.compile(optimizer='adam', loss='mean_squared_error') lstm_model.fit(X_train, y_train, epochs=50, batch_size=4) X_test = [] y_test = [] for i in range(tp, test.shape[0]): X_test.append(test[i - tp:i, 0]) y_test.append(test[i, 0]) X_test, y_test = (np.array(X_test), np.array(y_test)) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) plt.figure(figsize=(15, 10)) predicted = lstm_model.predict(X_train) predicted = scaler.inverse_transform(predicted) plt.plot(scaler.inverse_transform(train[-X_train.shape[0] - 1:]), color='red', label='Open Price') plt.plot(predicted, color='green', label='Predicted Open Price') plt.title('Apple Stock Market Open Price vs Time') plt.xlabel('Time') plt.ylabel('Open Price') plt.legend() plt.show()
code
16148222/cell_13
[ "text_html_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt np.random.seed(1) data = pd.read_csv('../input/AAPL.csv') data['Date'] = pd.to_datetime(data['Date']) X = np.array(data['Open']) X = X.reshape(X.shape[0], 1) X.shape from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0, 1)) X = scaler.fit_transform(X) tp = 20 train = X[:1150] test = X[1150 - tp:] X_train = [] y_train = [] for i in range(tp, train.shape[0]): X_train.append(train[i - tp:i, 0]) y_train.append(train[i, 0]) X_train, y_train = (np.array(X_train), np.array(y_train)) X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_train.shape
code
16148222/cell_4
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/AAPL.csv') data.head()
code
16148222/cell_20
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import Dense from tensorflow.keras.layers import LSTM from tensorflow.keras.models import Sequential import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt np.random.seed(1) data = pd.read_csv('../input/AAPL.csv') data['Date'] = pd.to_datetime(data['Date']) X = np.array(data['Open']) X = X.reshape(X.shape[0], 1) X.shape from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0, 1)) X = scaler.fit_transform(X) tp = 20 train = X[:1150] test = X[1150 - tp:] X_train = [] y_train = [] for i in range(tp, train.shape[0]): X_train.append(train[i - tp:i, 0]) y_train.append(train[i, 0]) X_train, y_train = (np.array(X_train), np.array(y_train)) X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_train.shape X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) lstm_model = Sequential() lstm_model.add(LSTM(12, input_shape=(X_train.shape[1], 1), activation='relu', kernel_initializer='lecun_uniform', return_sequences=True)) lstm_model.add(LSTM(12, activation='relu', kernel_initializer='lecun_uniform')) lstm_model.add(Dense(1)) X_test = [] y_test = [] for i in range(tp, test.shape[0]): X_test.append(test[i - tp:i, 0]) y_test.append(test[i, 0]) X_test, y_test = (np.array(X_test), np.array(y_test)) print(X_test.shape) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) print(X_train.shape)
code
16148222/cell_6
[ "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/AAPL.csv') data['Date'] = pd.to_datetime(data['Date']) data.head()
code
16148222/cell_19
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import Dense from tensorflow.keras.layers import LSTM from tensorflow.keras.models import Sequential import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt np.random.seed(1) data = pd.read_csv('../input/AAPL.csv') data['Date'] = pd.to_datetime(data['Date']) X = np.array(data['Open']) X = X.reshape(X.shape[0], 1) X.shape from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0, 1)) X = scaler.fit_transform(X) tp = 20 train = X[:1150] test = X[1150 - tp:] X_train = [] y_train = [] for i in range(tp, train.shape[0]): X_train.append(train[i - tp:i, 0]) y_train.append(train[i, 0]) X_train, y_train = (np.array(X_train), np.array(y_train)) X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_train.shape X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) lstm_model = Sequential() lstm_model.add(LSTM(12, input_shape=(X_train.shape[1], 1), activation='relu', kernel_initializer='lecun_uniform', return_sequences=True)) lstm_model.add(LSTM(12, activation='relu', kernel_initializer='lecun_uniform')) lstm_model.add(Dense(1)) lstm_model.compile(optimizer='adam', loss='mean_squared_error') lstm_model.fit(X_train, y_train, epochs=50, batch_size=4)
code
16148222/cell_7
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt np.random.seed(1) data = pd.read_csv('../input/AAPL.csv') data['Date'] = pd.to_datetime(data['Date']) X = np.array(data['Open']) X = X.reshape(X.shape[0], 1) X.shape
code
16148222/cell_10
[ "text_html_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt np.random.seed(1) data = pd.read_csv('../input/AAPL.csv') data['Date'] = pd.to_datetime(data['Date']) X = np.array(data['Open']) X = X.reshape(X.shape[0], 1) X.shape from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0, 1)) X = scaler.fit_transform(X) tp = 20 train = X[:1150] test = X[1150 - tp:] print(train.shape, '\n', test.shape)
code
16148222/cell_12
[ "image_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import numpy as np import pandas as pd import pandas as pd import numpy as np import matplotlib.pyplot as plt np.random.seed(1) data = pd.read_csv('../input/AAPL.csv') data['Date'] = pd.to_datetime(data['Date']) X = np.array(data['Open']) X = X.reshape(X.shape[0], 1) X.shape from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0, 1)) X = scaler.fit_transform(X) tp = 20 train = X[:1150] test = X[1150 - tp:] X_train = [] y_train = [] for i in range(tp, train.shape[0]): X_train.append(train[i - tp:i, 0]) y_train.append(train[i, 0]) X_train, y_train = (np.array(X_train), np.array(y_train)) print(X_train.shape, '\n', y_train.shape)
code
16148222/cell_5
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd data = pd.read_csv('../input/AAPL.csv') plt.figure(figsize=(15, 10)) plt.plot(data['Open'], color='blue', label='Apple Open Stock Price') plt.title('Apple Stock Market Open Price vs Time') plt.xlabel('Date') plt.ylabel('Apple Stock Price') plt.legend() plt.show()
code
122263833/cell_21
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/supermarket-sales/supermarket_sales - Sheet1.csv') df.describe().style.background_gradient(cmap='Blues') df.isna().mean() / len(df) df.nunique() new = df[['Product line', 'Total']].groupby(['Product line'], as_index=False).sum().sort_values(by='Total', ascending=False) new_grossIncome = df[['Product line', 'gross income']].groupby(['Product line'], as_index=False).sum().sort_values(by='gross income', ascending=False) plt.figure(figsize=(15, 5)) sns.barplot(data=new_grossIncome, x='Product line', y='gross income') plt.show()
code
122263833/cell_13
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/supermarket-sales/supermarket_sales - Sheet1.csv') df.describe().style.background_gradient(cmap='Blues') df.isna().mean() / len(df) df.nunique() for i in range(len(df.Branch.value_counts())): print(df.Branch.value_counts().index.tolist()[i], ':', df.Branch.value_counts()[i] / len(df.Branch) * 100, '%')
code
122263833/cell_9
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/supermarket-sales/supermarket_sales - Sheet1.csv') df.describe().style.background_gradient(cmap='Blues') df.isna().mean() / len(df) df.nunique()
code
122263833/cell_25
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/supermarket-sales/supermarket_sales - Sheet1.csv') df.describe().style.background_gradient(cmap='Blues') df.isna().mean() / len(df) df.nunique() new = df[['Product line', 'Total']].groupby(['Product line'], as_index=False).sum().sort_values(by='Total', ascending=False) new_grossIncome = df[['Product line', 'gross income']].groupby(['Product line'], as_index=False).sum().sort_values(by='gross income', ascending=False) sns.kdeplot(df['Rating'], fill=True) plt.show()
code
122263833/cell_4
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/supermarket-sales/supermarket_sales - Sheet1.csv') df.head()
code
122263833/cell_20
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/supermarket-sales/supermarket_sales - Sheet1.csv') df.describe().style.background_gradient(cmap='Blues') df.isna().mean() / len(df) df.nunique() new = df[['Product line', 'Total']].groupby(['Product line'], as_index=False).sum().sort_values(by='Total', ascending=False) plt.figure(figsize=(15, 5)) sns.barplot(data=new, x='Product line', y='Total') plt.show()
code
122263833/cell_6
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/supermarket-sales/supermarket_sales - Sheet1.csv') df.describe().style.background_gradient(cmap='Blues')
code
122263833/cell_26
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/supermarket-sales/supermarket_sales - Sheet1.csv') df.describe().style.background_gradient(cmap='Blues') df.isna().mean() / len(df) df.nunique() new = df[['Product line', 'Total']].groupby(['Product line'], as_index=False).sum().sort_values(by='Total', ascending=False) new_grossIncome = df[['Product line', 'gross income']].groupby(['Product line'], as_index=False).sum().sort_values(by='gross income', ascending=False) sns.distplot(df['Rating']) plt.show()
code
122263833/cell_11
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/supermarket-sales/supermarket_sales - Sheet1.csv') df.describe().style.background_gradient(cmap='Blues') df.isna().mean() / len(df) df.nunique() sns.boxplot(x='Branch', y='Total', data=df) plt.show()
code
122263833/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
122263833/cell_7
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/supermarket-sales/supermarket_sales - Sheet1.csv') df.describe().style.background_gradient(cmap='Blues') df.isna().mean() / len(df)
code
122263833/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/supermarket-sales/supermarket_sales - Sheet1.csv') df.describe().style.background_gradient(cmap='Blues') df.isna().mean() / len(df) df.nunique() plt.figure(figsize=(15, 5)) sns.countplot(data=df, x='Product line', order=df['Product line'].value_counts().index) plt.show()
code
122263833/cell_17
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/supermarket-sales/supermarket_sales - Sheet1.csv') df.describe().style.background_gradient(cmap='Blues') df.isna().mean() / len(df) df.nunique() sns.boxplot(x='Quantity', y='Product line', data=df) plt.show()
code
122263833/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/supermarket-sales/supermarket_sales - Sheet1.csv') df.describe().style.background_gradient(cmap='Blues') df.isna().mean() / len(df) df.nunique() plt.figure(figsize=(10, 5)) sns.countplot(x='Quantity', hue='Branch', data=df) plt.show()
code
122263833/cell_5
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/supermarket-sales/supermarket_sales - Sheet1.csv') df.info()
code
1007503/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt sns.set(style='white', color_codes=True) iris = pd.read_csv('../input/Iris.csv') sns.jointplot(x='SepalLengthCm', y='SepalWidthCm', data=iris, size=5)
code
1007503/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt sns.set(style='white', color_codes=True) iris = pd.read_csv('../input/Iris.csv') iris['Species'].value_counts()
code
1007503/cell_1
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt sns.set(style='white', color_codes=True) iris = pd.read_csv('../input/Iris.csv') iris.head()
code
1007503/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt sns.set(style='white', color_codes=True) iris = pd.read_csv('../input/Iris.csv') iris.plot(kind='scatter', x='PetalLengthCm', y='PetalWidthCm')
code
1007503/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
s
code
130003964/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/salary-dataset-simple-linear-regression/Salary_dataset.csv') df.columns years_exp = df.YearsExperience.values years_exp salary = df.Salary.values salary x = years_exp y = salary plt.plot x = x.reshape(-1, 1) x plt.scatter(x, y, color='blue') plt.xlabel('YearsExperience') plt.ylabel('Salary') plt.plot
code
130003964/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/salary-dataset-simple-linear-regression/Salary_dataset.csv') df.columns years_exp = df.YearsExperience.values years_exp salary = df.Salary.values salary x = years_exp y = salary x = x.reshape(-1, 1) x
code
130003964/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/salary-dataset-simple-linear-regression/Salary_dataset.csv') df.columns df.describe()
code
130003964/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/salary-dataset-simple-linear-regression/Salary_dataset.csv') df.columns years_exp = df.YearsExperience.values years_exp salary = df.Salary.values salary
code
130003964/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/salary-dataset-simple-linear-regression/Salary_dataset.csv') df.head(5)
code
130003964/cell_11
[ "text_html_output_1.png" ]
(x_train, len(x_train))
code
130003964/cell_19
[ "text_plain_output_1.png" ]
from sklearn import metrics from sklearn.linear_model import LinearRegression import numpy as np # linear algebra lr = LinearRegression() lr.fit(x_train, y_train) y_predict = lr.predict([[1.2], [3.3]]) y_predict lr.score(x_test, y_test) * 100 y_predict = lr.predict(x_test) y_predict print(metrics.mean_absolute_error(y_test, y_predict)) print(metrics.mean_squared_error(y_test, y_predict)) print(np.sqrt(metrics.mean_squared_error(y_test, y_predict)))
code
130003964/cell_1
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import os import numpy as np import pandas as pd from matplotlib import pyplot as plt from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn import metrics import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code