path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
74045375/cell_9
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('/kaggle/input/water-potability/water_potability.csv') data.corr() # Veri setimizin Korealasyon Haritasını çıkardık f,ax = plt.subplots(figsize = (15, 15)) sns.heatmap(data.corr(), annot = True, linewidths=.5, fmt= ".2f", ax=ax) plt.show() data.columns data.Turbidity.plot(kind='hist', bins=50, figsize=(12, 12)) plt.show()
code
74045375/cell_25
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('/kaggle/input/water-potability/water_potability.csv') data.corr() # Veri setimizin Korealasyon Haritasını çıkardık f,ax = plt.subplots(figsize = (15, 15)) sns.heatmap(data.corr(), annot = True, linewidths=.5, fmt= ".2f", ax=ax) plt.show() data.columns plt.clf() x = data['Sulfate'] > 470 data[x] x = 2 def f(): x = 3 return x x = 5 def f(): y = 2 * x return y def square(): """ return square of value """ def add(): """ add two local variable """ x = 2 y = 3 z = x + y return z return add() ** 2 def f(a, b=1, c=2): y = a + b + c return y print(f(5)) print(f(5, 6, 7))
code
74045375/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/water-potability/water_potability.csv') data.corr()
code
74045375/cell_23
[ "text_html_output_1.png" ]
import builtins import builtins dir(builtins)
code
74045375/cell_20
[ "text_plain_output_1.png" ]
def tuple_ex(): """ return defined t tuple """ t = (1, 2, 3) return t a, b, c = tuple_ex() print(a, b, c) d, e, _ = tuple_ex() print(d, e)
code
74045375/cell_6
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('/kaggle/input/water-potability/water_potability.csv') data.corr() # Veri setimizin Korealasyon Haritasını çıkardık f,ax = plt.subplots(figsize = (15, 15)) sns.heatmap(data.corr(), annot = True, linewidths=.5, fmt= ".2f", ax=ax) plt.show() data.columns
code
74045375/cell_2
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/water-potability/water_potability.csv') data.head(10)
code
74045375/cell_11
[ "text_plain_output_1.png" ]
dictionary = {'Barcelona': 'Messi', 'Real Madrid': 'Modric'} print(dictionary.keys()) print(dictionary.values())
code
74045375/cell_19
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('/kaggle/input/water-potability/water_potability.csv') data.corr() # Veri setimizin Korealasyon Haritasını çıkardık f,ax = plt.subplots(figsize = (15, 15)) sns.heatmap(data.corr(), annot = True, linewidths=.5, fmt= ".2f", ax=ax) plt.show() data.columns plt.clf() dictionary = {'Barcelona': 'Messi', 'Real Madrid': 'Modric'} dictionary['Barcelona'] = 'Messi' dictionary['PSG'] = 'Neymar' del dictionary['Real Madrid'] dictionary.clear() i = 0 while i != 6: i += 2 lis = [1, 3, 5, 7, 9, 11] for i in lis: print('i is: ', i) print('') for index, value in enumerate(lis): print(index, ' : ', value) print('') dictionary = {'Barcelona': 'Messi', 'PSG': 'Neymar'} for key, value in dictionary.items(): print(key, ' : ', value) print('') for index, value in data[['Sulfate']][0:5].iterrows(): print(index, ' : ', value)
code
74045375/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
74045375/cell_7
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('/kaggle/input/water-potability/water_potability.csv') data.corr() # Veri setimizin Korealasyon Haritasını çıkardık f,ax = plt.subplots(figsize = (15, 15)) sns.heatmap(data.corr(), annot = True, linewidths=.5, fmt= ".2f", ax=ax) plt.show() data.columns data.Hardness.plot(kind='line', color='green', label='Hardness', linewidth=1, alpha=0.6, grid=True, linestyle=':', figsize=(18, 18), marker='o', markerfacecolor='magenta', markersize=7) data.Sulfate.plot(color='blue', label='Sulfate', linewidth=1, alpha=0.6, grid=True, linestyle='-.', figsize=(18, 18), marker='o', markerfacecolor='yellow', markersize=7) plt.legend(loc='upper right') plt.xlabel('x axis') plt.ylabel('y axis') plt.title('Line Plot') plt.show()
code
74045375/cell_18
[ "text_plain_output_1.png" ]
i = 0 while i != 6: print('i i: ', i) i += 2 print(i, ' is equal to 6')
code
74045375/cell_8
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('/kaggle/input/water-potability/water_potability.csv') data.corr() # Veri setimizin Korealasyon Haritasını çıkardık f,ax = plt.subplots(figsize = (15, 15)) sns.heatmap(data.corr(), annot = True, linewidths=.5, fmt= ".2f", ax=ax) plt.show() data.columns data.plot(kind='scatter', x='Hardness', y='Sulfate', alpha=0.7, color='red', figsize=(13, 13), marker='+') plt.xlabel('Hardness') plt.ylabel('Sulfate') plt.title('Hardness Sulfate Scatter Plot') plt.show()
code
74045375/cell_15
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('/kaggle/input/water-potability/water_potability.csv') data.corr() # Veri setimizin Korealasyon Haritasını çıkardık f,ax = plt.subplots(figsize = (15, 15)) sns.heatmap(data.corr(), annot = True, linewidths=.5, fmt= ".2f", ax=ax) plt.show() data.columns plt.clf() x = data['Sulfate'] > 470 data[x]
code
74045375/cell_16
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('/kaggle/input/water-potability/water_potability.csv') data.corr() # Veri setimizin Korealasyon Haritasını çıkardık f,ax = plt.subplots(figsize = (15, 15)) sns.heatmap(data.corr(), annot = True, linewidths=.5, fmt= ".2f", ax=ax) plt.show() data.columns plt.clf() data[np.logical_and(data['Sulfate'] > 470, data['Hardness'] > 200)]
code
74045375/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/water-potability/water_potability.csv') data.info()
code
74045375/cell_17
[ "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('/kaggle/input/water-potability/water_potability.csv') data.corr() # Veri setimizin Korealasyon Haritasını çıkardık f,ax = plt.subplots(figsize = (15, 15)) sns.heatmap(data.corr(), annot = True, linewidths=.5, fmt= ".2f", ax=ax) plt.show() data.columns plt.clf() data[(data['Sulfate'] > 470) & (data['Hardness'] > 200)]
code
74045375/cell_24
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('/kaggle/input/water-potability/water_potability.csv') data.corr() # Veri setimizin Korealasyon Haritasını çıkardık f,ax = plt.subplots(figsize = (15, 15)) sns.heatmap(data.corr(), annot = True, linewidths=.5, fmt= ".2f", ax=ax) plt.show() data.columns plt.clf() x = data['Sulfate'] > 470 data[x] x = 2 def f(): x = 3 return x x = 5 def f(): y = 2 * x return y def square(): """ return square of value """ def add(): """ add two local variable """ x = 2 y = 3 z = x + y return z return add() ** 2 print(square())
code
74045375/cell_14
[ "text_plain_output_1.png" ]
print(5 < 9) print(8 != 8) print(True & False) print(True or False)
code
74045375/cell_22
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('/kaggle/input/water-potability/water_potability.csv') data.corr() # Veri setimizin Korealasyon Haritasını çıkardık f,ax = plt.subplots(figsize = (15, 15)) sns.heatmap(data.corr(), annot = True, linewidths=.5, fmt= ".2f", ax=ax) plt.show() data.columns plt.clf() x = data['Sulfate'] > 470 data[x] x = 2 def f(): x = 3 return x x = 5 def f(): y = 2 * x return y print(f())
code
74045375/cell_10
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('/kaggle/input/water-potability/water_potability.csv') data.corr() # Veri setimizin Korealasyon Haritasını çıkardık f,ax = plt.subplots(figsize = (15, 15)) sns.heatmap(data.corr(), annot = True, linewidths=.5, fmt= ".2f", ax=ax) plt.show() data.columns data.Turbidity.plot(kind='hist', bins=50) plt.clf()
code
74045375/cell_12
[ "text_html_output_1.png" ]
dictionary = {'Barcelona': 'Messi', 'Real Madrid': 'Modric'} dictionary['Barcelona'] = 'Messi' print(dictionary) dictionary['PSG'] = 'Neymar' print(dictionary) del dictionary['Real Madrid'] print(dictionary) print('Bayern Münih' in dictionary) print('Barcelona' in dictionary) dictionary.clear() print(dictionary)
code
74045375/cell_5
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # visualization tool data = pd.read_csv('/kaggle/input/water-potability/water_potability.csv') data.corr() f, ax = plt.subplots(figsize=(15, 15)) sns.heatmap(data.corr(), annot=True, linewidths=0.5, fmt='.2f', ax=ax) plt.show()
code
72085764/cell_21
[ "text_html_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB pd.Series([1981, 5.2, 'Ann', 20000]) pd.Series([1981, 5.2, 'Ann', 2000], index=['Birth Year', 'Height', 'First Name', 'Paid'], name='Customer Details')
code
72085764/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB
code
72085764/cell_34
[ "text_plain_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB pd.Series([1981, 5.2, 'Ann', 20000]) pd.Series([1981, 5.2, 'Ann', 2000], index=['Birth Year', 'Height', 'First Name', 'Paid'], name='Customer Details') file_path = '../input/wine-reviews/winemag-data-130k-v2.csv' wine_reviews = pd.read_csv(file_path) wine_reviews wine_reviews = pd.read_csv(file_path, index_col=0) wine_reviews wine_reviews.shape wine_reviews.columns
code
72085764/cell_23
[ "text_html_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB pd.Series([1981, 5.2, 'Ann', 20000]) pd.Series([1981, 5.2, 'Ann', 2000], index=['Birth Year', 'Height', 'First Name', 'Paid'], name='Customer Details') file_path = '../input/wine-reviews/winemag-data-130k-v2.csv' wine_reviews = pd.read_csv(file_path) wine_reviews
code
72085764/cell_30
[ "text_html_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB pd.Series([1981, 5.2, 'Ann', 20000]) pd.Series([1981, 5.2, 'Ann', 2000], index=['Birth Year', 'Height', 'First Name', 'Paid'], name='Customer Details') file_path = '../input/wine-reviews/winemag-data-130k-v2.csv' wine_reviews = pd.read_csv(file_path) wine_reviews wine_reviews = pd.read_csv(file_path, index_col=0) wine_reviews wine_reviews.shape wine_reviews.describe()
code
72085764/cell_44
[ "text_plain_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB pd.Series([1981, 5.2, 'Ann', 20000]) pd.Series([1981, 5.2, 'Ann', 2000], index=['Birth Year', 'Height', 'First Name', 'Paid'], name='Customer Details') file_path = '../input/wine-reviews/winemag-data-130k-v2.csv' wine_reviews = pd.read_csv(file_path) wine_reviews wine_reviews = pd.read_csv(file_path, index_col=0) wine_reviews wine_reviews.shape wine_reviews.columns wine_reviews.columns[0] wine_reviews.country.unique() wine_reviews.country.value_counts() wine_reviews['country'].head()
code
72085764/cell_20
[ "text_html_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB pd.Series([1981, 5.2, 'Ann', 20000])
code
72085764/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits
code
72085764/cell_39
[ "text_plain_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB pd.Series([1981, 5.2, 'Ann', 20000]) pd.Series([1981, 5.2, 'Ann', 2000], index=['Birth Year', 'Height', 'First Name', 'Paid'], name='Customer Details') file_path = '../input/wine-reviews/winemag-data-130k-v2.csv' wine_reviews = pd.read_csv(file_path) wine_reviews wine_reviews = pd.read_csv(file_path, index_col=0) wine_reviews wine_reviews.shape wine_reviews.columns wine_reviews.columns[0] wine_reviews.country.unique() wine_reviews.country.value_counts()
code
72085764/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB pd.Series([1981, 5.2, 'Ann', 20000]) pd.Series([1981, 5.2, 'Ann', 2000], index=['Birth Year', 'Height', 'First Name', 'Paid'], name='Customer Details') file_path = '../input/wine-reviews/winemag-data-130k-v2.csv' wine_reviews = pd.read_csv(file_path) wine_reviews wine_reviews = pd.read_csv(file_path, index_col=0) wine_reviews wine_reviews.shape
code
72085764/cell_11
[ "text_html_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 fruits = fruits_1.append(fruits_2) fruits
code
72085764/cell_50
[ "text_plain_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB pd.Series([1981, 5.2, 'Ann', 20000]) pd.Series([1981, 5.2, 'Ann', 2000], index=['Birth Year', 'Height', 'First Name', 'Paid'], name='Customer Details') file_path = '../input/wine-reviews/winemag-data-130k-v2.csv' wine_reviews = pd.read_csv(file_path) wine_reviews wine_reviews = pd.read_csv(file_path, index_col=0) wine_reviews wine_reviews.shape wine_reviews.columns wine_reviews.columns[0] wine_reviews.country.unique() wine_reviews.country.value_counts() wine_reviews.iloc[5] wine_reviews.iloc[:, 4]
code
72085764/cell_52
[ "text_plain_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB pd.Series([1981, 5.2, 'Ann', 20000]) pd.Series([1981, 5.2, 'Ann', 2000], index=['Birth Year', 'Height', 'First Name', 'Paid'], name='Customer Details') file_path = '../input/wine-reviews/winemag-data-130k-v2.csv' wine_reviews = pd.read_csv(file_path) wine_reviews wine_reviews = pd.read_csv(file_path, index_col=0) wine_reviews wine_reviews.shape wine_reviews.columns wine_reviews.columns[0] wine_reviews.country.unique() wine_reviews.country.value_counts() wine_reviews.iloc[5] wine_reviews.iloc[:, 4] wine_reviews.iloc[:3, [4, 5]]
code
72085764/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1
code
72085764/cell_49
[ "text_plain_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB pd.Series([1981, 5.2, 'Ann', 20000]) pd.Series([1981, 5.2, 'Ann', 2000], index=['Birth Year', 'Height', 'First Name', 'Paid'], name='Customer Details') file_path = '../input/wine-reviews/winemag-data-130k-v2.csv' wine_reviews = pd.read_csv(file_path) wine_reviews wine_reviews = pd.read_csv(file_path, index_col=0) wine_reviews wine_reviews.shape wine_reviews.columns wine_reviews.columns[0] wine_reviews.country.unique() wine_reviews.country.value_counts() wine_reviews.iloc[5]
code
72085764/cell_18
[ "text_html_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 fruits = fruits_1.append(fruits_2) fruits fruits.insert(0, 'Pineapple', [1, 5, 0, 2, 8, 'NaN']) fruits
code
72085764/cell_32
[ "text_html_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB pd.Series([1981, 5.2, 'Ann', 20000]) pd.Series([1981, 5.2, 'Ann', 2000], index=['Birth Year', 'Height', 'First Name', 'Paid'], name='Customer Details') file_path = '../input/wine-reviews/winemag-data-130k-v2.csv' wine_reviews = pd.read_csv(file_path) wine_reviews wine_reviews = pd.read_csv(file_path, index_col=0) wine_reviews wine_reviews.shape wine_reviews['price'].mean()
code
72085764/cell_28
[ "text_plain_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB pd.Series([1981, 5.2, 'Ann', 20000]) pd.Series([1981, 5.2, 'Ann', 2000], index=['Birth Year', 'Height', 'First Name', 'Paid'], name='Customer Details') file_path = '../input/wine-reviews/winemag-data-130k-v2.csv' wine_reviews = pd.read_csv(file_path) wine_reviews wine_reviews = pd.read_csv(file_path, index_col=0) wine_reviews wine_reviews.shape wine_reviews.head(3)
code
72085764/cell_8
[ "text_html_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2
code
72085764/cell_16
[ "text_html_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 fruits = fruits_1.append(fruits_2) fruits fruits
code
72085764/cell_17
[ "text_html_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 fruits = fruits_1.append(fruits_2) fruits fruits['Orange'] = [10, 56, 78, 23, 78, 36] fruits
code
72085764/cell_35
[ "text_html_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB pd.Series([1981, 5.2, 'Ann', 20000]) pd.Series([1981, 5.2, 'Ann', 2000], index=['Birth Year', 'Height', 'First Name', 'Paid'], name='Customer Details') file_path = '../input/wine-reviews/winemag-data-130k-v2.csv' wine_reviews = pd.read_csv(file_path) wine_reviews wine_reviews = pd.read_csv(file_path, index_col=0) wine_reviews wine_reviews.shape wine_reviews.columns wine_reviews.columns[0]
code
72085764/cell_43
[ "text_plain_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB pd.Series([1981, 5.2, 'Ann', 20000]) pd.Series([1981, 5.2, 'Ann', 2000], index=['Birth Year', 'Height', 'First Name', 'Paid'], name='Customer Details') file_path = '../input/wine-reviews/winemag-data-130k-v2.csv' wine_reviews = pd.read_csv(file_path) wine_reviews wine_reviews = pd.read_csv(file_path, index_col=0) wine_reviews wine_reviews.shape wine_reviews.columns wine_reviews.columns[0] wine_reviews.country.unique() wine_reviews.country.value_counts() wine_reviews.country.head()
code
72085764/cell_46
[ "text_plain_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB pd.Series([1981, 5.2, 'Ann', 20000]) pd.Series([1981, 5.2, 'Ann', 2000], index=['Birth Year', 'Height', 'First Name', 'Paid'], name='Customer Details') file_path = '../input/wine-reviews/winemag-data-130k-v2.csv' wine_reviews = pd.read_csv(file_path) wine_reviews wine_reviews = pd.read_csv(file_path, index_col=0) wine_reviews wine_reviews.shape wine_reviews.columns wine_reviews.columns[0] wine_reviews.country.unique() wine_reviews.country.value_counts() wine_reviews['country'][1]
code
72085764/cell_24
[ "text_html_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB pd.Series([1981, 5.2, 'Ann', 20000]) pd.Series([1981, 5.2, 'Ann', 2000], index=['Birth Year', 'Height', 'First Name', 'Paid'], name='Customer Details') file_path = '../input/wine-reviews/winemag-data-130k-v2.csv' wine_reviews = pd.read_csv(file_path) wine_reviews wine_reviews = pd.read_csv(file_path, index_col=0) wine_reviews
code
72085764/cell_14
[ "text_html_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB fruits = fruits_1.append(fruits_2) fruits grocery = fruits_1.append(items_AB) grocery
code
72085764/cell_37
[ "text_html_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 items_AB = pd.DataFrame([[30, 21], [50, 10], [40, 15]], columns=list('AB'), index=['January', 'February', 'March']) items_AB pd.Series([1981, 5.2, 'Ann', 20000]) pd.Series([1981, 5.2, 'Ann', 2000], index=['Birth Year', 'Height', 'First Name', 'Paid'], name='Customer Details') file_path = '../input/wine-reviews/winemag-data-130k-v2.csv' wine_reviews = pd.read_csv(file_path) wine_reviews wine_reviews = pd.read_csv(file_path, index_col=0) wine_reviews wine_reviews.shape wine_reviews.columns wine_reviews.columns[0] wine_reviews.country.unique()
code
72085764/cell_12
[ "text_html_output_1.png" ]
import pandas as pd fruits = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}) fruits fruits_1 = pd.DataFrame({'Apples': [30, 50, 40], 'Bananas': [21, 10, 15]}, index=['January', 'February', 'March']) fruits_1 fruits_2 = pd.DataFrame([[60, 35], [5, 15], [21, 36]], columns=['Apples', 'Bananas'], index=['April', 'May', 'June']) fruits_2 fruits = fruits_1.append(fruits_2) fruits fruits_1
code
1008453/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # plotting data = pd.read_csv('../input/Iris.csv') X = data['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm'] y = data['Species']
code
1008453/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # plotting data = pd.read_csv('../input/Iris.csv') sns.pairplot(data.drop('Id', axis=1), hue='Species', size=2)
code
1008453/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # plotting data = pd.read_csv('../input/Iris.csv') sns.violinplot(x='Species', y='PetalLengthCm', data=data)
code
1008453/cell_2
[ "text_html_output_1.png" ]
from subprocess import check_output , # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory from subprocess import check_output print(check_output(["ls", "../input"]).decode("utf8")) # Any results you write to the current directory are saved as output. # ^^^ DEFAULT SETUP ABOVE HERE. EVERYTHING BELOW MUST BE ADDED import seaborn as sns # plotting from sklearn import tree # classification tree, see http://scikit-learn.org/stable/modules/tree.html
code
1008453/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # plotting data = pd.read_csv('../input/Iris.csv') sns.violinplot(x='Species', y='PetalWidthCm', data=data)
code
1008453/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('../input/Iris.csv') data.head()
code
1008453/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns # plotting data = pd.read_csv('../input/Iris.csv') X = data['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm'] y = data['Species'] X
code
1008184/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra np.random.seed(0) X = np.random.random(size=(20, 1)) y = 3 * X.squeeze() + 2 + np.random.randn(20) plt.plot(X, y, 'o')
code
1008184/cell_1
[ "text_plain_output_1.png" ]
from subprocess import check_output import numpy as np import pandas as pd from subprocess import check_output print(check_output(['ls', '../input']).decode('utf8'))
code
1008184/cell_3
[ "text_plain_output_1.png" ]
import numpy as np import numpy as np # linear algebra np.random.seed(0) X = np.random.random(size=(20, 1)) y = 3 * X.squeeze() + 2 + np.random.randn(20) print(y)
code
1008184/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra np.random.seed(0) X = np.random.random(size=(20, 1)) y = 3 * X.squeeze() + 2 + np.random.randn(20) model = LinearRegression() model.fit(X, y) X_fit = np.linspace(0, 1, 100)[:, np.newaxis] y_fit = model.predict(X_fit) y_model = 3 * X_fit.ravel() + 2 + np.random.randn(100) plt.plot(X, y, 'o') plt.plot(X_fit, y_fit) plt.plot(X_fit, y_model)
code
73066276/cell_9
[ "text_plain_output_2.png", "text_plain_output_1.png" ]
import os import pandas as pd dataset_path = '../input/learnplatform-covid19-impact-on-digital-learning/' engagement_path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' district_path = '../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv' products_path = '../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv' def create_dataset_from_engagement(engagement_path): dataset = pd.DataFrame() for path, dirc, files in os.walk(engagement_path): for file in files: if dataset.empty: dataset = pd.read_csv(os.path.join(path, file)) dataset['dis_id'] = file.split('.')[0] else: next_frame = pd.read_csv(os.path.join(path, file)) next_frame['dis_id'] = file.split('.')[0] dataset = pd.concat([dataset[:], next_frame[:]]) return dataset district_df = pd.read_csv(district_path) products_df = pd.read_csv(products_path) str(district_df[district_df['district_id'] == 1624]['state'].values[0]) != 'nan'
code
73066276/cell_6
[ "text_plain_output_1.png" ]
import os import pandas as pd dataset_path = '../input/learnplatform-covid19-impact-on-digital-learning/' engagement_path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' district_path = '../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv' products_path = '../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv' def create_dataset_from_engagement(engagement_path): dataset = pd.DataFrame() for path, dirc, files in os.walk(engagement_path): for file in files: if dataset.empty: dataset = pd.read_csv(os.path.join(path, file)) dataset['dis_id'] = file.split('.')[0] else: next_frame = pd.read_csv(os.path.join(path, file)) next_frame['dis_id'] = file.split('.')[0] dataset = pd.concat([dataset[:], next_frame[:]]) return dataset district_df = pd.read_csv(district_path) products_df = pd.read_csv(products_path) district_df.head()
code
73066276/cell_11
[ "text_html_output_1.png" ]
import os import pandas as pd dataset_path = '../input/learnplatform-covid19-impact-on-digital-learning/' engagement_path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' district_path = '../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv' products_path = '../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv' def create_dataset_from_engagement(engagement_path): dataset = pd.DataFrame() for path, dirc, files in os.walk(engagement_path): for file in files: if dataset.empty: dataset = pd.read_csv(os.path.join(path, file)) dataset['dis_id'] = file.split('.')[0] else: next_frame = pd.read_csv(os.path.join(path, file)) next_frame['dis_id'] = file.split('.')[0] dataset = pd.concat([dataset[:], next_frame[:]]) return dataset district_df = pd.read_csv(district_path) products_df = pd.read_csv(products_path) print('Before removing null values') district_df.isnull().sum() * 100 / district_df.shape[0] print('After removing null values') district_df.dropna(subset=['state'], inplace=True) district_df.isnull().sum() * 100 / district_df.shape[0]
code
73066276/cell_7
[ "text_plain_output_1.png" ]
import os import pandas as pd dataset_path = '../input/learnplatform-covid19-impact-on-digital-learning/' engagement_path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' district_path = '../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv' products_path = '../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv' def create_dataset_from_engagement(engagement_path): dataset = pd.DataFrame() for path, dirc, files in os.walk(engagement_path): for file in files: if dataset.empty: dataset = pd.read_csv(os.path.join(path, file)) dataset['dis_id'] = file.split('.')[0] else: next_frame = pd.read_csv(os.path.join(path, file)) next_frame['dis_id'] = file.split('.')[0] dataset = pd.concat([dataset[:], next_frame[:]]) return dataset district_df = pd.read_csv(district_path) products_df = pd.read_csv(products_path) products_df.head()
code
73066276/cell_10
[ "text_html_output_1.png" ]
import os import pandas as pd dataset_path = '../input/learnplatform-covid19-impact-on-digital-learning/' engagement_path = '../input/learnplatform-covid19-impact-on-digital-learning/engagement_data' district_path = '../input/learnplatform-covid19-impact-on-digital-learning/districts_info.csv' products_path = '../input/learnplatform-covid19-impact-on-digital-learning/products_info.csv' def create_dataset_from_engagement(engagement_path): dataset = pd.DataFrame() for path, dirc, files in os.walk(engagement_path): for file in files: if dataset.empty: dataset = pd.read_csv(os.path.join(path, file)) dataset['dis_id'] = file.split('.')[0] else: next_frame = pd.read_csv(os.path.join(path, file)) next_frame['dis_id'] = file.split('.')[0] dataset = pd.concat([dataset[:], next_frame[:]]) return dataset district_df = pd.read_csv(district_path) products_df = pd.read_csv(products_path) engagement_district = [] for path, directory, files in os.walk(engagement_path): for file in files: state_name = str(district_df[district_df['district_id'] == int(file.split('.')[0])]['state'].values[0]) if state_name != 'nan': engagement_district.append({'state': state_name, 'file': os.path.join(path, file)}) for item in engagement_district: if item['state'] == 'Ohio': print(item['file'])
code
1005917/cell_9
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from sklearn.ensemble import RandomForestRegressor from subprocess import check_output train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train['Age'].fillna(train.Age.mean(), inplace=True) df = pd.DataFrame(train, index=['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked']) y_train, X_train = (train['Survived'], train.drop(['Survived', 'Name', 'Ticket', 'Cabin', 'PassengerId'], axis=1)) X_train tonumeric = ['Sex', 'Embarked'] for variable in tonumeric: X_train[variable].fillna('Missing', inplace=True) dummies = pd.get_dummies(X_train[variable], prefix=variable) X_train = pd.concat([X_train, dummies], axis=1) X_train.drop([variable], axis=1, inplace=True) X_train
code
1005917/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from sklearn.ensemble import RandomForestRegressor from subprocess import check_output train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train['Age'].fillna(train.Age.mean(), inplace=True) train['Age'].describe()
code
1005917/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from sklearn.ensemble import RandomForestRegressor from subprocess import check_output train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train['Age'].fillna(train.Age.mean(), inplace=True) df = pd.DataFrame(train, index=['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked']) y_train, X_train = (train['Survived'], train.drop(['Survived', 'Name', 'Ticket', 'Cabin', 'PassengerId'], axis=1)) X_train
code
1005917/cell_2
[ "text_html_output_1.png" ]
from subprocess import check_output import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from sklearn.ensemble import RandomForestRegressor from subprocess import check_output train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.describe()
code
1005917/cell_11
[ "text_plain_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import roc_auc_score import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from sklearn.ensemble import RandomForestRegressor from subprocess import check_output train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train['Age'].fillna(train.Age.mean(), inplace=True) df = pd.DataFrame(train, index=['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked']) y_train, X_train = (train['Survived'], train.drop(['Survived', 'Name', 'Ticket', 'Cabin', 'PassengerId'], axis=1)) X_train tonumeric = ['Sex', 'Embarked'] for variable in tonumeric: X_train[variable].fillna('Missing', inplace=True) dummies = pd.get_dummies(X_train[variable], prefix=variable) X_train = pd.concat([X_train, dummies], axis=1) X_train.drop([variable], axis=1, inplace=True) model = RandomForestRegressor(n_estimators=100, oob_score=True, random_state=50) model.fit(X_train, y_train) from sklearn.metrics import roc_auc_score roc_auc_score(y_train, model.oob_prediction_)
code
1005917/cell_10
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from sklearn.ensemble import RandomForestRegressor from subprocess import check_output train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train['Age'].fillna(train.Age.mean(), inplace=True) df = pd.DataFrame(train, index=['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked']) y_train, X_train = (train['Survived'], train.drop(['Survived', 'Name', 'Ticket', 'Cabin', 'PassengerId'], axis=1)) X_train tonumeric = ['Sex', 'Embarked'] for variable in tonumeric: X_train[variable].fillna('Missing', inplace=True) dummies = pd.get_dummies(X_train[variable], prefix=variable) X_train = pd.concat([X_train, dummies], axis=1) X_train.drop([variable], axis=1, inplace=True) model = RandomForestRegressor(n_estimators=100, oob_score=True, random_state=50) model.fit(X_train, y_train)
code
1005917/cell_12
[ "text_html_output_1.png" ]
from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import roc_auc_score import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import numpy as np import pandas as pd from sklearn.ensemble import RandomForestRegressor from subprocess import check_output train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train['Age'].fillna(train.Age.mean(), inplace=True) df = pd.DataFrame(train, index=['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked']) y_train, X_train = (train['Survived'], train.drop(['Survived', 'Name', 'Ticket', 'Cabin', 'PassengerId'], axis=1)) X_train tonumeric = ['Sex', 'Embarked'] for variable in tonumeric: X_train[variable].fillna('Missing', inplace=True) dummies = pd.get_dummies(X_train[variable], prefix=variable) X_train = pd.concat([X_train, dummies], axis=1) X_train.drop([variable], axis=1, inplace=True) model = RandomForestRegressor(n_estimators=100, oob_score=True, random_state=50) model.fit(X_train, y_train) from sklearn.metrics import roc_auc_score roc_auc_score(y_train, model.oob_prediction_) importance = pd.Series(model.feature_importances_, index=X_train.columns) importance.sort() importance.plot(kind='barh', figsize=(7, 6))
code
17130660/cell_4
[ "application_vnd.jupyter.stderr_output_1.png" ]
from fastai.vision import ImageDataBunch,Learner from torch import optim,nn from torchvision import transforms,models import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch from fastai.vision import ImageDataBunch, Learner from PIL import Image import torch from torch import optim, nn import cv2 as cv from torchvision import transforms, models from torch.utils.data.sampler import SubsetRandomSampler import numpy as np PATH = '../input' df_train = pd.read_csv(PATH + '/train.csv', dtype={'id_code': str, 'diagnosis': int}) norm_values = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') dataBunch = ImageDataBunch.from_df(path=PATH, df=df_train, folder='train_images', suffix='.png', size=224, ds_tfms=get_transforms(do_flip=True, max_warp=0), test='test_images', bs=32, device=device).normalize(norm_values) model = models.resnext101_32x8d(pretrained=True) for param in model.parameters(): param.requires_grad = False fc = nn.Sequential(nn.Dropout(p=0.6), nn.Linear(2048, 500), nn.BatchNorm1d(500), nn.ReLU(), nn.Linear(500, 5), nn.LogSoftmax(dim=1)) model.fc = fc model.to(device) learn = Learner(data=dataBunch, model=model, model_dir='/tmp/model', metrics=[accuracy]) learn.fit_one_cycle(7, 0.008)
code
17130660/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import fastai as fa import os print(os.listdir('../input'))
code
17130660/cell_7
[ "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from fastai.vision import ImageDataBunch,Learner from torch import optim,nn from torchvision import transforms,models import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch import numpy as np import pandas as pd import fastai as fa import os from fastai.vision import ImageDataBunch, Learner from PIL import Image import torch from torch import optim, nn import cv2 as cv from torchvision import transforms, models from torch.utils.data.sampler import SubsetRandomSampler import numpy as np PATH = '../input' df_train = pd.read_csv(PATH + '/train.csv', dtype={'id_code': str, 'diagnosis': int}) norm_values = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') dataBunch = ImageDataBunch.from_df(path=PATH, df=df_train, folder='train_images', suffix='.png', size=224, ds_tfms=get_transforms(do_flip=True, max_warp=0), test='test_images', bs=32, device=device).normalize(norm_values) model = models.resnext101_32x8d(pretrained=True) for param in model.parameters(): param.requires_grad = False fc = nn.Sequential(nn.Dropout(p=0.6), nn.Linear(2048, 500), nn.BatchNorm1d(500), nn.ReLU(), nn.Linear(500, 5), nn.LogSoftmax(dim=1)) model.fc = fc model.to(device) learn = Learner(data=dataBunch, model=model, model_dir='/tmp/model', metrics=[accuracy]) learn.fit_one_cycle(7, 0.008) learn.save('bl') model = learn.load('bl').model class CreateTrainDataset(Dataset): def __init__(self, csv_file, root_dir, transform=None): self.data_frame = pd.read_csv(csv_file) self.root_dir = root_dir self.transform = transform def __len__(self): return len(self.data_frame) def __getitem__(self, idx): img_name = os.path.join(self.root_dir, self.data_frame.iloc[idx, 0] + '.png') image = Image.open(img_name) sample = {'image': transforms.ToTensor()(image)} return sample testset = CreateTrainDataset(csv_file='../input/test.csv', root_dir='../input/test_images') testloader = torch.utils.data.DataLoader(testset, batch_size=1) model.eval() diag = [] idc = [] dd = pd.read_csv('../input/test.csv') idc = dd['id_code'] idc = list(idc) for id, d in enumerate(testloader): images = d['image'] images = images.to(device) output = model(images) pred = torch.exp(output) top_ps, top_class = pred.topk(1, dim=1) diag.append(int(top_class.cpu())) print(type(list(diag)))
code
17130660/cell_8
[ "application_vnd.jupyter.stderr_output_1.png" ]
from PIL import Image from fastai.vision import ImageDataBunch,Learner from torch import optim,nn from torchvision import transforms,models import os import pandas import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch import numpy as np import pandas as pd import fastai as fa import os from fastai.vision import ImageDataBunch, Learner from PIL import Image import torch from torch import optim, nn import cv2 as cv from torchvision import transforms, models from torch.utils.data.sampler import SubsetRandomSampler import numpy as np PATH = '../input' df_train = pd.read_csv(PATH + '/train.csv', dtype={'id_code': str, 'diagnosis': int}) norm_values = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') dataBunch = ImageDataBunch.from_df(path=PATH, df=df_train, folder='train_images', suffix='.png', size=224, ds_tfms=get_transforms(do_flip=True, max_warp=0), test='test_images', bs=32, device=device).normalize(norm_values) model = models.resnext101_32x8d(pretrained=True) for param in model.parameters(): param.requires_grad = False fc = nn.Sequential(nn.Dropout(p=0.6), nn.Linear(2048, 500), nn.BatchNorm1d(500), nn.ReLU(), nn.Linear(500, 5), nn.LogSoftmax(dim=1)) model.fc = fc model.to(device) learn = Learner(data=dataBunch, model=model, model_dir='/tmp/model', metrics=[accuracy]) learn.fit_one_cycle(7, 0.008) learn.save('bl') model = learn.load('bl').model class CreateTrainDataset(Dataset): def __init__(self, csv_file, root_dir, transform=None): self.data_frame = pd.read_csv(csv_file) self.root_dir = root_dir self.transform = transform def __len__(self): return len(self.data_frame) def __getitem__(self, idx): img_name = os.path.join(self.root_dir, self.data_frame.iloc[idx, 0] + '.png') image = Image.open(img_name) sample = {'image': transforms.ToTensor()(image)} return sample testset = CreateTrainDataset(csv_file='../input/test.csv', root_dir='../input/test_images') testloader = torch.utils.data.DataLoader(testset, batch_size=1) model.eval() diag = [] idc = [] dd = pd.read_csv('../input/test.csv') idc = dd['id_code'] idc = list(idc) for id, d in enumerate(testloader): images = d['image'] images = images.to(device) output = model(images) pred = torch.exp(output) top_ps, top_class = pred.topk(1, dim=1) diag.append(int(top_class.cpu())) import pandas ddf = pandas.DataFrame(data={'id_code': idc, 'diagnosis': diag}) ddf.to_csv('./submission.csv', sep=',', index=False)
code
17130660/cell_3
[ "application_vnd.jupyter.stderr_output_1.png" ]
from fastai.vision import ImageDataBunch,Learner from torch import optim,nn from torchvision import transforms,models import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch from fastai.vision import ImageDataBunch, Learner from PIL import Image import torch from torch import optim, nn import cv2 as cv from torchvision import transforms, models from torch.utils.data.sampler import SubsetRandomSampler import numpy as np PATH = '../input' df_train = pd.read_csv(PATH + '/train.csv', dtype={'id_code': str, 'diagnosis': int}) norm_values = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') dataBunch = ImageDataBunch.from_df(path=PATH, df=df_train, folder='train_images', suffix='.png', size=224, ds_tfms=get_transforms(do_flip=True, max_warp=0), test='test_images', bs=32, device=device).normalize(norm_values) model = models.resnext101_32x8d(pretrained=True) for param in model.parameters(): param.requires_grad = False fc = nn.Sequential(nn.Dropout(p=0.6), nn.Linear(2048, 500), nn.BatchNorm1d(500), nn.ReLU(), nn.Linear(500, 5), nn.LogSoftmax(dim=1)) model.fc = fc model.to(device) learn = Learner(data=dataBunch, model=model, model_dir='/tmp/model', metrics=[accuracy]) print(learn)
code
17130660/cell_5
[ "application_vnd.jupyter.stderr_output_1.png" ]
from fastai.vision import ImageDataBunch,Learner from torch import optim,nn from torchvision import transforms,models import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch from fastai.vision import ImageDataBunch, Learner from PIL import Image import torch from torch import optim, nn import cv2 as cv from torchvision import transforms, models from torch.utils.data.sampler import SubsetRandomSampler import numpy as np PATH = '../input' df_train = pd.read_csv(PATH + '/train.csv', dtype={'id_code': str, 'diagnosis': int}) norm_values = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') dataBunch = ImageDataBunch.from_df(path=PATH, df=df_train, folder='train_images', suffix='.png', size=224, ds_tfms=get_transforms(do_flip=True, max_warp=0), test='test_images', bs=32, device=device).normalize(norm_values) model = models.resnext101_32x8d(pretrained=True) for param in model.parameters(): param.requires_grad = False fc = nn.Sequential(nn.Dropout(p=0.6), nn.Linear(2048, 500), nn.BatchNorm1d(500), nn.ReLU(), nn.Linear(500, 5), nn.LogSoftmax(dim=1)) model.fc = fc model.to(device) learn = Learner(data=dataBunch, model=model, model_dir='/tmp/model', metrics=[accuracy]) learn.fit_one_cycle(7, 0.008) learn.save('bl') model = learn.load('bl').model
code
129028469/cell_4
[ "text_html_output_1.png" ]
import pandas as pd path = '/kaggle/input/goodreadsbooks/books.csv' df = pd.read_csv(path, error_bad_lines=False) df.shape df.head(10)
code
129028469/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd path = '/kaggle/input/goodreadsbooks/books.csv' df = pd.read_csv(path, error_bad_lines=False) df.shape def book_search(): user_choice = int(input('Enter 1 for Author, 2 for Publisher:')) match user_choice: case 1: key = str(input('Enter Author name:')) author_list = pd.DataFrame(df[df['authors'] == key]['title'].unique()) return author_list case 2: key = str(input('Enter Publisher name:')) publisher_list = pd.DataFrame(df[df['publisher'] == key]['title'].unique()) return publisher_list case other: search_data = pd.DataFrame(book_search()) search_data
code
129028469/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd path = '/kaggle/input/goodreadsbooks/books.csv' df = pd.read_csv(path, error_bad_lines=False)
code
129028469/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd path = '/kaggle/input/goodreadsbooks/books.csv' df = pd.read_csv(path, error_bad_lines=False) df.shape
code
34133452/cell_21
[ "text_plain_output_1.png" ]
import cv2 import matplotlib.pyplot as plt import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os BASE_DIR = '/kaggle/input/global-wheat-detection/' train_data = pd.read_csv(BASE_DIR + 'train.csv') submission_file = pd.read_csv(BASE_DIR + 'sample_submission.csv') train_images_dir = BASE_DIR + 'train/' train_data.isna().sum() train_data.nunique() train_data.source.unique() all_images = set((x.split('.')[0] for x in os.listdir(train_images_dir))) images_with_bb = set(train_data.image_id.unique()) images_without_bb = all_images ^ images_with_bb def plot_images(image_list,rows,cols,title): fig,ax = plt.subplots(rows,cols,figsize = (16,5)) ax = ax.flatten() for i, image_id in enumerate(image_list): image = cv2.imread(train_images_dir+'{}.jpg'.format(image_id)) image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB) ax[i].imshow(image) ax[i].set_axis_off() ax[i].set_title(image_id) plt.suptitle(title) # def plot_images_with_bb(train_data,rows,cols,title): # fig,ax = plt.subplots(rows,cols,figsize = (16,5)) # ax = ax.flatten() # for row in train_data.iterrows(): # image = cv2.imread(train_images_dir+'{}.jpg'.format(row[1]["image_id"])) # image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB) # image = cv2.rectangle(image,(row[1]["bbox"][0],row[1]["bbox"][1]),(row[1]["bbox"][0]+row[1]["bbox"][2],row[1]["bbox"][1]+row[1]["bbox"][3]),255,2) # ax[i].imshow(image) # ax[i].set_axis_off() # ax[i].set_title(image_id) # plt.suptitle(title) plot_images(train_data.sample(10)['image_id'].values, 2, 5, 'Images with wheat')
code
34133452/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) BASE_DIR = '/kaggle/input/global-wheat-detection/' train_data = pd.read_csv(BASE_DIR + 'train.csv') submission_file = pd.read_csv(BASE_DIR + 'sample_submission.csv') train_images_dir = BASE_DIR + 'train/' train_data.isna().sum()
code
34133452/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) BASE_DIR = '/kaggle/input/global-wheat-detection/' train_data = pd.read_csv(BASE_DIR + 'train.csv') submission_file = pd.read_csv(BASE_DIR + 'sample_submission.csv') train_images_dir = BASE_DIR + 'train/' submission_file.head()
code
34133452/cell_7
[ "image_output_1.png" ]
import os import os import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
34133452/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) BASE_DIR = '/kaggle/input/global-wheat-detection/' train_data = pd.read_csv(BASE_DIR + 'train.csv') submission_file = pd.read_csv(BASE_DIR + 'sample_submission.csv') train_images_dir = BASE_DIR + 'train/' train_data.isna().sum() train_data.nunique() train_data.source.unique()
code
34133452/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) BASE_DIR = '/kaggle/input/global-wheat-detection/' train_data = pd.read_csv(BASE_DIR + 'train.csv') submission_file = pd.read_csv(BASE_DIR + 'sample_submission.csv') train_images_dir = BASE_DIR + 'train/' train_data.isna().sum() train_data.nunique()
code
34133452/cell_22
[ "image_output_1.png" ]
import cv2 import matplotlib.pyplot as plt import os import os import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os BASE_DIR = '/kaggle/input/global-wheat-detection/' train_data = pd.read_csv(BASE_DIR + 'train.csv') submission_file = pd.read_csv(BASE_DIR + 'sample_submission.csv') train_images_dir = BASE_DIR + 'train/' train_data.isna().sum() train_data.nunique() train_data.source.unique() all_images = set((x.split('.')[0] for x in os.listdir(train_images_dir))) images_with_bb = set(train_data.image_id.unique()) images_without_bb = all_images ^ images_with_bb df_images_without_bb = pd.DataFrame(images_without_bb, columns=['image_id']) def plot_images(image_list,rows,cols,title): fig,ax = plt.subplots(rows,cols,figsize = (16,5)) ax = ax.flatten() for i, image_id in enumerate(image_list): image = cv2.imread(train_images_dir+'{}.jpg'.format(image_id)) image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB) ax[i].imshow(image) ax[i].set_axis_off() ax[i].set_title(image_id) plt.suptitle(title) # def plot_images_with_bb(train_data,rows,cols,title): # fig,ax = plt.subplots(rows,cols,figsize = (16,5)) # ax = ax.flatten() # for row in train_data.iterrows(): # image = cv2.imread(train_images_dir+'{}.jpg'.format(row[1]["image_id"])) # image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB) # image = cv2.rectangle(image,(row[1]["bbox"][0],row[1]["bbox"][1]),(row[1]["bbox"][0]+row[1]["bbox"][2],row[1]["bbox"][1]+row[1]["bbox"][3]),255,2) # ax[i].imshow(image) # ax[i].set_axis_off() # ax[i].set_title(image_id) # plt.suptitle(title) plot_images(df_images_without_bb.sample(10)['image_id'].values, 2, 5, 'Images without wheat')
code
34133452/cell_10
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) BASE_DIR = '/kaggle/input/global-wheat-detection/' train_data = pd.read_csv(BASE_DIR + 'train.csv') submission_file = pd.read_csv(BASE_DIR + 'sample_submission.csv') train_images_dir = BASE_DIR + 'train/' train_data.head()
code
34133452/cell_12
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) BASE_DIR = '/kaggle/input/global-wheat-detection/' train_data = pd.read_csv(BASE_DIR + 'train.csv') submission_file = pd.read_csv(BASE_DIR + 'sample_submission.csv') train_images_dir = BASE_DIR + 'train/' print('The training data has {} rows and {} columns'.format(train_data.shape[0], train_data.shape[1]))
code
34135429/cell_13
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import plotly.offline as py import seaborn as sns import warnings import numpy as np import pandas as pd import seaborn as sns color = sns.color_palette() import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') import plotly.offline as py from plotly import tools py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.express as px nifty_50_df = pd.read_csv('../input/nifty-indices-dataset/NIFTY 50.csv', index_col='Date', parse_dates=['Date']) nifty_50_df.isnull().sum() nifty_50_df = nifty_50_df.fillna(method='ffill') def plot_attribute(df, attritube ,start='2000', end='2020',color ='blue'): fig, ax = plt.subplots(1, figsize=(20,5)) ax.plot(df[start:end].index, df[start:end][attritube],'tab:{}'.format(color)) ax.set_title("Nifty 50 stock {} from 2000 to 2020".format(attritube)) ax.axhline(y=df[start:end].describe()[attritube]["max"],linewidth=2, color='m') ax.axhline(y=df[start:end].describe()[attritube]["min"],linewidth=2, color='c') ax.axvline(x=df[attritube].idxmax(),linewidth=2, color='b') ax.axvline(x=df[attritube].idxmin() ,linewidth=2, color='y') ax.text(x=df[attritube].idxmax(), y=df[start:end].describe()[attritube]["max"], s='MAX', horizontalalignment='right', verticalalignment='bottom', color='blue', fontsize=20) ax.text(x=df[attritube].idxmin(), y=df[start:end].describe()[attritube]["min"], s='MIN', horizontalalignment='left', verticalalignment='top', color='red', fontsize=20) plt.show() print("Max Value : ",df[start:end].describe()[attritube]["max"]) print("Min Value : ",df[start:end].describe()[attritube]["min"]) plot_attribute(nifty_50_df, 'Close', color='red')
code
34135429/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd nifty_50_df = pd.read_csv('../input/nifty-indices-dataset/NIFTY 50.csv', index_col='Date', parse_dates=['Date']) nifty_50_df.tail(5)
code
34135429/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import plotly.offline as py import seaborn as sns import warnings import numpy as np import pandas as pd import seaborn as sns color = sns.color_palette() import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') import plotly.offline as py from plotly import tools py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.express as px nifty_50_df = pd.read_csv('../input/nifty-indices-dataset/NIFTY 50.csv', index_col='Date', parse_dates=['Date']) nifty_50_df.isnull().sum() nifty_50_df = nifty_50_df.fillna(method='ffill') def plot_attribute(df, attritube ,start='2000', end='2020',color ='blue'): fig, ax = plt.subplots(1, figsize=(20,5)) ax.plot(df[start:end].index, df[start:end][attritube],'tab:{}'.format(color)) ax.set_title("Nifty 50 stock {} from 2000 to 2020".format(attritube)) ax.axhline(y=df[start:end].describe()[attritube]["max"],linewidth=2, color='m') ax.axhline(y=df[start:end].describe()[attritube]["min"],linewidth=2, color='c') ax.axvline(x=df[attritube].idxmax(),linewidth=2, color='b') ax.axvline(x=df[attritube].idxmin() ,linewidth=2, color='y') ax.text(x=df[attritube].idxmax(), y=df[start:end].describe()[attritube]["max"], s='MAX', horizontalalignment='right', verticalalignment='bottom', color='blue', fontsize=20) ax.text(x=df[attritube].idxmin(), y=df[start:end].describe()[attritube]["min"], s='MIN', horizontalalignment='left', verticalalignment='top', color='red', fontsize=20) plt.show() print("Max Value : ",df[start:end].describe()[attritube]["max"]) print("Min Value : ",df[start:end].describe()[attritube]["min"]) plot_attribute(nifty_50_df, 'Div Yield', color='blue')
code
34135429/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
import plotly.offline as py import seaborn as sns import warnings import numpy as np import pandas as pd import seaborn as sns color = sns.color_palette() import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') import plotly.offline as py from plotly import tools py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.express as px
code
34135429/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import plotly.offline as py import seaborn as sns import warnings import numpy as np import pandas as pd import seaborn as sns color = sns.color_palette() import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') import plotly.offline as py from plotly import tools py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.express as px nifty_50_df = pd.read_csv('../input/nifty-indices-dataset/NIFTY 50.csv', index_col='Date', parse_dates=['Date']) nifty_50_df.isnull().sum() nifty_50_df = nifty_50_df.fillna(method='ffill') def plot_attribute(df, attritube ,start='2000', end='2020',color ='blue'): fig, ax = plt.subplots(1, figsize=(20,5)) ax.plot(df[start:end].index, df[start:end][attritube],'tab:{}'.format(color)) ax.set_title("Nifty 50 stock {} from 2000 to 2020".format(attritube)) ax.axhline(y=df[start:end].describe()[attritube]["max"],linewidth=2, color='m') ax.axhline(y=df[start:end].describe()[attritube]["min"],linewidth=2, color='c') ax.axvline(x=df[attritube].idxmax(),linewidth=2, color='b') ax.axvline(x=df[attritube].idxmin() ,linewidth=2, color='y') ax.text(x=df[attritube].idxmax(), y=df[start:end].describe()[attritube]["max"], s='MAX', horizontalalignment='right', verticalalignment='bottom', color='blue', fontsize=20) ax.text(x=df[attritube].idxmin(), y=df[start:end].describe()[attritube]["min"], s='MIN', horizontalalignment='left', verticalalignment='top', color='red', fontsize=20) plt.show() print("Max Value : ",df[start:end].describe()[attritube]["max"]) print("Min Value : ",df[start:end].describe()[attritube]["min"]) plot_attribute(nifty_50_df, 'P/B', color='orange')
code
34135429/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd nifty_50_df = pd.read_csv('../input/nifty-indices-dataset/NIFTY 50.csv', index_col='Date', parse_dates=['Date']) nifty_50_df.isnull().sum()
code
34135429/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import plotly.offline as py import seaborn as sns import warnings import numpy as np import pandas as pd import seaborn as sns color = sns.color_palette() import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') import plotly.offline as py from plotly import tools py.init_notebook_mode(connected=True) import plotly.graph_objs as go import plotly.express as px nifty_50_df = pd.read_csv('../input/nifty-indices-dataset/NIFTY 50.csv', index_col='Date', parse_dates=['Date']) nifty_50_df.isnull().sum() nifty_50_df = nifty_50_df.fillna(method='ffill') def plot_attribute(df, attritube ,start='2000', end='2020',color ='blue'): fig, ax = plt.subplots(1, figsize=(20,5)) ax.plot(df[start:end].index, df[start:end][attritube],'tab:{}'.format(color)) ax.set_title("Nifty 50 stock {} from 2000 to 2020".format(attritube)) ax.axhline(y=df[start:end].describe()[attritube]["max"],linewidth=2, color='m') ax.axhline(y=df[start:end].describe()[attritube]["min"],linewidth=2, color='c') ax.axvline(x=df[attritube].idxmax(),linewidth=2, color='b') ax.axvline(x=df[attritube].idxmin() ,linewidth=2, color='y') ax.text(x=df[attritube].idxmax(), y=df[start:end].describe()[attritube]["max"], s='MAX', horizontalalignment='right', verticalalignment='bottom', color='blue', fontsize=20) ax.text(x=df[attritube].idxmin(), y=df[start:end].describe()[attritube]["min"], s='MIN', horizontalalignment='left', verticalalignment='top', color='red', fontsize=20) plt.show() print("Max Value : ",df[start:end].describe()[attritube]["max"]) print("Min Value : ",df[start:end].describe()[attritube]["min"]) plot_attribute(nifty_50_df, 'P/E', color='green')
code