path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
88102789/cell_11
[ "text_plain_output_1.png" ]
import seaborn as sns df = sns.load_dataset('titanic') df.head()
code
88102789/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import seaborn as sns df = sns.load_dataset('titanic') sns.countplot(data=df, x='alone', hue='alive', palette='deep')
code
88102789/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import seaborn as sns df = sns.load_dataset('titanic') sns.distplot(df['fare'], kde=False, bins=30, color='y')
code
88102789/cell_18
[ "text_html_output_1.png" ]
import seaborn as sns df = sns.load_dataset('titanic') sns.countplot(data=df, x='alive', hue='alone', palette='deep')
code
88102789/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import seaborn as sns df = sns.load_dataset('titanic') sns.kdeplot(df['fare'], shade=True, color='y')
code
88102789/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
import seaborn as sns df = sns.load_dataset('titanic') df['who'].unique()
code
88102789/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import seaborn as sns df = sns.load_dataset('titanic') sns.countplot(data=df, x='alive', hue='who', palette='deep')
code
88102789/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import seaborn as sns df = sns.load_dataset('titanic') df.head()
code
88102789/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
import seaborn as sns df = sns.load_dataset('titanic') sns.countplot(data=df, x='who', hue='alive', palette='deep')
code
88102789/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
import seaborn as sns df = sns.load_dataset('titanic') sns.countplot(data=df, x='alone', hue='sex')
code
88102789/cell_14
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import seaborn as sns df = sns.load_dataset('titanic') sns.countplot(data=df, x='alive', hue='sex', palette='deep')
code
88102789/cell_22
[ "text_plain_output_1.png" ]
import seaborn as sns df = sns.load_dataset('titanic') sns.countplot(data=df, x='embark_town', hue='class', palette='deep')
code
88102789/cell_10
[ "text_html_output_1.png" ]
import seaborn as sns df = sns.load_dataset('titanic') sns.jointplot(data=df[df['fare'] <= 100], x='age', y='fare', kind='scatter', color='c')
code
88102789/cell_12
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import seaborn as sns df = sns.load_dataset('titanic') sns.countplot(data=df, x='survived', palette='dark')
code
88102789/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import seaborn as sns df = sns.load_dataset('titanic') sns.distplot(df['age'], kde=False, bins=30, color='m')
code
104117096/cell_13
[ "text_html_output_1.png" ]
import glob import numpy as np import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import glob glob.glob('../input/skin-cancer-mnist-ham10000/*') images_path = glob.glob('../input/skin-cancer-mnist-ham10000/HAM10000_images_part_1/*') img_id = [] for i in images_path: img_id.append(i.split('/')[4].split('.')[0]) data = pd.read_csv('../input/skin-cancer-mnist-ham10000/HAM10000_metadata.csv') full_name_cancer_dict = {'akiec': "Bowen's disease", 'bcc': 'basal cell carcinoma', 'bkl': 'benign keratosis-like lesions', 'df': 'dermatofibroma', 'mel': 'melanoma', 'nv': 'melanocytic nevi', 'vasc': 'vascular lesions'} img_with_class = data.loc[:, ['image_id', 'dx']].to_dict('list') img_with_class.keys() img_to_class = {img_id: full_name_cancer_dict[disease] for img_id, disease in zip(img_with_class['image_id'], img_with_class['dx'])} random = np.random.choice(list(img_to_class.keys()), 10) {i: img_to_class[i] for i in random} inter_data_id = set(img_to_class.keys()).intersection(set(img_id)) len(inter_data)
code
104117096/cell_4
[ "text_plain_output_1.png" ]
import glob import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import glob glob.glob('../input/skin-cancer-mnist-ham10000/*') images_path = glob.glob('../input/skin-cancer-mnist-ham10000/HAM10000_images_part_1/*') img_id = [] for i in images_path: img_id.append(i.split('/')[4].split('.')[0]) img_id[:10]
code
104117096/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/skin-cancer-mnist-ham10000/HAM10000_metadata.csv') data.info()
code
104117096/cell_2
[ "text_plain_output_1.png" ]
import glob import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import glob glob.glob('../input/skin-cancer-mnist-ham10000/*')
code
104117096/cell_7
[ "image_output_1.png" ]
import glob import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import glob glob.glob('../input/skin-cancer-mnist-ham10000/*') images_path = glob.glob('../input/skin-cancer-mnist-ham10000/HAM10000_images_part_1/*') img_id = [] for i in images_path: img_id.append(i.split('/')[4].split('.')[0]) data = pd.read_csv('../input/skin-cancer-mnist-ham10000/HAM10000_metadata.csv') len(set(data['image_id']).intersection(set(img_id)))
code
104117096/cell_15
[ "text_plain_output_1.png" ]
import glob import numpy as np import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import glob glob.glob('../input/skin-cancer-mnist-ham10000/*') images_path = glob.glob('../input/skin-cancer-mnist-ham10000/HAM10000_images_part_1/*') img_id = [] for i in images_path: img_id.append(i.split('/')[4].split('.')[0]) data = pd.read_csv('../input/skin-cancer-mnist-ham10000/HAM10000_metadata.csv') full_name_cancer_dict = {'akiec': "Bowen's disease", 'bcc': 'basal cell carcinoma', 'bkl': 'benign keratosis-like lesions', 'df': 'dermatofibroma', 'mel': 'melanoma', 'nv': 'melanocytic nevi', 'vasc': 'vascular lesions'} img_with_class = data.loc[:, ['image_id', 'dx']].to_dict('list') img_with_class.keys() img_to_class = {img_id: full_name_cancer_dict[disease] for img_id, disease in zip(img_with_class['image_id'], img_with_class['dx'])} random = np.random.choice(list(img_to_class.keys()), 10) {i: img_to_class[i] for i in random} inter_data_id = set(img_to_class.keys()).intersection(set(img_id)) len(inter_data) def compelete_path(id_images, path): full_paths = [path + i + '.jpg' for i in id_images] return full_paths full_paths = compelete_path(inter_data_id, '../input/skin-cancer-mnist-ham10000/HAM10000_images_part_1/') full_paths[:5]
code
104117096/cell_16
[ "text_plain_output_1.png" ]
import glob import matplotlib.pyplot as plt import numpy as np import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import glob glob.glob('../input/skin-cancer-mnist-ham10000/*') images_path = glob.glob('../input/skin-cancer-mnist-ham10000/HAM10000_images_part_1/*') img_id = [] for i in images_path: img_id.append(i.split('/')[4].split('.')[0]) data = pd.read_csv('../input/skin-cancer-mnist-ham10000/HAM10000_metadata.csv') full_name_cancer_dict = {'akiec': "Bowen's disease", 'bcc': 'basal cell carcinoma', 'bkl': 'benign keratosis-like lesions', 'df': 'dermatofibroma', 'mel': 'melanoma', 'nv': 'melanocytic nevi', 'vasc': 'vascular lesions'} img_with_class = data.loc[:, ['image_id', 'dx']].to_dict('list') img_with_class.keys() img_to_class = {img_id: full_name_cancer_dict[disease] for img_id, disease in zip(img_with_class['image_id'], img_with_class['dx'])} random = np.random.choice(list(img_to_class.keys()), 10) {i: img_to_class[i] for i in random} inter_data_id = set(img_to_class.keys()).intersection(set(img_id)) len(inter_data) def compelete_path(id_images, path): full_paths = [path + i + '.jpg' for i in id_images] return full_paths full_paths = compelete_path(inter_data_id, '../input/skin-cancer-mnist-ham10000/HAM10000_images_part_1/') full_paths[:5] plt.figure(figsize=(10, 8)) for i in range(25): plt.subplot(5, 5, i + 1) plt.imshow(plt.imread(full_paths[i])) plt.axis('off')
code
104117096/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/skin-cancer-mnist-ham10000/HAM10000_metadata.csv') img_with_class = data.loc[:, ['image_id', 'dx']].to_dict('list') img_with_class.keys()
code
104117096/cell_12
[ "text_plain_output_1.png" ]
import glob import numpy as np import pandas as pd import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import glob glob.glob('../input/skin-cancer-mnist-ham10000/*') images_path = glob.glob('../input/skin-cancer-mnist-ham10000/HAM10000_images_part_1/*') img_id = [] for i in images_path: img_id.append(i.split('/')[4].split('.')[0]) data = pd.read_csv('../input/skin-cancer-mnist-ham10000/HAM10000_metadata.csv') full_name_cancer_dict = {'akiec': "Bowen's disease", 'bcc': 'basal cell carcinoma', 'bkl': 'benign keratosis-like lesions', 'df': 'dermatofibroma', 'mel': 'melanoma', 'nv': 'melanocytic nevi', 'vasc': 'vascular lesions'} img_with_class = data.loc[:, ['image_id', 'dx']].to_dict('list') img_with_class.keys() img_to_class = {img_id: full_name_cancer_dict[disease] for img_id, disease in zip(img_with_class['image_id'], img_with_class['dx'])} random = np.random.choice(list(img_to_class.keys()), 10) {i: img_to_class[i] for i in random}
code
104117096/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/skin-cancer-mnist-ham10000/HAM10000_metadata.csv') data.head()
code
17118100/cell_21
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from google.cloud import bigquery import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import time import numpy as np import pandas as pd import os PROJECT_ID = 'YOUR_OWN_PROJECT_ID' from google.cloud import bigquery client = bigquery.Client(project=PROJECT_ID, location='US') path = '../input/' dataset_id = 'titanic' dataset_ref = client.dataset(dataset_id) job_config = bigquery.LoadJobConfig() job_config.source_format = bigquery.SourceFormat.CSV job_config.skip_leading_rows = 1 job_config.autodetect = True existing_datasets = [dataset.dataset_id for dataset in client.list_datasets()] if not dataset_id in existing_datasets: client.create_dataset(dataset_id) dataset_ref = client.dataset(dataset_id) existing_tables = [table.table_id for table in client.list_tables(dataset_id)] for filename in os.listdir(path): table_id = filename.rstrip('.csv') if not table_id in existing_tables: table_ref = dataset_ref.table(table_id) with open(path + filename, 'rb') as source_file: job = client.load_table_from_file(source_file, table_ref, job_config=job_config) job.result() table_ref = dataset_ref.table('train') train = client.get_table(table_ref) train.schema client.list_rows(train, max_results=5).to_dataframe() train_query = "\nCREATE OR REPLACE MODEL `titanic.logistic_reg_model`\nOPTIONS (\n model_type = 'logistic_reg'\n ) AS (\nSELECT\n Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked, Survived AS label\nFROM\n `titanic.train`)\n " train_query_job = client.query(train_query) while 1: if client.get_job(train_query_job.job_id).state == 'DONE': break time.sleep(5) predict_query = '\nSELECT\n * \nFROM\n ML.PREDICT(MODEL `titanic.logistic_reg_model`, (\nSELECT\n Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked, PassengerId\n\nFROM\n `titanic.test`\n))\n ' predict_query_job = client.query(predict_query) predicted = predict_query_job.to_dataframe() sub = pd.read_csv('../input/test.csv', header=0) sub = pd.merge(sub, predicted, on='PassengerId', how='right') sub = sub[['PassengerId', 'predicted_label']].rename(index=str, columns={'predicted_label': 'Survived'}) sub.head()
code
17118100/cell_13
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from google.cloud import bigquery import os import time import numpy as np import pandas as pd import os PROJECT_ID = 'YOUR_OWN_PROJECT_ID' from google.cloud import bigquery client = bigquery.Client(project=PROJECT_ID, location='US') path = '../input/' dataset_id = 'titanic' dataset_ref = client.dataset(dataset_id) job_config = bigquery.LoadJobConfig() job_config.source_format = bigquery.SourceFormat.CSV job_config.skip_leading_rows = 1 job_config.autodetect = True existing_datasets = [dataset.dataset_id for dataset in client.list_datasets()] if not dataset_id in existing_datasets: client.create_dataset(dataset_id) dataset_ref = client.dataset(dataset_id) existing_tables = [table.table_id for table in client.list_tables(dataset_id)] for filename in os.listdir(path): table_id = filename.rstrip('.csv') if not table_id in existing_tables: table_ref = dataset_ref.table(table_id) with open(path + filename, 'rb') as source_file: job = client.load_table_from_file(source_file, table_ref, job_config=job_config) job.result() table_ref = dataset_ref.table('train') train = client.get_table(table_ref) train.schema client.list_rows(train, max_results=5).to_dataframe() train_query = "\nCREATE OR REPLACE MODEL `titanic.logistic_reg_model`\nOPTIONS (\n model_type = 'logistic_reg'\n ) AS (\nSELECT\n Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked, Survived AS label\nFROM\n `titanic.train`)\n " train_query_job = client.query(train_query) while 1: if client.get_job(train_query_job.job_id).state == 'DONE': break time.sleep(5)
code
17118100/cell_9
[ "text_html_output_1.png" ]
from google.cloud import bigquery import os import numpy as np import pandas as pd import os PROJECT_ID = 'YOUR_OWN_PROJECT_ID' from google.cloud import bigquery client = bigquery.Client(project=PROJECT_ID, location='US') path = '../input/' dataset_id = 'titanic' dataset_ref = client.dataset(dataset_id) job_config = bigquery.LoadJobConfig() job_config.source_format = bigquery.SourceFormat.CSV job_config.skip_leading_rows = 1 job_config.autodetect = True existing_datasets = [dataset.dataset_id for dataset in client.list_datasets()] if not dataset_id in existing_datasets: client.create_dataset(dataset_id) dataset_ref = client.dataset(dataset_id) existing_tables = [table.table_id for table in client.list_tables(dataset_id)] for filename in os.listdir(path): table_id = filename.rstrip('.csv') if not table_id in existing_tables: table_ref = dataset_ref.table(table_id) with open(path + filename, 'rb') as source_file: job = client.load_table_from_file(source_file, table_ref, job_config=job_config) job.result() table_ref = dataset_ref.table('train') train = client.get_table(table_ref) train.schema
code
17118100/cell_20
[ "application_vnd.jupyter.stderr_output_1.png" ]
from google.cloud import bigquery import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import time import numpy as np import pandas as pd import os PROJECT_ID = 'YOUR_OWN_PROJECT_ID' from google.cloud import bigquery client = bigquery.Client(project=PROJECT_ID, location='US') path = '../input/' dataset_id = 'titanic' dataset_ref = client.dataset(dataset_id) job_config = bigquery.LoadJobConfig() job_config.source_format = bigquery.SourceFormat.CSV job_config.skip_leading_rows = 1 job_config.autodetect = True existing_datasets = [dataset.dataset_id for dataset in client.list_datasets()] if not dataset_id in existing_datasets: client.create_dataset(dataset_id) dataset_ref = client.dataset(dataset_id) existing_tables = [table.table_id for table in client.list_tables(dataset_id)] for filename in os.listdir(path): table_id = filename.rstrip('.csv') if not table_id in existing_tables: table_ref = dataset_ref.table(table_id) with open(path + filename, 'rb') as source_file: job = client.load_table_from_file(source_file, table_ref, job_config=job_config) job.result() table_ref = dataset_ref.table('train') train = client.get_table(table_ref) train.schema client.list_rows(train, max_results=5).to_dataframe() train_query = "\nCREATE OR REPLACE MODEL `titanic.logistic_reg_model`\nOPTIONS (\n model_type = 'logistic_reg'\n ) AS (\nSELECT\n Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked, Survived AS label\nFROM\n `titanic.train`)\n " train_query_job = client.query(train_query) while 1: if client.get_job(train_query_job.job_id).state == 'DONE': break time.sleep(5) predict_query = '\nSELECT\n * \nFROM\n ML.PREDICT(MODEL `titanic.logistic_reg_model`, (\nSELECT\n Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked, PassengerId\n\nFROM\n `titanic.test`\n))\n ' predict_query_job = client.query(predict_query) predicted = predict_query_job.to_dataframe() sub = pd.read_csv('../input/test.csv', header=0) sub = pd.merge(sub, predicted, on='PassengerId', how='right') sub = sub[['PassengerId', 'predicted_label']].rename(index=str, columns={'predicted_label': 'Survived'})
code
17118100/cell_19
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from google.cloud import bigquery import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import time import numpy as np import pandas as pd import os PROJECT_ID = 'YOUR_OWN_PROJECT_ID' from google.cloud import bigquery client = bigquery.Client(project=PROJECT_ID, location='US') path = '../input/' dataset_id = 'titanic' dataset_ref = client.dataset(dataset_id) job_config = bigquery.LoadJobConfig() job_config.source_format = bigquery.SourceFormat.CSV job_config.skip_leading_rows = 1 job_config.autodetect = True existing_datasets = [dataset.dataset_id for dataset in client.list_datasets()] if not dataset_id in existing_datasets: client.create_dataset(dataset_id) dataset_ref = client.dataset(dataset_id) existing_tables = [table.table_id for table in client.list_tables(dataset_id)] for filename in os.listdir(path): table_id = filename.rstrip('.csv') if not table_id in existing_tables: table_ref = dataset_ref.table(table_id) with open(path + filename, 'rb') as source_file: job = client.load_table_from_file(source_file, table_ref, job_config=job_config) job.result() table_ref = dataset_ref.table('train') train = client.get_table(table_ref) train.schema client.list_rows(train, max_results=5).to_dataframe() train_query = "\nCREATE OR REPLACE MODEL `titanic.logistic_reg_model`\nOPTIONS (\n model_type = 'logistic_reg'\n ) AS (\nSELECT\n Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked, Survived AS label\nFROM\n `titanic.train`)\n " train_query_job = client.query(train_query) while 1: if client.get_job(train_query_job.job_id).state == 'DONE': break time.sleep(5) predict_query = '\nSELECT\n * \nFROM\n ML.PREDICT(MODEL `titanic.logistic_reg_model`, (\nSELECT\n Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked, PassengerId\n\nFROM\n `titanic.test`\n))\n ' predict_query_job = client.query(predict_query) predicted = predict_query_job.to_dataframe() sub = pd.read_csv('../input/test.csv', header=0) sub = pd.merge(sub, predicted, on='PassengerId', how='right')
code
17118100/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os print(os.listdir('../input'))
code
17118100/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
from google.cloud import bigquery import os import numpy as np import pandas as pd import os PROJECT_ID = 'YOUR_OWN_PROJECT_ID' from google.cloud import bigquery client = bigquery.Client(project=PROJECT_ID, location='US') path = '../input/' dataset_id = 'titanic' dataset_ref = client.dataset(dataset_id) job_config = bigquery.LoadJobConfig() job_config.source_format = bigquery.SourceFormat.CSV job_config.skip_leading_rows = 1 job_config.autodetect = True existing_datasets = [dataset.dataset_id for dataset in client.list_datasets()] if not dataset_id in existing_datasets: client.create_dataset(dataset_id) dataset_ref = client.dataset(dataset_id) existing_tables = [table.table_id for table in client.list_tables(dataset_id)] for filename in os.listdir(path): print(path + filename) table_id = filename.rstrip('.csv') if not table_id in existing_tables: table_ref = dataset_ref.table(table_id) with open(path + filename, 'rb') as source_file: job = client.load_table_from_file(source_file, table_ref, job_config=job_config) job.result()
code
17118100/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
from google.cloud import bigquery import os import numpy as np import pandas as pd import os PROJECT_ID = 'YOUR_OWN_PROJECT_ID' from google.cloud import bigquery client = bigquery.Client(project=PROJECT_ID, location='US') path = '../input/' dataset_id = 'titanic' dataset_ref = client.dataset(dataset_id) job_config = bigquery.LoadJobConfig() job_config.source_format = bigquery.SourceFormat.CSV job_config.skip_leading_rows = 1 job_config.autodetect = True existing_datasets = [dataset.dataset_id for dataset in client.list_datasets()] if not dataset_id in existing_datasets: client.create_dataset(dataset_id) dataset_ref = client.dataset(dataset_id) existing_tables = [table.table_id for table in client.list_tables(dataset_id)] for filename in os.listdir(path): table_id = filename.rstrip('.csv') if not table_id in existing_tables: table_ref = dataset_ref.table(table_id) with open(path + filename, 'rb') as source_file: job = client.load_table_from_file(source_file, table_ref, job_config=job_config) job.result() table_ref = dataset_ref.table('train') train = client.get_table(table_ref)
code
17118100/cell_15
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from google.cloud import bigquery import os import time import numpy as np import pandas as pd import os PROJECT_ID = 'YOUR_OWN_PROJECT_ID' from google.cloud import bigquery client = bigquery.Client(project=PROJECT_ID, location='US') path = '../input/' dataset_id = 'titanic' dataset_ref = client.dataset(dataset_id) job_config = bigquery.LoadJobConfig() job_config.source_format = bigquery.SourceFormat.CSV job_config.skip_leading_rows = 1 job_config.autodetect = True existing_datasets = [dataset.dataset_id for dataset in client.list_datasets()] if not dataset_id in existing_datasets: client.create_dataset(dataset_id) dataset_ref = client.dataset(dataset_id) existing_tables = [table.table_id for table in client.list_tables(dataset_id)] for filename in os.listdir(path): table_id = filename.rstrip('.csv') if not table_id in existing_tables: table_ref = dataset_ref.table(table_id) with open(path + filename, 'rb') as source_file: job = client.load_table_from_file(source_file, table_ref, job_config=job_config) job.result() table_ref = dataset_ref.table('train') train = client.get_table(table_ref) train.schema client.list_rows(train, max_results=5).to_dataframe() train_query = "\nCREATE OR REPLACE MODEL `titanic.logistic_reg_model`\nOPTIONS (\n model_type = 'logistic_reg'\n ) AS (\nSELECT\n Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked, Survived AS label\nFROM\n `titanic.train`)\n " train_query_job = client.query(train_query) while 1: if client.get_job(train_query_job.job_id).state == 'DONE': break time.sleep(5) predict_query = '\nSELECT\n * \nFROM\n ML.PREDICT(MODEL `titanic.logistic_reg_model`, (\nSELECT\n Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked, PassengerId\n\nFROM\n `titanic.test`\n))\n ' predict_query_job = client.query(predict_query)
code
17118100/cell_16
[ "application_vnd.jupyter.stderr_output_1.png" ]
from google.cloud import bigquery import os import time import numpy as np import pandas as pd import os PROJECT_ID = 'YOUR_OWN_PROJECT_ID' from google.cloud import bigquery client = bigquery.Client(project=PROJECT_ID, location='US') path = '../input/' dataset_id = 'titanic' dataset_ref = client.dataset(dataset_id) job_config = bigquery.LoadJobConfig() job_config.source_format = bigquery.SourceFormat.CSV job_config.skip_leading_rows = 1 job_config.autodetect = True existing_datasets = [dataset.dataset_id for dataset in client.list_datasets()] if not dataset_id in existing_datasets: client.create_dataset(dataset_id) dataset_ref = client.dataset(dataset_id) existing_tables = [table.table_id for table in client.list_tables(dataset_id)] for filename in os.listdir(path): table_id = filename.rstrip('.csv') if not table_id in existing_tables: table_ref = dataset_ref.table(table_id) with open(path + filename, 'rb') as source_file: job = client.load_table_from_file(source_file, table_ref, job_config=job_config) job.result() table_ref = dataset_ref.table('train') train = client.get_table(table_ref) train.schema client.list_rows(train, max_results=5).to_dataframe() train_query = "\nCREATE OR REPLACE MODEL `titanic.logistic_reg_model`\nOPTIONS (\n model_type = 'logistic_reg'\n ) AS (\nSELECT\n Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked, Survived AS label\nFROM\n `titanic.train`)\n " train_query_job = client.query(train_query) while 1: if client.get_job(train_query_job.job_id).state == 'DONE': break time.sleep(5) predict_query = '\nSELECT\n * \nFROM\n ML.PREDICT(MODEL `titanic.logistic_reg_model`, (\nSELECT\n Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked, PassengerId\n\nFROM\n `titanic.test`\n))\n ' predict_query_job = client.query(predict_query) predicted = predict_query_job.to_dataframe()
code
17118100/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
from google.cloud import bigquery PROJECT_ID = 'YOUR_OWN_PROJECT_ID' from google.cloud import bigquery client = bigquery.Client(project=PROJECT_ID, location='US')
code
17118100/cell_17
[ "application_vnd.jupyter.stderr_output_1.png" ]
from google.cloud import bigquery import os import time import numpy as np import pandas as pd import os PROJECT_ID = 'YOUR_OWN_PROJECT_ID' from google.cloud import bigquery client = bigquery.Client(project=PROJECT_ID, location='US') path = '../input/' dataset_id = 'titanic' dataset_ref = client.dataset(dataset_id) job_config = bigquery.LoadJobConfig() job_config.source_format = bigquery.SourceFormat.CSV job_config.skip_leading_rows = 1 job_config.autodetect = True existing_datasets = [dataset.dataset_id for dataset in client.list_datasets()] if not dataset_id in existing_datasets: client.create_dataset(dataset_id) dataset_ref = client.dataset(dataset_id) existing_tables = [table.table_id for table in client.list_tables(dataset_id)] for filename in os.listdir(path): table_id = filename.rstrip('.csv') if not table_id in existing_tables: table_ref = dataset_ref.table(table_id) with open(path + filename, 'rb') as source_file: job = client.load_table_from_file(source_file, table_ref, job_config=job_config) job.result() table_ref = dataset_ref.table('train') train = client.get_table(table_ref) train.schema client.list_rows(train, max_results=5).to_dataframe() train_query = "\nCREATE OR REPLACE MODEL `titanic.logistic_reg_model`\nOPTIONS (\n model_type = 'logistic_reg'\n ) AS (\nSELECT\n Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked, Survived AS label\nFROM\n `titanic.train`)\n " train_query_job = client.query(train_query) while 1: if client.get_job(train_query_job.job_id).state == 'DONE': break time.sleep(5) predict_query = '\nSELECT\n * \nFROM\n ML.PREDICT(MODEL `titanic.logistic_reg_model`, (\nSELECT\n Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked, PassengerId\n\nFROM\n `titanic.test`\n))\n ' predict_query_job = client.query(predict_query) predicted = predict_query_job.to_dataframe() predicted.head()
code
17118100/cell_10
[ "text_plain_output_1.png" ]
from google.cloud import bigquery import os import numpy as np import pandas as pd import os PROJECT_ID = 'YOUR_OWN_PROJECT_ID' from google.cloud import bigquery client = bigquery.Client(project=PROJECT_ID, location='US') path = '../input/' dataset_id = 'titanic' dataset_ref = client.dataset(dataset_id) job_config = bigquery.LoadJobConfig() job_config.source_format = bigquery.SourceFormat.CSV job_config.skip_leading_rows = 1 job_config.autodetect = True existing_datasets = [dataset.dataset_id for dataset in client.list_datasets()] if not dataset_id in existing_datasets: client.create_dataset(dataset_id) dataset_ref = client.dataset(dataset_id) existing_tables = [table.table_id for table in client.list_tables(dataset_id)] for filename in os.listdir(path): table_id = filename.rstrip('.csv') if not table_id in existing_tables: table_ref = dataset_ref.table(table_id) with open(path + filename, 'rb') as source_file: job = client.load_table_from_file(source_file, table_ref, job_config=job_config) job.result() table_ref = dataset_ref.table('train') train = client.get_table(table_ref) train.schema client.list_rows(train, max_results=5).to_dataframe()
code
17118100/cell_12
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_1.png" ]
from google.cloud import bigquery import os import numpy as np import pandas as pd import os PROJECT_ID = 'YOUR_OWN_PROJECT_ID' from google.cloud import bigquery client = bigquery.Client(project=PROJECT_ID, location='US') path = '../input/' dataset_id = 'titanic' dataset_ref = client.dataset(dataset_id) job_config = bigquery.LoadJobConfig() job_config.source_format = bigquery.SourceFormat.CSV job_config.skip_leading_rows = 1 job_config.autodetect = True existing_datasets = [dataset.dataset_id for dataset in client.list_datasets()] if not dataset_id in existing_datasets: client.create_dataset(dataset_id) dataset_ref = client.dataset(dataset_id) existing_tables = [table.table_id for table in client.list_tables(dataset_id)] for filename in os.listdir(path): table_id = filename.rstrip('.csv') if not table_id in existing_tables: table_ref = dataset_ref.table(table_id) with open(path + filename, 'rb') as source_file: job = client.load_table_from_file(source_file, table_ref, job_config=job_config) job.result() table_ref = dataset_ref.table('train') train = client.get_table(table_ref) train.schema client.list_rows(train, max_results=5).to_dataframe() train_query = "\nCREATE OR REPLACE MODEL `titanic.logistic_reg_model`\nOPTIONS (\n model_type = 'logistic_reg'\n ) AS (\nSELECT\n Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked, Survived AS label\nFROM\n `titanic.train`)\n " train_query_job = client.query(train_query)
code
17118100/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
from google.cloud import bigquery PROJECT_ID = 'YOUR_OWN_PROJECT_ID' from google.cloud import bigquery client = bigquery.Client(project=PROJECT_ID, location='US') path = '../input/' dataset_id = 'titanic' dataset_ref = client.dataset(dataset_id) job_config = bigquery.LoadJobConfig() job_config.source_format = bigquery.SourceFormat.CSV job_config.skip_leading_rows = 1 job_config.autodetect = True existing_datasets = [dataset.dataset_id for dataset in client.list_datasets()] if not dataset_id in existing_datasets: client.create_dataset(dataset_id)
code
129037699/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df dfsorted = df.sort_values('Global_Sales', ascending=False) top20 = dfsorted.head(20) top20 NAsorted = df.sort_values('NA_Sales', ascending=False) NA_median = NAsorted['NA_Sales'].median() surrounding_games = NAsorted.loc[(NAsorted['NA_Sales'] >= NA_median) & (NAsorted['NA_Sales'] <= NA_median)].head(10) print(NA_median) surrounding_games
code
129037699/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df genre = df['Genre'].value_counts().idxmax() genre
code
129037699/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df dfsorted = df.sort_values('Global_Sales', ascending=False) top20 = dfsorted.head(20) top20
code
129037699/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
129037699/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df platform = df['Platform'].value_counts().idxmax() platform
code
129037699/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df dfsorted = df.sort_values('Global_Sales', ascending=False) top20 = dfsorted.head(20) top20 NAsorted= df.sort_values('NA_Sales', ascending=False) NA_median = NAsorted['NA_Sales'].median() surrounding_games = NAsorted.loc[(NAsorted['NA_Sales'] >= NA_median) & (NAsorted['NA_Sales'] <= NA_median)].head(10) print(NA_median) surrounding_games df_sorted = df.sort_values('Global_Sales', ascending=False) na_sales_top_game = df_sorted['NA_Sales'].iloc[0] mean_na_sales = df_sorted['NA_Sales'].mean() std_na_sales = df_sorted['NA_Sales'].std() num_std = (na_sales_top_game - mean_na_sales) / std_na_sales print(na_sales_top_game) print(num_std)
code
129037699/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df
code
129037699/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df dfsorted = df.sort_values('Global_Sales', ascending=False) top20 = dfsorted.head(20) top20 NAsorted= df.sort_values('NA_Sales', ascending=False) NA_median = NAsorted['NA_Sales'].median() surrounding_games = NAsorted.loc[(NAsorted['NA_Sales'] >= NA_median) & (NAsorted['NA_Sales'] <= NA_median)].head(10) print(NA_median) surrounding_games df_sorted = df.sort_values('Global_Sales', ascending=False) na_sales_top_game = df_sorted['NA_Sales'].iloc[0] mean_na_sales = df_sorted['NA_Sales'].mean() std_na_sales = df_sorted['NA_Sales'].std() num_std = (na_sales_top_game - mean_na_sales) / std_na_sales grouped_by_platform = df.groupby('Platform')['Global_Sales'].mean().reset_index() wii_data = grouped_by_platform.loc[grouped_by_platform['Platform'] == 'Wii'] mean_except_wii = grouped_by_platform.loc[grouped_by_platform['Platform'] != 'Wii']['Global_Sales'].mean() if wii_data['Global_Sales'].values > mean_except_wii: print('The average number of sales for the Nintendo Wii is higher than the other platforms.') else: print('The average number of sales for the Nintendo Wii is not higher than the other platforms.')
code
129037699/cell_5
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/videogamesales/vgsales.csv') df publisher = df['Publisher'].value_counts().idxmax() publisher
code
16153263/cell_13
[ "text_plain_output_1.png" ]
from sklearn import metrics import pandas as pd train = pd.read_csv('../input/emnist-balanced-train.csv', header=None) test = pd.read_csv('../input/emnist-balanced-test.csv', header=None) train_data = train.values[:, 1:] train_labels = train.values[:, 0] test_data = test.values[:, 1:] test_labels = test.values[:, 0] model = {} y_pred = {} for idx in ['perceptron', 'sgd', 'knn', 'nbayes', 'tree', 'forest', 'boosting']: model[idx].fit(train_data, train_labels) y_pred[idx] = model[idx].predict(test_data) print(idx, metrics.accuracy_score(test_labels, y_pred[idx]))
code
16153263/cell_2
[ "text_html_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import os print(os.listdir('../input'))
code
16153263/cell_7
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import pandas as pd train = pd.read_csv('../input/emnist-balanced-train.csv', header=None) test = pd.read_csv('../input/emnist-balanced-test.csv', header=None) train_data = train.values[:, 1:] train_labels = train.values[:, 0] test_data = test.values[:, 1:] test_labels = test.values[:, 0] img_flip = np.transpose(train_data[8].reshape(28, 28), axes=[1, 0]) plt.imshow(img_flip, cmap='Greys_r') plt.show()
code
16153263/cell_5
[ "image_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/emnist-balanced-train.csv', header=None) train.head()
code
48165764/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
from sklearn.metrics import log_loss import numpy as np import pandas as pd intercept = 0.9668835542286371 coef = [-0.964522806, 1.17172755, 0.179847765, 0.715775158, 0.943909901, 0.771809223, 0.166641048, 3.36556037, -3.04227717, -1.27799877, 3.24426534, 0.0839780267, -2.01609571, -0.204835338, -0.915522223, -2.85557145, 0.193031923, -0.610949126, 2.36655937, -0.688545522, -0.413897388, 2.36123594, -5.32875178, -0.257607263, -1.59041078, 0.56651361, -4.30048221, 0.583728152, -0.755718528, -4.85939641, -4.77435586, 1.20158973, 1.52684705, 1.42038088, -0.470860607, -1.02184815, -0.186602382, 0.350855131, -2.86119402, 0.181263079, -3.98183995, 3.85179998, 0.595682016, 0.976153845, 0.456293927, -1.33132314, 0.363681261, 0.794664912, -3.9104109, -0.120555465, -3.9104109, -2.9114099, 1.36755837, 2.53799497, -4.6606329, -0.630443626, 0.166641048, -7.08818234, -1.03160754, -0.214803976, 4.86850322, 1.36755837, -2.9660072, -1.35837391, -5.08890666, 1.20158973, -3.9104109, -6.2872943, -0.297537878, -2.18535836, -2.59118068, 3.86950222, -0.633065361, -1.89416541, -0.448762478, 0.40582232, 1.36755837, 1.14356994, -1.51346861, -1.77735286, 0.684120905, 1.21749418, -2.01609571, -1.33132314, 0.42970794, -2.50444579, -0.413897388, 1.46527571, 0.475974538, 1.20782761, -1.79853836, 7.02807914, -5.51602225, 0.0839780267, 4.33789914, -1.96700816, -4.87378955, -0.385577422, 1.38106353, -4.9640092, 3.8952826, -2.9189663, 1.36755837, 0.684120905, -4.47665162, -1.27799877, 1.36755837, 3.36556037, -0.204835338, -0.599912328, -0.204314343, -4.45619265, -1.26221209, -1.55571983, -1.93596293, -0.0675983678, -2.55472083, -0.610949126, 2.36655937, -1.85313989, -0.962103086, 4.36456137, 4.86850322, -2.92095622, -1.42047927, 4.36456137, 2.36655937, 0.179847765, 2.61138626, -1.2224172, 2.15956162, 1.36755837, -1.33363593, 2.31341538, -2.49972847, -2.05475149, 0.0309957974, -0.0693110501, 2.36655937, 0.581666839, 4.36456137, -4.30048221, -2.8726154, -3.08550042, -1.08649626, -0.755718528, 1.08199981, -1.42047927, 0.806595523, 4.86850322, 0.409200801, -1.9670062, -0.0693110501, -3.18329286, -2.27241201, -0.00208025864, 0.778295227, -1.16768184, 3.36556037, 2.9219428, 0.121032855, -1.13677382, 4.36456137, -5.05666468, 2.54763868, -2.05653977, -0.836236669, -1.37407599, -1.52765698, -0.55544063, -4.77435586, 0.392717805, 2.54763868, -0.245071712, 0.806595523, 0.42970794, 1.61238526, 5.11333011, 4.11432911, 1.20782761, -1.13677382, -1.39447556, -2.2753443, -1.00108126, 2.61138626, 1.61238526, -2.1169698, -2.04970922, -3.055864, -2.06237301, -5.30942364, -3.060378, 4.56786669, 0.724590988, -1.19599384, -1.69171272, -0.599912328, 0.409200801, 4.36456137, -0.232589722, 2.05197573, -0.304659185, -2.4147726, -0.665305184, 0.794664912, -0.523026461, 1.48758438, -2.1169698, -0.599912328, -1.06918017, -2.92509555, -2.24778342, -2.05998755, -1.91946605, -1.27341101, 3.42621179, -0.945321798, -5.05666468, -1.16768184, -0.385577422, 2.36655937, 1.54600888, -1.96908321, 1.48758438, 1.36755837, -2.93685912, -0.863282842, -1.77796891, 1.36755837, 5.1035469, 3.07753467, 3.36556037, -1.70669288, -3.055864, -5.71550981, 1.35386262, 2.36655937, -0.945456361, -0.945321798, 0.456293927, -0.001963082, -2.52981213, -0.633065361, 4.36456137, -3.22981906, -2.46960559, -2.46960559, 1.26188506, 1.27495232, 1.27947673, -2.71404316, -1.71703518, -1.71742525] def layers_num(x): return int(np.round(np.dot(np.array(x), coef) + intercept)) col = pd.read_csv('../input/lish-moa/train_targets_scored.csv').columns[1:] startword = ['-', 'erase', 'acetylcholine', 'receptor_agonist', 'atp', 'anta', 'abl', 'peptide', 'tgf', 'calcicycl', 'hsp', 'im', 'proteas', 'secret', 'synth'] for subword in startword: col = [drtitle.replace(subword, '_' + subword + '_') for drtitle in col] all = [drtitle.split('_') for drtitle in col] all = sorted([word for item in all for word in item]) all = [word for word in all if len(word) > 0] allcounted = {word: all.count(word) for word in all} allcounted = {key: value for key, value in allcounted.items()} allcounted = list(allcounted.keys()) + ['receptor_antagonist', 'tlr_antagonist', 'tlr_antagonist', 'acetylcholine_receptor_antagonist', 'cannabinoid_receptor_antagonist', 'opioid_receptor_antagonist', 'ppar_receptor_antagonist', 'progesterone_receptor_antagonist', 'serotonin_receptor_antagonist'] eps = 10 ** (-7) def cube(x): x /= 10.0 return 10.0 * x * x * x def tgfunc(x): return np.tan(np.pi * x / 4.0) def application_transform(x): """ x = 2*x-1.0 x1 = weight_tg*tgfunc(x) + (weight_x3 + weight_x5*x**2)*x**3 + weight*x x1 = x1/2 + 0.5""" x1 = x if x1 < eps: x1 = eps elif x1 >= 1 - eps: x1 = 1 - eps return x1 def transform(x): x = x[x['cp_type'] == 'trt_cp'] x.pop('cp_type') x['cp_dose'] = x['cp_dose'].replace({'D1': -1, 'D2': 1}) x['cp_time'] = x['cp_time'] // 24 genes = [feature for feature in x.columns if feature.startswith('g-')] cells = [feature for feature in x.columns if feature.startswith('c-')] x['g-mean'] = x[genes].mean(axis=1) x['g-std'] = x[genes].std(axis=1) x['g-kur'] = x[genes].kurtosis(axis=1) x['g-skew'] = x[genes].skew(axis=1) x['c-mean'] = x[cells].mean(axis=1) x['c-std'] = x[cells].std(axis=1) x['c-kur'] = x[cells].kurtosis(axis=1) x['c-skew'] = x[cells].skew(axis=1) x['mean'] = x[genes + cells].mean(axis=1) x['std'] = x[genes + cells].std(axis=1) x['kur'] = x[genes + cells].kurtosis(axis=1) x['skew'] = x[genes + cells].skew(axis=1) x.join(pd.get_dummies(x['cp_time'])) x.pop('cp_time') return x def transform2(x): x.pop('cp_type') x['cp_dose'] = x['cp_dose'].replace({'D1': -1, 'D2': 1}) x['cp_time'] = x['cp_time'] // 24 genes = [feature for feature in x.columns if feature.startswith('g-')] cells = [feature for feature in x.columns if feature.startswith('c-')] x['g-mean'] = x[genes].mean(axis=1) x['g-std'] = x[genes].std(axis=1) x['g-kur'] = x[genes].kurtosis(axis=1) x['g-skew'] = x[genes].skew(axis=1) x['c-mean'] = x[cells].mean(axis=1) x['c-std'] = x[cells].std(axis=1) x['c-kur'] = x[cells].kurtosis(axis=1) x['c-skew'] = x[cells].skew(axis=1) x['mean'] = x[genes + cells].mean(axis=1) x['std'] = x[genes + cells].std(axis=1) x['kur'] = x[genes + cells].kurtosis(axis=1) x['skew'] = x[genes + cells].skew(axis=1) x.join(pd.get_dummies(x['cp_time'])) x.pop('cp_time') return x X_all = pd.read_csv('/kaggle/input/lish-moa/train_features.csv') y_all = pd.read_csv('/kaggle/input/lish-moa/train_targets_scored.csv') X = transform(X_all[X_all.columns[1:]]).astype(np.float16) Y = y_all[X_all['cp_type'] == 'trt_cp'] Y = Y[Y.columns[1:]].astype(np.int8) def metric(y_true, y_pred): metrics = [] for _target in train_targets.columns: metrics.append(log_loss(y_true.loc[:, _target], y_pred.loc[:, _target].astype(float), labels=[0, 1])) return np.mean(metrics)
code
128047328/cell_42
[ "image_output_1.png" ]
best = create_model('et') bagged_ensemble = ensemble_model(best)
code
128047328/cell_63
[ "text_html_output_2.png", "text_plain_output_1.png" ]
from rdkit import Chem from rdkit.Chem import AllChem import deepchem as dc import numpy as np import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape smiles_list = df_train['SMILES'][:10] mol_list = [] for smile in smiles_list: mol = Chem.MolFromSmiles(smile) mol_list.append(mol) img = Chem.Draw.MolsToGridImage(mol_list, molsPerRow=5) img df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) # Define a function to featurize a SMILES string def featurize_smiles(smiles): mol = Chem.MolFromSmiles(smiles) fp = AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=1024) features = np.array(list(fp.ToBitString())).astype(float) return features smiles = ['CCC'] featurizer = dc.feat.Mol2VecFingerprint() features = featurizer.featurize(smiles) features = featurizer.featurize(df_train['SMILES']) features.shape smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O'] featurizer = dc.feat.RDKitDescriptors() features = featurizer.featurize(smiles) features.shape
code
128047328/cell_21
[ "text_html_output_1.png" ]
from rdkit import Chem from rdkit.Chem import AllChem import numpy as np import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape smiles_list = df_train['SMILES'][:10] mol_list = [] for smile in smiles_list: mol = Chem.MolFromSmiles(smile) mol_list.append(mol) img = Chem.Draw.MolsToGridImage(mol_list, molsPerRow=5) img df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) # Define a function to featurize a SMILES string def featurize_smiles(smiles): mol = Chem.MolFromSmiles(smiles) fp = AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=1024) features = np.array(list(fp.ToBitString())).astype(float) return features X = np.array([featurize_smiles(smiles) for smiles in df_train['SMILES']])
code
128047328/cell_25
[ "text_plain_output_1.png" ]
from rdkit import Chem from rdkit.Chem import AllChem import numpy as np import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape smiles_list = df_train['SMILES'][:10] mol_list = [] for smile in smiles_list: mol = Chem.MolFromSmiles(smile) mol_list.append(mol) img = Chem.Draw.MolsToGridImage(mol_list, molsPerRow=5) img df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) # Define a function to featurize a SMILES string def featurize_smiles(smiles): mol = Chem.MolFromSmiles(smiles) fp = AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=1024) features = np.array(list(fp.ToBitString())).astype(float) return features X = np.array([featurize_smiles(smiles) for smiles in df_train['SMILES']]) X.shape X = pd.DataFrame(X) X['Solubility'] = df_train['Solubility'] reg = setup(X, target='Solubility', session_id=123, train_size=0.8)
code
128047328/cell_4
[ "text_html_output_2.png", "text_plain_output_1.png" ]
pip install deepchem
code
128047328/cell_57
[ "application_vnd.jupyter.stderr_output_16.png", "application_vnd.jupyter.stderr_output_9.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_7.png", "application_vnd.jupyter.stderr_output_11.png", "application_vnd.jupyter.stderr_output_18.png", "application_vnd.jupyter.stderr_output_4.png", "application_vnd.jupyter.stderr_output_6.png", "application_vnd.jupyter.stderr_output_12.png", "application_vnd.jupyter.stderr_output_8.png", "application_vnd.jupyter.stderr_output_10.png", "application_vnd.jupyter.stderr_output_19.png", "application_vnd.jupyter.stderr_output_13.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "application_vnd.jupyter.stderr_output_15.png", "application_vnd.jupyter.stderr_output_17.png", "application_vnd.jupyter.stderr_output_1.png", "application_vnd.jupyter.stderr_output_14.png" ]
from rdkit import Chem from rdkit.Chem import AllChem import deepchem as dc import numpy as np import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape smiles_list = df_train['SMILES'][:10] mol_list = [] for smile in smiles_list: mol = Chem.MolFromSmiles(smile) mol_list.append(mol) img = Chem.Draw.MolsToGridImage(mol_list, molsPerRow=5) img df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) # Define a function to featurize a SMILES string def featurize_smiles(smiles): mol = Chem.MolFromSmiles(smiles) fp = AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=1024) features = np.array(list(fp.ToBitString())).astype(float) return features smiles = ['CCC'] featurizer = dc.feat.Mol2VecFingerprint() features = featurizer.featurize(smiles) features = featurizer.featurize(df_train['SMILES']) features.shape
code
128047328/cell_23
[ "text_plain_output_1.png" ]
from rdkit import Chem from rdkit.Chem import AllChem import numpy as np import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape smiles_list = df_train['SMILES'][:10] mol_list = [] for smile in smiles_list: mol = Chem.MolFromSmiles(smile) mol_list.append(mol) img = Chem.Draw.MolsToGridImage(mol_list, molsPerRow=5) img df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) # Define a function to featurize a SMILES string def featurize_smiles(smiles): mol = Chem.MolFromSmiles(smiles) fp = AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=1024) features = np.array(list(fp.ToBitString())).astype(float) return features X = np.array([featurize_smiles(smiles) for smiles in df_train['SMILES']]) X.shape
code
128047328/cell_79
[ "text_html_output_2.png", "text_plain_output_1.png" ]
import deepchem as dc import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) smiles = ['CCC'] featurizer = dc.feat.Mol2VecFingerprint() features = featurizer.featurize(smiles) features = featurizer.featurize(df_train['SMILES']) smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O'] featurizer = dc.feat.RDKitDescriptors() features = featurizer.featurize(smiles) features = featurizer.featurize(df_train['SMILES']) smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O'] featurizer = dc.feat.MordredDescriptors() features = featurizer.featurize(smiles) features = featurizer.featurize(df_train['SMILES']) test_features = featurizer.featurize(df_test['SMILES'])
code
128047328/cell_30
[ "text_html_output_1.png" ]
from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem import MolFromSmiles, Descriptors, MolFromSmarts import numpy as np import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape smiles_list = df_train['SMILES'][:10] mol_list = [] for smile in smiles_list: mol = Chem.MolFromSmiles(smile) mol_list.append(mol) img = Chem.Draw.MolsToGridImage(mol_list, molsPerRow=5) img df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) # Define a function to featurize a SMILES string def featurize_smiles(smiles): mol = Chem.MolFromSmiles(smiles) fp = AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=1024) features = np.array(list(fp.ToBitString())).astype(float) return features X = np.array([featurize_smiles(smiles) for smiles in df_train['SMILES']]) X.shape X = pd.DataFrame(X) X['Solubility'] = df_train['Solubility'] from rdkit.Chem import MolFromSmiles, Descriptors, MolFromSmarts def create_descriptors(smiles): mol = MolFromSmiles(smiles) mw = Descriptors.MolWt(mol) logp = Descriptors.MolLogP(mol) rotb = Descriptors.NumRotatableBonds(mol) arom_proportion = len(mol.GetSubstructMatches(MolFromSmarts('a'))) / Descriptors.HeavyAtomCount(mol) hbd = Descriptors.NumHDonors(mol) hba = Descriptors.NumHAcceptors(mol) non_carbon_proportion = len(mol.GetSubstructMatches(MolFromSmarts('[!#6]'))) / Descriptors.HeavyAtomCount(mol) psa = Descriptors.TPSA(mol, includeSandP=True) fsp3 = Descriptors.FractionCSP3(mol) return (mw, logp, rotb, arom_proportion, hbd, hba, non_carbon_proportion, psa, fsp3) descriptors = [create_descriptors(smiles) for smiles in df_train['SMILES']] col_names = ['mw', 'logp', 'rotb', 'ap', 'hbd', 'hba', 'non_cp', 'psa', 'fsp3'] train = pd.DataFrame(descriptors, columns=col_names) train = train.join(df_train['Solubility'], how='left') train
code
128047328/cell_44
[ "text_html_output_2.png", "text_plain_output_1.png" ]
best = create_model('et') boosted_ensemble = ensemble_model(best, method='Boosting')
code
128047328/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) df_train['Solubility'].min()
code
128047328/cell_76
[ "text_html_output_1.png" ]
best_top3_models = compare_models(n_select=3)
code
128047328/cell_40
[ "text_plain_output_1.png" ]
best = create_model('et') plot_model(best, 'feature')
code
128047328/cell_29
[ "text_plain_output_1.png" ]
from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem import MolFromSmiles, Descriptors, MolFromSmarts import numpy as np import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape smiles_list = df_train['SMILES'][:10] mol_list = [] for smile in smiles_list: mol = Chem.MolFromSmiles(smile) mol_list.append(mol) img = Chem.Draw.MolsToGridImage(mol_list, molsPerRow=5) img df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) # Define a function to featurize a SMILES string def featurize_smiles(smiles): mol = Chem.MolFromSmiles(smiles) fp = AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=1024) features = np.array(list(fp.ToBitString())).astype(float) return features X = np.array([featurize_smiles(smiles) for smiles in df_train['SMILES']]) X.shape X = pd.DataFrame(X) X['Solubility'] = df_train['Solubility'] from rdkit.Chem import MolFromSmiles, Descriptors, MolFromSmarts def create_descriptors(smiles): mol = MolFromSmiles(smiles) mw = Descriptors.MolWt(mol) logp = Descriptors.MolLogP(mol) rotb = Descriptors.NumRotatableBonds(mol) arom_proportion = len(mol.GetSubstructMatches(MolFromSmarts('a'))) / Descriptors.HeavyAtomCount(mol) hbd = Descriptors.NumHDonors(mol) hba = Descriptors.NumHAcceptors(mol) non_carbon_proportion = len(mol.GetSubstructMatches(MolFromSmarts('[!#6]'))) / Descriptors.HeavyAtomCount(mol) psa = Descriptors.TPSA(mol, includeSandP=True) fsp3 = Descriptors.FractionCSP3(mol) return (mw, logp, rotb, arom_proportion, hbd, hba, non_carbon_proportion, psa, fsp3) descriptors = [create_descriptors(smiles) for smiles in df_train['SMILES']] col_names = ['mw', 'logp', 'rotb', 'ap', 'hbd', 'hba', 'non_cp', 'psa', 'fsp3'] train = pd.DataFrame(descriptors, columns=col_names) train = train.join(df_train['Solubility'], how='left')
code
128047328/cell_39
[ "text_html_output_2.png", "text_plain_output_1.png" ]
best = create_model('et') plot_model(best, 'error')
code
128047328/cell_26
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
best_top3_models = compare_models(n_select=3)
code
128047328/cell_48
[ "text_html_output_2.png", "text_plain_output_1.png" ]
from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem import MolFromSmiles, Descriptors, MolFromSmarts import numpy as np import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape smiles_list = df_train['SMILES'][:10] mol_list = [] for smile in smiles_list: mol = Chem.MolFromSmiles(smile) mol_list.append(mol) img = Chem.Draw.MolsToGridImage(mol_list, molsPerRow=5) img df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) # Define a function to featurize a SMILES string def featurize_smiles(smiles): mol = Chem.MolFromSmiles(smiles) fp = AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=1024) features = np.array(list(fp.ToBitString())).astype(float) return features X = np.array([featurize_smiles(smiles) for smiles in df_train['SMILES']]) X.shape X = pd.DataFrame(X) X['Solubility'] = df_train['Solubility'] from rdkit.Chem import MolFromSmiles, Descriptors, MolFromSmarts def create_descriptors(smiles): mol = MolFromSmiles(smiles) mw = Descriptors.MolWt(mol) logp = Descriptors.MolLogP(mol) rotb = Descriptors.NumRotatableBonds(mol) arom_proportion = len(mol.GetSubstructMatches(MolFromSmarts('a'))) / Descriptors.HeavyAtomCount(mol) hbd = Descriptors.NumHDonors(mol) hba = Descriptors.NumHAcceptors(mol) non_carbon_proportion = len(mol.GetSubstructMatches(MolFromSmarts('[!#6]'))) / Descriptors.HeavyAtomCount(mol) psa = Descriptors.TPSA(mol, includeSandP=True) fsp3 = Descriptors.FractionCSP3(mol) return (mw, logp, rotb, arom_proportion, hbd, hba, non_carbon_proportion, psa, fsp3) descriptors = [create_descriptors(smiles) for smiles in df_train['SMILES']] col_names = ['mw', 'logp', 'rotb', 'ap', 'hbd', 'hba', 'non_cp', 'psa', 'fsp3'] train = pd.DataFrame(descriptors, columns=col_names) train = train.join(df_train['Solubility'], how='left') descriptors = [create_descriptors(smiles) for smiles in df_test['SMILES']] col_names = ['mw', 'logp', 'rotb', 'ap', 'hbd', 'hba', 'non_cp', 'psa', 'fsp3'] test = pd.DataFrame(descriptors, columns=col_names)
code
128047328/cell_73
[ "application_vnd.jupyter.stderr_output_27.png", "application_vnd.jupyter.stderr_output_35.png", "application_vnd.jupyter.stderr_output_24.png", "application_vnd.jupyter.stderr_output_16.png", "application_vnd.jupyter.stderr_output_9.png", "application_vnd.jupyter.stderr_output_32.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_7.png", "application_vnd.jupyter.stderr_output_11.png", "application_vnd.jupyter.stderr_output_18.png", "application_vnd.jupyter.stderr_output_38.png", "application_vnd.jupyter.stderr_output_4.png", "application_vnd.jupyter.stderr_output_26.png", "application_vnd.jupyter.stderr_output_6.png", "application_vnd.jupyter.stderr_output_31.png", "application_vnd.jupyter.stderr_output_33.png", "application_vnd.jupyter.stderr_output_25.png", "application_vnd.jupyter.stderr_output_12.png", "application_vnd.jupyter.stderr_output_8.png", "application_vnd.jupyter.stderr_output_10.png", "application_vnd.jupyter.stderr_output_23.png", "application_vnd.jupyter.stderr_output_34.png", "application_vnd.jupyter.stderr_output_19.png", "application_vnd.jupyter.stderr_output_13.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "application_vnd.jupyter.stderr_output_30.png", "application_vnd.jupyter.stderr_output_15.png", "application_vnd.jupyter.stderr_output_17.png", "application_vnd.jupyter.stderr_output_28.png", "application_vnd.jupyter.stderr_output_20.png", "application_vnd.jupyter.stderr_output_36.png", "application_vnd.jupyter.stderr_output_22.png", "application_vnd.jupyter.stderr_output_29.png", "application_vnd.jupyter.stderr_output_1.png", "application_vnd.jupyter.stderr_output_14.png", "application_vnd.jupyter.stderr_output_21.png", "application_vnd.jupyter.stderr_output_37.png" ]
from rdkit import Chem from rdkit.Chem import AllChem import deepchem as dc import numpy as np import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape smiles_list = df_train['SMILES'][:10] mol_list = [] for smile in smiles_list: mol = Chem.MolFromSmiles(smile) mol_list.append(mol) img = Chem.Draw.MolsToGridImage(mol_list, molsPerRow=5) img df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) # Define a function to featurize a SMILES string def featurize_smiles(smiles): mol = Chem.MolFromSmiles(smiles) fp = AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=1024) features = np.array(list(fp.ToBitString())).astype(float) return features smiles = ['CCC'] featurizer = dc.feat.Mol2VecFingerprint() features = featurizer.featurize(smiles) features = featurizer.featurize(df_train['SMILES']) features.shape smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O'] featurizer = dc.feat.RDKitDescriptors() features = featurizer.featurize(smiles) features.shape features = featurizer.featurize(df_train['SMILES']) smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O'] featurizer = dc.feat.MordredDescriptors() features = featurizer.featurize(smiles) features = featurizer.featurize(df_train['SMILES']) features.shape
code
128047328/cell_41
[ "image_output_1.png" ]
best = create_model('et') prediction_holdout = predict_model(best)
code
128047328/cell_2
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
pip install rdkit
code
128047328/cell_72
[ "text_plain_output_1.png" ]
import deepchem as dc import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) smiles = ['CCC'] featurizer = dc.feat.Mol2VecFingerprint() features = featurizer.featurize(smiles) features = featurizer.featurize(df_train['SMILES']) smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O'] featurizer = dc.feat.RDKitDescriptors() features = featurizer.featurize(smiles) features = featurizer.featurize(df_train['SMILES']) smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O'] featurizer = dc.feat.MordredDescriptors() features = featurizer.featurize(smiles) features = featurizer.featurize(df_train['SMILES'])
code
128047328/cell_67
[ "text_html_output_1.png" ]
best_top3_models = compare_models(n_select=3)
code
128047328/cell_60
[ "text_html_output_1.png" ]
best_top3_models = compare_models(n_select=3)
code
128047328/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) df_train['Solubility'].max()
code
128047328/cell_69
[ "text_html_output_2.png", "text_plain_output_1.png" ]
!pip install mordred
code
128047328/cell_50
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_7.png", "application_vnd.jupyter.stderr_output_4.png", "application_vnd.jupyter.stderr_output_6.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "application_vnd.jupyter.stderr_output_1.png" ]
from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem import MolFromSmiles, Descriptors, MolFromSmarts import numpy as np import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape smiles_list = df_train['SMILES'][:10] mol_list = [] for smile in smiles_list: mol = Chem.MolFromSmiles(smile) mol_list.append(mol) img = Chem.Draw.MolsToGridImage(mol_list, molsPerRow=5) img df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) # Define a function to featurize a SMILES string def featurize_smiles(smiles): mol = Chem.MolFromSmiles(smiles) fp = AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=1024) features = np.array(list(fp.ToBitString())).astype(float) return features X = np.array([featurize_smiles(smiles) for smiles in df_train['SMILES']]) X.shape X = pd.DataFrame(X) X['Solubility'] = df_train['Solubility'] from rdkit.Chem import MolFromSmiles, Descriptors, MolFromSmarts def create_descriptors(smiles): mol = MolFromSmiles(smiles) mw = Descriptors.MolWt(mol) logp = Descriptors.MolLogP(mol) rotb = Descriptors.NumRotatableBonds(mol) arom_proportion = len(mol.GetSubstructMatches(MolFromSmarts('a'))) / Descriptors.HeavyAtomCount(mol) hbd = Descriptors.NumHDonors(mol) hba = Descriptors.NumHAcceptors(mol) non_carbon_proportion = len(mol.GetSubstructMatches(MolFromSmarts('[!#6]'))) / Descriptors.HeavyAtomCount(mol) psa = Descriptors.TPSA(mol, includeSandP=True) fsp3 = Descriptors.FractionCSP3(mol) return (mw, logp, rotb, arom_proportion, hbd, hba, non_carbon_proportion, psa, fsp3) descriptors = [create_descriptors(smiles) for smiles in df_train['SMILES']] col_names = ['mw', 'logp', 'rotb', 'ap', 'hbd', 'hba', 'non_cp', 'psa', 'fsp3'] train = pd.DataFrame(descriptors, columns=col_names) train = train.join(df_train['Solubility'], how='left') additional_col = ['MolMR', 'NumValenceElectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'LabuteASA', 'BalabanJ', 'BertzCT'] df = train.join(df_train[additional_col], how='left') reg = setup(df, target='Solubility', session_id=123, train_size=0.8, numeric_features=list(df.drop(columns=['Solubility']).columns), transformation=True, normalize=True) best = create_model('et') final_model = finalize_model(best) descriptors = [create_descriptors(smiles) for smiles in df_test['SMILES']] col_names = ['mw', 'logp', 'rotb', 'ap', 'hbd', 'hba', 'non_cp', 'psa', 'fsp3'] test = pd.DataFrame(descriptors, columns=col_names) df = test.join(df_test[additional_col], how='left') df = predict_model(final_model, data=df)
code
128047328/cell_64
[ "text_plain_output_1.png" ]
import deepchem as dc import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) smiles = ['CCC'] featurizer = dc.feat.Mol2VecFingerprint() features = featurizer.featurize(smiles) features = featurizer.featurize(df_train['SMILES']) smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O'] featurizer = dc.feat.RDKitDescriptors() features = featurizer.featurize(smiles) features = featurizer.featurize(df_train['SMILES'])
code
128047328/cell_45
[ "text_html_output_2.png", "text_plain_output_1.png" ]
best = create_model('et') boosted_ensemble_50estm = ensemble_model(best, method='Boosting', n_estimators=50)
code
128047328/cell_32
[ "application_vnd.jupyter.stderr_output_9.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_7.png", "application_vnd.jupyter.stderr_output_11.png", "application_vnd.jupyter.stderr_output_4.png", "application_vnd.jupyter.stderr_output_6.png", "application_vnd.jupyter.stderr_output_12.png", "application_vnd.jupyter.stderr_output_8.png", "application_vnd.jupyter.stderr_output_10.png", "application_vnd.jupyter.stderr_output_13.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "application_vnd.jupyter.stderr_output_1.png", "application_vnd.jupyter.stderr_output_14.png" ]
best_top3_models = compare_models(n_select=3)
code
128047328/cell_59
[ "text_plain_output_1.png" ]
from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem import MolFromSmiles, Descriptors, MolFromSmarts import deepchem as dc import numpy as np import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape smiles_list = df_train['SMILES'][:10] mol_list = [] for smile in smiles_list: mol = Chem.MolFromSmiles(smile) mol_list.append(mol) img = Chem.Draw.MolsToGridImage(mol_list, molsPerRow=5) img df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) # Define a function to featurize a SMILES string def featurize_smiles(smiles): mol = Chem.MolFromSmiles(smiles) fp = AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=1024) features = np.array(list(fp.ToBitString())).astype(float) return features X = np.array([featurize_smiles(smiles) for smiles in df_train['SMILES']]) X.shape X = pd.DataFrame(X) X['Solubility'] = df_train['Solubility'] from rdkit.Chem import MolFromSmiles, Descriptors, MolFromSmarts def create_descriptors(smiles): mol = MolFromSmiles(smiles) mw = Descriptors.MolWt(mol) logp = Descriptors.MolLogP(mol) rotb = Descriptors.NumRotatableBonds(mol) arom_proportion = len(mol.GetSubstructMatches(MolFromSmarts('a'))) / Descriptors.HeavyAtomCount(mol) hbd = Descriptors.NumHDonors(mol) hba = Descriptors.NumHAcceptors(mol) non_carbon_proportion = len(mol.GetSubstructMatches(MolFromSmarts('[!#6]'))) / Descriptors.HeavyAtomCount(mol) psa = Descriptors.TPSA(mol, includeSandP=True) fsp3 = Descriptors.FractionCSP3(mol) return (mw, logp, rotb, arom_proportion, hbd, hba, non_carbon_proportion, psa, fsp3) descriptors = [create_descriptors(smiles) for smiles in df_train['SMILES']] col_names = ['mw', 'logp', 'rotb', 'ap', 'hbd', 'hba', 'non_cp', 'psa', 'fsp3'] train = pd.DataFrame(descriptors, columns=col_names) train = train.join(df_train['Solubility'], how='left') additional_col = ['MolMR', 'NumValenceElectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'LabuteASA', 'BalabanJ', 'BertzCT'] df = train.join(df_train[additional_col], how='left') reg = setup(df, target='Solubility', session_id=123, train_size=0.8, numeric_features=list(df.drop(columns=['Solubility']).columns), transformation=True, normalize=True) best = create_model('et') final_model = finalize_model(best) descriptors = [create_descriptors(smiles) for smiles in df_test['SMILES']] col_names = ['mw', 'logp', 'rotb', 'ap', 'hbd', 'hba', 'non_cp', 'psa', 'fsp3'] test = pd.DataFrame(descriptors, columns=col_names) df = test.join(df_test[additional_col], how='left') df = predict_model(final_model, data=df) df.rename(columns={'prediction_label': 'Solubility'}, inplace=True) smiles = ['CCC'] featurizer = dc.feat.Mol2VecFingerprint() features = featurizer.featurize(smiles) features = featurizer.featurize(df_train['SMILES']) features.shape df = pd.DataFrame(features) df['Solubility'] = df_train['Solubility'] reg = setup(df, target='Solubility', session_id=123, train_size=0.8, transformation=True)
code
128047328/cell_16
[ "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) reg = setup(X, target='Solubility', session_id=123, train_size=0.8)
code
128047328/cell_38
[ "text_html_output_1.png" ]
best = create_model('et') print(best)
code
128047328/cell_75
[ "text_plain_output_1.png" ]
from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem import MolFromSmiles, Descriptors, MolFromSmarts import deepchem as dc import numpy as np import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape smiles_list = df_train['SMILES'][:10] mol_list = [] for smile in smiles_list: mol = Chem.MolFromSmiles(smile) mol_list.append(mol) img = Chem.Draw.MolsToGridImage(mol_list, molsPerRow=5) img df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) # Define a function to featurize a SMILES string def featurize_smiles(smiles): mol = Chem.MolFromSmiles(smiles) fp = AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=1024) features = np.array(list(fp.ToBitString())).astype(float) return features X = np.array([featurize_smiles(smiles) for smiles in df_train['SMILES']]) X.shape X = pd.DataFrame(X) X['Solubility'] = df_train['Solubility'] from rdkit.Chem import MolFromSmiles, Descriptors, MolFromSmarts def create_descriptors(smiles): mol = MolFromSmiles(smiles) mw = Descriptors.MolWt(mol) logp = Descriptors.MolLogP(mol) rotb = Descriptors.NumRotatableBonds(mol) arom_proportion = len(mol.GetSubstructMatches(MolFromSmarts('a'))) / Descriptors.HeavyAtomCount(mol) hbd = Descriptors.NumHDonors(mol) hba = Descriptors.NumHAcceptors(mol) non_carbon_proportion = len(mol.GetSubstructMatches(MolFromSmarts('[!#6]'))) / Descriptors.HeavyAtomCount(mol) psa = Descriptors.TPSA(mol, includeSandP=True) fsp3 = Descriptors.FractionCSP3(mol) return (mw, logp, rotb, arom_proportion, hbd, hba, non_carbon_proportion, psa, fsp3) descriptors = [create_descriptors(smiles) for smiles in df_train['SMILES']] col_names = ['mw', 'logp', 'rotb', 'ap', 'hbd', 'hba', 'non_cp', 'psa', 'fsp3'] train = pd.DataFrame(descriptors, columns=col_names) train = train.join(df_train['Solubility'], how='left') additional_col = ['MolMR', 'NumValenceElectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'LabuteASA', 'BalabanJ', 'BertzCT'] df = train.join(df_train[additional_col], how='left') reg = setup(df, target='Solubility', session_id=123, train_size=0.8, numeric_features=list(df.drop(columns=['Solubility']).columns), transformation=True, normalize=True) best = create_model('et') final_model = finalize_model(best) descriptors = [create_descriptors(smiles) for smiles in df_test['SMILES']] col_names = ['mw', 'logp', 'rotb', 'ap', 'hbd', 'hba', 'non_cp', 'psa', 'fsp3'] test = pd.DataFrame(descriptors, columns=col_names) df = test.join(df_test[additional_col], how='left') df = predict_model(final_model, data=df) df.rename(columns={'prediction_label': 'Solubility'}, inplace=True) smiles = ['CCC'] featurizer = dc.feat.Mol2VecFingerprint() features = featurizer.featurize(smiles) features = featurizer.featurize(df_train['SMILES']) features.shape df = pd.DataFrame(features) df['Solubility'] = df_train['Solubility'] smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O'] featurizer = dc.feat.RDKitDescriptors() features = featurizer.featurize(smiles) features.shape features = featurizer.featurize(df_train['SMILES']) df = pd.DataFrame(features) df['Solubility'] = df_train['Solubility'] smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O'] featurizer = dc.feat.MordredDescriptors() features = featurizer.featurize(smiles) features = featurizer.featurize(df_train['SMILES']) features.shape df = pd.DataFrame(features) df['Solubility'] = df_train['Solubility'] reg = setup(df, target='Solubility', session_id=123, train_size=0.8)
code
128047328/cell_3
[ "text_plain_output_1.png" ]
pip install pycaret
code
128047328/cell_66
[ "application_vnd.jupyter.stderr_output_27.png", "application_vnd.jupyter.stderr_output_35.png", "application_vnd.jupyter.stderr_output_24.png", "application_vnd.jupyter.stderr_output_16.png", "application_vnd.jupyter.stderr_output_9.png", "application_vnd.jupyter.stderr_output_32.png", "application_vnd.jupyter.stderr_output_2.png", "application_vnd.jupyter.stderr_output_7.png", "application_vnd.jupyter.stderr_output_11.png", "application_vnd.jupyter.stderr_output_18.png", "application_vnd.jupyter.stderr_output_4.png", "application_vnd.jupyter.stderr_output_26.png", "application_vnd.jupyter.stderr_output_6.png", "application_vnd.jupyter.stderr_output_31.png", "application_vnd.jupyter.stderr_output_33.png", "application_vnd.jupyter.stderr_output_25.png", "application_vnd.jupyter.stderr_output_12.png", "application_vnd.jupyter.stderr_output_8.png", "application_vnd.jupyter.stderr_output_10.png", "application_vnd.jupyter.stderr_output_23.png", "application_vnd.jupyter.stderr_output_34.png", "application_vnd.jupyter.stderr_output_19.png", "application_vnd.jupyter.stderr_output_13.png", "application_vnd.jupyter.stderr_output_3.png", "application_vnd.jupyter.stderr_output_5.png", "application_vnd.jupyter.stderr_output_30.png", "application_vnd.jupyter.stderr_output_15.png", "application_vnd.jupyter.stderr_output_17.png", "application_vnd.jupyter.stderr_output_28.png", "application_vnd.jupyter.stderr_output_20.png", "application_vnd.jupyter.stderr_output_22.png", "application_vnd.jupyter.stderr_output_29.png", "application_vnd.jupyter.stderr_output_1.png", "application_vnd.jupyter.stderr_output_14.png", "application_vnd.jupyter.stderr_output_21.png" ]
from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem import MolFromSmiles, Descriptors, MolFromSmarts import deepchem as dc import numpy as np import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape smiles_list = df_train['SMILES'][:10] mol_list = [] for smile in smiles_list: mol = Chem.MolFromSmiles(smile) mol_list.append(mol) img = Chem.Draw.MolsToGridImage(mol_list, molsPerRow=5) img df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) # Define a function to featurize a SMILES string def featurize_smiles(smiles): mol = Chem.MolFromSmiles(smiles) fp = AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=1024) features = np.array(list(fp.ToBitString())).astype(float) return features X = np.array([featurize_smiles(smiles) for smiles in df_train['SMILES']]) X.shape X = pd.DataFrame(X) X['Solubility'] = df_train['Solubility'] from rdkit.Chem import MolFromSmiles, Descriptors, MolFromSmarts def create_descriptors(smiles): mol = MolFromSmiles(smiles) mw = Descriptors.MolWt(mol) logp = Descriptors.MolLogP(mol) rotb = Descriptors.NumRotatableBonds(mol) arom_proportion = len(mol.GetSubstructMatches(MolFromSmarts('a'))) / Descriptors.HeavyAtomCount(mol) hbd = Descriptors.NumHDonors(mol) hba = Descriptors.NumHAcceptors(mol) non_carbon_proportion = len(mol.GetSubstructMatches(MolFromSmarts('[!#6]'))) / Descriptors.HeavyAtomCount(mol) psa = Descriptors.TPSA(mol, includeSandP=True) fsp3 = Descriptors.FractionCSP3(mol) return (mw, logp, rotb, arom_proportion, hbd, hba, non_carbon_proportion, psa, fsp3) descriptors = [create_descriptors(smiles) for smiles in df_train['SMILES']] col_names = ['mw', 'logp', 'rotb', 'ap', 'hbd', 'hba', 'non_cp', 'psa', 'fsp3'] train = pd.DataFrame(descriptors, columns=col_names) train = train.join(df_train['Solubility'], how='left') additional_col = ['MolMR', 'NumValenceElectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'LabuteASA', 'BalabanJ', 'BertzCT'] df = train.join(df_train[additional_col], how='left') reg = setup(df, target='Solubility', session_id=123, train_size=0.8, numeric_features=list(df.drop(columns=['Solubility']).columns), transformation=True, normalize=True) best = create_model('et') final_model = finalize_model(best) descriptors = [create_descriptors(smiles) for smiles in df_test['SMILES']] col_names = ['mw', 'logp', 'rotb', 'ap', 'hbd', 'hba', 'non_cp', 'psa', 'fsp3'] test = pd.DataFrame(descriptors, columns=col_names) df = test.join(df_test[additional_col], how='left') df = predict_model(final_model, data=df) df.rename(columns={'prediction_label': 'Solubility'}, inplace=True) smiles = ['CCC'] featurizer = dc.feat.Mol2VecFingerprint() features = featurizer.featurize(smiles) features = featurizer.featurize(df_train['SMILES']) features.shape df = pd.DataFrame(features) df['Solubility'] = df_train['Solubility'] smiles = ['CC(=O)OC1=CC=CC=C1C(=O)O'] featurizer = dc.feat.RDKitDescriptors() features = featurizer.featurize(smiles) features.shape features = featurizer.featurize(df_train['SMILES']) df = pd.DataFrame(features) df['Solubility'] = df_train['Solubility'] reg = setup(df, target='Solubility', session_id=123, train_size=0.8)
code
128047328/cell_17
[ "text_plain_output_1.png" ]
best_top3_models = compare_models(n_select=3)
code
128047328/cell_35
[ "text_html_output_1.png" ]
from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem import MolFromSmiles, Descriptors, MolFromSmarts import numpy as np import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape smiles_list = df_train['SMILES'][:10] mol_list = [] for smile in smiles_list: mol = Chem.MolFromSmiles(smile) mol_list.append(mol) img = Chem.Draw.MolsToGridImage(mol_list, molsPerRow=5) img df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) # Define a function to featurize a SMILES string def featurize_smiles(smiles): mol = Chem.MolFromSmiles(smiles) fp = AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=1024) features = np.array(list(fp.ToBitString())).astype(float) return features X = np.array([featurize_smiles(smiles) for smiles in df_train['SMILES']]) X.shape X = pd.DataFrame(X) X['Solubility'] = df_train['Solubility'] from rdkit.Chem import MolFromSmiles, Descriptors, MolFromSmarts def create_descriptors(smiles): mol = MolFromSmiles(smiles) mw = Descriptors.MolWt(mol) logp = Descriptors.MolLogP(mol) rotb = Descriptors.NumRotatableBonds(mol) arom_proportion = len(mol.GetSubstructMatches(MolFromSmarts('a'))) / Descriptors.HeavyAtomCount(mol) hbd = Descriptors.NumHDonors(mol) hba = Descriptors.NumHAcceptors(mol) non_carbon_proportion = len(mol.GetSubstructMatches(MolFromSmarts('[!#6]'))) / Descriptors.HeavyAtomCount(mol) psa = Descriptors.TPSA(mol, includeSandP=True) fsp3 = Descriptors.FractionCSP3(mol) return (mw, logp, rotb, arom_proportion, hbd, hba, non_carbon_proportion, psa, fsp3) descriptors = [create_descriptors(smiles) for smiles in df_train['SMILES']] col_names = ['mw', 'logp', 'rotb', 'ap', 'hbd', 'hba', 'non_cp', 'psa', 'fsp3'] train = pd.DataFrame(descriptors, columns=col_names) train = train.join(df_train['Solubility'], how='left') additional_col = ['MolMR', 'NumValenceElectrons', 'NumAromaticRings', 'NumSaturatedRings', 'NumAliphaticRings', 'RingCount', 'LabuteASA', 'BalabanJ', 'BertzCT'] df = train.join(df_train[additional_col], how='left') reg = setup(df, target='Solubility', session_id=123, train_size=0.8, numeric_features=list(df.drop(columns=['Solubility']).columns), transformation=True, normalize=True)
code
128047328/cell_77
[ "text_html_output_2.png", "text_plain_output_1.png" ]
et = create_model('et')
code
128047328/cell_43
[ "text_html_output_1.png" ]
best = create_model('et') bagged_ensemble_50estm = ensemble_model(best, n_estimators=50)
code
128047328/cell_31
[ "text_html_output_2.png", "text_plain_output_1.png" ]
from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem import MolFromSmiles, Descriptors, MolFromSmarts import numpy as np import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape smiles_list = df_train['SMILES'][:10] mol_list = [] for smile in smiles_list: mol = Chem.MolFromSmiles(smile) mol_list.append(mol) img = Chem.Draw.MolsToGridImage(mol_list, molsPerRow=5) img df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) # Define a function to featurize a SMILES string def featurize_smiles(smiles): mol = Chem.MolFromSmiles(smiles) fp = AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=1024) features = np.array(list(fp.ToBitString())).astype(float) return features X = np.array([featurize_smiles(smiles) for smiles in df_train['SMILES']]) X.shape X = pd.DataFrame(X) X['Solubility'] = df_train['Solubility'] from rdkit.Chem import MolFromSmiles, Descriptors, MolFromSmarts def create_descriptors(smiles): mol = MolFromSmiles(smiles) mw = Descriptors.MolWt(mol) logp = Descriptors.MolLogP(mol) rotb = Descriptors.NumRotatableBonds(mol) arom_proportion = len(mol.GetSubstructMatches(MolFromSmarts('a'))) / Descriptors.HeavyAtomCount(mol) hbd = Descriptors.NumHDonors(mol) hba = Descriptors.NumHAcceptors(mol) non_carbon_proportion = len(mol.GetSubstructMatches(MolFromSmarts('[!#6]'))) / Descriptors.HeavyAtomCount(mol) psa = Descriptors.TPSA(mol, includeSandP=True) fsp3 = Descriptors.FractionCSP3(mol) return (mw, logp, rotb, arom_proportion, hbd, hba, non_carbon_proportion, psa, fsp3) descriptors = [create_descriptors(smiles) for smiles in df_train['SMILES']] col_names = ['mw', 'logp', 'rotb', 'ap', 'hbd', 'hba', 'non_cp', 'psa', 'fsp3'] train = pd.DataFrame(descriptors, columns=col_names) train = train.join(df_train['Solubility'], how='left') reg = setup(train, target='Solubility', session_id=123, train_size=0.8, transformation=True, normalize=True)
code
128047328/cell_46
[ "text_html_output_2.png", "text_plain_output_1.png" ]
best_top3_models = compare_models(n_select=3) best_top3_models = compare_models(n_select=3) best_top3_models = compare_models(n_select=3) best_top3_models = compare_models(n_select=3) stacker = stack_models(best_top3_models)
code
128047328/cell_14
[ "text_plain_output_5.png", "text_plain_output_4.png", "text_plain_output_6.png", "text_plain_output_3.png", "text_plain_output_7.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape df_train.columns
code
128047328/cell_22
[ "text_html_output_2.png", "text_plain_output_1.png" ]
from rdkit import Chem from rdkit.Chem import AllChem import numpy as np import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape smiles_list = df_train['SMILES'][:10] mol_list = [] for smile in smiles_list: mol = Chem.MolFromSmiles(smile) mol_list.append(mol) img = Chem.Draw.MolsToGridImage(mol_list, molsPerRow=5) img df_train.columns X = df_train.drop(columns=['ID', 'Name', 'InChI', 'InChIKey', 'SMILES', 'SD', 'Ocurrences', 'Group', 'comp_id']) # Define a function to featurize a SMILES string def featurize_smiles(smiles): mol = Chem.MolFromSmiles(smiles) fp = AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=1024) features = np.array(list(fp.ToBitString())).astype(float) return features X = np.array([featurize_smiles(smiles) for smiles in df_train['SMILES']]) X
code
128047328/cell_10
[ "text_plain_output_5.png", "text_plain_output_9.png", "text_plain_output_4.png", "text_plain_output_13.png", "text_plain_output_14.png", "text_plain_output_10.png", "text_plain_output_6.png", "text_plain_output_3.png", "text_plain_output_7.png", "text_plain_output_8.png", "text_plain_output_2.png", "text_plain_output_1.png", "text_plain_output_11.png", "text_plain_output_12.png" ]
import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape df_train.info()
code
128047328/cell_37
[ "text_html_output_2.png", "text_plain_output_1.png" ]
best = create_model('et')
code
128047328/cell_12
[ "text_plain_output_100.png", "text_plain_output_84.png", "text_plain_output_56.png", "text_plain_output_35.png", "text_plain_output_98.png", "text_plain_output_43.png", "text_plain_output_78.png", "text_plain_output_106.png", "text_plain_output_37.png", "text_plain_output_90.png", "text_plain_output_79.png", "text_plain_output_5.png", "text_plain_output_75.png", "text_plain_output_48.png", "text_plain_output_30.png", "text_plain_output_73.png", "text_plain_output_15.png", "text_plain_output_70.png", "text_plain_output_9.png", "text_plain_output_44.png", "text_plain_output_86.png", "text_plain_output_40.png", "text_plain_output_74.png", "text_plain_output_31.png", "text_plain_output_20.png", "text_plain_output_102.png", "text_plain_output_101.png", "text_plain_output_60.png", "text_plain_output_68.png", "text_plain_output_4.png", "text_plain_output_65.png", "text_plain_output_64.png", "text_plain_output_13.png", "text_plain_output_107.png", "text_plain_output_52.png", "text_plain_output_66.png", "text_plain_output_45.png", "text_plain_output_14.png", "text_plain_output_32.png", "text_plain_output_88.png", "text_plain_output_29.png", "text_plain_output_58.png", "text_plain_output_49.png", "text_plain_output_63.png", "text_plain_output_27.png", "text_plain_output_76.png", "text_plain_output_108.png", "text_plain_output_54.png", "text_plain_output_10.png", "text_plain_output_6.png", "text_plain_output_92.png", "text_plain_output_57.png", "text_plain_output_24.png", "text_plain_output_21.png", "text_plain_output_104.png", "text_plain_output_47.png", "text_plain_output_25.png", "text_plain_output_77.png", "text_plain_output_18.png", "text_plain_output_50.png", "text_plain_output_36.png", "text_plain_output_96.png", "text_plain_output_87.png", "text_plain_output_3.png", "text_plain_output_22.png", "text_plain_output_81.png", "text_plain_output_69.png", "text_plain_output_38.png", "text_plain_output_7.png", "text_plain_output_91.png", "text_plain_output_16.png", "text_plain_output_59.png", "text_plain_output_103.png", "text_plain_output_71.png", "text_plain_output_8.png", "text_plain_output_26.png", "text_plain_output_109.png", "text_plain_output_41.png", "text_plain_output_34.png", "text_plain_output_85.png", "text_plain_output_42.png", "text_plain_output_67.png", "text_plain_output_53.png", "text_plain_output_23.png", "text_plain_output_89.png", "text_plain_output_51.png", "text_plain_output_28.png", "text_plain_output_72.png", "text_plain_output_99.png", "text_plain_output_2.png", "text_plain_output_97.png", "text_plain_output_1.png", "text_plain_output_33.png", "text_plain_output_39.png", "text_plain_output_55.png", "text_plain_output_82.png", "text_plain_output_93.png", "text_plain_output_19.png", "text_plain_output_105.png", "text_plain_output_80.png", "text_plain_output_94.png", "text_plain_output_17.png", "text_plain_output_11.png", "text_plain_output_12.png", "text_plain_output_62.png", "text_plain_output_95.png", "text_plain_output_61.png", "text_plain_output_83.png", "text_plain_output_46.png" ]
from rdkit import Chem import pandas as pd df_train = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/train.csv') df_test = pd.read_csv('/kaggle/input/aqueous-solubility-predictioin/test.csv') df_train.shape smiles_list = df_train['SMILES'][:10] mol_list = [] for smile in smiles_list: mol = Chem.MolFromSmiles(smile) mol_list.append(mol) img = Chem.Draw.MolsToGridImage(mol_list, molsPerRow=5) img
code