path
stringlengths 13
17
| screenshot_names
sequencelengths 1
873
| code
stringlengths 0
40.4k
| cell_type
stringclasses 1
value |
---|---|---|---|
130003964/cell_18 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/salary-dataset-simple-linear-regression/Salary_dataset.csv')
df.columns
years_exp = df.YearsExperience.values
years_exp
salary = df.Salary.values
salary
x = years_exp
y = salary
plt.plot
x = x.reshape(-1, 1)
x
plt.plot
lr = LinearRegression()
lr.fit(x_train, y_train)
y_predict = lr.predict([[1.2], [3.3]])
y_predict
lr.score(x_test, y_test) * 100
y_predict = lr.predict(x_test)
y_predict
plt.scatter(x, y, color='blue')
plt.scatter(x_test, y_predict, color='red')
plt.xlabel('YearsExperience')
plt.ylabel('Salary')
plt.plot | code |
130003964/cell_8 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/salary-dataset-simple-linear-regression/Salary_dataset.csv')
df.columns
years_exp = df.YearsExperience.values
years_exp
salary = df.Salary.values
salary
x = years_exp
y = salary
plt.scatter(x, y, color='blue')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.plot | code |
130003964/cell_15 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x_train, y_train)
y_predict = lr.predict([[1.2], [3.3]])
y_predict | code |
130003964/cell_16 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x_train, y_train)
y_predict = lr.predict([[1.2], [3.3]])
y_predict
lr.score(x_test, y_test) * 100 | code |
130003964/cell_3 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/salary-dataset-simple-linear-regression/Salary_dataset.csv')
df.columns | code |
130003964/cell_17 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x_train, y_train)
y_predict = lr.predict([[1.2], [3.3]])
y_predict
lr.score(x_test, y_test) * 100
y_predict = lr.predict(x_test)
y_predict | code |
130003964/cell_14 | [
"text_plain_output_1.png"
] | from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x_train, y_train) | code |
130003964/cell_12 | [
"text_plain_output_1.png"
] | (x_test, len(x_test)) | code |
130003964/cell_5 | [
"text_plain_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('/kaggle/input/salary-dataset-simple-linear-regression/Salary_dataset.csv')
df.columns
years_exp = df.YearsExperience.values
years_exp | code |
128048739/cell_21 | [
"text_plain_output_1.png"
] | from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sentences = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?']
cv = CountVectorizer()
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out())
cv = CountVectorizer(ngram_range=(2, 2))
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out())
cv = CountVectorizer(ngram_range=(1, 2))
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out() | code |
128048739/cell_9 | [
"text_plain_output_1.png"
] | from sklearn.feature_extraction.text import CountVectorizer
sentences = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?']
cv = CountVectorizer()
X = cv.fit_transform(sentences)
X.toarray() | code |
128048739/cell_33 | [
"text_html_output_1.png"
] | from transformers import AutoTokenizer, BertModel
from transformers import AutoTokenizer, BertModel
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased') | code |
128048739/cell_20 | [
"text_html_output_1.png"
] | from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sentences = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?']
cv = CountVectorizer()
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out())
cv = CountVectorizer(ngram_range=(2, 2))
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out())
cv = CountVectorizer(ngram_range=(1, 2))
X = cv.fit_transform(sentences)
X.toarray() | code |
128048739/cell_29 | [
"text_plain_output_1.png"
] | from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sentences = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?']
cv = CountVectorizer()
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out())
cv = CountVectorizer(ngram_range=(2, 2))
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out())
cv = CountVectorizer(ngram_range=(1, 2))
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out())
sentences = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?']
tfidf = TfidfVectorizer()
X = tfidf.fit_transform(sentences)
X.toarray()
tfidf.get_feature_names_out()
df = pd.DataFrame(X[0].T.todense(), index=tfidf.get_feature_names_out(), columns=['TF-IDF'])
df.sort_values('TF-IDF', ascending=False) | code |
128048739/cell_26 | [
"text_html_output_1.png"
] | from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sentences = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?']
cv = CountVectorizer()
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out())
cv = CountVectorizer(ngram_range=(2, 2))
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out())
cv = CountVectorizer(ngram_range=(1, 2))
X = cv.fit_transform(sentences)
X.toarray()
sentences = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?']
tfidf = TfidfVectorizer()
X = tfidf.fit_transform(sentences)
X.toarray() | code |
128048739/cell_11 | [
"text_plain_output_1.png"
] | from sklearn.feature_extraction.text import CountVectorizer
sentences = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?']
cv = CountVectorizer()
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out() | code |
128048739/cell_28 | [
"text_plain_output_1.png"
] | from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sentences = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?']
cv = CountVectorizer()
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out())
cv = CountVectorizer(ngram_range=(2, 2))
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out())
cv = CountVectorizer(ngram_range=(1, 2))
X = cv.fit_transform(sentences)
X.toarray()
sentences = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?']
tfidf = TfidfVectorizer()
X = tfidf.fit_transform(sentences)
X.toarray()
X[0].T.todense() | code |
128048739/cell_15 | [
"text_html_output_1.png"
] | from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sentences = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?']
cv = CountVectorizer()
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out())
cv = CountVectorizer(ngram_range=(2, 2))
X = cv.fit_transform(sentences)
X.toarray() | code |
128048739/cell_16 | [
"text_plain_output_1.png"
] | from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sentences = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?']
cv = CountVectorizer()
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out())
cv = CountVectorizer(ngram_range=(2, 2))
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out() | code |
128048739/cell_17 | [
"text_plain_output_1.png"
] | from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sentences = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?']
cv = CountVectorizer()
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out())
cv = CountVectorizer(ngram_range=(2, 2))
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out()) | code |
128048739/cell_35 | [
"text_plain_output_5.png",
"application_vnd.jupyter.stderr_output_6.png",
"text_plain_output_4.png",
"text_plain_output_3.png",
"text_plain_output_2.png",
"text_plain_output_1.png"
] | from transformers import AutoTokenizer, BertModel
import torch
from transformers import AutoTokenizer, BertModel
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')
example_word = 'cyber'
example_token_id = tokenizer.convert_tokens_to_ids([example_word])[0]
example_embedding = model.embeddings.word_embeddings(torch.tensor([example_token_id]))
print(example_embedding.shape)
print(example_embedding) | code |
128048739/cell_22 | [
"text_plain_output_1.png"
] | from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sentences = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?']
cv = CountVectorizer()
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out())
cv = CountVectorizer(ngram_range=(2, 2))
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out())
cv = CountVectorizer(ngram_range=(1, 2))
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out()) | code |
128048739/cell_27 | [
"text_plain_output_1.png"
] | from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sentences = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?']
cv = CountVectorizer()
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out())
cv = CountVectorizer(ngram_range=(2, 2))
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out())
cv = CountVectorizer(ngram_range=(1, 2))
X = cv.fit_transform(sentences)
X.toarray()
sentences = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?']
tfidf = TfidfVectorizer()
X = tfidf.fit_transform(sentences)
X.toarray()
tfidf.get_feature_names_out() | code |
128048739/cell_12 | [
"text_plain_output_1.png"
] | from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
sentences = ['This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first document?']
cv = CountVectorizer()
X = cv.fit_transform(sentences)
X.toarray()
cv.get_feature_names_out()
pd.DataFrame(cv.get_feature_names_out()) | code |
32067919/cell_4 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | import pandas as pd
train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv')
test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv')
train_ = train[train['ConfirmedCases'] >= 0]
train_.head() | code |
32067919/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd
train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv')
test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv')
train_ = train[train['ConfirmedCases'] >= 0]
EMPTY_VAL = 'EMPTY_VAL'
def fillState(state, country):
if state == EMPTY_VAL:
return country
return state
train_['Province_State'].fillna(EMPTY_VAL, inplace=True)
train_['Province_State'] = train_.loc[:, ['Province_State', 'Country_Region']].apply(lambda x: fillState(x['Province_State'], x['Country_Region']), axis=1)
test['Province_State'].fillna(EMPTY_VAL, inplace=True)
test['Province_State'] = test.loc[:, ['Province_State', 'Country_Region']].apply(lambda x: fillState(x['Province_State'], x['Country_Region']), axis=1)
test.head() | code |
32067919/cell_8 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.optimize as opt
train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv')
test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv')
train_ = train[train['ConfirmedCases'] >= 0]
EMPTY_VAL = 'EMPTY_VAL'
def fillState(state, country):
if state == EMPTY_VAL:
return country
return state
train_['Province_State'].fillna(EMPTY_VAL, inplace=True)
train_['Province_State'] = train_.loc[:, ['Province_State', 'Country_Region']].apply(lambda x: fillState(x['Province_State'], x['Country_Region']), axis=1)
test['Province_State'].fillna(EMPTY_VAL, inplace=True)
test['Province_State'] = test.loc[:, ['Province_State', 'Country_Region']].apply(lambda x: fillState(x['Province_State'], x['Country_Region']), axis=1)
train_['row_number'] = train_.groupby(['Country_Region', 'Province_State']).cumcount()
x = train_[train_['Country_Region'] == 'US'][train_['Province_State'] == 'New York']['row_number']
y = train_[train_['Country_Region'] == 'US'][train_['Province_State'] == 'New York']['ConfirmedCases']
y_ = train_[train_['Country_Region'] == 'US'][train_['Province_State'] == 'New York']['Fatalities']
def f(x, L, b, k, x_0):
return L / (1.0 + np.exp(-k * (x - x_0))) + b
def logistic(xs, L, k, x_0):
result = []
for x in xs:
xp = k * (x - x_0)
if xp >= 0:
result.append(L / (1.0 + np.exp(-xp)))
else:
result.append(L * np.exp(xp) / (1.0 + np.exp(xp)))
return result
p0 = [max(y), 0.0, max(x)]
p0_ = [max(y_), 0.0, max(x)]
x_ = np.arange(0, 100, 1).tolist()
try:
popt, pcov = opt.curve_fit(logistic, x, y, p0)
yfit = logistic(x_, *popt)
popt_, pcov_ = opt.curve_fit(logistic, x, y_, p0_)
yfit_ = logistic(x_, *popt_)
except:
popt, pcov = opt.curve_fit(f, x, y, method='lm', maxfev=5000)
yfit = f(x_, *popt)
popt_, pcov_ = opt.curve_fit(f, x, y_, method='lm', maxfev=5000)
yfit_ = f(x_, *popt_)
fig, ax = plt.subplots(1, 1, figsize=(10, 8))
ax.plot(x, y, 'o', label='Actual Cases')
ax.plot(x_, yfit, '-', label='Fitted Cases')
ax.plot(x, y_, 'o', label='Actual Fatalities')
ax.plot(x_, yfit_, '-', label='Fitted fatalities')
ax.title.set_text('US - New York')
plt.legend(loc='center right')
plt.show() | code |
32067919/cell_16 | [
"application_vnd.jupyter.stderr_output_1.png",
"image_output_1.png"
] | import datetime as dt
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.optimize as opt
train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv')
test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv')
train_ = train[train['ConfirmedCases'] >= 0]
EMPTY_VAL = 'EMPTY_VAL'
def fillState(state, country):
if state == EMPTY_VAL:
return country
return state
train_['Province_State'].fillna(EMPTY_VAL, inplace=True)
train_['Province_State'] = train_.loc[:, ['Province_State', 'Country_Region']].apply(lambda x: fillState(x['Province_State'], x['Country_Region']), axis=1)
test['Province_State'].fillna(EMPTY_VAL, inplace=True)
test['Province_State'] = test.loc[:, ['Province_State', 'Country_Region']].apply(lambda x: fillState(x['Province_State'], x['Country_Region']), axis=1)
train_['row_number'] = train_.groupby(['Country_Region', 'Province_State']).cumcount()
x = train_[train_["Country_Region"] == 'US'][train_["Province_State"] == 'New York']['row_number']
y = train_[train_["Country_Region"] == 'US'][train_["Province_State"] == 'New York']['ConfirmedCases']
y_ = train_[train_["Country_Region"] == 'US'][train_["Province_State"] == 'New York']['Fatalities']
def f(x, L, b, k, x_0):
return L / (1. + np.exp(-k * (x - x_0))) + b
def logistic(xs, L, k, x_0):
result = []
for x in xs:
xp = k*(x-x_0)
if xp >= 0:
result.append(L / ( 1. + np.exp(-xp) ) )
else:
result.append(L * np.exp(xp) / ( 1. + np.exp(xp) ) )
return result
p0 = [max(y), 0.0,max(x)]
p0_ = [max(y_), 0.0,max(x)]
x_ = np.arange(0, 100, 1).tolist()
try:
popt, pcov = opt.curve_fit(logistic, x, y,p0)
yfit = logistic(x_, *popt)
popt_, pcov_ = opt.curve_fit(logistic, x, y_,p0_)
yfit_ = logistic(x_, *popt_)
except:
popt, pcov = opt.curve_fit(f, x, y, method="lm", maxfev=5000)
yfit = f(x_, *popt)
popt_, pcov_ = opt.curve_fit(f, x, y_, method="lm", maxfev=5000)
yfit_ = f(x_, *popt_)
#print("problem")
fig, ax = plt.subplots(1, 1, figsize=(10, 8))
ax.plot(x, y, 'o', label ='Actual Cases')
ax.plot(x_, yfit, '-', label ='Fitted Cases')
ax.plot(x, y_, 'o', label ='Actual Fatalities')
ax.plot(x_, yfit_, '-', label ='Fitted fatalities')
ax.title.set_text('US - New York')
plt.legend(loc="center right")
plt.show()
unique = pd.DataFrame(train_.groupby(['Country_Region', 'Province_State'], as_index=False).count())
import datetime as dt
def date_day_diff(d1, d2):
delta = dt.datetime.strptime(d1, '%Y-%m-%d') - dt.datetime.strptime(d2, '%Y-%m-%d')
return delta.days
log_regions = []
for index, region in unique.iterrows():
st = region['Province_State']
co = region['Country_Region']
rdata = train_[(train_['Province_State'] == st) & (train_['Country_Region'] == co)]
t = rdata['Date'].values
t = [float(date_day_diff(d, t[0])) for d in t]
y = rdata['ConfirmedCases'].values
y_ = rdata['Fatalities'].values
p0 = [max(y), 0.0, max(t)]
p0_ = [max(y_), 0.0, max(t)]
try:
popt, pcov = opt.curve_fit(logistic, t, y, p0, maxfev=10000)
try:
popt_, pcov_ = opt.curve_fit(logistic, t, y_, p0_, maxfev=10000)
except:
popt_, pcov_ = opt.curve_fit(f, t, y_, method='trf', maxfev=10000)
log_regions.append((co, st, popt, popt_))
except:
popt, pcov = opt.curve_fit(f, t, y, method='trf', maxfev=10000)
popt_, pcov_ = opt.curve_fit(f, t, y_, method='trf', maxfev=10000)
log_regions.append((co, st, popt, popt_))
log_regions = pd.DataFrame(log_regions)
log_regions.columns = ['Country_Region', 'Province_State', 'ConfirmedCases', 'Fatalities']
T = np.arange(0, 100, 1).tolist()
popt = list(log_regions[log_regions['Country_Region'] == 'Italy'][log_regions['Province_State'] == 'Italy']['ConfirmedCases'])[0]
popt_ = list(log_regions[log_regions['Country_Region'] == 'Italy'][log_regions['Province_State'] == 'Italy']['Fatalities'])[0]
try:
yfit = logistic(T, *popt)
yfit_ = logistic(T, *popt_)
except:
yfit = f(T, *popt)
yfit_ = f(T, *popt_)
fig, ax = plt.subplots(1, 1, figsize=(10, 8))
ax.plot(T, yfit, label='Fitted ConfirmedCases')
ax.plot(T, yfit_, label='Fitted Fatalities')
ax.title.set_text('Italy fitted params')
plt.legend(loc='upper left')
plt.show() | code |
32067919/cell_3 | [
"text_html_output_1.png"
] | import pandas as pd
train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv')
test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv')
train.head() | code |
32067919/cell_17 | [
"text_html_output_1.png"
] | import datetime as dt
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.optimize as opt
train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv')
test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv')
train_ = train[train['ConfirmedCases'] >= 0]
EMPTY_VAL = 'EMPTY_VAL'
def fillState(state, country):
if state == EMPTY_VAL:
return country
return state
train_['Province_State'].fillna(EMPTY_VAL, inplace=True)
train_['Province_State'] = train_.loc[:, ['Province_State', 'Country_Region']].apply(lambda x: fillState(x['Province_State'], x['Country_Region']), axis=1)
test['Province_State'].fillna(EMPTY_VAL, inplace=True)
test['Province_State'] = test.loc[:, ['Province_State', 'Country_Region']].apply(lambda x: fillState(x['Province_State'], x['Country_Region']), axis=1)
train_['row_number'] = train_.groupby(['Country_Region', 'Province_State']).cumcount()
x = train_[train_["Country_Region"] == 'US'][train_["Province_State"] == 'New York']['row_number']
y = train_[train_["Country_Region"] == 'US'][train_["Province_State"] == 'New York']['ConfirmedCases']
y_ = train_[train_["Country_Region"] == 'US'][train_["Province_State"] == 'New York']['Fatalities']
def f(x, L, b, k, x_0):
return L / (1. + np.exp(-k * (x - x_0))) + b
def logistic(xs, L, k, x_0):
result = []
for x in xs:
xp = k*(x-x_0)
if xp >= 0:
result.append(L / ( 1. + np.exp(-xp) ) )
else:
result.append(L * np.exp(xp) / ( 1. + np.exp(xp) ) )
return result
p0 = [max(y), 0.0,max(x)]
p0_ = [max(y_), 0.0,max(x)]
x_ = np.arange(0, 100, 1).tolist()
try:
popt, pcov = opt.curve_fit(logistic, x, y,p0)
yfit = logistic(x_, *popt)
popt_, pcov_ = opt.curve_fit(logistic, x, y_,p0_)
yfit_ = logistic(x_, *popt_)
except:
popt, pcov = opt.curve_fit(f, x, y, method="lm", maxfev=5000)
yfit = f(x_, *popt)
popt_, pcov_ = opt.curve_fit(f, x, y_, method="lm", maxfev=5000)
yfit_ = f(x_, *popt_)
#print("problem")
fig, ax = plt.subplots(1, 1, figsize=(10, 8))
ax.plot(x, y, 'o', label ='Actual Cases')
ax.plot(x_, yfit, '-', label ='Fitted Cases')
ax.plot(x, y_, 'o', label ='Actual Fatalities')
ax.plot(x_, yfit_, '-', label ='Fitted fatalities')
ax.title.set_text('US - New York')
plt.legend(loc="center right")
plt.show()
unique = pd.DataFrame(train_.groupby(['Country_Region', 'Province_State'], as_index=False).count())
import datetime as dt
def date_day_diff(d1, d2):
delta = dt.datetime.strptime(d1, '%Y-%m-%d') - dt.datetime.strptime(d2, '%Y-%m-%d')
return delta.days
log_regions = []
for index, region in unique.iterrows():
st = region['Province_State']
co = region['Country_Region']
rdata = train_[(train_['Province_State'] == st) & (train_['Country_Region'] == co)]
t = rdata['Date'].values
t = [float(date_day_diff(d, t[0])) for d in t]
y = rdata['ConfirmedCases'].values
y_ = rdata['Fatalities'].values
p0 = [max(y), 0.0, max(t)]
p0_ = [max(y_), 0.0, max(t)]
try:
popt, pcov = opt.curve_fit(logistic, t, y, p0, maxfev=10000)
try:
popt_, pcov_ = opt.curve_fit(logistic, t, y_, p0_, maxfev=10000)
except:
popt_, pcov_ = opt.curve_fit(f, t, y_, method='trf', maxfev=10000)
log_regions.append((co, st, popt, popt_))
except:
popt, pcov = opt.curve_fit(f, t, y, method='trf', maxfev=10000)
popt_, pcov_ = opt.curve_fit(f, t, y_, method='trf', maxfev=10000)
log_regions.append((co, st, popt, popt_))
log_regions = pd.DataFrame(log_regions)
log_regions.columns = ['Country_Region', 'Province_State', 'ConfirmedCases', 'Fatalities']
T = np.arange(0, 100, 1).tolist()
popt = list(log_regions[log_regions["Country_Region"] == 'Italy'][log_regions["Province_State"] == 'Italy']['ConfirmedCases'])[0]
popt_ = list(log_regions[log_regions["Country_Region"] == 'Italy'][log_regions["Province_State"] == 'Italy']['Fatalities'])[0]
try:
yfit = logistic(T, *popt)
yfit_ = logistic(T, *popt_)
except:
yfit = f(T, *popt)
yfit_ = f(T, *popt_)
fig, ax = plt.subplots(1, 1, figsize=(10, 8))
ax.plot(T, yfit, label="Fitted ConfirmedCases")
ax.plot(T, yfit_, label="Fitted Fatalities")
ax.title.set_text('Italy fitted params')
plt.legend(loc="upper left")
plt.show()
for index, rt in log_regions.iterrows():
st = rt['Province_State']
co = rt['Country_Region']
popt = list(['ConfirmedCases'])
popt_ = list(rt['Fatalities'])
print(co, st, popt, popt_) | code |
32067919/cell_14 | [
"text_html_output_1.png"
] | import datetime as dt
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.optimize as opt
train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv')
test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv')
train_ = train[train['ConfirmedCases'] >= 0]
EMPTY_VAL = 'EMPTY_VAL'
def fillState(state, country):
if state == EMPTY_VAL:
return country
return state
train_['Province_State'].fillna(EMPTY_VAL, inplace=True)
train_['Province_State'] = train_.loc[:, ['Province_State', 'Country_Region']].apply(lambda x: fillState(x['Province_State'], x['Country_Region']), axis=1)
test['Province_State'].fillna(EMPTY_VAL, inplace=True)
test['Province_State'] = test.loc[:, ['Province_State', 'Country_Region']].apply(lambda x: fillState(x['Province_State'], x['Country_Region']), axis=1)
train_['row_number'] = train_.groupby(['Country_Region', 'Province_State']).cumcount()
x = train_[train_["Country_Region"] == 'US'][train_["Province_State"] == 'New York']['row_number']
y = train_[train_["Country_Region"] == 'US'][train_["Province_State"] == 'New York']['ConfirmedCases']
y_ = train_[train_["Country_Region"] == 'US'][train_["Province_State"] == 'New York']['Fatalities']
def f(x, L, b, k, x_0):
return L / (1. + np.exp(-k * (x - x_0))) + b
def logistic(xs, L, k, x_0):
result = []
for x in xs:
xp = k*(x-x_0)
if xp >= 0:
result.append(L / ( 1. + np.exp(-xp) ) )
else:
result.append(L * np.exp(xp) / ( 1. + np.exp(xp) ) )
return result
p0 = [max(y), 0.0,max(x)]
p0_ = [max(y_), 0.0,max(x)]
x_ = np.arange(0, 100, 1).tolist()
try:
popt, pcov = opt.curve_fit(logistic, x, y,p0)
yfit = logistic(x_, *popt)
popt_, pcov_ = opt.curve_fit(logistic, x, y_,p0_)
yfit_ = logistic(x_, *popt_)
except:
popt, pcov = opt.curve_fit(f, x, y, method="lm", maxfev=5000)
yfit = f(x_, *popt)
popt_, pcov_ = opt.curve_fit(f, x, y_, method="lm", maxfev=5000)
yfit_ = f(x_, *popt_)
#print("problem")
fig, ax = plt.subplots(1, 1, figsize=(10, 8))
ax.plot(x, y, 'o', label ='Actual Cases')
ax.plot(x_, yfit, '-', label ='Fitted Cases')
ax.plot(x, y_, 'o', label ='Actual Fatalities')
ax.plot(x_, yfit_, '-', label ='Fitted fatalities')
ax.title.set_text('US - New York')
plt.legend(loc="center right")
plt.show()
unique = pd.DataFrame(train_.groupby(['Country_Region', 'Province_State'], as_index=False).count())
import datetime as dt
def date_day_diff(d1, d2):
delta = dt.datetime.strptime(d1, '%Y-%m-%d') - dt.datetime.strptime(d2, '%Y-%m-%d')
return delta.days
log_regions = []
for index, region in unique.iterrows():
st = region['Province_State']
co = region['Country_Region']
rdata = train_[(train_['Province_State'] == st) & (train_['Country_Region'] == co)]
t = rdata['Date'].values
t = [float(date_day_diff(d, t[0])) for d in t]
y = rdata['ConfirmedCases'].values
y_ = rdata['Fatalities'].values
p0 = [max(y), 0.0, max(t)]
p0_ = [max(y_), 0.0, max(t)]
try:
popt, pcov = opt.curve_fit(logistic, t, y, p0, maxfev=10000)
try:
popt_, pcov_ = opt.curve_fit(logistic, t, y_, p0_, maxfev=10000)
except:
popt_, pcov_ = opt.curve_fit(f, t, y_, method='trf', maxfev=10000)
log_regions.append((co, st, popt, popt_))
except:
popt, pcov = opt.curve_fit(f, t, y, method='trf', maxfev=10000)
popt_, pcov_ = opt.curve_fit(f, t, y_, method='trf', maxfev=10000)
log_regions.append((co, st, popt, popt_))
log_regions = pd.DataFrame(log_regions)
log_regions.columns = ['Country_Region', 'Province_State', 'ConfirmedCases', 'Fatalities']
log_regions.head(1) | code |
32067919/cell_10 | [
"text_html_output_1.png"
] | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.optimize as opt
train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv')
test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv')
train_ = train[train['ConfirmedCases'] >= 0]
EMPTY_VAL = 'EMPTY_VAL'
def fillState(state, country):
if state == EMPTY_VAL:
return country
return state
train_['Province_State'].fillna(EMPTY_VAL, inplace=True)
train_['Province_State'] = train_.loc[:, ['Province_State', 'Country_Region']].apply(lambda x: fillState(x['Province_State'], x['Country_Region']), axis=1)
test['Province_State'].fillna(EMPTY_VAL, inplace=True)
test['Province_State'] = test.loc[:, ['Province_State', 'Country_Region']].apply(lambda x: fillState(x['Province_State'], x['Country_Region']), axis=1)
train_['row_number'] = train_.groupby(['Country_Region', 'Province_State']).cumcount()
x = train_[train_["Country_Region"] == 'US'][train_["Province_State"] == 'New York']['row_number']
y = train_[train_["Country_Region"] == 'US'][train_["Province_State"] == 'New York']['ConfirmedCases']
y_ = train_[train_["Country_Region"] == 'US'][train_["Province_State"] == 'New York']['Fatalities']
def f(x, L, b, k, x_0):
return L / (1. + np.exp(-k * (x - x_0))) + b
def logistic(xs, L, k, x_0):
result = []
for x in xs:
xp = k*(x-x_0)
if xp >= 0:
result.append(L / ( 1. + np.exp(-xp) ) )
else:
result.append(L * np.exp(xp) / ( 1. + np.exp(xp) ) )
return result
p0 = [max(y), 0.0,max(x)]
p0_ = [max(y_), 0.0,max(x)]
x_ = np.arange(0, 100, 1).tolist()
try:
popt, pcov = opt.curve_fit(logistic, x, y,p0)
yfit = logistic(x_, *popt)
popt_, pcov_ = opt.curve_fit(logistic, x, y_,p0_)
yfit_ = logistic(x_, *popt_)
except:
popt, pcov = opt.curve_fit(f, x, y, method="lm", maxfev=5000)
yfit = f(x_, *popt)
popt_, pcov_ = opt.curve_fit(f, x, y_, method="lm", maxfev=5000)
yfit_ = f(x_, *popt_)
#print("problem")
fig, ax = plt.subplots(1, 1, figsize=(10, 8))
ax.plot(x, y, 'o', label ='Actual Cases')
ax.plot(x_, yfit, '-', label ='Fitted Cases')
ax.plot(x, y_, 'o', label ='Actual Fatalities')
ax.plot(x_, yfit_, '-', label ='Fitted fatalities')
ax.title.set_text('US - New York')
plt.legend(loc="center right")
plt.show()
unique = pd.DataFrame(train_.groupby(['Country_Region', 'Province_State'], as_index=False).count())
unique.head() | code |
32067919/cell_12 | [
"text_html_output_1.png"
] | import datetime as dt
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.optimize as opt
train = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/train.csv')
test = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-4/test.csv')
train_ = train[train['ConfirmedCases'] >= 0]
EMPTY_VAL = 'EMPTY_VAL'
def fillState(state, country):
if state == EMPTY_VAL:
return country
return state
train_['Province_State'].fillna(EMPTY_VAL, inplace=True)
train_['Province_State'] = train_.loc[:, ['Province_State', 'Country_Region']].apply(lambda x: fillState(x['Province_State'], x['Country_Region']), axis=1)
test['Province_State'].fillna(EMPTY_VAL, inplace=True)
test['Province_State'] = test.loc[:, ['Province_State', 'Country_Region']].apply(lambda x: fillState(x['Province_State'], x['Country_Region']), axis=1)
train_['row_number'] = train_.groupby(['Country_Region', 'Province_State']).cumcount()
x = train_[train_["Country_Region"] == 'US'][train_["Province_State"] == 'New York']['row_number']
y = train_[train_["Country_Region"] == 'US'][train_["Province_State"] == 'New York']['ConfirmedCases']
y_ = train_[train_["Country_Region"] == 'US'][train_["Province_State"] == 'New York']['Fatalities']
def f(x, L, b, k, x_0):
return L / (1. + np.exp(-k * (x - x_0))) + b
def logistic(xs, L, k, x_0):
result = []
for x in xs:
xp = k*(x-x_0)
if xp >= 0:
result.append(L / ( 1. + np.exp(-xp) ) )
else:
result.append(L * np.exp(xp) / ( 1. + np.exp(xp) ) )
return result
p0 = [max(y), 0.0,max(x)]
p0_ = [max(y_), 0.0,max(x)]
x_ = np.arange(0, 100, 1).tolist()
try:
popt, pcov = opt.curve_fit(logistic, x, y,p0)
yfit = logistic(x_, *popt)
popt_, pcov_ = opt.curve_fit(logistic, x, y_,p0_)
yfit_ = logistic(x_, *popt_)
except:
popt, pcov = opt.curve_fit(f, x, y, method="lm", maxfev=5000)
yfit = f(x_, *popt)
popt_, pcov_ = opt.curve_fit(f, x, y_, method="lm", maxfev=5000)
yfit_ = f(x_, *popt_)
#print("problem")
fig, ax = plt.subplots(1, 1, figsize=(10, 8))
ax.plot(x, y, 'o', label ='Actual Cases')
ax.plot(x_, yfit, '-', label ='Fitted Cases')
ax.plot(x, y_, 'o', label ='Actual Fatalities')
ax.plot(x_, yfit_, '-', label ='Fitted fatalities')
ax.title.set_text('US - New York')
plt.legend(loc="center right")
plt.show()
unique = pd.DataFrame(train_.groupby(['Country_Region', 'Province_State'], as_index=False).count())
import datetime as dt
def date_day_diff(d1, d2):
delta = dt.datetime.strptime(d1, '%Y-%m-%d') - dt.datetime.strptime(d2, '%Y-%m-%d')
return delta.days
log_regions = []
for index, region in unique.iterrows():
st = region['Province_State']
co = region['Country_Region']
rdata = train_[(train_['Province_State'] == st) & (train_['Country_Region'] == co)]
t = rdata['Date'].values
t = [float(date_day_diff(d, t[0])) for d in t]
y = rdata['ConfirmedCases'].values
y_ = rdata['Fatalities'].values
p0 = [max(y), 0.0, max(t)]
p0_ = [max(y_), 0.0, max(t)]
try:
popt, pcov = opt.curve_fit(logistic, t, y, p0, maxfev=10000)
try:
popt_, pcov_ = opt.curve_fit(logistic, t, y_, p0_, maxfev=10000)
except:
popt_, pcov_ = opt.curve_fit(f, t, y_, method='trf', maxfev=10000)
log_regions.append((co, st, popt, popt_))
except:
popt, pcov = opt.curve_fit(f, t, y, method='trf', maxfev=10000)
popt_, pcov_ = opt.curve_fit(f, t, y_, method='trf', maxfev=10000)
log_regions.append((co, st, popt, popt_))
print('All done!') | code |
32068517/cell_13 | [
"text_plain_output_1.png"
] | PATH = '/kaggle/input/covid19-global-forecasting-week-4/'
train_df = pd.read_csv(PATH + 'train.csv', parse_dates=['Date'])
test_df = pd.read_csv(PATH + 'test.csv', parse_dates=['Date'])
add_datepart(train_df, 'Date', drop=False)
add_datepart(test_df, 'Date', drop=False)
train_df.shape
PATH1 = '/kaggle/input/covid19-country-data-wk3-release/'
meta_convert_fun = lambda x: np.float32(x) if x not in ['N.A.', '#N/A', '#NULL!'] else np.nan
meta_df = pd.read_csv(PATH1 + 'Data Join - RELEASE.csv', thousands=',', converters={' TFR ': meta_convert_fun, 'Personality_uai': meta_convert_fun}).rename(columns=lambda x: x.strip())
PATH2 = '/kaggle/input/countryinfo/'
countryinfo = pd.read_csv(PATH2 + 'covid19countryinfo.csv', thousands=',', parse_dates=['quarantine', 'schools', 'publicplace', 'gathering', 'nonessential'])
testinfo = pd.read_csv(PATH2 + 'covid19tests.csv', thousands=',')
countryinfo.rename(columns={'region': 'Province_State', 'country': 'Country_Region'}, inplace=True)
testinfo.rename(columns={'region': 'Province_State', 'country': 'Country_Region'}, inplace=True)
testinfo = testinfo.drop(['alpha3code', 'alpha2code', 'date'], axis=1)
PATH3 = '/kaggle/input/covid19-forecasting-metadata/'
continent_meta = pd.read_csv(PATH3 + 'region_metadata.csv').rename(columns={'density': 'pop_density'})
continent_meta = continent_meta[['Country_Region', 'Province_State', 'continent', 'lat', 'lon', 'pop_density']]
recoveries_meta = pd.read_csv(PATH3 + 'region_date_metadata.csv', parse_dates=['Date'])
def fill_unknown_state(df):
df.fillna({'Province_State': 'Unknown'}, inplace=True)
for d in [train_df, test_df, meta_df, countryinfo, testinfo, continent_meta, recoveries_meta]:
fill_unknown_state(d)
outliars = ['China']
out_inputs = {}
for out in outliars:
out_inputs[out] = train_df[train_df['Country_Region'] == out]
train_df.drop(train_df.index[train_df['Country_Region'] == out], inplace=True)
test_ori = test_df.copy()
merge_cols = ['Province_State', 'Country_Region', 'Date']
test_hlp = test_df[merge_cols + ['ForecastId']]
fst_date = test_hlp.Date.min()
outlier_dfs = []
for out, in_df in out_inputs.items():
last_date = in_df.Date.max()
merged = in_df[in_df['Date'] >= fst_date].merge(test_hlp, on=merge_cols, how='left')[['ForecastId', 'ConfirmedCases', 'Fatalities']]
future_test = test_hlp[(test_hlp['Country_Region'] == out) & (test_hlp['Date'] > last_date)]
to_add = in_df.groupby(['Province_State', 'Country_Region']).last().reset_index()[['Province_State', 'Country_Region', 'ConfirmedCases', 'Fatalities']]
merged_future = future_test.merge(to_add, on=['Province_State', 'Country_Region'], how='left')[['ForecastId', 'ConfirmedCases', 'Fatalities']]
merged = pd.concat([merged, merged_future], sort=True)
test_df.drop(test_df[test_df['ForecastId'].isin(merged.ForecastId)].index, inplace=True)
outlier_dfs.append(merged)
outlier_df = pd.concat(outlier_dfs, sort=True)
outlier_df.index = outlier_df['ForecastId']
outlier_df.drop('ForecastId', axis=1, inplace=True)
train_max_date = train_df.Date.max()
outlier_all = test_df[test_df['Date'] <= train_max_date].merge(train_df, on=merge_cols, how='left')[['ForecastId', 'ConfirmedCases', 'Fatalities']]
outlier_all.index = outlier_all.ForecastId
test_df.drop(test_df[test_df['ForecastId'].isin(outlier_all.ForecastId)].index, inplace=True)
outlier_all.drop('ForecastId', axis=1, inplace=True)
outlier_df = pd.concat([outlier_df, outlier_all], sort=True)
outlier_df | code |
32068517/cell_20 | [
"text_html_output_1.png"
] | PATH = '/kaggle/input/covid19-global-forecasting-week-4/'
train_df = pd.read_csv(PATH + 'train.csv', parse_dates=['Date'])
test_df = pd.read_csv(PATH + 'test.csv', parse_dates=['Date'])
add_datepart(train_df, 'Date', drop=False)
add_datepart(test_df, 'Date', drop=False)
train_df.shape
PATH1 = '/kaggle/input/covid19-country-data-wk3-release/'
meta_convert_fun = lambda x: np.float32(x) if x not in ['N.A.', '#N/A', '#NULL!'] else np.nan
meta_df = pd.read_csv(PATH1 + 'Data Join - RELEASE.csv', thousands=',', converters={' TFR ': meta_convert_fun, 'Personality_uai': meta_convert_fun}).rename(columns=lambda x: x.strip())
PATH2 = '/kaggle/input/countryinfo/'
countryinfo = pd.read_csv(PATH2 + 'covid19countryinfo.csv', thousands=',', parse_dates=['quarantine', 'schools', 'publicplace', 'gathering', 'nonessential'])
testinfo = pd.read_csv(PATH2 + 'covid19tests.csv', thousands=',')
countryinfo.rename(columns={'region': 'Province_State', 'country': 'Country_Region'}, inplace=True)
testinfo.rename(columns={'region': 'Province_State', 'country': 'Country_Region'}, inplace=True)
testinfo = testinfo.drop(['alpha3code', 'alpha2code', 'date'], axis=1)
PATH3 = '/kaggle/input/covid19-forecasting-metadata/'
continent_meta = pd.read_csv(PATH3 + 'region_metadata.csv').rename(columns={'density': 'pop_density'})
continent_meta = continent_meta[['Country_Region', 'Province_State', 'continent', 'lat', 'lon', 'pop_density']]
recoveries_meta = pd.read_csv(PATH3 + 'region_date_metadata.csv', parse_dates=['Date'])
def fill_unknown_state(df):
df.fillna({'Province_State': 'Unknown'}, inplace=True)
for d in [train_df, test_df, meta_df, countryinfo, testinfo, continent_meta, recoveries_meta]:
fill_unknown_state(d)
outliars = ['China']
out_inputs = {}
for out in outliars:
out_inputs[out] = train_df[train_df['Country_Region'] == out]
train_df.drop(train_df.index[train_df['Country_Region'] == out], inplace=True)
test_ori = test_df.copy()
merge_cols = ['Province_State', 'Country_Region', 'Date']
test_hlp = test_df[merge_cols + ['ForecastId']]
fst_date = test_hlp.Date.min()
outlier_dfs = []
for out, in_df in out_inputs.items():
last_date = in_df.Date.max()
merged = in_df[in_df['Date'] >= fst_date].merge(test_hlp, on=merge_cols, how='left')[['ForecastId', 'ConfirmedCases', 'Fatalities']]
future_test = test_hlp[(test_hlp['Country_Region'] == out) & (test_hlp['Date'] > last_date)]
to_add = in_df.groupby(['Province_State', 'Country_Region']).last().reset_index()[['Province_State', 'Country_Region', 'ConfirmedCases', 'Fatalities']]
merged_future = future_test.merge(to_add, on=['Province_State', 'Country_Region'], how='left')[['ForecastId', 'ConfirmedCases', 'Fatalities']]
merged = pd.concat([merged, merged_future], sort=True)
test_df.drop(test_df[test_df['ForecastId'].isin(merged.ForecastId)].index, inplace=True)
outlier_dfs.append(merged)
outlier_df = pd.concat(outlier_dfs, sort=True)
outlier_df.index = outlier_df['ForecastId']
outlier_df.drop('ForecastId', axis=1, inplace=True)
train_max_date = train_df.Date.max()
outlier_all = test_df[test_df['Date'] <= train_max_date].merge(train_df, on=merge_cols, how='left')[['ForecastId', 'ConfirmedCases', 'Fatalities']]
outlier_all.index = outlier_all.ForecastId
test_df.drop(test_df[test_df['ForecastId'].isin(outlier_all.ForecastId)].index, inplace=True)
outlier_all.drop('ForecastId', axis=1, inplace=True)
outlier_df = pd.concat([outlier_df, outlier_all], sort=True)
outlier_df
idx_group = ['Country_Region', 'Province_State']
def day_reached_cases(df, name, no_cases=1):
"""For each country/province get first day of year with at least given number of cases."""
gb = df[df['ConfirmedCases'] >= no_cases].groupby(idx_group)
return gb.Dayofyear.first().reset_index().rename(columns={'Dayofyear': name})
def area_fatality_rate(df):
"""Get average fatality rate for last known entry, for each country/province."""
gb = df[df['Fatalities'] >= 22].groupby(idx_group)
res_df = (gb.Fatalities.last() / gb.ConfirmedCases.last()).reset_index()
return res_df.rename(columns={0: 'FatalityRate'})
def joined_data(df):
res = df.copy()
fatality = area_fatality_rate(train_df)
first_nonzero = day_reached_cases(train_df, 'FirstCaseDay', 1)
first_fifty = day_reached_cases(train_df, 'First50CasesDay', 50)
res = pd.merge(res, continent_meta, how='left')
res = pd.merge(res, recoveries_meta, how='left')
res = pd.merge(res, meta_df, how='left')
res = pd.merge(res, countryinfo, how='left')
res = pd.merge(res, testinfo, how='left', left_on=idx_group, right_on=idx_group)
res = pd.merge(res, fatality, how='left')
res = pd.merge(res, first_nonzero, how='left')
res = pd.merge(res, first_fifty, how='left')
return res
train_df = joined_data(train_df)
test_df = joined_data(test_df)
train_df.FirstCaseDay.isna().sum()
def with_new_features(df):
res = df.copy()
add_datepart(res, 'quarantine', prefix='qua')
add_datepart(res, 'schools', prefix='sql')
res['DaysSinceFirst'] = res['Dayofyear'] - res['FirstCaseDay']
res['DaysSince50'] = res['Dayofyear'] - res['First50CasesDay']
res['DaysQua'] = res['Dayofyear'] - res['quaDayofyear']
res['DaysSql'] = res['Dayofyear'] - res['sqlDayofyear']
return res
train_df = with_new_features(train_df)
test_df = with_new_features(test_df)
train_df.shape | code |
32068517/cell_2 | [
"text_plain_output_1.png"
] | !pip install fastai2
!pip install fast_tabnet | code |
32068517/cell_3 | [
"text_plain_output_1.png"
] | import os
from fastai2.basics import *
from fastai2.tabular.all import *
from fast_tabnet.core import *
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename)) | code |
32068517/cell_17 | [
"text_plain_output_1.png"
] | PATH = '/kaggle/input/covid19-global-forecasting-week-4/'
train_df = pd.read_csv(PATH + 'train.csv', parse_dates=['Date'])
test_df = pd.read_csv(PATH + 'test.csv', parse_dates=['Date'])
add_datepart(train_df, 'Date', drop=False)
add_datepart(test_df, 'Date', drop=False)
train_df.shape
PATH1 = '/kaggle/input/covid19-country-data-wk3-release/'
meta_convert_fun = lambda x: np.float32(x) if x not in ['N.A.', '#N/A', '#NULL!'] else np.nan
meta_df = pd.read_csv(PATH1 + 'Data Join - RELEASE.csv', thousands=',', converters={' TFR ': meta_convert_fun, 'Personality_uai': meta_convert_fun}).rename(columns=lambda x: x.strip())
PATH2 = '/kaggle/input/countryinfo/'
countryinfo = pd.read_csv(PATH2 + 'covid19countryinfo.csv', thousands=',', parse_dates=['quarantine', 'schools', 'publicplace', 'gathering', 'nonessential'])
testinfo = pd.read_csv(PATH2 + 'covid19tests.csv', thousands=',')
countryinfo.rename(columns={'region': 'Province_State', 'country': 'Country_Region'}, inplace=True)
testinfo.rename(columns={'region': 'Province_State', 'country': 'Country_Region'}, inplace=True)
testinfo = testinfo.drop(['alpha3code', 'alpha2code', 'date'], axis=1)
PATH3 = '/kaggle/input/covid19-forecasting-metadata/'
continent_meta = pd.read_csv(PATH3 + 'region_metadata.csv').rename(columns={'density': 'pop_density'})
continent_meta = continent_meta[['Country_Region', 'Province_State', 'continent', 'lat', 'lon', 'pop_density']]
recoveries_meta = pd.read_csv(PATH3 + 'region_date_metadata.csv', parse_dates=['Date'])
def fill_unknown_state(df):
df.fillna({'Province_State': 'Unknown'}, inplace=True)
for d in [train_df, test_df, meta_df, countryinfo, testinfo, continent_meta, recoveries_meta]:
fill_unknown_state(d)
outliars = ['China']
out_inputs = {}
for out in outliars:
out_inputs[out] = train_df[train_df['Country_Region'] == out]
train_df.drop(train_df.index[train_df['Country_Region'] == out], inplace=True)
test_ori = test_df.copy()
merge_cols = ['Province_State', 'Country_Region', 'Date']
test_hlp = test_df[merge_cols + ['ForecastId']]
fst_date = test_hlp.Date.min()
outlier_dfs = []
for out, in_df in out_inputs.items():
last_date = in_df.Date.max()
merged = in_df[in_df['Date'] >= fst_date].merge(test_hlp, on=merge_cols, how='left')[['ForecastId', 'ConfirmedCases', 'Fatalities']]
future_test = test_hlp[(test_hlp['Country_Region'] == out) & (test_hlp['Date'] > last_date)]
to_add = in_df.groupby(['Province_State', 'Country_Region']).last().reset_index()[['Province_State', 'Country_Region', 'ConfirmedCases', 'Fatalities']]
merged_future = future_test.merge(to_add, on=['Province_State', 'Country_Region'], how='left')[['ForecastId', 'ConfirmedCases', 'Fatalities']]
merged = pd.concat([merged, merged_future], sort=True)
test_df.drop(test_df[test_df['ForecastId'].isin(merged.ForecastId)].index, inplace=True)
outlier_dfs.append(merged)
outlier_df = pd.concat(outlier_dfs, sort=True)
outlier_df.index = outlier_df['ForecastId']
outlier_df.drop('ForecastId', axis=1, inplace=True)
train_max_date = train_df.Date.max()
outlier_all = test_df[test_df['Date'] <= train_max_date].merge(train_df, on=merge_cols, how='left')[['ForecastId', 'ConfirmedCases', 'Fatalities']]
outlier_all.index = outlier_all.ForecastId
test_df.drop(test_df[test_df['ForecastId'].isin(outlier_all.ForecastId)].index, inplace=True)
outlier_all.drop('ForecastId', axis=1, inplace=True)
outlier_df = pd.concat([outlier_df, outlier_all], sort=True)
outlier_df
idx_group = ['Country_Region', 'Province_State']
def day_reached_cases(df, name, no_cases=1):
"""For each country/province get first day of year with at least given number of cases."""
gb = df[df['ConfirmedCases'] >= no_cases].groupby(idx_group)
return gb.Dayofyear.first().reset_index().rename(columns={'Dayofyear': name})
def area_fatality_rate(df):
"""Get average fatality rate for last known entry, for each country/province."""
gb = df[df['Fatalities'] >= 22].groupby(idx_group)
res_df = (gb.Fatalities.last() / gb.ConfirmedCases.last()).reset_index()
return res_df.rename(columns={0: 'FatalityRate'})
def joined_data(df):
res = df.copy()
fatality = area_fatality_rate(train_df)
first_nonzero = day_reached_cases(train_df, 'FirstCaseDay', 1)
first_fifty = day_reached_cases(train_df, 'First50CasesDay', 50)
res = pd.merge(res, continent_meta, how='left')
res = pd.merge(res, recoveries_meta, how='left')
res = pd.merge(res, meta_df, how='left')
res = pd.merge(res, countryinfo, how='left')
res = pd.merge(res, testinfo, how='left', left_on=idx_group, right_on=idx_group)
res = pd.merge(res, fatality, how='left')
res = pd.merge(res, first_nonzero, how='left')
res = pd.merge(res, first_fifty, how='left')
return res
train_df = joined_data(train_df)
test_df = joined_data(test_df)
train_df.FirstCaseDay.isna().sum() | code |
32068517/cell_5 | [
"text_html_output_1.png"
] | PATH = '/kaggle/input/covid19-global-forecasting-week-4/'
train_df = pd.read_csv(PATH + 'train.csv', parse_dates=['Date'])
test_df = pd.read_csv(PATH + 'test.csv', parse_dates=['Date'])
add_datepart(train_df, 'Date', drop=False)
add_datepart(test_df, 'Date', drop=False)
train_df.shape | code |
16164174/cell_9 | [
"text_plain_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/train.csv')
df
simple_feature_cutting_df = df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin', 'Embarked'], axis=1)
simple_feature_cutting_df = simple_feature_cutting_df.dropna()
simple_feature_cutting_df = pd.get_dummies(simple_feature_cutting_df, columns=['Sex'])
simple_feature_cutting_df
test_data_set = simple_feature_cutting_df[:100]
train_data_set = simple_feature_cutting_df[100:]
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
label_data = train_data_set['Survived']
train_data = train_data_set.drop('Survived', axis=1)
model.fit(train_data, label_data)
result_test_predict = model.predict(test_data_set.drop('Survived', axis=1))
real_test_observations = np.array(test_data_set['Survived'])
result = pd.DataFrame({'predict': result_test_predict, 'real': real_test_observations})
result['Correct'] = result.apply(lambda row: row['predict'] == row['real'], axis=1)
result | code |
16164174/cell_4 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/train.csv')
df | code |
16164174/cell_6 | [
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/train.csv')
df
simple_feature_cutting_df = df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin', 'Embarked'], axis=1)
simple_feature_cutting_df = simple_feature_cutting_df.dropna()
simple_feature_cutting_df = pd.get_dummies(simple_feature_cutting_df, columns=['Sex'])
simple_feature_cutting_df | code |
16164174/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
16164174/cell_8 | [
"text_html_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/train.csv')
df
simple_feature_cutting_df = df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin', 'Embarked'], axis=1)
simple_feature_cutting_df = simple_feature_cutting_df.dropna()
simple_feature_cutting_df = pd.get_dummies(simple_feature_cutting_df, columns=['Sex'])
simple_feature_cutting_df
test_data_set = simple_feature_cutting_df[:100]
train_data_set = simple_feature_cutting_df[100:]
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
label_data = train_data_set['Survived']
train_data = train_data_set.drop('Survived', axis=1)
model.fit(train_data, label_data) | code |
16164174/cell_10 | [
"text_html_output_1.png"
] | from sklearn.ensemble import RandomForestClassifier
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/train.csv')
df
simple_feature_cutting_df = df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin', 'Embarked'], axis=1)
simple_feature_cutting_df = simple_feature_cutting_df.dropna()
simple_feature_cutting_df = pd.get_dummies(simple_feature_cutting_df, columns=['Sex'])
simple_feature_cutting_df
test_data_set = simple_feature_cutting_df[:100]
train_data_set = simple_feature_cutting_df[100:]
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()
label_data = train_data_set['Survived']
train_data = train_data_set.drop('Survived', axis=1)
model.fit(train_data, label_data)
result_test_predict = model.predict(test_data_set.drop('Survived', axis=1))
real_test_observations = np.array(test_data_set['Survived'])
result = pd.DataFrame({'predict': result_test_predict, 'real': real_test_observations})
result['Correct'] = result.apply(lambda row: row['predict'] == row['real'], axis=1)
result
num_correct = len(result[result['Correct']])
num_total = len(result)
num_correct / num_total | code |
16164174/cell_5 | [
"text_html_output_1.png"
] | import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
df = pd.read_csv('../input/train.csv')
df
import matplotlib.pyplot as plt
df['Age'].hist(bins=20) | code |
128027681/cell_4 | [
"image_output_5.png",
"image_output_4.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_3.png",
"image_output_2.png",
"image_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import os
import pandas as pd
import pandas as pd
import seaborn as sns
import seaborn as sns
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
if filename == '2018.csv':
data_path = os.path.join(dirname, filename)
data = pd.read_csv(data_path)
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
X = data[['GDP per capita', 'Social support', 'Healthy life expectancy', 'Freedom to make life choices', 'Generosity', 'Perceptions of corruption']]
y = data['Score']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
coeff_df = pd.DataFrame(model.coef_, X.columns, columns=['Coefficient'])
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
if filename == 'report_2018-2019.csv':
data_path = os.path.join(dirname, filename)
data = pd.read_csv(data_path)
X = data.drop(['Overall rank', 'Country or region', 'Score', 'Year'], axis=1)
y = data['Score']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
reg = LinearRegression()
reg.fit(X_train, y_train)
y_pred = reg.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
coefficients = pd.DataFrame(reg.coef_, X.columns, columns=['Coefficient'])
plt.figure(figsize=(8, 6))
sns.histplot(data=data, x='Score', kde=True)
plt.title('Distribution of Happiness Scores')
plt.xlabel('Happiness Score')
plt.ylabel('Frequency')
plt.show()
yearly_data = data.groupby('Year').mean()
yearly_data.reset_index(level=0, inplace=True)
yearly_data.plot(x='Year', y=['Score', 'GDP per capita', 'Social support', 'Healthy life expectancy', 'Freedom to make life choices', 'Generosity', 'Perceptions of corruption'], kind='bar', subplots=True, layout=(4, 2), figsize=(15, 15), legend=False)
plt.tight_layout()
plt.show()
top_10_2019 = data[data['Year'] == 2019].sort_values('Score', ascending=False).head(10)
print('Top 10 countries by happiness score in 2019:\n', top_10_2019['Country or region'])
bottom_10_2019 = data[data['Year'] == 2019].sort_values('Score', ascending=True).head(10)
print('Bottom 10 countries by happiness score in 2019:\n', bottom_10_2019['Country or region'])
top_gdp_2019 = data[data['Year'] == 2019].sort_values('GDP per capita', ascending=False).head(5)
top_social_2019 = data[data['Year'] == 2019].sort_values('Social support', ascending=False).head(5)
top_health_2019 = data[data['Year'] == 2019].sort_values('Healthy life expectancy', ascending=False).head(5)
print('Top 5 countries by GDP per capita in 2019:\n', top_gdp_2019['Country or region'])
print('Top 5 countries by Social support in 2019:\n', top_social_2019['Country or region'])
print('Top 5 countries by Healthy life expectancy in 2019:\n', top_health_2019['Country or region'])
plt.figure(figsize=(8, 6))
sns.scatterplot(data=data, x='GDP per capita', y='Score', hue='Year', style='Year')
plt.title('GDP per Capita vs Happiness Score')
plt.xlabel('GDP per Capita')
plt.ylabel('Happiness Score')
plt.show()
plt.figure(figsize=(8, 6))
sns.scatterplot(data=data, x='Social support', y='Score', hue='Year', style='Year')
plt.title('Social Support vs Happiness Score')
plt.xlabel('Social Support')
plt.ylabel('Happiness Score')
plt.show()
plt.figure(figsize=(8, 6))
sns.scatterplot(data=data, x='Healthy life expectancy', y='Score', hue='Year', style='Year')
plt.title('Healthy Life Expectancy vs Happiness Score')
plt.xlabel('Healthy Life Expectancy')
plt.ylabel('Happiness Score')
plt.show() | code |
128027681/cell_1 | [
"text_plain_output_4.png",
"application_vnd.jupyter.stderr_output_3.png",
"text_plain_output_2.png",
"application_vnd.jupyter.stderr_output_1.png",
"image_output_2.png",
"image_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import os
import pandas as pd
import seaborn as sns
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
if filename == '2018.csv':
data_path = os.path.join(dirname, filename)
data = pd.read_csv(data_path)
print('Dataset shape:', data.shape)
print('\nDataset info:')
print(data.info())
print('\nDataset description:')
print(data.describe())
plt.figure(figsize=(10, 8))
sns.heatmap(data.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
plt.show()
sns.pairplot(data)
plt.show()
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
X = data[['GDP per capita', 'Social support', 'Healthy life expectancy', 'Freedom to make life choices', 'Generosity', 'Perceptions of corruption']]
y = data['Score']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print('Mean Squared Error:', mse)
print('R-squared:', r2)
coeff_df = pd.DataFrame(model.coef_, X.columns, columns=['Coefficient'])
print('\nCoefficients:')
print(coeff_df) | code |
128027681/cell_3 | [
"application_vnd.jupyter.stderr_output_2.png",
"text_plain_output_3.png",
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import os
import pandas as pd
import pandas as pd
import seaborn as sns
import seaborn as sns
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
if filename == '2018.csv':
data_path = os.path.join(dirname, filename)
data = pd.read_csv(data_path)
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
X = data[['GDP per capita', 'Social support', 'Healthy life expectancy', 'Freedom to make life choices', 'Generosity', 'Perceptions of corruption']]
y = data['Score']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
coeff_df = pd.DataFrame(model.coef_, X.columns, columns=['Coefficient'])
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
if filename == 'report_2018-2019.csv':
data_path = os.path.join(dirname, filename)
data = pd.read_csv(data_path)
print(data.head())
print(data.info())
print(data.describe())
plt.figure(figsize=(10, 8))
sns.heatmap(data.corr(), annot=True, cmap='coolwarm')
X = data.drop(['Overall rank', 'Country or region', 'Score', 'Year'], axis=1)
y = data['Score']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
reg = LinearRegression()
reg.fit(X_train, y_train)
y_pred = reg.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print('Mean Squared Error:', mse)
print('R-squared:', r2)
coefficients = pd.DataFrame(reg.coef_, X.columns, columns=['Coefficient'])
print(coefficients) | code |
17120125/cell_42 | [
"text_plain_output_1.png"
] | import cv2
import numpy as np
import pandas as pd
import pickle
import tensorflow as tf
IMG_SIZE = 512
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
import cv2
import os
train = pd.read_csv('../input/aptos2019-blindness-detection/train.csv')
test = pd.read_csv('../input/aptos2019-blindness-detection/test.csv')
import pickle
pickle_in_train_x = open('../input/preprocessed-data-aptos2019blindnessdetection/train_x_aptos2019-blindness-detection.pickle', 'rb')
pickle_in_train_y = open('../input/preprocessed-data-aptos2019blindnessdetection/train_y_aptos2019-blindness-detection.pickle', 'rb')
pickle_in_test_x = open('../input/preprocessed-data-aptos2019blindnessdetection/test_x_aptos2019-blindness-detection.pickle', 'rb')
train_x = pickle.load(pickle_in_train_x)
train_y = pickle.load(pickle_in_train_y)
test_x = pickle.load(pickle_in_test_x)
"""
def crop_image1(img,tol=7):
# img is image data
# tol is tolerance
mask = img>tol
return img[np.ix_(mask.any(1),mask.any(0))]
"""
def crop_image_from_gray(img, tol=7):
if img.ndim == 2:
mask = img > tol
return img[np.ix_(mask.any(1), mask.any(0))]
elif img.ndim == 3:
gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
mask = gray_img > tol
check_shape = img[:, :, 0][np.ix_(mask.any(1), mask.any(0))].shape[0]
if check_shape == 0:
return img
else:
img1 = img[:, :, 0][np.ix_(mask.any(1), mask.any(0))]
img2 = img[:, :, 1][np.ix_(mask.any(1), mask.any(0))]
img3 = img[:, :, 2][np.ix_(mask.any(1), mask.any(0))]
img = np.stack([img1, img2, img3], axis=-1)
return img
def load_ben_color(data, img_size, sigmaX=10):
if data.ndim == 4:
for i in range(len(data)):
image = cv2.cvtColor(data[i], cv2.COLOR_BGR2RGB)
image = crop_image_from_gray(image)
image = cv2.resize(image, (img_size, img_size))
data[i] = cv2.addWeighted(image, 4, cv2.GaussianBlur(image, (0, 0), sigmaX), -4, 128)
elif data.ndim == 3:
data = cv2.cvtColor(data, cv2.COLOR_BGR2RGB)
data = crop_image_from_gray(data)
data = cv2.resize(data, (img_size, img_size))
data = cv2.addWeighted(data, 4, cv2.GaussianBlur(data, (0, 0), sigmaX), -4, 128)
else:
return 0
return data
train_x = load_ben_color(train_x, IMG_SIZE, sigmaX=10)
train_x = train_x.astype('float32')
def create_model_1():
layers_1 = [tf.keras.layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation=tf.nn.relu, input_shape=train_x.shape[1:]), tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2)), tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation=tf.nn.relu), tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2)), tf.keras.layers.Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation=tf.nn.relu), tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2)), tf.keras.layers.Conv2D(filters=128, kernel_size=(3, 3), padding='same', activation=tf.nn.relu), tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2)), tf.keras.layers.Conv2D(filters=256, kernel_size=(3, 3), padding='same', activation=tf.nn.relu), tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(units=512, activation=tf.nn.relu), tf.keras.layers.Dense(units=256, activation=tf.nn.relu), tf.keras.layers.Dense(units=len(np.unique(train_y)), activation=tf.nn.softmax)]
model_1 = tf.keras.Sequential(layers_1)
model_1.compile(optimizer=tf.keras.optimizers.Adam(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy'])
return model_1
model_1 = create_model_1()
model_1.summary()
test_predicted = model_1.predict(test_x)
test_predicted = [np.argmax(i) for i in test_predicted]
test_result = pd.DataFrame({'id_code': test['id_code'].values, 'diagnosis': test_predicted})
test_result.head() | code |
17120125/cell_21 | [
"text_plain_output_1.png"
] | import cv2
import matplotlib.pyplot as plt
import numpy as np
import pickle
IMG_SIZE = 512
import pickle
pickle_in_train_x = open('../input/preprocessed-data-aptos2019blindnessdetection/train_x_aptos2019-blindness-detection.pickle', 'rb')
pickle_in_train_y = open('../input/preprocessed-data-aptos2019blindnessdetection/train_y_aptos2019-blindness-detection.pickle', 'rb')
pickle_in_test_x = open('../input/preprocessed-data-aptos2019blindnessdetection/test_x_aptos2019-blindness-detection.pickle', 'rb')
train_x = pickle.load(pickle_in_train_x)
train_y = pickle.load(pickle_in_train_y)
test_x = pickle.load(pickle_in_test_x)
"""
def crop_image1(img,tol=7):
# img is image data
# tol is tolerance
mask = img>tol
return img[np.ix_(mask.any(1),mask.any(0))]
"""
def crop_image_from_gray(img, tol=7):
if img.ndim == 2:
mask = img > tol
return img[np.ix_(mask.any(1), mask.any(0))]
elif img.ndim == 3:
gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
mask = gray_img > tol
check_shape = img[:, :, 0][np.ix_(mask.any(1), mask.any(0))].shape[0]
if check_shape == 0:
return img
else:
img1 = img[:, :, 0][np.ix_(mask.any(1), mask.any(0))]
img2 = img[:, :, 1][np.ix_(mask.any(1), mask.any(0))]
img3 = img[:, :, 2][np.ix_(mask.any(1), mask.any(0))]
img = np.stack([img1, img2, img3], axis=-1)
return img
def load_ben_color(data, img_size, sigmaX=10):
if data.ndim == 4:
for i in range(len(data)):
image = cv2.cvtColor(data[i], cv2.COLOR_BGR2RGB)
image = crop_image_from_gray(image)
image = cv2.resize(image, (img_size, img_size))
data[i] = cv2.addWeighted(image, 4, cv2.GaussianBlur(image, (0, 0), sigmaX), -4, 128)
elif data.ndim == 3:
data = cv2.cvtColor(data, cv2.COLOR_BGR2RGB)
data = crop_image_from_gray(data)
data = cv2.resize(data, (img_size, img_size))
data = cv2.addWeighted(data, 4, cv2.GaussianBlur(data, (0, 0), sigmaX), -4, 128)
else:
return 0
return data
train_x = load_ben_color(train_x, IMG_SIZE, sigmaX=10)
train_x = train_x.astype('float32')
plt.imshow(train_x[0])
plt.show() | code |
17120125/cell_34 | [
"text_plain_output_1.png"
] | """
# https://www.youtube.com/watch?v=HxtBIwfy0kM
checkpoint_path = 'cp_model_1_aptos2019-blindness-detection.ckpt'
checkpoint_dir = os.path.dirname(checkpoint_path)
# Create checkpoint callback
cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path,
save_weights_only=True,
verbose=1)
model_1 = create_model_1()
model_1.fit(train_x, train_y, epochs=5, batch_size=32,
callbacks=[cp_callback]) # pass calback to training
""" | code |
17120125/cell_26 | [
"text_plain_output_1.png"
] | """
pickle_out_train_x = open('train_x_aptos2019-blindness-detection.pickle', 'wb')
pickle.dump(x, pickle_out_train_x)
pickle_out_train_x.close()
pickle_out_train_y = open('train_y_aptos2019-blindness-detection.pickle', 'wb')
pickle.dump(y, pickle_out_train_y)
pickle_out_train_y.close()
pickle_out_test_x = open('test_x_aptos2019-blindness-detection.pickle', 'wb')
pickle.dump(test_x, pickle_out_test_x)
pickle_out_test_x.close()
""" | code |
17120125/cell_11 | [
"text_plain_output_1.png"
] | import pickle
import pickle
pickle_in_train_x = open('../input/preprocessed-data-aptos2019blindnessdetection/train_x_aptos2019-blindness-detection.pickle', 'rb')
pickle_in_train_y = open('../input/preprocessed-data-aptos2019blindnessdetection/train_y_aptos2019-blindness-detection.pickle', 'rb')
pickle_in_test_x = open('../input/preprocessed-data-aptos2019blindnessdetection/test_x_aptos2019-blindness-detection.pickle', 'rb')
train_x = pickle.load(pickle_in_train_x)
train_y = pickle.load(pickle_in_train_y)
test_x = pickle.load(pickle_in_test_x)
print(train_x.shape, train_y.shape, test_x.shape) | code |
17120125/cell_28 | [
"text_plain_output_1.png"
] | """
pickle_in_train_x = open('../input/preprocessed-data-aptos2019blindnessdetection/train_x_aptos2019-blindness-detection.pickle', 'rb')
pickle_in_train_y = open('../input/preprocessed-data-aptos2019blindnessdetection/train_y_aptos2019-blindness-detection.pickle', 'rb')
pickle_in_test_x = open('../input/preprocessed-data-aptos2019blindnessdetection/test_x_aptos2019-blindness-detection.pickle', 'rb')
train_x = pickle.load(pickle_in_train_x)
train_y = pickle.load(pickle_in_train_y)
test_x = pickle.load(pickle_in_test_x)
print(train_x.shape, train_y.shape, test_x.shape)
""" | code |
17120125/cell_17 | [
"text_plain_output_1.png"
] | """
n = 10
cols = 5
rows = np.ceil(n/cols)
fig = plt.gcf()
fig.set_size_inches(cols * n, rows * n)
for i in range(n):
plt.subplot(rows, cols, i+1)
plt.imshow(train_x[i])
plt.title(train['diagnosis'][i], fontsize=40)
plt.axis('off')
""" | code |
17120125/cell_35 | [
"text_plain_output_1.png"
] | """
train_predicted = model_1.predict(train_x)
train_predicted = [np.argmax(i) for i in train_predicted]
from sklearn.metrics import cohen_kappa_score
cohen_kappa_score(train_predicted, train_y, weights='quadratic')
""" | code |
17120125/cell_31 | [
"text_plain_output_1.png"
] | import cv2
import numpy as np
import pickle
import tensorflow as tf
IMG_SIZE = 512
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
import cv2
import os
import pickle
pickle_in_train_x = open('../input/preprocessed-data-aptos2019blindnessdetection/train_x_aptos2019-blindness-detection.pickle', 'rb')
pickle_in_train_y = open('../input/preprocessed-data-aptos2019blindnessdetection/train_y_aptos2019-blindness-detection.pickle', 'rb')
pickle_in_test_x = open('../input/preprocessed-data-aptos2019blindnessdetection/test_x_aptos2019-blindness-detection.pickle', 'rb')
train_x = pickle.load(pickle_in_train_x)
train_y = pickle.load(pickle_in_train_y)
test_x = pickle.load(pickle_in_test_x)
"""
def crop_image1(img,tol=7):
# img is image data
# tol is tolerance
mask = img>tol
return img[np.ix_(mask.any(1),mask.any(0))]
"""
def crop_image_from_gray(img, tol=7):
if img.ndim == 2:
mask = img > tol
return img[np.ix_(mask.any(1), mask.any(0))]
elif img.ndim == 3:
gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
mask = gray_img > tol
check_shape = img[:, :, 0][np.ix_(mask.any(1), mask.any(0))].shape[0]
if check_shape == 0:
return img
else:
img1 = img[:, :, 0][np.ix_(mask.any(1), mask.any(0))]
img2 = img[:, :, 1][np.ix_(mask.any(1), mask.any(0))]
img3 = img[:, :, 2][np.ix_(mask.any(1), mask.any(0))]
img = np.stack([img1, img2, img3], axis=-1)
return img
def load_ben_color(data, img_size, sigmaX=10):
if data.ndim == 4:
for i in range(len(data)):
image = cv2.cvtColor(data[i], cv2.COLOR_BGR2RGB)
image = crop_image_from_gray(image)
image = cv2.resize(image, (img_size, img_size))
data[i] = cv2.addWeighted(image, 4, cv2.GaussianBlur(image, (0, 0), sigmaX), -4, 128)
elif data.ndim == 3:
data = cv2.cvtColor(data, cv2.COLOR_BGR2RGB)
data = crop_image_from_gray(data)
data = cv2.resize(data, (img_size, img_size))
data = cv2.addWeighted(data, 4, cv2.GaussianBlur(data, (0, 0), sigmaX), -4, 128)
else:
return 0
return data
train_x = load_ben_color(train_x, IMG_SIZE, sigmaX=10)
train_x = train_x.astype('float32')
def create_model_1():
layers_1 = [tf.keras.layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation=tf.nn.relu, input_shape=train_x.shape[1:]), tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2)), tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation=tf.nn.relu), tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2)), tf.keras.layers.Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation=tf.nn.relu), tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2)), tf.keras.layers.Conv2D(filters=128, kernel_size=(3, 3), padding='same', activation=tf.nn.relu), tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2)), tf.keras.layers.Conv2D(filters=256, kernel_size=(3, 3), padding='same', activation=tf.nn.relu), tf.keras.layers.MaxPool2D(pool_size=(2, 2), strides=(2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(units=512, activation=tf.nn.relu), tf.keras.layers.Dense(units=256, activation=tf.nn.relu), tf.keras.layers.Dense(units=len(np.unique(train_y)), activation=tf.nn.softmax)]
model_1 = tf.keras.Sequential(layers_1)
model_1.compile(optimizer=tf.keras.optimizers.Adam(), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy'])
return model_1
model_1 = create_model_1()
model_1.summary() | code |
17120125/cell_22 | [
"image_output_1.png"
] | import cv2
import numpy as np
import pickle
IMG_SIZE = 512
import pickle
pickle_in_train_x = open('../input/preprocessed-data-aptos2019blindnessdetection/train_x_aptos2019-blindness-detection.pickle', 'rb')
pickle_in_train_y = open('../input/preprocessed-data-aptos2019blindnessdetection/train_y_aptos2019-blindness-detection.pickle', 'rb')
pickle_in_test_x = open('../input/preprocessed-data-aptos2019blindnessdetection/test_x_aptos2019-blindness-detection.pickle', 'rb')
train_x = pickle.load(pickle_in_train_x)
train_y = pickle.load(pickle_in_train_y)
test_x = pickle.load(pickle_in_test_x)
"""
def crop_image1(img,tol=7):
# img is image data
# tol is tolerance
mask = img>tol
return img[np.ix_(mask.any(1),mask.any(0))]
"""
def crop_image_from_gray(img, tol=7):
if img.ndim == 2:
mask = img > tol
return img[np.ix_(mask.any(1), mask.any(0))]
elif img.ndim == 3:
gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
mask = gray_img > tol
check_shape = img[:, :, 0][np.ix_(mask.any(1), mask.any(0))].shape[0]
if check_shape == 0:
return img
else:
img1 = img[:, :, 0][np.ix_(mask.any(1), mask.any(0))]
img2 = img[:, :, 1][np.ix_(mask.any(1), mask.any(0))]
img3 = img[:, :, 2][np.ix_(mask.any(1), mask.any(0))]
img = np.stack([img1, img2, img3], axis=-1)
return img
def load_ben_color(data, img_size, sigmaX=10):
if data.ndim == 4:
for i in range(len(data)):
image = cv2.cvtColor(data[i], cv2.COLOR_BGR2RGB)
image = crop_image_from_gray(image)
image = cv2.resize(image, (img_size, img_size))
data[i] = cv2.addWeighted(image, 4, cv2.GaussianBlur(image, (0, 0), sigmaX), -4, 128)
elif data.ndim == 3:
data = cv2.cvtColor(data, cv2.COLOR_BGR2RGB)
data = crop_image_from_gray(data)
data = cv2.resize(data, (img_size, img_size))
data = cv2.addWeighted(data, 4, cv2.GaussianBlur(data, (0, 0), sigmaX), -4, 128)
else:
return 0
return data
train_x = load_ben_color(train_x, IMG_SIZE, sigmaX=10)
train_x = train_x.astype('float32')
train_x[0] | code |
17120125/cell_10 | [
"text_plain_output_1.png"
] | """
n = 10
cols = 5
rows = np.ceil(n/cols)
fig = plt.gcf()
fig.set_size_inches(cols * n, rows * n)
for i in range(n):
plt.subplot(rows, cols, i+1)
plt.imshow(train_x[i])
plt.title(train['diagnosis'][i], fontsize=40)
plt.axis('off')
""" | code |
17120125/cell_37 | [
"text_plain_output_1.png"
] | """ Memory error here
# https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
datagen = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1./255,
rotation_range=30,
brightness_range=[0.5, 1.5],
zoom_range=[0.8, 1.2],
horizontal_flip=True,
vertical_flip=False)
datagen.fit(train_x)
checkpoint_path = 'cp_model_1_aptos2019-blindness-detection.ckpt'
checkpoint_dir = os.path.dirname(checkpoint_path)
# Create checkpoint callback
cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path,
save_weights_only=True,
verbose=1)
model_1 = create_model_1()
# fits the model on batches with real-time data augmentation:
model_1.fit_generator(datagen.flow(train_x, train_y, batch_size=32),
steps_per_epoch=len(train_x) / 32, epochs=5,
callbacks=[cp_callback])
""" | code |
17120125/cell_5 | [
"text_html_output_1.png"
] | import tensorflow as tf
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
import cv2
import os
print('Tensorflow version:', tf.__version__) | code |
1005795/cell_21 | [
"text_plain_output_1.png"
] | import pandas as pd
dataset = pd.read_csv('../input/911.csv')
dataset['twp'].value_counts().head(5) | code |
1005795/cell_13 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
dataset = pd.read_csv('../input/911.csv')
dataset[dataset['Category'] == 'Traffic']['Sub-Category'].value_counts().head(6) | code |
1005795/cell_9 | [
"text_plain_output_1.png"
] | import pandas as pd
dataset = pd.read_csv('../input/911.csv')
dataset['Category'].value_counts() | code |
1005795/cell_25 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
dataset = pd.read_csv('../input/911.csv')
plt.title('LOWER MERION Vehicle Accidents by timzone')
sns.countplot('timezone', data=dataset[(dataset['twp'] == 'LOWER MERION') & (dataset['Sub-Category'] == ' VEHICLE ACCIDENT')]) | code |
1005795/cell_4 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
dataset = pd.read_csv('../input/911.csv')
dataset.info() | code |
1005795/cell_23 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
dataset = pd.read_csv('../input/911.csv')
dataset[(dataset['twp'] == 'LOWER MERION') & (dataset['Category'] == 'Traffic')]['Sub-Category'].value_counts() | code |
1005795/cell_30 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
dataset = pd.read_csv('../input/911.csv')
dataset[(dataset['twp'] == 'LEHIGH COUNTY') & (dataset['Category'] == 'EMS')]['Sub-Category'].value_counts() | code |
1005795/cell_20 | [
"text_plain_output_1.png"
] | import pandas as pd
dataset = pd.read_csv('../input/911.csv')
dataset['twp'].nunique() | code |
1005795/cell_6 | [
"text_plain_output_1.png"
] | import pandas as pd
dataset = pd.read_csv('../input/911.csv')
dataset['title'].value_counts().head(5) | code |
1005795/cell_29 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
dataset = pd.read_csv('../input/911.csv')
sns.countplot('Category', data=dataset[dataset['twp'] == 'LEHIGH COUNTY']) | code |
1005795/cell_26 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
dataset = pd.read_csv('../input/911.csv')
plt.title('LOWER MERION Vehicle Accidents by month')
sns.countplot('Month', data=dataset[(dataset['twp'] == 'LOWER MERION') & (dataset['Sub-Category'] == ' VEHICLE ACCIDENT')]) | code |
1005795/cell_11 | [
"text_html_output_1.png"
] | import pandas as pd
dataset = pd.read_csv('../input/911.csv')
dataset[dataset['Category'] == 'EMS']['Sub-Category'].value_counts().head(6) | code |
1005795/cell_19 | [
"text_plain_output_1.png"
] | import pandas as pd
dataset = pd.read_csv('../input/911.csv')
dataset['dayofweek'].value_counts() | code |
1005795/cell_18 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
dataset = pd.read_csv('../input/911.csv')
sns.countplot('dayofweek', data=dataset) | code |
1005795/cell_28 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
dataset = pd.read_csv('../input/911.csv')
dataset['twp'].value_counts(ascending=True).head(5) | code |
1005795/cell_8 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
import seaborn as sns
dataset = pd.read_csv('../input/911.csv')
sns.countplot('Category', data=dataset) | code |
1005795/cell_16 | [
"text_plain_output_1.png"
] | import pandas as pd
import seaborn as sns
dataset = pd.read_csv('../input/911.csv')
sns.countplot('timezone', data=dataset) | code |
1005795/cell_22 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
dataset = pd.read_csv('../input/911.csv')
plt.title('LOWER MERION incidents by Category')
sns.countplot('Category', data=dataset[dataset['twp'] == 'LOWER MERION']) | code |
1005795/cell_10 | [
"text_plain_output_1.png"
] | import pandas as pd
dataset = pd.read_csv('../input/911.csv')
dataset['title'].nunique() | code |
1005795/cell_27 | [
"text_plain_output_1.png"
] | import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
dataset = pd.read_csv('../input/911.csv')
plt.title('Overall Vehicle Accidents by month')
sns.countplot('Month', data=dataset[dataset['Sub-Category'] == ' VEHICLE ACCIDENT']) | code |
1005795/cell_12 | [
"text_plain_output_1.png"
] | import pandas as pd
dataset = pd.read_csv('../input/911.csv')
dataset[dataset['Category'] == 'Fire']['Sub-Category'].value_counts().head(6) | code |
1005795/cell_5 | [
"text_plain_output_1.png",
"image_output_1.png"
] | import pandas as pd
dataset = pd.read_csv('../input/911.csv')
dataset.head(5) | code |
130000822/cell_9 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.metrics import classification_report, roc_auc_score, roc_curve,confusion_matrix
from sklearn.metrics import roc_curve, auc, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
from sklearn.model_selection import train_test_split
from tensorflow import keras
import cv2
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
import os
import seaborn as sns
import tensorflow as tf
import cv2
import numpy as np
import os
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from sklearn.metrics import roc_curve, auc, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, roc_auc_score, roc_curve, confusion_matrix
import seaborn as sns
EPOCHS = 10
IMG_WIDTH = 30
IMG_HEIGHT = 30
NUM_CATEGORIES = 43
TEST_SIZE = 0.4
data_dir = '/kaggle/input/gstrb-dataset/gtsrb'
IMAGES = []
LABELS = []
for folder in os.listdir(data_dir):
folder_path = os.path.join(data_dir, folder)
if os.path.isdir(folder_path):
for image_file in os.listdir(folder_path):
image = cv2.imread(os.path.join(folder_path, image_file), cv2.IMREAD_ANYCOLOR)
image = cv2.resize(image, (IMG_WIDTH, IMG_HEIGHT), interpolation=cv2.INTER_AREA)
IMAGES.append(image)
LABELS.append(int(folder))
image = mpimg.imread('/kaggle/input/gstrb-dataset/gtsrb/0/00000_00004.ppm')
plt.axis('off')
def get_model():
model = tf.keras.models.Sequential([tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)), tf.keras.layers.MaxPooling2D(pool_size=(3, 3)), tf.keras.layers.Conv2D(64, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dropout(0.33), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.33), tf.keras.layers.Dense(NUM_CATEGORIES, activation='softmax')])
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model
images, labels = (IMAGES, LABELS)
labels = tf.keras.utils.to_categorical(labels)
x_train, x_test, y_train, y_test = train_test_split(np.array(images), np.array(labels), test_size=TEST_SIZE)
model = get_model()
fitting = model.fit(x_train, y_train, epochs=EPOCHS, validation_data=(x_test, y_test))
model_evaluation = model.evaluate(x_test, y_test, verbose=2)
filename = 'trained model.h5'
model.save(filename)
def view(history):
pass
view(fitting)
def way2(history):
pass
way2(fitting)
y_pred_proba = model.predict(x_test)
y_true = np.argmax(y_test, axis=1)
classification_rep = classification_report(y_true, np.argmax(y_pred_proba, axis=1))
auc_scores = []
for class_index in range(NUM_CATEGORIES):
class_true = np.where(y_true == class_index, 1, 0)
class_pred = y_pred_proba[:, class_index]
auc_scores.append(roc_auc_score(class_true, class_pred))
for class_index in range(NUM_CATEGORIES):
class_true = np.where(y_true == class_index, 1, 0)
class_pred = y_pred_proba[:, class_index]
fpr, tpr, _ = roc_curve(class_true, class_pred)
auc_score = auc_scores[class_index]
y_pred = model.predict(x_test)
y_pred_labels = np.argmax(y_pred, axis=1)
y_true_labels = np.argmax(keras.utils.to_categorical(y_true), axis=1)
cm = confusion_matrix(y_true_labels, y_pred_labels)
plt.figure(figsize=(12, 10))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')
plt.title('Confusion Matrix')
plt.show() | code |
130000822/cell_6 | [
"image_output_2.png",
"image_output_1.png"
] | from sklearn.model_selection import train_test_split
import cv2
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
import os
import tensorflow as tf
import cv2
import numpy as np
import os
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from sklearn.metrics import roc_curve, auc, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, roc_auc_score, roc_curve, confusion_matrix
import seaborn as sns
EPOCHS = 10
IMG_WIDTH = 30
IMG_HEIGHT = 30
NUM_CATEGORIES = 43
TEST_SIZE = 0.4
data_dir = '/kaggle/input/gstrb-dataset/gtsrb'
IMAGES = []
LABELS = []
for folder in os.listdir(data_dir):
folder_path = os.path.join(data_dir, folder)
if os.path.isdir(folder_path):
for image_file in os.listdir(folder_path):
image = cv2.imread(os.path.join(folder_path, image_file), cv2.IMREAD_ANYCOLOR)
image = cv2.resize(image, (IMG_WIDTH, IMG_HEIGHT), interpolation=cv2.INTER_AREA)
IMAGES.append(image)
LABELS.append(int(folder))
image = mpimg.imread('/kaggle/input/gstrb-dataset/gtsrb/0/00000_00004.ppm')
plt.axis('off')
def get_model():
model = tf.keras.models.Sequential([tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)), tf.keras.layers.MaxPooling2D(pool_size=(3, 3)), tf.keras.layers.Conv2D(64, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dropout(0.33), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.33), tf.keras.layers.Dense(NUM_CATEGORIES, activation='softmax')])
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model
images, labels = (IMAGES, LABELS)
labels = tf.keras.utils.to_categorical(labels)
x_train, x_test, y_train, y_test = train_test_split(np.array(images), np.array(labels), test_size=TEST_SIZE)
model = get_model()
fitting = model.fit(x_train, y_train, epochs=EPOCHS, validation_data=(x_test, y_test))
model_evaluation = model.evaluate(x_test, y_test, verbose=2)
filename = 'trained model.h5'
model.save(filename)
def view(history):
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model Accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper right')
plt.show()
view(fitting) | code |
130000822/cell_1 | [
"application_vnd.jupyter.stderr_output_1.png"
] | import cv2
import numpy as np
import os
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from sklearn.metrics import roc_curve, auc, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, roc_auc_score, roc_curve, confusion_matrix
import seaborn as sns
EPOCHS = 10
IMG_WIDTH = 30
IMG_HEIGHT = 30
NUM_CATEGORIES = 43
TEST_SIZE = 0.4 | code |
130000822/cell_7 | [
"image_output_1.png"
] | from sklearn.model_selection import train_test_split
import cv2
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
import os
import tensorflow as tf
import cv2
import numpy as np
import os
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from sklearn.metrics import roc_curve, auc, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, roc_auc_score, roc_curve, confusion_matrix
import seaborn as sns
EPOCHS = 10
IMG_WIDTH = 30
IMG_HEIGHT = 30
NUM_CATEGORIES = 43
TEST_SIZE = 0.4
data_dir = '/kaggle/input/gstrb-dataset/gtsrb'
IMAGES = []
LABELS = []
for folder in os.listdir(data_dir):
folder_path = os.path.join(data_dir, folder)
if os.path.isdir(folder_path):
for image_file in os.listdir(folder_path):
image = cv2.imread(os.path.join(folder_path, image_file), cv2.IMREAD_ANYCOLOR)
image = cv2.resize(image, (IMG_WIDTH, IMG_HEIGHT), interpolation=cv2.INTER_AREA)
IMAGES.append(image)
LABELS.append(int(folder))
image = mpimg.imread('/kaggle/input/gstrb-dataset/gtsrb/0/00000_00004.ppm')
plt.axis('off')
def get_model():
model = tf.keras.models.Sequential([tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)), tf.keras.layers.MaxPooling2D(pool_size=(3, 3)), tf.keras.layers.Conv2D(64, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dropout(0.33), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.33), tf.keras.layers.Dense(NUM_CATEGORIES, activation='softmax')])
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model
images, labels = (IMAGES, LABELS)
labels = tf.keras.utils.to_categorical(labels)
x_train, x_test, y_train, y_test = train_test_split(np.array(images), np.array(labels), test_size=TEST_SIZE)
model = get_model()
fitting = model.fit(x_train, y_train, epochs=EPOCHS, validation_data=(x_test, y_test))
model_evaluation = model.evaluate(x_test, y_test, verbose=2)
filename = 'trained model.h5'
model.save(filename)
def view(history):
pass
view(fitting)
def way2(history):
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model Accuracy and Loss')
plt.ylabel('Accuracy/Loss')
plt.xlabel('Epoch')
plt.legend(['Train Accuracy', 'Test Accuracy', 'Train Loss', 'Test Loss'], loc='upper left')
plt.show()
way2(fitting) | code |
130000822/cell_8 | [
"text_plain_output_1.png",
"image_output_1.png"
] | from sklearn.metrics import classification_report, roc_auc_score, roc_curve,confusion_matrix
from sklearn.metrics import roc_curve, auc, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
from sklearn.model_selection import train_test_split
import cv2
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
import os
import tensorflow as tf
import cv2
import numpy as np
import os
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from sklearn.metrics import roc_curve, auc, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, roc_auc_score, roc_curve, confusion_matrix
import seaborn as sns
EPOCHS = 10
IMG_WIDTH = 30
IMG_HEIGHT = 30
NUM_CATEGORIES = 43
TEST_SIZE = 0.4
data_dir = '/kaggle/input/gstrb-dataset/gtsrb'
IMAGES = []
LABELS = []
for folder in os.listdir(data_dir):
folder_path = os.path.join(data_dir, folder)
if os.path.isdir(folder_path):
for image_file in os.listdir(folder_path):
image = cv2.imread(os.path.join(folder_path, image_file), cv2.IMREAD_ANYCOLOR)
image = cv2.resize(image, (IMG_WIDTH, IMG_HEIGHT), interpolation=cv2.INTER_AREA)
IMAGES.append(image)
LABELS.append(int(folder))
image = mpimg.imread('/kaggle/input/gstrb-dataset/gtsrb/0/00000_00004.ppm')
plt.axis('off')
def get_model():
model = tf.keras.models.Sequential([tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)), tf.keras.layers.MaxPooling2D(pool_size=(3, 3)), tf.keras.layers.Conv2D(64, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dropout(0.33), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.33), tf.keras.layers.Dense(NUM_CATEGORIES, activation='softmax')])
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model
images, labels = (IMAGES, LABELS)
labels = tf.keras.utils.to_categorical(labels)
x_train, x_test, y_train, y_test = train_test_split(np.array(images), np.array(labels), test_size=TEST_SIZE)
model = get_model()
fitting = model.fit(x_train, y_train, epochs=EPOCHS, validation_data=(x_test, y_test))
model_evaluation = model.evaluate(x_test, y_test, verbose=2)
filename = 'trained model.h5'
model.save(filename)
def view(history):
pass
view(fitting)
def way2(history):
pass
way2(fitting)
y_pred_proba = model.predict(x_test)
y_true = np.argmax(y_test, axis=1)
classification_rep = classification_report(y_true, np.argmax(y_pred_proba, axis=1))
print(classification_rep)
auc_scores = []
for class_index in range(NUM_CATEGORIES):
class_true = np.where(y_true == class_index, 1, 0)
class_pred = y_pred_proba[:, class_index]
auc_scores.append(roc_auc_score(class_true, class_pred))
for class_index, auc_score in enumerate(auc_scores):
print('AUC Score (Class {}): {}'.format(class_index, auc_score))
plt.figure()
plt.plot([0, 1], [0, 1], 'k--')
for class_index in range(NUM_CATEGORIES):
class_true = np.where(y_true == class_index, 1, 0)
class_pred = y_pred_proba[:, class_index]
fpr, tpr, _ = roc_curve(class_true, class_pred)
auc_score = auc_scores[class_index]
plt.plot(fpr, tpr, label='Class {} (AUC = {:.2f})'.format(class_index, auc_score))
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc='lower right')
plt.show() | code |
130000822/cell_3 | [
"image_output_1.png"
] | import cv2
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import os
import cv2
import numpy as np
import os
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from sklearn.metrics import roc_curve, auc, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, roc_auc_score, roc_curve, confusion_matrix
import seaborn as sns
EPOCHS = 10
IMG_WIDTH = 30
IMG_HEIGHT = 30
NUM_CATEGORIES = 43
TEST_SIZE = 0.4
data_dir = '/kaggle/input/gstrb-dataset/gtsrb'
IMAGES = []
LABELS = []
for folder in os.listdir(data_dir):
folder_path = os.path.join(data_dir, folder)
if os.path.isdir(folder_path):
for image_file in os.listdir(folder_path):
image = cv2.imread(os.path.join(folder_path, image_file), cv2.IMREAD_ANYCOLOR)
image = cv2.resize(image, (IMG_WIDTH, IMG_HEIGHT), interpolation=cv2.INTER_AREA)
IMAGES.append(image)
LABELS.append(int(folder))
image = mpimg.imread('/kaggle/input/gstrb-dataset/gtsrb/0/00000_00004.ppm')
plt.imshow(image)
plt.axis('off')
plt.show() | code |
130000822/cell_5 | [
"text_plain_output_1.png"
] | from sklearn.model_selection import train_test_split
import cv2
import numpy as np
import os
import tensorflow as tf
import cv2
import numpy as np
import os
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from sklearn.metrics import roc_curve, auc, accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, roc_auc_score, roc_curve, confusion_matrix
import seaborn as sns
EPOCHS = 10
IMG_WIDTH = 30
IMG_HEIGHT = 30
NUM_CATEGORIES = 43
TEST_SIZE = 0.4
data_dir = '/kaggle/input/gstrb-dataset/gtsrb'
IMAGES = []
LABELS = []
for folder in os.listdir(data_dir):
folder_path = os.path.join(data_dir, folder)
if os.path.isdir(folder_path):
for image_file in os.listdir(folder_path):
image = cv2.imread(os.path.join(folder_path, image_file), cv2.IMREAD_ANYCOLOR)
image = cv2.resize(image, (IMG_WIDTH, IMG_HEIGHT), interpolation=cv2.INTER_AREA)
IMAGES.append(image)
LABELS.append(int(folder))
def get_model():
model = tf.keras.models.Sequential([tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)), tf.keras.layers.MaxPooling2D(pool_size=(3, 3)), tf.keras.layers.Conv2D(64, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dropout(0.33), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.33), tf.keras.layers.Dense(NUM_CATEGORIES, activation='softmax')])
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model
images, labels = (IMAGES, LABELS)
labels = tf.keras.utils.to_categorical(labels)
x_train, x_test, y_train, y_test = train_test_split(np.array(images), np.array(labels), test_size=TEST_SIZE)
model = get_model()
fitting = model.fit(x_train, y_train, epochs=EPOCHS, validation_data=(x_test, y_test))
model_evaluation = model.evaluate(x_test, y_test, verbose=2)
filename = 'trained model.h5'
model.save(filename)
print(f'Model saved to {filename}.') | code |
17145266/cell_25 | [
"text_plain_output_1.png"
] | (df_train.shape, df_valid.shape)
path = Path('../input/')
path.ls()
src = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1))
bs = 48
src_lm = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1))
data_lm = src_lm.label_for_lm().databunch(bs=bs)
data_lm.vocab.itos[:20]
data_lm.train_ds[0][0].data[:10] | code |
17145266/cell_4 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
df = pd.read_json('../input/Sarcasm_Headlines_Dataset_v2.json', lines=True)
df.head() | code |
17145266/cell_23 | [
"text_html_output_1.png"
] | (df_train.shape, df_valid.shape)
path = Path('../input/')
path.ls()
src = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1))
bs = 48
src_lm = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1))
data_lm = src_lm.label_for_lm().databunch(bs=bs)
data_lm.show_batch() | code |
17145266/cell_30 | [
"text_plain_output_1.png"
] | (df_train.shape, df_valid.shape)
path = Path('../input/')
path.ls()
src = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1))
bs = 48
src_lm = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1))
data_lm = src_lm.label_for_lm().databunch(bs=bs)
data_lm.vocab.itos[:20]
data_lm.train_ds[0][0].data[:10]
learn = language_model_learner(data_lm, AWD_LSTM, drop_mult=0.3, model_dir='/temp/model/')
learn.lr_find()
learn.fit_one_cycle(4, 0.05, moms=(0.8, 0.7))
learn.save('fit_head')
learn.load('fit_head')
learn.unfreeze()
learn.lr_find()
learn.recorder.plot(suggestion=True) | code |
17145266/cell_6 | [
"text_html_output_1.png"
] | import pandas as pd
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import pandas as pd
df = pd.read_json('../input/Sarcasm_Headlines_Dataset_v2.json', lines=True)
df.shape
df['headline'][0] | code |
17145266/cell_29 | [
"text_plain_output_1.png"
] | (df_train.shape, df_valid.shape)
path = Path('../input/')
path.ls()
src = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1))
bs = 48
src_lm = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1))
data_lm = src_lm.label_for_lm().databunch(bs=bs)
data_lm.vocab.itos[:20]
data_lm.train_ds[0][0].data[:10]
learn = language_model_learner(data_lm, AWD_LSTM, drop_mult=0.3, model_dir='/temp/model/')
learn.lr_find()
learn.fit_one_cycle(4, 0.05, moms=(0.8, 0.7))
learn.save('fit_head')
learn.load('fit_head') | code |
17145266/cell_39 | [
"text_plain_output_1.png",
"image_output_1.png"
] | (df_train.shape, df_valid.shape)
path = Path('../input/')
path.ls()
src = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1))
bs = 48
src_lm = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1))
data_lm = src_lm.label_for_lm().databunch(bs=bs)
data_lm.vocab.itos[:20]
data_lm.train_ds[0][0].data[:10]
src_clas = ItemLists(path, TextList.from_df(df_train, path='.', cols=1, vocab=data_lm.vocab), TextList.from_df(df_valid, path='.', cols=1, vocab=data_lm.vocab))
data_clas = src_clas.label_from_df(cols=2).databunch(bs=bs)
data_clas.show_batch() | code |
17145266/cell_2 | [
"text_plain_output_1.png"
] | !pip install pretrainedmodels
!pip install fastai==1.0.52
import fastai
from fastai import *
from fastai.vision import *
from fastai.text import *
from torchvision.models import *
import pretrainedmodels
from utils import *
import sys
from fastai.callbacks.tracker import EarlyStoppingCallback
from fastai.callbacks.tracker import SaveModelCallback | code |
17145266/cell_1 | [
"text_plain_output_1.png"
] | import os
import numpy as np
import pandas as pd
import os
print(os.listdir('../input')) | code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.