path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
17145266/cell_18
[ "text_plain_output_1.png" ]
(df_train.shape, df_valid.shape) path = Path('../input/') path.ls() src = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1)) data = src.label_from_df(cols=2).databunch(bs=48) data.vocab.itos[:10] data.train_ds[0][0] data.train_ds[0][0].data[:10]
code
17145266/cell_32
[ "text_html_output_1.png" ]
(df_train.shape, df_valid.shape) path = Path('../input/') path.ls() src = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1)) bs = 48 src_lm = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1)) data_lm = src_lm.label_for_lm().databunch(bs=bs) data_lm.vocab.itos[:20] data_lm.train_ds[0][0].data[:10] learn = language_model_learner(data_lm, AWD_LSTM, drop_mult=0.3, model_dir='/temp/model/') learn.lr_find() learn.fit_one_cycle(4, 0.05, moms=(0.8, 0.7)) learn.save('fit_head') learn.load('fit_head') learn.unfreeze() learn.lr_find() learn.fit_one_cycle(12, max_lr=slice(1e-05, 0.001), moms=(0.8, 0.7)) learn.save('fine_tuned') learn.load('fine_tuned')
code
17145266/cell_28
[ "text_html_output_1.png" ]
(df_train.shape, df_valid.shape) path = Path('../input/') path.ls() src = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1)) bs = 48 src_lm = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1)) data_lm = src_lm.label_for_lm().databunch(bs=bs) data_lm.vocab.itos[:20] data_lm.train_ds[0][0].data[:10] learn = language_model_learner(data_lm, AWD_LSTM, drop_mult=0.3, model_dir='/temp/model/') learn.lr_find() learn.fit_one_cycle(4, 0.05, moms=(0.8, 0.7))
code
17145266/cell_8
[ "text_plain_output_1.png" ]
(df_train.shape, df_valid.shape)
code
17145266/cell_15
[ "text_html_output_1.png" ]
(df_train.shape, df_valid.shape) path = Path('../input/') path.ls() src = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1)) data = src.label_from_df(cols=2).databunch(bs=48) data.show_batch()
code
17145266/cell_16
[ "text_plain_output_1.png" ]
(df_train.shape, df_valid.shape) path = Path('../input/') path.ls() src = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1)) data = src.label_from_df(cols=2).databunch(bs=48) data.vocab.itos[:10]
code
17145266/cell_17
[ "text_plain_output_1.png" ]
(df_train.shape, df_valid.shape) path = Path('../input/') path.ls() src = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1)) data = src.label_from_df(cols=2).databunch(bs=48) data.vocab.itos[:10] data.train_ds[0][0]
code
17145266/cell_35
[ "text_plain_output_1.png" ]
(df_train.shape, df_valid.shape) path = Path('../input/') path.ls() src = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1)) bs = 48 src_lm = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1)) data_lm = src_lm.label_for_lm().databunch(bs=bs) data_lm.vocab.itos[:20] data_lm.train_ds[0][0].data[:10] learn = language_model_learner(data_lm, AWD_LSTM, drop_mult=0.3, model_dir='/temp/model/') learn.lr_find() learn.fit_one_cycle(4, 0.05, moms=(0.8, 0.7)) learn.save('fit_head') learn.load('fit_head') learn.unfreeze() learn.lr_find() learn.fit_one_cycle(12, max_lr=slice(1e-05, 0.001), moms=(0.8, 0.7)) learn.save('fine_tuned') learn.load('fine_tuned') learn.save_encoder('fine_tuned_enc') TEXT = 'He screamed like' N_WORDS = 10 N_SENTENCES = 2 print('\n'.join((learn.predict(TEXT, N_WORDS, temperature=0.75) for _ in range(N_SENTENCES))))
code
17145266/cell_31
[ "text_plain_output_1.png", "image_output_1.png" ]
(df_train.shape, df_valid.shape) path = Path('../input/') path.ls() src = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1)) bs = 48 src_lm = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1)) data_lm = src_lm.label_for_lm().databunch(bs=bs) data_lm.vocab.itos[:20] data_lm.train_ds[0][0].data[:10] learn = language_model_learner(data_lm, AWD_LSTM, drop_mult=0.3, model_dir='/temp/model/') learn.lr_find() learn.fit_one_cycle(4, 0.05, moms=(0.8, 0.7)) learn.save('fit_head') learn.load('fit_head') learn.unfreeze() learn.lr_find() learn.fit_one_cycle(12, max_lr=slice(1e-05, 0.001), moms=(0.8, 0.7))
code
17145266/cell_24
[ "text_plain_output_1.png" ]
(df_train.shape, df_valid.shape) path = Path('../input/') path.ls() src = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1)) bs = 48 src_lm = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1)) data_lm = src_lm.label_for_lm().databunch(bs=bs) data_lm.vocab.itos[:20]
code
17145266/cell_27
[ "text_plain_output_1.png" ]
(df_train.shape, df_valid.shape) path = Path('../input/') path.ls() src = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1)) bs = 48 src_lm = ItemLists(path, TextList.from_df(df_train, path='.', cols=1), TextList.from_df(df_valid, path='.', cols=1)) data_lm = src_lm.label_for_lm().databunch(bs=bs) data_lm.vocab.itos[:20] data_lm.train_ds[0][0].data[:10] learn = language_model_learner(data_lm, AWD_LSTM, drop_mult=0.3, model_dir='/temp/model/') learn.lr_find() learn.recorder.plot(suggestion=True)
code
17145266/cell_12
[ "text_plain_output_1.png" ]
path = Path('../input/') path.ls()
code
17145266/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import pandas as pd df = pd.read_json('../input/Sarcasm_Headlines_Dataset_v2.json', lines=True) df.shape
code
128044967/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
import ultralytics ultralytics.checks()
code
128044967/cell_1
[ "text_plain_output_1.png" ]
import cv2 import os import shutil import warnings # попытка поймать сообщения: libpng warning: iCCP: known incorrect sRGB profile import numpy as np import pandas as pd import cv2 from PIL import Image import warnings warnings.filterwarnings('error') import os import shutil for dirname, _, filenames in os.walk('/kaggle/input/fruit-and-vegetable-image-recognition'): print(dirname, 'Count:', len(filenames)) for filename in filenames: try: img = cv2.imread(os.path.join(dirname, filename)) except: print('libpng warning: iCCP: known incorrect sRGB profile:', os.path.join(dirname, filename)) try: if len(img.shape) != 3: print(os.path.join(dirname, filename), 'img.shape', img.shape) else: patchNew = dirname.replace('input', 'working') if not os.path.exists(patchNew): os.makedirs(patchNew) shutil.copy(os.path.join(dirname, filename), patchNew) except AttributeError: print('Ошибочный файл:', os.path.join(dirname, filename)) del img
code
128044967/cell_3
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_1.png" ]
from ultralytics import YOLO from ultralytics import YOLO model = YOLO('yolov8n-cls.pt') model.train(data='/kaggle/working/fruit-and-vegetable-image-recognition/', epochs=3)
code
16133438/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/bike_share.csv') df.shape df.describe().T df.columns df.isna().sum() df.duplicated().sum() df[df.duplicated()] df = df.drop_duplicates() df.shape df.corr() df.corr()['count'] df.windspeed.median() x = df.drop(columns=['count']) x.columns y = df[['count']] y.columns
code
16133438/cell_13
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/bike_share.csv') df.shape df.describe().T df.columns df.isna().sum() df.duplicated().sum() df[df.duplicated()] df = df.drop_duplicates() df.shape df.windspeed.plot(kind='box')
code
16133438/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/bike_share.csv') df.shape df.describe().T df.columns df.isna().sum() df.duplicated().sum()
code
16133438/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/bike_share.csv') df.shape
code
16133438/cell_34
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(train_x, train_y) predict_train = model.predict(train_x) predict_test = model.predict(test_x) r2_train = r2_score(train_y, predict_train) r2_test = r2_score(test_y, predict_test) print('r2_train: ', r2_train) print('r2_test: ', r2_test)
code
16133438/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(train_x, train_y)
code
16133438/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/bike_share.csv') df.shape df.describe().T df.columns df.isna().sum() df.duplicated().sum() df[df.duplicated()] df = df.drop_duplicates() df.shape df.corr() df.corr()['count'] df.windspeed.median() x = df.drop(columns=['count']) x.columns
code
16133438/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/bike_share.csv') df.shape df.describe().T df.columns
code
16133438/cell_29
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(train_x, train_y) predict_train = model.predict(train_x) predict_test = model.predict(test_x) train_MAE = mean_absolute_error(train_y, predict_train) test_MAE = mean_absolute_error(test_y, predict_test) print('train_MAE: ', train_MAE) print('test_MAE: ', test_MAE)
code
16133438/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/bike_share.csv') df.shape df.describe().T df.columns df.isna().sum() df.duplicated().sum() df[df.duplicated()] df = df.drop_duplicates() df.shape df.corr() df.corr()['count'] df.windspeed.median()
code
16133438/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
16133438/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/bike_share.csv') df.shape df.describe().T df.columns df.info()
code
16133438/cell_18
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt plt.figure(figsize=(10, 3)) corr = df.corr() sns.heatmap(corr, annot=True)
code
16133438/cell_32
[ "text_plain_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score import numpy as np # linear algebra from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(train_x, train_y) predict_train = model.predict(train_x) predict_test = model.predict(test_x) train_MSE = mean_squared_error(train_y, predict_train) test_MSE = mean_squared_error(test_y, predict_test) train_RMSE = np.sqrt(train_MSE) test_RMSE = np.sqrt(test_MSE) train_MAPE = np.mean(np.abs(train_y, predict_train)) test_MAPE = np.mean(np.abs(test_y, predict_test)) print('train_MAPE: ', train_MAPE) print('test_MAPE: ', test_MAPE)
code
16133438/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/bike_share.csv') df.shape df.describe().T df.columns df.isna().sum()
code
16133438/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/bike_share.csv') df.shape df.describe().T df.columns df.isna().sum() df.duplicated().sum() df[df.duplicated()] df = df.drop_duplicates() df.shape df.registered.plot(kind='box')
code
16133438/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/bike_share.csv') df.shape df.describe().T df.columns df.isna().sum() df.duplicated().sum() df[df.duplicated()] df = df.drop_duplicates() df.shape df.corr()
code
16133438/cell_3
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/bike_share.csv') df.head()
code
16133438/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/bike_share.csv') df.shape df.describe().T df.columns df.isna().sum() df.duplicated().sum() df[df.duplicated()] df = df.drop_duplicates() df.shape df.corr() df.corr()['count']
code
16133438/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/bike_share.csv') df.shape df.describe().T df.columns df.isna().sum() df.duplicated().sum() df[df.duplicated()] df = df.drop_duplicates() df.shape df.casual.plot(kind='box')
code
16133438/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/bike_share.csv') df.shape df.describe().T df.columns df.isna().sum() df.duplicated().sum() df[df.duplicated()]
code
16133438/cell_27
[ "text_html_output_1.png" ]
from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(train_x, train_y) predict_train = model.predict(train_x) predict_test = model.predict(test_x) train_MSE = mean_squared_error(train_y, predict_train) test_MSE = mean_squared_error(test_y, predict_test) print('train_MSE: ', train_MSE) print('test_MSE: ', test_MSE)
code
16133438/cell_12
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/bike_share.csv') df.shape df.describe().T df.columns df.isna().sum() df.duplicated().sum() df[df.duplicated()] df = df.drop_duplicates() df.shape
code
16133438/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/bike_share.csv') df.shape df.describe().T
code
2026131/cell_13
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') np.array(list(zip(train.Id, train.columns))) train.columns[train.isnull().any()].tolist() test.columns[test.isnull().any()].tolist() trainNum = train.select_dtypes(include=[np.number]) trainCat = train.select_dtypes(include=[object]) testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) trainNum.columns[trainNum.isnull().any()].tolist()
code
2026131/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') test.columns[test.isnull().any()].tolist()
code
2026131/cell_57
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn import linear_model from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') np.array(list(zip(train.Id, train.columns))) train.columns[train.isnull().any()].tolist() test.columns[test.isnull().any()].tolist() trainNum = train.select_dtypes(include=[np.number]) trainCat = train.select_dtypes(include=[object]) testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) trainNum.columns[trainNum.isnull().any()].tolist() trainCat.columns[trainCat.isnull().any()].tolist() trainCat1 = trainCat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() trainNum['MSSubClass'] = le.fit_transform(trainNum['MSSubClass'].values) trainNum['OverallQual'] = le.fit_transform(trainNum['OverallQual'].values) trainNum['OverallCond'] = le.fit_transform(trainNum['OverallCond'].values) trainNum['YearBuilt'] = le.fit_transform(trainNum['YearBuilt'].values) trainNum['YearRemodAdd'] = le.fit_transform(trainNum['YearRemodAdd'].values) trainNum['GarageYrBlt'] = le.fit_transform(trainNum['GarageYrBlt'].values) trainNum['YrSold'] = le.fit_transform(trainNum['YrSold'].values) trainCatNormalized = trainCat1.apply(le.fit_transform) trainFinal = pd.concat([trainNum, trainCatNormalized], axis=1) from sklearn import linear_model LR = linear_model.LinearRegression() X = trainFinal.drop(['Id', 'SalePrice'], axis=1) y = trainFinal['SalePrice'] LR.fit(X, y) LR.score(X, y) test.columns[test.isnull().any()].tolist() testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) testNum.columns[testNum.isnull().any()].tolist() testCat.columns[testCat.isnull().any()].tolist() testCat1 = testCat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) testNum['MSSubClass'] = le.fit_transform(testNum['MSSubClass'].astype(str)) testNum['OverallQual'] = le.fit_transform(testNum['OverallQual'].astype(str)) testNum['OverallCond'] = le.fit_transform(testNum['OverallCond'].astype(str)) testNum['YearBuilt'] = le.fit_transform(testNum['YearBuilt'].astype(str)) testNum['YearRemodAdd'] = le.fit_transform(testNum['YearRemodAdd'].astype(str)) testNum['GarageYrBlt'] = le.fit_transform(testNum['GarageYrBlt'].astype(str)) testNum['YrSold'] = le.fit_transform(testNum['YrSold'].astype(str)) testCatNormalized = testCat1.apply(le.fit_transform) testFinal = pd.concat([testNum, testCatNormalized], axis=1) testPredicted = LR.predict(testFinal.drop('Id', axis=1)) np.array(list(zip(testFinal.Id, testPredicted)))
code
2026131/cell_34
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn import linear_model from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') np.array(list(zip(train.Id, train.columns))) train.columns[train.isnull().any()].tolist() test.columns[test.isnull().any()].tolist() trainNum = train.select_dtypes(include=[np.number]) trainCat = train.select_dtypes(include=[object]) testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) trainNum.columns[trainNum.isnull().any()].tolist() trainCat.columns[trainCat.isnull().any()].tolist() trainCat1 = trainCat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() trainNum['MSSubClass'] = le.fit_transform(trainNum['MSSubClass'].values) trainNum['OverallQual'] = le.fit_transform(trainNum['OverallQual'].values) trainNum['OverallCond'] = le.fit_transform(trainNum['OverallCond'].values) trainNum['YearBuilt'] = le.fit_transform(trainNum['YearBuilt'].values) trainNum['YearRemodAdd'] = le.fit_transform(trainNum['YearRemodAdd'].values) trainNum['GarageYrBlt'] = le.fit_transform(trainNum['GarageYrBlt'].values) trainNum['YrSold'] = le.fit_transform(trainNum['YrSold'].values) trainCatNormalized = trainCat1.apply(le.fit_transform) trainFinal = pd.concat([trainNum, trainCatNormalized], axis=1) from sklearn import linear_model LR = linear_model.LinearRegression() X = trainFinal.drop(['Id', 'SalePrice'], axis=1) y = trainFinal['SalePrice'] LR.fit(X, y) LR.score(X, y)
code
2026131/cell_30
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') np.array(list(zip(train.Id, train.columns))) train.columns[train.isnull().any()].tolist() test.columns[test.isnull().any()].tolist() trainNum = train.select_dtypes(include=[np.number]) trainCat = train.select_dtypes(include=[object]) testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) trainNum.columns[trainNum.isnull().any()].tolist() trainCat.columns[trainCat.isnull().any()].tolist() trainCat1 = trainCat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() trainNum['MSSubClass'] = le.fit_transform(trainNum['MSSubClass'].values) trainNum['OverallQual'] = le.fit_transform(trainNum['OverallQual'].values) trainNum['OverallCond'] = le.fit_transform(trainNum['OverallCond'].values) trainNum['YearBuilt'] = le.fit_transform(trainNum['YearBuilt'].values) trainNum['YearRemodAdd'] = le.fit_transform(trainNum['YearRemodAdd'].values) trainNum['GarageYrBlt'] = le.fit_transform(trainNum['GarageYrBlt'].values) trainNum['YrSold'] = le.fit_transform(trainNum['YrSold'].values) trainCatNormalized = trainCat1.apply(le.fit_transform) trainFinal = pd.concat([trainNum, trainCatNormalized], axis=1) trainFinal.head()
code
2026131/cell_55
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') np.array(list(zip(train.Id, train.columns))) train.columns[train.isnull().any()].tolist() test.columns[test.isnull().any()].tolist() trainNum = train.select_dtypes(include=[np.number]) trainCat = train.select_dtypes(include=[object]) testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) trainNum.columns[trainNum.isnull().any()].tolist() trainCat.columns[trainCat.isnull().any()].tolist() trainCat1 = trainCat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() trainNum['MSSubClass'] = le.fit_transform(trainNum['MSSubClass'].values) trainNum['OverallQual'] = le.fit_transform(trainNum['OverallQual'].values) trainNum['OverallCond'] = le.fit_transform(trainNum['OverallCond'].values) trainNum['YearBuilt'] = le.fit_transform(trainNum['YearBuilt'].values) trainNum['YearRemodAdd'] = le.fit_transform(trainNum['YearRemodAdd'].values) trainNum['GarageYrBlt'] = le.fit_transform(trainNum['GarageYrBlt'].values) trainNum['YrSold'] = le.fit_transform(trainNum['YrSold'].values) trainCatNormalized = trainCat1.apply(le.fit_transform) trainFinal = pd.concat([trainNum, trainCatNormalized], axis=1) test.columns[test.isnull().any()].tolist() testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) testNum.columns[testNum.isnull().any()].tolist() testCat.columns[testCat.isnull().any()].tolist() testCat1 = testCat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) testNum['MSSubClass'] = le.fit_transform(testNum['MSSubClass'].astype(str)) testNum['OverallQual'] = le.fit_transform(testNum['OverallQual'].astype(str)) testNum['OverallCond'] = le.fit_transform(testNum['OverallCond'].astype(str)) testNum['YearBuilt'] = le.fit_transform(testNum['YearBuilt'].astype(str)) testNum['YearRemodAdd'] = le.fit_transform(testNum['YearRemodAdd'].astype(str)) testNum['GarageYrBlt'] = le.fit_transform(testNum['GarageYrBlt'].astype(str)) testNum['YrSold'] = le.fit_transform(testNum['YrSold'].astype(str)) testCatNormalized = testCat1.apply(le.fit_transform) testFinal = pd.concat([testNum, testCatNormalized], axis=1) testFinal.head()
code
2026131/cell_26
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') np.array(list(zip(train.Id, train.columns))) train.columns[train.isnull().any()].tolist() test.columns[test.isnull().any()].tolist() trainNum = train.select_dtypes(include=[np.number]) trainCat = train.select_dtypes(include=[object]) testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) trainNum.columns[trainNum.isnull().any()].tolist() trainCat.columns[trainCat.isnull().any()].tolist() trainCat1 = trainCat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() trainNum['MSSubClass'] = le.fit_transform(trainNum['MSSubClass'].values) trainNum['OverallQual'] = le.fit_transform(trainNum['OverallQual'].values) trainNum['OverallCond'] = le.fit_transform(trainNum['OverallCond'].values) trainNum['YearBuilt'] = le.fit_transform(trainNum['YearBuilt'].values) trainNum['YearRemodAdd'] = le.fit_transform(trainNum['YearRemodAdd'].values) trainNum['GarageYrBlt'] = le.fit_transform(trainNum['GarageYrBlt'].values) trainNum['YrSold'] = le.fit_transform(trainNum['YrSold'].values) trainCatNormalized = trainCat1.apply(le.fit_transform)
code
2026131/cell_41
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') np.array(list(zip(train.Id, train.columns))) train.columns[train.isnull().any()].tolist() test.columns[test.isnull().any()].tolist() trainNum = train.select_dtypes(include=[np.number]) trainCat = train.select_dtypes(include=[object]) testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) test.columns[test.isnull().any()].tolist() testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) testNum.columns[testNum.isnull().any()].tolist()
code
2026131/cell_19
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') np.array(list(zip(train.Id, train.columns))) train.columns[train.isnull().any()].tolist() test.columns[test.isnull().any()].tolist() trainNum = train.select_dtypes(include=[np.number]) trainCat = train.select_dtypes(include=[object]) testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) trainNum.columns[trainNum.isnull().any()].tolist() trainNum['GarageYrBlt'].fillna(trainNum['GarageYrBlt'].value_counts().idxmax(), inplace=True)
code
2026131/cell_50
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') np.array(list(zip(train.Id, train.columns))) train.columns[train.isnull().any()].tolist() test.columns[test.isnull().any()].tolist() trainNum = train.select_dtypes(include=[np.number]) trainCat = train.select_dtypes(include=[object]) testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) trainNum.columns[trainNum.isnull().any()].tolist() trainCat.columns[trainCat.isnull().any()].tolist() trainCat1 = trainCat.drop(['Alley', 'FireplaceQu', 'PoolQC', 'Fence', 'MiscFeature'], axis=1) from sklearn.preprocessing import LabelEncoder le = LabelEncoder() trainNum['MSSubClass'] = le.fit_transform(trainNum['MSSubClass'].values) trainNum['OverallQual'] = le.fit_transform(trainNum['OverallQual'].values) trainNum['OverallCond'] = le.fit_transform(trainNum['OverallCond'].values) trainNum['YearBuilt'] = le.fit_transform(trainNum['YearBuilt'].values) trainNum['YearRemodAdd'] = le.fit_transform(trainNum['YearRemodAdd'].values) trainNum['GarageYrBlt'] = le.fit_transform(trainNum['GarageYrBlt'].values) trainNum['YrSold'] = le.fit_transform(trainNum['YrSold'].values) trainCatNormalized = trainCat1.apply(le.fit_transform) test.columns[test.isnull().any()].tolist() testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) testNum.columns[testNum.isnull().any()].tolist() testNum['MSSubClass'] = le.fit_transform(testNum['MSSubClass'].astype(str)) testNum['OverallQual'] = le.fit_transform(testNum['OverallQual'].astype(str)) testNum['OverallCond'] = le.fit_transform(testNum['OverallCond'].astype(str)) testNum['YearBuilt'] = le.fit_transform(testNum['YearBuilt'].astype(str)) testNum['YearRemodAdd'] = le.fit_transform(testNum['YearRemodAdd'].astype(str)) testNum['GarageYrBlt'] = le.fit_transform(testNum['GarageYrBlt'].astype(str)) testNum['YrSold'] = le.fit_transform(testNum['YrSold'].astype(str))
code
2026131/cell_7
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') np.array(list(zip(train.Id, train.columns))) train.columns[train.isnull().any()].tolist()
code
2026131/cell_45
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') np.array(list(zip(train.Id, train.columns))) train.columns[train.isnull().any()].tolist() test.columns[test.isnull().any()].tolist() trainNum = train.select_dtypes(include=[np.number]) trainCat = train.select_dtypes(include=[object]) testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) test.columns[test.isnull().any()].tolist() testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) testNum.columns[testNum.isnull().any()].tolist() testNum['BsmtFinSF1'].fillna(testNum['BsmtFinSF1'].mean(), inplace=True) testNum['BsmtFinSF2'].fillna(testNum['BsmtFinSF2'].mean(), inplace=True) testNum['BsmtUnfSF'].fillna(testNum['BsmtUnfSF'].mean(), inplace=True) testNum['TotalBsmtSF'].fillna(testNum['TotalBsmtSF'].mean(), inplace=True) testNum['BsmtFullBath'].fillna(testNum['BsmtFullBath'].mean(), inplace=True) testNum['BsmtHalfBath'].fillna(testNum['BsmtHalfBath'].mean(), inplace=True) testNum['GarageCars'].fillna(testNum['GarageCars'].mean(), inplace=True) testNum['GarageArea'].fillna(testNum['GarageArea'].mean(), inplace=True) testNum['LotFrontage'].fillna(testNum['LotFrontage'].mean(), inplace=True) testNum['MasVnrArea'].fillna(testNum['MasVnrArea'].mean(), inplace=True) testNum['GarageYrBlt'].fillna(testNum['GarageYrBlt'].value_counts().idxmax(), inplace=True)
code
2026131/cell_15
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') np.array(list(zip(train.Id, train.columns))) train.columns[train.isnull().any()].tolist() test.columns[test.isnull().any()].tolist() trainNum = train.select_dtypes(include=[np.number]) trainCat = train.select_dtypes(include=[object]) testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) trainCat.columns[trainCat.isnull().any()].tolist()
code
2026131/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.head()
code
2026131/cell_17
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') np.array(list(zip(train.Id, train.columns))) train.columns[train.isnull().any()].tolist() test.columns[test.isnull().any()].tolist() trainNum = train.select_dtypes(include=[np.number]) trainCat = train.select_dtypes(include=[object]) testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) trainNum.columns[trainNum.isnull().any()].tolist() trainNum['LotFrontage'].fillna(trainNum['LotFrontage'].mean(), inplace=True) trainNum['MasVnrArea'].fillna(trainNum['MasVnrArea'].mean(), inplace=True)
code
2026131/cell_43
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') np.array(list(zip(train.Id, train.columns))) train.columns[train.isnull().any()].tolist() test.columns[test.isnull().any()].tolist() trainNum = train.select_dtypes(include=[np.number]) trainCat = train.select_dtypes(include=[object]) testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) test.columns[test.isnull().any()].tolist() testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) testCat.columns[testCat.isnull().any()].tolist()
code
2026131/cell_37
[ "application_vnd.jupyter.stderr_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') np.array(list(zip(train.Id, train.columns))) train.columns[train.isnull().any()].tolist() test.columns[test.isnull().any()].tolist() trainNum = train.select_dtypes(include=[np.number]) trainCat = train.select_dtypes(include=[object]) testNum = test.select_dtypes(include=[np.number]) testCat = test.select_dtypes(include=[object]) test.columns[test.isnull().any()].tolist()
code
2026131/cell_5
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') np.array(list(zip(train.Id, train.columns)))
code
16111049/cell_9
[ "text_plain_output_2.png", "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) path = '../input/' df_train = pd.read_csv(f'{path}train.csv', index_col='PassengerId') df_test = pd.read_csv(f'{path}test.csv', index_col='PassengerId') target = df_train['Survived'] target.columns = ['Survived'] df_train = df_train.drop(labels='Survived', axis=1) df_train['Training_set'] = True df_test['Training_set'] = False df_full = pd.concat([df_train, df_test]) df_full = df_full.drop(labels=['Ticket', 'Name', 'Cabin'], axis=1) df_full "count_nosurname = 0\nfor i,(name) in enumerate(df_full['Name']):\n name = name.strip()\n ind = name.find(',')\n indw = name.find(' ')\n if(ind!=-1):\n df_full.at[i,'Name'] = name[0:ind]\n else:\n count_nosurname += 1\n df_full.at[i,'Name'] = name[0:indw]\nprint(count_nosurname)\ndf_full.drop(index = 0, axis = 0) " df_full.isnull().sum()[df_full.isnull().sum() > 0] df_full.Age = df_full.Age.fillna(df_full.Age.mean()) df_full.Fare = df_full.Fare.fillna(df_full.Fare.mean()) df_full.Embarked = df_full.fillna(df_full.Embarked.mode()[0]) df_full = df_full.interpolate() df_full = pd.get_dummies(df_full) df_full df_train = df_full[df_full['Training_set'] == True] df_test = df_full[df_full['Training_set'] == False] df_train.drop(labels='Training_set', inplace=True, axis=1) df_test.drop(labels='Training_set', inplace=True, axis=1)
code
16111049/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) path = '../input/' df_train = pd.read_csv(f'{path}train.csv', index_col='PassengerId') df_test = pd.read_csv(f'{path}test.csv', index_col='PassengerId') target = df_train['Survived'] target.columns = ['Survived'] df_train = df_train.drop(labels='Survived', axis=1) df_train['Training_set'] = True df_test['Training_set'] = False df_full = pd.concat([df_train, df_test]) df_full = df_full.drop(labels=['Ticket', 'Name', 'Cabin'], axis=1) df_full "count_nosurname = 0\nfor i,(name) in enumerate(df_full['Name']):\n name = name.strip()\n ind = name.find(',')\n indw = name.find(' ')\n if(ind!=-1):\n df_full.at[i,'Name'] = name[0:ind]\n else:\n count_nosurname += 1\n df_full.at[i,'Name'] = name[0:indw]\nprint(count_nosurname)\ndf_full.drop(index = 0, axis = 0) "
code
16111049/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) path = '../input/' df_train = pd.read_csv(f'{path}train.csv', index_col='PassengerId') df_test = pd.read_csv(f'{path}test.csv', index_col='PassengerId') target = df_train['Survived'] target.columns = ['Survived'] df_train = df_train.drop(labels='Survived', axis=1) df_train['Training_set'] = True df_test['Training_set'] = False df_full = pd.concat([df_train, df_test]) df_full = df_full.drop(labels=['Ticket', 'Name', 'Cabin'], axis=1) df_full "count_nosurname = 0\nfor i,(name) in enumerate(df_full['Name']):\n name = name.strip()\n ind = name.find(',')\n indw = name.find(' ')\n if(ind!=-1):\n df_full.at[i,'Name'] = name[0:ind]\n else:\n count_nosurname += 1\n df_full.at[i,'Name'] = name[0:indw]\nprint(count_nosurname)\ndf_full.drop(index = 0, axis = 0) " df_full.isnull().sum()[df_full.isnull().sum() > 0] df_full.Age = df_full.Age.fillna(df_full.Age.mean()) df_full.Fare = df_full.Fare.fillna(df_full.Fare.mean()) df_full.Embarked = df_full.fillna(df_full.Embarked.mode()[0]) df_full = df_full.interpolate() df_full = pd.get_dummies(df_full) df_full
code
16111049/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import torch from torch import nn import torch.nn.functional as F from torch import optim import sklearn import os print(os.listdir('../input'))
code
16111049/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) path = '../input/' df_train = pd.read_csv(f'{path}train.csv', index_col='PassengerId') df_test = pd.read_csv(f'{path}test.csv', index_col='PassengerId') target = df_train['Survived'] target.columns = ['Survived'] df_train = df_train.drop(labels='Survived', axis=1) df_train['Training_set'] = True df_test['Training_set'] = False df_full = pd.concat([df_train, df_test]) df_full = df_full.drop(labels=['Ticket', 'Name', 'Cabin'], axis=1) df_full "count_nosurname = 0\nfor i,(name) in enumerate(df_full['Name']):\n name = name.strip()\n ind = name.find(',')\n indw = name.find(' ')\n if(ind!=-1):\n df_full.at[i,'Name'] = name[0:ind]\n else:\n count_nosurname += 1\n df_full.at[i,'Name'] = name[0:indw]\nprint(count_nosurname)\ndf_full.drop(index = 0, axis = 0) " df_full.isnull().sum()[df_full.isnull().sum() > 0] df_full.Age = df_full.Age.fillna(df_full.Age.mean()) df_full.Fare = df_full.Fare.fillna(df_full.Fare.mean()) df_full.Embarked = df_full.fillna(df_full.Embarked.mode()[0]) df_full = df_full.interpolate() df_full = pd.get_dummies(df_full) df_full df_full.info()
code
16111049/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) path = '../input/' df_train = pd.read_csv(f'{path}train.csv', index_col='PassengerId') df_test = pd.read_csv(f'{path}test.csv', index_col='PassengerId') target = df_train['Survived'] target.columns = ['Survived'] df_train = df_train.drop(labels='Survived', axis=1) df_train['Training_set'] = True df_test['Training_set'] = False df_full = pd.concat([df_train, df_test]) df_full = df_full.drop(labels=['Ticket', 'Name', 'Cabin'], axis=1) df_full "count_nosurname = 0\nfor i,(name) in enumerate(df_full['Name']):\n name = name.strip()\n ind = name.find(',')\n indw = name.find(' ')\n if(ind!=-1):\n df_full.at[i,'Name'] = name[0:ind]\n else:\n count_nosurname += 1\n df_full.at[i,'Name'] = name[0:indw]\nprint(count_nosurname)\ndf_full.drop(index = 0, axis = 0) " df_full.isnull().sum()[df_full.isnull().sum() > 0]
code
105216451/cell_21
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data.isnull().sum() data.duplicated().sum() data.columns distplot_df=data.loc[:,['Age', 'Flight Distance', 'Departure Delay', 'Arrival Delay', 'Departure and Arrival Time Convenience', 'Ease of Online Booking', 'Check-in Service','Online Boarding','Gate Location','On-board Service']] fig = plt.figure(figsize=(15, 20)) for i, column in enumerate(distplot_df.columns, 1): f=plt.subplot(5,2,i) sns.distplot(distplot_df[column], color="red",fit_kws={"color":"darkgreen"}); distplot_df=data.loc[:,['Gate Location', 'On-board Service', 'Seat Comfort', 'Leg Room Service', 'Cleanliness', 'Food and Drink', 'In-flight Service', 'In-flight Wifi Service', 'In-flight Entertainment', 'Baggage Handling',]] fig = plt.figure(figsize=(15, 20)) for i, column in enumerate(distplot_df.columns, 1): f=plt.subplot(5,2,i) sns.distplot(distplot_df[column], color="blue",fit_kws={"color":"darkred"}); cols = 5 rows = 1 countplot_df=data.loc[:,['Customer Type', 'Type of Travel','Class','Satisfaction']] fig = plt.figure(figsize= (18,7)) all_cats = data.select_dtypes(include='object') for i, col in enumerate(countplot_df,1): ax=fig.add_subplot(rows, cols, i+1) sns.countplot(x=data[col], data=data,ax=ax,palette = "Set1") fig.tight_layout() plt.show() data.isnull().sum() sns.stripplot(y=data['Age'], x=data['Satisfaction'], palette='Set2', alpha=0.1)
code
105216451/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data.isnull().sum() data.duplicated().sum() data.columns distplot_df=data.loc[:,['Age', 'Flight Distance', 'Departure Delay', 'Arrival Delay', 'Departure and Arrival Time Convenience', 'Ease of Online Booking', 'Check-in Service','Online Boarding','Gate Location','On-board Service']] fig = plt.figure(figsize=(15, 20)) for i, column in enumerate(distplot_df.columns, 1): f=plt.subplot(5,2,i) sns.distplot(distplot_df[column], color="red",fit_kws={"color":"darkgreen"}); distplot_df = data.loc[:, ['Gate Location', 'On-board Service', 'Seat Comfort', 'Leg Room Service', 'Cleanliness', 'Food and Drink', 'In-flight Service', 'In-flight Wifi Service', 'In-flight Entertainment', 'Baggage Handling']] fig = plt.figure(figsize=(15, 20)) for i, column in enumerate(distplot_df.columns, 1): f = plt.subplot(5, 2, i) sns.distplot(distplot_df[column], color='blue', fit_kws={'color': 'darkred'})
code
105216451/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data.isnull().sum()
code
105216451/cell_23
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data.isnull().sum() data.duplicated().sum() data.columns distplot_df=data.loc[:,['Age', 'Flight Distance', 'Departure Delay', 'Arrival Delay', 'Departure and Arrival Time Convenience', 'Ease of Online Booking', 'Check-in Service','Online Boarding','Gate Location','On-board Service']] fig = plt.figure(figsize=(15, 20)) for i, column in enumerate(distplot_df.columns, 1): f=plt.subplot(5,2,i) sns.distplot(distplot_df[column], color="red",fit_kws={"color":"darkgreen"}); distplot_df=data.loc[:,['Gate Location', 'On-board Service', 'Seat Comfort', 'Leg Room Service', 'Cleanliness', 'Food and Drink', 'In-flight Service', 'In-flight Wifi Service', 'In-flight Entertainment', 'Baggage Handling',]] fig = plt.figure(figsize=(15, 20)) for i, column in enumerate(distplot_df.columns, 1): f=plt.subplot(5,2,i) sns.distplot(distplot_df[column], color="blue",fit_kws={"color":"darkred"}); cols = 5 rows = 1 countplot_df=data.loc[:,['Customer Type', 'Type of Travel','Class','Satisfaction']] fig = plt.figure(figsize= (18,7)) all_cats = data.select_dtypes(include='object') for i, col in enumerate(countplot_df,1): ax=fig.add_subplot(rows, cols, i+1) sns.countplot(x=data[col], data=data,ax=ax,palette = "Set1") fig.tight_layout() plt.show() data.isnull().sum() data = data.loc[data.Age < 81] data.shape[0]
code
105216451/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data.info()
code
105216451/cell_11
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data.isnull().sum() data.duplicated().sum() data.columns
code
105216451/cell_19
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data.isnull().sum() data.duplicated().sum() data.columns distplot_df=data.loc[:,['Age', 'Flight Distance', 'Departure Delay', 'Arrival Delay', 'Departure and Arrival Time Convenience', 'Ease of Online Booking', 'Check-in Service','Online Boarding','Gate Location','On-board Service']] fig = plt.figure(figsize=(15, 20)) for i, column in enumerate(distplot_df.columns, 1): f=plt.subplot(5,2,i) sns.distplot(distplot_df[column], color="red",fit_kws={"color":"darkgreen"}); distplot_df=data.loc[:,['Gate Location', 'On-board Service', 'Seat Comfort', 'Leg Room Service', 'Cleanliness', 'Food and Drink', 'In-flight Service', 'In-flight Wifi Service', 'In-flight Entertainment', 'Baggage Handling',]] fig = plt.figure(figsize=(15, 20)) for i, column in enumerate(distplot_df.columns, 1): f=plt.subplot(5,2,i) sns.distplot(distplot_df[column], color="blue",fit_kws={"color":"darkred"}); cols = 5 rows = 1 countplot_df=data.loc[:,['Customer Type', 'Type of Travel','Class','Satisfaction']] fig = plt.figure(figsize= (18,7)) all_cats = data.select_dtypes(include='object') for i, col in enumerate(countplot_df,1): ax=fig.add_subplot(rows, cols, i+1) sns.countplot(x=data[col], data=data,ax=ax,palette = "Set1") fig.tight_layout() plt.show() data.isnull().sum()
code
105216451/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') plt.figure(figsize=(14, 10)) sns.heatmap(data.isnull())
code
105216451/cell_18
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data.isnull().sum() data.duplicated().sum() data.columns distplot_df=data.loc[:,['Age', 'Flight Distance', 'Departure Delay', 'Arrival Delay', 'Departure and Arrival Time Convenience', 'Ease of Online Booking', 'Check-in Service','Online Boarding','Gate Location','On-board Service']] fig = plt.figure(figsize=(15, 20)) for i, column in enumerate(distplot_df.columns, 1): f=plt.subplot(5,2,i) sns.distplot(distplot_df[column], color="red",fit_kws={"color":"darkgreen"}); distplot_df=data.loc[:,['Gate Location', 'On-board Service', 'Seat Comfort', 'Leg Room Service', 'Cleanliness', 'Food and Drink', 'In-flight Service', 'In-flight Wifi Service', 'In-flight Entertainment', 'Baggage Handling',]] fig = plt.figure(figsize=(15, 20)) for i, column in enumerate(distplot_df.columns, 1): f=plt.subplot(5,2,i) sns.distplot(distplot_df[column], color="blue",fit_kws={"color":"darkred"}); cols = 5 rows = 1 countplot_df=data.loc[:,['Customer Type', 'Type of Travel','Class','Satisfaction']] fig = plt.figure(figsize= (18,7)) all_cats = data.select_dtypes(include='object') for i, col in enumerate(countplot_df,1): ax=fig.add_subplot(rows, cols, i+1) sns.countplot(x=data[col], data=data,ax=ax,palette = "Set1") fig.tight_layout() plt.show() sns.heatmap(data.isnull())
code
105216451/cell_8
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data.describe()
code
105216451/cell_15
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data.isnull().sum() data.duplicated().sum() data.columns distplot_df=data.loc[:,['Age', 'Flight Distance', 'Departure Delay', 'Arrival Delay', 'Departure and Arrival Time Convenience', 'Ease of Online Booking', 'Check-in Service','Online Boarding','Gate Location','On-board Service']] fig = plt.figure(figsize=(15, 20)) for i, column in enumerate(distplot_df.columns, 1): f=plt.subplot(5,2,i) sns.distplot(distplot_df[column], color="red",fit_kws={"color":"darkgreen"}); distplot_df=data.loc[:,['Gate Location', 'On-board Service', 'Seat Comfort', 'Leg Room Service', 'Cleanliness', 'Food and Drink', 'In-flight Service', 'In-flight Wifi Service', 'In-flight Entertainment', 'Baggage Handling',]] fig = plt.figure(figsize=(15, 20)) for i, column in enumerate(distplot_df.columns, 1): f=plt.subplot(5,2,i) sns.distplot(distplot_df[column], color="blue",fit_kws={"color":"darkred"}); cols = 5 rows = 1 countplot_df = data.loc[:, ['Customer Type', 'Type of Travel', 'Class', 'Satisfaction']] fig = plt.figure(figsize=(18, 7)) all_cats = data.select_dtypes(include='object') for i, col in enumerate(countplot_df, 1): ax = fig.add_subplot(rows, cols, i + 1) sns.countplot(x=data[col], data=data, ax=ax, palette='Set1') fig.tight_layout() plt.show()
code
105216451/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data.isnull().sum() data.duplicated().sum() data.columns distplot_df=data.loc[:,['Age', 'Flight Distance', 'Departure Delay', 'Arrival Delay', 'Departure and Arrival Time Convenience', 'Ease of Online Booking', 'Check-in Service','Online Boarding','Gate Location','On-board Service']] fig = plt.figure(figsize=(15, 20)) for i, column in enumerate(distplot_df.columns, 1): f=plt.subplot(5,2,i) sns.distplot(distplot_df[column], color="red",fit_kws={"color":"darkgreen"}); distplot_df=data.loc[:,['Gate Location', 'On-board Service', 'Seat Comfort', 'Leg Room Service', 'Cleanliness', 'Food and Drink', 'In-flight Service', 'In-flight Wifi Service', 'In-flight Entertainment', 'Baggage Handling',]] fig = plt.figure(figsize=(15, 20)) for i, column in enumerate(distplot_df.columns, 1): f=plt.subplot(5,2,i) sns.distplot(distplot_df[column], color="blue",fit_kws={"color":"darkred"}); cols = 5 rows = 1 countplot_df=data.loc[:,['Customer Type', 'Type of Travel','Class','Satisfaction']] fig = plt.figure(figsize= (18,7)) all_cats = data.select_dtypes(include='object') for i, col in enumerate(countplot_df,1): ax=fig.add_subplot(rows, cols, i+1) sns.countplot(x=data[col], data=data,ax=ax,palette = "Set1") fig.tight_layout() plt.show() data['Arrival Delay'].describe()
code
105216451/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data.isnull().sum() data.duplicated().sum() data.columns distplot_df=data.loc[:,['Age', 'Flight Distance', 'Departure Delay', 'Arrival Delay', 'Departure and Arrival Time Convenience', 'Ease of Online Booking', 'Check-in Service','Online Boarding','Gate Location','On-board Service']] fig = plt.figure(figsize=(15, 20)) for i, column in enumerate(distplot_df.columns, 1): f=plt.subplot(5,2,i) sns.distplot(distplot_df[column], color="red",fit_kws={"color":"darkgreen"}); distplot_df=data.loc[:,['Gate Location', 'On-board Service', 'Seat Comfort', 'Leg Room Service', 'Cleanliness', 'Food and Drink', 'In-flight Service', 'In-flight Wifi Service', 'In-flight Entertainment', 'Baggage Handling',]] fig = plt.figure(figsize=(15, 20)) for i, column in enumerate(distplot_df.columns, 1): f=plt.subplot(5,2,i) sns.distplot(distplot_df[column], color="blue",fit_kws={"color":"darkred"}); data.info()
code
105216451/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data.isnull().sum() data.duplicated().sum()
code
105216451/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data.isnull().sum() data.duplicated().sum() data.columns distplot_df = data.loc[:, ['Age', 'Flight Distance', 'Departure Delay', 'Arrival Delay', 'Departure and Arrival Time Convenience', 'Ease of Online Booking', 'Check-in Service', 'Online Boarding', 'Gate Location', 'On-board Service']] fig = plt.figure(figsize=(15, 20)) for i, column in enumerate(distplot_df.columns, 1): f = plt.subplot(5, 2, i) sns.distplot(distplot_df[column], color='red', fit_kws={'color': 'darkgreen'})
code
105216451/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/airline-passenger-satisfaction/airline_passenger_satisfaction.csv') data.head(15)
code
2032126/cell_9
[ "text_plain_output_1.png" ]
from mlxtend.classifier import StackingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from mlxtend.classifier import StackingClassifier clf1 = KNeighborsClassifier() clf2 = RandomForestClassifier() clf3 = GaussianNB() clf4 = SVC() meta_clf = LogisticRegression() stacking_clf = StackingClassifier(classifiers=[clf1, clf2, clf3, clf4], meta_classifier=meta_clf) clf1.fit(X_train, y_train) clf2.fit(X_train, y_train) clf3.fit(X_train, y_train) clf4.fit(X_train, y_train) stacking_clf.fit(X_train, y_train) print('RNN Score:', clf1.score(X_test, y_test)) print('RF Score:', clf2.score(X_test, y_test)) print('GNB Score:', clf3.score(X_test, y_test)) print('SVC Score:', clf4.score(X_test, y_test)) print('Stacking Score:', stacking_clf.score(X_test, y_test))
code
2032126/cell_4
[ "text_html_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/train.csv') df2 = pd.read_csv('../input/test.csv') df2.head()
code
2032126/cell_11
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd df1 = pd.read_csv('../input/train.csv') df2 = pd.read_csv('../input/test.csv') train = df1.drop(['Ticket', 'Fare', 'Embarked', 'Cabin', 'Name'], axis=1) test = df2.drop(['Ticket', 'Fare', 'Embarked', 'Cabin', 'Name'], axis=1) X = train.drop(['Survived'], axis=1) y = pd.DataFrame(train['Survived']) X['Age'] = X['Age'].replace(np.nan, X['Age'].mean()) test['Age'] = test['Age'].replace(np.nan, test['Age'].mean()) test
code
2032126/cell_7
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd df1 = pd.read_csv('../input/train.csv') df2 = pd.read_csv('../input/test.csv') train = df1.drop(['Ticket', 'Fare', 'Embarked', 'Cabin', 'Name'], axis=1) test = df2.drop(['Ticket', 'Fare', 'Embarked', 'Cabin', 'Name'], axis=1) X = train.drop(['Survived'], axis=1) y = pd.DataFrame(train['Survived']) X['Age'] = X['Age'].replace(np.nan, X['Age'].mean()) X.head()
code
2032126/cell_3
[ "text_html_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/train.csv') df2 = pd.read_csv('../input/test.csv') df1.head()
code
2032126/cell_14
[ "text_html_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/train.csv') df2 = pd.read_csv('../input/test.csv') train = df1.drop(['Ticket', 'Fare', 'Embarked', 'Cabin', 'Name'], axis=1) test = df2.drop(['Ticket', 'Fare', 'Embarked', 'Cabin', 'Name'], axis=1) PassengerId = test['PassengerId'] type(PassengerId)
code
2032126/cell_5
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
import pandas as pd df1 = pd.read_csv('../input/train.csv') df2 = pd.read_csv('../input/test.csv') train = df1.drop(['Ticket', 'Fare', 'Embarked', 'Cabin', 'Name'], axis=1) test = df2.drop(['Ticket', 'Fare', 'Embarked', 'Cabin', 'Name'], axis=1) train.head()
code
32062432/cell_2
[ "text_plain_output_1.png" ]
import os import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32069396/cell_13
[ "text_html_output_1.png" ]
from PIL import Image from sklearn.metrics import f1_score from sklearn.model_selection import train_test_split from torch import optim from torch.optim import lr_scheduler from torch.utils.data import Dataset, DataLoader from torchvision import datasets, models, transforms from torchvision import transforms, utils from tqdm import tqdm import copy import cv2 import numbers import numpy as np import pandas as pd import time import torch import torch.nn as nn import torch.optim as optim import torch import torch.nn as nn from torch.nn import functional as F from torch.autograd import Variable from torch import optim from torch.utils.data import Dataset, DataLoader from torchvision import datasets, models, transforms import time import os import copy import torch.optim as optim from torch.optim import lr_scheduler from torchvision import transforms, utils from PIL import Image from tqdm import tqdm import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import f1_score import cv2 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') test = pd.read_csv('/kaggle/input/lego-dataset/Test.csv') train = pd.read_csv('/kaggle/input/lego-dataset/Train.csv') train_img = [] for img_name in tqdm(train['name']): image_path = '/kaggle/input/lego-dataset/train/' + str(img_name) img = cv2.imread(image_path, 0) img = img / 255.0 img = img.reshape(200, 200, 1) img = img.astype('float32') train_img.append(img) train_x = np.array(train_img) train_y = train['category'].values - 1 train_x.shape from sklearn.model_selection import train_test_split train_xx, val_x, train_yy, val_y = train_test_split(train_x, train_y, test_size=0.1, random_state=13, stratify=train_y) ((train_xx.shape, train_yy.shape), (val_x.shape, val_y.shape)) class RandomRotation(object): """ https://github.com/pytorch/vision/tree/master/torchvision/transforms Rotate the image by angle. Args: degrees (sequence or float or int): Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees). resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional): An optional resampling filter. See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. expand (bool, optional): Optional expansion flag. If true, expands the output to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation. center (2-tuple, optional): Optional center of rotation. Origin is the upper left corner. Default is the center of the image. """ def __init__(self, degrees, resample=False, expand=False, center=None): if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError('If degrees is a single number, it must be positive.') self.degrees = (-degrees, degrees) else: if len(degrees) != 2: raise ValueError('If degrees is a sequence, it must be of len 2.') self.degrees = degrees self.resample = resample self.expand = expand self.center = center @staticmethod def get_params(degrees): """Get parameters for ``rotate`` for a random rotation. Returns: sequence: params to be passed to ``rotate`` for random rotation. """ angle = np.random.uniform(degrees[0], degrees[1]) return angle def __call__(self, img): """ img (PIL Image): Image to be rotated. Returns: PIL Image: Rotated image. """ def rotate(img, angle, resample=False, expand=False, center=None): """Rotate the image by angle and then (optionally) translate it by (n_columns, n_rows) Args: img (PIL Image): PIL Image to be rotated. angle ({float, int}): In degrees degrees counter clockwise order. resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional): An optional resampling filter. See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. expand (bool, optional): Optional expansion flag. If true, expands the output image to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation. center (2-tuple, optional): Optional center of rotation. Origin is the upper left corner. Default is the center of the image. """ return img.rotate(angle, resample, expand, center) angle = self.get_params(self.degrees) return rotate(img, angle, self.resample, self.expand, self.center) class RandomShift(object): def __init__(self, shift): self.shift = shift @staticmethod def get_params(shift): """Get parameters for ``rotate`` for a random rotation. Returns: sequence: params to be passed to ``rotate`` for random rotation. """ hshift, vshift = np.random.uniform(-shift, shift, size=2) return (hshift, vshift) def __call__(self, img): hshift, vshift = self.get_params(self.shift) return img.transform(img.size, Image.AFFINE, (1, 0, hshift, 0, 1, vshift), resample=Image.BICUBIC, fill=1) import numbers train_transform = transforms.Compose([transforms.ToPILImage(), RandomRotation(20), RandomShift(3), transforms.RandomHorizontalFlip(), transforms.ToTensor()]) transform = transforms.Compose([transforms.ToPILImage(), transforms.ToTensor()]) class MyDataset(Dataset): def __init__(self, data, target=None, transform=None): self.transform = transform self.target = target if self.target is not None: self.data = data self.target = torch.from_numpy(target).long() else: self.data = data def __getitem__(self, index): if self.target is not None: return (self.transform(self.data[index]), self.target[index]) else: return self.transform(self.data[index]) def __len__(self): return len(list(self.data)) train_dataset = MyDataset(train_xx, train_yy, train_transform) train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True) val_dataset = MyDataset(val_x, val_y, transform) test_loader = DataLoader(val_dataset, batch_size=128, shuffle=True) dataloaders = {'train': train_loader, 'val': test_loader} dataset_sizes = {'train': len(train_xx), 'val': len(val_x)} def train_model(model, criterion, optimizer, scheduler, num_epochs=25): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): for phase in ['train', 'val']: if phase == 'train': scheduler.step() model.train() else: model.eval() running_loss = 0.0 running_corrects = 0 f1_batch = 0 for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) if phase == 'train': loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) f1_batch += f1_score(labels.data.cpu(), preds.cpu(), average='weighted') epoch_loss = running_loss / dataset_sizes[phase] epoch_f1 = f1_batch / len(dataloaders[phase]) epoch_acc = running_corrects.double() / dataset_sizes[phase] if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) time_elapsed = time.time() - since model.load_state_dict(best_model_wts) return model model_ft = models.resnet18(pretrained=False) model_ft.conv1 = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, 16) model_ft = model_ft.to(device) criterion = nn.CrossEntropyLoss().to(device) optimizer_ft = optim.Adam(model_ft.parameters(), lr=0.001) exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.15) model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=20)
code
32069396/cell_4
[ "image_output_1.png" ]
from tqdm import tqdm import cv2 import numpy as np import pandas as pd test = pd.read_csv('/kaggle/input/lego-dataset/Test.csv') train = pd.read_csv('/kaggle/input/lego-dataset/Train.csv') train_img = [] for img_name in tqdm(train['name']): image_path = '/kaggle/input/lego-dataset/train/' + str(img_name) img = cv2.imread(image_path, 0) img = img / 255.0 img = img.reshape(200, 200, 1) img = img.astype('float32') train_img.append(img) train_x = np.array(train_img) train_y = train['category'].values - 1 train_x.shape
code
32069396/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
from tqdm import tqdm import cv2 import matplotlib.pyplot as plt import numpy as np import pandas as pd test = pd.read_csv('/kaggle/input/lego-dataset/Test.csv') train = pd.read_csv('/kaggle/input/lego-dataset/Train.csv') train_img = [] for img_name in tqdm(train['name']): image_path = '/kaggle/input/lego-dataset/train/' + str(img_name) img = cv2.imread(image_path, 0) img = img / 255.0 img = img.reshape(200, 200, 1) img = img.astype('float32') train_img.append(img) train_x = np.array(train_img) train_y = train['category'].values - 1 train_x.shape def display_examples(images, labels): """ Display 25 images from the images array with its corresponding labels """ fig = plt.figure(figsize=(10,10)) fig.suptitle("Some examples of images of the dataset", fontsize=16) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(images[i].reshape(200,200), cmap=plt.cm.binary) plt.xlabel(labels[i]) plt.show() display_examples(train_x, train_y + 1)
code
32069396/cell_19
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
from PIL import Image from sklearn.metrics import f1_score from sklearn.model_selection import train_test_split from torch import optim from torch.autograd import Variable from torch.optim import lr_scheduler from torch.utils.data import Dataset, DataLoader from torchvision import datasets, models, transforms from torchvision import transforms, utils from tqdm import tqdm import copy import cv2 import numbers import numpy as np import pandas as pd import time import torch import torch.nn as nn import torch.optim as optim import torch import torch.nn as nn from torch.nn import functional as F from torch.autograd import Variable from torch import optim from torch.utils.data import Dataset, DataLoader from torchvision import datasets, models, transforms import time import os import copy import torch.optim as optim from torch.optim import lr_scheduler from torchvision import transforms, utils from PIL import Image from tqdm import tqdm import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import f1_score import cv2 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') test = pd.read_csv('/kaggle/input/lego-dataset/Test.csv') train = pd.read_csv('/kaggle/input/lego-dataset/Train.csv') train_img = [] for img_name in tqdm(train['name']): image_path = '/kaggle/input/lego-dataset/train/' + str(img_name) img = cv2.imread(image_path, 0) img = img / 255.0 img = img.reshape(200, 200, 1) img = img.astype('float32') train_img.append(img) train_x = np.array(train_img) train_y = train['category'].values - 1 train_x.shape from sklearn.model_selection import train_test_split train_xx, val_x, train_yy, val_y = train_test_split(train_x, train_y, test_size=0.1, random_state=13, stratify=train_y) ((train_xx.shape, train_yy.shape), (val_x.shape, val_y.shape)) class RandomRotation(object): """ https://github.com/pytorch/vision/tree/master/torchvision/transforms Rotate the image by angle. Args: degrees (sequence or float or int): Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees). resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional): An optional resampling filter. See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. expand (bool, optional): Optional expansion flag. If true, expands the output to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation. center (2-tuple, optional): Optional center of rotation. Origin is the upper left corner. Default is the center of the image. """ def __init__(self, degrees, resample=False, expand=False, center=None): if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError('If degrees is a single number, it must be positive.') self.degrees = (-degrees, degrees) else: if len(degrees) != 2: raise ValueError('If degrees is a sequence, it must be of len 2.') self.degrees = degrees self.resample = resample self.expand = expand self.center = center @staticmethod def get_params(degrees): """Get parameters for ``rotate`` for a random rotation. Returns: sequence: params to be passed to ``rotate`` for random rotation. """ angle = np.random.uniform(degrees[0], degrees[1]) return angle def __call__(self, img): """ img (PIL Image): Image to be rotated. Returns: PIL Image: Rotated image. """ def rotate(img, angle, resample=False, expand=False, center=None): """Rotate the image by angle and then (optionally) translate it by (n_columns, n_rows) Args: img (PIL Image): PIL Image to be rotated. angle ({float, int}): In degrees degrees counter clockwise order. resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional): An optional resampling filter. See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. expand (bool, optional): Optional expansion flag. If true, expands the output image to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation. center (2-tuple, optional): Optional center of rotation. Origin is the upper left corner. Default is the center of the image. """ return img.rotate(angle, resample, expand, center) angle = self.get_params(self.degrees) return rotate(img, angle, self.resample, self.expand, self.center) class RandomShift(object): def __init__(self, shift): self.shift = shift @staticmethod def get_params(shift): """Get parameters for ``rotate`` for a random rotation. Returns: sequence: params to be passed to ``rotate`` for random rotation. """ hshift, vshift = np.random.uniform(-shift, shift, size=2) return (hshift, vshift) def __call__(self, img): hshift, vshift = self.get_params(self.shift) return img.transform(img.size, Image.AFFINE, (1, 0, hshift, 0, 1, vshift), resample=Image.BICUBIC, fill=1) import numbers train_transform = transforms.Compose([transforms.ToPILImage(), RandomRotation(20), RandomShift(3), transforms.RandomHorizontalFlip(), transforms.ToTensor()]) transform = transforms.Compose([transforms.ToPILImage(), transforms.ToTensor()]) class MyDataset(Dataset): def __init__(self, data, target=None, transform=None): self.transform = transform self.target = target if self.target is not None: self.data = data self.target = torch.from_numpy(target).long() else: self.data = data def __getitem__(self, index): if self.target is not None: return (self.transform(self.data[index]), self.target[index]) else: return self.transform(self.data[index]) def __len__(self): return len(list(self.data)) train_dataset = MyDataset(train_xx, train_yy, train_transform) train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True) val_dataset = MyDataset(val_x, val_y, transform) test_loader = DataLoader(val_dataset, batch_size=128, shuffle=True) dataloaders = {'train': train_loader, 'val': test_loader} dataset_sizes = {'train': len(train_xx), 'val': len(val_x)} def train_model(model, criterion, optimizer, scheduler, num_epochs=25): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): for phase in ['train', 'val']: if phase == 'train': scheduler.step() model.train() else: model.eval() running_loss = 0.0 running_corrects = 0 f1_batch = 0 for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) if phase == 'train': loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) f1_batch += f1_score(labels.data.cpu(), preds.cpu(), average='weighted') epoch_loss = running_loss / dataset_sizes[phase] epoch_f1 = f1_batch / len(dataloaders[phase]) epoch_acc = running_corrects.double() / dataset_sizes[phase] if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) time_elapsed = time.time() - since model.load_state_dict(best_model_wts) return model model_ft = models.resnet18(pretrained=False) model_ft.conv1 = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, 16) model_ft = model_ft.to(device) criterion = nn.CrossEntropyLoss().to(device) optimizer_ft = optim.Adam(model_ft.parameters(), lr=0.001) exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.15) model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=20) test_img = [] for img_name in tqdm(test['name']): image_path = '/kaggle/input/lego-dataset/test/' + str(img_name) img = cv2.imread(image_path, 0) img = img / 255.0 img = img.reshape(200, 200, 1) img = img.astype('float32') test_img.append(img) test_x = np.array(test_img) test_x.shape val_dataset = MyDataset(data=test_x, transform=transform) test_loader = DataLoader(val_dataset, batch_size=128, shuffle=False) def prediciton(data_loader): model_ft.eval() test_pred = torch.LongTensor() for i, data in enumerate(data_loader): data = Variable(data, volatile=True) if torch.cuda.is_available(): data = data.cuda() output = model_ft(data) pred = output.cpu().data.max(1, keepdim=True)[1] test_pred = torch.cat((test_pred, pred), dim=0) return test_pred test_pred = prediciton(test_loader) test['category'] = test_pred.numpy() + 1 test.head()
code
32069396/cell_7
[ "text_html_output_1.png" ]
from sklearn.model_selection import train_test_split from tqdm import tqdm import cv2 import numpy as np import pandas as pd test = pd.read_csv('/kaggle/input/lego-dataset/Test.csv') train = pd.read_csv('/kaggle/input/lego-dataset/Train.csv') train_img = [] for img_name in tqdm(train['name']): image_path = '/kaggle/input/lego-dataset/train/' + str(img_name) img = cv2.imread(image_path, 0) img = img / 255.0 img = img.reshape(200, 200, 1) img = img.astype('float32') train_img.append(img) train_x = np.array(train_img) train_y = train['category'].values - 1 train_x.shape from sklearn.model_selection import train_test_split train_xx, val_x, train_yy, val_y = train_test_split(train_x, train_y, test_size=0.1, random_state=13, stratify=train_y) ((train_xx.shape, train_yy.shape), (val_x.shape, val_y.shape))
code
32069396/cell_18
[ "text_plain_output_1.png" ]
from PIL import Image from sklearn.metrics import f1_score from sklearn.model_selection import train_test_split from torch import optim from torch.autograd import Variable from torch.optim import lr_scheduler from torch.utils.data import Dataset, DataLoader from torchvision import datasets, models, transforms from torchvision import transforms, utils from tqdm import tqdm import copy import cv2 import numbers import numpy as np import pandas as pd import time import torch import torch.nn as nn import torch.optim as optim import torch import torch.nn as nn from torch.nn import functional as F from torch.autograd import Variable from torch import optim from torch.utils.data import Dataset, DataLoader from torchvision import datasets, models, transforms import time import os import copy import torch.optim as optim from torch.optim import lr_scheduler from torchvision import transforms, utils from PIL import Image from tqdm import tqdm import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import f1_score import cv2 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') test = pd.read_csv('/kaggle/input/lego-dataset/Test.csv') train = pd.read_csv('/kaggle/input/lego-dataset/Train.csv') train_img = [] for img_name in tqdm(train['name']): image_path = '/kaggle/input/lego-dataset/train/' + str(img_name) img = cv2.imread(image_path, 0) img = img / 255.0 img = img.reshape(200, 200, 1) img = img.astype('float32') train_img.append(img) train_x = np.array(train_img) train_y = train['category'].values - 1 train_x.shape from sklearn.model_selection import train_test_split train_xx, val_x, train_yy, val_y = train_test_split(train_x, train_y, test_size=0.1, random_state=13, stratify=train_y) ((train_xx.shape, train_yy.shape), (val_x.shape, val_y.shape)) class RandomRotation(object): """ https://github.com/pytorch/vision/tree/master/torchvision/transforms Rotate the image by angle. Args: degrees (sequence or float or int): Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees). resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional): An optional resampling filter. See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. expand (bool, optional): Optional expansion flag. If true, expands the output to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation. center (2-tuple, optional): Optional center of rotation. Origin is the upper left corner. Default is the center of the image. """ def __init__(self, degrees, resample=False, expand=False, center=None): if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError('If degrees is a single number, it must be positive.') self.degrees = (-degrees, degrees) else: if len(degrees) != 2: raise ValueError('If degrees is a sequence, it must be of len 2.') self.degrees = degrees self.resample = resample self.expand = expand self.center = center @staticmethod def get_params(degrees): """Get parameters for ``rotate`` for a random rotation. Returns: sequence: params to be passed to ``rotate`` for random rotation. """ angle = np.random.uniform(degrees[0], degrees[1]) return angle def __call__(self, img): """ img (PIL Image): Image to be rotated. Returns: PIL Image: Rotated image. """ def rotate(img, angle, resample=False, expand=False, center=None): """Rotate the image by angle and then (optionally) translate it by (n_columns, n_rows) Args: img (PIL Image): PIL Image to be rotated. angle ({float, int}): In degrees degrees counter clockwise order. resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional): An optional resampling filter. See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. expand (bool, optional): Optional expansion flag. If true, expands the output image to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation. center (2-tuple, optional): Optional center of rotation. Origin is the upper left corner. Default is the center of the image. """ return img.rotate(angle, resample, expand, center) angle = self.get_params(self.degrees) return rotate(img, angle, self.resample, self.expand, self.center) class RandomShift(object): def __init__(self, shift): self.shift = shift @staticmethod def get_params(shift): """Get parameters for ``rotate`` for a random rotation. Returns: sequence: params to be passed to ``rotate`` for random rotation. """ hshift, vshift = np.random.uniform(-shift, shift, size=2) return (hshift, vshift) def __call__(self, img): hshift, vshift = self.get_params(self.shift) return img.transform(img.size, Image.AFFINE, (1, 0, hshift, 0, 1, vshift), resample=Image.BICUBIC, fill=1) import numbers train_transform = transforms.Compose([transforms.ToPILImage(), RandomRotation(20), RandomShift(3), transforms.RandomHorizontalFlip(), transforms.ToTensor()]) transform = transforms.Compose([transforms.ToPILImage(), transforms.ToTensor()]) class MyDataset(Dataset): def __init__(self, data, target=None, transform=None): self.transform = transform self.target = target if self.target is not None: self.data = data self.target = torch.from_numpy(target).long() else: self.data = data def __getitem__(self, index): if self.target is not None: return (self.transform(self.data[index]), self.target[index]) else: return self.transform(self.data[index]) def __len__(self): return len(list(self.data)) train_dataset = MyDataset(train_xx, train_yy, train_transform) train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True) val_dataset = MyDataset(val_x, val_y, transform) test_loader = DataLoader(val_dataset, batch_size=128, shuffle=True) dataloaders = {'train': train_loader, 'val': test_loader} dataset_sizes = {'train': len(train_xx), 'val': len(val_x)} def train_model(model, criterion, optimizer, scheduler, num_epochs=25): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): for phase in ['train', 'val']: if phase == 'train': scheduler.step() model.train() else: model.eval() running_loss = 0.0 running_corrects = 0 f1_batch = 0 for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) if phase == 'train': loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) f1_batch += f1_score(labels.data.cpu(), preds.cpu(), average='weighted') epoch_loss = running_loss / dataset_sizes[phase] epoch_f1 = f1_batch / len(dataloaders[phase]) epoch_acc = running_corrects.double() / dataset_sizes[phase] if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) time_elapsed = time.time() - since model.load_state_dict(best_model_wts) return model model_ft = models.resnet18(pretrained=False) model_ft.conv1 = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, 16) model_ft = model_ft.to(device) criterion = nn.CrossEntropyLoss().to(device) optimizer_ft = optim.Adam(model_ft.parameters(), lr=0.001) exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.15) model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=20) test_img = [] for img_name in tqdm(test['name']): image_path = '/kaggle/input/lego-dataset/test/' + str(img_name) img = cv2.imread(image_path, 0) img = img / 255.0 img = img.reshape(200, 200, 1) img = img.astype('float32') test_img.append(img) test_x = np.array(test_img) test_x.shape val_dataset = MyDataset(data=test_x, transform=transform) test_loader = DataLoader(val_dataset, batch_size=128, shuffle=False) def prediciton(data_loader): model_ft.eval() test_pred = torch.LongTensor() for i, data in enumerate(data_loader): data = Variable(data, volatile=True) if torch.cuda.is_available(): data = data.cuda() output = model_ft(data) pred = output.cpu().data.max(1, keepdim=True)[1] test_pred = torch.cat((test_pred, pred), dim=0) return test_pred test_pred = prediciton(test_loader)
code
32069396/cell_15
[ "image_output_1.png" ]
from PIL import Image from tqdm import tqdm import cv2 import matplotlib.pyplot as plt import numbers import numpy as np import pandas as pd test = pd.read_csv('/kaggle/input/lego-dataset/Test.csv') train = pd.read_csv('/kaggle/input/lego-dataset/Train.csv') train_img = [] for img_name in tqdm(train['name']): image_path = '/kaggle/input/lego-dataset/train/' + str(img_name) img = cv2.imread(image_path, 0) img = img / 255.0 img = img.reshape(200, 200, 1) img = img.astype('float32') train_img.append(img) train_x = np.array(train_img) train_y = train['category'].values - 1 train_x.shape def display_examples(images, labels): """ Display 25 images from the images array with its corresponding labels """ fig = plt.figure(figsize=(10,10)) fig.suptitle("Some examples of images of the dataset", fontsize=16) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(images[i].reshape(200,200), cmap=plt.cm.binary) plt.xlabel(labels[i]) plt.show() class RandomRotation(object): """ https://github.com/pytorch/vision/tree/master/torchvision/transforms Rotate the image by angle. Args: degrees (sequence or float or int): Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees). resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional): An optional resampling filter. See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. expand (bool, optional): Optional expansion flag. If true, expands the output to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation. center (2-tuple, optional): Optional center of rotation. Origin is the upper left corner. Default is the center of the image. """ def __init__(self, degrees, resample=False, expand=False, center=None): if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError('If degrees is a single number, it must be positive.') self.degrees = (-degrees, degrees) else: if len(degrees) != 2: raise ValueError('If degrees is a sequence, it must be of len 2.') self.degrees = degrees self.resample = resample self.expand = expand self.center = center @staticmethod def get_params(degrees): """Get parameters for ``rotate`` for a random rotation. Returns: sequence: params to be passed to ``rotate`` for random rotation. """ angle = np.random.uniform(degrees[0], degrees[1]) return angle def __call__(self, img): """ img (PIL Image): Image to be rotated. Returns: PIL Image: Rotated image. """ def rotate(img, angle, resample=False, expand=False, center=None): """Rotate the image by angle and then (optionally) translate it by (n_columns, n_rows) Args: img (PIL Image): PIL Image to be rotated. angle ({float, int}): In degrees degrees counter clockwise order. resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional): An optional resampling filter. See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. expand (bool, optional): Optional expansion flag. If true, expands the output image to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation. center (2-tuple, optional): Optional center of rotation. Origin is the upper left corner. Default is the center of the image. """ return img.rotate(angle, resample, expand, center) angle = self.get_params(self.degrees) return rotate(img, angle, self.resample, self.expand, self.center) class RandomShift(object): def __init__(self, shift): self.shift = shift @staticmethod def get_params(shift): """Get parameters for ``rotate`` for a random rotation. Returns: sequence: params to be passed to ``rotate`` for random rotation. """ hshift, vshift = np.random.uniform(-shift, shift, size=2) return (hshift, vshift) def __call__(self, img): hshift, vshift = self.get_params(self.shift) return img.transform(img.size, Image.AFFINE, (1, 0, hshift, 0, 1, vshift), resample=Image.BICUBIC, fill=1) test_img = [] for img_name in tqdm(test['name']): image_path = '/kaggle/input/lego-dataset/test/' + str(img_name) img = cv2.imread(image_path, 0) img = img / 255.0 img = img.reshape(200, 200, 1) img = img.astype('float32') test_img.append(img) test_x = np.array(test_img) test_x.shape fig = plt.figure(figsize=(10, 10)) fig.suptitle('Some examples of images of the dataset', fontsize=16) for i in range(25): plt.subplot(5, 5, i + 1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(test_x[i].reshape(200, 200), cmap=plt.cm.binary) plt.show()
code
32069396/cell_3
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd test = pd.read_csv('/kaggle/input/lego-dataset/Test.csv') train = pd.read_csv('/kaggle/input/lego-dataset/Train.csv') train.head()
code
32069396/cell_14
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from tqdm import tqdm import cv2 import numbers import numpy as np import pandas as pd test = pd.read_csv('/kaggle/input/lego-dataset/Test.csv') train = pd.read_csv('/kaggle/input/lego-dataset/Train.csv') train_img = [] for img_name in tqdm(train['name']): image_path = '/kaggle/input/lego-dataset/train/' + str(img_name) img = cv2.imread(image_path, 0) img = img / 255.0 img = img.reshape(200, 200, 1) img = img.astype('float32') train_img.append(img) train_x = np.array(train_img) train_y = train['category'].values - 1 train_x.shape class RandomRotation(object): """ https://github.com/pytorch/vision/tree/master/torchvision/transforms Rotate the image by angle. Args: degrees (sequence or float or int): Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees). resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional): An optional resampling filter. See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. expand (bool, optional): Optional expansion flag. If true, expands the output to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation. center (2-tuple, optional): Optional center of rotation. Origin is the upper left corner. Default is the center of the image. """ def __init__(self, degrees, resample=False, expand=False, center=None): if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError('If degrees is a single number, it must be positive.') self.degrees = (-degrees, degrees) else: if len(degrees) != 2: raise ValueError('If degrees is a sequence, it must be of len 2.') self.degrees = degrees self.resample = resample self.expand = expand self.center = center @staticmethod def get_params(degrees): """Get parameters for ``rotate`` for a random rotation. Returns: sequence: params to be passed to ``rotate`` for random rotation. """ angle = np.random.uniform(degrees[0], degrees[1]) return angle def __call__(self, img): """ img (PIL Image): Image to be rotated. Returns: PIL Image: Rotated image. """ def rotate(img, angle, resample=False, expand=False, center=None): """Rotate the image by angle and then (optionally) translate it by (n_columns, n_rows) Args: img (PIL Image): PIL Image to be rotated. angle ({float, int}): In degrees degrees counter clockwise order. resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional): An optional resampling filter. See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. expand (bool, optional): Optional expansion flag. If true, expands the output image to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation. center (2-tuple, optional): Optional center of rotation. Origin is the upper left corner. Default is the center of the image. """ return img.rotate(angle, resample, expand, center) angle = self.get_params(self.degrees) return rotate(img, angle, self.resample, self.expand, self.center) class RandomShift(object): def __init__(self, shift): self.shift = shift @staticmethod def get_params(shift): """Get parameters for ``rotate`` for a random rotation. Returns: sequence: params to be passed to ``rotate`` for random rotation. """ hshift, vshift = np.random.uniform(-shift, shift, size=2) return (hshift, vshift) def __call__(self, img): hshift, vshift = self.get_params(self.shift) return img.transform(img.size, Image.AFFINE, (1, 0, hshift, 0, 1, vshift), resample=Image.BICUBIC, fill=1) test_img = [] for img_name in tqdm(test['name']): image_path = '/kaggle/input/lego-dataset/test/' + str(img_name) img = cv2.imread(image_path, 0) img = img / 255.0 img = img.reshape(200, 200, 1) img = img.astype('float32') test_img.append(img) test_x = np.array(test_img) test_x.shape
code
106198328/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd stock_data = pd.read_csv('../input/ibovespa-index/ibovespa_indexq.csv') stock_data['Date'] = pd.to_datetime(stock_data['Date']) ibov_visu = pd.read_csv('../input/ibovespa-index/ibovespa_info.csv')
code
106198328/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd stock_data = pd.read_csv('../input/ibovespa-index/ibovespa_indexq.csv') stock_data.isna().mean()
code
106198328/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd stock_data = pd.read_csv('../input/ibovespa-index/ibovespa_indexq.csv') stock_data.isna().mean() round(stock_data.isna().mean().sum(), 2) stock_data.isna().sum().sum()
code